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ABSTRACT

The main theme of thisthesisis oriented about two objectives
the first one is to study the fundamental concepts of the differential-
algebraic equations and the fractional calculus which are needed for
finding the approximate solution of the differential-algebraic
eguations of fractional order.

The second objective is to approximate the solution of the
differential-algebraic equations of fractional order using two
approximate methods which are so called the differential transform
method and the Adomian decomposition method both of these
methods expressed the solution of the differential-algebraic
equations of fractional order as an infinite series in which its

coefficients can be evaluated in avery simple way.
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INTRODUCTION

Differential-Algebraic  Equations (DAES) are system of
differential equations where the unknown functions satisfy additional
algebraic equations. They arise in many areas of science and engineering
such as robotics (via Lagrange’s equations with independent
coordinates), biomechanics, control theory, electrical engineering (via
Kirchoff’s laws), and fluid dynamics (via the Navier-Stokes equations
for incompressible flows). DAES present both numerical and analytical
difficulties as compared with systems of ordinary differential equations
(ODEs), [Rang and Angermann, 2005].

This has made them an active area of research for engineers,
applied mathematicians, and numerical analytic ever since the 1960’s
when the advantages of working with DAEs, directly rather than
attempting to convert them to ODEs was first recognized [Bernan and et
al., 1989], [Schwerin, 1999].

In particular, since the mid of 1980’s there has been a flurry of
research regarding the numerical solution of DAEs. The sequentia
regularization method and related predicted sequential regularization
method are recent numerical methods designed to deal with certain
classes of DAEs, specifically index-2 problems with and without
singularities and index-3 problems that arise from so-called multibody

systems.

The notion of the so-called index of a DAE plays a fundamental

role in both theoretical and numerical investigations of such problems. It
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has turned out to give insight into the solution properties, as well as into
the numerical difficulties to be expected when solving these problems,
I.e., how to obtain consistent initial data if there are hidden constraints.
To a certain extent the DAE index is a measure of the singularity of the
DAE, [Rang and Angermann, 2005].

There are various types of indices known, for example, the
differentiation index and the perturbation index to mention the best

known indices.

Griepentrog and Marz [Griepentrog and Marz, 1986] described
the theoretical background and define some indices, whereas Brenan,
Campbell and Petzold in [Brenan and et al., 1996] presented a

theoretical overview and numerical aspects.

The second main subject which deals with our work is the so
called fractional calculus. Fractional calculus of mathematics which
grows out of the traditional definitions of the calculus integral operators
in which the same by fractional exponentsin an out growth of exponents
with integral value. Consider the physical meaning of the exponent,
according to our primary school teacher, exponents provide a short
notation for what is essentially a repeated multiplication of numerical
value. This concept in itself is easy to grasp and straight forward.
However, the physical definitions can clearly become confused when

considering exponent of non integer value, [Loverro, 2004].

Most authors on this topic will cite a particular date as the
birthday of so called ‘Fractional Calculus’. In a letter dated September
30", 1695 L’Hopital wrote to Leibniz asking him about a particular
notation, he had been used in his publication for the n"-derivative of the
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n

linear function f (x) = L’Hopital’s posed the question to Leibniz,

N

what would the result be if n = %. Leibniz’s response “An apparent
paradox, from which one day useful consequences will be drawn”. In

these words fractional calculus was born.

Following L’Hoptial’s and Leibniz’s first inquisition, fractional
calculus was primary a study reserved for the best minds in mathematics.
Fourier, Euler, Laplace are among the many that dabbled with fractional
calculus and the mathematical consequences [Nishimoto, 1991].

Many found, using their own notation and methodology,
definitions that fit the concept of a non-integer order integral or
derivative. The most famous of these definitions that have been
popularized in the world of fractional calculus are the Riemann-
Liouville and Grunwald-Letnikov definition. Most of the mathematical
theory applicable to the study of fractional calculus was developed prior
to the turn of the 20" century. However, it is in the past 100 years that
the most intriguing leaps in engineering and scientific application have
been found.

The mathematics has in some cases to change to meet the
requirements of physical reality. Caputo reformulated the more ‘classic’
definition of the Riemann-Liouville fractional derivative in order to use
integer order initial conditions to solve his fractional order differentia
equations [Podlubny, 1999]. However, during the last ten years
fractional calculus starts to attract much more attention of physicists and
mathematicians. It was found that various,; especially interdisciplinary

applications can be elegantly modeled with the help of the fractional
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derivatives. For example, the nonlinear oscillation of earthquake can be
modeled with fractional derivatives [He, 1998], and the fluid-dynamic
traffic model with fractional derivatives [He, 1999] can eliminate the
deficiency arising from the assumption of continuum traffic flow.

Recently, many important mathematical models can be expressed
in terms of systems of DAEs of fractional order. The solution of
fractional differential equations is much involved. In genera, there
exists no method that yields exact solutions for fractional differential-
algebraic equations. Only approximate solutions can be derived using
linearization or perturbation method. In recent years, much research has
been focused on the numerical solution of systems of fractional ODES
and DAEs, [Zugrigat and et al., 2010].

In this thesis the approximate solution of DAEs of fractional
order will be presented using the differential transform method and
Adomain decomposition method. This work consists of three chapters as
well as this introduction. In chapter one, the fundamental concepts of
DAEs and fractional calculus are given. While in chapter two the
approximate solution of DAEs of fractional order using DTM is
presented. Finally the approximate solution of DAES of fractional order
by using ADM will be given in chapter three.

It is important to notice that, the calculations in chapter two and
three are simplified using MATHCAD 2001i computer software. The
results are presented by graph and in atabulated form.



CHAPTER ONE
BASIC CONCEPTS

1.1 INTRODUCTION

In this chapter, we shall presents some general concepts related to

this work, including the DAEs and fractional calculus.

This chapter consists of two sections as well as this introduction.
In section two a historical background and basic concepts of DAES are
given including its definitions, the index of the DAEs and some redl life
problems in terms of DAEs. Finally, analytical solution of DAES using
L aplace transformation method.

While in section three primitive concepts with definitions related
to fractional calculus are given, including gamma function, beta
function, Riemann-Liouville formula of fractional integral, Weyle
fractional integral and Abel Riemann (A-R) fractional integral as well as
the Riemann-Liouville formula of fractional derivative, the A-R
fractional derivative, the Caputo fractional derivative and the Griinwald
fractional derivative, finally analytical solution of fractional differential

eguations.
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1.2BASIC CONCEPTSOF DIFFERENTIAL-
ALGEBRAIC EQUATIONS

1.2.1 Historical Background of DAEsS:

Many authors and researchers studied systems of DAEs say,
[Gear, 1970] discussed a unified method for handling the mixed
differential and algebraic equation of the type that commonly occur in
the transient analysis of large networks or in continuous system
simulation, [Starner, 1976] described a numerical algorithm for solution
of implicit algebraic differential systems of equations, [Petzold, 1982]
outlines number of difficulties which can arise when numerical methods
are used to solve systems of DAES some of the differential-algebraic
system may be solved using numerical methods which are commonly
used for solving stiff systems of ordinary differential equations, other
problems can be solved using codes based on the stiff method, but only
after extensive modifications to the error estimates and other strategies
in the code, [Hank, 1987] solved the DAE of index-2 by using
regularization method, [Lubicn and Hairer, 1988] used the extrapolation
polynomial method to solve system of DAEs, [Hariharan and Harris,
1993] discussed the connection between systems of non-linear DAES

and singularly perturbed control systemsin nonstandard form.

Pasic [Pasic, 1997] presented on algorithm for a numerical
solution of system of DAES, [Feng and Ji, 1997] studied, the differential
evolution algorithm is applied for determining the optimal control
solution for problems described by DAES, [Wenjie and Petzold, 1998]
proved that for Hessenberg delay DAEs of related type, the direct
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linearization along the stationary solution is valid. This validity is
obtained by showing the equivalence between the direct linearization
and the linearization of the state space form of the original problem,
which is assured to be legitimate, [Dan and at e, 1999] used an implicit
Runge-Kutta Method for integration the DAES.

Shengtal and Petzold [Shengtai and Petzold, 2000] outlined some
algorithms for sensitivity analysis of large-scale system DAE of DAEs
and present algorithms and software for sensitivity analysis of large-
scale of index up to two, [Danielle and Harry, 2002] described solution
was using tools from geometric control theory, higher index differential-
algebraic systems are shown to be inherently unstable about their
solution manifold, [Yang and at el, 2003] presented adjoint sensitivity
method for parameter-dependent DAE systems and discuses numerical
stability is maintained for the adjoint system for the augmented adjoint
system, [Kunkel and Mehrmann, 2005] described characterization of
classes of singular linear DAE [Azizi and et al., 2006] gave a new
method for distributed simulation of DAE systems was developed based
on purely decentralized sliding mode control. Due to the large amount of
computation and communication associated with large scale matrix
Inversion problems in the existing centralized approaches [Laurent and
et al., 2007] presented second order extensions of the Hilber Hughes-
Taylor method for systems of over determined DAES arising, [Nguyen,
2007] discussed the stability radii of DAES with structured perturbations,
[Kunkel and Mehrmann, 2007] studied different stability concepts for
differential-algebraic equations as well as stabilization techniques for
numerical methods and spin-stabilized discretization, [Johan, 2008]
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presented optimal control and model reduction of nonlinear DAES
models. [Campbell and Linh, 2009] concerned with the asymptotic
stability of DAEs with multiple delays and their numerical solutions.

1.2.2 Differential-Algebraic Equations, [Asher and Petzold, 1998]:

Consider an implicit ODE:

F(t, y(1), y&t)) =0
where y, y¢and F are n-dimensional vectors and F is assumed to be

smooth and if s then the system can, in principle, be written in the

Ty¢
explicit ODE form :
y = 1(t, y(1)
Consider next on extension of the explicit ODE, that of an ODE
with constraints:

XE= Tt X(E), Z()) cvvvrrrreereeeeeeseseeeeeeeese s seeeeeeeseeeeeseeeee (1.1a)

Ot X(D); Z(1)) = 0 oo (1.1b)

Here the ODE (1.1a) for x(t) depends on additional algebraic variables
z(t), and the solution is forced in addition to satisfy the algebraic
constraints (1.1b). The system (1.1) is a semi-explicit system of
differential-algebraic equations (DAES). Obviously, we can cast (1.1) in
the form of an implicit ODE

F(t, y(t), y&t)) =0

where % may be singular.
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Definition (1.1), [Brennan and et al., 1989]:

The general form of system of the first order linear systems of
differential-algebraic equations with non-constant coefficientsis:

A YED) + B Y(E) = F()errrrrereeeeeeeeeeeeeeeeeeeeeee e (1.2)

where A and B are n” n known function matrices, f isn” 1 known vector
function and y is n” 1 unknown vector function, such that A is singular

and B is nonsingular.

Example (1.1), [Khaled, 2008]:

Consider the system of the first order nonlinear ordinary
differential equations with constant coefficients:

yf(t) =5y, (1) + 7siny, (t) + 7t
together with the nonlinear algebraic equation

er1(Oy2(t) siny,(t) +5t2 =0

Example (1.2), [Khaled, 2008]:

Consider system of the first order linear systems of differential-
algebrai c equations with constants coefficients:

é2 1uey9(t)u é8 Ouéy,(hu_és 3uA u
o of&smid’ & 188,08 & el
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Example (1.3), [Khaled, 2008]:

Consider the initial value problem that consists of the system of
first order linear systems of differential-algebraic equations with non

constant coefficients

eZt tUeyQ(t)quet 3tuey1(t)u e 3n¢él ut
u e U e U’
S0 oiHMY &2 ol%L.mY & el

together with theinitial conditions:

30

éy,(O)u_élu
&,04 & 1

Definition (1.2), [Macdonald, 2001]:

The system of the first order differential-algebraic equations
given by eg. (1.1) isin Hessenberg form of size r if it can be written in

the form:

yf(t) = R (t, y (1), Yo (1),....y, (1),

yg(t) = R (L y1 (1), Y2 (1), ¥4 (1),
M

Yyt =Rty (0, y; (1), Y, 1(1) 1 =3,4,...,1- 1,
O: I:r (t!yr-l(t))1

Therefore, the system of the first order nonlinear systems of

differential-algebraic equations that takes the form:

yf(t) = R(ty, (1), y, (1), ys(t)),
yE(t) = K (1, y, (1), Y2 (1))
0=FRK(t,y,(1)

Isin Hessenberg form of size three.
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Example (1.4), [Khaled, 2008]:

Consider the Hessenberg form of size two:

y(t) = 2y, (1) +5y5(t) +8t°
0 =yf(t)- e +¢?

