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ABSTRACT

This thesis has three objectives:

The first objective is to give a study of stochastic calculus,
including the fundamental concept of stochastic differential equations.
The second objective is to introduce stochastic partial differential
equations, as well as, study some theoretical results related to the three
types of second order stochastic partial differential equations and give
the integral form for each type. The third objective is to study the
numerical solution of the three type of stochastic partial differentia
eguations (stochastic Poisson equations, stochastic heat equations and
stochastic wave equations) using the finite difference method.
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INTRODUCTION

Stochastic partia differential equations (SPDE's), and perhaps
partial differential equations (PDE's), as well as, find their primary
motivations in science and engineering .Both ordinary differentia
equations (ODE's) and PDE's play a fundamental role in describing
reality. However, any model of the real world must take into account
uncertainty or random fluctuations. It is therefore, surprising that while
stochastic ordinary differential equations (SODE's) where studied
intensively through the twentieth century, SPDE only received attention
much later. Firstly work stemmed from the Zaka equation in filtering
theory, [38].

On the theoretical side, there was the work of Pardoux [37] ,and
Krylov and Rozovskii [26]. Much of this early work centered on
foundational questions, such as setting up the appropriate function spaces
for studying solutions or using such analytic tools as the method of
monotonicity. Later, Walsh [44] introduced the notion of martingale
measures as an aternative framework. The diverse origins of SPDE's
have led to a lively interplay of view points. Some people feel that
SPDE's should be based on such tools as Sobolev space, asisthe case for
PDE's. Others, with a background in probability feel that an SPDE's
describes a specia kind of stochastic process. Applied mathematicians
may feel that the study of SPDE's should follow the ideas used in their
domain. By a historical accident, particle systems, which may be
considered as discrete SPDE's, that studied much earlier than SPDE.

Such pioneers as Ted Harris and Frank Spizer laid the groundwork for
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this theory. Their research was also influenced by results in percolation,
by such mathematics as Harrykesten. Particle system has changed its
emphasis over the years, and some of this early work is being forgotten.
However, we believe that the main methods of particle system will
aways be relevant to SPDE's. Unfortunately, there was no time to
discuss percolation, which we also believe has fundamental importance
for SPDE's. Both duality and percolation, as well as, many other ideas,
are described in more detail in three classes [28], [29] give detailed
technical accounts of the field, and [9] provides a lively intuitive
treatment.

Secondly, Watanabe and Dawson found that the scaling limit of
critical branching Brownian motions give fundamentally an important
model, called the Dawson-Watanabe process or super process. Because,
this model involves independently moving particles, there are powerful
tools for studying its behaviour, and many of these tools help in the study
of SPDE's.

For example, the heat equation can be thought of as the density of
a cloud of Brownian particles. Any SPDE, which involves a density of
particles, can be studied via the Dawson-Watanabe process. There is a
huge literature in this area, but two useful surveys are written by Dawson
[7] and Perkins [39].

Thirdly, as one might expect, tools from PDE's are useful for
SPDE's. Of course, Sobolev space and Hilbert space play arole, asin the
work of DaPrato and Zabczyk [8] and Krulov [19]. But her we wish to
concentrate on qualitative tools, such as the maximum principle. In

particular, comparison theorems hold for many SPDE's.



Introduction

Finally, tools from probability theory also find applications in
SPDE's. For example, the theory of large deviations of dynamical
systems developed by Wentzall and Freidlin [14] also applied to SPDE.
If the noise is small, we can estimate the probability that the solutions of
the SPDE's and the corresponding PDE's (without noise) differ by more
than a given amount. Unfortunately, we had no time to discuss questions
of coupling and invariant measures, which play a large role in the study

of the stochastic Nevier-Stokes equation.
This thesis consists of three chapters.

In chapter one, we state some of the most general concepts and
definitions related to the subject of stochastic calculus, and SDE's which

are given for completeness.

In chapter two, the statement and the proof of some theoretical
results related to SPDE's are given, as well as, with some formulations,
which are needed, namely, stochastic Poisson equation, stochastic heat

eguation and stochastic wave equation.

In chapter three, numerical method for solving SPDE's have been
studied and explained with examples, in which the finite difference
method was considered for solving the three types of SPDE's

Last, the numerical results are obtained using computer programs
written in MATHCAD 14 computer software and the results are given in
atabulated form.
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CHAPTER ONE

STOCHASTIC CALCULUS AND STOCHASTIC
DIFFERENTIAL EQUATIONS

Stochastic calculus is concerned with the study of stochastic
processes, which involves randomness or noise. Intuitively, this requires
knowledge of the background definitions and concepts that will be
required later in this study, where only those definitions which are of

direct relevanceto this exposition are given.

1.1 BASIC CONCEPTSOF PROBABILITY THEORY

Probability theory is that branch of mathematics which is
concerned with random (or chance) phenomena. It has attracted people
to study both, because of intrinsic interest and successful applications to
many areas within the physical, biological, social sciences, engineering,
and in the business world, [22]. Randomness and probability are not
easy to define precisely, but we certainly recognize random events when
we meet them. For example, randomness is an effect when we flip a

coin, alottery ticket, run horse’s race, etc., [25].

The probability theory is an essentialy abstract science, in which
a probability measure is assigned to every set A, of the space of events
called the sample space (denoted by W). We introduce the probability of
A, denoted by P(A), as a set function of A satisfying the following

axioms;
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1.P(A)3 0, "Al W

2.P(W)=1.

3.IfA;, (1=1, 2, ...)isacountable collection of non-overlapping setsin
W, then:

PgtJ A, gzé P(A).

4.1f A®isthe complement of A, then P(A°) =1 - P(A).
5. P(/E) =0, where A isthe empty set.

Now, let F be anonempty class of subsets drawn from the sample
space W. We say that the class F is afield or an algebra of setsin Wif it
satisfies the following definition.

Definition (1.1), [25]:

A class of subsets Aj1 W, " i=1,2, ...,n;dencted by F isa
field (or Algebra), when the following conditions are satisfied:

1. If AT Fthen AST F," i=1,2,...,n.

n
2. 1f{A;," i=1,2,...,n1 F, then UATF.
i=1

Remark (1.2), [25]:

In the above definition, iIf n 3% ® ¥, then F is said to be s-Field
(or s-Algebra).
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Convergence of a sequence of random variables may defined by
using different approaches and have different meanings, as it is defined
in the next definitions:

Definition (1.3) (Pointwise Convergence), [25]:
A sequence of random variables { X} converges to a limit X if

and only if for any e > 0, however small, we can find positive integer no,
such that:

[Xn- X|< e for every n > n.

Remark (1.4), [25]:
If we consider a sequence of random variables {X;, X, ...,

Xn ...} ad define a pointwise convergence to another random variable
X, as in above definition, then we must have at every point w in W the
sequence of numbers Xy(w), Xa(w), ..., Xn(w), ... converging to X(w).

This type of convergenceis called everywhere convergence.

Definition (1.5) (Almost Sure Convergence), [13]:
A sequence of random variables { X} converges aimost surly

(abbreviated by a.s) or amost certainly or strongly to X, if for every

point w which is not belong the null event A, then:
rl}g@n; |Xn(w) - X(w)| =0
This type of convergence is known as convergence with probability 1

and is denoted by:

3,3 = li
X (w) /?,®Z§> X(w) IrIl!@rrégxﬂ(w) as.
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Remark (1.6), [13]:

If the limit X is not known as priori, then we can define a mutual
convergence aimost surely. The sequence X, converges mutually almost
surely if:

Sp|X,, - X, 98 0

mén

In which both definitions are equivalent.

Definition (1.7) (Convergencein Probability), [43]:

A sequence of random variables { X;} converges in probability to

X if and only if for every e> 0O, however small,

lim P(]X,, - X|* €) =0

or equivaently

limP(]X,, - X|<e)=1

Remark (1.8), [25]:

1. Mutual convergence may be defined in probability as:

lim Sup(P[X - X,|2 €) %® 0

2. If asequence of random variables { X} converge aimost surely to X,
then it converge in probability to the same limit. The converseis not
true, as an example, let W= [0, 1] and let P([a, b]) = |b - 4| for any
subinterval [a b] | [0, 1].

Forn=1, 2, ...



Chapter One Stochastic Calculus and Stochastic Differential Equations

Let X,=+/nl, ,whereA,=[wl [0,]] :0£w£1§ Then:
n | n

P(Xn® € =P(nl, 3 €
=P(l, 2 el\n)

1
=|=- 0]
n

== for0<ef Jn.

1
n

Thus:

: Ak e = (i 3 @) =
rllg@ng P(X,- OF e rI]|®rg P(X,2¢e=0
for all e> 0, so X, convergesin probability to X = 0. However:

- X=X

=limJ/nl, =¥
n® ¥ n

S0 X, dose not converge to X in the sense of amost surely.

3. If {Xy} converge in probability to X, then there exist a subsequence
{ Xn, } of { X}, which converges amost surely to the same limit.

