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Abstract

The nonlocal conditions for the boundary or initial value problems
appear when values of the function on the boundary or on the initial are
connected to values inside the domain. Such problems are known as
nonlocal problem.

The aim of this work is to study some types of nonlocal problems.
This study includes the following aspects:

(1) Discuss the existence and uniqueness of the solution with some nonlocal
initial value problems for the non-linear ordinary differential equations via
some types of fixed point theorems. Also some numerical methods are used to
solve special types of nonlocal initial value problems for the non-linear
ordinary differential equations.

(2) Give solutions for some types of the nonlocal initial and boundary value
problems for linear eigenvalue problems of the ordinary differential equations.

(3) Use some numerical methods to solve the initial-boundary value problem that
consists of the one-dimensional hyperbolic and parabolic equations with two
nonlocal non-linear integral boundary conditions. These methods depend on
Douglas’s equation and Crank-Niklson finite difference scheme, Taylor’s
expansion and some quadrature rules say Simpson’s 1/3 rule.



Introduction

In the last decades, the nonlocal initial-boundary value problems have
become a rapidly growing area of research. The study of this type of problems is
driven not only by a theoretical interest, but also by the fact that several
phenomena in engineering, physics and life sciences can be modeled in this way.
The nonlocal initial-boundary value problems formulated for the equations of the
mathematical physics where instead of the initial or boundary conditions a
certain dependence of the values of the unknown function on the boundary on
it’s values in internal points of the considered domain is given. The problems
with the nonlocal boundary conditions are used for the mathematical modeling,

for examples pollution processes in rivers, seas, which are caused by sewage.

The nonlocal boundary conditions simulate decreasing of pollution under
influence of natural factors of filtration and settling that cause self purification of
the environment. Problems with controls of the thermostat, where a controller at
one of its ends adds or removes heat, depending upon the temperature registered
in another point can be interpreted with a second-order ordinary differential

equation subject to discrete nonlocal boundary condition, [3].

Many researchers studied the nonlocal problems, say Chabrowski in 1984,
proved the existence and unigueness of solutions of the nonlocal problem for the
linear parabolic equation with the discrete nonlocal boundary condition, [7]. The
existence and uniqueness of solutions of the nonlocal problem for the linear
elliptic equation with the discrete nonlocal condition investigated by Chabrowski
in 1988, [8]. The existence and uniqueness of solutions of the nonlocal problem
for the linear parabolic equation with nonlocal initial condition were studied by
Dennis in 1992, [13]. The existence of solutions for the one-dimensional heat
equation with the nonlocal initial condition, that investigated by converting to a



Fredholm integral equation studied by Olmstead and Roberts in 1997, [28],
Pulkina in 1999, used the Schauder fixed point theorem, to prove the existence
of the linear second order hyperbolic equation with the linear integral conditions,
[30]. Beilin in 2001, proved the existence and unigueness of the solution for the
one-dimensional wave equation with the nonlocal integral condition, [5], the
existence and uniqueness of solution for the second order ordinary differential
equations with the nonlocal integral boundary condition was proved by George
and Tsamatos in 2002, [16]. The solutions of the eigenvalue problem for the one-
dimensional ordinary differential operator with the nonlocal integral boundary
condition given by Ciupaila and et al. in 2004, [9]. Yongping in 2005 discussed
the existence of the positive solution for the second order with the special case of
discrete nonlocal boundary value problem, [37]. Paul and Ahmad in 2005,
discussed the existence of the positive solutions of the nonlinear n-th order
boundary value problem with the special case of discrete nonlocal conditions,
[29]. Mehdi and et al. in 2006, used finite difference method to find the solution
of the one-dimensional wave equation with the one nonlocal linear integral
condition, [24]. Saadatmandi and Dehghan in 2006, used the shifted Legendre
technique for solving the one-dimensional wave equation with the one nonlocal
linear integral boundary condition, [33]. Mohammad in 2008, studied the
existence and uniqueness of special case of the hyperbolic equation with the two
nonlocal integral condition, [25]. Li in 2008, [22], Dehghan and Saadatmandi in
20009, [12], used the homotopy perturbation method and the variational iteration
method for approximating solutions of the one-dimensional wave equation with
the one nonlocal linear integral condition respectively. Svajunas in 2010, used
finite difference methods to find the solution of the two-dimensional heat
equation with the nonlocal linear integral condition, [35]. Ashyralyev and
Necmettin in 2011, used a finite difference scheme for solving the one-
dimensional hyperbolic equation with the one nonlocal linear integral boundary
condition, [2]. Borhanifar and et al. in 2011, used finite difference scheme to



solve the one-dimensional heat equation with the two nonlocal non-linear
integral boundary conditions, [6]. Nemati and Ordokhani in 2012, gave the
numerical method which depends on the properties of the Chebyshev
polynomials of the second kind for solving the one-dimensional wave equation
subject to the one nonlocal linear integral boundary condition, [27]. Marasi and
et al. in 2012, used the homotopy analysis method for solving the one-

dimensional wave equation with the nonlocal integral condition, [23].

The aim of this work is to study special types of the nonlocal initial-
boundary value problems. This study includes the existence and uniqueness of
these problems and methods for finding the solutions of them.

This thesis consists of three chapters:

In chapter one, Leary-Schauder fixed point theorem, Schauder fixed point
theorem and Banach fixed point theorem used to ensure the existence and
uniqueness of the discrete nonlocal initial value problem for special types of
the non-linear ordinary differential equations. Also some numerical methods
are used to solve special types of the discrete nonlocal initial value problems
for the non-linear ordinary differential equations.

In chapter two, we discuss the existences of the solutions for some types of the

nonlocal linear eigenvalue problems of the ordinary differential equations.

In chapter three, the solutions of the one-dimensional wave equation with the
nonlocal linear integral boundary conditions, the one-dimensional hyperbolic
equation and the one-dimensional parabolic equation with the two nonlocal
non-linear integral boundary conditions are obtained via the numerical
method; this method depends on finite difference scheme, Taylor’s expansion
and quadrature rule which is Simpson 1/3 rule.



Chapter One
Existence and Uniqueness of the Solution for the Nonlocal Initial Value
Problems

Introduction:

The initial value problems involving ordinary differential equations arise in
physical sciences and applied mathematics. In some of these problems, subsidiary
conditions are imposed locally. In some other cases, nonlocal conditions are
imposed. It is sometimes better to impose nonlocal conditions since the
measurements needed by a nonlocal condition may be more precise than the
measurement given by a local condition, [32]. Abdelkader and Radu in 2003,
proved the existence of solutions of the nonlocal initial value problems for the first
order non-linear ordinary differential equations via Leray-Schauder fixed point
theorem, [1].

In this chapter, we discuss the existence and uniqueness of the solutions of the
nonlocal initial value problem that consists of n-th order non-linear ordinary
differential equation together with discrete nonlocal initial condition by using some
fixed point theorems.

This chapter consists of four sections:

In section one, we use Leray-Schauder fixed point theorem, Schauder fixed
point theorem and Banach fixed point theorem to prove the existence and
uniqueness of the solution of the nonlocal initial value problem that consists of the
first order ordinary differential equation.

In sections two and three, we use Schauder and Banach fixed point theorems
to prove the existence and uniqueness of the solution of the nonlocal initial value
problem that consists of the second and n-th order non-linear ordinary differential
equation.

In section four, we use Euler’s method and Trapezium method to solve some
nonlocal initial value problems for the non-linear ordinary differential equations.



Chapter One Existence and Uniqueness of the Solution for the Nonlocal Initial Value Problems

1.1 Existence and Unigueness of the Solution for the Nonlocal Initial
Value Problems for the First Order Ordinary Differential Equations:

In this section we discuss the existence and uniqueness of the solutions for the
nonlocal initial value problem that consists of the first order non-linear ordinary
differential equation, [1]:

v (x) =f(s,us)), x€[01] (1.1)
together with the homogenous nonlocal initial discrete condition:
m
u(0) + z agu () =0 (1.2)
k=1

where f: [0,1] x R—— Rand f(x,.) and u(x) are continuous for all x € [0,1], xi
are given points with 0 <x; <x, <.+ <x, <1 and a,,a,,..,a, are real
numbers, such that

m
1+23k

k=1

* 0.

We start this section by the following lemma.

Lemma (1.1), [15]:
The vector space CJa, b] of the complex-valued continuous functions defined

on a closed interval [a, b] is a Banach space with respect to the following norm:

lullcrap) = sup Ju)|, u € Cla,b].

X€ [a,b]

Next, we give the following lemma, which appeared in [1], without proof,
here we give its proof.
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Lemma (1.2), [1]:

The nonlocal initial value problem given by equations (1.1)-(1.2) is equivalent
to the integral equation:

u(x) = —C Z [ak kaf(s,u(s)) ds] + fo(s,u(s)) ds, x€[0,1] (1.3)
0 0

k=1

m -1
1+Zak] .

k=1

where C =

Proof:

Let u be the solution of the nonlocal initial value problem given by equations
(1.1)-(12.2). Then by integrating both sides of equation (1.1) from 0 to x, one can
get:

ux) =u(0) + fo(s,u(s)) ds, x€[0,1] (1.4)

0

and by using the homogenous nonlocal initial condition given by equation (1.2),

one can have:
m

ux) = — Z apu (xy) + jxf(s,u(s)) ds (1.5)
0

k=1

Then we substitute x = x into equation (1.4), to get:
Xk
u(xy) = u(0) +f f(s,u(s)) ds, k=1,2,..,m.
0

By substituting the above equation into equation (1.5), one can have:

u(x) = — z ag [u(O) + ijf(s,u(s)) ds] + fo(s,u(s)) ds.
0 0

k=1

Hence

u(0) = — Z ay [u(O) + kaf(s, u(s)) ds].
k=1 0
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This implies that

1 +Zk ] z [a f f(s,u(s)) ds]

k=1

S, ; [ak fo Hs,u(s) ds].

Thus by substituting the above equation into equation (1.4) one can have:

u(0) = —

u(x) =u(0) + fxf(s,u(s)) ds, x €[0,1]
0

=—C ; [ak jOka(s,u(s)) ds] + joxf(s,u(s)) ds, x €[0,1].

Therefore u is the solution of the integral equation (1.3).

Conversely, let u be the solution of the integral equation (1.3), then by
differentiating equation (1. 3) one can get equation (1.1). On the other hand, we
substitute x =0and x = x;,1i = 1,2, ..., m into equation (1.3), to get:

u(0) = —-C [a ka s, u(s) ds]
Z . j (5,u(s)
and

a;u(x;) = —Ca; Z lak kaf(s,u(s)) ds] + a; inf(s,u(s)) ds, i=1,2,..,m.
k=1 0 0

Hence

Z aiu(x;) = —C [i a]ki lak jo Hs,u(s) ds] + i [al j (s, u(s)) ds]

1 i=1

= C all ak f(s u(s)) ds]

i -1 a z:1f<n=1 a) ; ai] Z [ak fOka(S'u(S)) ds].
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Therefore
m . - .
; au(x;) = lm] ; lak jo f(s,u(s)) ds‘

— C; lak JOka(s,u(s)) ds] = —u(0).

Hence u satisfies the homogenous nonlocal initial condition given by equation
(1.2). Thus u is a solution of the nonlocal initial value problem given by equations
(1.1)-(1.2). m

Next, the following theorem which is named as Leray-Schauder fixed point
theorem and will be used later to ensure the existence of the solutions for the
nonlocal initial value problem given by equations (1.1)-(1.2).

Theorem (1.3), (Leray-Schauder Fixed Point Theorem), [10]:

Let E be a Banach space and let T:E—— E be a completely continuous
operator. Assume that the set

M={x€E | x=uTx forsome u € [0,1]}

is bounded. Then T has at least one fixed point.

Now, we are in the position to give the following existence theorem; this
theorem is appeared literature. Here we give the details of its proof.

Theorem (1.4), [1]:

The nonlocal initial value problem given by equations (1.1)-(1.2) has a
solution if the following conditions are satisfied:

w(x |z]), X € [0,Xp]

D) lfx2)| < {a(x)BﬂZD, X € [Xpy, 1]

where w:[0,x,] X R*——>R* is a nondecreasing function in its second
argument, a: [x,,, 1] — R*, B: R*¥——>R™* is a nondecreasing functions,

-5-
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(2) There exist R, > 0 if p > R, implies

Xm
1f ( d <1 1.6
E w(x, p)dx 5 (1.6)
0
and
1 oo
j x)dx < - d (1.7)
a(x)dx ——dz :
B(2)
Xm R;
m Xm
whereD = |1 + |C|Z|ak|] and R; = Df w(x,Ry)dx.
k=1 0
Proof:

Define the operator T:C[0,1]—— C[0,1] by

Tu(x) = —C Z [ak ijf(s,u(s)) ds] + fo(s,u(s)) ds, x € [0,1].
] 0 0

Let M = {u € C[0,1]] u = uTu for some u € [0, 1]}, then we must prove M
Is a bounded set. To do this, let u € M. If u = 0 forall u € M, then M = {0} and
this implies that M is a bounded set and hence by using Leray-Schauder fixed point
theorem. T has a fixed point. This fixed point is a solution of the integral equation
(1.3). By using lemma (1.2) this fixed point is a solution of the nonlocal initial
value problem given by equations (1.1)-(1.2). On the other hand, if u € M such
that u # 0. If u(x) # 0 for some x € [0, x,,], then

—C i [ak ijf(s,u(s)) ds] + fo(s,u(s)) ds
0 0

k=1

lux)| = [WTu®)| = p

< |C| Zlaklj k|f(s,u(s))|ds+] |f(s,u(s))|ds
e 0 0

< |C| Zlaklf m|f(s,u(s))|ds+f m|f(s,u(s))|ds.
= 0 0

1+ |C|z|ak|]f I£(s,u(s))| ds
k=1 0

<

< Djxmoo(s, lu(s)|) ds, x € [0,Xp].
0

-6 -
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But [u)| < sup |u(x)| = llull¢fox,] and w is a nondecreasing function in its
X€E [0,Xm]

second argument, therefore

X

luG)l < D f o lullegox, 1) ds
0

and this implies that:

Xm

ey <D [ (s Nullgoxy) s
0

By dividing the above inequality by DI|u]|¢[ox,. On€ can obtain:

1 me
- < — w(s, ||ull ds.
D~ Nlullcion Jo (s ullcpox))

This contradicts with inequality (1.6), then
lullcrox,] < Ro (1.8)

If u(x) =0,for allx € [0,x,,], then one can get inequality (1.8). Moreover,
if u(x) # 0 for some x € [xp,, 1], then

lu®)| = [uTu(x)|

< |C| kzllakl .foxm|f(s,u(s))| ds + .foxm|f(s,u(s))| ds + L1|f(s,u(s))| ds

<

1+|C|Z|ak|“ m|f(s,u(s))|ds+f (s, u(s))| ds.
k=1 0 Xm

< D] mu)(s,lu(s)l) ds+j a(s)B(Ju(s)|) ds

Xm

<D j " (s lullpox, ;) ds + j a(s)B(u(s)]) ds.