Example (1.5), [Khaled, 2008]:

Consider the Hessenberg form of size three:

yft) = 2y, (1) y,(t) +5y5(t)
y8(t) =8y, (t) +17y5(t)
0 =5y5(t) +coshy,(t)

1.2.3 Index of DAE, [Asher and Petzold, 1998]:

A DAE involves a mixture of differentiations and integrations,
one may hope that applying analytical differentiations to a given system
and eliminating as needed, repeatedly if necessary, will yield an explicit
ODE system for all the unknowns. This turns out to be true unless the
problem is singular. The number of differentiations needed for this
transformation is called the index of the DAE. Thus, ODEs have
index 0. We will redefine this definition later, but first let us consider

some simple examples.

Example (1.6), [Asher and Petzold, 1998]:

Let g(t) be a given smooth function, and consider the following
problems for y(t).
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The scalar equation:

Is a (trivial) index-1 DAE, because it takes one differentiation to obtain
an ODE for y.

For the system

y1 =q(t) i
y, = y§ ?;

we differentiate the first equation to get:
Y2 = y$=q&t)
and then:
y§ = y#=akt)
Theindex is 2 because two differentiations of g(t) were needed.

A similar treatment for the system:

necessitates three differentiations to obtain an ODE for ys, hence the

index is 3.

Example (1.7), [Asher and Petzold, 1998]:

Consider the DAE system for

a1 0

y= ébz

Y3 @
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Y{=Ys,
0=yaA1l- vy>),
O=yiy2+ys(l- yo) - L.

The third equation has two solutionsy, =0 and y, = 1, and it is
given that y,(t) does not switch arbitrary between these two value (e.g.,
another equation involving y§¢ and y¢ is prescribed with y,(0) given,
implying continuity of y-(t)).

1. Setting y» = 0, we get from the fourth equation y; = t. then from the
first equation, y; = y2(0) + t3/2. The system has index-1 and the

solutionis
2@11(0) +1%/20
y)=¢ 0 =
¢t =
e 2

Note that thisis an index-1 system in semi-explicit form.

2. Setting vy, = 1, the fourth equation reads y; = t. Then, upon
differentiating the first equation, y; = 1. The system has index-2 and

the solution is

o0
y(t) = ¥1-.

o

Note that, unlike in the index-1 case, noinitial valueis required.

If we replace the algebraic equation involving y, by its derivative
and simplify, we obtain the DAE.



Chapter One Basic Concepts

yE=ys;
y$=0
O=yiy2+ys(1- y2) -t

Now the index depends on the initial conditions. If y,(0) = 0 the

index is 1, and if y,(0) = 1 theindex equals 2. We are ready to define the
index of a DAE.

For general DAE system:

Fty, y§=0
The index along a solution y(t) is the minimum number of
differentiations of the system which would be required to solve for y¢

uniquely in terms of y and t (i.e., to define an ODE for y). Thus, the
index is defined in terms of the over determined system:

F(ty,y9=0 u

E |

%(t,y,yw@ =0 :
M Y e (1.6)

|

ﬂ T

PE
t, ¢ (p+1) Oy
ﬂp( y, ¥,y ) = ;

to be the smallest integer p so that y¢in eq.(1.6) can be solved for in
terms of y and t.

10
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1.2.4 Some Real Life Applications of the System of Differential-
Algebraic Equations, [Kunke and Mehrmann, 2006]:

In this section, we give some real life applications for the system
of differential-algebraic equations, namely electrical network and

chemical reactor.

Example (1.8) (Electrical Network):

To obtain a mathematical model for the charging of capacitor via
aresister, we associate a potential x;(t), i = 1, 2, 3 with each node of the
circuit, the voltage source increases the potential x5(t) to x,(t) by U, i.e,,
X1(t) - X3(t) - U = 0. By Kirchoff’s first law, the sum of the currents
vanishes in each node. Hence, assuming ideal electronic units for the
second node we obtain that:

QLX) - X3V X, (D~ ;0] _
R

where R is the resister and C is the capacity of the capacitor, when
X3(t) =0, this take the form:

xa(t) - Xs(t) - U=0

QLX) - X3V X, (D~ ;0] _
R

Xg(t) =0

it is clear that this system can be solved for x3(t) and Xy(t) to obtain an
ordinary systems of differential equation for x,(t) only, combined with
algebraic equations for x;(t), x3(t). This system hasindex one.

11
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Example (1.9) (Chemical Reactor):

Consider the model of chemical reactor in which a first order
Isomerization reaction takes place and which is externally cooled, this
model take the form:

R(t) - kyex pge- —_C()

é 0
. ey € G
él 0 OuéCtu & Ki(Co - C4(1)) - R(1) G
0 1 0YSTat) U=k (T, - T(1) +k,R(t) - kg(T(t)- T,)U
€ ue s € u
€0 0 OgeR&NY ¢ ky © G
é 0
e u

where, Cy is the given feed reactant concentration, T, the initial
temperature, C,(t) and T(t) the concentration and temperature at time t,
and by R the reaction rate per unit volume, T. is the cooling temperature
(which can be used as control input) and ki, k», ks, ks, are constants. If T,

IS given, this system has index one.

1.2.5 Analytical Solution for Differential-Algebraic Equations:

In this section we shall give the solution of the initia value
problems for system of the linear (DAE) via Laplace Transform.

First recall that the Laplace transform of afunction f specified at
t > 0, denoted by L{f(t)} (or F(s)), is defined by:

L{f ()} =F(s) = ¥c‘p' SR T (5 1 SO (1.7)
0

where sis a complex number. Laplace transform of f exists if the above
integral converges for some values of s, [Murry, 1965]. Moreover, it is

easy to check that:

12
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L{f &0} = sL{f(D} - 1(0).

In this section, we use Laplace transform method to solve the
initial value problem that consists of system of the first order linear

ordinary differential equations with constant coefficients:

Y&t = AX(1) + By(t) + (1), 1> 0erereeeceeceeeeeeeeee e, (1.7a)
together with the system of linear algebraic equations:

CX() +Dy(t) + g(t) =0,t3 O.erreeeeeecieee e (1.7b)

and theinitial condition

where A, B, C and D are n” n constant matrices, f and g are n” 1 vector
functions, a is n” 1 known constant vector and x, y are the n” 1 vector
functions that must be determined.

To do this we consider the following two cases:
Case (1):

If X isadifferentiable n” 1 vector function then by differentiating
egd. (1.7b) with respect to t one can get:

CXEL) + DYGt) + g&t) =0 oo (1.8)
By substituting eg. (1.7a) into eg. (1.8), one can have:
Cxgt) + DAX(t) + DBy(t) + Df(t) + g&t) =0.

Now, if C is a nonsingular matrix then the above equation can be

rewritten as:

x¢t) + C 'DAX(t) + C 'DBy(t) + C 'Df(t) + C'g¢t) = 0...... (1.9a)

13
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But

Yy&t) = AX(L) + BY(1) + (1) coreeeeeeeeeee e, (1.9b)

In this case the original system of differential-algebraic given by
eq’s. (1.7a)-(1.7b) reduced to the system of the differential equations
given by eg’s. (1.9a)-(1.9b). Moreover, by substitutingt =0in eq. (1.7b)
one can get:

Cx(0) + Dy(0) +g(0) =0

but, C * exist and

thus:

() RO 16 T 0.2} [ (1.9d)

Therefore the initial value problem given by eqg's. (1.7) reduces to
the initial value problem given by eg's. (1.9). Thisinitial value problem
can be solved by any suitable method, say Laplace transform method,
and numerical methods namely Euler method.

On the other hand, if C is singular matrix, then by taking the
Laplace transform of both sides of eg's. (1.8) and eg. (1.7a) one can get:

ClsL{x(®)} - x(0)] + D[sL{y(t)} - y(0)] +sL{g(V)} - 9(0) =0
and

sL{y(t)} - y(0) = AL{x(1)} + BL{y(1)} + L{f(0)}
respectively.

But y(0) = a and Cx(0) =-g(0) - Dy(0) =-9(0) - Da, therefore
the above equations becomes:

14



Chapter One Basic Concepts

sCL{x(t)} +9g(0) + Da +sDL{y(t)} - Da+sL{g(t)} - 9(0)=0
and
sL{y(t)} - a =AL{x(1)} +BL{y(t)} +L{f(t)}.

Hence, the above two equations can be rewritten in the matrix

form:

6C  sD ud{x(}u_é -s{g()} u
&A B-Sf&{y(OI] &a- L{fOHY

where | is n" n identity matrix. If the above matrix is nonsingular for
some values of sthen

d{x(®}u_eC sD i é -s{g(t} u

d{y(min A B-sli &a-L{f(}
and by taking the inverse Laplace transform of L{x(t)} and L{y(t)} one
can get x(t) and y(t) that satisfy egs. (1.7).
Case 2:

If x is anondifferentiable n” 1 vector function, then the algebraic
eguation given by eg.(1.7a) can not be transformed into an ordinary

differential equations. In thiscaseif C isanonsingular matrix then:

X(1) == CIDY() = CUGIL) wrrrrrerereeereeerereeeeeeeeeeeeeee e eeeeesees (1.10)
By substituting the above equation in eg. (1.7a), one can get:

y&t) = (- AC'D + B)y(t) + f(t) - AC 'g(t)

this equation can be solved together with the initial condition given by
egd. (1.7¢) by using Laplace transform method, to get:

15
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(sl + AC'D - B)L{y(t)} =L{f()} - AC'L{g(t)} +a
Therefore
L{y(t)} = (sl + AC'D - B) '[L{f(t)} - AC'L{g(t)} +a]

provided that sl + AC'D - B isanonsingular matrix for some values of
S. By taking the inverse Laplace transform of both sides of the above
eguation one can get y(t) which can be substituted in eg. (1.10) to get
X(t). On the other hand, if C is a singular matrix then by taking the
Laplace transform of both sides of eg. (1.7a) and eg. (1.7b), one can get:

AL{x(t)} + (B- sL{y(t)} + L{f(t)} +a =0

and

CL{x(®)} + DL{y(1)} + L{g®)} =0

The above system of algebraic equations may be rewritten in the
matrix form:

éA B-slud{x(t)}u_é&a- L{f()}u
& D H&f{ymd & -Lom)} 4

which has the solution:

{x(t)hu_éA B- sy'éa- L{f ()}
Aynd & D Y & -Lony

B- sl
provided that 22 5 u IS a nonsingular matrix for some values of s.

Therefore by taking the Laplace transform of both sides of the above
equations one can obtain x(t) and y(t).