4. {X;} convergesin probability if and only if it is converges mutually

in probability.
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1.2 STOCHASTIC PROCESSES

Differential equations for random functions (stochastic processes,
random processes) arise in the investigation of numerous physical and
engineering problems, [2]. We have looked at single random variables
(X1, Xz ..., Xy), which we termed as random vectors. However, many
practical application of probability theory are concerned with random
processes evolving in time, or space, or both, without any limit on the

time (or space), [1].

Definition (1.9) (Stochastic Process), [43]:

A stochastic processes is a collection of random variables { X(t):
t1 T}, wheret is a parameter that runs over an index set T (T is open,
closed, or half closed). In general we call t the time-parameter (or simply
thetime), and T1 j*. Each X(t) takes valuesin someset S1 j called
the state space, then X(t) is the state of the process at timet.

Definition (1.10) (Stationary), [1]:

A stochastic processes X(t) is said to be stationary if:
P{X1(t) £ X1, Xo(t) £ Xz, ..., Xm(t) £ X} = P{X(ty + q) £ Xq, X(t2 +
q) £ X2, ..., X(tm+ Q) £ X}
for al ty, t, ..., ty, > 0 and real values xi, Xy, ..., Xm. FoOr every natural

+

number mand for al g1
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Remarks (1.11), [43]:

1.

If the index set T is a countable set, we call X a discrete time
stochastic process, otherwise, we call it a continuous time stochastic

Process.

. A continuous time stochastic process {X(t): t T T} is said to have an

independent increment if for all to < t; <t, < ... <t, the random
variables X(t) - X(to), X(t2) - X(t), ..., X(t,) - X(tn,) are
independent. The process is stationary if X(t + s) - X(t) has the same
distribution X(t) for all t and s > 0. That is, is posses independent
increments if the changes in the processes values over non
overlapping time intervals are independent of each other, and it
process stationary increments if the distribution of the change in the
value between any two points depends only on the distance between

those points.

1.3BROWNIAN MOTION AND WHITE NOISE

Brownian motion was introduced by Robert Brown in 1827,

when he observed the motion of a pollen grain as it is moved randomly

in a glass of water. Because the water molecules collide with pollen

grain in arandom fashion, the pollen grain moves randomly. The motion

of pollen is stochastic, because its position from one point in time to the

next position can only be defined in terms of a probability density
function, [21]. In 1900 Bachelier used the Brownian motion as a model

for studying the movement of stock prices in his mathematical theory of

speculation. The mathematical foundation for Brownian motion as
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stochastic process was introduced by Wiener in 1931, and this processis
aso caled the Wiener process [24], but we shill use separate
terminology to distinguish between the mathematical and physical

processes.

Definition (1.12) (Brownian Motion), [17]:

A Brownian motion or Wiener process is a stochastic process

W(t),t 3 O satisfying:
1. W(0) = 0.
2.ForanyO£ty<t;<... <ty therandom variables:
DW= W(tir) - W(t), 0EKEN- 1
are independent.
3.1f 0 £ s<t, W) - W(s) is normally distributed with mean m and
variance s’ then:
E[W(t) - W(9)] = (t- s)m
E[(W(t) - W(S9)I*= (t- 9)s?
where m and s? are real constant, s, > 0, and called the drift and

variance respectively.

Remarks (1.13), [17], [43]:

1. If st2 = 1, the W(t) is said to be the standard Brownian motion. We

always make this assumption unless stated otherwise.
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2.1fm=0, sZ =1, then we speak about normalized Brownian motion.
For any Brownian motion with mean m and stz, (W) - m)/ s,isa
normalized Brownian motion. And if W(t) with drift m, variance stz,

and 0E£to<t; < ... <ty then:
Gt 1) = E[(W(t) - m,)(W(t) - m, )]
= sZ min{t;, t}, indeed if t; > t,
G(t t) © E[(W(t)- W(t)- ti- t) + W(t) - m, )W(t)- m, )]
= E(W(t) - m, )*=tcs®

3. In fact, the assumption (2) is not strictly, in that case one can construct
(by alimiting procedure) a random process W(t) that obeys (1) and (3)
Isamost surely continuous of definition (1.12).

Definition (1.14) (n-Dimensional Brownian Motion), [17]:

An n-dimensional process W(t) = (Wq(t), Wy(1), ..., Wi(t)) is
called an n-dimensional Brownian motion, if each process Wi(t) (i =1, 2,
..., N) isaBrownian motion and if the s-field F (W;(t),t2 0),1£i £n,

are independent.

Now, we discuss that the notion of white noise as it generally
introduced in the science and engineering literature can be thought of as
the time derivative of the Wiener process. The non existence of White
noise as a stochastic process will never be a problem and we will happily
consider noisy observation in their integrated form in order to avoid



Chapter One Stochastic Calculus and Stochastic Differential Equations

mathematical unpleasantness. Let us nonetheless to topic of Wiener
process we should briefly investigate further the connection between the
Wiener process and white noise. In science and engineering white noise
IS generally defined as follows: it is Gaussian “stochastic process” Y
with zero mean and covariance E(YY) = d(t - s), where d(.) is Dirac’s
delta function.

Definition (1.15) (White Noise), [24]:

The white noise process Y (t) is formally defined as the derivative

of the Brownian motion:
dw
Y (1) =— = W(t
(t) ” (t)

It dose not exist as a function of time t in the usua sense, since a
Brownian motion is nowhere differentiable function.

Remark (1.16), [1]:

A special case which is of considerable interest occurs when the
process X (t) from which the white noise derives is the Brownian motion.
The white noise process then obtained is often referred to as Gaussian

white noise.

1.4 STOCHASTIC DIFFERENTIAL EQUATIONS

Stochastic differential equations (SDE’s) appears in analysis in
various guises. An example from physics will perhaps illuminate the

need for this field and give an inkling of its particularities. Consider a

10
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physical system whose state at time t is described by vector X;in j",
where X, will refers the stochastic process for the rest of this work. In
fact, for concreteness sake imagine that the system is a space probe on
the way to the moon. The pertinent quantities are its location and
momentum. If x; its location a time t and p; its momentum at that
instant, that X; is the t-vector (x;, py in the phase space i". In an ideal
world the evolution of the state is governed by the differential equation:

dX, _aelx;/dto
dt ~ &dp, /dt
_e&ep/m 0
gF(Xt’pt)E

Here m is the mass of the probe. The first line merely the definition of

p;: momentum = mass velocity. The line is Newton’s second law the
rate of change of the momentum is the force F. For simplicity of reading
we are rewrite thisin the form

X = AKe, Pr) Bl eereeeeeeeeeeeeeeeeeeeesesseeeeeeeeeessessseeseseeee e (1.1)

which expresses the idea the change of X; during the time-interval dt is
proportional to the time dt elgpsed with proportionality constant of
coupling coefficient a(x;, p;) that depends on the state of the system and

Is provided by a model for the force acting. We may rewrite eg. (1.1) in
the form of an integral equation:

t
Xi=Xo+ A(Xg,Ps)dS, Xi(0) = X0 cvvvririiiiiiiiiiiicciccie, (1.2)
0

11
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In the less-than-ideal real world, our system is subject to unknown forces
noise. Our recket will travel through gulliesin the gravitational field that
are due to unknown in homogeneities in the mass distribution of the
earth. It will meet guts of winds that cannot be foreseen; it might even
run into a gaggle of geese that deflect it. The evolution of the system is
better modeled by the differential equation:

dXt = a(Xt, pt) dt + th ........................................................... (13)

where G; is a noise that contributes the differential dG; to the changes
dX; of X; during the interval dt. To accommodate idea that the noise
comes from without the system one assume that there is back ground
noise W, consisting of gravitational gullies, gusts, and geese in our
example-and that its effect on the state during the time-cumulative noise
W, during the time interval dt, with proportionality constant or coupling

coefficient b that depends on the state of the system:
dG; =b(x,p,)dW,

For instance, if our probe is at time t half way to the moon, then
the effect of the gaggle of geese at that instance should be considered
negligible and the effect of the gravitational gullies is small. Equation
(1.3) turnsinto:

dX, =a(X,, Pt + DX POAW, oo (1.4)

or as an integral equation of the form:

t t
X, =X¢ + R(Xg, Py) 05+ (PKXer P ) AWy ovvovriireieieiens (1.5)
0 0

12
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Definition (1.17), [17]:

A stochastic process f(t) defined on [a, b] is called a step
function if there exists apartitiona =to <t; < ... <t,=b of [a, b], such
that :

f(t):f(ti), if t£t<ty,1=0,1,...,r-1

Definition (1.18) (Stochastic | ntegral), [17]:

Let f(t) be astep functionin L%, [a, b], then:
f(t) = f(ti), if t£t<t,0£I1E£r-1

wherea =tg<t;<t, < ... <t, =b. Therandom variable:

é. f (tk)éw(tkﬂ)_ W(tk)g

k=0

IS denoted by:
b
o (D) dW(t)

and is called the stochastic integral of f(t) with respect to Brownian
motion W, it isalso called the It6 integral.

