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Abstract
Genetic Algorithms (GAs) are general-purpose search and optimization procedures. They were inspired by the biological evolution principle of survival of the fittest. This led to the metaphoric use of terminology borrowed from the field of biological evolution.

Another method of optimization, Particle Swarm Optimization (PSO), is able to accomplish the same goal as GA in a new way. The thought process behind the algorithm was inspired by social behavior of animals, such as bird flocking. PSO is similar to the GA in that it begins with a random population, unlike the GA; PSO has no evolution operators such as crossover and mutation.

In this thesis, three problems were chosen to compare between GA and PSO performance. These problems are (Solving Linear Algebraic Equations (SLAE), Solving N-Queens problem (SNQP), and Substitution Cipher (SC)).

The Solving Linear Algebraic problem is a simple problem with (212) search space to find the solution for linear equations; both GA and PSO consistently find good solutions. The Solving N-Queens problem is the problem of putting n queens on an n×n chessboard with ((n-k)Ị) search space such that non of them is to be able to attack any other.  Eight and sixteen queens were tried in this implementation. Good results are obtained, but the GA performance is better and faster than PSO when the number of queens is increased. Finally, the Substitution Cipher problem is a complete problem, with (26Ị) search space size the full key space of all possible substitution ciphers was searched, and this implementation was met with limited success.

Abbreviations
	BGA
	Breeder Genetic Algorithm

	BP         
	Back Propagation 

	EA         
	Evolutionary Algorithm

	EAs        
	Evolutionary Algorithms

	EP        
	Evolutionary Programming

	ES       
	Evolutionary Strategies

	G

	Current number of Generations

	GA         
	Genetic Algorithm

	GAs       
	Genetic Algorithms

	GP           
	Genetic Programming

	GPGA     
	Global Parallel Genetic Algorithm 

	NoG

	Maximum Number of Generations

	PMX      
	Partial Matched Crossover

	PSO         
	Particle Swarm Optimization

	SC        
	Substitution Cipher

	SLAE     
	Solving Linear Algebraic Equations

	SNQP     
	Solving N-Queens problem

	TGA        
	Traditional Genetic Algorithm
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1.1 Background


In the early 1950s computer scientists studied evolutionary systems as an optimization tool, introducing the basic of evolutionary computing. Until 1960s, the field of evolutionary systems was working in parallel with genetic Algorithm (GA) research. When the started to interact, a new field of evolutionary programming appeared by introducing new concepts of evolution, selection and mutation. Holland defined the concept of the GA as a metaphor of the Darwinian theory of evolution applied to biology. Implementation of a GA begins with a population of random chromosomes. The algorithm then evaluates these structures and allocates reproductive opportunities such that chromosomes which represent better solutions to the problem are given more chance to “reproduce”. In selection, the best candidates, new fitter offspring are produced and reinserted, and the less fit removed. In using operators such as crossover and mutation the chromosomes exchange their characteristics. The suitability of solution is typically defined with respect to the current population. GA techniques have a solid theoretical foundation. GAs are often viewed as function optimizers, although the range of problems to which they have been applied is broad [Hol75, Neg02]. 


The implicit rules followed by the members of fish schools and bird flocks, that allow them to undertake synchronized movement, without colliding, has been studied by several scientists. There is general belief that social sharing of information among individual of a population, may provide an evolutionary advantage, and there are numerous examples coming from nature to support this. This was the core idea behind the development of Particle Swarm Optimization (PSO). The PSO method is a member of the wide category of swarm intelligence methods [Rey87, Hep90, Ken01].  

Kennedy originally proposed PSO as a simulation of social behaviour, and it was initially introduced as an optimization method in 1995. PSO can be easily implemented and is computationally inexpensive since its memory and CPU speed requirements are low. Furthermore, it dose not require gradient information of the objective connection being considered, only its values. PSO has proved to be efficient methods for numerous general optimization problems and in some cases it dose not suffer from the problems encountered by other Evolutionary Computation techniques. PSO typically moves quickly towards the best general area in the solution space for a problem [Ken95, Ebe96, Jon05].

1.2 Literature Survey

In December 2000, Azhar M. Kadim discussed the effects of using different fitness scaling strategies and selection schemes on the performance of GA and compare between these methods and the traditional GA. Tournament selection is the most efficient and robust selection scheme than other in terms of the efficiency to reach the optimum point in the define search space, and the most powerful scaling strategy among the other is Fixed Linear scaling [Kad00].

In December 2003, Joe Gester Used Genetic Algorithms in an attempt to generally solve two classes of simple substitution cipher; the full key space of all possible substitution cipher was searched. When this approach was met with limited success, the simpler approach of searching the more likely used keyword generated key space was implemented. The algorithm would have a difficult time getting started on finding a solution but some progress had been made would more rapidly move towards higher fitnesses,  and GAs have been used successfully to break more complex ciphers[Web1].
In 2003, 
Mark Bozikovic, Marin Golub, Leo Budin shows the way that GAs can be used to solve n-Queen problem. Custom chromosome representation, evaluation function and genetic operator are presented. Also, a Global Parallel Genetic Algorithm (GPGA) is demonstrated as a possible way to increase GA speed and performance. GA is able to find different solutions for a given number of queens, but GPGA shows increase in performance for small number of parallel-processing units not suitable for massive parallel processing [Boz03].

