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LIST OF SYMBOLS 

 

IA The indicator function of the set A. 

δ(.) The Dirac’s delta function. 

Cm(G) The class of all functions f having continuous derivatives 

up to an order m in G. 

Lp(R) The Functions on d¡  that are locally in Lp with respect to 

the Lebsegue measure. 

S(R) The space of tempered distributions on d¡ . 

Eµ The expectation with respect to µ. 

w
2L [ , ]α β  The class of all nonanticipative functions f satisfying: 

pP | f (t) | dt 1
β

α

  < ∞ = 
  
∫  

S( d¡ ) The Schwartz space of rapidly decreasing smooth 

functions (d is called the parameter dimensions). 

(cN)c The set of all finite sequence in cN. 

∂D The boundary of the set D in d¡ . 



 

 

ABSTRACT 

 

This thesis has three objectives: 

The first objective is to give a study of stochastic calculus, 

including the fundamental concept of stochastic differential equations. 

The second objective is to introduce stochastic partial differential 

equations, as well as, study some theoretical results related to the three 

types of second order stochastic partial differential equations and give 

the integral form for each type. The third objective is to study the 

numerical solution of the three type of stochastic partial differential 

equations (stochastic Poisson equations, stochastic heat equations and 

stochastic wave equations) using the finite difference method. 
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INTRODUCTION 

 

Stochastic partial differential equations (SPDE's), and perhaps 

partial differential equations (PDE's), as well as, find their primary 

motivations in science and engineering .Both ordinary differential 

equations (ODE's) and PDE's play a fundamental role in describing 

reality. However, any model of the real world must take into account 

uncertainty or random fluctuations. It is therefore, surprising that while 

stochastic ordinary differential equations (SODE's) where studied 

intensively through the twentieth century, SPDE only received attention 

much later. Firstly work stemmed from the Zakai equation in filtering 

theory, [38]. 

On the theoretical side, there was the work of Pardoux [37] ,and 

Krylov and Rozovskii [26]. Much of this early work centered on 

foundational questions, such as setting up the appropriate function spaces 

for studying solutions or using such analytic tools as the method of 

monotonicity. Later, Walsh [44] introduced the notion of martingale 

measures as an alternative framework. The diverse origins of SPDE's 

have led to a lively interplay of view points. Some people feel that 

SPDE's should be based on such tools as Sobolev space, as is the case for 

PDE's. Others, with a background in probability feel that an SPDE's 

describes a special kind of stochastic process. Applied mathematicians 

may feel that the study of SPDE's should follow the ideas used in their 

domain. By a historical accident, particle systems, which may be 

considered as discrete SPDE's, that studied much earlier than SPDE. 

Such pioneers as Ted Harris and Frank Spizer laid the groundwork for 
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this theory. Their research was also influenced by results in percolation, 

by such mathematics as Harrykesten. Particle system has changed its 

emphasis over the years, and some of this early work is being forgotten. 

However, we believe that the main methods of particle system will 

always be relevant to SPDE's. Unfortunately, there was no time to 

discuss percolation, which we also believe has fundamental importance 

for SPDE's. Both duality and percolation, as well as, many other ideas, 

are described in more detail in three classes [28], [29] give detailed 

technical accounts of the field, and [9] provides a lively intuitive 

treatment. 

Secondly, Watanabe and Dawson found that the scaling limit of 

critical branching Brownian motions give fundamentally an important 

model, called the Dawson-Watanabe process or super process. Because, 

this model involves independently moving particles, there are powerful 

tools for studying its behaviour, and many of these tools help in the study 

of SPDE's. 

For example, the heat equation can be thought of as the density of 

a cloud of Brownian particles. Any SPDE, which involves a density of 

particles, can be studied via the Dawson-Watanabe process. There is a 

huge literature in this area, but two useful surveys are written by Dawson 

[7] and Perkins [39]. 

Thirdly, as one might expect, tools from PDE's are useful for 

SPDE's. Of course, Sobolev space and Hilbert space play a role, as in the 

work of DaPrato and Zabczyk [8] and Krulov [19]. But her we wish to 

concentrate on qualitative tools, such as the maximum principle. In 

particular, comparison theorems hold for many SPDE's.  
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Finally, tools from probability theory also find applications in 

SPDE's. For example, the theory of large deviations of dynamical 

systems developed by Wentzall and Freidlin [14] also applied to SPDE. 

If the noise is small, we can estimate the probability that the solutions of 

the SPDE's and the corresponding PDE's (without noise) differ by more 

than a given amount. Unfortunately, we had no time to discuss questions 

of coupling and invariant measures, which play a large role in the study 

of the stochastic Nevier-Stokes equation. 

This thesis consists of three chapters. 

In chapter one, we state some of the most general concepts and 

definitions related to the subject of stochastic calculus, and SDE's which 

are given for completeness. 

In chapter two, the statement and the proof of some theoretical 

results related to SPDE's are given, as well as, with some formulations, 

which are needed, namely, stochastic Poisson equation, stochastic heat 

equation and stochastic wave equation.  

In chapter three, numerical method for solving SPDE's have been 

studied and explained with examples, in which the finite difference 

method was considered for solving the three types of SPDE's 

Last, the numerical results are obtained using computer programs 

written in MATHCAD 14 computer software and the results are given in 

a tabulated form. 
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CHAPTER ONE 

STOCHASTIC CALCULUS AND STOCHASTIC 

DIFFERENTIAL EQUATIONS 

 
Stochastic calculus is concerned with the study of stochastic 

processes, which involves randomness or noise. Intuitively, this requires 

knowledge of the background definitions and concepts that will be 

required later in this study, where only those definitions which are of 

direct relevance to this exposition are given. 

 

1.1 BASIC CONCEPTS OF PROBABILITY THEORY  

Probability theory is that branch of mathematics which is 

concerned with random (or chance) phenomena. It has attracted people 

to study both, because of intrinsic interest and successful applications to 

many areas within the physical, biological, social sciences, engineering, 

and in the business world, [22]. Randomness and probability are not 

easy to define precisely, but we certainly recognize random events when 

we meet them. For example, randomness is an effect when we flip a 

coin, a lottery ticket, run horse’s race, etc., [25].  

The probability theory is an essentially abstract science, in which 

a probability measure is assigned to every set A, of the space of events 

called the sample space (denoted by Ω). We introduce the probability of 

A, denoted by P(A), as a set function of A satisfying the following 

axioms:  
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1. P(A) ≥ 0,  ∀A ⊂ Ω. 

2. P(Ω) = 1 . 

3. If Ai, (i = 1, 2, …) is a countable collection of non-overlapping sets in 

Ω, then: 

i i
ii

P A P(A )  = 
 

∑U . 

4. If Ac is the complement of A, then P(Ac) = 1 − P(A).  

5. P(∅) = 0, where ∅ is the empty set. 

Now, let F be a nonempty class of subsets drawn from the sample 

space Ω. We say that the class F is a field or an algebra of sets in Ω if it 

satisfies the following definition. 
 

Definition (1.1), [25]:  

A class of subsets Aj ⊂ Ω, ∀ i = 1, 2, …, n ;denoted by F is a 

field (or Algebra), when the following conditions are satisfied:  

1. If Ai ∈ F, then c
iA ∈ F, ∀ i = 1, 2, …, n. 

2. If {Ai, ∀ i = 1, 2, …, n} ∈ F, then 
n

i
i 1

A
=

∈U F . 

 

Remark (1.2), [25]:  

In the above definition, if n → ∞, then F is said to be σ-Field 

(or σ-Algebra).  
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Convergence of a sequence of random variables may defined by 

using different approaches and have different meanings, as it is defined 

in the next definitions:  
 

Definition (1.3) (Pointwise Convergence), [25]:  
A sequence of random variables {Xn} converges to a limit X if 

and only if for any ε > 0, however small, we can find positive integer n0, 

such that:  

|Xn − X| < ε, for every n > n0.  

 

Remark (1.4), [25]:  
If we consider a sequence of random variables {X1, X2, …,  

Xn, …} and define a pointwise convergence to another random variable 

X, as in above definition, then we must have at every point w in Ω the 

sequence of numbers X1(w), X2(w), …, Xn(w), … converging to X(w). 

This type of convergence is called everywhere convergence.  
 

Definition (1.5) (Almost Sure Convergence), [13]:  
A sequence of random variables {Xn} converges almost surly 

(abbreviated by a.s) or almost certainly or strongly to X, if for every 

point w which is not belong the null event A, then: 

nn
lim X (w) X(w) 0
→∞

− =  

This type of convergence is known as convergence with probability 1 

and is denoted by: 

a.s
n nnn

X (w) X(w) lim X (w) a.s.
→∞→∞

→ =  
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Remark (1.6), [13]:  

If the limit X is not known as priori, then we can define a mutual 

convergence almost surely. The sequence Xn converges mutually almost 

surely if:  

0XXSup
n

s.a
nm

nm ∞→≥
→−  

In which both definitions are equivalent. 
 

Definition (1.7) (Convergence in Probability), [43]:  

A sequence of random variables {Xn} converges in probability to 

X if and only if for every ε > 0, however small,  

( )nn
lim P X X 0
→∞

− ≥ ε =  

or equivalently  

( )nn
lim P X X 1
→∞

− < ε =  

 

Remark (1.8), [25]:  

1. Mutual convergence may be defined in probability as:  

( )m nn
lim Sup P X X
→∞

− ≥ ε  → 0 

2. If a sequence of random variables {Xn} converge almost surely to X, 

then it converge in probability to the same limit. The converse is not 

true, as an example, let Ω = [0, 1] and let P([a, b]) = |b − a| for any 

subinterval [a, b] ⊆ [0, 1].  

For n = 1, 2, …  



Chapter One                   Stochastic Calculus and Stochastic Differential Equations 

 5 

Let Xn = 
nAn I , where An = 1w [0,1] : 0 w

n
 ∈ ≤ ≤ 
 

 .Then: 

P(Xn ≥ ε) = P(
nAn I ≥ ε) 

= P(
nAI / n)≥ ε  

= | 1 0 |
n

−  

= 1
n

, for 0 < ε ≤ n . 

Thus: 

n nn n
lim P(| X 0 | ) lim P(X ) 0
→∞ →∞

− ≥ ε = ≥ ε =  

for all ε > 0, so Xn converges in probability to X = 0. However: 

n nn n
lim X X lim X
→∞ →∞

− =  

nAn
lim n I
→∞

= = ∞  

So Xn dose not converge to X in the sense of almost surely.  

3. If {Xn} converge in probability to X, then there exist a subsequence 

{
knX } of {Xn}, which converges almost surely to the same limit. 