To illustrate this method we consider the following example:

16
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Example (1.10), [Khaledl, 2008]:

Consider the initial value problem that consists of the system of

the first order linear differential equation with constant coefficients:

i t 2 7 t e11+73
yRDY_& (D, 62 7oea(y, 8-1TC 8 g1y

e0h & 208,08 g0 1,mf &- 22- g

together with the system of the algebraic equations:

él 3uex1(t)u+i 4: eyl(t)u+e-1 3t +4t°0 &0y

= €6 u— .(1.11b)
O LieMn & Ouﬁ‘e/z(t)u 5 -t-£8 g o

and the initial conditions:
GY1(O)U é0u
&, &l

we solve this example by using Laplace transform method. To do this,
él 3u él

"3 Therefore (1.11b) becomes:

e T
o 10" e 1

eXl(t)u é&17/6 4uey1(t)u e—l+4t +3tU 0L
a 0 gt é ( weeeeene (1.12)
S0l & 1 off,0l s -t g &

by substituting the above equationsin eg. (1.11a) one can obtain:

let C=

eyf(t)u _ e29 -48uey1(t)u+el+48t - 29tU
u
ool §o 2 B, & 2- 22

Then by taking the Laplace transform of the both system, one can have:

17
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&, 9% 290
é-29 48 nélfy,(t)iu_ gs 3 szg
g0 s 28y, 6 2 4 ¢
g & &
Therefore:
1e1_|_96 290
éL{y,(}u_és-29 4810 gs 3 szg
iy, 8o s2f 62 4 g
g ¢ §°
¢ 1 4.9 295 48 =2 44
_e(s 29)88 $ g (s-29(s- 2)85 3%’
e 1 =2 40 d
& (s- 282 S g y
élu
e?zu
=@ (0,810,229
2
g3t

Then by taking the Laplace transformation of the both system one can
get:

GY1(t)U etu
&8 &2
By substituting the y1(t) and y,(t) in eg. (1.12) one can have:
5 1
&, (Du_g- 3t
&1

D

U
U
3 ’
t

et

18
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1.3BASIC CONCEPTSOF FRACTIONAL CALCULUS

In this section, we introduce some of the basic and fundamental
concepts and definitions related to the subject of fractional calculus for

completeness purpose

1.3.1 The Gamma and Beta Functions, [Oldham, 1974]:

Gamma and Beta fractions are two of the most important
notations in fractional calculus, since they play an important role in

fractional differentiation and integration.

First, the gamma function G(x) of a positive rea X, is defined by:

¥
GX)= Y €AY, X >0 e (1.13)
0

Following are some of the most important properties of the

gamma function:

1. 1)=1.

2. GXx+1)=xEXx).
3. Gx+1)=x!.

6_(-4)"np
4 %'”B" @)

5. ﬁ+n9:m_

ez 17 4" n!

6. q_ X) - pCSC(pX)

Gx+1)

2p €n* u'k! kKo
7. omx) =, e O &+ =2

n e Zkazog nﬂ
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The second function is the beta function with positive parameters
p and g is defined by:

1
B(E,A) = Y™ A Y)Y e, (1.14)
0

If either p or q is non-positive, the integral diverges.

The incomplete beta function can be defined in terms of the

gamma function by the following relationship:

_Gp)G0)
b(p,q) —W, for all pand q

The beta function of argument t is defined by the integral:

t
D,(0,0) = P (L Y)TAY o (1.15)
0

1.3.2 Fractional Integral:

There are many literatures introduces different definitions of

fractional integrations, such as:
1. Riemann-Liouville integral, [ Oldham, 1974]:

The generalization to non-integer g of Riemann-Liouville integral

can be written for suitable function f(x) (x T R) as:

& e L gy
dqu(x)-@(_q)odx y) T (Y)dy, g<O e, (1.16)

2. Wely fractional integral, [ Oldham, 1974]:

The left hand fractional order integral of order g > O of a given
function f is defined as:
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aen 1% () _
D (x) G(q)_g(x-y)l'qdy'x> ¥ e (1.17)

And the right hand fractional order integral of order g > 0 of a

given function f is defined as:

N S0
v D F(X) &0 ?(y- O dy,x <¥

3. Abel-Riemann fractional integral, [ Mittal, 2008]

The Abel-Riemann (A-R) fractional integral of any order a > 0

for afunction x(t) witht1 j* isdefined as

Jax(t)=$;dt— )2 Ix(t)dt, £> 08>0 voveeeeeeeeeeenn, (1.18)

F =1 (Identity operator).
The A-R integral posses the semigroup property:

FP=F® foral @,b3 0 oo, (1.19)

1.3.3 Fractional Derivatives:

Many literatures discussed and presented fractional derivatives of
certain functions, therefore in this subsection some definitions of

fractional derivatives are presented:

1. Rilemann-Liouville formula of fractional differentiation, [ Oldham,
1974], [ Nishimoto, 1983] :

Among the most important formula used in fractional calculus is

the Riemann-Liouville formula. For a given function f(x), " x1 [a, b],
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the left and right hand Riemann-Liouville fractional derivatives of order
g > 0 and misanatural number, are given by:

1 d" X ()

DY, f(x)=
«Da. 100) G(m-q)dxmi?(x-t)q'm+1

(-9™ d" % ()

DI f(x)=
Do 1x) G(m'Cl)lemfj(X''f)q'm+1

wherem- 1<g£m, mi ¥. These equations are usually named as the

Riemann-Liouville fractional derivatives.
2. The A-Rfractional derivative, [ Mittal, 2008] :

The A-R fractional derivative (of order a > 0) is defined as the
left inverse of corresponding A-R fractional integral, i.e.,

For positiveinteger msuchthat m-1<a £ m,
(D"ITHF =D"(JI"F)=D"I"=1, i.e,

‘| m t
D2 x(t) = | o(t-1) .. (1.23)
i d"
b atm
Properties of the operator J* and D can be found in (Podulbny
1999), we mention the following

Jaty: G(y'"l) ty+a
Gy +1+a)

Daty: G(y'"l) ty-a
Gy +1- a)

fort>0,a30,y3 -1

X (t) a=m
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3. Caputo fractional derivative, [ Caputo, 1967], [ Mirandi, 1997] :

In the late sixties an alternative definition of fractional derivatives
was introduced by Caputo. Caputo and Mirandi used this definition in
their work on the theory of viscoelasticity. According to Caputo’s
definition

D2 =J"2D™ for m- 1<a£m

which means that:

t (m)
1 (1) dt .

G(m- a) O(t erm o moLsasm

FX(t) =

I
3

[
I
|
: d™
i

— X(t a
F g x(t),
The basic properties of the Caputo fractional derivative are:

1. Caputo introduced an aternative, definition, which has the advantage
of defining integer order initial conditions for fractional order

differential equations.

2. D2 x(t) = x(t) - ax(k) (0)
k=0

3. Caputo’s fractional differentiation is a linear operation, similar to

integer order differentiation
DI f(t)+Mg(t)] =1 D&f (t) + MDZg(t).

wherel and M are constants.
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4. Grutnwald fractional derivatives, [ Oldham, 1974]:

The Grulnwald derivatives of any integer order to any fraction
order derivative which takes the form:

Toex g9 U

& = lim 1 ENE %SG a) e e o0l

e 0= fim 188 T B I (1.24)
T b

1.3.4 Analytic Methods for Solving Fractional Order Differential
Equations, [Oldham, 1974]:

In this present subsection, some analytical methods are proposed
for solving fractional order differential equations, and among such
methods:

1.3.4.1 Theinverse operator method:

Let f be an unknown function and let g be an arbitrary real
number, F is known function, then we can construct the simplest of all

fractional order differential equations by:

-q

dF
dx

whereit is clear that it is not always the case that they are equal, but this

IS not the most general solution, [Oldham, 1974].
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-q q
8 0t O e (1.26)
dx 9 dx“

f -

additional terms must be added to equation (1.26), which are:
cx®h ex®? L et
and hence:

-q q
dd ~ %f =X+, x 2+, g xIT
X9 dx

wherecy, C,, ..., Cy are an arbitrary constants to be determined from the

initial conditions and m—1<g<m. Thus:

Hence, the most general solution of eq. (1.25) is given by:

-
f=d F=cx¥ +cx¥ %+ .+ x4
dx ¢ "

wherem—1<q<m.

As an illustration, we consider the following example:

Example (1.11):

Consider the fractional order differential equation:

d¥2f(x) _ s
W—X .......................................................................

with initial condition:
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d“2f0) . d¥?f(0) _ —k,
ax’2 0 dx Y2

-3/2
Applying % to the both sides of eqg. (1.27), we get:
X

-32 5

_d7"x 2 -2
f(x)—WH:lxj/ +C,X

and from the initial condition, we have cl—L,c2 L
&3/2) V2
therefore:
12 -1/2
f(X)_ q6) 32 kOX +k1X

152" o@D W)

1.3.4.2 Laplace transform method:

In this subsection, we seek a Laplace transform of d% / dx® for all
g and differintegrable function f, i.e., we wish to relate:

to the Laplace transform L {f} of the differintegrable function. Let us

first recall the well-known transforms on integer-order derivatives:

q 1
L.ﬂUI SIL{f} - q° ql"df(O),qzlz,...
g dxX

k—O

and multiple integrals:

L|ﬁg SqL{f} =0, L (1.28)
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and note that both formulas are embraced by:

i d% U dIERE (0
L | —E qL{f} dxq—'l'(k) y q = O,ml, ................ (129)

k—O

Also, formula (1.29), can be generalized to include non integer

~

ql i,as

id% no-l do 1- k ( )
L ——y =sL{f
| g { } k_o ax 9" TR

where n isinteger such that n- 1 < g £ n. The sum vanishes when q £ 0.
In proving (1.30), we first consider g < O, so that the Riemann-Liouville
definition:
dif 1 X f(y)
dx?  G-0) ghx- yI™

dy ,g<0

may be adopted and upon direct application of the convolution theorem
[Churchill, 1948]:

Li k- V) dy§= LT
10
Then gives:

1d9% U 1

-1-q _
|qu% GgHX TN =L A <0 (1.31)

For positive non integer q, we use the result, [Oldham, 1974]:

éd% U_ d" éd*"f U

U= é&——u
adx9 g dx" gdx® "
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d%  d" de
dx® dx" dx®"

where n is an integer number such that n- 1 < g £ n. Now, on application

of the formula (1.29), we find that:

di U i d" éd¥nf Ul

7 dx“ } dx" gdx 9" %

_gy b U '51 « dm K €di "t (o) U
:dxq g oo dx"TKE dx " g

The difference g- n being negative, the first right-hand term may
be applied to the terms within the summation. The result:
d% U 1 kdql" f (0)

——y=sIL{f}- —O<112
dxqz, ° {} 2‘0 x4t q

i
Li

7
Follows from these two operations and is seen to be incorporated (1.30).
The transformation (1.30) is a very simple generalization of the classical
formula for the Laplace transform of the derivative or integral of f. No
similar generalization exists, however, for the classica formulas,

[Oldham, 1974]:

Liofo 1L{f} 1L{f}
% » % (s)- (¥)
- x f}_dL{f}
L{ [- X]”f} = d;LSEf} B T R (1.33)
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As a fina result of this section we shall establish the useful

formula:
i d? .0
L i exp(- kx) —[fe* ]y =[s+ K] L{f}, g3 0 .cooveevrrrrrrnne. (1.34)
7 dx“ Z,

in which equation (1.31), may be regarded as a specia case, when k =0
In equation (1.34).

As an illustration, we consider the following example:

Example (1.12), [Abdulkhalik, 2008]:

Consider the semi differential equation:

d¥2f (x)  d"¥?%f(x) X 4x3/2
s +2f()——+6 +2x+4 .(1.35)

and in order to solve this equation using Laplace transformation method,
first we take the Laplace transformation to the both sides of equations
(1.35):

1d¥2f(x)0 |, 1d Y% (x)0
L +Li ——>y+2L{f (X)} =
e E; (72 E; {f ()}

~

L

—_——

SIS

6 L{&}+iL{X3/2}+2L{X}+L{4}

Jp 3Vp
use eg. (1.31), leads to:
_ 26% +3s+1+ 2\/s+4s\/s
L(f) =
sz(s+1+2fs)
=(Zs+1)+(s+1+2\/§)
$*(s+1+24s)
2 1
=4+ —
s g
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Then upon using the inverse Laplace transform, we have:
f(X) =2+X

as the solution of the fractional order differential equation.

The work of this thesis is concerned with the following type of

the problem.

Let us consider the following system of fractional differential-algebraic

eguation with variable coefficients:
AN DIx(D)] + B(t) x(t) =f(t),0<q£1
with initial value:
X(to) = Xo
where DY represent the Caputo fractional derivative of order g and with
A(t) isn” nsingular matrix, B(t) isn” n nonsingular matrix and f isn” 1

vector function, Xo is n” 1 known constant vector and x(t) is the n" 1

vector function that must be determined.