Xm

By using inequality (1.8) and since w is a nondecreasing function in its second
argument, one can obtain:

Xm

lu(x)| < Dj w(s,Ry) ds +f a(s)B(Ju(s)|) ds.

0 Xm
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Let ¢ be a function that is defined by

Xm

ex) = DJ w(s,Ry)ds + fx a(s)B(Ju(s)|)ds, x € [xy, 1], then

0 Xm
@' (%) = ax)B(uE))), x € [xp,1].

But |u(x)| < @(x) and since B is a nondecreasing function then
¢'(x) = ax)B(ux)) < a)B(@(x), X € [xm, 1.

This implies that

*9'(s)
xm B(@(S))

ds < f a(s)ds, x € [Xy,1].

Xm

Let p(s) = z, then ¢'(s)ds = dz and hence the above inequality becomes:

CICO I | X
dz < f a(s)ds, x € [xy,1].
’[(P(Xm) B( Z) Xm "

Hence

o(x) 1 X 1
j dz < j a(s)ds < f a(s) ds.
X X

Ri=@(xXm) B( Z) m m

From inequality (1.7) and from the above inequality, we get ¢(x) must be finite,
that is there is R, > 0, such that:

(P(X) < RZI X € [Xm: 1]
But |[u(x)| < @(x), therefore |[u(x)| < R,, X € [x,, 1].

Thus
lullcpx,,1 = sup [u(x)| <R, (1.9)

X€ [Xm; 1]

If u(x) = 0 for some x € [xy,, 1], then one can get inequality (1.9).

Let R=max {R,, R,}, then from inequalities (1.8)-(1.9), one can have:

lux)| <R, x€[0,1].
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Hence

lullcpoy = sup Jux)| <R, ueM.
x€ [0,1]

This implies that M is a bounded set and since T is completely continuous,
[11]. By using Leray-Schauder fixed point theorem, T has a fixed point. This fixed
point is a solution of the integral equation (1.3). By using lemma (1.2) this fixed
point is a solution of the nonlocal initial value problem given by equations (1.1)-
(1.2). m

Next, we give the following theorem. This theorem is named as Schauder
fixed point theorem, which is used later to prove the existence of the solutions for
the nonlocal initial value problem given by equations (1.1)-(1.2).

Theorem (1.5), (Schauder Fixed Point Theorem), [10]:

Let B be a nonempty, convex, closed and bounded set in a Banach space E
and let T: B—— B be a completely continuous operator. Then T has at least one
fixed point in B.

Now, we are in the position that we can give the following existence theorem.
This theorem ensures the existence of the solutions for the nonlocal initial value
problem given by equations (1.1)-(1.2) under another types of conditions. This
theorem is a simple modification of the ideas that are appeared in [1].

Theorem (1.6), [1]:

Consider the nonlocal initial value problem given by equations (1.1)-(1.2). If
the following conditions are satisfied:

(1) There exist a5, a, > 0, such that [f(x,z)| < oy |z| + a,, z € R.

m
1+xm|C|Z|ak|]
k=1

then the nonlocal initial value problem given by equations (1.1)-(1.2) has at least
one solution.

(2) Da; <1, whereD =
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Proof:

Daz

Define the operator T as in theorem (1.4). Let R = and assume By =

251

{u € C[0,1] | [Jullcfo,17 = R}. Then it is easy to check that Bg is a nonempty,
closed, convex and bounded subset of C[0,1]. Let u € Bg, then

ITu(x)| =

—C i a Jka(s,u(s)) ds + fxf(s,u(s)) ds
0 0

k=1

m Xk X
<lcl Yl | laalu@] +alds + [ e @)+l ds
k=1 0 0
m Xm 1
<lcl Y fal | [ealullgon + o] ds + | [eallulleon + a] ds
k=1 0 0

m
<1¢l ) Jawl [aslullego + o] xm + [ea ullcgo) + ]
k=1

<

m
14+xy,|[C] Z|ak|] [0(1||U||C[0,1] + 0‘2]
k=1

Da,
1-Doy

< D(O(lR + 0(2) =D [0(1 + 0(2] = = R,X € [0,1]

2
1—-Doy

Therefore
ITullcpo,17 < R

This implies that TBg € Bg. Moreover T is completely continuous operator on
C[0,1], [11]. So by using Schauder fixed point theorem, T has a fixed point. This
fixed point is also a solution of the nonlocal initial value problem given by
equations (1.1)-(1.2). &

Next, we give the following theorem. This theorem is named as Banach fixed
point theorem, which is used later to ensure the existence of the unique solution for
the nonlocal initial value problem given by equations (1.1)-(1.2).

-10 -
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Recall that T is operator from normed space N to itself is said to be a
contraction operator in case there exist a constant 0 < L. < 1, such that for all
X,y €N

IfG) — Il < Lilx =yl

Theorem (1.7), (Banach Fixed Point Theorem), [10]:

If T:E—— E is a contraction operator defined on a Banach space E then T
has a unique fixed point in E.

Now, we are in the position that we can give the following existence and
unigqueness theorem, the proof of this theorem depends on the ideas that appeared
in [1].

Theorem (1.8), [1]:

Consider the nonlocal initial value problem given by equations (1.1)-(1.2). If
the following conditions are satisfied:

(1) f satisfy Lipschitz condition with respect to the second argument, that is there
exists L > 0, such that

If(x,y) — f(x,z)| < Lly—2z|, x€[0,1]and y,z € R.

m
1+xm|C|Z|ak|]
k=1

then the nonlocal initial value problem given by equations (1.1)-(1.2) has a unique
solution.

(2)LD < 1, whereD =

Proof:

From lemma (1.1), C[0,1] is a Banach space with respect to the following
norm:

lullepo,) = sup |u(x)|, ueC[0,1].

X€ [0,1]

-11 -
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Define the operator T as in theorem (1.4) and let u,v € C[0,1], then

—C kzl [ak j:kf(s,u(s)) ds] + Joxf(s,u(s)) ds +
Ckzl [ak JOka(s,v(s)) ds‘ — fo(s, V(s)) ds|.

< |C| ZIaklf k|f(s,u(s)) — f(s,v(s))|ds +
k=1 0

ITu(x) — Tv(x)| =

j‘x|f(s» u(s)) — f(s,v(s))| ds
0

< |C| kleakl joxmuu(s) —v(s)|ds + L1L|u(s) —v(s)|ds

< [c] Z|ak|j L sup Ju(s) — v(s)] ds +

s€ [0,1]

1
LJ sup |u(s) —v(s)|ds
o seo0,1]
r m

< LiClu = Vllegon | ) lawl m

| k=1

+ Llu = vll¢po,q

m ]
< |1+x,|C| zlakl Lllu = vll¢jo;
k=1 .

and this implies that

| Tu — TV||C[0,1] <

m
14%,,|C| Zlakll Ll[u = vll¢po,11
k=1

< DL|lu = vll¢[o,17-

Since DL < 1, then T is a contraction operator. By using Banach fixed point
theorem, T has a unique fixed point. This fixed point is the unique solution of the
nonlocal initial value problem given by equations (1.1)-(1.2). ®
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Chapter One Existence and Uniqueness of the Solution for the Nonlocal Initial Value Problems

Remark (1.9), [1]:

Consider the non-linear first order ordinary differential equation (1.1) together
with the nonhomogenous nonlocal initial condition:

u(0)+ ) ayu(xy) = a (1.10)
kZI kU (Xk

Then the existence and uniqueness of the solutions for this nonlocal initial value
problem can be also discussed by using theorems (1.4), (1.6) and (1.8), by
transforming the nonhomogenous nonlocal initial condition into homogenous ones.
To do this, let

y(x) = ux) — Ca, x€[0,1].

Then
y(0) = u(0) — Ca
and
y(xx) = u(xy) — Cot.
Therefore

y'®) =u' () =fxy(x), x€[0,1].

Therefore the nonhomogenous nonlocal initial discrete condition becomes:

m
y(0) + Ca + Z ay [y(xyx) + Ca] = «
k=1
This implies that
m m
y(0) + Z apy(xyx) = a—Ca — Z ay Ca
k=1 k=1
m
= a— Ca 1+Zak] = 0.
k=1

-13-



Chapter One Existence and Uniqueness of the Solution for the Nonlocal Initial Value Problems

1.2 Existence and Unigueness of the Solution for the Nonlocal Initial
Value Problems for the Second Order Ordinary Differential
Equations:

In this section we discuss the existence and unigueness of the solution of the
nonlocal initial value problem that consists of the second order non-linear ordinary
differential equation:

u'(x) = f(x,u(x), u’(x)), X € [0,1] (1.11)

together with the homogenous nonlocal initial discrete condition:

m

u(0) + 2 AU (%) = 0 (1.12)

k=1

and with the homogenous local initial condition:
u'(0)=0 (1.13)

where f: [0,1] X R2—— Rand f(x,.,.) is continuous for all x€ [0,1], x are given
points with 0 < x; < x, < - <x, <1 and ay,a,,...,a, are real numbers such

that:
m
1 + z di
k=1

The following lemma appeared in literature, without proof. Here we give its

* 0.

proof.

Lemma (1.10), [15]:

The vector space C'[a,b] of the one-time complex-valued continuously

differentiable functions defined on a closed interval [a, b] is Banach space with
respect to the following norm:

||u||c1[a,b] = maX{”u”C[a,b]: ”u’”C[a,b]}r u € Cl[a, b].
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Chapter One Existence and Uniqueness of the Solution for the Nonlocal Initial Value Problems

Proof:
To prove (C'[a,b], |l llciap;) s a normed space, we must prove the
following conditions:

(1) llullctap; = 0, u € C*a,b]. To do this, let u € C*[a,b], then u € C[a, b]
and u’ € C[a,b]. Therefore |lullc1ap) = max{llullciap), U’ llcfap} = 0.

() llullcipap; = 0 iff u= 0. To do this, let u = 0 then [|ullcfap; = U’ llcfap=0,
thus  [lu[[c1ap) = 0. Conversely, let|lullciap =0, then |lullgap =
W llcap) = 0. Therefore u(x) =u’(x) =0, x € [a,b]. This implies that
Reu(x) = Imu(x) =0, x € [a,b]. Hence u = 0.

(3) I ll¢tap; = [Mllu llgtapy, v € CHa,b]. To do this, let u € C'[a,b] and A €
C, then

1A [l¢papy = max{lAullcpap), 1AW [l cfan )
= max{ |Al[lullcgapy, A1 llcrap )
= |AImax{ [lullcfapy, 10 llcrap)}
= |Alllu [lca -

(4) ||u +g ”Cl[a,b] < ||u ”Cl[a,b] + ”g ”Cl[a,b]' ug € Cl[a,b]. To do thiS, let
u, g € Cl[a,b], then

lu+ g llcap < v llcap + 18 llcrap
and
lu" + g" llcrap < W llcrapy + 18" Icrap)-
Therefore
lu+gllciap = max{llu+ gllcrapp lu' + &'llciap}
< max{|lullcpapy + l8llcrapy 10 llcap) + 118" llcrap }
< max{||ull¢fap}, 10 llcap) } + max{llglicran), 18" llciani}
= llullctfapy + ll8llctan-

Thus (C*[a,b], |I. llc1fapy) is @ Normed space.
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Chapter One Existence and Uniqueness of the Solution for the Nonlocal Initial Value Problems

To prove the completeness of C1[a, b], let {u,}3, be a Cauchy sequence of
continuous functions in C![a, b]. In other words, given any e; > 0, we choose
N, large enough such that for n,m > N; we have:

”un — Uy ”Cl[a,b] < €.

That is

maX{”un - um”C[a,b]r ”u;l - u;n“C[a,b]} < €.
Thus

”un — Uny “C[a,b] < maX{”un - um“C[a,b]: ”ui’l - u;n”C[a,b]} <€
and

||u;1 - u;n “C[a,b] < maX{”un - um”C[a,b]r ”u;1 - u;n“C[a,b]} < €.

In other words, {u,};=; and {u;};=, are Cauchy sequences in C[a, b]. By using
lemma (1.1), there exists u, g € C[a, b], such that
u(x) = lim u, (x).
n—-oo
and

g(x) = lim up(x).
n—»>oo

Butu, € C[a,b], then

X

Un () — Un(a) = f u,(s) ds.

a

Hence
X X X
lim | u,(s)ds = J lim uj,(s)ds = f g(s) ds.
n—-oo n—oo
a a a
But
X
lim | u,(s)ds = lim{u,(x) —u,(a)} = u(x) — u(a).
n—-oo n—oo
a
Therefore

X

u(x) —u(a) = Jg(s) ds

a
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Chapter One Existence and Uniqueness of the Solution for the Nonlocal Initial Value Problems

and this implies that
u'(x) =g(x), xE€]a,bl.

Thus u € C'[a,b]. So, given any €, €,, we choose N; and N, large enough
such that we have n > N = max{ N;, N,}, we have

lup — u llcipapy = max{llu, — ullcpapy, lun — u'llcap }

<€ n=N

where e = max{ €,, €,}. Therefore the Cauchy sequence {u,};-, is convergent to
u € C![a,b] and this completes the proof. H

Now, we give the following lemma which is a generalization of lemma (1.2)
to be valid for the nonlocal initial value problem given by equations (1.11)-(1.13).

Lemma (1.11):

The nonlocal initial value problem given by equations (1.11)-(1.13) is
equivalent to the integral equation:

u(x) = —-C ay Xk(xk — s)f(s, u(s), u’(s)) ds +
2.

Jx(x — 9)f(s,u(s),u’(s))ds, x € [0,1] (1.14)

m -1
1+Zak] .

k=1

where C =
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Proof:

Let u be the solution of the nonlocal initial value problem given by equations
(1.11)-(1.13). Then by integrating twice both sides of equation (1.11) from 0 to x,
one can get:

u(x) = u(0) + u’(0)x + ijtf(s,u(s),u’(s)) dsdt
0o Jo

X rt
= u(0) +f J f(s, u(s), u’(s)) dsdt
0 Y0
By using Cauchy’s formula, then the above equation becomes:
u(x) =u(0) + f (x— s)f(s,u(s),u’(s)) ds, x€[0,1] (1.15)
0

and by using the nonlocal initial condition given by equation (1.12), one can
obtain:

m

ux) = — Z apu (xy) + fx(x — s)f(s, u(s),u’(s)) ds (1.16)
0

k=1

By substituting x = xy into equation (1.15), one can have:
Xk
u(xy) = u(0) + f Xk — s)f(s,u(s),u’(s)) ds, k=0,1,...,m.
0

Next, we substitute the above equation into equation (1.16), to get:

= — 0 (% — f(s, ,u’ d
u(x) kZIak [u( )+j0 (xx —s) (s u(s),u (s)) s] +

_[X(X — $)f(s,u(s),u'(s)) ds.
0

Hence

u(0) = — kzl ay lu(O) + .IOXk(Xk - s)f(s,u(s), u’(S)) ds]
and this implies that

u(0) = —-C [a Xk(x — s)f(s,u(s),u’(s)) ds].
kzl kfo k
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Thus
u(x) =u(0) + j (x — s)f(s,u(s),u’(s)) ds
0

=—C [a Xk(x — s)f(s,u(s),u’(s)) ds] +
; kL k
J (x — $)f(s,u(s),u’(s))ds, x€[0,1].