4. {Xn} converges in probability if and only if it is converges mutually 

in probability. 

 

 

 



Chapter One                   Stochastic Calculus and Stochastic Differential Equations 

 6 

1.2 STOCHASTIC PROCESSES 

Differential equations for random functions (stochastic processes, 

random processes) arise in the investigation of numerous physical and 

engineering problems, [2]. We have looked at single random variables 

(X1, X2, …, Xn), which we termed as random vectors. However, many 

practical application of probability theory are concerned with random 

processes evolving in time, or space, or both, without any limit on the 

time (or space), [1]. 

 

Definition (1.9) (Stochastic Process), [43]:  

A stochastic processes is a collection of random variables {X(t):  

t ∈ T}, where t is a parameter that runs over an index set T (T is open, 

closed, or half closed). In general we call t the time-parameter (or simply 

the time), and T ⊂ +¡ . Each X(t) takes values in some set S ⊂¡  called 

the state space, then X(t) is the state of the process at time t. 

 

Definition (1.10) (Stationary), [1]:  

A stochastic processes X(t) is said to be stationary if:  

P{X1(t) ≤ x1, X2(t) ≤ x2, …, Xm(t) ≤ xm} = P{X(t1 + θ) ≤ x1, X(t2 + 

θ) ≤ x2, …, X(tm+ θ) ≤ xm} 

for all t1, t2, …, tm > 0 and real values x1, x2, …, xm. For every natural 

number m and for all θ ∈ +¡ . 
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Remarks (1.11), [43]:  

1. If the index set T is a countable set, we call X a discrete time 

stochastic process, otherwise, we call it a continuous time stochastic 

process. 

2. A continuous time stochastic process {X(t): t ∈ T} is said to have an 

independent increment if for all t0 < t1 < t2 < … < tn, the random 

variables X(t1) − X(t0), X(t2) − X(t1), …, X(tn) − X(tn−1) are 

independent. The process is stationary if X(t + s) − X(t) has the same 

distribution X(t) for all t and s > 0. That is, is posses independent 

increments if the changes in the processes values over non 

overlapping time intervals are independent of each other, and it 

process stationary increments if the distribution of the change in the 

value between any two points depends only on the distance between 

those points. 

 

1.3 BROWNIAN MOTION AND WHITE NOISE  

Brownian motion was introduced by Robert Brown in 1827, 

when he observed the motion of a pollen grain as it is moved randomly 

in a glass of water. Because the water molecules collide with pollen 

grain in a random fashion, the pollen grain moves randomly. The motion 

of pollen is stochastic, because its position from one point in time to the 

next position can only be defined in terms of a probability density 

function, [21]. In 1900 Bachelier used the Brownian motion as a model 

for studying the movement of stock prices in his mathematical theory of 

speculation. The mathematical foundation for Brownian motion as 
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stochastic process was introduced by Wiener in 1931, and this process is 

also called the Wiener process [24], but we shill use separate 

terminology to distinguish between the mathematical and physical 

processes. 
 

Definition (1.12) (Brownian Motion), [17]:  

A Brownian motion or Wiener process is a stochastic process 

W(t),t ≥ 0 satisfying:  

1. W(0) = 0.  

2. For any 0 ≤ t0 < t1 < … < tn, the random variables: 

∆Wk = W(tk+1) − W(tk), 0 ≤ k ≤ n − 1  

are independent. 

3. If 0 ≤ s < t, W(t) − W(s) is normally distributed with mean µt and 

variance 2
tσ  then:  

E[W(t) − W(s)] = (t − s)µt  

E[(W(t) − W(s)]2= (t − s) 2
tσ   

where µt and 2
tσ  are real constant, σt > 0, and called the drift and   

variance respectively.  
 

Remarks (1.13), [17], [43]:  

1. If 2
tσ   = 1, the W(t) is said to be the standard Brownian motion. We 

always make this assumption unless stated otherwise. 
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2. If µt = 0, 2
tσ   = 1, then we speak about normalized Brownian motion. 

For any Brownian motion with mean µt and 2
tσ , (W(t) − µt) / tσ is a 

normalized Brownian motion. And if W(t) with drift µt , variance 2
tσ , 

and  0 ≤ t0 < t1 < … < tn, then: 

Γ(ti, tk) = E[(W( it ) − 
itµ )(W(tk) − 

ktµ )]  

= 2
tσ  min{ti, tk}, indeed if ti > tk, 

Γ(ti, tk) ≡ E[(W(ti) − W(tk) − µ(ti − tk) + W(tk) − 
ktµ )(W(tk) − 

ktµ )]  

= E(W(tk) − 
ktµ )2 = tk σ2.  

3. In fact, the assumption (2) is not strictly, in that case one can construct 

(by a limiting procedure) a random process W(t) that obeys (1) and (3) 

is almost surely continuous of definition (1.12). 
 

Definition (1.14) (n-Dimensional Brownian Motion), [17]: 

An n-dimensional process W(t) = (W1(t), W2(t), …, Wn(t)) is 

called an n-dimensional Brownian motion, if each process Wi(t) (i = 1, 2, 

…, n) is a Brownian motion and if the σ-field  F (Wi(t), t ≥ 0), 1 ≤ i ≤ n, 

are independent.  

 

Now, we discuss that the notion of white noise as it generally 

introduced in the science and engineering literature can be thought of as 

the time derivative of the Wiener process. The non existence of White 

noise as a stochastic process will never be a problem and we will happily 

consider noisy observation in their integrated form in order to avoid 
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mathematical unpleasantness. Let us nonetheless to topic of Wiener 

process we should briefly investigate further the connection between the 

Wiener process and white noise. In science and engineering white noise 

is generally defined as follows: it is Gaussian “stochastic process” Yt 

with zero mean and covariance E(YsYt) = δ(t − s), where δ(.) is Dirac’s 

delta function. 
 

Definition (1.15) (White Noise), [24]:  

The white noise process Y(t) is formally defined as the derivative 

of the Brownian motion:  

dWY(t) W(t)
dt

= = &  

It dose not exist as a function of time t in the usual sense, since a 

Brownian motion is nowhere differentiable function. 
 

Remark (1.16), [1]:  

A special case which is of considerable interest occurs when the 

process X(t) from which the white noise derives is the Brownian motion. 

The white noise process then obtained is often referred to as Gaussian 

white noise. 

 

1.4 STOCHASTIC DIFFERENTIAL EQUATIONS 

Stochastic differential equations (SDE’s) appears in analysis in 

various guises. An example from physics will perhaps illuminate the 

need for this field and give an inkling of its particularities. Consider a 
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physical system whose state at time t is described by vector Xt in n¡ , 

where tX will refers the stochastic process for the rest of this work. In 

fact, for concreteness sake imagine that the system is a space probe on 

the way to the moon. The pertinent quantities are its location and 

momentum. If xt its location at time t and pt its momentum at that 

instant, that Xt is the t-vector (xt, pt) in the phase space n¡ . In an ideal 

world the evolution of the state is governed by the differential equation:  

tt

t

d x dtd X
d p dtd t

 
=  

 
 

t

t t

p m
F(x ,p )

 
=  

 
 

Here m is the mass of the probe. The first line merely the definition of  

tp : momentum = mass×velocity. The line is Newton’s second law the 

rate of change of the momentum is the force F. For simplicity of reading 

we are rewrite this in the form  

dXt = a(xt,, tp ) dt ....................................................................(1.1) 

which expresses the idea the change of Xt during the time-interval dt is 

proportional to the time dt elapsed with proportionality constant of 

coupling coefficient a(xt, tp ) that depends on the state of the system and 

is provided by a model for the force acting. We may rewrite eq. (1.1) in 

the form of an integral equation: 

Xt = x0 + 
t

s s
0
a(x ,p )ds∫ ,  Xt(0) = x0 ......................................... (1.2)  
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In the less-than-ideal real world, our system is subject to unknown forces 

noise. Our recket will travel through gullies in the gravitational field that 

are due to unknown in homogeneities in the mass distribution of the 

earth. It will meet guts of winds that cannot be foreseen; it might even 

run into a gaggle of geese that deflect it. The evolution of the system is 

better modeled by the differential equation:  

dXt = a(xt, tp ) dt + dGt ........................................................... (1.3)  

where Gt is a noise that contributes the differential dGt to the changes 

dXt of Xt during the interval dt. To accommodate idea that the noise 

comes from without the system one assume that there is back ground 

noise Wt consisting of gravitational gullies, gusts, and geese in our 

example-and that its effect on the state during the time-cumulative noise 

Wt during the time interval dt, with proportionality constant or coupling 

coefficient b that depends on the state of the system:  

t t t tdG b(x ,p )dW=  

For instance, if our probe is at time t half way to the moon, then 

the effect of the gaggle of geese at that instance should be considered 

negligible and the effect of the gravitational gullies is small. Equation 

(1.3) turns into: 

t t t t t tdX a(x ,p )dt b(x ,p )dW= +  ............................................(1.4) 

or as an integral equation of the form:  

t t
0

t t s t s t s
0 0

X x a(x ,p )ds b(x ,p )dW= + +∫ ∫  ................................(1.5) 
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Definition (1.17), [17]:  

A stochastic process f(t) defined on [α, β] is called a step 

function if there exists a partition α = t0 < t1 < … < tr = β of [α, β], such 

that :  

f(t) = f(ti),  if  ti ≤ t < ti+1, i = 0, 1, …, r − 1 

 

Definition (1.18) (Stochastic Integral), [17]:  

Let f(t) be a step function in 2
WL [α, β], then:  

f(t) = f(ti), if  ti ≤ t < ti+1, 0 ≤ i ≤ r−1  

where α = t0 < t1 < t2 < … < tr = β. The random variable:  

( ) ( ) ( )
r 1

k k 1 k
k 0

f t W t W t
−

+
=

−  ∑  

is denoted by: 

f (t)dW(t)
β

α
∫  

and is called the stochastic integral of f(t) with respect to Brownian 

motion W, it is also called the Itô integral. 
 

Definition (1.19) (Increasing σ-Field or Filtration σ-Field), [25]: 

Let (Ω, F) be a complete measurable space and let {Ft, t ∈ +¡ } 

be a family of sub-σ-fields of  F, such that for s ≤ t, Fs ⊂ Ft. Then {Ft} is 

called an increasing family of sub-σ-fields on (Ω, F) or the filtration σ-

field of (Ω, F). Ft is called the σ-field of events prior to t. If {Xt, t ∈ 
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+¡ } is a stochastic process defined on (Ω,F, P), then clearly Ft is given 

by:  

Ft  = σ{Xs, s ≤ t, t ∈ +¡ } is increasing. 