Definition (1.19) (Increasing s-Fidld or Filtration s-Fidd), [25]:

Let (W, F) be a complete measurable space and let {F, tT ™}
be afamily of sub-s-fieldsof F, suchthat fors£t, Fsi F. Then{Fg} is
called an increasing family of sub-s-fields on (W, F) or the filtration s-

field of (W, F). F; is called the s-field of events prior to t. If {X;, t 1

13



Chapter One Stochastic Calculus and Stochastic Differential Equations

i 7} is astochastic process defined on (W.F, P), then clearly F; is given
by:

Fi =s{Xs s£t,tT '} isincreasing.

Remark (1.20), [25]:

Since the probability space (W, F, P) is complete, the s-field F
contains all subsets of W having probability measure zero. Here we shall
assume that the filtration s-field {F, t T T} also contains all the sets

from F having probability measure zero.

Definition (1.21) (Adaptation of {X:}), [25]:

Let {X; tT i} beastochastic process defined on a probability
space (W, F, P) and let {F, tT ™} befiltration s-field. The stochastic
process { X} is adapted to the family {F} if X, is F-measurable for

+

everytT 7, and:
EFtXt:Xt,tT i+

F-adapted random processes are also F--measurable.

Definition (1.22) (The Itd Process), [17]:

A stochastic process X, 0 £t £ T is caled an 1td process with
respect to {W,, P, F} (where F; is adapted to W) relative to B(t), A(t) if:

t t
Xy =Xy t OA(s)ds+PB(s)dW,, 0E£LtET.
0 0

14
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Definition (1.23) (Stochastic Differential Equations), [19]:

An n-dimensional 1t6 process X; is a process that can be

represented as:

t t
Xt =Xy + QA (Xs,9) ds+ B (X, 5) dWy
0 0

where W, is an m-dimensional standard Brownian motion, A and B are
n-dimensional and n” m-dimensional F-adapted processes, respectively.

We often use the notation:

dX; = A Xe ) dt + B( X0 ) AWy, X(t) = Xy covrrernrireren (1.6)

1.5 THE ITO’SFORMULA, [18], [43]

Itd formula is the analog of integration by parts in the
deterministic calculus. In stochastic calculus this is not possible; the
useful range of techniquesis practically restricted to those that deal with
integral equations. Of these by far the most important is that which is
known as 1t6’s formula, where may be seen as a stochastic chain rule.
Let us recall some elementary non-random chain rule; as usual primes

may denote differentiation.

1. One-variable chain rule;

If y(t) = f(g(t)), then:

v = =1 ¢g(0) gt0)

15



Chapter One Stochastic Calculus and Stochastic Differential Equations

Assuming that the derivatives f¢and g¢exists. We may express thisin

differential notion as:
dy = fg) g&t) dt = f&g) dg.
2. Two variables chain rule: If:
Y () = f(X (1), W(1)).
Then:

dy _ TF X, 9f 1w
dt X Tt W Tt

where differentiation may be denoted by suffices in an obvious way.

In particular, if X =t, we obtain, for y = f(t, W(t)).

dy = f, dt + f,, AW

Itd formula is extremely useful in many topics, particularly in
evaluating stochastic integrals.

Theorem (1.24) (1t6 Formula), [13]:

Suppose that X; has a stochastic differential equation:

dX; = A( Xy,t) dt + B( X,t) dW,, for AT L0, T), BT L%QO, T)

2
Assumeu: j [0, T] %® j iscontinuousand Ju fu Tu exist and

Tt "X, X3
are continuous. Set:
Yt = U(Xt ,t)

Then Y, has the stochastic differential:

16
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2
av, :%dHﬂdXt ERICE

> B dt
X, 2 X

é 24 U
_Su, u 19 BZ(Jdt+ﬂBth................(1.7)

fu Tu
et X, 20X g 9,

The eq.(1.7)is caled the It6’s formula or 116 chain rule.

Example (1.25), [46]:

Usethe 116 formulato solve SDE:

dXt = Xt th, tT [O, 1] U
|

X(0) = 1 E ...................................................

Hence, from the stochastic differential equation, we have:

X _ aw,
xt

and therefore:

t\dx t\
OX == OjWS
0

0 S

Using the It6 formulafor the function
a(t, Xy) =In Xy, X¢ >0

From eq.(1.7) and obtain that from eg. (1.8) we get:

17
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d(in X,) = Xiolxt 19 —_(dX %

t e t 2

dX @& 10
_t+19_ i2+(xt th)Z
Xi 28 Xig

and since dW; » (dt)¥2 Hence:

dXx & o]
d(in X)) = ==L+ o1 -i2+xt2dt
Xt e t @
- 9X idt
Xt
or equivalently:
dX,

—t=d(InX,)+= dt
~ (InX,)

t

S0, from eg. (1.9) one can conclude that:

th t
OJI(InX)ds+ ds
Ox. 05
Wt=|n Xt +1t
X, (0) 2

Therefore, the solution is given by

Xi= exp?Nt -

18
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CHAPTER TWO
STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS

Stochastic partial differential equations are known to be an
effective tool in modeling complex physical and engineering
phenomena. Examples including wave propagation [33], diffusion
through heterogeneous random media [43], randomly forced Burgers
and Navier-Stokes equation (see e.g., [3, 10, 11, 12, 31, 34, 35, 36, 40,
41] and the reference therein). Additional examples can be found in
materials science, chemistry, biology, and other areas. In those
problems, the large structures and dominate dynamics are governed by
deterministic physical laws, which the unresolved small scales,
microscopic effects, and other uncertainties can be naturally modeled by
stochastic processes. The resulting equations are usually PDE’s with
either random coefficients, or randomintical conditions, or random
forcing. Unlike deterministic PDE’s, solutions of SPDE’s are random
fields. Hence, it is important to able to study their dsatistical

characteristic, e.g., mean, variance and higher order moments, [30].

The goal of this chapter isto set someideasin SPDE’s, which we
have found useful. Sometimes, the idea in a simple case will be
explained, and leave it to the reader to develop the topic more broadly as

a future work.
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Chapter Two Stochastic Partial Differential Equations

2.1 FUNDAMENTAL CONCEPTS

In this section, some of the most important definitions and

concepts related to the work of this chapter are given.

Definition (2.1), [17]:

The elliptic partial differential equation is defined by Lu = f(x),
wheref is given function and L isalinear operator defined by:
” 8 T

1 o
Lx=— i (X Xt D (X) ——>XC(X) > v 2.1
zi?zf“’( )MXj 8 b, () g ~x+(x) (2.)

the real coefficients g;, by and c are defined in an n-dimensional domain
D, L is sad to be dliptic type (or elliptic) at a point Xq if the matrix

(&;(Xo)) is positive definite, i.e., for any real vector z* 0, we have:

a;(x0)ziz;>0

n
[}
i,

=1

Remark (2.2), [16]:

Let D be bounded domain with boundary YD in C?(D), and let L
be an dliptic operator given by (2.1) with coefficients defined in D.

Given any functionf in D andj on D, the problem is to find a solution

u of the boundary value problem:
LU=T(X) IN D oot (2.2)

UX) =] (X) ON TID oo (2.3)

this called the Dirichlet problem or first boundary value problem.
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Chapter Two Stochastic Partial Differential Equations

Definition (2.3), [17]:

A barrier W,(x) at the point y T D is a continuous nonnegative

function in D that vanishes only at the point y and for which LW,(x)£- 1.

Theorem (2.4), [17]:

If D is abounded domain with D1 C?(D), then for any yi 1D,
there exists a closed ball K suchthat K C D = Fand K C D = {y};

thus, abarrier exists.

Definition (2.5), [17]:

The parabolic partial differential is defined by mu = f(x, t), where
M isalinear operator defined by:

n 2 n
mcl 3 a; (x,1) 1 g b (x,t)ﬂix+c(x,t)x-%> ...... (2.4)

221 XX =1 X

where the real coefficients g;, by and c are defined in an (n + 1)-

dimensional domain D. If § a;(x,t,) >0, foral zT ",z 0,

then we say that is m of parabolic type at (Xo, to). mis uniformly
parabolicin D if thereis apositive constant M, such that:

n

3 a(x,)zz;® M|z[ foral (x, T D,z §i" e (2.5)
i

1,]=1
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Chapter Two Stochastic Partial Differential Equations

Definition (2.6), [16]:

The function f(t) is sad to be uniformly Holder continuous
(exponent a) in [0, tg] if |[f(t) - f(t)|]| £ clt - tf, for al t, t in [0, t];

wherecisapostiveconstantsandO £ a £ 1.

Definition (2.7), [4]:

A function f is uniformly Lipschitz continuous on a domain D if

given any ¢ > 0, there exists d > 0, such that:
[f(X1) - f(X2)| < C]X1- Xo|, " X1, X21 D

with property [X; - Xo| < d.