Therefore u is a solution of the integral equation (1.14).

Conversely, let u be the solution of the integral equation (1.14), then by
differentiating equation (1.14), one can get:

x 0
W (x) = f — (= 9f(5,u(s), v () ds
0
— jxf(s,u(s),u’(s)) ds
0

and this implies that u’(0) = 0 and
u'(x) = f(x,u(x),u’(x)), x € [0,1].

Thus u is a solution of equation (1.11) which satisfies the local initial condition
given by equation (1.13). By substituting x = x; into equation (1.14), one can

obtain:
Z a;u(x;) = —C i a; i [ak ka(xk — s)f(s,u(s),u’(s)) ds] +

i=1 k=1

[alj (x; — s)f(s u(s),u (s)) ds]

l1 - Cza‘]z akf (xi — $)f(s, u(s), u (S))ds]

= CZ [ak ka(xk — s)f(s,u(s),u’(s)) ds] = —u(0).
k=1 0
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This implies that u satisfy the homogenous nonlocal initial condition given by
equation (1.12). Thus u is a solution of the nonlocal initial value problem given by

equations (1.11)-(1.13). &

Next, we give the existences theorem. This theorem is a generalization of
theorem (1.6) to be valid for the nonlocal initial value problem given by equations
(1.11)-(1.13).

Theorem (1.12):

Consider the nonlocal initial value problem given by equations (1.11)-(1.13).
If the following conditions are satisfied:

(1) There exist a4, oy, a3 > 0, such that |f(x,z4,z,)| < o112, + o1z, + as.

m
1454101 faid
k=1

then the nonlocal initial value problem given by equations (1.11)-(1.13) has at least
one solution.

(2)D(a; +a,) < 2and D = 2,where D =

Proof:
Let T: C1[0,1] —— C[0,1] be an operator that is defined by

Tu(x) = —C z a JXk(xk — 9)f(s,u(s),u’(s)) ds +
k=1 "0

Jx(x — 9)f(s,u(s),u’(s))ds, x€[0,1] (1.17)

Let R=——2%  and assume that Br = {u € C[0,1] | llullc1po,1] < R}, then it

2-D(aq+ay)
is easy to check that By is a nonempty, closed, convex and bounded subset
of C1[0,1]. Let u € Bg, then

ITu(x)|

—C z ay fOXk(Xk — s)f(s, u(s), u’(s)) ds + JOX(X — s)f(s, u(s),u’(s)) ds|.

k=1

-20 -



Chapter One Existence and Uniqueness of the Solution for the Nonlocal Initial Value Problems

Therefore

TuGo 1< Iel Y faud [ 165 = )1 [i(s w0/ () as +
k=1 0
J |(x — )| |f(s, u(s),u’(s))|ds
0
<10 Y lal | 10— D @] + ol (9] + s Jds +
k=1 0

1
f (= $)] [agJu(s)] + alu’ ()] + aslds
0

[0‘1||U||c[o,1] + az|lullcpo17 + 0‘3]
2

IA
—_
+
>
EN
o
)
T

_ [(al + O‘2)||u||c1[0,1] + 0‘3]

IA
(U
+
>
EN
=
B
s

2
k=1
D
S E [((Xl + (Xz)R + 0(3]
- D 4 Daj 4 R
- 2 (al aZ) 2 - D(O(l + 0(2) a3 N '
Hence
ITullcpo,17 < R
On the other hand,
X
|(Tu) ()] = j f(s, u(s), u'(s)) ds
0

< Jx|f(s,u(s),u’(s))| ds

< [0(1||u||c[0,1] + 0(2||u’||c[0,1] + 0‘3]

< [(0(1 + ax)lullcrpoq) + O‘3]

Do ] R

< =—<R
[(“1 T%2) T D v g T

2
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This implies that

I(Tw) llcpo,1; <R
and hence

”Tu”C1[0,1] <R

Therefore TBr € By and since T is completely continuous, [11]. So by using
Schauder fixed point theorem, T has a fixed point. This fixed point is a solution of
the nonlocal initial value problem given by equations (1.11)-(1.13). ®

Next, we give the following theorem, which is a generalization of theorem
(1.8) to be valid for the nonlocal initial value problem given by equations (1.11)-
(1.13).

Theorem (1.13):

Consider the nonlocal initial value problem given by equations (1.11)-(1.13).
If the following conditions are satisfied:

(1) f satisfy a Lipschitz condition with respect to the second and third argument ,
that is there exists L; > 0, i = 1,2, such that

1f(x,y1,¥2) — f(%,21,22)| < Lyly; — 21| + Ly |y, — 25|

m
1431 ) lad
k=1

Then the nonlocal initial value problem given by equations (1.11)-(1.13) has a
unique solution.

(2)(L; + L,)D <1, whereD =

Proof:

From lemma (1.10), C1[0,1] is Banach space with respect to the following
norm:

lIullcapo,y) = max{llullcro,1), lw'llcro.1}, w € CH[0,1].
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Define the operator T as in equation (1.17) and let u,v € C1[0,1], then
[Tu(x) — Tv(x)|

< |C| Zlaklj klxk — s||(s,u(s),u'(s)) — f(s, v(s),v'(s))| ds +
k=1 0

fXIX — s||f(s, u(s),u'(s)) — f(s, v(s),v'(s))| ds

[|C| Z|ak|f = SllLylu(s) = V()] + Lo u'(s) = v/ ()] ds | +

[ f Ix — s|[LyfuCs) — v(s)| + LoJu'(s) — v'(s)I] ds]

1+xm|<:|2|ak|

[ 1lu— V||c1[o,1] + Ly|lu’ — V’||c1[o,1]]-

[L1||u — Vllcro17 + Lallu” = v'll¢po1 ]

Nlb—\

<

IU NIU

(L1 + L)llu = vllcp 1

< D(Ly + L) llu = vllgoy (1.18)
this implies that

||Tu - TV“C[O,l] < D(Ll + LZ)”u - V||C1[0,1]'

Furthermore

|(Tw)'(x) = (Tv)' ()| =

Xf(s, u(s), u’(s)) ds — jxf(s, v(s),v’(s)) ds
0 0

< Jx|f(s,u(s), u'(s)) — f(s,v(s),v'(s))| ds

< [ 1alu(s) vl + Lolu' ) =V O] ds
< [L1||u - V||c[o,1] + Ly[Ju’ — V’||c[0,1]]

< [ + L)l = vllcago ]
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and this implies that
I1(Tw)’ — (Tv)'llgpo,17 < [(L1 + L) u — vllcago 4] (1.19)

From inequalities (1.18)-(1.19), one can get:
I Tu — TV||c1[o,1] = maX{D(Ll + Ly)|[u - V||c1[o,1]. (Ly + L) [u— V||c1[0,1]}

< D(Ly + L) [lu = vllc1jo,17-

Since (L; + L,)D < 1, then T is contraction operator. By using the Banach fixed
point theorem, T has a unique fixed point. This fixed point is the unique solution of

the nonlocal initial value problem given by equations (1.11)-(1.13). ®

Remark (1.14):

Consider the second order non-linear ordinary differential equation (1.11)
together with the nonhomogenous nonlocal initial discrete condition:

m

u(0) + Z apu (Xg) = o

k=1
and with the homogenous local initial condition:
u’'(0) = 0.

Then the existence and uniqueness of the solutions for this nonlocal initial value
problem can be also discussed by using theorems (1.12)-(1.13), by transforming
the nonhomogenous nonlocal initial discrete condition into homogenous ones. To
do this, let

y(x) = u(x) — Ca, x€[0,1],

then
y(0) = u(0) — Co.

y(xx) =uxg) —Ca, k=1,2,...,m.

y'®) =u'(x), x€[0,1]
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and
y"(0) = u"() = f(x y(0),y' (¥)), x€[0,1].
Therefore the nonhomogenous nonlocal initial condition becomes:

y(0) + Ca+ ) agly(xyx) +Ca] =«
kZI k k

and this implies that

m m
y(0) +Zaky(xk) =a— Ca— zakCa
k=1 k=1
m
= a— Ca 1+Zak] = 0.
k=1
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1.3 Existence and Unigueness of the Solution for the Nonlocal Initial
Value Problems for the n-th Order Ordinary Differential Equations:

In this section we discuss the existence and uniqueness of the solution of the
nonlocal initial value problems that consists of the n-th order non-linear ordinary
differential equation:

u™(x) = f(x,u(x), u’ (%), ...,u(n‘l)(x)), x € [0,1] (1.20)

together with the homogenous nonlocal initial discrete condition:

u(0) + Z agu (xi) =0 (1.21)
k=1

and with the homogenous local initial conditions:
u'(0) =u”(0) = - =u®V(0) =0 (1.22)
where f:[0,1] X R®— Rand f(X,.,...,.) is continuous for all xe [0,1], x, are

given pointswith 0 < x; < x, < -+ <x, <1land ag,a,,..,a, arereal numbers
such that:

m
1 +Zak
k=1

We start this section by the following lemma. This lemma is generalization of
lemma (1.10). For the sake of completeness we give the details of its proof.

* 0.

Lemma (1.15):

The vector space CX[a,b] of the k-times complex-valued continuously
differentiable functions defined on a closed interval [a,b] is Banach space with
respect to the following norm

”u”(jk[a,b] = max{“u”C[a,b]' ”u’”C[a,b]' Ly ”u(k)”C[a,b] }r u e Ck[a' b]

- 26 -



Chapter One Existence and Uniqueness of the Solution for the Nonlocal Initial Value Problems

Proof:

To prove (C¥[a,b],l.llckjap) IS @ normed space, we must prove the
following conditions:

@) |lu ”Ck[a'b] > 0, u€ CX[a,b]. To do this, let u € CX[a,b], then u,u’,...,u® €
C[a, b]. Therefore

| } > 0.

@ llullgxpapy =0 iff u=0. To do this, let u=0 then [u®|_ =0,
1= 0,1, ,k Thus ”u ”Ck[a,b] = (.

llullgxpa by = max {||u||c[a,b], I [ crapys -

Conversely, let|lullgkap; =0, then  [ju®][. =0, i=01, .. k

Therefore  |u®(x)| =0, for i=0,1,..,k x€[ab]. This implies that
Reu(x) = Imu(x) =0, x € [a,b]. Henceu = 0.

(3) ||7\u||ck[a'b] = |A|”ll”ck[a’b], u € CK[a,b]. To do this, let u € CX[a,b] and A € C,
then

A

IAullcxp, ) = max {||7\u||c[a,b]» Al craps - C[a,b]}

= max { [Alllullcga AN ey, - N[, b

= |7\|maX{ lullcgapp W llcrapy, - ”u(k)”C[a,b]}

= I llull iy

(4) ”u+g”ck[a’b] < ”unck[a’b] + ”g”Ck[a,b]' u,g € Ck[a,b]. To do thIS, let
u,g € CX[a,b], then

[u® + g(i)”C[a,b] < ”u(i)”C[a,b] + ”g(i)”C[a'b], i=01,..,k
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lu+g ”Ck[a,b]

max {[[u + gllcjapp 10’ + 8 llcgapy, = [u® +8% .}

< max {llullcay + Igllcrapp 1 lcgaer + 18 erapp - 19y + 8%l epary )

< maX{Hu”c[a,b]' ”u’”C[a,b]’ o ”u(k)“c[a,b]}

+max{lglcrapy 18 ctash - 8% g )

< llullgkgay; + lgllckan, w8 € C¥[a,b]

Thus (C*[a, b], II. ll k(] ) is @ normed space.

To prove the completeness of C¥[a,b], let {u,}&_, be a Cauchy sequence of
continuous functions in CX[a,b]. In other words, given any €; > 0, we choose N,
large enough such that for n,m > N, we have

Iun = U llgpapy < €1 Thatis max { llullgap 10 g, - [0l o} < €

Thus

-2

k k
a9 — o)

< maxlun = nllcas, s = llctas. | o)

Cla,b

<e, i=01..,k

In other words, {u, }:_1, {u3e,,..., {uflk)} are Cauchy sequences in C[a, b].
- n=1

By using lemma (1.1), there exists u, g; € C[a,b], i = 1,2, ..., k, such that
u(x) = limu,(x), x € [a,b]
n—»>oo
and
gi(x) = lim ul(lk)(x), i=12,..,k x€]ab].
n—»>oo
But u, € C[a, b], then

X

Un () — up(a) = j uy(s) ds.

a
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Hence
X X X
lim | u,(s)ds = J lim uj,(s)ds = f g,(s) ds.
n—oo n—»oo
a a a
But
X
lim | u,(s)ds = lim{u,(x) —u,(a)} = u(x) —u(a).
n—oo n—oo
a
Therefore

X

u() - ua) = j g1(s) ds

and this implies that )

u'(x) =g,(x), x€[ab].

Moreover
X X X
lim | u,(s)ds = j lim u;(s)ds = jgz(s) ds.
n—oo n—-oo
a a a
But
X
lim [ u(5)ds = Jim (09 = uh(@) = (9 — £ @,
a
Therefore

X

g, (x) — g (a) = j ¢,(s) ds.

a

This implies that:
u”(x) = g,(x), x € [a,b].
By continuing in this manner, one can get:

uWx) =g;(x), i=1,2,..,k x€]ab].

thus u € CX[a,b]. So, given any €, €,, ..., €x11, We choose N;, N,,..., Ny large
enough such that forn = N = max{ N;, N,,..., Ny,,}, we have

uflk) —u® |

lutn =t llgkgapy = max {1y = ullegas, = W lcgap, -

<e¢ forn>N

C[a,b]}

where € = max{ €,, €,, ..., €x41}. Therefore {u,};=; is convergent sequence to
u € CK[a, b] and this complete the proof.
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Next, we give the following equivalent lemma. This lemma is a generalization
of lemma (1.11).