In February 2004, Y. Shi surveyed the research and development of PSO in five categories: algorithms, topology, parameters hybrid PSO algorithms, and applications. There are certainly other research works on PSO which are not included due to the space limitation. In general, the search process of a PSO algorithm should be a process consisted of both contraction and expansion so that it could have the ability to escape from local minima, and eventually find good enough solutions. [Shi04].

In July 2004, Bethany Delman, make a performance comparison between traditional cryptanalysis methods and GA-based methods, and to determine the validity of typical GA-based methods in the field of cryptanalysis. The focus was on classical ciphers, including substitution, permutation, transposition, knapsack and Vernam ciphers. In many cases, these ciphers were among the simplest possible versions. Many of the GA-based attacks lacked information required for comparison to the traditional attacks. Dependence on parameters unique to one GA-based attack does not allow for effective comparison among the studied approaches. The most coherent and seemingly valid GA-based attacks were re-implemented so that a consistent, reasonable set of metrics could be collected. The two metrics used, elapsed time and percentage of successful attacks, were chosen so that traditional and GA-based attacks could be compared. The results show that Traditional cryptanalysis methods are more successful, and easier to implement. While a traditional method takes more time, a faster unsuccessful attack is worthless. The failure of the genetic algorithm approach indicates that supplementary research into traditional cryptanalysis methods may be more useful and valuable than additional modification of GA-based approaches [Del04].
In February 2005, C.R. Mouser, S.A. Dunn, described the performance of two population based search algorithms (GA and PSO) when applied to the optimisation of a structural dynamics model. A significant difficulty arises when they tryied to compare the performance of such algorithms and they are describe how a genetic algorithm optimizes the properties of genetic algorithm and particle swarm optimization in order to produce algorithms that are optimally turned to the particular problem being solved. This problem is implemented on a distributed computing facility spread across the Defence Science and Technology Organization’s network across four cities in south-east Australia. The PSO algorithm significantly outperformed the GA. Also, the PSO algorithm is much easier to configure than GA and is more likely to produce an acceptable model [Mou05]. 

In April 2005,Aseel G. Mahmoud investigated one of the searching methods called Particle Swarm Optimization (PSO) and how this algorithm can be implemented as a learning algorithm to train multilayer neural networks. Then compare the computational requirement of binary PSO with real PSO and Back Propagation (BP) as training algorithms for neural networks. The result of PSO was better than back propagation to both prediction and classification applications. The PSO algorithm has fewer parameters to tune, thus it is more universal tool, and can be used to locate or track stationary as will as nonstationary extremes, and Binary PSO gives better result than PSO trained with real numbers [Mah05].

In 2005, Mahamed G. H. Omran investigated the application of an efficient optimization method, known as Particle Swarm Optimization (PSO), to the field of pattern recognition and image processing, clustering method that is based on PSO is proposed. PSO-based approaches are proposed to tackle the color image quantization and spectral unmixing problems. In all the proposed approaches, the influence of PSO parameters on the performance of the proposed algorithms was evaluated [Omr05].

In 2005, Rania Hassan, Babak Cohanim, Olivier de Weck, attempted to examine the claim that PSO has the same effectiveness (finding the true global optimal solution) as the GA but with significantly better computational efficiency (less function evaluation) by implementing statistical analysis and formal hypothesis testing. The performance comparison of the GA and PSO was implemented using a set of benchmark test problems as well as two space system design optimization problems. The first problem is the configuration of a ground-based multi-station radio telescope array; the second test problem involves the reliability-based design of a commercial communication satellite. The results of the most test problems both PSO and the GA obtain high quality solutions, the computational effort required by PSO to arrive to such high quality solutions is less than the effort required to arrive at the same high quality solutions by the GA. The analysis shows that the difference in computational effort between PSO and the GA is problem dependent [Has05].

In 2005, O. Jones, used the two approaches GA and PSO to find a solution to a given objective function but employ different strategies with different computational effort, it was appropriate to compare their implementation. The problem area chosen is that of identification of model parameters as used in control engineering (Black-box modeling, commonly known as “system identification”). System modeling can be decomposed into two inter-relate, problems: Selection of a suitable model structure and Estimation of the model parameters, the work focuses on Estimation. The results indicate that both GAs and PSO can be used in the optimisation of parameters during model identification. In terms of computational effort, the GA approaches is faster, although it should be noted that neither algorithm takes what can be considered an unacceptably long time to determine their results, and the GA determines values which are closer to the known values than does the PSO. Finally, the GA seems to arrive its final parameter values in fewer generations than PSO [Jon05].

1.3 Thesis Objective
In recent years, the area of Evolutionary Computation has come into its own. Two of the popular developed approaches are GAs and PSO, both of which are used in optimization problems. Since the two approaches are supported to find a solution to a given objective function but employ different strategies and computational efforts, it is appropriate to compare their implementation.

The contribution in this work has two fields: 

1. To compare the effectiveness of GA and PSO (i.e. compare their solution     quality or convergence reliability). 

2. To compare the efficiency of GA and PSO (i.e. compare convergence speed).

Three problems (Solving Linear Algebraic Equations (SLAE), Solving N-Queens problem (SNQP), and Substitution Cipher (SC)) are selected in this work and solved by using these two methods. 

1.4 Thesis Layout 


The remaining chapters of this thesis are:

· Chapter Two: Genetic Algorithm and Particle Swarm Optimization 

A presentation of Evolutionary Algorithms, Elements of GAs, GA procedure, advantages and disadvantages of GAs, basic idea of PSO topology, PSO neighborhood topologies, PSO algorithm, fitness criterion, Binary PSO, PSO drawbacks, and GA versus PSO. 
· Chapter Three: Design and Implementation 

Introduces the design and implementation details of GA and PSO. Also describe the selected three problems used to show the efficiency of using these algorithms.