Definition (2.8) (The Kondrative Spaces of Stochastic Test Function
and Stochastic Distributions), [23]:

a) The stochastic test function spaces:
Let N beanatural number. For O£ r £ 1, let:
S =M
consist of those functions of form:

f =& c,H, 1 L*(m,)
a

such that:
IfIF =& ci@h™ (2N) <a,foral kT ¥ .. (2.6)
a
where:

N

o 2 . _ ~ _N
2 =lc, P=4 [ if ca=(c®.c?,...c™)T j

k=1
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Chapter Two Stochastic Partial Differential Equations

b) The stochastic distribution spaces
ForO£r £1, let:
SN =©%"
consist of all formula expansions

F=4 b,H, ,withb,T "
a

such that

If 1L, -q=a bi@)" " (2N) ® <¥, for someqi ¥ ... (2.7)
a

The family of semi norms |ff|«; k T ¥ give the rise for a

topology on (S), and we can regard (S)". asthe dual by the action:

AT W (D L (2.8)
a

F=abH, T (ON;f=8c,H, T (S
a a

and (b, Ca) is the usual inner product in j". Note that, the above

action iswell defined, since:

2ro  -w@ @
8 1(by.ca)lal=8 [ (b,.ca) (@) 2 3(2N) 2 (2N) 2

1

1
ﬁg‘é b2 (@b’ (2N) ® & g‘é ¢ (" (2N)® ¥
a 4] a

a

<¥
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Chapter Two Stochastic Partial Differential Equations

for g large enough. When the value of m is clear, then from the
context we simply write ()N, (9N instead of (™", (9™,
respectively. If N = 1 we write (S);, (S)., instead of (S, (9, ,

respectively.

Remark (2.9), (The Hida Test Function Space (S) and the Hida
Distribution Space (S)), [23]:

There is an extensive literatures on those spaces (see [20]).
According to characterization in [45], we can describe these spaces,
generalized to an arbitrary dimension m, as it follows in the next

proposition:

Proposition (2.10),:

a) The Hida test function space (S)":

Consist of those expansions:

f =4 c,H, 1 L*(m,), withc, T "
a

such that:

sup{c2 al(2N)**} <¥ , for Al K<¥ oo (2.9)
a

b) The Hida distribution space (S)™:
Consists of all formula expansions:
F=4 b,H, ,withb,T "
a
such that:
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Sup{ b2 a!(2N)'qa} <Y, fOr SOMEQ<Y¥ oo, (2.10)
a

Hence, after comparison with the definition (2.8), one may see that:
SN =" and (9N =T s (2.11)

If N =1, wewrite:

(9)'=(S) and (9" =(9)

2.1.1 Singular White Noise, [23]:

One of the many useful properties of (S)  is that it consists the

singular or pointwise white noise.

Definition (2.11):

a) The l1l-dimensional (d-parameter) singular white noise process is

defined by the formal expansion:

W(X) = W(X,w) = 5;‘1 h (OHg (W) XT i e (2.12)
k=1

where{h}}_, isthebasis of L*( i 4, defined by:

while H, = HY is defined by:

X -
Haw) = HO(w):=Q h, (<w,h; >), wl SEi?).............. (2.14)
i=1
b) The m-dimensional (d-parameter) singular white noise process is
defined by:
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W(X) = W(X, w) = (W1(X, W), Wa(X, W), ..., Wx(X, w))

where the i™ component Wi(x) of W(x), has the expansion:

Wi(x) = & h;(x)H

- €i+(j-Hm
=

= hy(\)Hg, +h,()H,  +hy(x)H

+
e(i+2m)

Definition (2.12):

Let F= & b,H, T (9N withb, T ¢ asin definition (2.8). Then

the Hermite transform of F, denoted by HE or £ for simplicity, is

defined by convergent power series:

HF= B(2) =8 0,22 T € e, (2.16)
a

wherez = (zy, 2, ...) 1 c" (the set of all sequence of complex numbers).

Za = Zi 252 253 . 28N it s (2.17)

if a =(ay, az ...)T j, where 20 =1 andj = (NJ'), the set of all finite

sequencesin NY , No=N E {0}.

Definition (2.13):

The 1-dimensiona (d-parameter) smooth white noise is the map

W:S(i%) S€i?)3%® i,givenby:

WG )=W(G ,w)=<W,j>;wil Si?,jT SKi) ... (2.18)
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Chapter Two Stochastic Partial Differential Equations

Example (2.14):

The 1-dimensional smooth white noise W(j ) has the form:

W( ,w)=<W,j >

¥
j=1

Qox

(G ,h;))<W,h, >=§(j ,h-)He(j) () I (2.19)
1 ji=1

—
1

where € = (0, 0, ..., 1, ...) with 1 on entry number j and O otherwise.

The convergenceisin L%(m). In other words:

W(j W) =4 c,H, (w)

with
i h i o — o)
o L L (2.20)
Y other wise
and therefore the Hermite transform W(j ) of W(j ) is:
WG )= 8 (N Z) o (2.21)
i=1

which isconvergefor al z=(z3, 25, ...) T (cV)..

Definition (2.15):

For 0 < R, g < ¥, define the infinite-dimensional neighborhood
Ky(R) of 0inc" by:
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Ko(R) = | (23,201 V5 & |22 £ (@2N)® <RZY....... (2.21)
| b
Note that:
gEQ,rER
which impliesto:
KON T KG(R) ceviiecreisecreseete et (2.22)

for any g < ¥, d> 0 and natural number K, there exists e > 0, such that:
z2=(21, 25,...,z)1 candjz|<e 1£k

whichimpliestozT Kq(d).

22 ELLIPTIC STOCHASTIC PARTIAL DIFFERENTIAL
EQUATIONS, [17]

Let L be an dlliptic operator in a bounded domain D which is
given by (2.1). Assumethat L isuniformly elipticin D, i.e,,

n
3 8;(X) 2,2 M[zF, xT i",M >0 (2.23)
i j=1
Assume also that:
aj, by are uniformly Lipschitz continuousin D .................... (2.24)
¢ £ 0, cuniformly Holder continuousin D ...........cccevevneenee. (2.25)

Assume finally that the boundary D of D is in C?(D), so that the

barriers exist at all points of D (see theorem (2.4)). Then as it will be
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proved later, the Dirchlet problem (2.2), (2.3) has a unique solution u for
any given functionsf, j satisfying:

f isuniformly Holder continUeSin D .......cocvevvveveveeeverrene, (2.26)

] 1SCONINUOUS ON 1D ... (2.27)
Consider the system of stochastic differential equations:

dz(t) = s(z(t)) dW(t) + b(z(1)) dt .ccoovreeeeeeeee e (2.28)

Denote by V. the closed e-neighborhood of 9D and let Do = D\V,. Let V

be afunction in C*( i ") that coincides with the solution u of (2.2), (2.3)
in Dy, and let t be Markov time with respect to time-homogeneous

Markov process solution of (2.28). By the It6’s formula, then:
é. u
E, (V(z(t))expace(z(s)) dsy- V(x) =
€0 u
t ét u
E,dLV(z(t)]expace(z(s)) dsydt ..., (2.29)
0 €0 u

takex T De, andt = min{te T}, wheret. isthe hitting time of V.. Then
V{z(t)} =u(z(t), foral O£t £ t. Hence (2.29) holds for v = u. Taking
e ¥%® 0 and using the Lebesgue bounded convergence theorem (see
[5]), we get

u(x) = E U(Z(t*)) exp g(‘)c(z(s)) dsg_

go 3]

v &t 0
E, of (2(t)) eXpAE(Z(S)) ASEAL ovvvveerereeeeerereennn, (2.30)

0 €o u

wheret istheexit timefrom D, andt™ = min{t, T}.
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Theorem (2.16):

Assumethat L isuniformly elliptic in D, such that c(x) £0," x 1
D and that a;, bi, ¢ are uniformly Hélder continuous (exponent a) in D.
If every point of D has a barrier and if j is a continuous function on
D, then there exists a unique solution u in C(D) C C%D) of the
Drichlet problem (2.2), (2.3).

For the proof of the existence and the uniqueness the reader is
referred to [15], [16], [17].

Theorem (2.17):

Let:

dzi(t) = a(t)dt + bi(t)dz,i =1, 2, ..., m
and let f(Xg, Xo, ..., Xm, t) be a continuous function in (X, t) where X = (X,
X2, ..., Xm) 1 1™, 13 0, together with its first t-derivative and second x-
derivatives. Then f(zy(t), ..., zn(t), t) has a stochastic differential, given
by:

dr(X(t), 1) = gft(xa),t) LA T (X080 +
i=1

Lt (X0 b (O, (gt +

2i,j:1 7 ':I

g. fxi (X(E), 1) By () AW(L) e (2.31)
i=1

where X(t) = (z4(t), zx(1), ..., Zn(t)). Formula (2.31) is called the 1td’s

formula.
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Remark (2.18):

1t6’s formula (2.31) asserts the two processes:

f(X(), 1) - 1(X(0), 0)

and
XD+ 1, (X008, +1 & 1, (X(.05 0B (Os+
0 i=1 j=1 a

A T (X(0, Dby (9 dw(9

0i=1

are stochastically equivalent. Since they are continuous and their sample
paths coincide a.s. Consequently integrating both side of eq.(2.31) from
Otot

f(X (), t) - f(X(0), 0) = égft(xa),t) +§1in (X (1), by () +
0 i=

m u
L& 1 (X0, (Db, (Hget +
2ij= 0

—

m

@é Fy O, B (D) AW(E) oo (2.32)
oi=1
for any random variablet, O£t £T.