Lemma (1.16):

The nonlocal initial value problem given by equation (1.20)-(1.22) is
equivalent to the integral equation:

C

u) = —7 1)v

ak f (xy — S)™~ 1f(s u(s), u’(s), ..., u®" 1>(s))ds+

— f (x = 9" (5,u(), 0 (6), ., D)) ds, x € [0,1] (123)

m

where C= |1+

k=1
Proof:

Let u be the solution of the nonlocal initial value problem given by equations
(1.20)-(1.22). Then by integrating n-times both sides of equation (1.20) from 0 to
X, One can get:

—_ Xt—l tl
n-1 Kk n

u(x) = kzo%u(k)(O) + j Of b[ f(s,u(s),u’(s ), ., U "D (s )) dsdty ...dt,_q

€ [0,1].
From the local initial conditions given by equation (1.22) and by using the

generalization of Cauchy’s formula for an n-fold integrals, [26], then the above
equation becomes:

uG) = u(0) + j (x = )" (s,u(s),u'(s), .., uV(s))ds  (1.24)

_ 1)|
and by using the homogenous nonlocal initial condition given by equation (1.21),

one can get:
m

u(x) = — z apu (xy) +

k=1

1)'f (x —s)?~ 1f(s u(s),u'(s), ...,u®" 1)(5))
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Then we substitute x = x; into equation (1.24), to get:

j Xk(xk - s)n—lf(s, u(s), u’'(s), ..., u<n—1>(s)) ds

1
u(xy) = u(0) + CE

k=1,2, .., m.
Hence

m 1 Xk
u(x) = — Z ay [u(O) + T f (xi — s)“‘lf(s, u(s), u’(s), ...,u@ 1 (s)) ds‘
k=1

- 1)uf (x =" (5,u(), '), .., U (s) ) ds.

and

u(0) = — kzl ay [u(O) + o _1 D1 jOXk(xk - s)“‘lf(s, u(s),u’(s), ...,u®@ 1 (s)) ds].

So
-1
u(0) = A+ o, a0@m - DL akJ (xx — S)™~ 1f(s u(s),u’(s), ..., ul®" 1)(5)) S
1)'Zak j (i = )" (5,u(),0'(s), ., umD(s) ) ds:
Thus
C -
u(x) = o 1)' akf (xx — )M 1f(s u(s),u’(s), ...,ul®" 1)(3)) ds +

Therefore u is a solution of the integral equation (1.23).

Conversely, let u be a solution of the integral equation (1.23), then by
differentiating equation (1.23) (i)-times, one can get:

ud(x) =

1 X ai .
51| 3= (S U, () ds
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Thus
u'(0) =u"(0) = =u™V(0)=0
and

u®D(x) = (n —n)! j Xf(s, u(s), u'(s), ..., u®=D (s)) ds

(n—n)! J,
= j f(s,u(s),u’(s), ...,u<n—1>(s)) ds.
0
Therefore

u(x) = f(x,u(x),u’(x), ...,u(n_l)(x)), x € [0,1].

This implies that u is a solution of equation (1.20) that satisfies the local initial
condition given by equation (1.21). By substituting x = x; into equation (1.23),
one can obtain:

m

Z aju(x;)

i=1

(n — 1) Z z lak ka(Xk - S)n_lf(S,u(S),u’(s), ...,u(n—l)(s)) ds] n
= = 0 N

(n _1 D! z [ai jOXi(Xi - s)n‘lf(s,u(s),u’(s), ...,u(“‘l)(s)) ds]

= 1)' [1 - CZallz [akf (X — )™~ 1f(s u(s),u’(s), ...,u®™" 1)(5)) ]

1=1

C
(n—l)'

[ak j (X — S)™" 1f(s u(s), u’'(s), ..., u®" 1>(s))ds] = —u(0).

This implies that u satisfy the homogenous nonlocal initial discrete condition given
by equation (1.21). Thus u is a solution of the nonlocal initial value problem given
by equations (1.20)-(1.22). &

Next, we give theorem. This theorem is generalization of theorem (1.6) and
(1.12) to be valid for the nonlocal initial value problem given by equations (1.20)-
(1.22).
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Theorem (1.17):

Consider the nonlocal initial value problem given by equations (1.20)-(1.22).
If the following conditions are satisfied:

(1) There exist a4, a5, ..., 0ty 4+1 > 0, such that:

n

|f(X, 21,2y, ---;Zn)l < Z ailzil + On+1-

i=1
m
1 +x&|C|Z|ak|]

k=1

n

(2) D(Z ai> <n! and D = n!, whereD =
i=1

then the nonlocal initial value problem given by equations (1.20)-(1.22) has at least

one solution.

Proof:
Let T:C"1[0,1]—— C™ 1[0,1] be an operator that is defined by

n—-1

Tu(x) = —C Z 2y jo %f(s,u(s),u’(s), e u®D(s) ) ds
k=1

+ Lx%f(&u(s),u’(s) o u®D (S)) ds, x € [0.1] (1.25)

Doty 41
n!-D(X[L, o)
Then it is easy to check that By is a nonempty, closed, convex and bounded subset
of C"~1[0,1]. Let u € Bg, then

Let R = and assume that Bg = {u € C*"1[0,1] | lullgn-1f0.1) < R}.

(n 1)'

|Tu(x)|:‘ ak J (% — S)™~ 1f(s u(s), u'(s), .. <n—1>(s))ds+

f (x —s)?~ 1f(s u(s),u’(s), .. (n'l)(s)) ds

n—1)'
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Hence
ICI
X
*JO
Icl ~ X 5,
< Dl [ 10a= 9| Y wut D)+ e ds +
k=1 0 i=1
1 X < _
| 16— Y D)+ [ s
o =1
|C] = XK L I -
< ey 2l [ 100 9m [D alu g+ e s+
k=1 0 i=1
1 X <
_ )1 Ty G-D
—T fo 6= 971 D e fJuGD ]+ e s
i=1
cl < X n
< (n — 1)| Z|ak| J |(Xk — S)n_ll Z 0] ||u||Cn—1[0'1] + (o MY ds +
k=1 0 i=1
n
1), j |G = )" (Z oq) lullgn-sio.1) + oy | ds
i=1
MBS :
= Tl Z|ak| Xm [( O‘i) lullgn-10,17 + o‘n+1]
k=1 i=1
1 n
+a (Z O‘i) ”u||cn‘1[0,1] + O‘n+1]
i=1
D[/< D
Oh+1
= E ( 1 al) n! — D(ZP—l 1) T Gn R
1=
Therefore
ITullcpo,; <R (1.26)
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Furthermore

(TwD (%) = ﬁ fo x )™ (5,u(s), 0 (s), .., uPD(s) ) ds

1 x e _
= (n — 11— 1)'_]. |(X - S)n_l_ll lz a].”u(]_l)”(:[o’l] + On+1 ds
0 =1

n

1
Sm 20(]- R+ ap4q

[ \J=1

B n
1 Doy 41
<— - + <R
(—i- D! (Z “‘) n = DL, ) "
L \ 1=
Therefore
||(Tu)(i)||c[0’1] <R i=12,..,n-1 (1.27)

From inequalities (1.26)-(1.27), one can have:
||Tu||cn—1[o,1] <R

Therefore this implies that TBg € By and since T is completely continuous, [11].
So by using Schauder fixed point theorem, T has a fixed point. This fixed point is a

solution of the nonlocal problem given by equations (1.20)-(1.22). &

Next, we give the generalize theorem of theorem (1.8) and (1.13) to be valid
for the nonlocal initial value problem given by equations (1.20)-(1.22).

Theorem (1.18):

Consider the nonlocal initial value problem given by equations (1.20)-(1.22).
If the following conditions are satisfied:

(1) f satisfy a Lipschitz condition with respect second and third,...,n-th argument ,
that is there exists L; > 0, i = 1,2, ..., n, such that that is

n
|f(X, Y1, Y2, ""YH) - f(X' 21,23, ..., Zn)l < z Li |YI - Zil
i=1
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n m
D
(2) IZ Li] max{ﬁ, 1} <1, whereD = |1 + x}},|C| Zlakll
i=1 ' k=1

then the nonlocal initial value problem given by equations (1.20)-(1.22) has a
unique solution.

Proof:

From lemma (1.15) C*~1[0,1] is Banach space with respect to the following
norm

u€e C1[o,1].

|

||u||cn-1[o,1] = maX{”u”C[O,l]' lu'llcpo,aps --e» c[o,1] }’

Define the operator T as in equation (1.25) and let u,v € C*~1[0,1], then

N [ = 5
00 =TV T2 Dl J 60—

|f(s, u(s), u’(s), ..., u®m=v (s)) _ f(s,v(s),v’(s), ...,v<n—1>(s))| ds

+ (n—ll)! ;LXKX— $)n1

|f(s, u(s), u'(s), .., u®=D (s)) _ f(s,v(s),v’(s), ...,v<n-1>(s))| ds
<@ 'f'l)! Z|ak| fo 6= 9] Z Li|ui=D(s) — vi-D(s)| ds

j |(X—S)n 1|ZL |u(1 1)(5) v - 1)(s)|ds

(n— D! ¢

1
oSSl e,
T n

z Li] lu — V||cn—1[o,1]-

l i=1

IA
S| o
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Therefore
D n
||Tu — Tullc[o,l] < E |:Z Ll] ||u — V”Cn_l[O,l] (128)
i=1
Furthermore
: 1 X .
(TU)(I) (X) = m-’. (X - S)n_l_lf(S, U(S), u'(s), vy u(“_l) (S)) ds
*Jo

This implies that

| | 1 [x
|(TU)(1) (X) — (TV)(I) (X)l < (n — |:2 Ll] ||u — V”Cn_l[O,l]'

i)!
So

n
ICTW® = (T S M [T
clo,1] — —i)! 1 c"o1]
i=1

=12,..,n—1 (1.29)

From inequalities (1.28)-(1.29), one can have:

ITu — Tv|[cn-1p0 13 max ”u—V“Cn 110,1]"

Since [YiL 1L]max{— 1} < 1, then T is contraction operator. So by using

Banach fixed point theorem, T has a fixed point. This fixed point is a unique
solution of the nonlocal problem given by equations (1.20)-(1.22). &

Remark (1.19):

Consider the n-th order non-linear ordinary differential equation (1.20)
together with the nonhomogenous nonlocal initial discrete condition:

u(0) + Z apu (xy) = «
k=1

and with the homogenous local initial conditions:

u) =0, i=12,..,n—1.
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Then the existence of the solutions for this nonlocal problem can be also discussed
by using theorems (1.17)-(1.18) by transforming the nonhomogenous nonlocal
initial condition into homogenous ones. To do this, let

y(x) = u(x) — Ca, x€[0,1],

then
y(0) = u(0) — Ca
y(xx) = u(xy) — Cat
y'x) =u), x€[01]
and

y'(x) =u"(x), x€[0,1].
In a similar manner, one can obtain:

yMW(x) = u™(x) = f(x, y(x), ...,y(n‘l)(x)), x € [0,1].

Therefore the above nonhomogenous nonlocal initial condition becomes:

m

y(0) + Ca + z ay [y(xy) + Ca] = «a
k=1
and this implies that:
m m
y(0) + Zaky(xk) = o — Ca— z ay Ca
k=1 k=1
m
=a— Ca 1+2ak] = 0.
k=1
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1.4 Numerical Solutions of Nonlocal Initial Value Problems for the
Ordinary Differential Equations:

In this section we use some numerical methods for solving the nonlocal
problem given by equations (1.1)-(1.2). To do this, we divide the interval
[0,1] into n subintervals with equal step size h, such that t; = ih, i= 0,1, ..., n and
Xk = tj,, jk € {0,1,...,n}, k=1,2, ..., m.

1.4.1 Euler’s method, [21]:

The simplest example of a one-step method for the numerical solution of the
nonlocal initial value problem given by equations (1.1)-(1.2) is Euler’s method. A
simple derivation of this method proceeds by first integrating the differential
equation (1.1) between two consecutive mesh points t; and t;,, to get:

Git1
Uiy = uj + J f(s,u(s))ds, i=0,1,..,n—1

G
and then applying the rectangle integration rule:

ti+1

f f(s,u(s)) ds = hf(t;, u;)

ti
to get:
Ui;; = u; + hf(t,u;), i=01,...,n—1 (1.30)

where u; is the numerical solution of the nonlocal initial value problem given by
equations (1.1)-(1.2) at t;. We evaluate equations (1.30) at each i=0,1, ..., j,, — 1,
to get the following system of j,,, equations:
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u; — up — hf(t,up) = 0 )
u; —uy — hf(t;,u) = 0

Yjp = Uj—1 — hf(tjl—l’ ujl_l) =0

Yj+1 = Uj; — hf(t uj1) =0

J1’

: > (1.31)
Uj,—1 = Uj—2 — hf(tjz—z’ujz—z) =0
Uj, = Ujp—1 — hf(tjz_l’ ujz_l) =0
W41 = W, = hf(t;, ;) = 0
ujm o ujm_1 o hf(tjm_l’ujm_l) = O J

with (j,+1) unknowns ug, u, s Wiy Wj 41y eeey Ujy Wi g s Uj o BY solving the
above system of equations (1.31) and equation(1.2), using any suitable method to
find up,uy, ..., Uy, 45, 41, .-, U, Uj, 41, -, Uj, . Then we evaluate equation (1.30) at
each i=j,+1, jo+2, ..,n to get the numerical solutions u;, i =j, + 1,
jm + 2, ..., I

To illustrate this method consider the following example.

Example (1.1):

Consider the nonlocal initial value problem that consists of the first order
nonlinear ordinary differential equation:

u'(x) = u3(x) + (=25 — 52x — 63x% — 44x3 — 21x* — 6x°> — x°®),x € [0,1]

(1.32)

together with the homogenous nonlocal initial condition:
0 1 2 c 4 247 5 —0 133
u()+“<15>+u(15)+ “(15) 34“(15)‘ ' (1.33)

This example is constructed, such that the exact solution is

u(x) = x% + 2x +3.
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In this example leth = 1—15 then t; = é i=0,1,..,15 Herex; =t

X, = t,, X3 = t4, X4 = ts. In this case, the system of equations (1.31) takes the
form:

1 3, 25
U —Up—U+ o= 0

w —uy —=uf + (25+52( )+ 63 (= ) +44(1—15)3+
21(3) +6(5) +(3)) =0
s — Uy ——u + (25+52( ) +63(= ) +44(115)3+

21(37) o) + (&) )= o

U, —us — —ud + (25+52( ) +63(= ) +44(115)3+

15
3\* 3\ 3\
21(3) +6(2) +(x) )= o
3
ug —u, ——-uj + (25+52( ) +63 (= ) +a4() +
4\* 4\> 4\%
21(3) +6 () + () )= o
and together with the homogenous nonlocal discrete condition (1.33), we get a
system with 6 equations and 6 unknowns, To solve the above system, we use
MathCAD software package and the results are tabulated in table (1.1).then from

equation (1.30), one can get the numerical solutions u; at x;, i = 6,7,...,15 and
the results are tabulated in table (1.2).
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Table (1.1) represents the exact and the numerical solutions for h:% of example (1.1).

i Xi u(x;) Ui lu(x;) —
0 0 3 3.002 2.36 x 1073
1 0.067 3.138 3.14 2.17 x 1073
2 0.133 3.284 3.286 1.99 x 1073
3 0.200 3.440 3.442 1.86 x 1073
4 0.267 3.604 3.606 1.84 x 1073
5 0.333 3.778 3.78 216 X 1073

Table (1.2) represents the exact and the numerical solutions for hzli5 of example (1.1).