· Chapter Four: The results and Comparison 

This chapter presents the obtained results of applying GA and PSO on three problems, and performs a comparison between these algorithms.
· Chapter Five: Conclusion and Suggestion Works

This chapter presents the conclusion of applying GA and PSO, with the main suggestions for future works.

2.1 Introduction


In the early 1950s computer scientists studied evolutionary systems as an optimization tool, introducing the basic of evolutionary computing. Evolutionary Algorithms (EAs) are optimization algorithms, they are used to find optimal or near optimal solutions where analytic methods can not be applied or are difficult to use.  EAs can be considered as a broad class of stochastic optimization techniques. An evolutionary algorithm maintains a population of candidate solutions for the problem at hand. Genetic Algorithms (GAs) are general purpose search algorithms based upon the principles of evolution observed in nature, and one of the important new learning methods is a Particle Swarm Optimization (PSO), which is simple in concept, has few parameters to adjust and easy to implement.

2.2 Evolutionary Algorithms
Evolutionary Algorithms (EAs) are general-purpose stochastic search methods simulating natural selection and evolution in the biological world. EAs differ from other optimization methods in the fact that maintain a population of potential (or candidate) solutions to a problem, and not just one solution [Omr05].
Generally, all EAs work as follows: a population of individuals is initialized where each individual represent a potential solution to the problem at hand. The quality of each solution is evaluated using a fitness function. A selection process is applied during each iteration of an EA in order to form a new population. The selection process is biased toward the fitter individuals to ensure that they will be part of the new population. Individuals are altered using unary transformation (mutation) and higher order transformation (crossover). This procedure is repeated until convergence is reached. The best solution found is expected to be a near-optimum solution. A general pseudo- code for an EA is shown below [Omr05].
	Initialize the population.

Evaluate the fitness of each individual in the population.

Repeat

           Apply selection on the population to form a new population.

           Alter the individual in the population using evolutionary operators.

           Evaluate the fitness of each individual in the population.

Until some convergence criteria are satisfied


General pseudo-code for EAs

 EAs constitute a class of search and optimisation methods, which imitate the principles of natural evolution (Goldberg, 1989; Holland, 1975). Fogel (1998) compiled a collection of selected readings on its historical development. The common term Evolutionary Computation comprises techniques such as [Cor01]:
· Genetic Programming (GP) which is used to search for the fittest program to solve a specific problem. Individuals are represented as trees and the focus is on genotypic (structure) evaluation.

· Evolutionary Programming (EP) which is generally used to optimize real-valued continuous functions. EP uses selection and mutation operators, it does not use the recombination operator. The focus is on phenotypic (parameter set, alternative solution and a decoded structure) evaluation and not on genotypic evaluation.

· Evolutionary Strategies (ES) which is used to optimize real-valued continuous functions. ES uses selection, crossover and mutation operators. ES optimizes both the population and the optimization process, by evolving strategy parameters. Hence, ES is evolution of evolution.

· Genetic Algorithms (GA) which is generally used to optimize general combinatorial problems. The GA is commonly used algorithm and has been used for comparison purposes in this thesis. The focus in GA is on genetic evolution using both mutation and crossover, although the original GAs developed by Holland (1962) used only crossover [Gol89].
Their principal mode of operation is based on the same genetic concepts, a population of competing candidate solutions, random combination and alteration of potentially useful structures to generate new solutions and a selection mechanism to increase the proportion of better solutions. The different approaches are distinguished by the genetic structures that undergo adaptation and the genetic operators that generate new candidate solutions [Cor01].
2.3 Genetic Algorithms
Genetic Algorithms are adaptive stochastic search algorithms (Stochastic searches are those that use probability to help guide their search) [Gra95].

A GA is a power search technique that mimics natural selection and genetic operators. Its power comes from its ability to combine good pieces from different solutions and assemble them into a single super solution. GA can be distinguished from other search and optimization techniques by the fact that it is a process, which uses a population of many individuals, rather than a single one to solve a problem [Bar97].

GAs are a family of computational models inspired by evolution. These algorithms encode a potential solution to a specific problem on a simple chromosome-like data structure and apply recombination operators to these structures so as to preserve critical information. They are often viewed as function optimizers, although the range of problems to which genetic algorithms have been applied is quite broad such as pattern recognition, image processing, machine learning, etc [Whi94].

2.3.1 Elements of GAs

The GAs have the following elements and operators: populations of chromosomes, selection according to fitness, crossover to produce new offspring, random mutation aims to introduce extra variability and inversion [Gol89].
· Encoding
Suppose someone is seeking to find a solution to some problem. To apply a GA to that problem, the first thing he/she must do is to encode the problem as an artificial chromosome or chromosomes. These chromosomes can be string of 1s and 0s, parameter list, integer numbers, or even complex computer codes, but the key thing to keep in mind is that the genetic machinery will manipulate a finite representation of the solution, not the solutions themselves [Gol89]. 
Binary encoding is the most common encoding. However, at present, there are no rigorous guidelines for predicting which encoding will work best. The initial population is usually generated randomly Suppose someone want to generate an initial population of four strings, each of which consists of five-bit length. A random start using successive coin flips (head=1, tail=0) might generate the initial population of size four and yields [Mit96]:
01101
11000