The above problem will be treated in chapter two and three
respectively.
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CHAPTER TWO

DIFFERENTIAL TRANSFORM METHOD FOR SOLVING
FRACTIONAL DIFFERENTIAL-ALGEBRAIC
EQUATIONS

2.1 INTRODUCTION

In this chapter, we describe the application of fractional
differentia transform method (DTM) for solving Fractional Differential-
Algebraic Equations. This chapter consists of five sections in section
(2.2) the literature review of the DTM is given. In section (2.3) we
introduce the analysis of the DTM and its related theorems. In section
(2.4) the fractional DTM is presented. Finally, the implementation of the
fractional DTM to the fractional DAEs is given in section (2.5) in

addition to the approximate results of an illustrative examples.

2.2 LITERATURE REVIEW

The (DTM) is a numerical method for solving differential
equations. The concept of the DTM was first proposed by [Zhou, 1986].
Using one-dimensional differential transform, [Ho and Chen, 1998]
proposed a method to solve elgenvalue problems. The method has been
applied to the partia differential equations [Chen and Ho, 1999], [Jang
and et al., 2001].
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Hassan applied the DTM to solve eigenvalues and normalized
eigenfunctions for a Sturm-Liouville eigenvalue problem [Hassan,
2002]. Application of two dimensional DTM was studied by [Ayaz,
2003] for the solution of the partial differential equations.

Chen and Ju are used the DTM to predict the advective-dispersive
transport problems [Chen and Ju, 2004]. The method is also used for the
solution of DAEs of index-1 by [Ayaz, 2004]. Liu and Song [Liu and
Song, 2007] analyzed higher index DAEs using this technique where he
showed that the method is effective in case of index-2 DAES but not
suitable for DAESs of index-3. Fourth order boundary value problem was
studied by [Erturk and Momani, 2007].

Comparison of this method with ADM was done by [Hassan,
2008] to solve PDEs. The solution of systems of fractional differential
eguations using DTM was studies by [Erturk and Momani, 2008]. DTM
for solving Volterraintegral equation with separable kernels is given by
[Odibat, 2008].

Tari,Rahimi,Shahmorad and Talati [Tari and et al., 2009] solve a
class of 2-dimensional linear and nonlinear Voltera integral equations by
the DTM, [Sirg-Ul Islam and et al., 2009] study the numerical solution
of special 12th-order boundary value problems using DTM, [Arikoglu
and Ozkol, 2009] solve the fractional integro-differential equations by
using fractional DTM, [Nazari and Shahmorad, 2010] applied the
fractional DTM to fractional order-integro-differential equations with
non local boundary conditions.
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2 3ANALYSISOF THE DIFFERENTIAL TRANSFORM
M ETHOD[Odibat, 2008]:

The differential transform of the k™ derivative of a function (x)
Is defined as follows:

1 éd*f (x) U
F(k) :Fé%g .......................................................... (21)
e X uXZXO

where f(x) is the origina function and F(k) is the transformed function.
Theinverse differential transform of F(k) is defined as:

f(x)= ké FK) (X = X)X coreeeieeeeeeeeeeeeeeseeeeseeees e (2.2)
=0

From eg. (2.1) and (2.2), we get

fo0 = 8 & Xg)* d*f(x)

| k
k=0 k dX X=X(

which implies that the concept of differential transform is derived from
Taylor series expansion, but the method does not evaluate the
derivatives symbolically. However, relative derivatives are calculated by
an iterative way which are described by the transformed equations of the
original function. In real applications, the function f(x) is expressed by a
finite series and eg.(2.2) can be written as:

f(x) = 5 FK) (X = X)X trreeereeeeeeeeeeeeeeseseeeeees e (2.4)
k=0

Here n decided by the convergence of series coefficients.
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Differential Transform Method for Solving Fractional

Differential-Algebraic Equations

The fundamental operations preformed by differential transform

can readily be obtained are listed in Table (1).

Table (1)

Operation of differential transformation.

Original function

Transformed function

f(xX) =u(x) m v(x)

F(k) = U(k) m V(K)

f(x) =a u(x) F(k) =aU(K)
f(x) = d‘ég(x) F(K) = (k + 1)Uk + 1)

fx) =2 “r(nx),mi ¢*
dx

F(k) = (k+1)(k+2)...(k+m) U(k+m)

F(x) = pu(t)ct

X0

f(x) =x" mi ¢*

F(k)=U(kk+l) k3 1,F0)=0
Ak =dk-my=| - <7
t=dic-my=y o T

f(x) =exp(l x)

f(x)=sin(wx +a) al ¢*

F(k) :WTTsin(pk/2+a)

f(x) =cos(wx + a) ol ¢*

F(k) = Wk—ll(cos(pk/Z +a)
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24 FRACTIONAL DIFFERENTIAL TRANSFORM
METHOD [ARIKOGLU AND OZKOL, 2009]
DTM has been developed as follows:
The fractional differentiation in Riemann-Liouville sense was

defined by

1 d™ e () u

DY f(x)= é dt
X0 ( ) G(m_ q) de @?(X- t)1+q-m E,l

form-l<qg<m mTl ¢ x>xo. Let us expand the analytical and
continuous function f(x) in terms of fractional power series as follows:
f(x)= 5 T O L (2.6)
k=0
where a is the order of fraction and F(K) is the fractional differential
transform of f(x).
In order to avoid fractional initial and boundary conditions we

define the fractional derivatives in the Caputo sense. The relationship

between the Riemann-Liouville operator and Caputo operator is given

by:

q N kg (K) (y (U
D*xof(x)—oné(X)' a W(X_ Xo) £ (Xg) Qeeererereenenenes (2.7)
é k=0 K! U

And using eq.(2.5), we get:

L " P & (UKL %) T ) 0
Gm- o) &y, (x- T

DS, f(x) =
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Since the initia conditions are implemented to the integer order
derivatives, the transformations of the initial conditions are defined as

follows:

where q isthe order of fractional derivative. The following theorems that
can be deduced from eg.(2.5) and (2.6) are given below:

Theorem (2.1):

If £(x) = g(x)m h(x),then F(k) = G(k) m H(K).

Theorem (2.2):

If (%) = g(x) h(x), thenF(k) = ékl G(r)H(k- 1)
r=0

Theorem (2.3):

If f(X) = g1(X) g2(X)...0h- 1(X) gn(X), then:

ko Kga o k3K
F(k)= a a La a G(k)G,k,- k..
kn-1=0kn-2=0 k2=0k1=0

Gn-l(kn-l - kn- Z)Gn (k - kn-l)
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Theorem (2.4):

If f(x) = (X - Xo)", then F(K) =d(k - ap), where:

il if k=0
d(k) =i .
|O if k10

Theorem (2.5):

It f(x) =D} [9(x)]. then:

) = Gg+1+k/a)
G(1+k/a)

F(k G(k +aq)

Proof:

Utilizing egs.(2.6), (2.8) and (2.9), we get:

] ééé kia _ k/au u
gn Fxea G- xo) a G(k)(t X0 1
DY Ta(x)] = Ak=0 k=0 Uty
ol = dxm:xgg O el
f & i b

¥ m @éx - k/a u

_ 1 8 G(K) d" &% (t- xq) :

e
GM- D icaq X g (x- OFFT

e G- xp)

Starting the index of this series from k = 0, we have:

:éé G(q+1+k/a) _ k/a
f(x) 20 GLrk/a) G(k+aq)(x- xq)

From eq.(2.6) the following expression is obtained:

G(g+1+k/a)
F(k) = L ka) G(k+aq).<
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Theorem (2.6):

For the production of fractional derivatives in the most generd

form
0= 12" ()]
dOn-1
Then:
14k,
F(k) = ak 1= oa::nlz oKa ko= oatf OG((C;(1++ ;1/a/)a)
G, +1+(k, - ky)/a) L . +1+ (K, .- Ky 0)/a)
G1+(k; - ky)/a) G+ (K1 - Ky.p)/@)

Qa, +1+ (k- k,.1)/a) o
QL+ (k- kn-l)/la) Gk taq)” Gylky- kytagy)K

Gn-l(kn-l - I(n-2 +aqn-1) ’ Gn(k - kn-l +aqn)

Whereaqgl ¢, fori=1,2,...,n
Proof:

G

Let the differentia transform of d G [g;(X)] be Ci(k) a X = Xo
X |

fori=1,2,...,n
Then by using Theorem (2.3), we have the fractional differential
transform of f(x) as
K g k2
Fk)= a a La a Ci(k)Cy(k,- k) L
kn_]_:O kn 2—0 kz—o k]_:O

Cn-l(kn-l - kn- Z)Cn (k - kn-l)

and using Theorem (2.5) one can deduce that
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_ Qg +1+k,/a)
Ci(ky) = G(L+k,/a) G, (k; +aqy)

RECRESIORTAT
C,(ky- k) = Gl1+(k, - ky)/a]

Gy (ks - kytagy),...,

) _ an-l+l+ (kn-l_ kn-2)/a] _
Cr1(Kn1- Kn2) = G{l v koa-k ) a] Gp.1(Kn.1- Kq.2 +a0.1)
oy Gla, 1+ (k- K, 1)/a]
Cn (k kn-l) - G[l+ (k _ kn-l)/a]

Gn(k' kn-1+aqn)

By utilizing these values, we have:

Flo= 4 & La g datlirkia)
kn.1=0kn.2=0 ko=0ki=0 O(l+k,/a)
Gla, +1+(k, - ky)/a] Gap.1 +1+ (K, s - Ky 5)/2]
G[l"' (k, - kl)/a] G[l"' (Kp.1- kn-z)/a]
Glq, +1+(k- k, ,)/a]
q1+(k- k,.,)/a]
G, .1(kn.1- Kp.p +adq,.4) G,(k- k.., +adqy,)

Gyi(k; taqy) Gy(k; - ky tag,) ...

Whereaq 1 ¢, for i=1,2, ...,n<

Theorem (2.7):
X -
IF£(x) = da) dt, then F(k) =a S8 =3 wherek s a.
X0
Proof:

Using the fractional power series expansion, we have:
X ¥

f(X)= 0 & GK)(t- x,)/dt
XO k=0
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¥ X
=& OG(K)(t- xo) 92t

k=0 X0
¥y € X u
-4 éaG(k) (t Xo)k/a+1 l'J
0 g k+a o 8
¥
_§ 280 i
k=0 k+a

Starting the index of series from k =a

¥ -
f(x)= & aM(x- Xo)k/a
k=a K

From the definition of transform in

¥
f(x)=& FK)(X- Xo)"?

k=0
we get:
F(k) = am, wherek3a. <
Theorem (2.8):
X
If f(x) = g(x) oh(t)dt, then:
X0
k -
F)=a & PR g0 1), wherek 2 a.
k]_:a 1
Proof:

Let the differential transform of ¢h(t)dt be G(k)

X0
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Then, by using Theorem (2.2), we get:

F(k):kék Clky) G (k- k)
1=0

where Theorem (2.7) states that
C(k) =a H(k-a) K3a
Kk
Which impliesto:

C(kl) :aw’ k13 a

1
Using this value, we evaluate:

Fky=a & Hki-a)

k1:a 1

Gk- k). <

Theorem (2.9):

If f(x) = )((‘ghl(t)hz(t)... h,.,(t) h, (tdt, then:

X0

F(k) :F a a L4 a H, (k))H,y (K, - k)L
kn_]_:O kn_2=0 k2=0 k]_:O

Hn-l(kn-l' kn-z)Hn(k' kn-l' a)
Proof:

Let C(t) = hy(t) hy(t) ... hy1(t) ha(t) and C(k) be the transform of
C(t). then by using Theorem (2.7), we have:

C(k- a)

F(k)=a k3a
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And using Theorem (2.3), one can deduce

Utilizing these values we get

F(k) :F a a L4 a H, (k))H,y (K, - k)L
h%1=0 kn_2=0 k2=0 k1=0

Hn-l(kn-l' kn-z)Hn(k' kn-l' a)1 k3a <

Theorem (2.10):

1T £(X)=[92(})G2(X). .. G- 1(X) Gm(X)] Xéhl(t)hz (t)...h, 1 (Dh, (Odt

X0
Co1iga g bk kg
F(ky=a a — a La a a a L
ki=a B1 jp-1=0 jn-2=0 270 170 im.1=0 ip-2=0
I3 o ) .. ) .
a a Gui)Gy(i,-i)l-Gpy 1(im.1- iy 2)
i2=0 i1=0

Gm(k‘ im-1' kl) Hl(jl)Hz(jz' j1)|—
Hn-l(jn-l - jn-Z)Hn(kl i a)

wherek 3 a. Let:

C1(X) = 91(X)G2(X). - - Gm- 1(X)Gm(X)
and
Ca(t) = hy(t)hy(t)...hy 1(t)hn(t)

Then by using Theorem (2.8), we Qet:

k -
Fk)=a § Mcl(k- k,), wherek 3 a
ki=a 1

and Theorem (2.3) states that:
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koo g 3 : .
Cik)= a a La a G()G,(,-i)L
im_]_:O im_2=0 i2=0 i]_:O

Gm-1(im-1 - im-z)Gm (k - im-1)

k in-1 I3 2 _ o
Cxk)= a a La aH()H.(,- )L
jn-1=0 jnr-2=0 j=0 j1=0

Ho 1(no1- dn-2)Ha (K- Jiog)
Utilizing these values, we get:
Gi(i)Gx(iz- i1) ... G 1im-1- im 2) Gm(K - im-1- K1)
Hi()H2(2- j1) --- Hna(n 17 jn-2) Ho(Ke- jno1- @)

wherek 3 a.