If, in particular, t is a stopping time, and when, taking the expectation,
we find that:

E, f(X(t), t) - E,f(X(0),0)= Ext(‘j_f (X(t),)dt .............. (2.33)
0
where;

LE= (X0 + &, (X(O.0,0+5 & T, (X0,

i=1 ij=1
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The next theorem is given in [17] without details of the proof and

we give the proof for completeness.

Theorem (2.19):

Let (2.23) — (2.27) hold and let YD belong to C?(D). Then the
unigue solution u of the Dirichlet problem (2.2), (2.3) is given by:

: é! )
u(x) = Eq (z(t)) expace(z(s)) dSE-
€0 u

B, f (2(1) XD L) ASGA oo (2.34)
0 €0 u

wheret isthe exist time from D.
Proof:
To provethat Eit < ¥, for al x = (Xq, Xz, ..., Xp) In D.
Consider the function h(x) =- A€’
If A, | aresufficiently large (A dependingon| ), then:
Lh(x) £-1inD
integrate both sidesfromOtot™ = min{t, T}
e e

dLh(z(s)) dsE - gds
0 0

and hence taking the expectation

t* t*
E, oLh(z(s))ds£ - E, ¢ds
0 0
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and using remark (2.18)
Exh(z(t") - Exh(z(0)) £ - Ex(t")
Exh(z(t") - h(x)) £ - Et)

Since h(x) =- A€ X, then:

|h(x) [ |- A ™

E|- Al ‘e' X1

£ AB
£k," xinD
we have then:
Ech(z(t)) - h(x) £ - E(t)

Ex(t) £ h(x) - Exh(z(t")

E, (t")] € |h(x) - Exh(z(t")
£|h(x) + (- E, hz(t )

£[h(x)|+|- E, h(z(t"))

=lh(x)[+

E, h(z(t")

Since [h(x)| £ k and from the definition of expectations:
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E, h(z(t"))| =

Eh(x)f (S d%
-¥

£|h(x)

¥
of (s) d%
-¥
£k™1£k

Thisimplies:

Ext) £k+k

£ 2k

Taking T % ® ¥, we get:

Ed £ 2k
Therefore:

Ed <¥

and hence the expectation is bounded. Then by taking T %2 ® ¥ in (2.30)
and using Lebesgue bounded convergence theorem [5], we get that
assertion (2.34). <

Consider now the initial-boundary value problem (written for t
replaced by T - t).

Lu +11]1—l:=f(x,t), inQ=8"[0,T

u(x,t) =j (x), on B Y e (2.35)
u(x,t)=g(x,t), onS !

where B is bounded domain with C? boundary B, S= 1B [0, T], and L
Is defined by:
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19 Tu & Tu
Lu=— (Xt +a b (X,t)—+c(x,t)u
Ziila,( )ﬂxiﬂxj a ( )ﬂXi (x,1)

consider also the system of stochastic differential equations:

dz(t) = s(z(t), )dW(t) + b(Z(L), )t ..ooverrreriereeeeeine, (2.36)
where (s(x, t))* = a(x, t) in Q. The coefficients s and b are extensions of
s(x, t), b(x, t), originally defined in Q, such that:

s, 1) - s(y, £ c(x - y[+[t- S|

b(x, 1) - b(y, )| £ c(jx - y|+ [t - ).
we shall assume:

aazz, 2 mzf if (x,nHT Qzl i", m>0,

Ql

a;,b; areuniformly Lipschitzcontinuousin (x, t)

f isuniformly H8lder continuousin (x,t)T Q
g iscontinuouson S,j iscontinuouson Band

u
|
. I

¢ isuniformly H8lder continuousin(x,t)I Q ;/ ________ (2.37)
|
|
|
g(x,T)=j (x) if xT 1B. b

By the next theorem (2.20) there exists a unique solution u of (2.35).

Theorem (2.20):

Assume that mis uniformly parabolic in Q, i.e., if there is a

positive constant M such that § a,z;z;3 M|z, foral (x, ) T Q, z1

i ", that a;, b, ¢, f are uniformly Holder continuous in Q and that g, j
are continuous functions on B,S respectively and g = j on BCS.
Assume also that there exists a barrier at every point of S. Then there

exists a unique solution u of the initial-boundary value problem (2.35).
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Theorem (2.21):

Let D be bounded domain YB belong toC?(D) and let (2.37)

hold. Then the unique solution u of the initial-boundary value problem
(2.35) is given by:

,t N
u(x,t) =E,, g(z(t)) expg(‘-p(z(s),s)dsz +
et uXt<T

. ét 0
Ex,t] (Z(T)) exp é(‘j:(z (S),S)dS';\l -
& Ui

E,. ;j‘ (2(9),9) exp gj-p(za )l )gds .......................... (2.38)
t et u

wheret isthefirst timel T [t, T] that z(l ) leaves B if such atime exists

andt =T otherwise.
Proof:

The proof issimilar to the proof of theorem (2.19). <

2.3 THE STOCHASTIC POISSON EQUATION

Let us illustrate the method described in the last section with
respect to the following equation, called the stochastic Poisson equation:

DU(x) =-W(x); xI D i

S Y 2SSOSR 2.39
U(x) =0; x1 1Dp (2:39)
g q° \
whee D= g — is the Laplacian operator in j°, D1 % is
k=1 Xk

any given bounded domain with regular boundary and where
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K

[o)

W(KX) = ah j(x)Hej (w) is d-parameter white noise. This equation
j=1

models, for example, the temperature U(x) in D when the boundary
temperature is kept equal to zero and there is a white noise heat sourcein
D.

Taking the Hermite transform of (2.39), we get the equation

Du(x,z) =-W(x,2); xI D i
u(x,z) =0; x1 ﬂDk’,

for our candidate u for ﬂ/ﬂJ, where the Hermite transform

W(x,z) :5 h;(x)z;, when z = (z,, z,, )T (A (see Example (2.14).
j=1

by considering the real and imaginary parts of the equation separately,
we see that the usual solution formula holds:

UK, 2) = QG Y)W(Y,2)AY oo, (2.41)

where G(X, y) is the classical Green function of D (so G = 0 outside D).
Suppose that the solution u(x, z) exist for al x T (cV)., x T D, since the
integral on the right of (2.41) converges for all such x, z (for this we
only need that G(x, y) I L* for each x). Moreover, for z1 (cV)., we

have:

lu(x,2)| =

B(x.y) & hi(y)z;dy
=|& z; B y)h(y)dy|

E‘é Z;

A4S0 y)| | (y)|dy
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d4ex.y)|dya |z

£c é‘zj‘
£c |zl
i
/2 /2
e 0 & e O
EC(; (2N) + ca (2N) o <¥
e | ﬂ el 1]

if zT ko(R). Since u(x, y) depends analytically on z, it follows from the
characterization theorem [11] that there exists U(x) T (S).1, such that
U(x) =u(x,2).

In particular f°u /9x? is bounded for (x, ) T ku(R), since both
Du = - W and u are equal. Therefore, from next theorem (2.22) U(x)
solves (2.39) we recognize directly from (2.41) that u is the Hermite

transform of

U(x) = 0G(x,y) W(y)dy

o

QJ°+|<

0G(x,y)h;(y)dyHe, (W),
=1 . d

._
11

which convergesin (S) because (see (2.10))

2

ééoG(X Y)h; (Y)dy (2i) T£c*3 (21')'q<¥, "q>1
=1 g j—l

K
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Theorem (2.22), [23]:

Suppose u(t, X, z) is a solution (in the usual strong, pointwise

sense) of the equation

A X T RX U Z) S0 o (2.42)

for (t, x) in some bounded openset G1 i andforal zT ky(R),
for some g, R. Moreover, suppose that, u(t, x, z) and al its partial
derivatives, which are involved in (2.42), are (uniformly) bounded for
(t, X, 2) T G kq(R), continuous with respect to (t, x) I G, for each
z1 kq(R) and analytic with respect to zT kq(R), for all (t, x) T G. Then
there exists U(t, X) T (S).1, such that u(t, x, z) = (H U(t, X)) (2), for dll
(t,x, 20T G~ ky(R) and U(t, x) solves the equation:

At X, Tt KX, U, W) =0 iN(S)-1 v, (2.43)

Theorem (2.23), [23]:

The unique stochastic process U(x) T (S).1 solving (2.39) is
given by

U(x) = 0G(x,y) W(y)dy
.d

¥
=8 BV Y He (1) o (2.44)
j=1

WehaveU(x)T S," x1 D.
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24 THE STOCHASTIC HEAT EQUATION, [32]