 

Remark (1.20), [25]:  

Since the probability space (Ω, F, P) is complete, the σ-field F 

contains all subsets of Ω having probability measure zero. Here we shall 

assume that the filtration σ-field {Ft, t ∈ T} also contains all the sets 

from F  having probability measure zero. 

 

Definition (1.21) (Adaptation of {Xt}), [25]:  

Let {Xt, t ∈ +¡ } be a stochastic process defined on a probability 

space (Ω, F, P) and let {Ft, t ∈ +¡ } be filtration σ-field. The stochastic 

process {Xt} is adapted to the family {Ft} if Xt is Ft-measurable for 

every t ∈ +¡ , and:  

tEF Xt = Xt, t ∈ +¡   

Ft-adapted random processes are also Ft-measurable. 

 

Definition (1.22) (The Itô Process), [17]:  

A stochastic process Xt, 0 ≤ t ≤ T is called an Itô process with 

respect to {Wt, P, Ft} (where Ft is adapted to Wt) relative to B(t), A(t) if:  

0

t t

t t s
0 0

X X A(s)ds B(s)dW= + +∫ ∫ , 0 ≤ t ≤ T.  
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Definition (1.23) (Stochastic Differential Equations), [19]: 

An n-dimensional Itô process Xt is a process that can be 

represented as:  

0

t t

t t s s s
0 0

X X A(X ,s)ds B(X ,s)dW= + +∫ ∫   

where Wt is an m-dimensional standard Brownian motion,  A and B are 

n-dimensional and n×m-dimensional Ft-adapted processes, respectively. 

We often use the notation: 

dXt = A( Xt,t) dt + B( Xt,t) dWt, X(t0) = 
0tX .......................... (1.6)  

 

1.5 THE ITÔ’S FORMULA, [18], [43] 

Itô formula is the analog of integration by parts in the 

deterministic calculus. In stochastic calculus this is not possible; the 

useful range of techniques is practically restricted to those that deal with 

integral equations. Of these by far the most important is that which is 

known as Itô’s formula, where may be seen as a stochastic chain rule. 

Let us recall some elementary non-random chain rule; as usual primes 

may denote differentiation.  

1. One-variable chain rule:  

If y(t) = f(g(t)), then:  

dyy (t) f (g(t))g (t))
dt

′ ′ ′= =  
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Assuming that the derivatives f′ and g′ exists. We may express this in 

differential notion as:  

dy = f ′(g) g′(t) dt = f ′(g) dg. 

2. Two variables chain rule: If:  

Y(t) = f(X(t), W(t)). 

Then:  

dy f X f W
dt X t W t

∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂
 

where differentiation may be denoted by suffices in an obvious way. 

In particular, if X = t, we obtain, for y = f(t, W(t)). 

dy = ft dt + fw dW  

 

Itô formula is extremely useful in many topics, particularly in 

evaluating stochastic integrals. 

 

Theorem (1.24) (Itô Formula), [13]:  

Suppose that Xt  has a stochastic differential equation:  

dXt = A( Xt,t) dt + B( Xt,,t) dWt, for A ∈ L1(0, T), B ∈ L2(0, T) 

Assume u : ¡ ×[0, T] → ¡  is continuous and 
2

2
t t

u u u, ,
t X X

∂ ∂ ∂
∂ ∂ ∂

 exist and 

are continuous. Set:  

Yt = u(Xt ,t)  

Then Yt has the stochastic differential:  
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





2
2

t t 2
t t

u u 1 udY dt dX B dt
t X 2 X

∂ ∂ ∂
= + +

∂ ∂ ∂
 

2
2

t2
t tt

u u 1 u uA B dt BdW
t X 2 XX

 ∂ ∂ ∂ ∂
= + + + ∂ ∂ ∂∂ 

…………….(1.7) 

The eq.(1.7)is called the Itô’s formula or Itô chain rule. 

 

Example (1.25), [46]:  

Use the Itô formula to solve SDE:  

dXt = Xt dWt, t ∈ [0, 1] 
...................................................(1.8) 

Xt(0) = 1  

Hence, from the stochastic differential equation, we have: 

t
t

t

dX dW
X

=  

and therefore:  

t t
s

s
s0 0

dX dW
X

=∫ ∫  

i.e.,  

t
s

t
0 s

dX W
X

=∫ .............................................................................(1.9) 

Using the Itô formula for the function  

g(t, Xt) = ln Xt, Xt > 0  

From eq.(1.7) and obtain that from eq. (1.8) we get:  
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d(ln Xt) = 2
t t2

t t

1 1 1dX (dX )
X 2 X

 
+ − 

 
 

= 2t
t t2

t t

dX 1 1 (X dW )
X 2 X

 
+ − 

 
 

and since dWt ≈ (dt)1/2. Hence:  

d(ln Xt) = 2t
t2

t t

dX 1 1 X dt
X 2 X

 
+ − 

 
 

= t

t

dX 1 dt
X 2

−  

or equivalently:  

t
t

t

dX 1d(ln X ) dt
X 2

= +  

So, from eq. (1.9) one can conclude that:  

t t t
s

s
s0 o 0

d X 1d(ln X )ds ds
X 2

= +∫ ∫ ∫  

Wt = t

t

X 1ln t
X (0) 2

+  

Therefore, the solution is given by  

Xt = exp t
1W t
2

 − 
 

. 
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CHAPTER TWO 

STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS 

 

Stochastic partial differential equations are known to be an 

effective tool in modeling complex physical and engineering 

phenomena. Examples including wave propagation [33], diffusion 

through heterogeneous random media [43], randomly forced Burgers 

and Navier-Stokes equation (see e.g., [3, 10, 11, 12, 31, 34, 35, 36, 40, 

41] and the reference therein). Additional examples can be found in 

materials science, chemistry, biology, and other areas. In those 

problems, the large structures and dominate dynamics are governed by 

deterministic physical laws, which the unresolved small scales, 

microscopic effects, and other uncertainties can be naturally modeled by 

stochastic processes. The resulting equations are usually PDE’s with 

either random coefficients, or randomintical conditions, or random 

forcing. Unlike deterministic PDE’s, solutions of SPDE’s are random 

fields. Hence, it is important to able to study their statistical 

characteristic, e.g., mean, variance and higher order moments, [30]. 

The goal of this chapter is to set some ideas in SPDE’s, which we 

have found useful. Sometimes, the idea in a simple case will be 

explained, and leave it to the reader to develop the topic more broadly as 

a future work. 
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2.1 FUNDAMENTAL CONCEPTS  

In this section, some of the most important definitions and 

concepts related to the work of this chapter are given. 
 

Definition (2.1), [17]:  

The elliptic partial differential equation is defined by Lu = f(x), 

where f is given function and L is a linear operator defined by: 

2n n

ij i
i, j 1 i j i 1 i

1L a (x) b (x) c(x)
2 x x x= =

∂ ∂
⋅ = ⋅ + ⋅ + ⋅

∂ ∂ ∂∑ ∑  .....................(2.1) 

the real coefficients aij, bi and c are defined in an n-dimensional domain 

D, L is said to be elliptic type (or elliptic)  at a point x0 if the matrix 

( ij 0a (x )) is positive definite, i.e., for any real vector ζ ≠ 0, we have: 

n

ij 0 i j
i, j 1

a (x ) 0
=

ζ ζ >∑  

 

Remark (2.2), [16]:  

Let D be bounded domain with boundary ∂D in 2C (D) , and let L 

be an elliptic operator given by (2.1) with coefficients defined in D. 

Given any function f in D and ϕ on ∂D, the problem is to find a solution 

u of the boundary value problem: 

Lu = f(x)  in  D ......................................................................(2.2) 

u(x) = ϕ(x)  on  ∂D ................................................................(2.3) 

this called the Dirichlet problem or first boundary value problem. 
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Definition (2.3), [17]:  

A barrier Wy(x) at the point y ∈ ∂D is a continuous nonnegative 

function in D that vanishes only at the point y and for which LWy(x)≤−1. 

 

Theorem (2.4), [17]:  

If D is a bounded domain with ∂D ∈ 2C (D) , then for any y ∈ ∂D, 

there exists a closed ball K such that K ∩ D = ∅ and K ∩ D  = {y}; 

thus, a barrier exists. 

 

Definition (2.5), [17]:  

The parabolic partial differential is defined by uµ  = f(x, t), where 

M is a linear operator defined by: 

2n n

ij i
i, j 1 i j i 1 i

1 a (x, t) b (x, t) c(x, t)
2 x x x t= =

∂ ∂ ∂
µ⋅ = ⋅ + ⋅+ ⋅ − ⋅

∂ ∂ ∂ ∂∑ ∑ ......(2.4) 

where the real coefficients aij, bi and c are defined in an (n + 1)-

dimensional domain D. If ij 0 0 i ja (x , t ) 0ζ ζ >∑ , for all ζ ∈ n¡ , ζ ≠ 0, 

then we say that is µ  of parabolic type at (x0, t0). µ is uniformly 

parabolic in D if there is a positive constant M, such that: 

n
2

ij i j
i, j 1

a (x, t) M | |
=

ζ ζ ≥ ζ∑ , for all (x, t) ∈ D, ζ ∈ n¡ .............(2.5) 
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Definition (2.6), [16]:  

The function f(t) is said to be uniformly Hölder continuous 

(exponent α) in [0, t0] if ||f(t) − f(τ)|| ≤ c|t − τ|α, for all t, τ in [0, t0]; 

where c is a positive constants and 0 ≤ α ≤ 1. 

  

Definition (2.7), [4]:  

A function f is uniformly Lipschitz continuous on a domain D if 

given any c > 0, there exists δ > 0, such that: 

|f(x1) − f(x2)| < c|x1 − x2|, ∀ x1, x2 ∈ D  

with property |x1 − x2| < δ. 