I Xi u(xi) Ui lu(x;) — i
6 0.400 3.960 3.964 412 x 1073
7 0.467 4.151 4.163 0.012
8 0.533 4.351 4.400 0.049
9 0.600 4.560 4.646 0.086
10 0.667 4.778 4.877 0.099
11 0.733 5.004 5.18 0.176
12 0.800 5.240 5.732 0.492
13 0.867 5.484 6.006 0.522
14 0.933 5.738 6.134 0.604
15 1 6 6.627 0.627

1.4.2 The Trapezium Rule, [21]:

The local truncation error can be reduced by using a more accurate quadrature
method for finding the integral than Euler's method, for example, the trapezium
rule:

tit1
h
j f(S, U(S)) ds = E [f(ti' ui) + f(ti+1r ui+1)]
t
it cannot be used directly as we do not know u;,,. The solution is to use the
forward Euler's method to estimate u;,, as u; + hf(t;, u;) in the trapezium rule. To
get:

h
Uj+1 = Y + E [f(ti,ui) + f(tl + h, U; + hf(tl, ui))], 1= 0,1, e, 1 — 1 (134)
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where u; is the numerical solution of the nonlocal initial value problem given by
equations (1.1)-(1.2) at t;. We evaluate equations (1.34) at each i=0,1, ..., j,, — 1,
to get the following system of j,, equations:

h
u; —uUg — E [f(to, uO) + f(to + h, Ug + hf(to, uO))] =0

h
U, —u; — E [f(tl, ul) + f(tl + h, Uy + hf(tl, ul))] =0

) :

Uj, ~Uj,-1 75 [£(t5,-1 w,-1) + £ (b, + oy + b, 1, u5,0))| = 0
h

Uj 1~ U, T3 [f(til»ujl) + f(til thuy, + hf(tjl'ujl))] =0

N :
) [f(tjz—z’ uiz—z) + f(tl'z—2 +h, Uj,—2 + hf(tiz—z’ ujz—z))] =0

h
Uj, = Ujpm1 — E [f(tjz—l’ ujz_l) + f(tjz_l th, Uj,-1 + hf(tjz_l’ ujz_l))] =0

h
Ujp+1 ~ W, =5 [f(tiz'uiz) + f(tiz +h,uj, + hf(tjz'ujz))] =0

L g [f(t]-m_l,ujm_l) + f(t]-m_l +hu 4+ hf(tjm_l,ujm_l))] =0

(1.35)
with (j,+1) unknowns ug, Uy, ..., U, Uj, 41, -, Uj,, Uj, 41, -, Uj_. By solving this
system that consist equations (1.35) and equation(1.2), by using any suitable
method to find  ug,uy, ..., U5, U, 41, ., Uj,, Uj, 41, -, U5, - Then we evaluate
equation (1.36) at each i=j, + 1, j, + 2,...,n, to get the numerical solutions
U, i=ju+1, ju +2,..,0.

To illustrate this method consider the following example.

Example (1.2):

Consider example (1.1) leth = % then t; = % i=0,1,..,30. Here x; = t,,

X, = ty, X3 = tg, X4 = tyo. In this case, In this case, the system of equations (1.37)
takes the form:
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U —ug ——uf ——uf +0.863 = 0

Uz —ug — =3 ——uf +0.926 = 0,

Uz — U, —6—10u§ —%u% + 0.994 = 0.

1.3 1.3 —
Ujp — Ug — —Ujp — Uy + 1.648 = 0.

and together with the homogenous nonlocal condition (1.33), we get a system with
10 equations and 10 unknowns, To solve the above system, we use MathCAD
software package and from equation (1.34), one can get the numerical solutions u;
at x;, i =11,12,...,30 and the results are tabulated in table (1.3).

Table (1.3) represents the exact and the numerical solutions for h:% of example (1.2).

i Xi u(xi) Ui lu(x;) — u

0 0 3.000 3.00000000 0

1 0.033 3.068 3.06800000 0

2 0.067 3.138 3.13800000 0

3 0.100 3.210 3.21000000 0

4 0.133 3.284 3.28400000 0

5 0.167 3.361 3.36100000 0

6 0.200 3.440 3.44000000 0

7 0.233 3.521 3.52100000 0

8 0.267 3.604 3.60400000 0

9 0.300 3.690 3.69000000 0

10 0.333 3.778 3.77800000 0

11 0.367 3.868 3.86800012 1.2x 1077
12 0.400 3.960 3.96000027 2.7x 1077
13 0.433 4.054 4.05400998 9.98x 1077
14 0.467 4,151 4.15100140 14 x 1077
15 0.500 4.250 4.25000190 1.9%x 10°°
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Chapter Two
Solutions of Special Types of the Linear Eigenvalue Problems with the
Nonlocal Integral Gonditions

Introduction:

The eigenvalue problems with nonlocal conditions are important problems
that arise in many real life applications like those with local conditions, [4], [17].
Many researchers studied the eigenvalue problems with nonlocal conditions, say
Karakostas and Tsamatos in 2002, proved the existence of the solutions for the
nonlinear eigenvalue problems of the second order nonlinear differential equation
with the nonlocal integral boundary condition, [19]. The solutions for the linear
eigenvalue problems of the second order linear differential equation with nonlocal
integral boundary conditions have been studied by Ciupaila and et al. in 2004, [9].
Henderson and Ntouyas in 2007, proved the existence of solutions for the
nonlinear eigenvalue problems of the n-th order nonlinear differential equation
with the nonlocal discrete boundary conditions, [18]. Fuyi and Jian in 2010, proved
the existence of solutions for the nonlinear eigenvalue problems of fourth order
nonlinear differential equation with the nonlocal integral boundary conditions,
[14].

The purpose of this chapter is to find solutions of some special types of the
linear eigenvalue initial and boundary value problems with the nonlocal integral
conditions.

This chapter consists of three sections:

In section one; we give the solutions for the linear eigenvalue problem of the
first order linear ordinary differential equations together with the nonlocal initial
integral condition.

In section two; we give the solutions for the linear eigenvalue problem of the
second order linear ordinary differential equations together with the local and the
nonlocal initial conditions.

In section three; solutions for the linear eigenvalue problem of the second
order linear ordinary differential equations together with the local and the nonlocal
boundary conditions are introduced.
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2.1 Solutions of Special Types of the Linear Eigenvalue Problems of
the First Order Ordinary Differential Equation with the Nonlocal
Initial Integral Condition:

In this section we give the solutions for the linear eigenvalue problems of the
first order linear ordinary differential equations together with nonlocal initial
condition. To do this, consider the linear eigenvalue problem that consists of the
first order linear ordinary differential equation:

u'(x) + Au(x) =0, x € [0,1] (2.1)

together with the nonlocal initial integral condition:
1

u(0) = aju(s)ds (2.2)
0

where a is any number. It is clear that for any value of A, u(x) = 0 is a solution of
the nonlocal initial value problem given by equations (2.1)-(2.2). In this section we
find the values of the parameter A such that the above nonlocal initial value
problem has a nonzero solution u. In this case, A is said to be an eigenvalue and u
Is the associated eigenfunction u for the nonlocal initial value problem given by
equations (2.1)-(2.1). Moreover (A, u) is said to be an eigenpair for the nonlocal
initial value problem given by equations (2.1)-(2.2). To do this we discuss two
different cases:

Case 1:

Assume A = 0 then by integrating both sides of equation (2.1) from 0 to x,
one can get:
u(x) =C, x€e[0,1]

where C is an arbitrary constant. By substituting the above equation into equation
(2.2), one can get:
C(1—a)=0.

Therefore, if a # 1, then A = 0 is not an eigenvalue for the nonlocal initial value
problem given by equations (2.1)-(2.2). But, ifa = 1, then A = 0 is an eigenvalue
of the nonlocal initial value problem given by equations (2.1)-(2.2), with the
corresponding nonzero constant eigenfunction.
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Case 2:
Assume A # 0, then the general solution of the differential equation (2.1), is
u(x) = Ce™,

where C is any nonzero number. By substituting the solution into equation (2.2),
one can get:

ae b =a—A.

To solve this equation, one can use any suitable method. To find this root, we
use MathCAD software package and the results are tabulated down.

Table (2.1) represents the values of A for different values of a
and the absolute errors.

a A |ae™ + A —a
16 16 1.234 x 10~ 14
14 14 3.748 x 10715
10 10 5.295 x 10712
8 7.997 5.295 x 10712
2 1.594 2.191 x 10710
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2.2 Solutions of Special Types of the Linear Eigenvalue Problems of
the Second Order Ordinary Differential Equation with the Nonlocal
Initial Integral Condition:

In this section we devote the linear eigenvalue problem that consists of the
second order linear ordinary differential equation:

u’'(x) +Aux) =0, x€[0,1] (2.3)

together with the nonlocal initial integral condition:
1

u(0) = a] u(s)ds (2.4)
0
and the local initial condition:

u'(0) =0 (2.5)

where a is any number. It is clear that for any value of A, u(x) = 0 is a solution of
the nonlocal initial value problem given by equations (2.3)-(2.5). The linear
eigenvalue problem here is to find the parameter A for which this problem has a
nonzero solution u. In this case, A is said to be an eigenvalue and u is the associated
eigenfunction u for the nonlocal initial value problem given by equations (2.3)-
(2.5). Moreover (A, u) is said to be an eigenpair for the nonlocal initial value
problem given by equations (2.3)-(2.5). To do this, we use the ideas that appeared
in [9]. So one must consider the following cases:

Case 1:

Assume A = 0. In this case, the general solution of the differential equations
(2.3) that satisfy the local initial condition given by equation (2.5), takes the form:

u(x) =C, x€[0,1]

where C is any nonzero number. By substituting the above equation into equation
(2.4), one can get:

C(1—a)=0.
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Therefore, ifa # 1, then A = 0 is not an eigenvalue of the nonlocal initial value
problem given by equations (2.3)-(2.5). If a =1, then A =0 is an eigenvalue of
the nonlocal initial value problem given by equations (2.3)-(2.5), with the
corresponding nonzero constant eigenfunction.

Case 2:

Assume A < 0, then the general solution of the linear differential equation
(2.3) takes the form:

u(x) = Cie ™ * + C,e*™, x€[0,1],

where C;,C, are an arbitrary constants and a =+ —A. But this solution must
satisfy the local initial condition given by equation (2.5), so

u(x) = C cosh(ax), x € [0,1],

where C any nonzero number. Further this solution must also satisfy the nonlocal
initial condition given by equation (2.4) to get:
(04
sinha = —.
d
To solve this equation, one can use any suitable method. To find this root, we

use MathCAD software package and the results are tabulated in table (2.2).

Table (2.2) represents the values of o for different values of

a and the absolute errors.

a « |sinha — %|
1/2 2.177 1.273 x 10710
1/3 2.838 3.855 x 10713
1/4 3.264 6.359 x 10713
1/5 3.578 8.743 x 10712
1/9 4.364 7.105 x 10~15
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Case 3:
Assume A > 0, then the general solution of the linear differential equation
(2.3) takes the form:
u(x) = C; cos(ax) + C, sin(ax), x € [0,1],

where C;,C, are an arbitrary constants and o =+ A. But this solution must
satisfy the local initial condition given by equation (2.5), then the above equation
becomes:

u(x) = Ccos(ax), x €[0,1],

where C is any nonzero number. Moreover this solution must satisfy the nonlocal
initial condition given by equation (2.4) to obtain:
(04
sina = —.
da

To solve this equation, one can use a suitable method. To find this root, we

use MathCAD software package and the results are tabulated down.

Table (2.3) represents the values of o for different values of
a and the absolute errors.

a @ |sina — g|

-8 3.61 1.439 x 107°
-5 4.906 1.259 x 10710
2 1.895 2.642 x 10~
A 2.475 4179 x 10~1*
8 2.786 1.777 x 10712
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2.3 Solutions of Special Types of the Linear Eigenvalue Nonlocal
Boundary Value Problems of the Second Order Ordinary
Differential Equation with theNonlocal Initial Inteqgral Condition,[9]:

In this section we give the solutions for the linear eigenvalue problem of the
second order linear ordinary differential equation together with the nonlocal initial
integral condition and local boundary condition. To do this, consider the linear
eigenvalue problem that consists of the second order linear ordinary differential
equation:

u’'(x) +Aux) =0, x€[0,1] (2.6)

together with the nonlocal initial integral condition:
1

u(0) = aj u(s)ds (2.7)
0
and with the local boundary condition:

u(l) =0 (2.8)

where a is any number. It is clear that for any values A, u(x) = 0 is a solution of
the nonlocal boundary value problem given by equations (2.6)-(2.8). The linear
eigenvalue problem here is to find the parameter A for which this problem has a
nonzero solution u. In this case, A is said to be an eigenvalue and u is the associated
eigenfunction u for the nonlocal boundary value problem given by equations (2.6)-
(2.8). Moreover (A, u) is said to be an eigenpair for the nonlocal boundary value
problem given by equations (2.6)-(2.8). To do this, one must consider the
following cases:

Case 1:

Assume A = 0. In this case, the general solution of the linear differential
equations (2.6) that satisfy the local boundary condition given by equation (2.8),
takes the form:

u(x) =C(1-x), xe€[0,1],
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where C is any nonzero number. By substituting the above equation this solution
into equation (2.7), one can get:
a
cl1- E] =0.

Therefore, if a # 2, then A = 0is not an eigenvalue of the nonlocal boundary
value problem given by equations (2.6)-(2.8). If a=2, then A=0 is an
eigenvalue of the nonlocal boundary value problem given by equations (2.6)-(2.8),
with the corresponding nonzero constant eigenfunction.

Case 2:

Assume A < 0, then the general solution of the differential equation (2.6)
takes the form:

u(x) = C,e ™ + C,e™, x€][0,1],

where C;,C, are any arbitrary numbers and «a =+ — A. But this solution must
satisfy the local and nonlocal conditions given by equations (2.7)-(2.8), to get the
following system:

a a C
1——(*—1) 1+—-(e*-1) 1 0
(04 (04

o

e e @ Cz 0

this homogeneous system has a nontrivial solution iff homogeneous

a a
1——(e*—1) 1+—(e*-1)
(04 (04 =

e e ¢

So
d a
- — o __ - __ _ - __ [0 A—
[1 ~(e 1)]e [1+a(e 1)]e ~0
and this implies that

a
—sinha + " [cosha — 1] = 0.
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But

sinha = 2sinh (%) cosh (%), cosha — 1 = 2sinh? (%)

Thus the above equation becomes:

sinh (g) cosh (g) = % sinh? (g)
and hence

tanh (g) = g.

To solve this equation, one must consider the following cases:

oy o
(i) Ifa < 2,then no nonzero root A of function tanh (E) —3 exists.

oy o
(ii)Ifa > 2, then there exists two nonzero roots a of the function tanh (E) ——

for which o > 0. This root can be found by using any suitable method. To find
this root, we use MathCAD software package and the results are tabulated

down.

Table (1.4) represented the values of o for different values of
a and the absolute errors.