2.5APPLICATION OF THE FRACTIONAL
DIFFERENTIAL TRANSFORM METHOD FOR
SOLVING FRACTIONAL DIFFERENTIAL-
ALGEBRAIC EQUATIONS

In this section, we employ the fractional DTM to solve the
fractional DAEs and for this purpose let us consider the following

system of fractional DAE with variable coefficients:
AM[DIX®)] +B() X(t) =f(t),0<gE L., (2.10)

with initial value:
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where DJ represent the Caputo fractional derivative of order g and with
A(t) isn” n singular matrix, B(t) is n" n nonsingular matrix and fisn" 1
vector function, Xo is n” 1 known constant vector and x(t) is the n" 1

vector function that must be determined.

The method of solution is begin by rewriting equation (2.10) as a
system of equations and then by using the basic properties of the
fractional DTM given in section (2.4), one can get an explicit iterative
form for the vector X(k). Finally, the vector function x(t) will be

expressed by afinite series which can be written as

X(t) =am X(K)(E )2 oo (2.12)
k=0

which represent the approximate solution of eg. (2.10), (2.11) and to
demonstrate this steps of solution let us consider the following

examples:

Example (2.1):

Consider the following fractional differential-algebraic equation:

A -x68®9v1(x)i?+aé_ - (L1+X)0ay,(X)6_2e 0 6

= - X == . = rereaaas (213)
80 0 ﬂ‘éDEVz(X)B 80 1 E,%vz(x)g 8smxg
With the following initial conditions
%/1(0) 6_@-6 (2 14)

&v,(0)g &g

The exact solution of the above example as given in [Celik and et al.,
2006] forisg=1is:
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a,(X)0_a& X +xsinx0

(g & snx g
Equivalently eg. (2.13) can be written as

DIv4(X) - X[ DIVA(X)] + Vi(X) - Va(X) = XVo(X) =0 wererreenen. (2.15)

Va(X) = SN X crvreeeeereeeseeeseee e eseeeeesesesesesesee e essseseeesesesenenenees (2.16)
or

DIvy(X) =X[ DIV(X)] - Va(X) + Va(X) + XVo(X)

Va(X) = sin X

By using the basic properties of fractional differential transform method
Theorems (2.1), (2.2), (2.4), (2.5) and applying the transformation on
(2.15) and (2.16) one can obtain that

G1+k/a) Gla+1+(k-r)/a)

ka0 & e ) -
V,(k- r+ag)- Vy(K)+V, (k)+a0d(r a) V,(k - r)g
...... (217)
‘lo Jif k/al ¢”
V,(K) = : Sn‘*’gi ; ......................................... (2.18)
gy A
Case 1:
From eq. (2.17), (2.18) and for k = O, 1, ... ; the differential

transforms V1(k) and V (k) can be obtained forg=a =1 as:
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GL+K) ] ¥ G2+(k- 1))
Vi (k+1) = corold G(l s d(r- DV, (k- r+1)-
Vy(K)+V, () + & d(r- V(K- r)g
r=0
Singk—pg
V,(K) = k|2 2 ki ¢t
And hence
Vi(D) =1, vl(z)—— Vi(@) =23, Vi(4) =2, Vy(5) = 1,
-1 11
V1(6)= — (7)— — V1(8) = V1(9)‘ o’ V(10) = 10
11 15
1(11) 1I , 1(12) = E, 1(13) 3| , 1(14) = _I ,
1 19
V1(15) = 1_5|, V1(16) = 16' , V1(17) = 171" V1(18) = Tal
219
Vi(19)= 75, Vi(20) = o

and in general V,(k) may be formulated as follows:

:—1, K isodd
i k!
V,(K) = :k—+1 Kk is even andﬂiseven
Bk 2
i-
i (k- ), Kk is even andE is odd
i k! 2

Consequently, by substituting the values of V(k) into eq. (2.12) up to 20
termsit yieldsto
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vl(x):l-x+§x2-£x3-Ex“-£x5+zx6-ix7-zx8 Loy
2 3 4 o Gl 7! 8 9! 10!

e 1 Bu 1s x@_W]%B ﬁjgm
2" 13 14 = 20

il

Following Table (2), represent a comparison of the approximate
solution of v;(X) with the exact solution

Table (2)

Comparison of the approximate solution of v;(x) with the exact

solution.
X Exact solution of Approximate solution | Absolute
V1(X) of vi(x) error

0.1 0.91482076 0.91482076 0.0
0.2 0.858464619 0.858464619 0.0
0.3 0.829474283 0.829474283 0.0
04 0.826087383 0.826087383 0.0
0.5 0.846243429 0.846243429 0.0
0.6 0.88759712 0.88759712 0.0
0.7 0.947537684 0.947537685 0.1 10°®
0.8 1.023213837 1.023213837 0.0
0.9 1.111563878 1.111563878 0.0

1 1.209350426 1.209350426 0.0

Case2:

From equation (2.17), (2.18) and for k=0, 1, ...

' the differentid

transforms V1(k) and V (k) with g = % ,a =2, isgiven asfollows:
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§ G2+1+(k-n/2) .
S carkn 7

_ G1+k/2)
Vilk+ )= /2 +1+k/2)

— — —

Vy(k - 1 +1)- Vy(K)+Vo(K)+ & dr - 2)V,(k - r)g

r=0
and
10, k/21 ¢”
| )
v2<k)=_l'_g;n§‘_p2
€48 o) ¢
t (k/2)!
Thus:

V(1) =-1.128, V4(2) = 1, V1(3) = 0, V1(4) = 0.75, V4(5) = 0.15,
V1(6) = - 0.083, V4(7) = - 0.043, V4(8) =- 0.125, V4(9) = 0.057,
V1(10) = - 0.025, V4(11) = - 0.014, V(12) = 2.041x10 3,

V1(13) = 2.421x10 3, V,(14) = - 8.989x10 *,

V1(15) = 2.516x10 %, V4(16) = - 2.736x10 ",

V1(17) = 2.541x10°, V4(18) = - 8.353x10°°,

V1(19) = 3.557x10 °, V4(20) = 1.507x10°°, ... .

Then substituting these values of V(K) into eg. (2.12) up to 20 terms, we
get:

vy (X) =1- 1128x*% +x+0.75x? +0.15¢% % - 0.083¢3 - 0.043x "% -
0125¢* +0.067x%2 - 0.025¢° - 0.014x2 +2041° 103x6 +
2421 103x5/%- 8989" 10°x" +2516" 10*x™2- 2736" 104 +
2541 10°x"%- 8353 10°x° +35657° 10 °%™¥'2 +1.507" 10 °x®
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Following Table (3) represent the approximate solution of vi(x)

whenq:%.

Table (3)

The approximate solution of vi(x) for q :% :

X Approximate solution of vi(x)
0.1 0.751161923
0.2 0.727243483
0.3 0.753386842
04 0.812287372
0.5 0.896511031
0.6 1.00154078
0.7 1.124044788
0.8 1.261275747
0.9 1.410832026

1 1.570563221

Case 3:

From equation (2.17), (2.18) and for k=0, 1, ... ; the differential

transforms V1 (k) and V (k) with g = % a =4, isgiven asfollows:

_ GQ1+k/9) GYa4+1+(k-n/4 .
Vl(k+1)"c;(1/4+1+k/4) s G+ (k- r)/4) air-4)

Vy(k - 1 +1)- Vy(K)+Vo(K)+ & dr - 4V, (k- r)g
r=0

— — —
Qox

r

and
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10, k/4l ¢”

I )
v2<k)=_l'_g;n§‘_p2

i__ €806 4 ¢t

P (k/4)!

Hence:
V(1) =-1.103, V4(2) = 1.128, V4(3) = - 1.088, V1(4) = 1,
V1(5) =0, V1(6) = 0, V1(7) = 0, V4(8) = 0.875,
V1(9) = 0.098,V4(10) = - 0.075, V,(11) = 0.056, V1(12) = - 0.041,
V1(13) = - 0.091, V4(14) = 0.065, V1(15) = - 0.046,
V1(16) = - 0.124, V4,(17) = - 0.029, V,(18) = 0.02,
V1(19) = - 0.013, V4(20) = 8.535x10°3, ...

Then substituting the values of V4(K) into eq. (2.12) up to 20 terms we
get:
vy (X) =1- 1.103x¥* +1.128x¥2 - 1.088x¥* +x +0.875x> +0,098x7*
- 0.075x™* +0.056x™* - 0.041x3 - 0.091x* +0.065x™4* -
0.046x* - 0.124x* - 0.029x*"* +0.02x"®'* - 0.013x™'* +
8.353" 10 °x°.
Following Table (4) represent the approximate solution of vi(x)

whenq:%.
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Table (4)

The approximate solution of v,(x) for g = % :

X Approximate solution of vi(x)
0.1 0.652035803
0.2 0.677487264
0.3 0.740532352
04 0.82875184
0.5 0.93662663
0.6 1.060228555
0.7 1.196030569
0.8 1.340509631
0.9 1.489983519

1 1.640535

Example (2.2):

Consider the fractional differential-algebraic equation:

a -x xzééa@EVl(X)é a -(x+D) x*+2x0,(X)6 20 &
gO 1 -x;gDE'vz(x)ﬁgO 1 -(1+x);9v2(x)::9 0

0 0 ofpvwif 0 1 2005 i

............................... (2.20)
with the following initial condition:
aall(O)i_j aéc‘_j
KT (O SO (2.21)

§V3(O) 2 éoé
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where the exact solution as given in [Celik and et a., 2006] when g =1,

IS:
o, ()6 T +xe” 0
gvz(x)::gex +XSinX+
§v3(x)(;, g sinx 5
System of eg. (2.20) can be written equivalently as:

DIV, (X) - X[ DV, (X)] + X2 DIV (X)] + V5 (X) - XV, (X) -V, (X) +X2V5(X) +
2XV5(x) =0

DIV, (X) - X[DAV4(X)] - V,(X) +XV5(X) - V5(X) =0
Va(X) = sinx

or
DIV, (X) =2XV,(X) - 2X2V4(X) - XV5(X) - V,(X) +V,(X)
D%V, (x) = X[ DIV (X)] +V,(X) - XV5(X) +V4(X)
Va(X) = sinx

By taking the differential transform of the above equations and by using
the fundamental operation of fractional DTM which are given in section

four we have:

Vy(k+ag) =—2KA) 1o2 4 ayv, (k- n)- 28 d(r- 2a)

G(q+1+k/a)T r=0 r=0
Va(Kk- 1)- & d(r- a)Va(k-1)- Vl(k)+V2(k)§...(2.22)
r=0
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_ Gl+k/a) 1% Gq+1+(k-r)/a)
VZ(k+aq>"G(q+1+k/a)}Eo GL+ (k- r)/a) d

Vy(k- r+aqg)+V,(K)- 2 d(r- a) Vy(K - r)+V3(k)§..(2.23)

(r-a)

r=0
o, K/ai ¢*
I )
Va(k) =t dn®PO (2.24)
i _€2ap 2 k/al ¢*
t (k/a)!