In the present section, we will concern with following one-

dimensional heat equation driven by a space-time white noise:

fu_Tu, b(u(x,t)) +sW(x,t), (x,t)T [0,2]" [0, T] ...c...... (2.45)

it qx°
where T > 0, the initial condition is given by a continuous function
Uo: [0, 1] %4® § and we consider Dirichlet boundary conditions. That
IS:

u(x,0) =ug(x), x1 [0,1]
u(0,t) =u(Lt) =0, t1 [0,T]}

The real valued random field solution to eg. (2.45) will be {u(x,t), (x,t)
[0, 11" [O, T]}. The function b : § %® j is of class C having a
bounded derivative and s > O is a constant. We assume that {W(X, t),
(x,t) T [0, 1]" [0, T]} is Brownian motion on [0, 1] [0, T], defined in a
complete probability space (W, F, P). The solution to the formal eq.
(2.45) is understood in the mild sense: a F-adapted stochastic process
{u(x, t), (x, ) T [0, 1]" [0, T]} solved (2.45) with initial and boundary
conditions (2.46), if for al any (x,t) T [0, 1]" [0, T]
tl

1
u(x,t) = &G, (X,y) U (Y)dy + o5, s (X, y) b(u(y,s))dyds +
0 00

tl

S O 1. (X, YIW(US, AY) eorereeeeeeeeeeeseeeeeeeeeersesn (2.48)
00
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where Gi(x, y), (t, X, y) T R (0, 1)? denctes the Green’s function
associated to the heat equation on [0, 1] with Dirichlet boundary
conditions:

- (x-y)?
e 4

Gt(X1 y) = \/4_pt

2.5 THE STOCHASTIC WAVE EQUATION, [32]

In this section, we study the stochastic wave equation in one and

two dimension.

2
T = 0ux )+ Bt ) + WOk, (601 17 [0.T).... (249
whereT>0,b: j %® j isafunction with bounded derivatives and

suppose that we are given theinitial conditions of the form:
u(x, 0) = uo(x) (x 0) =ny(x), xT ¢

where ug, no: i %®  are measurable and bounded functions, such
that uo is of class CY(j %) and has bounded derivatives Nuo. The mild
solution of (2.49) is given by {F{}-adapted process {u(x, t), (x, t) T
i 97 [0,T]} suchthat, foral (x,t)T §%" [0,T]

6= (- y)cfdy+“é‘uo(x y)GE(dy)u+

c) b(u(x- y,9)G dyds+s G?(x y) W(ds, dy)

0

oolu—r—
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where G/, t > 0, denotes the fundamental solution of the wave equation

in one and two dimension

1
G =Skt

Gt =>(e IxF)

42
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CHAPTER THREE

FINITE DIFFERENCE METHOD FOR SOLVING
STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS

The gap between the well-developed theory of SPDE’s and its
application for solving such type of equations still wide in range. A
crucial task in bridging this gap is the development of an efficient
numerical methods for solving SPDE's, and in this connection one of

such numerical methods is used which is the finite difference method.

In this chapter, the application of the finite difference method for
solving the three types of SPDE's was considered and illustrated with

examples.

3.1 FINITE DIFFERENCE APPROXIMATION TO
DERIVATIVES, [42]

When afunction u and its derivatives are single-valued, finite and

continuous functions of x, then by Taylor’s Theorem:
1,5 1 5
u(x + h) = u(x) + hugx) + Eh udgx) +Eh udx)+... ........... (3.1
and
_ 1.2 1 3
u(x - h) =u(x) - hugx) + Eh udgx) - Eh udx)+... ........... (3.2

Additions of these expansions give:
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u(x + h) + u(x - h) =2u(x) + h*u®x) +0(h*) +... ..cocevevne (3.3)

where O(h*) denotes terms containing fourth and higher powers of h.
Assuming these are negligible in comparison with power of h, it follows

that:
udgx) :gailzjg » iz[u(x+h)- 2u(x)+u(x- h)] e (3.9
edX 7, h

with atruncation error on the right-hand side of order h®

Subtraction of eg. (3.2) from eg. (3.1) and neglect the terms of
order h®, leads to:

ugx) =§%% »2—1h[u(x+h)- UK = )] oo (3.5)

with an error of order h®,

u(x) 4

u(x+h)

x-h X x+h

Fig. (3.2).

Equation (3.5) clearly approximates the slope of tangent at P by the

slope of the chord AB, and is called acentral-differ ence appr oximation.
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We can also approximate the slope of the tangent at P by either the slope
of the chord PB, giving the forwar d-differ ence formula:

ugx) » %[u(x e | R (3.6)
or the slope of the chord AP giving the backwar d-difference formula:
1
ugx) » F[u(x) = UX = N)] e (3.7)

Both eg. (3.6) and eqg. (3.7) can be written down immediately from eq.
(3.1) and eq. (3.2) respectively, assuming second and higher powers of h
are negligible. This shows that the leading errors in these forward and
backward-difference formulas are both O(h).

Now, assume u is a function of the independent variables x and t.
Subdivide the x-tplane into sets of equal rectangles of sides dx = h,
dt = k, as shown in Fig.(3.2), and let the coordinates (x, t) of the
representative mesh point P be:

x =ih, t=jk

wherei and j areintegers.
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i,j+1

R(ih, jk)

i-1,j |0 i+1, ]

ij-1

ih

Fig.(3.2) Subdivision of the x-t plane into rectangular mesh points.

Denote the value of u at P by:

Up = U(Ih,jk) = Ui j

Then by eg. (3.4):

Hud _afud
g &g,
5 ul(i +Dh, jk] - 2uih, jk] +u[(i - Dh, jK]
h2

2 -
& “u 0 , Ui - 2U; j + Uiy

gﬂxz (‘ij h2

with atruncation of order h% Similarly:
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2 s

FUO0  Uiju- 20 FU; g
7 2
t° o k

elt” g

with atruncation error of order k®.

With this notation the forward-difference approximation for fju/qt
aPis

with atruncating error or order O(k).

3.2NUMERICAL SOLUTION OF ELLIPTIC
STOCHASTIC PARTIAL-DIFFERENTIAL
EQUATIONS

The dlliptic stochastic partial differential equation that we
consider is the Poisson equation:

_ ] B B
R2u(x,y) ﬂlej(x,y)+ﬂ—;;(x,y) = WOGY) e (3.12)

ux,y) =gix,y) for (x,y)T 1D
D={(x,y)|la<x<b,c<y<d},

where W is two-dimensional white noise. The first step is to choose

integers n and m, and define step sizesh and k by h=(b - a) / n,

k=(d-c¢)/mxj=a+ih,i=0,1,...,n;andy;=c+jk,j=0,1, ..., m.
For each mesh point in the interior (xi, yj), 1 =1, 2, ..., n- 1,

]=1,2,...,m- 1, weuseeg. (3.8) into eg. (3.11),then obtain
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Uisgj = 2U;  F Uiy Ui = 20+ Uy
h? ¥ 2 = W e (3.12)

foreachi =12 ...,n-1j=1, 2, ..., m- 1; and the boundary

conditions as:
u(Xo, ¥j) = 9(Xo, ¥j), foreach j=0,1,...,m
u(Xn, ¥j) = 9(Xn, yj), foreach j=0,1,...,m
u(xi, Yo) = 9(Xi, Yo), foreach 1=0,1,...,n- 1
u(Xi, Ym) = 9(Xi, Ym), foreach i=0,1,...,n- 1
we can write eg. (3.12)

2(1 + I'2)Ui,j - (Ui+1,j + Ui-l,j) - I'Z(Ui,j+1 - Ui,j-l) = hZWi,j ........... (313)
whererzg,for eachi=1,...,n- 1andj=1,2,...,m- 1, and:

Uo,j =9(Xo, ¥j)), 1=0,1,...,m

Unj =9Xn Y), 1=0,1,....m

Uo=0X,VY), 1=12...,n-1

Um=0X,V¥Ym), 1=1,2,...,n-1

Algorithm (3.1):

1.Inputa b, c,d, m, n.
2.h=(Mb-a/nk=(d- c)/m,r=hlk.
3.Fori=0ton;dosteps4to7.

4.Forj=0tom; dosteps5to7.
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5. X; =a+ihy; =c+Jk.

6. Generate random vector p(i), which is normally distributed with mean

0 and variance hk.
7. wi =p(i).
8.Fori=1ton- 1;forj=1tom- 1
Ugj =9(Xg,Y) Uy = 9(Xp.Y;)
Ui o0 =9(Xi,Yo) Ui m =9(Xi,Yim)
Ui j =[(Uisg +ui-1,j)+r2(ui,j+1' Ui,j-1)+h2Wi,j]/2(1+ r%)
RE, | ={U; = [(Uiagj + Uiy ) 12U g - U0 +hAw, 17201+ 19))°

9. Stop.

Example (3.2):

Consider the stochastic poisson equation:

%+%:-W, 0<X<L 0<Y<2 i (3.14)
With boundary conditions:
ux,0) =x3 u(x,2)=(x- 2)*, 0£x£1
u©,y) =y, uL,y)=(y- 1)°, 0£y£2
withn=m=10thisimpliesh=0.1, k=0.2and r = 0.5.

From eg. (3.13) we can write eq. (3.14) asfollows:
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W. .