(04 a
a « [ranh (5) - g|
5/2 1.776 1.932 x 1014
4 3.83 6.493 x 10712
8 7.995 1x 10716
10 9.999 3.053 x 1074
12 12 1.95 x 1071%
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Case 3:

Assume A > 0, then the general solution of the linear differential equation
(2.6) takes the form:

u(x) = C; cos(ax) + C, sin(ax)

where C;,C, are any arbitrary numbers and a =,/ A, But this solution must
satisfy the local and the nonlocal conditions given by equations (2.7)-(2.8), to get
the following system:

a a C
1——sina —[cosa — 1] ! 0
a a =

cosa sin a C, 0

This homogeneous system has a nontrivial solution iff

a a
1 — —sina —[cosa — 1]
o o =0.
cosa sina

So
a a
[1 — —sina] sina ——[cosa — 1]cosa = 0
o o

and this implies that

a

sina—& [sina + cos?a — cosa] = 0 (2.9)
But
o o o4
o (X « _ — 7cin2 (=
sina = 2sin (2) cos (2), 1 — cosa = 2sin (2)

Thus equation (2.9), becomes:

sin (%) cos (%) = % sin? (g)

and hence
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Therefore, for any value of a there exist infinitely roots o of the function
tan(a) — % This root can be found by using any suitable method. To find this root,

we use MathCAD software package and the results are tabulated down.

Table (2.5) represented the values of « for different values of

a and the absolute errors.

a @ |tanoc - g|
-10 9.826 7.618 x 10711
-4 4.578 8.438 x 1071°
-2 10.174 9.025 x 10711
2 8.765 7.105 x 10715
S -8.765 8.743 x 1010
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Chapter Three
Finite Difference Method for Solving Special Types of the Nonlocal
Problems for Linear Partial Differential Equations

Introduction:

The nonlocal initial-boundary value problems involving partial differential
equations have been a major research area in modern physics, chemistry and
engineering when it is impossible to determine the boundary values of the
unknown function, [2]. Many researchers studied these types of problems, from
them Said and Abdelfatah in 1999, proved the existence and uniqueness of the
second order hyperbolic equation with one nonlocal integral boundary condition,
[34]. Rehman in 2009, used five point central finite difference scheme to solve the
one-dimensional heat equation with two nonlocal linear integral boundary
conditions, [31]. Ashyralyev and Necmettin in 2011, used the finite difference
scheme for solving the one-dimensional hyperbolic equation with one nonlocal
linear integral boundary condition, [2] and Borhanifar and et al. in 2011, used the
finite difference scheme to solve the one-dimensional heat equation with two
nonlocal non-linear integral boundary conditions, [6].

In this chapter we use the finite difference scheme to solve special types of
the nonlocal initial-boundary value problems.

This chapter consists of three sections:

In section one, we use Douglas’s equation and Crank-Niklson finite difference
scheme for solving the one-dimensional wave equation with two nonlocal linear
integral boundary conditions.

In sections two and three, we use Crank-Niklson finite difference scheme for
solving the one-dimensional hyperbolic and parabolic equations with nonlocal non-
linear integral boundary conditions.
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3.1 Solutions of the One-Dimensional Wave Equation with the
Nonlocal Linear Integral Boundary Conditions:

Consider the nonlocal initial-boundary value problem that consists of the one-
dimensional wave equation:

Uy — Uy, = f(x,t), x€[0,1], t€ [0, T] (3.1)
together with the local initial conditions:

u(x,0) =dx), x€[0,1] (3.2)

u(x,0) =r(x), x€[0,1] (3.3)

and the two nonlocal linear integral boundary conditions:

1
u(0,t) = j wo (X)) u(x, t) dx+ go(t), t€[0,T] (3.4)
0

1
u(l,t) = j w; (X)) u(x,t) dx+ g, (t), te€ [0, T] (3.5)
0

where f is a known continuous function of x and t, d, r, wy, w4, go and g,, are
known continuous functions that must satisfy the compatibility conditions:

(DM@=]%@N®M+&®-

(DMD=]M@N®®+&@-

_ ! dgo
(3)r(0) = jo wo (x) r(x)dx + at .
d d
(4) r(1) = jo Wy (%) r(x)dx +% g

In this section we use the finite difference scheme for solving this nonlocal
initial-boundary value problem given by equations (3.1)-(3.5). To do this, we
divide the region [0,1] X [0, T] into N x M mesh point with spatial step size
h = 1/N in the x-direction and the time step size k = T/M respectively, where M
Is positive integer and N is an even positive integer.
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The mesh points are given by:

oo
= Er
[S— —
o
S o
.

= =z

Define the following difference operators, [36]:
Stu”— Lll] 1 2ui,]-+ui,]-+1, 1 = 0,1,...,N, j= 1,2,...,M—1,
S)Z(Ui’j = ui_l,j - 2ui,]- + ui+1,j, 1 = 1,2,. . .,N - 1, ] = 0,1,.. . M,

where u;; is the numerical solution of the nonlocal initial-boundary value problem
given by equations (3.1)-(3.5) at the point (x;, t;).

We replaced (327121)__ by Douglas’s equation, [36]:
1!]

0%u L2 6 1 o8
(W) ~h? [8" 6 *% 6 560 0x T ] Hijy
1

)]
=12,...,.N-1, j=01,...,M.

Then explain equation (3.1) at the point (i, j) by:

1 1 0%u 0%u

o =3ll5z)  *lae)

1,]+1 1,]
i=12,..,N—-1 j=12,...,M—1.

Let r = 5 , then the above equation can be rewritten as:

+ f(Xi,tj),

82
[1 + 12] [ui,jﬂ — 2u; + ui,j_l]
= [1+— « —%8 +%8 °+0(8, 8)] [wijer + uij]
82
+k? [1 +1—’;] f(x t)).
= [8 2 ——6 +%8 +ES * —m66 +0(8,°) ] [uijsr + uij]

8%
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Hence

82
[1 + ﬁ] [ui’j+1 - Zui,j + ui,j_l]

_ r? 2 1 6 8 2 83‘
== [SX + (%> 85 +0(85") ] [uijer +uwij] +k [1 + E] f(xi, t5)-
= D082 1 0(6,°) [[uyen + iy ] + K2 [1 +§] (o t).

2 X X 1L,j+1 1,) 12 Y

where 0(8,°) denotes terms containing six and higher powers of 8. Assuming
these terms are negligible, then the above equation becomes,

2 2 2
[1 + f—;] (ui']-ﬂ — 2uy; + ui,j_l) = %SXZ (ui,jﬂ + ui,]-) + Kk? [1 + %‘ f(xi, t]-).
After simple computations, one can have:

(1- 6r2)ui—1,j+1 + (10 + 1ZI'Z)Ui,j+1 + (1- 6r2)ui+1,j+1 =Gy (3.6)
where

Cij = (24 6r9)uj_1;+ (20 = 12r*)u;; + (24 6r*)ujyqj — Uj_qjoq —
10 uj o — Ujppjo1 + K2[f(xi-1, 1) + 106(x;, t) + (X541, ) |,

and i=12,...N—1, j=12,..,M—1
By substituting Xx=x; in equation (3.2), one can obtain:

u; o = d(x;), i=201...,N

On the other hand, approximate equation (3.3) by using the forward finite
difference formula to get:

uj; = kr(x;) +uj, i = 0,1,...,N (3.7)
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The integrals in equations (3.4)-(3.5) can be approximated by using some
quadrature rules say Simpson's 1/3 rule, to obtain:

ajUgj+1 + ArjUpjer + ot anjunjer = —3 Boltiv1) | 12 M-1
bojugj+1 + byjuyjiq + .o+ byjunjrr = —3 gl(tj+1)’ B
(3.8)

where
ap; =h wo(X0) — 3, bo; =h wy (Xo),
anj = h wy(xy), by; =h wy(xy) —3,

) N
air1j = 4h wo(Xzi41), boir1 = 4h Wi (X2i41), i=0]1, oy T 1,

_ N
azj = 2hwo(Xz) and by = 2h wy(xy), i=1,2, g T 1.

Therefore equations (3.6) and (3.8) can be written in the matrix form:

rdoj  d1j A2 aN_Z,j aN_L]- aN,j' r Uoj+1 7 3 gO(tj+1)
a B« 0 0 0 Uy j+1 Cys
0 o P 0 0 0 Ugjs1 C !
z : 2) (3.9)
0 0 0 B a 0 -
o 0 0 a B a | |un-1e1 Cn-1
_bO,j bl,j bz,j bN—z,j bN—l,j bN,j_ L Unj+1 1 |3 81(tj+1)_

where a = 1 — 6r?, B =10 + 12r2. This linear system can be solved by using
any suitable method to find the numerical solutions u;;, i=0,1,...,N, j=2,3,....M
of the nonlocal problem given by equations (3.1)-(3.5).
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Example (3.1):

Consider the nonlocal initial-boundary value problem that consists of the one-
dimensional wave equation:

U — Uy = —2, X € [0,1], t€[0,1] (3.10)
together with the local initial conditions:

u(x, 0) = x?, x € [0,1] (3.11)

u(x,0) =1, x € [0,1] (3.12)

and the nonlocal linear integral boundary conditions:

1 . 2 | 42
u(O,t)=j xu(x,t) dx+4t (110 . , te[0,1] (3.13)
0
1 _ 2 2
u(1,t)=j gu(x,t) dxp AT E;Ht) U te(01] (314
0

This example is constructed, such that the exact solution is

u(x,t) = x>+t

Let N= M=4, then we get h=k = %,r =1, x; = i, t = L i,j =0,1,2,3,4.

From equation (3.11), one can have:
- 2 =2
5 1 i _

Ujo = (x)° = (Z) = 16’ i=0,1,23,4.

Therefore
1 9
uO’O = 0, ul’o = E ) uZ,O = g ) u3,0 = E and U4,0 = 1.

By using equation (3.7), equation (3.12), can be approximated as:

1 i
Ui, =7+

PR i=20,1,234.

Hence
1 13 5
Up 1 =Z: u1’1:1_6' Uz 1 —E» Us 1 =1_6' Uy 1 ZZ-
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Now, for j=1, equation (3.9) takes the following form:

3025 025 075 025 7[%2 [00938]
5 22 -5 0 0o ||lwz| | 6125
0 -5 22 -5 0 ||uxz|= 83750
0 0 -5 22 -5 | Us 12.125
0 0.125 0.1250.375 —2.875) lus; 3.7500J

This system can be easily solved by using any suitable method to find the
numerical solutions u; ,, i = 0,1,2,3,4 that are tabulated down in table (3.1).

Next, we substitute j=2 in equation (3.9) and solving the resulting linear system of
equations to get the numerical solutions u; 3, i = 0,1,2,3,4. By continuing in this
manner one can get the numerical solutions u;,,i=0,1,2,3,4. These numerical
solutions are tabulated down in table (3.1).

. _ 1
Table (3.1) represents the exact and the numerical solutions for h:k:Z of example (3.1).

i ] Xi t; u(xi,t2) Ui.2

0 0.00 0.5000 0.46781
1 0.25 0.5625 0.5547
2 2 0.50 0.50 0.7500 0.7481
3 0.75 1.0625 1.0260
4 1.00 1.5000 1.4995
0 0.00 0.7500 0.5477
1 0.25 0.8125 0.7399
2 3 0.50 0.75 0.1000 0.9500
3 0.75 1.3125 1.2391
4 1.00 1.7500 1.5395
0 0.00 1.0000 0.7845
1 0.25 1.0625 0.9139
2 4 0.50 1.00 1.2500 1.0791
3 0.75 1.5625 1.3862
4 1.00 2.0000 1.8579
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Now if we take N=20 and M=40, then h:i, k= i, r=-<, X; = l,
. 20 40 2 20
4’—0, i=01,..,20, j=0,1,...,40.. By following the same previous steps one can
get some of the numerical solutions that are tabulated in table (3.2). In table (3.3)
we take different values for h and k and the values of the absolute errors at some

special values.

: . 1
Table (3.2) represents the exact and the numerical solutions for hzg, k=

1

40
of example (3.1).

i J Xi t; u(x;, t2) Ui.2
0 0.00 0.0500 0.0494
1 0.05 0. 0525 0. 0525
2 2 0.10 0.05 0. 0600 0. 0600
3 0.15 0.0725 0.0725
4 0.20 0.0900 0.0900
5 0.25 0.1125 0.1125
6 0.30 0.1400 0.1400
7 0.35 0.1725 0.1725
8 0.40 0.2100 0.2100
9 0.45 0.2525 0.2525
10 0.50 0.3000 0.3000

Table (3.3) represent the absolute errors for spatial values for h and k of
example (3.1).

h k Xi L |U(Xi't2) - ui,2|
0.2 2.56 x 107°

0.1 0.1 0.5 0.2 6.471x 107°
1 1.949%x 107>

0.2 1.753x 10715

0.005 | 0.025 0.5 0.05 4.665x 10716
1 9.360x 1078
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Example (3.2):

Consider the nonlocal initial-boundary value problem that consists of the one-
dimensional wave equation:

Ui — Uy = —xsin(t), x € [0,1], t € [0,1] (3.15)

together with the local initial conditions:
u(x,0) =0, x€[0,1] (3.16)

u(x,0) =x, x€[0,1] (3.17)

and the nonlocal linear integral boundary conditions:

) |
u(0,t) =j u(x, O dx—smzﬁ, t € [0,1] (3.18)
0
1 3sin(t)

u(l,t) = f x2u(x,t) dx + , te[0,1] (3.19)
0

4

This example is constructed, such that the exact solution is

u(x,t) = xsin(t).

Now if we take N=100 and M=40, then we get h:ﬁ, k= %, r =6.25,
Xi = —, tj ==, i =0,1,..,100, j = 0,1, ...,40.
100 40

From equation (3.16), one can have:
ujo = 0, i=0,1,..,100.
By using equation (3.7), equation (3.17), can be approximated as:
i

= — i=0,1,2,..,100.
40001 1 0,,, ;00

Ui 1

Hence

1 1
— .., W01 = 7=
4000 40
By following the same previous steps one can get some of the numerical solutions
that are tabulated in table (3.4), in table (3.5) we take different values for h and k
and the values of the absolute errors at some special values.

Upgq = 0, U1 =
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. . 1 1
Table (3.4), represents the exact and the numerical solutions for h:ﬁ’ k:Eof

example (3.2).