 

Definition (2.8) (The Kondrative Spaces of Stochastic Test Function 

and Stochastic Distributions), [23]: 

a) The stochastic test function spaces: 

Let N be a natural number. For 0 ≤ ρ ≤ 1, let:  

N m;N(S) (S)ρ ρ=  

consist of those functions of  form: 
2

mf c H L ( )α α
α

= ∈ µ∑  

such that: 
2 2 1 k

,k|| f || : c ( !) (2N)+ρ α
ρ α

α
= α < α∑ , for all k ∈ ¥  ....................(2.6) 

where: 

( )∑
=

ααα ==
N

1k

2)k(22 c|c|c    if   cα = ( ))N()2()1( c,...,c,c ααα  ∈ N¡  
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b) The stochastic distribution spaces  

For 0 ≤ ρ ≤ 1, let: 

N m;N(S) (S)−ρ −ρ=  

consist of all formula expansions  

F b Hα α
α

= ∑ , with bα ∈ N¡   

such that  

2 1 q
, q|| f || b ( !) (2N)−ρ − α

−ρ − α
α

= α < ∞∑ , for some q ∈ ¥  ...........(2.7) 

The family of semi norms ||f||ρ,k; k ∈ ¥  give the rise for a 

topology on N(S)ρ , and we can regard N(S)−ρ  as the dual by the action:  

F,f (b ,c ) !α α
α

< > = α∑ ..........................................................(2.8) 

If: 

NF b H (S)α α −ρ
α

= ∈∑ ; Nf c H (S)α α ρ
α

= ∈∑  

and (bα, cα) is the usual inner product in n¡ . Note that, the above 

action is well defined, since: 

1 q q
2 2 2| (b ,c ) | ! | (b ,c ) | ( !) (2N) (2N)
−ρ  − α α

 
 

α α α α
α α

α = α∑ ∑  

≤ 

1 1
2 22 1 q 2 1 qb ( !) (2N) c ( !) (2N)−ρ − α +ρ α

α α
α α

   
α α   

   
∑ ∑  

< ∞  
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for q large enough. When the value of m is clear, then from the 

context we simply write N(S)ρ , N(S)−ρ  instead of m;N(S)ρ , m;N(S)−ρ , 

respectively. If N = 1 we write (S)ρ, (S)−ρ instead of 1(S)ρ , 1(S)−ρ , 

respectively.  
 

Remark (2.9), (The Hida Test Function Space (S) and the Hida 

Distribution Space (S)), [23]: 

There is an extensive literatures on those spaces (see [20]). 

According to characterization in [45], we can describe these spaces, 

generalized to an arbitrary dimension m, as it follows in the next 

proposition:  
 

Proposition (2.10),: 

a) The Hida test function space (S)N:  

Consist of those expansions: 

2
mf c H L ( )α α

α
= ∈ µ∑ , with cα ∈ N¡   

such that: 

{ }2 kSup c !(2N) α
α

α
α < ∞ , for all k < ∞ .................................... (2.9)  

b) The Hida distribution space (S)*,N: 

Consists of all formula expansions:  

F b Hα α
α

= ∑ , with bα ∈ N¡   

such that: 
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{ }2 qSup b !(2N)− α
α

α
α < ∞ , for some q < ∞ ............................ (2.10) 

Hence, after comparison with the definition (2.8), one may see that: 

N m,N
0(S) (S)=     and    *,N m,N

0(S) (S)−=  ................................. (2.11) 

If N = 1, we write: 

(S)1 = (S)  and  (S)*,1 = (S)*  

 

2.1.1 Singular White Noise, [23]: 

One of the many useful properties of (S)* is that it consists the 

singular or pointwise white noise. 
 

Definition (2.11):  

a) The 1-dimensional (d-parameter) singular white noise process is 

defined by the formal expansion: 

k
d

k
k 1

W(x) W(x, w) (x)H (w); x
∞

ε
=

= = η ∈∑ ¡  ....................... (2.12) 

where ∞
=η 1k}{  is the basis of L2( d¡ ), defined by: 

1j ( j) d( j): ...δη = ζ ⊗ ⊗ ζ ; j = 1, 2, …   .................................... (2.13) 

while Hα = )1(Hα  is defined by: 

Hα(w) = (1)
i i

i 1
H (w) : h ( w, )

∞

α α
=

= < η >∏ , w ∈ S′( d¡ ) .............. (2.14) 

b) The m-dimensional (d-parameter) singular white noise process is 

defined by: 
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W(x) = W(x, w) = (W1(x, w), W2(x, w), …, Wn(x, w)) 

where the ith component Wi(x) of W(x), has the expansion: 

Wi(x) = ∑
∞

=
ε −+

η
1j

j m)1j(i
H)x(  

= ...H)x(H)x(H)x(
)m2i()mi()i( 321 +η+η+η

++ εεε   ............ (2.15)  

 

Definition (2.12): 

Let F = N
1)S(Hb −

α
αα ∈∑  with bα ∈ d¡  as in definition (2.8). Then 

the Hermite transform of F, denoted by HF%  or F%  for simplicity, is 

defined by convergent power series: 

HF = NF(z) b z cα
α

α
= ∈∑% ..................................................... (2.16)  

where z = (z1, z2, …) ∈ cN (the set of all sequence of complex numbers). 

zα = 31 2 n
1 2 3 nz z z ... z ...αα α α    .................................................... (2.17) 

if α = (α1, α2, …) ∈ j, where 0
jz  = 1 and j = N

0 c(N )  the set of all finite 

sequences in N
0N , N0 = N ∪ {0}. 

 

Definition (2.13):  

The 1-dimensional (d-parameter) smooth white noise is the map 

W : S( d¡ )×S′( d¡ ) → ¡ , given by: 

W(ϕ) = W(ϕ, w) = <W, ϕ> ; w ∈ S( d¡ ), ϕ ∈ S′( d¡ ) ........ (2.18) 
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Example (2.14):  

The 1-dimensional smooth white noise W(ϕ) has the form: 

W( ,w) W,ϕ =< ϕ >  

j j
j 1

W, ( , )
∞

=
= < ϕ η η >∑  

( j)j j j
j 1 j 1

( , ) W, ( , )H (w)
∞ ∞

ε
= =

= ϕ η < η > = ϕ η∑ ∑ ............. (2.19) 

where ε(j) = (0, 0, …, 1, …) with 1 on entry number j and 0 otherwise. 

The convergence is in L2(µ). In other words: 

W( ,w) c H (w)α α
α

ϕ = ∑  

with  

cα = 
( j)

i( , ), if
0, other wise

 ϕ η α = ε



 ................................................. (2.20) 

and therefore the Hermite transform W( )ϕ%  of W(ϕ) is: 

j j
j 1

W( ) ( , ) z
∞

=
ϕ = ϕ η∑%  ............................................................ (2.21) 

which is converge for all z = (z1, z2, …) ∈ (cN)c. 

 

Definition (2.15): 

For 0 < R, q < ∞, define the infinite-dimensional neighborhood 

Kq(R) of 0 in cN by: 
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Kq(R) = N 2 q 2
1 2

0
( , ,...) c ; | | (2N) Rα α

α≠

 ζ ζ ∈ ζ < 
 

∑ ................ (2.21)  

Note that: 

q ≤ Q, r ≤ R  

which implies to: 

KQ(r) ⊂ Kq(R) ...................................................................... (2.22) 

for any q < ∞, δ > 0 and natural number k, there exists ε > 0, such that: 

z = (z1, z2,…, zk) ∈ ck and |zi| < ε; 1 ≤ k 

which implies to z ∈ Kq(δ). 

 

2.2 ELLIPTIC STOCHASTIC PARTIAL DIFFERENTIAL 

EQUATIONS, [17] 

Let L be an elliptic operator in a bounded domain D which is 

given by (2.1). Assume that L is uniformly elliptic in D, i.e.,  

n
2

ij i j
i, j 1

a (x) M | |
=

ζ ζ ≥ ζ∑ , x ∈ n¡ , M > 0 .............................. (2.23) 

Assume also that: 

aij, bi are uniformly Lipschitz continuous in D .................... (2.24)  

c ≤ 0, c uniformly Hölder continuous in D .......................... (2.25) 

Assume finally that the boundary ∂D of D is in 2C (D) , so that the 

barriers exist at all points of ∂D (see theorem (2.4)). Then as it will be 
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proved later, the Dirchlet problem (2.2), (2.3) has a unique solution u for 

any given functions f, ϕ satisfying:  

f is uniformly Hölder continues in D ................................... (2.26) 

ϕ is continuous on ∂D .......................................................... (2.27) 

Consider the system of stochastic differential equations: 

dζ(t) = σ(ζ(t)) dW(t) + b(ζ(t)) dt ......................................... (2.28)  

Denote by Vε the closed ε-neighborhood of ∂D and let Dε = D\Vε. Let V 

be a function in C2( n¡ ) that coincides with the solution u of (2.2), (2.3) 

in Dε/2, and let τ be Markov time with respect to time-homogeneous 

Markov process solution of (2.28). By the Itô’s formula, then: 

x
0

E (V( ( ))exp c( (s))ds V(x)
τ 

ζ τ ζ − = 
 
∫

t

x
0 0

E [LV( (t))]exp c( (s))ds dt
τ  

ζ ζ 
 

∫ ∫ ....................... (2.29) 

take x ∈ Dε, and τ = min{τε, T}, where τε is the hitting time of Vε. Then 

V{ζ(t)} = u(ζ(t)), for all 0 ≤ t ≤ τ. Hence (2.29) holds for v = u. Taking  

ε → 0 and using the Lebesgue bounded convergence theorem (see 

[5]), we get  

u(x) = Ex u(ζ(τ*)) 
*

0
exp c( (s))ds

τ 
ζ − 

  
∫  

* t

x
0 0

E f ( (t)) exp c( (s))ds dt
τ  

ζ ζ 
 

∫ ∫ ................................ (2.30) 

where τ is the exit time from D, and τ* = min{τ, T}. 
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Theorem (2.16): 

Assume that L is uniformly elliptic in D, such that c(x) ≤ 0, ∀ x ∈ 

D and that aij, bi, c are uniformly Hölder continuous (exponent α) in D . 

If every point of ∂D has a barrier and if ϕ is a continuous function on 

∂D, then there exists a unique solution u in C2(D) ∩ C0(D ) of the 

Drichlet problem (2.2), (2.3). 

For the proof of the existence and the uniqueness the reader is 

referred to [15], [16], [17]. 
 

Theorem (2.17):  

Let: 

dζi(t) = ai(t)dt + bi(t)dζ, i = 1, 2, …, m 

and let f(x1, x2, …, xm, t) be a continuous function in (x, t) where x = (x1, 

x2, …, xm) ∈ m¡ , t ≥ 0, together with its first t-derivative and second x-

derivatives. Then f(ζ1(t), …, ζm(t), t) has a stochastic differential, given 

by:  

df(X(t), t) = 
i

m

t x i
i 1

f (X(t), t) f (X(t), t)a (t)
=


+ +


∑  

i j

m

x x i j
i, j 1

1 f (X(t), t)b (t)b (t) dt
2 =


+


∑

i

m

x i
i 1

f (X(t), t)b (t)dw(t)
=
∑ .................................. (2.31) 

where X(t) = (ζ1(t), ζ2(t), …, ζm(t)). Formula (2.31) is called the Itô’s 

formula.  
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Remark (2.18):  

Itô’s formula (2.31) asserts the two processes: 

f(X(t), t) − f(X(0), 0)  

and 

i i j

t m m

s x i x x i j
i 1 i, j 10

1f (X(t), t) f (X(t), t)a (t) f (X(t), t)b (t)b (t) ds
2= =

 + + + 
∑ ∑∫

i

t m

x i
i 10

f (X(t), t)b (s)dw(s)
=
∑∫  

are stochastically equivalent. Since they are continuous and their sample 

paths coincide a.s. Consequently integrating both side of eq.(2.31) from 

0 to τ  

f(X(τ), τ) − f(X(0), 0) = 
i

m

t x i
i 10

f (X(t), t) f (X(t), t)a (t)
τ

=


+ +


∑∫  

i j

m

x x i j
i, j 1

1 f (X(t), t)b (t)b (t) dt
2 =


+


∑  

i

m

x i
i 10

f (X(t), t) b (t)dw(t)
τ

=
∑∫ ......................................... (2.32) 

for any random variable τ, 0 ≤ τ ≤ T. 