Case 1.

Fork =0, 1, ... ; Vi(k), Vo(k) and V3(k) can be calculated from
egs.(2.22), (2.23) and (2.24)when g =a =1 asfollows:

V (k+1) = Gtk :Zék. d(r- DV,(k-r) - Zék. d(r- )Vy(k-r)-

G2+K)T r=0 =0
ék. d(r- YVs(k-r)- Vi(k) +V2(k)§ :
r=0

_Gl+k)1 & G2+(k-1) ] _
VZ(k+l)"G(2+k)%Eo Sk d(r - DV,(k - r+1) +V,(K)

& d(r- V(- r)+V3(k)§.

r=0
smgk?pe
V5(k) = 8 Kkic¢*
k!
_ _ 3 2 5 4
V(1) =0, V1(2)—§,V1(3)-§,v1(4)_z,v1(5)_a,
7 6 9 8 11

V1(6) = a, V1(7) = ﬁ’ V1(8) = a, V1(9) = a, Vl(lO) :1—0!,
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10 13 12 15
11) = —, Vi(12) = =, V4(13) = —, V,(14) = —,
Vi) = 7, Va12) = =0, Val13) = =, Va4 = 0,
14 17 16 19
15) = —, Vy(16) = —, V4(17) = —, V4(18) = —,
Va(19) = 7o, Vall6) = -, Val7) = —, Va(18) = ),
18 21
19)= —, V1(20) = —,.
Vi(19) = o Va(20) = =
3 -3

V(1) =1,V2(2) = = V2(3) — V2(4) a Vo( )——

v 1 7 1 11
V(€)= o, Va(7) = —, Val®) = =, Val9) = 5, Vo(10) = T
Vy(11) = il V,(12) = —;1 V2(13) = % Vo(14) = 3
V,(15) = iS V2(16) = %65 Va(17) = % V2(18) = 11—;

1 -19
V,(19) = 1o V2(20) = S0

As aresult, these coefficients can be generalized by the following
formula:

. kiseven

. kisodd
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N

:i K is odd
.I.k!
V(k)::'k+1, kisevenandﬂiseven
2K 2
o
|1—k) kiseven andﬂisodd
i k! 2

Consequently, by substituting these coefficients in the finite

series of solutions given by eg. (2.12) to the vi(x) and vz(x) up to 20
terms, thus we have:

V;(X) :1+§x2 +Ex3 +Ex4 +ix5 +Zx6 +Ex7 +gx8 +
2! 3 4 5l 6! 7! 8
§X9+£X10+1_0X11+1_3X12+1_2X13+EX14+EX15
ol 10! 11 12! 13! 14! 15!
+£X16+1_6X17+1_9X18+1_8X19+ﬂ 20
16! 17! 18! 19! 20!

vz(x):1+x+§x2+1x3-—x RSN Y NI
27 3" Tt e e 7 @ o

£X10+iX11_£X12 1X13 EXM i 5D
10! 11 12! 13 141 15! 16!
iX17+1_9X18+iX19_1_9 20
1/ 18! 19! 20!

Following tables (5) and (6) represent a comparison between the

approximate result and the exact solution of v1(x) and v,(x) respectively
whenq=a=1
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Comparison of the approximate solution of vyi(x) with the exact solution.

Table (5)

« Exact solution of Approximate Absolute error
V1(X) solution of vy(X)
0.1 1.01535451 1.01535451 0.0
0.2 1.063011305 1.063011305 0.0
0.3 1.145775863 1.145775863 0.0
0.4 1.267049925 1.267049925 0.0
0.5 1.430891295 1.430891295 0.0
0.6 1.642082916 1.642082916 0.0
0.7 1.906212199 1.906212199 0.0
0.8 2.229761706 2.229761707 0.1 10°®
0.9 2.62021246 2.62021246 0.0
1 3.08616126 3.08616127 0.1 10°®
Table (6)
Comparison of the approximate solution of v,(x) with the exact solution.
« Exact solution of Approximate Absolute error
Vo(X) solution of v,(X)
0.1 1.11515426 1.11515426 0.0
0.2 1.261136624 1.261136625 0.1 10°®
0.3 1.43851487 1.43851487 0.0
0.4 1.647592035 1.647592035 0.0
0.5 1.88843404 1.88843404 0.0
0.6 2.160904284 2.160904284 0.0
0.7 2.464705088 2.464705089 0.1 10°®
0.8 2.799423801 2.799425801 0.0
0.9 3.16459733 3.16459733 0.0
1 3.559752813 3.559752813 0.0

56




Chapter Two Differential Transform Method for Solving Fractional
Differential-Algebraic Equations

Case 2:

When ¢ =%, a= 2, substituting these values into eq. (2.22) eq.
(2.23) and (2.24), thus we have:

GL+k/2) .k [

Vy(k+D) = S2eir k/2)%2éod(r_ 2)V, (k- ) - zéod(r_ 4)
Vatk-0)- & dlr- 2 Vik- 0)- v1<k)+v2<k>§
r=0

V,(K+1) = G1+k/2) G1/2+1+(k-r)/2) dr- 2)

— — —
Qo

T QW2+1+k/2) 20 G+ (K- 1)/2)
V(k- r+1) +V,(K) - ék d(r- 2)Va(k - r)+V3(k)§
r=0

10, k/2i ¢

I )
vg(k):_l'_g:n?‘_pg

i_€48 o] ¢t

b (k/2)!

V1(1) =0, V41(2) =1, V4(3) = 1.1505, V,(4) = 1.499,

V1(5) =0.753, V1(6) = 1.5, V4(7) = 0.129, V,(8) = 0.395,

V1(9) = 0.067, V4(10) = - 0.05,V1(11) = 0.031, V4(12) =- 0.128,
V1(13) = 1.119%x10 3, V1(14) = - 0.017, V4(15) = - 8.411x10*,
V1(16) = - 2.32x10°3, V4(17) = - 1.557x10*,

V1(18) = - 3.218x10™*, V4(19) = - 2.692x10*,

V1(20) = 4.55x10°, ...

V(1) =1.128, V5(2) = 1, Vo(3) = 1.505, V(4) = 1.75,
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V,(5) = 0.451, V4(6) = 0.25, V,(7) = 0.043, V4(8) = - 0.125,

V2(9) = - 0.134, V5(10) = - 0.058, V5(11) = - 0.021,
Vy(12) = - 7.578x10*, V5(13) = - 3.498x10°%,
V3(14) = - 1.299x10°°, V4(15) = - 5.377x10*,
V4(16) = - 3.732x10%, V,(17) = - 5.908x10,
V5(18) = - 1.942x107°, V5(19) = - 5.337x10°°,
V,(20) = 9.515x10 7, ...

Then by substituting these coefficients into eg. (2.12) the series of
the solutions to the v;1(x) and v,(X) up to 20 terms, are:

v, (X) =1+x* +1.505x¥2 +1.499x> +0.753x¥? +1.5x> +0.129x /2 +
0.395x* +0.067x%2 - 0.05x° +0.031x*Y2 - 0.128x° +
1.119° 10 3x®'2- 0,017x" - 8.911" 10 *x*/2 -

2312 10°3x8- 1.557" 10 *x*'? - 3.218" 10 *x° -
2.692" 10 x™'2 +4.55" 10 °x™°

V,(X) =1+1.128x¥? + x +1.505x¥? +1.75x? +0.451x Y2 +0.25x° +
0.043x"? - 0.125x* - 0.134xY2 - 0.058x° - 0.021x™2 -
7.578 10 *x° - 3.498" 10 3x*¥/2 - 1.299" 10 3x” -
5.377° 10 *x*'?- 3.732" 10*x®- 5.908" 10 °x'"'2 -
1.942° 10°x° - 5.336" 10 °x*¥'? +9,515" 10 ' x™°

The approximate results of v,(x) and v,(x) are tabulated in Table
(7) and (8) respectively
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Table (7)

The numerical solution of v;(x) for q :%.

X Approximate solution of vi(X)
0.1 1.166545355
0.2 1.421162879
0.3 1.765053263
0.4 2.208331711
0.5 2.763498032
0.6 3.444086339
0.7 4.263835794
0.8 5.23590118
0.9 6.371968528

1 7.6812147

Table (8)

The approximate solution of v,(x) for q :% :

X Approximate solution of v,(X)
0.1 1.523469598
0.2 1.918972185
0.3 2.350467531
0.4 2.8314119%4
0.5 3.36591496
0.6 3.95451982
0.7 4595422724
0.8 5.284744524
0.9 6.016501991

1 6.782451415
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Case 3:
When q = % a = 4, substituting these values into egs. (2.22) eg.

(2.23) and (2.24), thus we have:

Vi (k+1) =— KD 1o8 G- v, (k- 1) - 24 de- 8)

G2+1+k/2)1 1%
Va(k-T)- ék d(r- 49 V,(k-r)- Vl(k)+V2(k)§
r=0

V,(k+1) = G(1+k/4) G1/4+1+ (k- r)/4) dr - 4)

— — —
Qo=

CG2+1+k/2) 70 G+ (k- 1)/2)
Vak- 14D +V,(K) - & d(r- 4)Va(k- r)+V3(k)§
r=0
10, k/4i ¢*
1 B
vg(k):_l'_g:ngd‘_pg
€88 ¢
t (k/4)!

Hence:
V1(1) =0, V4(2) = 1.128, V4(3) =0, V1(4) = 1, V4(5) =1.765,
V1(6) = 1.88, V4(7) = 1.554, V4(8) = 1.5, VV4(9) = 1.079,
V1(10) = 2.406, V1(11) = 0.848, V1(12) = 1.499, V4(13) = 1.841,
V1(14) = - 0.27, V4(15) = 0.972, V4(16) = - 0.95, V4(17) = 0.49,
V1(18) = - 0.19, V1(19) = 0.224, V4(20) = - 0.079, ...
V(1) = 1.103, V»(2) = 1.128, V5(3) = 1.088, V(4) = 1,

V,(5) = 1.765, V(6) = 1.504, V5(7) = 1.243, V(8) = 1.875,
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V2(9) = 0.686, V2(10) = 0.526, V,(11) = 0.395, V5(12) = 0.291,
V2(13) = 0.09, V(14) = 0.064, V,(15) = 0.045, V5(16) = - 0.125,
V4(17) = 0.028, V,(18) = 0.019, V5(19) = 0.013,

V,(20) = 8.535x10 3, ...

Then substituting these coefficients into eq. (2.12) the series of

the solution to the v;(X) and v,(X) up to 20 terms, are:

v,(x) =1.128x¥? + x +1.765x¥* +1.88x¥* +1.554x "/ +1.5x2 +
1.079x¥% + 2.406x1%* +0.848x1Y* +1.499x> +1.841x ¥4 -
0.27x*4 +0.972x%9* - 0.095x* +0.49x*"/* - 0.19x™¥'* +
0.224x%% - 0.079x°

V,(X) =1.103x¥* +1.128x¥2 +1.088x3* + x +1.765x>* +1.504x%* +
1.243x "% +1.875x2 +0.686x7* +0.526x1%* +0.395x ¥4 +
0.291x% +0.09x"¥* +0.064x4* +0.045x™%* - 0.125x* +
0.028xY"* +0.019x*¥* +0.013x*'* +8.535" 10" 3x°.