[ J X t; u(xi,t2) Ui.2

0 0.00 0.0000 0.0000
1 0.01 0.0005 0. 0005
2 2 0.02 0.05 0.0010 0. 0010
3 0.03 0.0015 0.0015
4 0.04 0.0020 0.0020
5 0.05 0.0025 0.0025
6 0.06 0.0030 0. 0030
7 0.07 0.0040 0.0040
8 0.08 0.0045 0. 0045
9 0.09 0.0050 0.0050
10 0.10 0.0055 0.0055

Table (3.5), represent the absolute errors for spatial values for h and k of

example (3.2).
h k r X B |ulx;, tz) — |
0.2 3.129x 10~*
0.1 0.1 1 0.5 0.2 3.276x 1074
1 1.313x 10~*
0.2 1.0125% 107°
0.005 | 0.025 25 0.5 0.05 1.9511x 107°
1 2.4661x 107°
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3.2 Solutions of the One-Dimensional Hyperbolic Equation with the
Nonlocal Non-Linear Integral Boundary Conditions:

Consider the nonlocal initial-boundary value problem that consists of the one-
dimensional hyperbolic equation:

o*u(x,t) 0 du(x,t)

T — & [a(x) T] = f(X, t), X € [O, 1], te [O, T] (320)
together with the local initial conditions:

u(x,0) = d(x), x €[0,1] (3.21)

u(x,0) =r(x), xe€[0,1] (3.22)

and the nonlocal non-linear integral boundary conditions:
1
u(0,t) = j wo (X) uP(x,t) dx + go(t), t€ [0, T] (3.23)
0

u(l,t) = jlwl x) ul(x,t) dx + g,(t), t€[0,T] (3.24)
0

where p > 1,q =1 are known constants, f is a known continuous function of x
and t, a is a known continuous function of x, d, wy, wy, go, g; and r are known
continuous functions that must satisfy the compatibility conditions:

(1) d(0) = j o (9 [ATP dx + g0 (0).
0

@) d(1) = j wy () [d(0]9 dx + g, (0).
0

1 d
(3)10) = p | wy ORGP r(dt |

! - dg,
@) = q | W, AR re0d+ |

In this section, we used Crank-Niklson finite difference scheme for finding
the solutions of the nonlocal initial-boundary value problem given by equations
(3.20)-(3.24). To do this, we divide the region [0, 1] X [0, T] into N X M mesh
points with spatial step size h = 1/N in the x-direction and the time step size
k=T/M respectively, where M is positive integer and N is even positive
integers.
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The mesh points are given by:

x; = ih, i=01..,N,

i=01,..., M.

Define the following difference operators, [36]:
8 u(Xllt ) u1+1] - ui,j'

82u(xl,t )

2 — R
s2u(x;, t;) = Ujjog — 2uj; + Ujjey, i=0,1,...,

where u;; is the numerical solution of the nonlocal problem given by equations
(3.20)-(3.24) at the point (xl,t) We replaced (a 12’) by the mean of its finite

difference representation on the (j+1)-th and j-th time rows:

0%u 1
<_> = [82u(x;, t;) + 82u(x;, tj41)],
1]

0x2 /..
i=12...,N-1 j=12,....M—1.

Then we approximate equation (3.20) at the point (i,j) by

. a'(x;) a(x;)
8t ujj = Tl Syl + 2h12 |62 (u1]+1 + ull)] + f(xl,t ),

i=12,...,N—1, j=12,...,.M—1.

k
Letr = o then the above equation becomes:

—r?a(xXui_qj4+1 + 2[1 +ax)r?Jujjeq — r*ax)uirgj41 = Cij,

i=12,..,N—-1 j=12,..,M—-1  (3.25)

where

Cij = rza(xi)ui_l’j + 2 [2 - rza(Xi) + Ta'(xi)] U.i’]' +

k2
[rza(xi) + ZTa' (Xi)] ui_,_l']- — 2ui']-_1 + Zsz(Xi, t])
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By substituting Xx=x; in equation (3.21), one can obtain:
Ujo = d(Xi), 1= 0,1, ...,N,

then we approximate equation (3.22) by using forward finite difference formula to
get:
uj; = kr(x;) +ujp, i=0,1,..,N (3.26)

Now, by using Taylor’s expansion for the nonlinear functions up(xi, tj+1) and

uf(x;, tj+1 ) about the point (x;, t;), one can have:

ou;

p _ ..p p—-1 7 "ij 2
and
odu.: ;
a _ .q q-1_"1) 2
Uy = Uy +kauy; T + 0(k*)

respectively, where 0(k?) denotes terms containing second and higher powers of
k. But

aui,j _ Ujj4n — U

ot k

Therefore, one can get:

P _ p p-1
Ui = LR Wi j=01,..M—1 (3.27)
_1 ) ) ) ") ) ) ) ) .
ugjﬂ =(1- q)ug]. + qug]. Uije1

Moreover the integrals that appeared in equations (3.23)-(3.24) can be
approximated by using some quadrature rules say Simpson's 1/3 rule, to obtain:

h
Ugj+1 = §[W0(X0)ug,j+1 + 4 wo(xl)ull),j+1 + 2w0(x2)ugj+1 4ot

wo(nuy 1] +8o(tj41), j=12,..,M=1 (3.28)
and

_h q q q
Unj+1 = §[W1(X0)u0,j+1 +4 Wl(xl)uMJer + 2W1(X2)u2’]-+1 + -+

w1\ )uy i) +81(te1), J=12,..,M=1 (329
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By substituting equations (3.27) in equations (3.28) and (3.29), one can get:

ao,juo,jﬂ + ai,j ui,j+1 + -+ aN,j uN’]-+1 = LN,]" ] = 1,2, ey M-1 (330)

and
bo'juo’j+1 + bi,j ui,j+1 + -+ bN,j llN’]'+1 = QN,j' ] = 1,2, ey M-1 (331)
where
ag; = phwo(xo)ug’j_1 -3, i=12,..,M,
by = qhwl(xo)ug,j_l, i=12,..,M,
p-1 . N .
Agiy1j = 4phw0(xi)ui,j , i=0,1, T 1, j=12,..,M,
q-1 . N .
bait1j = 4qhw1(xi)ui,j ) i=0,1, T 1, j=12,..,M,
p-1 . N ,
Aziy1j = thwo(xi)ui’j , i=1,2, o T 1, j=12,..,M,
q-1 : N .
bait1j = thwl(xi)ui,j , i=1,2, T 1, j=1.2,..,M,
an; = phwo(xN)uﬁgl, i=12,..,M,
by, = qhwl(xN)ugjjl -3, i=12, ..M,
Lyj=(— DhWo(Xo)ug,j +4(p — 1)hW0(X1)u5j + 2(p — Dhw, (Xz)ug,j
+-+(p— 1)hw0(xN)u§']. -3 go(tj+1), i=12,..,.M—1
and

Quj = (a = Dhwy (xoJuig; +4(q = Dhws Gep)ul + 2(q = Dhwy (xa)u,

+ -+ (q — 1)hW1(XN)qu,j —3 gl(tj+1)' ] = 1,2, ,M — 1.
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Therefore equations (3.25), (3.30) and (3.31) can be written in the matrix form:

(40 A1j Az dN-2j AN-1j ANj] 1 Yoj+1 7 [ Ly;
o B1 o 0 0 0 Uqj+1 Cyi
0 o By 0 0 0 || uzjss .
: : 2) (3.32)
0 0 0 Bn-2 an-1 0 :
0 0 0 an—2 Bn-1 oy | |UN-1j+1 CN-1
[bo; byj by bn-z; bn-1j byl L unj+ 1 L Qu,

where o; = —r?a(x;), B; = 2[1 +r?a(x))], i=0,1,..,N, j=12,...,M — 1.This
linear system can be solved by using any suitable method to find the numerical
solutions u;;,i = 0,1,..,N, j=2,3,...,M of the nonlocal problem given by
equations (3.20)-(3.24).

To illustrate this method consider the following examples.

Example (3.3):

Consider the nonlocal initial-boundary value problem that consists of the one-
dimensional wave equation:

Uy — U = —2, XE[0,1], t€[0,1] (3.33)
together with the local initial conditions:
u(x,0) =x%, x€[0,1] (3.34)
u(x,0) =1, x€[0,1] (3.35)
and the nonlocal non-linear integral boundary conditions:
! 6t—(1+1)°+t°
u(0,t) :f xu?(x,t) dx + ( c ) , t€[0,1] (3.36)
0
1x 16(1+t)— (1 +0)*+t*
u(l,t) =f §u3(x,t) dx + ( ) 1(6 ) , te[0,1] (3.37)
0

This example is constructed such that the exact solution is

u(x,t) = x2 +t.
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Let N= M=4, then we get h = k —% =1, x = i, t; =2, i,j = 0,1,2,3,4. From
equation (3.34), one can get:
- 2 =2
=(x-)2=(i) -1 i=01234

u 0 1 4 16 ) y4,4,0,%.

Therefore
1 9
uO’O = 0, ul’o == E ) uZ’O == § ) U3,0 == E and U40 1

By using equation (3.26), equation (3.35), can be approximated as:

1 i? ]
Uj1 = Z + 1_6 , 1= 0,1,2,3,4.
Hence
1 5 1 13 5
Up1 =7, ull__16’ u21==§, Us 1 16’ Uy 1 4

Now, for j=1, equation (3.32) takes the following form:

-1 4 -1 Ui 2 1
0 —1 4 Uz =| 1.375
0 0 -1 Uz 2 2

[—30. 1563 0.2500 1. 2188 0. 6250 ro,z [ 1.0977 1
0 0.0366 0.0938 0. 7427 —2. 4141‘ u4,2J —2.6331

This system can be easily solved by using any suitable method to find the
numerical solutions u; ,, i = 0,1,2,3,4 that are tabulated down in table (3.6).

Next, we substitute j=2 in equation (3.32) and solving the resulting linear system of
equations to get the numerical solutions u; 3, i = 0,1,2,3,4. By continuing in this
manner one can get the numerical solutions u;,,i=0,1,2,3,4. These numerical
solutions are tabulated down in table (3.6).
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Table (3.6) represents the exact and the numerical solutions for h:k:% of example (3.3).

i ] Xi t; u(xi,t) Ui.2

0 0.00 0.5000 0.4492

1 0.25 0.5625 0.5478

2 2 0.50 0.5 0.7500 0.7421

3 0.75 1.0625 1.0455

4 1.00 1.5000 1.4398

0 0.00 0.7500 0.6744

1 0.25 0.8125 0.7614

2 3 0.50 0.75 0.1000 0.9592

3 0.75 1.3125 1.2481

4 1.00 1.7500 1.6352

0 0.00 1.0000 0.8001

1 0.25 1.0625 1.1395

2 4 0.50 1 1.2500 1.3169

3 0.75 1.5625 1.8046

4 1.00 2.0000 2.2810
Now if we take N=20 and M=40, then h=—, k=—, r = -. X; = i, t =

20 40 2 20

ﬁ, i=01,..,20, j=0,1,...,40.. By following the same previous steps one can

get some of the numerical solutions that are tabulated in table (3.7).

In table (3.8) we take different values for h and k and the values of the absolute
errors at some special values.
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. . 1
Table (3.7) represents the exact and the numerical solutions for hzg, k=

1

40
of example (3.3).
i J Xi t; u(x;, t2) Ui.2
0 0.00 0.0500 0.0497
1 0.05 0. 0525 0. 0525
2 2 0.10 0.05 0. 0600 0. 0600
3 0.15 0.0725 0.0725
4 0.20 0.0900 0.0900
5 0.25 0.1125 0.1125
6 0.30 0.1400 0.1400
7 0.35 0.1725 0.1725
8 0.40 0.2100 0.2100
9 0.45 0.2525 0.2525
10 0.50 0.3000 0.3000

Table (3.8) represent the absolute errors for spatial values for h and k of

example (3.3).
h k X;
' B |U(Xi:tz) - ui,2|

0.2 5.7 % 1075

0.1 0.1 1 0.5 0.2 1.5%x107°

1 5.2x 107*
0.2 1.516x 10~14
0.005 | 0.025 | 5 05 0.05 | 1110% 10716
1 2.565x 1077
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Example (3. 4):

Consider the nonlocal initial-boundary value problem that consists of the one-
dimensional hyperbolic equation:

U — (X + Duyy, = —x Xt x € [0,1], t€ [0,1] (3.38)
together with the local initial conditions:

u(x,0) =e*, x€[0,1] (3.39)

u(x,0) =e*, x€e[0,1] (3.40)
and the nonlocal non-linear boundary conditions:

1 et 4 a2t _ a2t+3
u(0,t) = j eXu?(xt) dx + 3
0

1 ze(t+1) + e4—t _ e(4t+4)

u(1,t) =j 2ut(x,t) dx + 5
0

, te[0,1] (3.41)

, te[01] (3.42)

This example is constructed such that the exact solution is

u(x, t) = eXtt,

i

Let N=1000 and M=500, then we get h=——, k=—, r = 2, x; = —,
1000 500 1000

ti=——, i=0,1,..,1000,j = 0,1, ...,500.

From equation (3.39), one can have:

uj = e/1000 1 =10,1,...,1000.
Therefore

Ugo =1, Uy = 1.001, ..., Uyg0 = 2.718.

By using equation (3.7), equation (3.40), can be approximated as:

u;; = (1.025)el/10%° i =0,1,2,...,1000.

Hence
uO’1 = 1.025 ) ul’l == 1.026, ey uloo’l = 2.786.
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By following the same previous steps one can get some of the numerical solutions
that are tabulated in table (3.9), in table (3.10) we take different values for h and k

and the values of the absolute errors at some special values.

: . 1
Table (3.9) represents the exact and the numerical solutions for h=——, k=—

1
1000° 500

of example (3.4).

i Xi [ u(xitz) Uiz
0 0.000 1.0040 1.0040
1 0.001 1.0050 1.0050
2 2 0.002 0.004 1.0060 1.0060
3 0.003 1.0070 1.0070
4 0.004 1.0080 1.0080
) 0.005 1.0090 1.0090
6 0.006 1.0100 1.0100
7 0.007 1.0110 1.0111
8 0.008 1.0120 1.0121
9 0.009 1.0130 1.0131
10 0.010 1.0141 1.0141

Table (3.10) represent the absolute errors for spatial values for h and k of
example (3.4).

h Kk Xi t, lu(xi, tz) — ujg|
0.2 5.35x 1074
0.1 0.1 0.5 0.2 1.51x 10~*
1 7.66x 1074
0.2 1.145% 108
0.001 0.005 0.5 0.01 6x 1078
1 7% 1078
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3.3 Solutions of the One-Dimensional Parabolic Equation with the
Nonlocal Non-Linear Integral Boundary Conditions:

Consider the nonlocal initial-boundary value problem that consists of the one-
dimensional parabolic equation:

ux© 9 MEDT _ 0, x€[0,1], te[0,T 3.43

at &I:a X) 5X ] - (XJ ); X [ ) ]1 [ ) ] ( ' )
together with the local initial condition:

u(x,0) =d(x), x€|[0,1] (3.44)

and the nonlocal non-linear integral boundary conditions:

u(0,t) = jlwo x)uP(x,t) dx + go(t), te|[0,T] (3.45)
0

1
u(l,t) = j w; X)) ul(x,t)dx+g,(t), te]0,T] (3.46)
0

where p = 1,q = 1 are known constants, f is a known continuous function of x
and t , a is a known continuous function of x, d, w,, wy, goand g, are known
continuous functions that must satisfy the compatibility conditions:

(1) d(0) = j wo () [AGOTP dx + go(0).