If, in particular, τ is a stopping time, and when, taking the expectation, 

we find that: 

xE f(X(τ), τ) −  xE f (X(0), 0) = x
0

E Lf (X(t), t)dt
τ

∫  .............. (2.33) 

where: 

Lf = 
i i j

m m

t x i x x i j
i 1 i, j 1

1f (X(t), t) f (X(t), t)a (t) f (X(t), t)b (t)b (t)
2= =

+ +∑ ∑   
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The next theorem is given in [17] without details of the proof and 

we give the proof for completeness. 
 

Theorem (2.19):  

Let (2.23) – (2.27) hold and let ∂D belong to 2C (D) . Then the 

unique solution u of the Dirichlet problem (2.2), (2.3) is given by:  

u(x) = Exϕ(ζ(τ)) 
0

exp c( (s))ds
τ 

ζ − 
 
∫  

t

x
0 0

E f ( (t)) exp c( (s))ds dt
τ  

ζ ζ 
 

∫ ∫ ................................. (2.34)  

where τ is the exist time from D. 

Proof:  

To prove that Exτ < ∞, for all x = (x1, x2, …, xn) in D.  

Consider the function h(x) = −A 1xeλ  

If A, λ are sufficiently large (A depending on λ), then: 

Lh(x) ≤ −1 in D  

integrate both sides from 0 to τ* = min{τ, T}  

* *

0 0
Lh( (s))ds ds

τ τ
ζ ≤ −∫ ∫  

and hence taking the expectation 

* *

x x
0 0

E Lh( (s))ds E ds
τ τ

ζ ≤ −∫ ∫  
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and using remark (2.18)  

Ex h(ζ(τ*) − Ex h(ζ(0)) ≤ −Ex(τ*)  

Ex h(ζ(τ*) −  h(x)) ≤ −Ex(τ*)  

Since h(x) = −A 1xeλ , then: 

1x| h(x) | Aeλ= −  

1xA eλ≤ −  

≤ AB  

≤ k, ∀ x in D  

we have then:  

Ex h(ζ(τ*)) − h(x) ≤ −Ex(τ*)  

Ex(τ*) ≤ h(x) − Ex h(ζ(τ*)) 

* *
x xE ( ) h(x) E h( ( ))τ ≤ − ζ τ  

*
xh(x) ( E h( ( )))≤ + − ζ τ  

*
xh(x) E h( ( ))≤ + − ζ τ  

*
xh(x) E h( ( ))= + ζ τ  

Since |h(x)| ≤ k and from the definition of expectations: 
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*
xE h( ( )) h(x)f (s)ds

h(x) f (s)ds

k 1 k

∞

−∞

∞

−∞

ζ τ =

≤

≤ × ≤

∫

∫  

This implies: 

Ex(τ*) ≤ k + k  

≤ 2k 

Taking T → ∞, we get: 

Exτ ≤ 2k  

Therefore: 

Exτ < ∞ 

and hence the expectation is bounded. Then by taking T → ∞ in (2.30) 

and using Lebesgue bounded convergence theorem [5], we get that 

assertion (2.34).    < 
 

Consider now the initial-boundary value problem (written for t 

replaced by T − t). 

uLu f (x, t), in Q B [0,T]
t

u(x, ) (x), on B
u(x, t) g(x, t), on S

∂ + = = × ∂


τ = ϕ 
= 


 .................................. (2.35) 

where B is bounded domain with C2 boundary ∂B, S = ∂B×[0, T], and L 

is defined by: 
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2n n

ij i
i, j 1 i 1i j i

1 u uLu a (x, t) b (x, t) c(x, t)u
2 x x x= =

∂ ∂
= + +

∂ ∂ ∂∑ ∑  

consider also the system of stochastic differential equations: 

dζ(t) = σ(ζ(t), t)dW(t) + b(ζ(t), t)dt ..................................... (2.36) 

where (σ(x, t))2 = a(x, t) in Q . The coefficients σ and b are extensions of  

σ(x, t), b(x, t), originally defined in Q , such that:  

|σ(x, t) − σ(y, s)| ≤ c(|x − y| + |t − s|) 

|b(x, t) − b(y, s)| ≤ c(|x − y| + |t − s|). 

we shall assume:  
2 n

ij i j

ij i

a | | if (x, t) Q, , 0,

a ,b areuniformly Lipschitz continuousin (x, t) Q

c is uniformly Holder continuousin (x, t) Q
f is uniformly Holder continuous in (x, t) Q
g iscontinuouson S, iscontinuous on Band

g(x,T)

ζ ζ ≥ µ ζ ∈ ζ ∈ µ >

∈

∈

∈

ϕ
=

∑ ¡

&&
&&

(x) if x B.










ϕ ∈∂ 

........ (2.37)  

By the next theorem (2.20) there exists a unique solution u of (2.35). 
 

Theorem (2.20):  

Assume that µ is uniformly parabolic in Q, i.e., if there is a 

positive constant M such that 2
ij i ja M | |ζ ζ ≥ ζ∑ , for all (x, t) ∈ Q, ζ ∈ 

n¡ , that aij, bi, c, f are uniformly Hölder continuous in Q  and that g, ϕ 

are continuous functions on B,S  respectively and g = ϕ on B S∩ . 

Assume also that there exists a barrier at every point of S. Then there 

exists a unique solution u of the initial-boundary value problem (2.35).  
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Theorem (2.21):  

Let D be bounded domain ∂B belong to 2C (D)  and let (2.37) 

hold. Then the unique solution u of the initial-boundary value problem 

(2.35) is given by: 

T

x,t
t x

u(x, t) E g( ( ))exp c( (s),s)ds
τ<

τ 
= ζ τ ζ + 

 
∫

T

x,t
t x

E ( (T))exp c( (s),s)ds
τ=

τ 
ϕ ζ ζ − 

 
∫

s

x,t
t t

E f ( (s),s)exp c( ( ), ) ds
τ  

ζ ζ λ λ 
 

∫ ∫ .......................... (2.38) 

where τ is the first time λ ∈ [t, T] that ζ(λ) leaves B if such a time exists 

and τ = T otherwise.  

Proof: 

The proof is similar to the proof of theorem (2.19).     < 

 

2.3 THE STOCHASTIC POISSON EQUATION  

Let us illustrate the method described in the last section with 

respect to the following equation, called the stochastic Poisson equation: 

U(x) W(x); x D
U(x) 0; x D
∆ = − ∈ 

= ∈∂ 
.................................................. (2.39)  

where   ∆ = 
2d

2
k 1 kx=

∂
∂

∑    is the Laplacian operator in D¡ , D ⊂ d¡  is  

any given bounded domain with regular boundary and where  
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W(x) = 
jj

j 1
(x)H (w)

∞

ε
=

η∑  is d-parameter white noise. This equation 

models, for example, the temperature U(x) in D when the boundary 

temperature is kept equal to zero and there is a white noise heat source in 

D.  

Taking the Hermite transform of (2.39), we get the equation  

u(x,z) w(x,z); x D
u(x,z) 0; x D
∆ = − ∈ 

= ∈∂ 

%
............................................. (2.40)  

for our candidate u for U% , where the Hermite transform 

j j
j 1

W(x,z) (x)z
∞

=
= η∑% , when z = (z1, z2, …) ∈ (cN)c (see Example (2.14). 

by considering the real and imaginary parts of the equation separately, 

we see that the usual solution formula holds:  

u(x, z) = 
d

G(x, y) W(y,z)dy∫
¡

%  ............................................. (2.41) 

where G(x, y) is the classical Green function of D (so G = 0 outside D). 

Suppose that the solution u(x, z) exist for all x ∈ (cN)c, x ∈ D, since the 

integral on the right of (2.41) converges for all such x, z (for this we 

only need that G(x, y) ∈ L1 for each x). Moreover, for z ∈ (cN)c, we 

have: 

j j| u(x,z) | G(x, y) (y)z dy= η∑∫  

j jz G(x, y) (y)dy= η∑ ∫  

j jz G(x, y) (y) dy≤ η∑ ∫  
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j j
y

sup (y) G(x, y) dy z≤ η ∑∫  

jc z≤ ∑  

j

j
c z j!ε≤ ∑  

j j j

1/ 2 1/ 2
2 2 2

j j
c z (2N) (2N)ε ε − ε   

≤ < ∞   
   
∑ ∑  

if z ∈ k2(R). Since u(x, y) depends analytically on z, it follows from the 

characterization theorem [11] that there exists U(x) ∈ (S)−1, such that 

)z,x(u)x(U~ = . 