01000

10011

· Fitness Function
The key element in GAs is the selection of a fitness function that accurately quantifies the quality of candidate solutions; a good fitness function enables the chromosomes to effectively solve a specific problem. This can be as simple as having a human intuitively choose better solutions over worse solutions, or it can be an elaborate computer simulation or model that helps determine what good is. But the idea is that something must determine a solution’s relative fitness to purpose, and whatever that is will be used by the GA to guide the evolution of future generations. In many cases the fitness of a string is the function value at that point [Nih98,Omr05].
· Selection

Another key element of GAs is the selection operator which is used to select chromosomes (called parents) for mating in order to generate new chromosomes (called offspring). In addition, the selection operator can be used to select elitist individuals. The selection process is usually biased toward fitter chromosomes. Selection methods are used as mechanisms to focus on apparently more profitable regions in the search space. Examples of well-known selection approaches are [Gol89, Cha99, Omr05]:
· Roulette wheel selection: Parent chromosomes are probabilistically selected based on their fitness. The fitter the chromosome, the higher the probability that it may be chosen for mating. Consider a roulette wheel where each chromosome in the population occupies a slot with slot size proportional to the chromosome’s fitness. When the wheel is randomly spun, the chromosome corresponding to the slot where the wheel stopped is selected as the first parent. This process is repeated to find the second parent. Clearly, since fitter chromosomes have large slots, they have better chance to be chosen in the selection process.
· Rank selection: Roulette wheel selection suffer from the problem that highly fit individuals may dominate in the selection process. When one or a few chromosomes have high fitness compared to the fitness of other chromosomes, the lower fit chromosomes will have a very slim chance to be selected for mating. This will increase selection pressure, which will cause diversity to decrease rapidly resulting in premature convergence. To reduce this problem, rank selection sorts the chromosomes according to their fitness and base selection on the rank order of the chromosomes, and not on the absolute fitness values. The worst (i.e. least fit) chromosome has rank of 1, the second worst chromosome has rank of 2, and so on. Rank selection still prefers the best chromosomes; however, there is no domination as in the case of roulette wheel selection. Hence, using this approach all chromosomes will have a good chance to be selected. However, this approach may have a slower convergence rate than the roulette wheel approach.

· Tournament selection: In this more commonly used approach, a set of chromosomes (known as tournament size) are randomly chosen the fittest chromosome from the set is then placed in mating pool. This process is repeated until the mating pool contains a sufficient number of chromosomes to start the mating process.
· Elitism: In this approach, the fittest chromosome, or a user-specified number of best chromosomes, is copied into the new population. The remaining chromosomes are then chosen using any selection operator. Since the best solution is never lost, the performance of GA can significantly be improved.

· Crossover

Crossover is “the main explorative operator in GAs”. Crossover occurs with a user-specified probability; called the crossover probability Pc. Pc is problem dependent with typical values in the range between 0.4 and 0.8. The four main crossover operators are [Omr05]:
· Single point crossover: In this approach, a position is randomly selected at which the parents are divided into two parts. The parts of the two parents are then swapped to generate two new offspring.

Example 1:

Parent A:

11001010
Parent B:
       
01110011

Offspring A:
  
11001011

Offspring B:

01110010

· Two point crossover: In this approach, two positions are randomly selected. The middle parts of the two parents are then swapped to generate two new offspring.
Example 2:

Parent A:         
11001010

Parent B:         
01110011
Offspring A:    
11110010

Offspring B:    
01001011

· Uniform crossover: In this approach, alleles (i.e. feature values) are copied from either the first parent or the second parent with equal probability, usually set to 0.5.

Example 3:

Parent A:       
11001010

Parent B:        
01110011

Offspring A:   
11101011

Offspring B:    
01010010
· Partial Matched Crossover (PMX)

This type of crossover is not suitable for binary coding problems. Under PMX, two strings aligned, and two crossing sites are picked uniformly at random along the strings. These two points define a matching section that is used to affect a cross through position-by-position exchange operations. The example below show how this is done [Gol89]:

Two individuals X, and Y are chosen:




X=9 8 4 5 6 7 1 3 2 10




Y=8 7 1 9 5 10 6 4 3 2

Two crossover points are selected randomly from the range [1,n-1], where n is the string length (say crossover points 3&6).




X=9 8 4 | 5 6 7 | 1 3 2 10




Y=8 7 1 | 9 5 10 | 6 4 3 2

So, characters 5, 6, 7 from X and characters 9,5,10 from Y represent the matching section. Begin with string X, start from left, we have cell value 9, search cell value 9 in matching section of string Y, if it is found, take its parent from matching section of X, also find the parent of the parent in matching section of Y and so on until we find the origin of cell value 9, which is equal to 6, and put it in it’s position in string X [Gol89].




X= 9  8  4  |  5  6  7  |  1  3  2  10




Y= 8  7  1  |  9  5  10  |  6  4  3  2

The same operation is applied on every character before and after the matching section, and position-by-position exchange is applied in matching section. The above operations are performed on string Y, so the results of crossover operation are [Gol89]:




X`=6 8 4 | 9 5 10 | 1 3 2 7




Y`=8 10 1 | 5 6 7 | 9 4 3 2

· Mutation

Mutation is performed after crossover by randomly choosing a chromosome in the new generation to mutate. We then randomly choose a point to mutate and switch that point [Bry00].

