Thesis
اثر النظام الدولي الجديد تطبيق في قانون حقوق الانسان
يعد موضوع النظام الدولي الجديد وأثره في تطبيق قانون حقوق الانسان من الموضوعات المهمة في القانون الدولي العام، لا بل أنه موضوع الساعة أن صح التعبير، حيث ان هذا المصطلح الذي شاع وبرز بشكل كبير في نهاية عام 1991، على أثر تفكك الاتحاد السوفيتي السابق وتفرد الولايات المتحدة الامريكية كقوة وحيدة تسيطر على العلاقات، انعكس سلباً على تطبيق القاعدة القانونية الدولية، وخاصة تلك المتعلقة بحقوق الانسان.
On Controllability Probabilities of Stochastic non – linear Control Systems
The main aim of this thesis is focused on studying some non-linear uncertain stochastic dynamical system.The necessary background for stochastic process, stochastic integral for Brownian motion and fractional Brownian motion, stochastic dynamical system driven by Brownian motion and fractional Brownian motion are studied and discussed supported by useful comments and examples. Ito Some class of non-linear stochastic ordinary control system driven by Brownian motion as well as fractional Brownian motion have been considered and discussed.
حدود سلطات الضبط الاداري في التعامل مع المتظاهرين في القانون العراقي
تمنح هيئات الضبط الاداري صلاحيات واسعة ومتعددة وذلك من اجل الحفاظ على النظام العام من المَساس به، وتحقيق الاستقرار داخل المجتمع. الا ان تلك الصلاحيات الممنوحة لهذه السلطات الادارية قد تصطدم بحريات الافراد وحقوقهم، فتقيد ممارساتهم لها. الا انه في جميع الحالات يجب الا يصل هذا الحد من التقييد الى مصادرة الحريات العامة. ومن تلك الحريات الواجب صيانتها والحفاظ على حرية تمتع الافراد بها، هي حرية التظاهر، وهي تمثل احدى وسائل الافراد في التعبير عن الرأي في شؤون ادارة الدولة الداخلية او الخارجية.
tabilization of Nonlinear Stochastic Control System via Output – Feedback Control
Stochastic differential equations are one of the most useful areas of the theory of stochastic processes and its applications in mathematics.Some nonlinear (Itô) dynamic stochastic control system driven by
Brownian motion 2 based on dynamic observer have been considered.Output feedback (observer – based) robust and optimal control law which guarantees global (local) asymptotic stable in probability for the
G-Spline Interpolation for Approximating the Solution of the Ordinary Differential Equations Using Linear Multistep Methods.
The main objectives of this thesis, is oriented toward function approximation using special type of spline functions, which is called the “Gspline “including the details of the subject. The second objective consider the 1st order ordinary differential equations of the form: .
y'(x)=F(x,y), x ∈[a,b]
Modified Algorithms for Solving Linear Programming Problems
In this work, we studied the ``Path-Following Algorithm``, which is one of the family algorithms, called ``Interior-Point Algorithms``. We are discussed two modifications, the first
Variational Formulations of Some Variable Delay Differential Systems
The main theme of this work is to introduce the general form and fundamental concepts in ordinary and partial delay-differential equations with variable delays and then to find the variational formulation of
delay-differential equations with variable delays in both cases, ordinary and partial and to provide the rules of minimizing the obtained functional in the subject of calculus of variation. Finally, to minimize the
Solution of Stochastic Linear Ordinary Delay Differential Equations
This thesis have three main objectives. The first objective is to give a study of stochastic calculus, including the basic definitions and fundamental concepts related to this topic including the proof of some
results, and among such results is the proof of Hölder's inequality of expectation, the existence and uniqueness theorem of stochastic differential equations and the Euler's method for solving stochastic
Chebyshev Series Methods for Solving Some Linear Problems
The main purpose of this work may be divided into the following aspects:
1. Study the Chebyshev polynomials of the first and second kinds defined on the intervals [0,1] and [-1,1] and modify some of their properties
2. Use two methods to solve the linear ordinary differential equations with nonconstant coefficients, namely,Chebyshev-matrix method and Chebyshev series method.
3. Devote Chebyshev series method to solve system of linear Fredholm integral
equations and integro-differential equations.
Stochastic Nonlinear Control Stablizability Based on Invers Optimality
The main aim of this work is focused on studying the global asymptotic stability in the probability for some class of closed-loop control system of Itotype in the presence of system uncertainty. Some onlinear continuous-time Ito-dynamic stochastic system deriven by unbounded stochastic noise input have been considered, where the equilibrium point of the stochastic system is preserved even in the presence of noise The global asymptotic stability in probability has been developed by using stabilization controller and Lyapunov stochastic approach.