In particular ∂2u /∂x2 is bounded for (x, z) ∈ k2(R), since both  

∆u = −w%  and u are equal. Therefore, from next theorem (2.22) U(x) 

solves (2.39) we recognize directly from (2.41) that u is the Hermite 

transform of  

d
U(x) G(x, y) W(y)dy= ∫

¡

 

j
d

j
j 1

G(x, y) (y)dy H (w),
∞

ε
=

= η∑ ∫
¡

 

which converges in (S)* because (see (2.10))  

d

2

q 2 q
j

j 1 j 1R

G(x, y) (y)dy (2 j) c (2 j) , q 1
∞ ∞

− −

= =

 
η ≤ < ∞ ∀ >  

 
∑ ∑∫  
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Theorem (2.22), [23]:  

Suppose u(t, x, z) is a solution (in the usual strong, pointwise 

sense) of the equation  

A(t, x, t, x,u,z) 0∂ ∇ =%  ......................................................... (2.42)  

for (t, x) in some bounded open set G ⊂ ¡ ×¡ d, and for all z ∈ kq(R), 

for some q, R. Moreover, suppose that, u(t, x, z) and all its partial 

derivatives, which are involved in (2.42), are (uniformly) bounded for  

(t, x, z) ∈ G×kq(R), continuous with respect to (t, x) ∈ G, for each  

z ∈ kq(R) and analytic with respect to z ∈ kq(R), for all (t, x) ∈ G. Then 

there exists U(t, x) ∈ (S)−1, such that u(t, x, z) = (H U(t, x)) (z), for all  

(t, x, z) ∈ G × kq(R) and U(t, x) solves the equation: 

A(t, x, ∂t, ∇x, U, W) = 0   in (S)−1 ....................................... (2.43)  

 

Theorem (2.23), [23]:  

The unique stochastic process U(x) ∈ (S)−1 solving (2.39) is 

given by  

d
U(x) G(x, y) W(y)dy= ∫

¡

 

jj
j 1

G(x, y) (y)dyH (y)
∞

ε
=

= η∑∫  ......................................... (2.44)  

We have U(x) ∈ S*, ∀ x ∈ D . 
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2.4 THE STOCHASTIC HEAT EQUATION, [32]  

In the present section, we will concern with following one-

dimensional heat equation driven by a space-time white noise:  

2

2
u u b(u(x, t)) W(x, t), (x, t) [0,1] [0,T]
t x

∂ ∂
= + + σ ∈ ×

∂ ∂
& .......... (2.45) 

where T > 0, the initial condition is given by a continuous function  

u0: [0, 1] → ¡  and we consider Dirichlet boundary conditions. That 

is:  

0u(x,0) u (x) , x [0,1]
u(0, t) u(1, t) 0, t [0,T]

= ∈ 


= = ∈ 
 .............................................. (2.46)  

The real valued random field solution to eq. (2.45) will be {u(x,t), (x,t)∈ 

[0, 1]×[0, T]}. The function b : ¡  → ¡  is of class C having a 

bounded derivative and σ > 0 is a constant. We assume that {W(x, t),  

(x,t) ∈ [0, 1]×[0, T]} is Brownian motion on [0, 1]×[0, T], defined in a 

complete probability space (Ω, F, P). The solution to the formal eq. 

(2.45) is understood in the mild sense: a Ft-adapted stochastic process 

{u(x, t), (x, t) ∈ [0, 1]×[0, T]} solved (2.45) with initial and boundary 

conditions (2.46), if for all any (x, t) ∈ [0, 1]×[0, T] 

1 t 1

t 0 t s
0 0 0

u(x, t) G (x, y) u (y)dy G (x, y) b(u(y,s))dyds−= + +∫ ∫ ∫  

t 1

t s
0 0

G (x, y)W(ds,dy)−σ∫ ∫ ......................................... (2.48)  
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where Gt(x, y), (t, x, y) ∈ R×(0, 1)2, denotes the Green’s function 

associated to the heat equation on [0, 1] with Dirichlet boundary 

conditions:  

Gt(x, y) = 
2(x y)

4t1 e
4 t

− −

π
. 

 

2.5 THE STOCHASTIC WAVE EQUATION, [32] 

In this section, we study the stochastic wave equation in one and 

two dimension. 

2
d

2
u u(x, t) b(u(x, t) W(x, t), (x, t) [0,T]

t
∂

= ∆ + + σ ∈ ×
∂

& ¡ ...... (2.49)  

where T > 0, b : ¡  → ¡  is a function with bounded derivatives and 

suppose that we are given the initial conditions of the form:  

u(x, 0) = u0(x), 0
u (x,0) (x)
t

∂
= ν

∂
, x ∈ d¡  

where u0, ν0: d¡  → ¡  are measurable and bounded functions, such 

that u0 is of class C1( d¡ ) and has bounded derivatives ∇u0. The mild 

solution of (2.49) is given by {Ft}-adapted process {u(x, t), (x, t) ∈  
d [0,T]×¡ } such that, for all (x, t) ∈ d [0,T]×¡  

d d

d d
0 t 0 tu(x, t) (x y) dy u (x y) (dy)

t

 ∂
= ν − Γ + − Γ + 

∂   
∫ ∫

¡ ¡

d

t
d
t s

0
b(u(x y,s)) dyds−− Γ +∫ ∫

¡

 
d

t
d
t

0
(x y) W(ds,dy)σ Γ −∫ ∫

¡

 

.............................(2.50)  
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where d
tΓ , t > 0, denotes the fundamental solution of the wave equation 

in one and two dimension 

1
t {|x| t}

11
2 <Γ =  

( ) 1 22 2 2
t t

1 t | x |
2

−
Γ = −  
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CHAPTER THREE 

FINITE DIFFERENCE METHOD FOR SOLVING 

STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS 

 

The gap between the well-developed theory of SPDE’s and its 

application for solving such type of equations still wide in range. A 

crucial task in bridging this gap is the development of an efficient 

numerical methods for solving SPDE's, and in this connection one of 

such numerical methods is used which is the finite difference method. 

In this chapter, the application of the finite difference method for 

solving the three types of SPDE's was considered and illustrated with 

examples. 

 

3.1 FINITE DIFFERENCE APPROXIMATION TO 

DERIVATIVES, [42] 

When a function u and its derivatives are single-valued, finite and 

continuous functions of x, then by Taylor’s Theorem: 

u(x + h) = u(x) + hu′(x) + 2 31 1h u (x) h u (x) ...
2 6

′′ ′′′+ +   ...........(3.1) 

and  

u(x − h) = u(x) − hu′(x) + 2 31 1h u (x) h u (x) ...
2 6

′′ ′′′− +   ...........(3.2) 

Additions of these expansions give: 
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u(x + h) + u(x − h) = 2u(x) + 2 4h u (x) 0(h ) ...′′ + +   ................(3.3) 

where O(h4) denotes terms containing fourth and higher powers of h. 

Assuming these are negligible in comparison with power of h, it follows 

that:  

2

2 2
x x

d u 1u (x) [u(x h) 2u(x) u(x h)]
dx h=

 
′′ = ≈ + − + − 

 
.............(3.4) 

with a truncation error on the right-hand side of order h2.  

Subtraction of eq. (3.2) from eq. (3.1) and neglect the terms of 

order h3, leads to: 

x x

du 1u (x) [u(x h) u(x h)]
dx 2h=

 ′ = ≈ + − − 
 

............................(3.5) 

with an error of order h3.  
 

 

Fig. (3.1). 
 

Equation (3.5) clearly approximates the slope of tangent at P by the 

slope of the chord AB, and is called a central-difference approximation. 

B 

P 

A 
u(x+h) u(x−h) u(x) 

x−h x x+h 

u(x) 

x 
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We can also approximate the slope of the tangent at P by either the slope 

of the chord PB, giving the forward-difference formula: 

1u (x) [u(x h) u(x)]
h

′ ≈ + − ...................................................... (3.6)  

or the slope of the chord AP giving the backward-difference formula: 

1u (x) [u(x) u(x h)]
h

′ ≈ − −  ..................................................... (3.7)  

Both eq. (3.6) and eq. (3.7) can be written down immediately from eq. 

(3.1) and eq. (3.2) respectively, assuming second and higher powers of h 

are negligible. This shows that the leading errors in these forward and 

backward-difference formulas are both O(h). 

Now, assume u is a function of the independent variables x and t. 

Subdivide the x-tplane into sets of equal rectangles of sides δx = h,  

δt = k, as shown in Fig.(3.2), and let the coordinates (x, t) of the 

representative mesh point P be:  

x = ih, t = jk  

where i and j are integers. 
 



Chapter Three                                Finite Difference Method for Solving Stochastic  
                                                                  Partial Differential Equations 

 46 

 

Fig.(3.2) Subdivision of the x-t plane into rectangular mesh points. 
 

Denote the value of u at P by: 

uP = u(ih, jk) = ui, j  

Then by eq. (3.4):  

2 2

2 2
P i, j

u u
x x

   ∂ ∂
=   

∂ ∂   
 

2
u[(i 1)h, jk] 2u[ih, jk] u[(i 1)h, jk]

h
+ − + −

≈  

i.e.  

2
i 1, j i, j i 1, j

2 2
i, j

u 2u uu
x h

+ −− + ∂
≈ 

∂ 
 .............................................. (3.8)  

with a truncation of order h2. Similarly: 

× × × 

× 

× 

i−1, j i, j i+1, j 

i, j+1 

i, j−1 

P(ih, jk) 

ih 

jk 

t 

x 
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2
i, j 1 i, j i, j 1

2 2
i, j

u 2u uu
t k

+ −− + ∂
≈ 

∂ 
 .............................................. (3.9)  

with a truncation error of order k2.  

With this notation the forward-difference approximation for ∂u/∂t 

at P is  

i, j 1 i, ju uu
t k

+ −∂
≈

∂
 .................................................................. (3.10)  

with a truncating error or order O(k). 

 

3.2 NUMERICAL SOLUTION OF ELLIPTIC 

STOCHASTIC PARTIAL-DIFFERENTIAL 

EQUATIONS  

The elliptic stochastic partial differential equation that we 

consider is the Poisson equation: 

2 2
2

2 2
u uu(x, y) (x, y) (x, y) W(x, y)

x y
∂ ∂

∇ ≡ + = −
∂ ∂

&  .................... (3.11)  

u(x, y) = g(x, y)    for  (x, y) ∈ ∂D  

D = {(x, y) | a < x < b, c < y < d},  

where W&  is two-dimensional white noise. The first step is to choose 

integers n and m, and define step sizes h and k by h = (b − a) / n,  

k = (d − c) / m, xi = a + ih, i = 0, 1, …, n; and yi = c + jk, j = 0, 1, …, m. 

For each mesh point in the interior (xi, yj), i = 1, 2, …, n − 1,  

j = 1, 2, …, m − 1, we use eq. (3.8) into eq. (3.11),then obtain  
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i 1, j i, j i 1, j i, j 1 i, j i, j 1
i, j2 2

u 2u u u 2u u
W

h k
+ − + −− + − +

+ = −  ............... (3.12)  

for each i = 1, 2, …, n − 1, j = 1, 2, …, m − 1; and the boundary 

conditions as: 

u(x0, yj) = g(x0, yj),  for each   j = 0, 1, …, m  

u(xn, yj) = g(xn, yj),  for each  j = 0, 1, …, m  

u(xi, y0) = g(xi, y0),  for each  i = 0, 1, …, n − 1  

u(xi, ym) = g(xi, ym),  for each  i = 0, 1, …, n − 1  

we can write eq. (3.12)  

2(1 + r2)ui,j − (ui+1,j + ui−1,j) − r2(ui,j+1 − ui, j−1) = h2Wi,j ........... (3.13)  

where 
k
hr = , for each i = 1, …, n − 1 and j = 1, 2, …, m − 1, and:  

u0, j = g(x0, yj),     j = 0, 1, …, m  

un, j = g(xn, yj),     j = 0, 1, …, m  

ui, 0 = g(xi, y0),     i = 1, 2, …, n − 1  

ui, m = g(xi, ym),    i = 1, 2, …, n − 1  

 

Algorithm (3.1): 

1. Input a, b, c, d, m, n. 

2. h = (b − a) / n, k = (d − c) / m, r = h/k. 