In GAs, mutation is considered to be a background operator, mainly used to explore new areas in the search space and to add diversity to the population of chromosomes in order to prevent being trapped in a local optimum. In a binary coded GA, mutation is done by inverting the value of each gene (Feature, Character, or Detector) in the chromosome according to a user-specified probability, which is called the mutation probability, Pm. This probability is problem dependent. Mutation occurs infrequently both in natural and in GAs, hence, a typical value for Pm is 0.01 [Omr05]. 
Example 4:

        Parent:                                                            110010

        Offspring after mutation at second position: 100010

There are three-mutation orders [Mit96, Hos00]:

· 1st order mutation: changes a single bit in a chromosome.
· 2nd order mutation: changes two bits in a chromosome.
· 3rd order mutation: changes more than two bits in a chromosome.
Inversion is a different form of mutation. It is sometimes used in appropriate cases. Under inversion, two points are chosen along the length of the chromosome, the chromosome is cut at those points, and the end points of the cut switch places. For example, consider the fallowing eight-positions string where two inversion sites are chosen at random (perhaps sites 2 and 6) [Bry00]:

10|1110|11

After using the inversion operator, the following string results:

10011111

Essentially it is just reversing (or inverting) the order of the genes in between the two chosen points.
2.3.2 The GA Procedure

The following procedure (pseudo code) of the GA illustrates the main steps that should be performed to produce the required solution.
	Create an initial population of strings.

Calculate the fitness of each string.

While an acceptable solution is not found

            Select parent for next generation.

            Combine the parents to create new offspring.

            Mutation and Inversion are applied according to some probability.

            Calculate the fitness of each offspring.

End While.


Pseudo code of Genetic Algorithm

The operations of GA can be summarized by the general and simple flowchart given in figure (2.1):


Figure (2.1): flowchart of GA

2.3.3 Advantages and Disadvantages of GAs 

GAs has a number of advantages and some drawbacks as illustrate below [Web2, Web3]: 

A GAs advantages are:

· It can quickly scan a vast solution set.

· Bad proposals do not affect the end solution negatively as they are simply discarded.

· It works by its own internal rules; this is very useful for complex problems or poorly understood.

· Capability of search in space when traditional search methods fail.

· It’s useful and efficient when no mathematical analysis is available.

The drawbacks of GAs are:


· Premature convergence near global optimal point.

· Many parameters to be selected that affect on the solution.

· GAs risk finding a suboptimal solution.

2.4 Particle Swarm Optimization
Particle Swarm Optimization is one of the evolutionary computations, which can be used for optimization, developed by Kennedy and Eberhart in 1995. 

This algorithm is based on the social behavior of individuals living together in groups such as bird flocking, fish schooling, and swarm of bees (or insects). A population of particles exists in the n-dimensional search space that the optimization problem lives in. Each particle has a certain amount of knowledge, and will move about the search space based on this knowledge. The particle has some inertia attributed to it and so will continue to have a component of motion in the direction it is moving. It also keeps track of the best solution for all the particles achieved so far, as well as the best solution achieved so far by each particle. The particle will then modify its direction such that it has additional components towards its own best position and towards the overall best position. This will provide some form of convergence to the search, while providing a degree of randomness to promote a wide coverage of the search space [Ken01, Mou05, Web4].

2.4.1 PSO Topology 

The common uses of PSOs are either global version or local version. In the global version of PSO, each particle flies through the search space with a velocity that is dynamically adjusted according to the particles of personal and the best performance achieved so far by all the particles. While in the local version of PSO, each particle’s velocity is adjusted according to its personal best and the best performance achieved as far within its neighborhood. The neighborhood of each particle is generally defined as topologically nearest particle to the particle at each side [Shi04].

A lot of researches had work on improving PSO performance by designing or implementing different types of neighborhood structures. Each neighborhood structure has its strength and weakness. It works better in one kind of problems, but worse on the other kind of problems. When using PSO to solve a problem, not only the problem needs to be specified, but the neighborhood structure of the PSO utilized, should also be clearly specified [Shi04].

2.4.2 PSO Neighborhood Topologies
Different neighborhood topologies have been investigated. The two common neighborhood topologies are the star (or wheel) and ring (or circle) topologies. For the star topology, one particle is selected as a hub, which is connected to all other particles in the swarm. However, all the other particles are only connected to the hub. For the ring topology, particles are arranged in a ring. Each particle has same number of particles to its right and left as its neighborhood [Ken02].

 Recently, Kennedy and Mendes proposed a new PSO model using a Von Neumann topology. For the Von Neumann topology, particles are connected using a grid network (2-dimensional lattice) where each particle is connected to its four neighbor particles (above, below, right and left particles). The following figure illustrates the different neighborhood topologies.


[image: image2]
               Star Topology                            Ring Topology                     Von Neumann Topology
The choice of neighborhood topology has a profound effect on the propagation of the best solution found by the swarm. Using the star topology the propagation is very fast (i.e. all the particles in the swarm will be affected by the best solution found iteration t, immediately in iteration t+1). However, using the ring and Von Neumann topologies will slow down the convergence rate because the best solution found has to propagate through several neighborhoods before affecting all particles in the swarm. This slow propagation will enable the particle to explore more areas in the search space and thus increases the chance of convergence [Omr05].

2.4.3 PSO Algorithm 

As described by Kennedy and Eberhart, the PSO algorithm is an adaptive algorithm based on a social-psychological metaphor; a population of individuals (referred to as particles) adapts by returning stochastically toward previously successful regions.