@) d() = j wy () [dGO18 dx + g1 (0).

In this section, we used Crank-Niklson finite difference scheme for finding
the solutions of the nonlocal initial-boundary value problem given by equations
(3.43)-(3.46). To do this, we divide the region [0, 1] X [0, T] into N X M mesh
points with spatial step size h = 1/N in the x-direction and the time step size
k=T/M respectively, where M is positive integer and N is even positive
integers.
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The mesh points are given by:

tt=ijk  j= 01,...,M.
Define the following difference operators, [36]:
StU(Xi, t]) = ui,]-+1 - ui,]-,

S)Z(U(Xi,tj) = ui_Lj - 2ui,]- + ui+1']-, 1= 1,2,...,N — 1, ] = 0,1,...,M,

SEU(Xi,tj) = ui,j_l - Zui,j + ui,j+1, 1= 0,1,...,N, ] = 1,2,...,M - 1,

where u;; is the numerical solution of the nonlocal problem given by equations
0 u) by the mean of its finite

(3.43)-(3.46) at the point (x;, t;). We replaced (a; _
L)
difference representation on the (j+1)-th and j-th time rows:

0%u 1., "

E = m [SXU(Xi, tj) + qu(xi:tj+1)]r

Lj
i=12,...N-1, j=12,.... M—1
Then we approximate equation (3.43) at the point (i, j) by:
a'(x;) a(x;)
Oy = TISXUi,j + Z—hIZ [82 (uijen + )] + (x5, 1),
i=12,...N-1, j=01,... M—1,
k
Letr = —, then the above equation becomes:
_ra(xi)ui—l,j+1 +2[1+ a(Xi)r]ui,j+1 - ra(Xi)ui+1,j+1 = Cij,

i=12,..,.N-1, j=12,..,M—-1 (3.47)

where
k
Ci,j = ra(Xi)ui_ljj +211— ra(Xi) — Ea (Xl)] ui’]. +

k
[ra(xi) + 2 Ha’(xi)] Uirpj + 2K f(xi, t]-).
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By substituting x=x; in equation (3.44), one can obtain:

ui'o = d(Xi), 1= 0,1, e N.
Now, by using Taylor’s expansion for the nonlinear functions up(xi, tj+1) and

u(x;, tj4+,) about the point (x;, t;), one can have:

Ju
p _ ..p p—-1_"1] 2
Ui = Uj; +Kpug; T + 0(k?)
and
Jdu
a _ .49 q-1_"1j 2

respectively. But

Therefore, one can get:

P _ (1 _ /P p-1
Ujjeq = (1= PIUj; +PUj; U

q —
iLj+1

,i=01,..,N, j=01,..,M—1 (3.48)

q q-1
u (1- Q)ui,j Tqu;; Ujje

the integrals in equations (3.45)-(3.46) can be expressed some quadrature rules
such as Simpson 1/3 rule, to obtain:

_h p p p
Ugj+1 = E[WO(XO)UO’]-_I_l + 4 Wo(xl)ul’j+1 + ZWO(XZ)UZJ_H + -+

wo(nUuy 4] + 8o(tjs1), j=12,..,M=1 (349
and

_h q q q
UNj+1 = §[W1(Xo)uo,j+1 + 4 W1(X1)U1,j+1 + 2w1(x2)u2'].+1 + -+

w1 (U] + 81(t41), =12, M =1 (3.50)
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By substituting equations (3.48) in equations (3.49) and (3.50), one can get:

ao,juo,jﬂ + ai,j ui,j+1 + -+ aN’]- uN,]-+1 = LN,]" ] = 1,2, . M-1 (351)

and
boiugj1 + bijUijeq + -+ byjunjrr =Qnj J=1.2,..,M—1  (3.52)
where
ap; = phwo(xo)ug’j_1 -3, i=12,..,M,
bg;j = qhwl(xo)ug’j_l, i=12,..,M,
851415 = 4Phwo(x)ul; 7, i=01, g -1, j=12,..,M,
bair1y = 4qhwy (x)ul ™, i=0,1, g -1, j=12,..,M,
141 = 2phwo (x)u; i=1,2, g -1, j=12,..,M,
bair1; = 2qhwy (x)ul ™, i=12, g -1, j=12,..,M,
an; = phwo(xN)uﬁgl, i=12,..,M,
by, = ghw; (xy)uy; -3, i=12, ..M,
Lyj=(p— DhWo(Xo)ug,j +4(p— 1)hW0(X1)u5j +2(p — Dhw, (Xz)ug,j
+-+(p— 1)hw0(xN)u§']. -3 go(tj+1), i=12,..,M—1
and

Qn;j = (@ = Dhwy (xo)ug; +4(q = Dhw; (xp)ug; + 2(q = Dhw; (xp)uy,

+ -+ (q — 1)hW1(XN)qu,j —3 gl(t]—+1) , ] = 1,2, ,M — 1.
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Therefore equations (3.47), (3.51) and (3.52) can be written in the matrix form:

[doj A1j Az an-zj AN-1j ANj] o Yoj+1 7 [ Lyj
% B1 oy - 0 0 0 Ugje1 Cy.
0 o B, 0 0 0 || gy .
: s . =| "% (3.53)
0 0 O Bn-2 an-1 O :
0 0 0 .« oy P Oy | |uncpjer|  [ON-1
[bo; by by bn-zj bnoiy byl Lunj I L Quy

where o; = —ra(x;), B; = 2[1 +ra(x;)],i = 0,1,...,N, j=1,2,...,M—1. This
linear system can be solved by using any suitable method to find the numerical
solutions u;, i =01,..,N, j=12,...,M, of the nonlocal problem given by
equations (3.43)-(3.46).

To illustrate this method consider the following examples.

Example (3.5):

Consider the nonlocal initial-boundary value problem that consists of the one-
dimensional heat equation:

U, — Uy = 2(t—3x), x€[0,1], t€[0,1] (3.54)
together with the local initial condition:
u(x,0) =x3, x€[0,1] (3.55)

and the nonlocal non-linear integral boundary conditions:

! 6t> — (1 +t7)* +t*
u(0,t) = f x%u(x,t) dx + ( c ) , te[0,1] (3.56)
0
1 41+t - (A +t2)* + 18

, te[0,1] (3.57)

u(1,t) = j 3x2ud(x,t) dx + 2

0
This example is constructed such that the exact solution is

u(x, t) = x3 + t2,
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Let N=4 and M=100, then we get h=%, k=%0, r=0.16, x; =i, t; =%,
i=0,1234, j=0,1,..,100. From equation (3.55), we obtain:

3 i3

1
Ujo = (Xi)z = (Z) = o4’ i=0,1234.
Therefore
1

6_4 ’ u2,0 =

1 27
§ ) U3’0 = — and U4’0 = 1

Ugo =0, uyp = 64

In this case equation (3.53) takes the form:

—3 0.06250.1250 0.5625 0.2500 7[Yo1 [ 0.4998 ]
[—0.16 232 -—0.16 0 0 } Ugg |0.0166

0 -0.16 232 -0.16 0 |0-2204 |
[ 0 0 —-0.16 2.32 -0.16 |u3,1 0.7992J

0 0.0001 0.0176 0.9010 —0.7500 lu4,1J —0.4951

u2,1 =

This system can be easily solved by using any suitable method to find the
numerical solutions u; , 1 = 0,1,2,3,4 that are tabulated down in table (3.11).

Next, we substitute j=1 in equation (3.53) and solving the resulting linear system of
equations to get the numerical solutions u;,, i = 0,1,2,3,4. By continuing in this
manner one can get the numerical solutions u;3,i=0,1,2,3,4. These numerical
solutions are tabulated in table (3.11).

In table (3.12) we take different values for h and k and the values of the absolute
errors at some special values.
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i : 1. 1
Table (3.11) represents the exact and the numerical solutions for h:Z'k:_ of

example (3.5).

100

i J Xi t; u(xi,t) Ui 2

0 0.00 0.0001 0.0190
1 0.25 0.0157 0.0172
2 2 0.50 0.01 0.1251 0.1262
3 0.75 0.4220 0.4349
4 1.00 1.0001 1.1856
0 0.00 0.0003 0.0195
1 0.25 0.0159 0.0180
2 3 0.50 0.02 0. 1253 0.1264
3 0.75 0. 4222 0.4351
4 1.00 1.0003 1.1858
0 0.00 0.0004 0.0022
1 0.25 0.0160 0.0185
2 4 0.50 0.03 0. 1254 0.1270
3 0.75 0. 4223 0.436
4 1.00 1.0005 1.1862

Table (3.12) represent the absolute errors for spatial values for h and k of example (3.5).

h Kk r Xi ty |u(xi't2) - ui,2|
0.25 5.8208x 10~°

0.05 0.025 10 0.75 0.025 6.4731x 10~°
1 8.3461x 107°

0.25 6. 2540% 1078

0.05 | 0.0025 5 075 | 00025 | 64417x 1078
1 1.4507% 1077
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Example (3.6):

Consider the nonlocal initial-boundary value problem that consists of the one-
dimensional parabolic equation:

u — (x+ Duy, = —xe**t, x€[0,1], t€[0,1] (3.58)

together with the local initial condition:

u(x, 0) = e*, x € [0,1] (3.59)
and the nonlocal non-linear boundary conditions:
1 36t + e2t _ e2t+3
u(0,t) = f eXu?(x,t) dx + 3 , t€[0,1] (3.60)
0
1 Sa(t+D) | @3t _ o(3t+5)
u(1,t) = j e?Xud(x,t) dx + 5 , te[0,1] (3.61)
0

This example is constructed such that the exact solution is
u(x, t) = Xt

Let N=20 and M=40, then we get h:i,k = i, r =10, x; = l, t=—,
20 40 20
i=01,..,20, j=0,1,...,40.
From equation (3.59), one can have:
u; o = e/1000j=10,1,...,20.
Therefore
uO’O =1 f uO,l = 1001, ey uZO’O = 2.718.
By following the same previous steps one can get some of the numerical solutions

that are tabulated in table (3.13), in table (3.14) we take different values for h and k
and the values of the absolute errors at some special values.
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. . 1 1
Table (3.13) represents the exact and the numerical solutions for hzg, k:4—0 of

example (3.6).

i J Xi f; u(Xi,ty) Ui

0 0.0000 1.0250 1.0292
1 1 0.0500 0.025 1.0763 1.0808
2 0.1000 1.1302 1.1357
3 0.1500 1.1868 1.1938
4 0.2000 1.2464 1.2549
5 0.2500 1.3090 1.3191
6 0.3000 1.3749 1.3867
7 0.3500 1.4441 1.4577
8 0.4000 1.5168 1.5323
9 0.4500 1.5933 1.6108
10 0.5000 1.6737 1.6933

Table (3.14) represent the absolute errors for spatial values for h and k of
example (3.6).

h Kk r Xi ty |U(Xi»t2) - ui,2|

0.2 91 x 10~%

0.1 0.1 10 05 0.1 76 x 107
1 18x 10~*

0.2 25x 10°°

005 | 0.005| 2 05 | o005 | 40x107°
. 1. 7% 10~4

Remark (3.7):

The finite difference method can be also used to solve the nonlocal initial-
boundary value problem that consists of the m-dimensional hyperbolic equation:

m
0%u(Xq, Xz, vy X 1) z 0 [ au(xl,xz,...,xm,t)]
— Y —lai (X4, %Xy, ..., X
atz - aXl 1( 1 2 m) aXl
i=

= f(x4,X5, .o, Xy ), X € [a3,b;],i=1,2,...,m, t€ [0,T]
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together with the local initial conditions:
u(Xq, X, oo, X, 0) = d(Xq, X5, oor, X)) X; € [a;,b], 1i=12,..,m

U (X1, X9, o0y X, 0) = 1(Xq, X5, ooy X)) X; € [a;,b;], i=12,..,m

and the 2m nonlocal non-linear integral boundary conditions:
U(Xq, X3, ver ) Xim1, Ajy Xjg 1 o X £)
bj

= Wo i (X1, X2, «o) X)) UPH(Xq, X3, ooy Xy, ) dXj + 8 i (1),
aj

i=12,..,mte|[0,T]

U(Xq, X5, wr )y Xi—1, Di, Xig 1) eoer X )
bj

= Wy i (X1, X2, ) Xpp) UH(Xq, Xp, ooy X, ) dX + 843 (0),
aj

i=12,..,mte[0,T]
where p; = 1,q; = 1 are known constants, f is a known continuous function of x;
and t, a is a known continuous function of x;, d, wg;, Wy;,804, 81 and r are
known continuous functions that must satisfy the compatibility conditions:

(1) d(Xq, X5, vr ) Xi—1, Aj) Xjg 1y e Xp)
bj

= WO,i (X1)X23 ;Xm) [d(Xll X2y v IXm)]pi dXi + gO,i(O)
aj

(2) d(X1,X5 eoey ) Xi—1) D1y Xjp 1y oo X))

bj
- j e (X1, Xy s Xan) [A(K0, X o Xi)]8 lx; + 110
a

i

(3) r(Xq, X2, ) Xi—1, A, Xjg 1y o) X)) =

bi dg .
L 0,1
Pj WO,i (Xll X2, "'JXm) [d(Xl, X2y e )Xm)]pl 1r(X1) Xy v )Xm)dxi + dt
ai t=0
(4) r(Xy, X, ) Xiz1, biy Xig 1, o Xm) =
bi qi—-1 dgl,i
di | Wi (X1, X2, e, X)) [A(Xg, X2, oo, X)) ] V71 (X, X, e, Xy ) dX + q

To do this one can see, [20].
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Conclusions and Recommendations

From the present study, we can conclude the following:

(1) The nonlocal problems are generalization for the local ones. So the existence
and uniqueness theorems given in this work are generalization of the ones that
are used for local problems.

(2) It's known that the eigenvalues of the first and second order linear ordinary
differential equations together with the homogenous local initial condition
does not exist since such problems has only the trivial solution. But with the
nonlocal initial condition the eigenvalues exist since such problems it has
nontrivial solution.

(3) The finite difference method for solving the initial-boundary value problems
that consists of the multi-dimensional hyperbolic and parabolic equations with
2m- nonlocal non-linear integral boundary conditions is a method that based
on Crank-Niklson scheme and Taylor’s expansion. It's an effective technique
for transforming the nonlinear system of equations to a linear system that can
be solved easily by using any suitable method and it gave an acceptable
results.

Also, we recommend the following for future work:

(1) Try to use Leray-Schauder fixed point theorem or any other types of fixed
point theorems to discuss the existence of the solutions for the nonlocal
initial value problem of the n-th order non-linear ordinary differential
equations.

(2) Discuss the existence and the uniqueness for the one-dimensional
hyperbolic and parabolic differential equations with the nonlocal non-linear
integral boundary conditions.

(3) Devote another types for the nonlocal problems say, the nonlocal problems
for the delay differential equations and integro-differential equations.
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