2?--'- U N (u|+lj + U;. 1]) (ui,j+1 + ui,j-1) :KIS
5 1 1
Eul i~ (Ut U ) - Z(ui,j+1 +U; 1) —mwi,j
_e 1 1 1 u2
UI,J—g I+1j I 1J+4U| J+1 4ui,j_1+m I’JHE ............ (315)
foreachi=1,...,9, j=1,...,9 and
Ug; = Y7 , j=0,1,...,10 :J
Ui = (Y. , 1=01...,10 {
0 =50 {, ......................................... (3.16)
U o =X’ , i=1...,9 7§
_ ’
Ui 10 = (X;. D7, 1=1..,9 b
e 1 1 1 02u
RE eulj ?i{]_j T UL 1j +4U| j+1 4ui,j-1+ﬁvvi ﬂsu

By equations (3.15) and (3.16) the solution values a the points in

example are as shown in table (3.1) and the residue error in table (3.2).
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Table (3.1)

Numerical results of example (3.2).

j = 0 1 2 3 4 5 6 7 8 9 10
=] T o 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0| o 0 004 | 016 | 036 | 064 1 144 | 19 | 256 | 324 4
1| 01 | 001 | 0017 | 0.066 | 0151 | 0271 | 0427 | 0619 | 0846 | 1109 | 1.768 | 3.61
2 | 02 | 004 | 0011 | 0027 | 0063 | 0115 | 0.182 | 0266 | 0.365 | 0.48 | 1.079 | 3.24
3| 03 | 009 | 0013 | 0012 | 0026 | 0049 | 0078 | 0114 | 0157 | 0208 | 0741 | 2.89
4| 04 | 016 | 0021 | 0007 | 0011 | 0.021 | 0.033 | 0.049 | 0068 | 009 | 0561 | 2.56
5| 05 | 025 | 0034 | 0006 | 0,005 | 0009 | 0014 | 0021 | 0029 | 0039 | 0453 | 225
6 | 06 | 036 | 0049 | 0007 | 0003 | 0.004 | 0.006 | 0.009 | 0012 | 0017 | 0379 | 196
7 | 07 | 049 | 0069 | 001 | 0002 | 0002 | 0.002 | 0004 | 0005 | 0.007 | 0321 | 169
8 | 08 | 064 | 0092 | 0013 | 0002 | 0001 | 0,001 | 0002 | 0002 | 0.003 | 0273 | 1.44
9 | 09 | 081 | 0374 | 0187 | 0083 | 0025 | 0003 | 0017 | 0067 | 0152 | 0501 | 1.21
10 1 1 064 | 036 | 016 | 004 0 004 | 016 | 036 | 064 1

suonenb3 jenuaJayiqg jended
211SeY201S BUIAJOS 10} POYISIA 82Ua18)J1q S1lul-

9a4yl Ja1deyd
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Table (3.2)

Theresidueerror of example (3.2).

- =1 1 2 3 4 5 6 7 8 9
0 0 0 0 0 0 0 0 0 0 0
1 0 | 00001 | 00007 | 00027 | 0.0078 | 00182 | 0.0364 | 0066 | 0.1359 | 0.1863
2 0 | 00001 | 00001 | 0.0005 | 0.0014 & 00033 | 0.0067 | 0.0123 | 0.0365 | 0.0879
3 o |o0000L| o0 | 00001 | 00003 00006 | 00012 | 00023 | 0.0121 | 0.0504
4 o |o0o0002| o 0 0 | 00001 | 0.0002 | 00004 | 0.0051 | 0.0329
5 o |oo0004| o 0 0 0 0 | 0ooor | 00027 | 0023
6 o | o008 | o 0 0 0 0 0 | 00017 | 00165
7 o | o004 | o 0 0 0 0 0 | 00011 | 00119
8 0 | 00227 | 00056 | 00011 | 0.0001 & O 0 | 00007 | 00078 | 0.0402
9 0o | 00003 | 00001 | o 0 0 0 | 00002 | 00025 | o©

suonenb3 jenualaylq [enied
211SeY201S BUIAI0S 10} POYIS|N SdUsajig allul

994yl Jardey)
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3.3NUMERICAL SOLTUION OF PARABOLIC
STOCHASTIC PARTIAL DIFFERENTIAL
EQUATIONS, [6]

The parabolic stochastic partial differential equation that we will
study is the stochastic heat equation given by:

2
Wty =T (6 + W(x 1), 0<X<BE>0 o (3.17)
qt X

subject to theinitial and boundary conditions:
u(o, t) =u(b, t) =qg(t), t>0
u(x, 0) =f(x), 0<x<b

where W is two-dimensional white noise. By eg. (3.10) and (3.8) the
finite-difference approximation to eg. (3.17) is:

Uijer - Uij _ Uiy - 205+ Ui g
k h? N

where

xi=ih,i=0,1,...,n

t=jkj=0,1,....m
eguation (3.18) may be written as:

Ui je1 = Ui )+ F(Uisg = 2005+ Uiz ) KW e (3.19)
i=1,2 ...n-1landj=12 ...,m- 1, wherer = k / h? and with error
of order h 2 and eqg. (3.19) is shown to be stableif r £ % Sincetheinitia

condition u(x, 0) = f(x), for eachi =0, 1, ..., n, these value can be used
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in eq. (3.19) to find the value of u; ;, foreachi =1, 2, ..., n- 1. The

boundary conditions u(0, tj) = u(b, t;) = g(t;), foreachj =0, 1, ..., m

imply that U, 1 = Un, 1 = g(t1); so al the entries of the form u; j can be

determined, foreachi=1,2,...,n- 1andj=1,2, ..., m- 1.

Algorithm (3.3):

1.

2.

Input b, n, m, k.
h=b/n,r=k/h*
Fori=0ton; dosteps4to?.
Forj=0tom; dosteps5to 7.
x, =a+ih, t; = jk.

Generate random vector p(i), which is normally distributed with

mean 0 and variance hk.

wah = p(i).

Fori=1ton- 1,forj=1tom- 1

Ugj =Un; =0(t).

Ui g = Ui (U - 205 + U ) HRw

RE; | ={Uj o0 - U +1(Upg - 205 +ui-1,j)+kWi,j]}2-
Stop.
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Example (3.4):

Consider the stochastic heat equation

ﬂu
ﬂx

with initial conditionu(x,0)=1,0<x<landu(x,t)=0a x =0and 1,

S+ W, 0<X <1 and t3 0 e (3.20)

£3 0. h=0.1and k = 0.00L, SO r:%

From eg. (3.17) we can write eg. (3.20) as:

N 1
ui,j"'l Ui 5| 08u|+1] Ui 5| + ui'l,jH+1OOOWi,j
N 1
|J+1 8UH_1] Ul_l,J H+mwl’1 ......................... (321)
withn=m=10,i=1,...,9; ] =0,...,9;, and
e o
REI J :8 i j+1 g'lH'lj +8U +U| 1JH 1000 | H ......... (322)

The solution of egs. (3.21) and (3.22) are shown in Tables (3.3) and
(3.4) respectively.
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Table (3.3)
Numerical results of example (3.4).

j= 0 1 2 3 4 5 6 7 8 9 10
=] \ 0.000 | 0.001 | 0.002 | 0.003 | 0.004 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 1
0 | 00 0 0 0 0 0 0 0 0 0 0 0
1| 01 1 0.9 0.72 0576 | 0461 | 0369 | 0295 | 0.236 | 0.189 | 0.151 | 0.121
2 | 02 1 1 0.89 0.784 | 0685 | 0594 | 0512 | 0439 | 0375 | 0.319 0.27
3| 03 1 1 0.9 0.809 | 0729 | 0649 | 0579 | 0514 | 0955 | 0402 | 0.353
4 | 04 1 1 0.9 0.81 0729 | 0.656 | 0589 | 0529 | 0475 | 0425 | 0.381
5 | 05 1 1 0.9 0.81 0.729 | 0.656 0.59 0531 | 0.478 0.43 0.386
6 | 06 1 1 0.9 0.81 0.729 | 0.656 0.59 0531 | 0.478 0.43 0.387
7 | 07 1 1 0.9 0.81 0.729 | 0.656 0.59 0531 | 0.478 0.43 0.387
8 | 08 1 1 0.9 0.81 0.729 | 0.656 0.59 0531 | 0.478 0.43 0.387
9 | 09 1 0.9 0.82 0.746 | 0.678 | 0615 | 0558 | 0505 | 0457 | 0414 | 0374
10 1 0 0 0 0 0 0 0 0 0 0 0

suonenb3 fenualayiq [ended
211SeY201S BUIAJOS 10} POYIBIA 92UaJaig alul
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Theresidue error of example (3.4).