Particle Swarm has two primary operators: Velocity update and Position update. During each generation, each particle is accelerated toward the particles previous best position and the global best position. At each iteration a new velocity value for each particle is calculated based on its current velocity, the distance from its previous best position, and the distance from the global best position. The new velocity value is then used to calculate the next position of the particle in the search space. This process is then iterated a set number of times or until a minimum error is achieved [Ken01, Set05].

The PSO algorithm depends on its implementation in the following two relations [Shi04]:

The velocity of particle i is updated using the following equation:

vid (t+1) = wvid (t) + c1r1 (t)(pid(t) – xid(t)) + c2r2(t)(pgd(t) – xid(t))    …(2.1)

vid ( (-Vmax, +Vmax)
The position of particle i, xi is then updated using the following equation:

xid (t+1) = xid (t) + vid (t+1)                                                            …(2.2)

· Definition and Variables Used [Set05]:
t           
mean the current time step, t+1 mean the next time step.

Tmax   

the maximum number of time step the swarm is allowed to search (No. of Iterations).

xid (t)     
is the current state (position) at site d of individual i.

vid (t)     
is the current velocity at site d of individual i.

(Vmax      
is the upper/lower bound placed on vid (specified by the user).

w(t)    
is the inertia weight (Inertia Particle Swarm) (that control the exploration and  exploitation of the search space).

                     w= ((Tmax - G) * (0.9 - 0.4) / Tmax) + 0.4                       …(2.3)

                    Where G is the current generation number.
pid         
is the individual’s i best state (position) found so far at site d.

pgd        
is the neighborhood best state found far at site d.

c1          
cognition parameter 1, a positive constant, usually set to 2.0.

c2          
social parameter 2, a positive constant, usually set to 2.0.

(c1 & c2 the cognition and social components respectively are the acceleration constants which change the velocity of particle towards the pid and pgd).
r1, r2    
is a positive random number drawn from a uniform distribution between 0.0 and 1.0.
                  Table (2.1): The most common parameters of PSO

	              Parameter
	  Symbol
	        Parameter Value

	No. of particles
	    Psize
	Psize ( [10…40] Particles

	Maximum velocity
	    Vmax
	           Vmax = 0.2

	Minimum velocity
	    Vmin
	          Vmin  = -  Vmax

	Inertia weight
	      w
	 w= ((Tmax - G) * (0.9 - 0.4) / Tmax) + 0.4

	First acceleration parameter
	      c1
	          c1 ( [0.5,2]    

	Second acceleration parameter
	      c2
	    c2=c1    or   c1+c2  ≤ 4

	Diversity of the population maintenance
	    r1,r2
	          r1,r2 ( [0,1]

	Iteration
	    Tmax
	          Tmax  ≤  30000


· Fitness Criterion:
    There are some criterions that must be satisfied to stop the algorithm work. One of these criterions is the fitness value, and the performance of each particle is measured according to a predefined fitness function, which is related to the problem to be solved. Fitness evaluation function might be complex or simple depending on the optimization problem at hand. Where a mathematical equation can not be formulated for this task, a rule-based procedure can be constructed for use as a fitness function or in some cases both can be combined. However, when some constraints are very important and can not be violated the structures or solution which does so to be eliminated in advance by appropriately designing the representation scheme. Alternatively they can be given low probabilities by using special penalty function [Hun94, Pha95].


2.4.4 The pseudo code of the PSO

The following pseudo code illustrates the main steps of the PSO [Web5].
	For each particle

      Initialize particle

End

Repeat

       For each particle

              Calculate fitness value

               If  the fitness value is better than best fitness value (Pid) in history

                    Set current value as the new Pid
        End

        Choose the particle with the best fitness value of all the particles as the Pgd
         For each particle

                Update particle velocity according to equation (2.1)

                Update particle position according to equation (2.2)

         End

Until Stopping criteria        


Pseudo code of PSO
The operations of PSO summarized by the flowchart given in figure(2.2) [Zho03]:

[image: image3]
Figure (2.2): flowchart of PSO
2.4.5 Binary PSO 
The original PSO is designed for the real-value problems. The algorithms now have been extended to tackle binary/discrete problems. To extend the real-value version of PSO to binary/discrete space. 

Kennedy and Eberhart use velocity as a probability to determine whether xid (a bit) will be in one state or another (zero or one). This is done by using a sigmoid function to squash velocities into a [0, 1] range. The sigmoid (logistic) function is defined as:

s(v)=
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Then the equation for updating positions (equation (2.2)) is replaced by the probabilistic update equation [Ken97, Shi04]:
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Where r(t) is a randomly generated number within [0, 1].

2.4.6 PSO Drawbacks 
PSO and other stochastic search algorithms have two major drawbacks. The first drawback of PSO is the swarm may prematurely converge. Although PSO finds good solution much faster than other evolutionary algorithms, it usually can not improve the quality of the solution as the number of iterations is increased [Løv02]. 

Another reason for this problem is the fast rate of information flow between particles, resulting in the creation of similar particles which increases the possibility of being trapped in local optima [Omr 05].

The second drawback is that stochastic approaches have problem-dependent performance. This dependency usually results from the parameter settings of each algorithm. Thus, using different parameter settings for one stochastic search algorithm result in high performance variances. In general, no single parameter setting exist which can be applied to all problems. This problem is magnified in PSO where modifying a PSO parameter may result in a proportionally large effect [Løv02]

2.5 GA versus PSO 


The PSO Algorithm shares similar characteristic to GA, however manner in which the two algorithms traverse the search space is fundamentally different.