3. For i = 0 to n; do steps 4 to 7. 

4. For j = 0 to m; do steps 5 to 7. 
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5. i jx a ih, y c jk= + = + . 

6. Generate random vector p(i), which is normally distributed with mean 

0 and variance hk.  

7. iw p(i)〈 〉 = . 

8. For i = 1 to n − 1; for j = 1 to m − 1 

0, j 0 j n, j n ju g(x , y ),u g(x , y )= =  

i,0 i 0 i,m i mu g(x , y ),u g(x , y )= =  

2 2 2
i, j i 1, j i 1, j i, j 1 i, j 1 i, ju [(u u ) r (u u ) h w ]/ 2(1 r )+ − + −= + + − + +  

2 2 2 2
i, j i, j i 1, j i 1, j i, j 1 i, j 1 i, jRE {u [(u u ) r (u u ) h w ]/ 2(1 r )}+ − + −= − + + − + +  

9. Stop. 
 

Example (3.2):  

Consider the stochastic poisson equation:  

2 2

2 2
u u W

x y
∂ ∂

+ = −
∂ ∂

& ,   0 < x < 1,  0 < y < 2 ............................. (3.14)  

With boundary conditions:  

u(x, 0) = x2,   u(x, 2) = (x − 2)2 ,  0 ≤ x ≤ 1  

u(0, y) = y2,   u(1, y) = (y − 1)2 ,  0 ≤ y ≤ 2  

with n = m = 10 this implies h = 0.1, k = 0.2 and r = 0.5.  

From eq. (3.13) we can write eq. (3.14) as follows: 
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i, j
i, j i 1, j i 1, j i, j 1 i, j 1

W1 12 1 u (u u ) (u u )
4 4 100+ − + −

 + − + − + = 
 

 

i, j i 1, j i 1, j i, j 1 i, j 1 i, j
5 1 1u (u u ) (u u ) W
2 4 100+ − + −− + − + =  

i, j i 1, j i 1, j i, j 1 i, j 1 i, j
1 1 1 2u u u u u W
4 4 100 5+ − + −

 = + + + +  
 ............ (3.15)  

for each i = 1, …, 9,  j = 1, …, 9  and  

2
0, j j

2
10, j j 1

2
i,0 i

2
i,10 i 1

u y , j 0,1,...,10

u (y ) , j 0,1,...,10

u x , i 1,...,9

u (x ) , i 1,...,9

−

−

= =

= = 


= = 


= = 

 ......................................... (3.16)  

2

i, j i, j i 1, j i 1, j i, j 1 i, j 1 i, j
1 1 1 2RE u u u u u W
4 4 100 5+ − + −

  = − + + + +    
. 

By equations (3.15) and (3.16) the solution values at the points in 

example are as shown in table (3.1) and the residue error in table (3.2).  
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Table (3.1) 

Numerical results of example (3.2). 

 j = 0 1 2 3 4 5 6 7 8 9 10 

i = 
      y = 
x = 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

0 0 0 0.04 0.16 0.36 0.64 1 1.44 1.96 2.56 3.24 4 

1 0.1 0.01 0.017 0.066 0.151 0.271 0.427 0.619 0.846 1.109 1.768 3.61 

2 0.2 0.04 0.011 0.027 0.063 0.115 0.182 0.266 0.365 0.48 1.079 3.24 

3 0.3 0.09 0.013 0.012 0.026 0.049 0.078 0.114 0.157 0.208 0.741 2.89 

4 0.4 0.16 0.021 0.007 0.011 0.021 0.033 0.049 0.068 0.09 0.561 2.56 

5 0.5 0.25 0.034 0.006 0.005 0.009 0.014 0.021 0.029 0.039 0.453 2.25 

6 0.6 0.36 0.049 0.007 0.003 0.004 0.006 0.009 0.012 0.017 0.379 1.96 

7 0.7 0.49 0.069 0.01 0.002 0.002 0.002 0.004 0.005 0.007 0.321 1.69 

8 0.8 0.64 0.092 0.013 0.002 0.001 0.001 0.002 0.002 0.003 0.273 1.44 

9 0.9 0.81 0.374 0.187 0.083 0.025 0.003 0.017 0.067 0.152 0.501 1.21 

10 1 1 0.64 0.36 0.16 0.04 0 0.04 0.16 0.36 0.64 1 
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Table (3.2) 

The residue error of example (3.2). 

i = 1 
j = 1 

0 1 2 3 4 5 6 7 8 9 

0 0 0 0 0 0 0 0 0 0 0 

1 0 0.0001 0.0007 0.0027 0.0078 0.0182 0.0364 0.066 0.1359 0.1863 

2 0 0.0001 0.0001 0.0005 0.0014 0.0033 0.0067 0.0123 0.0365 0.0879 

3 0 0.0001 0 0.0001 0.0003 0.0006 0.0012 0.0023 0.0121 0.0504 

4 0 0.0002 0 0 0 0.0001 0.0002 0.0004 0.0051 0.0329 

5 0 0.0004 0 0 0 0 0 0.0001 0.0027 0.023 

6 0 0.0008 0 0 0 0 0 0 0.0017 0.0165 

7 0 0.0014 0 0 0 0 0 0 0.0011 0.0119 

8 0 0.0227 0.0056 0.0011 0.0001 0 0 0.0007 0.0078 0.0402 

9 0 0.0003 0.0001 0 0 0 0 0.0002 0.0025 0 
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3.3 NUMERICAL SOLTUION OF PARABOLIC 

STOCHASTIC PARTIAL DIFFERENTIAL 

EQUATIONS, [6] 

The parabolic stochastic partial differential equation that we will 

study is the stochastic heat equation given by: 

2

2
u u(x, t) (x, t) W(x, t) , 0 x b, t 0
t x

∂ ∂
= + < < >

∂ ∂
& .................... (3.17)  

subject to the initial and boundary conditions: 

u(0, t) = u(b, t) = g(t),  t > 0 

u(x, 0) = f(x),  0 < x < b 

where W&  is two-dimensional white noise. By eq. (3.10) and (3.8) the 

finite-difference approximation to eq. (3.17) is:  

i, j 1 i, j i 1, j i, j i 1, j
i, j2

u u u 2u u
W

k h
+ + −− − +

= + ................................ (3.18)  

where  

xi = ih, i = 0, 1, …, n 

tj = jk, j = 0, 1, …, m 

equation (3.18) may be written as: 

ui, j+1 = ui, j + r(ui+1, j − 2ui, j + ui−1, j) + kWi, j............................ (3.19)  

i = 1, 2, …, n − 1 and j = 1, 2, …, m − 1, where r = k / h2 and with error 

of order h−2 and eq. (3.19) is shown to be stable if r ≤ 
2
1 . Since the initial 

condition u(x, 0) = f(x), for each i = 0, 1, …, n, these value can be used 
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in eq. (3.19) to find the value of ui, 1, for each i = 1, 2, …, n − 1. The 

boundary conditions u(0, tj) = u(b, tj) = g(tj), for each j = 0, 1, …, m 

imply that u0, 1 = un, 1 = g(t1); so all the entries of the form ui, j can be 

determined, for each i = 1, 2, …, n − 1 and j = 1, 2, …, m − 1.  

 

Algorithm (3.3): 

1. Input b, n, m, k. 

2. h = b / n, r = k / 2h . 

3. For i = 0 to n; do steps 4 to 7. 

4. For j = 0 to m; do steps 5 to 7. 

5. i jx a ih, t jk= + = . 

6. Generate random vector p(i), which is normally distributed with 

mean 0 and variance hk. 

7. iw p(i)〈 〉 = . 

8. For i = 1 to n − 1, for j = 1 to m − 1 

0, j n, j ju u g(t )= = . 

i, j 1 i, j i 1, j i, j i 1, j i, ju u r(u 2u u ) kw+ + −= + − + +  

2
i, j i, j 1 i, j i 1, j i, j i 1, j i, jRE {u [u r(u 2u u ) kw ]}+ + −= − + − + + . 

9. Stop. 
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Example (3.4):  

Consider the stochastic heat equation  

2

2
uu W

x
∂

= +
∂

&& , 0 < x < 1  and  t > 0 ....................................... (3.20)  

with initial condition u(x, 0) = 1, 0 < x < 1 and u(x, t) = 0 at x = 0 and 1,  

t ≥ 0., h = 0.1 and k = 0.001, so  r = 1
10

  

From eq. (3.17) we can write eq. (3.20) as:  

i, j 1 i, j i 1, j i, j i 1, j i, j
1 1u u u 2u u W

10 1000+ + − = + − + +   

i, j 1 i 1, j i, j i 1, j i, j
1 1u u 8u u W

10 1000+ + − = + + +  ......................... (3.21)  

with n = m = 10, i = 1, …, 9;  j = 0, …, 9; and  

2

i, j i, j 1 i 1, j i, j i 1, j i, j
1 1RE u u 8u u W

10 1000+ + −
  = − + + −   

......... (3.22)  

The solution of eqs. (3.21) and (3.22) are shown in Tables (3.3) and 

(3.4) respectively.  
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Table (3.3) 
Numerical results of example (3.4). 

 j = 0 1 2 3 4 5 6 7 8 9 10 

i = 
t = 

r = 
0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 1 

0 0.0 0 0 0 0 0 0 0 0 0 0 0 

1 0.1 1 0.9 0.72 0.576 0.461 0.369 0.295 0.236 0.189 0.151 0.121 

2 0.2 1 1 0.89 0.784 0.685 0.594 0.512 0.439 0.375 0.319 0.27 

3 0.3 1 1 0.9 0.809 0.729 0.649 0.579 0.514 0.955 0.402 0.353 

4 0.4 1 1 0.9 0.81 0.729 0.656 0.589 0.529 0.475 0.425 0.381 

5 0.5 1 1 0.9 0.81 0.729 0.656 0.59 0.531 0.478 0.43 0.386 

6 0.6 1 1 0.9 0.81 0.729 0.656 0.59 0.531 0.478 0.43 0.387 

7 0.7 1 1 0.9 0.81 0.729 0.656 0.59 0.531 0.478 0.43 0.387 

8 0.8 1 1 0.9 0.81 0.729 0.656 0.59 0.531 0.478 0.43 0.387 

9 0.9 1 0.9 0.82 0.746 0.678 0.615 0.558 0.505 0.457 0.414 0.374 

10 1 0 0 0 0 0 0 0 0 0 0 0 
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Table (3.4) 