The approximate results of v;(x) and v,(x) aretabled in table (9)

and (10) respectively.
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Table (9)

1

The approximate solution of v;(x) when g :Z :

Approximate solution of vi(x)

0.1 1.675864507
0.2 2.367191608
0.3 3.249783755
0.4 4.368675847
0.5 5.766146891
0.6 7.485964262
0.7 9.574273096
0.8 12.07987224
0.9 15.05432287

1 18.552

Table (10)
1

The approximate solution of vx(x) when g :Z :

Approximate solution of vy(X)

0.1 2.464695398
0.2 3.322884854
0.3 4.230519029
04 5.22733384
0.5 6.330185917
0.6 7.54968756
0.7 8.894080152
0.8 10.370564003
0.9 11.985868032
1 13.746535
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CHAPTER THREE

ADOMIAN DECOMPOSITION METHOD FOR SOLVING
FRACTIONAL-DIFFERENTIAL ALGEBRAIC
EQUATIONS

3.1INTRODUCTION

In this chapter, we present the application of Adomian
decomposition method (ADM) for solving fractional DAEs. This
chapter consists of four sections, where in section (3.2) the literature
review of (ADM) is given. In section (3.3) we introduce the ADM.
In section (3.4) we apply the (ADM) for solving fractional DAES

with the approximate results of an illustrative examples.

3.2LITERATURE REVIEW

Most of the phenomena that arise in real world are described by
nonlinear differential and integral equations. However, most of the
methods developed in mathematics are usually used in solving linear

differential and integral equations.

The recently developed decomposition method proposed by
American mathematician, Georg Adomian has been recelving much
attention in recent years in applied mathematics. The ADM emerged as

an aternative method for solving a wide range of problems whose
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mathematical models involve algebraic, integro-differential equations,
and partial differential equations. Thus yields rapidly convergent series
solutions for both linear and nonlinear deterministic and stochastic
eguations; it has many advantages over the classical techniques, namely,
It avoids discretization and provides an efficient numerical solution with
high accuracy, minimal calculations and avoidance of physically
unrealistic assumptions, the theoretical treatment of convergence of the
decomposition method has been considered in [Seng and et al., 1996]
and the obtained results about the speed of convergence of this method.
The solution of the fractional differential equation has been obtained

through the Adomian decomposition by [Ray and Bera, 2004].

However, El-Sayed and Kaya proposed ADM to approximate the
numerical and analytical solution of system two-dimensional Burger’s
eguations with initial conditions in [El-Sayed and Kaya, 2004], and the
advantages of this work is that the decomposition method reduces the
computational work and improves with regards to its accuracy and rapid
convergence. The convergence of decomposition method is proved as
[Inc, 2005], in [Celik and et al., 2006] applied ADM to obtain the
approximate solution for the DAEs system and the result obtained by
this method indicate a high degree of accuracy through the comparison
with the analytic solutions. In [Hosseini, 2006 a], [Hosseini, 2006 b]
standard and modified ADMs are applied to solve non-linear DAEs.
While, the error analysis of Adomian series solution to a class of
nonlinear differential equation, where as numerical experiments show
that Adomian solution using this formula converges faster is discussed in
[El-Kala, 2007]. Also, a new discrete ADM to approximate the
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theoretical solution of discrete nonlinear Schrodinger equations is
presented in [Bratsos and Ehrhardt, 2007] where this examined for plane
waves and single solution waves in case of continuous, semi discrete and

fully discrete Schrodinger equations.

Momani and Jafari, [Momani and Jafari, 2008] presented
numerical study of system of fractional differential equation by ADM.

3.3 THE ADOMIAN DECOMPOSITION METHOD
(ADM)

To introduce the basic idea of the ADM, we consider the operator
equation Fu = G, where F represents a general nonlinear ordinary
differential operator and G is a given function. The linear part of F can

be decomposed as:
LUF RUFNUZG .t (3.1)

where, N is anonlinear operator, L is the highest-order derivative which
Is assumed to be invertible, R is a linear differential operator of order

less than L and G is the nonhomogeneous term.

The method is based by applying the operator L™* formally to the

expression

so by using the given conditions, we obtain:

U=h+L'G- L'RU- L™ NUe oo (3.3)
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where, h is the solution of the homogeneous equation Lu = 0, with the
Initial-boundary conditions. The problem now is the decomposition of
the nonlinear term Nu. To do this, Adomian developed a very elegant

technique as follows:

Define the decomposition parameter | as:

u=3 1 "u,
n=0
then N(u) will be a function of | , up, Uy, ... . Next expanding N(u) in

Maclurian series with respect tol we obtain N(u) = al "A., Where:
n=0

where, the components of A, are the so called Adomian polynomials,
they are generated for each nonlinearity, for example, for N(u) = f(u),

the Adomian polynomials, are given as:
Ao = f(uo)
A1 =u; F€up)
u2
A, =u,f&u,) +71f @%u,)

3
u
Az = ugf Qug) + uyu,f u) "'?l,f ®u,)

I

Now, we parameterize eg.(3.3) in the form:
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U=h+L'G- TLRU- T L NU oo (3.5)

where, | isjust an identifier for collecting terms in a suitable way such

that u, depends on ug, Uy, ..., u,and wewill later setl =1
y 1 1o & 14
alu,=h+L"G-ILRal"u,-1L-al"A, ... (3.6)
n=0 n=0 n=0
Equating the coefficients of equal powers of | , we obtain:
u,=h+L"'G G
|
u, =-L*(Ru,)- L' (A
U, =- L*(Ruy)- L*(AYT
M b
and in genera
Ur=-L*Rur1) - LAnD),n>1

Finally, an N-terms that approximate the solution is given by:
l\(l)—l

fN(X):a un(X)1 NZl
n=0

and the exact solution isu(x) = r\|||®r2 fn-

3.4 ADM FOR SOLVING FACTIONAL DIFFERENTIAL-
ALGEBRAIC EQUATIONS

In this section ADM will be applied to find the solution of the
fractional DAEs and to do this, let as consider as in chapter two the

following system of fractional DAEs with variable coefficients
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A() D9 X+ BIOYX(E) =F (1), 0< 0= Luvvrrrvrrrerrrinn (3.8)

with initial value:

where D; is the Caputo fractional derivatives of order g, A(t) isn' n
singular matrix, B(t) is n" n nonsingular matrix and f is n" 1 vector

function, Xo is n” 1 known constant vector and X(t) is the n” 1 vector
function that must be determined.

The procedure of solution is begins by writing system (3.8),
equivalently as a system of fractional DAESs, then by substituting the
algebraic variable in the previous equations, we get a system of ordinary

differential equations, which can be considered as:

Dix, =f,(t,X;, X5, X,,,) U

DSXZ :fz(t,X:L;Xz!""Xn-l) I/
M

D,?Xn_l = fn-l(t’xl’xz""’xn'l)b

where each equation represents the fractional derivative of order g of one
of the unknown functions as a mapping depending on the independent

variablet and n- 1 unknown functions xy, Xz, ..., Xn-1.
We can present the system (3.10), by using the i" equation as:

Lxi = fi(t, Xy, X2, ..o, Xn1), 1 =14, 2, ...,n=-1 e, (3.11)

where L = D3 is the Caputo fractional derivative of order g with the

inverse J¥ which is the Riemman-Louville fractional integration of order
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g. Applying the inverse operator J* on (3.11) we shall get the following

form:
B! t"
X =a x"(O*)F+Jqfi(t,xl,xz,...,xn_l) .............................. (3.12)
k=0 -

As usual in ADM the solution of equation (3.8) and (3.9) is considered
to be theinfinite of aseries

¥

X, =X (), 1512, 00, N1, (3.13)
i=0
Where
Xi,O = Xi (O)

X =3, N=0,1,2...

And if theintegrand f; in eg. (3.12) is nonlinear, we define:

X0 =X%;(0) il
C ) J et (3.14)
Xipa =IA,, N=012..

Where A, are the Adomian polynomial which is illustrated in section

three.

Now, we shall consider the following examples in order to
Illustrate the above procedure:

Example (3.1):

Consider the following system of fractional differential-algebraic
equations (DAE's):

DIu(x) - x@DIV(X) g+ U(X) - L+X)V(X) =0, (3.15)
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with initial condition:
81O I IV () B O TR (3.17)

with the exact solution as given in [Celik and et al., 2006] for q=1

al(X)o ae +xsmxo

Vg & snx 5
Equivalently eqg. (3.15) and (3.16) can be written as:

DIu(x) = x BDIV(X) - U(X) + L+ X)V(X) worrvrrrirrrienirininns (3.18)

And in order to avoid the difficulty of the fractional
differentiation and integration respectively we shall substitute the
Maclurain series of v(X) up to certain terms in eg.(3.18) and upon
applying the inverse operator of the fractional differential operator J to
the both sides of eq.(3.18) we shall get:

m-1 i & 3 X5 X7 xOUf
u(x) = a U(k)(O )— w +Jq|x éx ST, _|+_|3’
k=0 T 2] 3! ol 7! ol '3

3 5 7 9 Ut

Jq[u(x)]+Jq|(1+x)ex- X_+X__X_+X_OU

: s 3 5 7 9!9%

Hence:
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Ty X g€ QD 2q G4 4q, QO _eq U
Up(¥)=a U O+ a2 _x2a. 2T _x4dp 2 6d_g
T K~ &@2-9 349  5A6-9 |
~ A 3 5 7 9 |
&X&q+ﬂxlo_qz+\]q§ _X_+X__X_+X_H+ 1
7!G8- ) 91(10- q) G ¢ 3 5 7 9 ;,
quXZ_X_4+X_6_X_8+X_108 :

g8 3 5 7 9y |

|

U1 (¥) =- F[u (X)] b
.............................. (3.20)

Case 1.

From eq.(3.20) the functions uk(x) for k = 0, 1, ...; can be
obtained for g =1, as:

UO(X):1+JSG(2)X_ 6(4) X3+ q6) X5_ 6(8) X7+ G(lo) X93+
§q) 3@’y @Y Q7)) 9Q9 ¢

6 3 x5 X XU 6, x* x& @ x0u
JeX- o g Ut St
§ 3 5 7 958 3 5 7 9§

Ui+1(X) = - J[U(X)]
and thus, by taking the series (3.13) up to 10 terms we have:
U(X) = Uo(X) + Uz(X) + ... + Ug(X)

which represent the approximate solution of u(x) whenq = 1.

Following Table (1), gives a comparison between the
approximate solution of u(x) with the exact solution.
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Table (1)

Comparison of the approximate solution of u(x)with the exact solution.

X Exact 3‘2')3“0” of sﬁlﬂ?iro?l)(ioTSt(i) Absoluteerror
0.1 0.91482076 0.91482076 0.0
0.2 0.858464619 0.858464619 0.0
0.3 0.829474283 0.829474283 0.0
0.4 0.826087383 0.826087383 0.0
0.5 0.846243429 0.846243429 0.0
0.6 0.88759712 0.887597126 0.6 10°
0.7 0.947537685 0.94753776 0.75 10’
0.8 1.023213837 1.023214508 0.671 10°®
0.9 1.111563878 1.111568391 0.4513 107

1 1.209350426 1.209374996 0.2457° 10°*

Case 2:

From eqg. (3.20) the functions uk(x) for k = 0, 1, ...;can be
obtained for g :%, as.