Both Genetic Algorithms and Particle Swarm Optimizers share common elements[Set05, Web5]:

1. Both initialize a population in random manner.

2. Both use an evaluation function to determine how fit (good) a potential solution is.

3. Both are reproduction of the population based on fitness values.

4. Both are generational, that is both repeat the same set of processes for a predetermined amount of time.

5. Both are stopping when requirements are met. 

However, PSO does not have genetic operators like crossover and mutation. Particles update themselves with internal velocity. They also have memory, which is important to the algorithm. The information sharing mechanism in PSO is significantly different. In GAs, chromosomes share information with each other. So the whole population moves like a one group towards an optimal area. In PSO, only best neighborhood (or Pgd) gives out the information to others. It is a one way information sharing mechanism. The evolution only looks for the best solution. All the particles tend to converge to the best solution quickly even in the local version in most cases [Set05,Web5].

2.6 Summary

This chapter reviewed the Evolutionary Algorithms (EAs), Genetic Algorithm (GA), and Particle Swarm Optimization (PSO) and gave a description of their ideas. It explained GA elements, these are: Encoding, Fitness Function, Selection, Crossover and Mutation. Also it explained the equations of PSO, definitions of its variables, and how this algorithm work. Also shows the pseudo code of each algorithms and flowchart of both GA and PSO, finally mentioned to the drawbacks of both GA and PSO. The next chapter explains the implementation of three problems (SLAE, SNQP and  SC) using GA and PSO.

3.1 Introduction

In order to assess and compare the effectiveness and efficiency of the two heuristic search methods, GA and the PSO, three different studies problems were taken into consideration. These problems are: Solving Linear Algebraic Equations (SLAE), Solving N-Queens problem (SNQP), and Substitution Cipher (SC). These problems were selected since they are most popular problems were used by many researchers and in wide area of applications.

This chapter aims to design and implement GA and PSO to solve each of the above searching problems, and select fitness function that need to be in each case study that carrying out the result need to be obtained.

3.2 System Design

The designed system mainly consists 2-modules. First module is GA; the second module is PSO, as shown in figure (3.1).


[image: image6]
Figure (3.1): System Modules
3.3 Coding, Fitness Function, and Stopping Conditions 


Using both GA and PSO, to solve any problem, at first, two important oriented factors should be specified, these are:

1. Coding of individuals, which is, could be considered as a main factor in the success of any GA and PSO, most EA applications use fixed length string encoding for individuals. For each problem, there are various coding schemes could be used depending on the problem needed to be solved, as will be shown in each case study.

2.  Specification of fitness function, which is used to evaluate good solutions from bad solutions. Also fitness function various from one problem to another. Michalewics put it as “…the evaluation function serves as the only link between the problem and the algorithm” [Mic95,Sch 98].

At the end of each generation, in both algorithms GA and PSO, the stopping condition is checked, the conditions used are: if the exact solution is reached, or the algorithm will stop after the maximum 
number of generations which depends on the problem.

Module-1: Genetic Algorithm (GA)


After deciding which coding scheme and fitness function are used, GA can begin the problem solving. The basic structure of GA is shown in the following steps:

Algorithm (3.1): GA

Input: Population Size.

Output: The optimal or near optimal solution, No. of generation and Time.
Step 1: A random initial population of individuals is created; it created randomly by using prior-knowledge of possible good solutions, but each problem uses different random methods depending on the solution of the problem.

Step 2: Compute fitness function values for each individual in the population according to fitness function constructed for that problem.

Step 3: Sorting individuals according these fitness function value, the fittest individuals, or a user-specified number of best individuals, is copied into the new population. The remaining chromosomes are then chosen using any selection operator, Since the best solution is never lost.

Step 4: Certain number of individuals that will survive into next generation is selected using selection operator. Selection is somewhat biased, favoring “better” individuals. In this work, using Tournament Selection as illustrate in the following pseudo code:


Step 5:  Perform crossover operation on every two individuals chosen randomly from the array of individuals to generate the next generation. Pseudo code 2 shows the operation of Single Crossover and pseudo code 3 shows the Partially Matched Crossover.

Step 6: An Inversion operator (or Mutation) operator is applied on new individuals. It randomly changes few individuals (inversion, “mutation”, probability is usually low). Pseudo code 4 shows the operation of Inversion and pseudo code 5 shows the Mutation.

Step 7: Checking the Stopping Conditions. Stop if the exact solution is reached, else return to step 2.





Module-2: Particle Swarm Optimization (PSO)

Like GA, after deciding which coding scheme and fitness function are used, PSO can begin the problem solving. Basic structure of PSO is shown in the following steps:

Algorithm (3.2): PSO
Input: Swarm Size, c1, c2, r1, and r2.

Output: The optimal or near optimal solution, No. of iteration and Time.
Step 1: A randomly swarm of particles is created, and randomly create velocity for each particle (Velocity).

Step 2: According to problem nature, compute fitness function values for each particle in swarm. 

Step 3: Keep previous status of the particles. In this work, using previous fitness, as follows:

For Swarm Size

{
        PreviousFit(I) = fit(I)

 }

Where Fit is array of Fitness Value.
Step 4: Get the best particle (best fitness value) among the swarm.

Step 5: Modify Velocity based on previous fitness for particles and 
best value. The pseudo code 6 show the modification of velocity.