Table (3.4)

:;:1 0 1 2 3 4 5 6 7 8 9
0 0 0 0 0 0 0 0 0 0 0
1 0 001 | 0008 | 0006 | 0005 | 0004 | 0003 | 0002 | 0001 | 0.001
2 0 001 | 0008 | 0007 | 0005 | 0004 | 0003 | 0003 | 0002 | 0.002
3 0 001 | 0008 | 0007 | 0005 | 0004 | 0003 | 0003 | 0002 | 0.002
4 0 001 | 0008 | 0007 | 0005 | 0004 | 0003 | 0003 | 0002 | 0.002
5 0 001 | 0008 | 0007 | 0005 | 0004 | 0003 | 0003 | 0002 | 0.002
6 0 001 | 0008 | 0007 | 0005 | 0004 | 0003 | 0003 | 0002 | 0002
7 0 001 | 0008 | 0007 | 0005 | 0004 | 0003 | 0003 | 0002 | 0.002
8 0o | 0008 | 0007 | 0006 | 0005 | 0.004 | 0003 | 0003 | 0002 | 0002
9 0 0 0 0 0 0 0 0 0 0

suonenb3 fenualayiq [ended
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3. 4NUMERICAL SOLUTION OF HYPERBOLIC
STOCHASTIC PARTIAL DIFFERENTIAL
EQUATIONS

In this section, we consider the numerical solution of the

stochastic wave equation, which is given by:

2 2
T Y W, 0 <X < b, t5 0 (3.23)
qt 9Ix
subject to the conditions:
u(0,t) =u(b,t) = I(t),t>0

u(x, 0) =f(x),0<x<b
:TT—l:(x,O)zg(x),O<X< b

where W is two-dimensional white noise. To set up the finite-difference
method, select an integer n > 0 and step size k > 0 with h = b/n, the mesh
points (X;, tj) aredefined by x; =ih, for eachi =0, 1, ..., n; and t; = jk, for
eachj=0,1, ... .

The difference method is obtained by using eg. (3.9) and (3.8) we
get

Ujjaz = 2Ujj FUj g _ Uiggj- 205 F ULy
2 - 2 + i
k h ’

If r is used to denote k/h we can write eg. (3.24) as.
Ui jer = 200+ Ui o1 = FP(Upezj - 200 + Uigj) + KW

thisimplies:
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Ui,j+1 = 2(1 - r2)ui,j + rz(ui+1,j+ Ui-1,j) - Uij-1 + kZWi,j ............ (325)

=12 ...,n-1;j=1,2,...,n- 1.
The boundary conditions give Up; =un;=1(t;) foreachj=1,2, ...;

and theinitial condition impliesthat u; o=f(X;), for eachi=1,2,...,n- 1, a

central differenceto theinitial derivative condition gives that:

?t(ui’l' Ui ) =00 i =42 o N Lo (3.26)

Putting ] =01ineq. (3.25) yields

U= 2(1- I'Z)Ui,() + I'Z(Ui+1,0+ Ui-l,O) - U-1t kZWi,j, | = 1,2,....n-1

Eliminating u;.; between these two equations shows that the mesh
valuest = k can be calculated from the equation

1, .
Uil = 582(1' r2)U; o+ 1 (Upg o+ Ui_10) + 2K, o + KW W..(3.28)

wherei=1,2,...,n- 1.

Algorithm (3.5):

1. Input b, n, m, k.

2. h=b/n,r=k/h,

3. Fori=0ton;dosteps4to?.
4. Forj=0tom; dosteps5to7.

5. x; =a+ihy; =c+Jk.
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6. Generate random vector p(i), which is normally distributed with

mean 0 and variance hk.
7. wi=p(i).
8. Fori=1ton- 1,forj=1tom- 1

Uio =T(X); Ug; =u,; =1(t))

1. N
Ui :582(1‘ ()i o + 1% (Upsgo + Ui q ;) +2KG; o + kZWi,oH

_ 2 2 2
Ui jv1 = 2(L- 1)U + 17 (Upg j + Ui g ) T KW

, a2
RE; ; :{Ui,j+1' 82(1' rz)ui,j +r2(ui+1,j +ui-1,j)+k2Wi,j

9. Stop.

Example (3.6):

Consider the stochastic wave equation:

2 2
U YW, 0<x<1and 50 oo (3.29)

qt 9Ix
the boundary conditions u(0, t) = u(1, t) = 0, t 3 O; and the initial
conditions u(x, 0) = %sin(px), %(X,O):O, 0OEXEL h=k=01,

n=m=10. Sor = 1. From eg. (3.25) we can write eqg. (3.29) as.

1 . .
Ui j+1 = Uisg,j + Ui, j - Ui,j_1+mwi,j, 1=12,...,9,)=12,...,9
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with Uy =u;p; =0, ]=0,.,10, and {

§ e (3.31)

ui,ozésin(pxi), for each i :LZ,...,QL

e

Uip =5 &0 T U0 7 2KGi g +k2Wi,oH

26
1, —
U.l=§gui+1,o+ui-1,o+k2V\/i,OH, =12, ) Qe (3.32)
é 1 ol
RE; ; zgui,jﬂ' ?iﬂ,j TU. - Uja +EV\/”- BJU eeeeeee—— (3.33)

The solution is given in Table (3.5) and the residue error in a Table
(3.6).
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Table (3.5)

Numerical results of example (3.6).

i= | o 1 2 3 4 5 6 7 8 9 10
i = X_t: 00 | o1 | 02 | 03 | 04 | o5 | 06 | 07 | 08 | 09 1
ol 00| o 0 0 0 0 0 0 0 0 0 0
1| 01 | 00386 | 0.0367 | 0.0313 |-0.0368 | -0.0313 | 0.0367 | 0.0312 | -0.0365 | -0.0315 | 0.0366 | 0.0315
2 | 02 | 00735 | 0.0699 | 0.0595 |-0.0386 | -0.0962 | 0.0073 | 0.1328 | 0.0239 |-0.1694 |- 0.0553 | 0.2058
3| 03 | 01011 | 0.0961 | 0.0818 |-0.0366 |- 0.1204 | -0.0596 | 0.1281 | 0.1923 | -0.1042 | - 0.3616 | 0.0488
4| 04 | 01189 | 0113 | 0096 |-0.0312|-0.1327-0.0892| 0.0731 | 0.2172 | 0.1191 | -0.3214 | - 0.4807
5| 05 | 0125 | 01189 | 0.101 |-00228|-0.1323|-0.1098 | 0.043 | 0.1827 | 0.1742 |-0.0637 | - 0.4956
6 | 06 | 01189 | 0.1131 | 0.0961 |-0.0119 | -0.119 | -0.1205 | 0.0093 | 0.1634 | 0.1735 | 0.0107 |- 0.2373
7| 07 | 01011 | 0.0962 | 0.082 |-0.0001 |-0.0941|-0.1189 | -0.0265 | 0.1282 | 0.1899 | 0.0455 |-0.1791
8 | 08 | 00735 | 007 | 00595 | 0.012 |-0.0599| -0.106 |-0.0592| 0.0795 | 0.1874 | 0.1105 | - 0.142
9 | 09 | 00386 | 0.0368 | 0.0313 | 0.0227 |-0.0191 | - 0.0825 | - 0.0869 | 0.0233 | 0.1663 | 0.164 |- 0.0558
0] 1 0 0 0 0 0 0 0 0 0 0 0

suonenb3 jenuaJayiqg jended
211SeY201S BUIAJOS 10} POYIBIA 82Ua13)jId allul
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Table (3.6)

Theresidueerror of example (3.6).

N oo 1 2 3 4 5 6 7 8 9
0 0 0 0 0 0 0 0 0 0 0
1 0 0 | 0004 | 0001 | 0009 | 0 | 0018 | 0001 | 0029 | 0003
2 0 0 | 0007 | 0001 | 0015 | 0004 0016 | 0037 | 0011 | 0131
3 0 0 | 0009 | 0001 | 0018 | 0008 0005 | 0047 | 0014 | 0103
4 0 0 001 | 0001 | 0018 | 0012 | 0002 | 0033 | 003 | 0.004
5 0 0 | 0009 | 0 | 004 | 005 0 | 0027 | 003 0
6 0 0 | 0007 | 0 | 0009 | 0014 0001 | 0016 | 003 | 0002
7 0 0 | 0004 | 0 | 0004 | 0011 0004 | 0006 | 0035 | 0012
8 0 0 | 0001 | 0001 | O | 0007 0008 | 0001 | 0028 | 0027
9 0 0 0 0 0 0 0 0 0 0

suonenb3 renualayiq renJded
211SeY201S BUIAJOS 10} POYISN SdUaajiqg allulq

9a4yl Jardeyd



CONCLUSIONS AND RECOMMENDATIONS

From the present study, the following conclusions may be drown:

1. There is no explicitly known analytical method for solving SPDE’s
and therefore numerical methods may be considered as the solution

for such difficulties.

2. From tables (3.2), (3.4) and (3.6), one can see the accuracy of the
obtained results in solving SPDE's.

Also, the following may be considered as recommendations for

future work:

1. Use other numerical methods for solving SPDE's, such as the
collocation method, the least square method, Adomian decomposition
method, differential transform method, etc.

2. Use the implicit finite difference methods for solving SPDE's.

3. Considering the stochastic Taylor series expansion in deriving other

models for solving SPDE's.
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