1

Ug(x) =1+J2 CA2) g2 G4 72, 9O |aya

8632  3G7/2)°  5G1Y2)

M- TR SR -T
&)(15/2 +ﬂx19/23+\]zgx_x_+x__x_+x_g+
7!G(15/2) 9!G(19/2) ] 8 3 5 7 9!@
14 4 6 8 10
- é u
. X X0 X X0
& 3 5 7 9y

Uk+1(X) =- \]E[uk (X)]
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Substituting the above functions up to 10 terms into

eg.(3.13).0ne can get the approximate solution of u(x) when q = % :

Following Table (2), represent the approximate result of u(x)

when g = %
Table (2)
The approximate solution of u(x), when q = %
X Approximate solution u(x)
0.1 0.75104093
0.2 0.727031608
0.3 0.75290395
0.4 0.811047383
0.5 0.893511908
0.6 0.995100324
0.7 1.111543574
0.8 1.238915952
0.9 1.373370585
1 1.511027198

Case 3:

From eg. (3.20) the functions u(x) for k = 0, 1, ...; can be

obtained for g :%, as.
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éG(Z) G 154 | d6) 234 _
G(?/ 4) 3G15/4) 51G(23/4)

v 1 3 5
G8) | aya, Q10 X39/E Jag XX
U

71G(31/4) 0lG(39/4) 3 5
RN
79y
1
Upap(X) = - I*[uy (X)]

-l>||—\

Ug(X) =1+J

@>C9<> ()

X6 X8 10

2. X L
3 5 7 9

@>(’9<> D~
GC c

After substituting the functions ug(x), uy(X), ...; up to 10 terms

Into eq.(3.13) one can get the approximate solution of u(x) when g = % :

Following table (3), represent the approximate solution of u(x)

when g = %
Table (3)
The approximate solution of u(x) when g = %
X Approximate solution of u(x)
0.1 0.651319941
0.2 0.673763976
0.3 0.730424793
04 0.807957669
0.5 0.899892734
0.6 1.001297664
0.7 1.107591215
0.8 1.214166383
0.9 1.316262741
1 1.408929446
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Example (3.2):

Consider the following fractional differential-algebraic equations:

DIu(x) - x gDS'v(x)8+ X2 8D92(x)8+ u(x) - (x +D v(x) +

GG 2 S T4 0 =1 I (3.21)
Ddv(x) - x gDS'z(x)g- VX)+(X-DZ(X) =0, (3.22)
74§ I 1 SRS (3.23)

with initial condition:
u0)=1,v(0)=1,2z0)=0
with the exact solution as given in [Celik and et al., 2006] for q=1
u(x) = e’ + xe*
V(X) = €+ xsin x
Z(X) =sin x
Equivalently egs.(3.21), (3.22) and (3.23) can be written as:

Diu(x) = x EDIV(X)§- x* EDIZ(X) - u(x) + (X +1)v(x) - (X* +2x)z(x)

............................... (3.24)
DIv(x) =x @DIZ(X)H+V(X) - (X- DZ(X) =0 coevrrirriiinnn. (3.25)
V4 00 = 1 1 D USSR (3.26)

As we do in example (3.1) we apply the inverse fractiona
differential operator J* to the both sides of equations (3.24) and (3.25)

after substituting the Maclurain series of z(x) into these equations in
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order to avoid the difficulty of fractional differentiation and integration

respectively we get:

u(x) + 2xv(x) +v(x)

e & x° x> x’ x°ou
Dlv(x)=xaD?sX - St Tt v(x) -
& & 3 5l 7l 9l
é 3 5 7 9':'
(X-1)ax- —+2- 2+ 2 &
& 31 51 71 9y

By taking the fractional integration to the both sides of the above
equations we get:

u(x) = a u""(O ) +Jq[2XV(X)]+Jq[V(X)] Jq | 2eX _ X?_'_

x" x° x® x® x¥u

X tad x*
ERk ARl S A TRIC)

et X 8 G2 .y G g

V(X)—a:,V (O )—+J mx 'mx +
&Xe-q - &X&q +ﬂxlo'qg+
5G6-q)  7'GB-q)  9G10-q)

4 6 8 10 3 5

quV(X)- X2+X__X_+X__ X_+X_+X__
8 3 5 7 9o 31 5
X _l_xgu
T

Then:
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Uo(X) =1- 284 oy 200) s 208 7,
G(4+q) 3IG6+Q) 5!G8+0Q)
26(10) Xg+q _ 26(12) X11+q _ G(S) X2+q +
71G(10+ Q) 91G(12 +q) G(3+0Q)
G(S) X4+q _ G(7) X6+q + G(g) X8+q -
3IG(5+0) 51G(7 +0) 7'G(9+0q)

aly R (3.27)
91G(11+q)
Uea (X) == 3 [u 0] + I [V ()] + 37 [2XV, ()] oovvveiceennee (3.28)

X GB3-9 2 Gb5-09 _4
V"(X)'f"ov OV G 9B - 9
X7-9 6 GO-q 8, G11-09) 10
G6- G7) GB8- 39  G10- q)G1Y
G(S) X2+q +ix4+q _ &X&Fq +

&3+0Q) 31G(5+0q) 51G(7 +q)

G(9) X8+q _ G(ll) X10+q + G(Z) X1+q _
71G(9+0q) 9IG(11+q) G(2+0Q)
_ G4 s, GO sq GO 7vq,
3'G4+Q) 5/1G6+0q) 7'G(8+0Q)

AAO) 9t (3.29)
91G(10+q)

Vi (X) = IV O] oo (3.30)

Case 1.

From eq.(3.28), (3.29) and (3.30) the functions ux(x) and vi(x) for
k=0,1,...;canbeobtained forg=1as:
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000 1. 2800, 200) o 208) o, 2600y 201D
G5 = 3AG7) 5G9 7'G1l)"  9G(13)
Gd ., B8 s GN ., Q9 o GI) x
&4 3G6)° 5GB)°  7IG10)  9G12)

Uy (X) =~ ‘][uk (X)] + ‘][Vk (X)] + ‘][ZXVk (X)]

6. G4 ., GO , GO .,
Gy GIEH GHA7) QNG9

GlO) 0 G35, GO s QD) .,
G9GI) G4 IAE)  5GE

G o G1) .,GD . G& ., GO
76100 9G12) &3 3G5  5E7)
Q8 o, Q1O

7'G9) 91G11)

Vi (X) = ‘][Vk (X)]

Vo(X) =1+

After determined the components u(x) and vi(x), for k =0, 1, ...;
and substituting them into eg. (3.13) up to 10 terms one can get the
approximate solution for u(x) and v(x) respectively for g = 1.

Following Tables (4) and (5 gives a comparison between

approximate solution of u(x) and v(x) with the exact solution.
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Table (4)

Comparison of the approximate solution of u(x) with the exact solution.

Exact solution of

Approximate

Absoluteerror

u(x) solution of u(x)

0.1 1.01535451 1.02035898 0.5x10?
0.2 1.063011305 1.05086707 0.012
0.3 1.145775863 1.191172025 0.45x10'*
0.4 1.267049925 1.348330569 0.813x10*
0.5 1.430891295 1.559045046 0.128
0.6 1.642082916 1.828593336 0.187
0.7 1.906212199 2.163095124 0.257
0.8 2.229761707 2.569713698 0.34
0.9 2.62021246 3.057488401 0.407

1 3.08616127 3.64018646 0.554

Table (5)

Comparison of the approximate solution of v(x) with the exact solution.

Exact solution of

Approximate

Absoluteerror

V(X) solution of v(x)

0.1 1.11515426 1.11515426 0.0
0.2 1.261136624 1.261136624 0.0
0.3 1.43851487 1.43851487 0.0
0.4 1.647592035 1.647592035 0.0
0.5 1.88843404 1.88843803 0.399x10°°
0.6 2.160904284 2.16091408 0.9796x10 °
0.7 2.464705089 2.464789866 0.8478x10 *
0.8 2.799425801 2.799975556 0.5498x10®
0.9 3.16459733 3.167456927 0.286x10 2

1 3.559752813 3.57225281 0.125x10°*

79




Chapter Three Adomian Decomposition Method for Solving
Fractional-Differential Algebraic Equations

Case 2:
From eq.(3.27), (3.28), (3.29) and (3.30) the functions u(x) and

vk(x) fork =0, 1, ...; can be obtained for qzé as.

Uy(X) =1- 2G(4) (2, 2G(6) A2 2G8) 52
q92) 3G132) 5IG(1L7/2)
2510) 192 2G12) 2 &I 52,
7'321/2) 91G(25/2) q7/2)
Q) 92 AN 32, ) a2
312 5G152) 71G19/2)
GlY) oy
91GX23/2)

Uy (X) =- Jl/z[uk(x)] +JV2 [Vk (X)] + ‘Jl/z[zka (X)]

voge1s_ 08D o Q9D .. Q13D
Q3G Q7/2EH  QIY2Q7)
Q72 o, G2 o GI s,
QI52Q9 Gu92G1Y) Q72
G8 oo, OGN me, Q9 ue.
3112 51G(15/2) 7'319/2)
GL) 2o, G2 g GA e,
96232 G52 3Q9D)
GO e, OO s, GO
51G(13/2) 71G(17/2) 91G21/2)

Vi () = J2 [Vk (X)]
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After determined the components u(x) and vi(x) for k =0, 1, 2,

...; up to 10 terms and substituting them into eg. (3.13) one can get the

&mmﬂm&eaMMondu@)aﬂv@)mrq:%.

Following Tables (6) and (7) represent the approximate solution

of u(x) and v(x) when g = % :

Table (6)

The approximate solution of u(x), when q = %

X Approximate solution of u(x)
0.1 1.277006028
0.2 1.665134105
0.3 2.169140178
0.4 2.8031011221
0.5 3.583897244
0.6 4.530008671
0.7 5.660975446
0.8 6.99705369
0.9 8.558960728

1 10.367683549
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Table (7)
The approximate solution of v(x), when q = %

X Approximate solution of v(x)
0.1 1.523580567
0.2 1.919238804
0.3 2.351493063
04 2.834930619
0.5 3.375655793
0.6 3.977318952
0.7 4.642596074
0.8 5.373741033
0.9 6.172866973

1 7.04214453062

Case 3:
From eqg. (3.27), (3.28), (3.29) and (3.30) the functions ux(x) and

vik(x) for k=0,1,2,... ; can be obtained for g =% as.

UO(X) =1- &Xls/4 +ﬂx21/4 - ﬂng/“ +
G(17/4) 31G(25/4) 5!(33/4)
2600 g 2602 e OO e,
71G(41/4) 91((49/4) G(13/4)
GO) . OT) wn, GO .
31G(21/4) 51G(29/4) 7'G37/4)
S
9!G(45/4)
Upy () = - 3 [uk (X)] +J/ [Vk (X)] +J [2XVk (X)]

82



Chapter Three Adomian Decomposition Method for Solving
Fractional-Differential Algebraic Equations

QW4 . _CU94) ., G214
74943 q194Q5 2234 7)
GB3Y4) s, G434 0w G ga,
GRBYHGE9  GRB9Y4HGE1) G134

GO e QA7) s, GO wma
31G(21/4) 51G(29/4) 71G(37/4)

GL) oy, G2 50 G4 3,
91G(45/4) Q(9/4) 31G(17/4)

6(6) NG (3(8) NG L G(lO) %374
51G(25/4) 71G(33/4) 91G(41/4)

Vi () = 3 [Vk (X)]

Vo(X) =1+

After determining the components uk(X) and vg(x) fork =0, 1, ...;

up to 10 terms and substituting them into eqg. (3.13) one can get the

approximate solutions of u(x) and v(x) for q= % :

Following Tables (8) and (9) represent the approximate solution

of u(x) and v(x) when g = % :
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Table (8)
The approximate solution of u(x), when q = %

X Approximate solution of u(x)
0.1 2.211092121
0.2 3.315848939
0.3 4.646807546
04 6.34597496
0.5 8.174991978
0.6 10.438230868
0.7 13.070609363
0.8 16.094584143
0.9 19.528479512

1 23.386085215

Table (9)
The approximate solution of v(x), when q = %

X Approximate solution of v(x)
0.1 2.464330552
0.2 3.318012629
0.3 4.21280831
04 5.183356657
0.5 6.240572066
0.6 7.388237238
0.7 8.626851519
0.8 9.954951053
0.9 11.369683314

1 12.8671116036
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CONCLUSIONS AND FUTURE WORK

From the present work, we can conclude the following:

1. The (DTM) and (ADM) reduces the computational difficulties of
many numerical methods such as Homotopy analysis method if it’s
used to solve fractional differential-algebraic equations and al the

calculations can be made very smple.

2. Aswe see in chapters two and three the differential transform method
IS more accurate than the (ADM) because in some times we need to
evaluate fractional order differentiation or integration of some special
functions such as sin(x) in the (ADM) and this is difficult to do, and
as a technique to avoid this difficulty we approximate these functions
by taking its Maclurian series, while in the (DTM) we do not need to

do this process.

3. The (DTM) and (ADM) can be applied to other types of non-linear

problemsin the field of fractional calculus.

Also, we can recommend the following problems as a future

work:

1. Studying the numerical solution of stochastic differential-algebraic

eguations of fractional order.

2. Studying the numerical solution of partial fractional differential-

algebraic equations.

3. Studying the numerical solution of fractional delay differential-
algebraic equations.
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