The residue error of example (3.4). 

j = 1 
i = 1 

0 1 2 3 4 5 6 7 8 9 

0 0 0 0 0 0 0 0 0 0 0 

1 0 0.01 0.008 0.006 0.005 0.004 0.003 0.002 0.001 0.001 

2 0 0.01 0.008 0.007 0.005 0.004 0.003 0.003 0.002 0.002 

3 0 0.01 0.008 0.007 0.005 0.004 0.003 0.003 0.002 0.002 

4 0 0.01 0.008 0.007 0.005 0.004 0.003 0.003 0.002 0.002 

5 0 0.01 0.008 0.007 0.005 0.004 0.003 0.003 0.002 0.002 

6 0 0.01 0.008 0.007 0.005 0.004 0.003 0.003 0.002 0.002 

7 0 0.01 0.008 0.007 0.005 0.004 0.003 0.003 0.002 0.002 

8 0 0.008 0.007 0.006 0.005 0.004 0.003 0.003 0.002 0.002 

9 0 0 0 0 0 0 0 0 0 0 
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3.4 NUMERICAL SOLUTION OF HYPERBOLIC 

STOCHASTIC PARTIAL DIFFERENTIAL 

EQUATIONS 

In this section, we consider the numerical solution of the 

stochastic wave equation, which is given by:  

2 2

2 2
u u W

t x
∂ ∂

= +
∂ ∂

& , 0 < x < b, t > 0........................................... (3.23)  

subject to the conditions: 

u(0, t) = u(b, t) = (t)l , t > 0  

u(x, 0) = f(x), 0 < x < b 

)x(g)0,x(
t
u

=
∂
∂ , 0 < x < b  

where W&  is two-dimensional white noise. To set up the finite-difference 

method, select an integer n > 0 and step size k > 0 with h = b/n, the mesh 

points (xi, tj) are defined by xi = ih, for each i = 0, 1, …, n; and tj = jk, for 

each j = 0, 1, …  . 

The difference method is obtained by using eq. (3.9) and (3.8) we 

get  

i, j 1 i, j i, j 1 i 1, j i, j i 1, j
i, j2 2

u 2u u u 2u u
W

k h
+ − + −− + − +

= + ................... (3.24)  

If r is used to denote k/h we can write eq. (3.24) as: 

ui, j+1 − 2ui, j + ui, j−1 = r2(ui+1, j − 2ui, j + ui−1, j) + k2Wi, j  

this implies:  
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ui, j+1 = 2(1 − r2)ui, j + r2(ui+1, j+ ui−1, j) − ui, j−1 + k2Wi, j ............ (3.25) 

i = 1, 2, …, n − 1; j = 1, 2, …, n − 1. 

The boundary conditions give u0,j = un,j = )t( jl  for each j = 1, 2, …; 

and the initial condition implies that ui,0 = f(xi), for each i = 1, 2, …, n − 1, a 

central difference to the initial derivative condition gives that:  

i,1 i, 1 i,0
1 (u u ) g

2k −− = , i = 1, 2, …, n − 1 ............................... (3.26)  

Putting j = 0 in eq. (3.25) yields  

ui,1 = 2(1 − r2)ui,0 + r2(ui+1,0 + ui−1,0) − ui,−1 + k2Wi, j, i = 1, 2,…, n − 1 

 ............................. (3.27) 

Eliminating ui,−1 between these two equations shows that the mesh 

values t = k can be calculated from the equation  

2 2 2
i,1 i,0 i 1,0 i 1,0 i,0 i,0

1u 2(1 r )u r (u u ) 2k g k w
2 + − = − + + + +  .. (3.28) 

where i = 1, 2, …, n − 1. 

 

Algorithm (3.5): 

1. Input b, n, m, k. 

2. h = b / n, r = k / h. 

3. For i = 0 to n; do steps 4 to 7. 

4. For j = 0 to m; do steps 5 to 7. 

5. i jx a ih, y c jk= + = + . 
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6. Generate random vector p(i), which is normally distributed with 

mean 0 and variance hk.  

7. iw p(i)〈 〉 = . 

8. For i = 1 to n − 1, for j = 1 to m − 1 

i,0 iu f (x )= ; 0, j n, j ju u (t )= = l  

2 2 2
i,1 i,0 i 1,0 i 1, j i,0 i,0

1u 2(1 r )u r (u u ) 2kg k w
2 + − = − + + + +   

2 2 2
i, j 1 i, j i 1, j i 1, j i, ju 2(1 r )u r (u u ) k w+ + −= − + + +  

{ }22 2 2
i, j i, j 1 i, j i 1, j i 1, j i, jRE u 2(1 r )u r (u u ) k w+ + − = − − + + +   

9. Stop. 

 

Example (3.6):  

Consider the stochastic wave equation: 

2 2

2 2
u u W

t x
∂ ∂

= +
∂ ∂

& , 0 < x < 1  and   t >0  ................................. (3.29)  

the boundary conditions u(0, t) = u(1, t) = 0, t ≥ 0; and the initial 

conditions u(x, 0) = 1 sin( x)
8

π , u (x,0) 0
t

∂
=

∂
, 0 ≤ x ≤ 1; h = k = 0.1,  

n = m = 10. So r = 1. From eq. (3.25) we can write eq. (3.29) as: 

ui, j+1 = ui+1, j + ui−1, j − ui, j−1+
1

100
Wi, j, i = 1, 2,…, 9, j = 1, 2,…, 9 

.............................. (3.30) 
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0, j 10, j

i,0 i

with u u 0, j 0,...,10, and

1u sin( x ), for each i 1,2,...,9
8

= = = 



= π = 

 ...................... (3.31)  

2
i,1 i 1,0 i 1,0 i,0 i,0

1u u u 2k g k W
2 + − = + + +    

2
i,1 i 1,0 i 1,0 i,0

1u u u k W
2 + − = + +  , i = 1, 2, …, 9........................ (3.32)  

2

i, j i, j 1 i 1, j i 1, j i, j 1 i, j
1RE u u u u W

100+ + − −
  = − + − +    

. ............. (3.33)  

The solution is given in Table (3.5) and the residue error in a Table 

(3.6). 
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Table (3.5) 

Numerical results of example (3.6). 

 j = 0 1 2 3 4 5 6 7 8 9 10 

i = 
t = 

x = 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0 0.0 0 0 0 0 0 0 0 0 0 0 0 

1 0.1 0.0386 0.0367 0.0313 −0.0368 −0.0313 0.0367 0.0312 −0.0365 −0.0315 0.0366 0.0315 

2 0.2 0.0735 0.0699 0.0595 −0.0386 −0.0962 0.0073 0.1328 0.0239 −0.1694 −0.0553 0.2058 

3 0.3 0.1011 0.0961 0.0818 −0.0366 −0.1204 −0.0596 0.1281 0.1923 −0.1042 −0.3616 0.0488 

4 0.4 0.1189 0.113 0.096 −0.0312 −0.1327 −0.0892 0.0731 0.2172 0.1191 −0.3214 −0.4807 

5 0.5 0.125 0.1189 0.101 −0.0228 −0.1323 −0.1098 0.043 0.1827 0.1742 −0.0637 −0.4956 

6 0.6 0.1189 0.1131 0.0961 −0.0119 −0.119 −0.1205 0.0093 0.1634 0.1735 0.0107 −0.2373 

7 0.7 0.1011 0.0962 0.082 −0.0001 −0.0941 −0.1189 −0.0265 0.1282 0.1899 0.0455 −0.1791 

8 0.8 0.0735 0.07 0.0595 0.012 −0.0599 −0.106 −0.0592 0.0795 0.1874 0.1105 −0.142 

9 0.9 0.0386 0.0368 0.0313 0.0227 −0.0191 −0.0825 −0.0869 0.0233 0.1663 0.164 −0.0558 

10 1 0 0 0 0 0 0 0 0 0 0 0 
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Table (3.6) 

The residue error of example (3.6). 

j = 
i = 

0 1 2 3 4 5 6 7 8 9 

0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0.004 0.001 0.009 0 0.018 0.001 0.029 0.003 

2 0 0 0.007 0.001 0.015 0.004 0.016 0.037 0.011 0.131 

3 0 0 0.009 0.001 0.018 0.008 0.005 0.047 0.014 0.103 

4 0 0 0.01 0.001 0.018 0.012 0.002 0.033 0.03 0.004 

5 0 0 0.009 0 0.014 0.015 0 0.027 0.03 0 

6 0 0 0.007 0 0.009 0.014 0.001 0.016 0.036 0.002 

7 0 0 0.004 0 0.004 0.011 0.004 0.006 0.035 0.012 

8 0 0 0.001 0.001 0 0.007 0.008 0.001 0.028 0.027 

9 0 0 0 0 0 0 0 0 0 0 
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CONCLUSIONS AND RECOMMENDATIONS 

 

From the present study, the following conclusions may be drown: 

1. There is no explicitly known analytical method for solving SPDE’s 

and therefore numerical methods may be considered as the solution 

for such difficulties. 

2. From tables (3.2), (3.4) and (3.6), one can see the accuracy of the 

obtained results in solving SPDE's. 

 

Also, the following may be considered as recommendations for 

future work: 

1. Use other numerical methods for solving SPDE's, such as the 

collocation method, the least square method, Adomian decomposition 

method, differential transform method, etc. 

2. Use the implicit finite difference methods for solving SPDE's. 

3. Considering the stochastic Taylor series expansion in deriving other 

models for solving SPDE's. 
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  المستخلص

 

  :ثلاث أهداف رئيسيةلهذه الرسالة 

، حيـث   التـصادفي الهدف الأول هو اعطاء دراسة لموضوع التفاضل والتكامـل          

  .ساسية للمعادلات التفاضلية التصادفيةتتضمن الدراسة المفاهيم الأ

، بالاضافة الـى،    التصادفية هو لدراسة المعادلات التفاضلية الجزئية       الثانيالهدف  و

 التـصادفية النتائج النظرية للانواع الثلاثة من المعادلات التفاضـلية الجزئيـة     عضدراسة ب 

  .منهاواعطاء الشكل التكاملي لكل نوع 

 للمعادلات التفاضلية الجزئية     للانواع الثلاثة   هو دراسة الحلول العددية    الثالهدف الث 

 الموجـة  التـصادفية، ومعـادلات      الحرارةمعادلات   معادلات باسون التصادفية،  ( التصادفية

  . وذلك باستخدام طريقة الفروقات المنتهية)التصادفية
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