Step 6: Modify particles according to the velocity of each particle. It equivalent to update the particles Position. The Pseudo Code 7 shows the modification of particles.

Step 7: Checking the Stopping Conditions. Stop if the exact solution is reached, else return to step 2.



3.4 Experiments

Three problems are: Solving Linear Algebraic Equations (SLAE), Solving N-Queens problem (SNQP), and Substitution Cipher (SC) were selected to assess and compare the effectiveness and efficiency of the GA and the PSO algorithm.

3.4.1 Experiment One: (Solving Linear Algebraic Equations)
A. Problem Definition: In this work, the goal of this problem is to found the parameters of equation (by choosing it randomly) that led to the solution. This problem solved by GA and PSO and a comparison between them is done.
The equations used are: 
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B. Formulating the GA and PSO

· Developing a Coding Scheme

        The GA and PSO coding scheme of this problem used fixed length, binary string of length 12 bits to code the solutions, split the string into two equal parts the first part represent an integer number of (x), and the second part represent an integer number of (y), (i.e 6 bit to each x and y, and x, y ( [0…31]). There is one solution found to it solve these equations and not necessary x equal y.The search space size for this experiment is (212).

· Creating a Fitness Function
        For   2x + 3y = 5

                6x +   y = 7

We must find values of x and y such that:

               ( 2x + 3y – 5)2  + (6x +   y - 7)2 = 0                          … (3.2)

  So the objective function is equal to zero or near by the zero.

Now after the coding scheme is applied and the fitness function is specified, apply GA algorithm (3.1) and PSO algorithm (3.2) at which an initial population is created as illustrate in the following pseudo code:



The fitness function value of each individual in the population is computed as follows:


The type of crossover used in this experiment is the single crossover and mutation is also used, with star topology.

3.4.2 Experiment Two: (Solving N-Queens Problem)
A. Problem Definition: This is the n Queens problem, which is the analogue of the classic 8_Queens problem from chess. There is an n×n chessboard, so its search space size =((n-k)Ị) and the goal is to have n Queens placed into board squares so that no queen is attacking the other.
B. Formulating the GA and PSO

· Developing a Coding Scheme
This problem can be generalized as placing n nonattacking queens on an n×n chessboard. Since each queen must be on a different raw and column, we can assume that queen i is placed in i-th column. All solutions to the n-queens problem can therefore be represented as string of n bits (i.e String length =  n).

· Creating a Fitness Function
The problem with determining a good fitness function for n-queens problem, the position of a number in the string represents queen’s column position, while its value represents queen’s row position, so the row and column conflicts are already satisfied. A fitness function can be designed to count diagonal conflicts: more conflicts there are, worse the solution. For correct solution, the function will return Zero.

A queen that occupies i-th column and qi-th row is located on (i+qi-1) left and (n-i+qi) right diagonal. A fitness function first allocates counters for all diagonal then, for each queen, counters for one left and one right diagonal that queen occupies are increased by one. After evaluation, if a counter has a value greater than 1, there are conflicts on the corresponding diagonal. Fitness value is obtained by adding counter values.

Once a coding scheme and fitness function are available, algorithm (3.1) and algorithm (3.2) could be applied where an initial population is created using random number generator. Each individual contains number between 1 to n, as shown in pseudo code 10:


The fitness Value of each individual in the population is compute as follows:


In this experiment the PMX crossover used because the repetitions are not allowed, inversion is also used. For PSO the star topology was used.

3.4.3 Experiment Three: (The Substitution Cipher)
A. Problem Definition: cryptography is the science and study of secret writing. A cipher is a secret method of writing, where plaintext is transformed into ciphertext. The process of transforming plaintext into ciphertext is called encipherment or encryption. The reverse process of transforming ciphertext into plaintext is called decipherment or decryption. One or more cryptographic keys control both encipherment and decipherment.

In this work, the sender has a plaintext, and a given key is used to cipher the plaintext where the receiver has ciphertext and wants to recover the key, which decipher the ciphertext. So, the goal of this problem is to construct the key that converts the ciphertext to the plaintext.

B. 
Formulating the GA and PSO

· Developing a Coding Scheme
There are several ways in which a simple substitution key could be represented. In this work, each string represents a key for deciphering the ciphertext, this key given by string of 26 letter of the alphabet. For example, the key:

            {k x a h f w e q u o d m c z j b p y g n r i l t s v}

Indicates that each character a in ciphertext is substituted by         character k, each character b in ciphertext is substituted by character x, and so on for all characters of the string, as shown: 

Characters in ciphertext: a b c d e f g h i j k l m n o p q r s t u v w x y z

Characters in plaintext:   k x a h f w e q u o d m c z j b p y g n r i l t s v

· Creating a Fitness Function
Once a coding scheme is available, it is also necessary to supply an evaluation function. This function is used to determine the “best” representation. The evaluation function select for this work based on single character and diagram frequencies analysis. The process is as follows:

1. A given key is used to decipher the ciphertext.

2. The resulting text is subjected to both single character and diagram frequency analysis.

3. The results of this frequency analysis are compared to Standard English frequencies to determine an error value.

4. The error value is normalized and subtracted from 1 so that large fitness values represent smaller errors.

5. The fitness value is raised to the 8th power to amplify small differences.

6. The summation terms are divided by 4 to reduce sensitivity to large differences. Overall the fitness of a key is given by [Spi93, Del04]: 

     fitness=(1-∑{|SF[i]-DF[i]|+∑|SDF[i,j]-DDF[i,j]|}/4)8           …(3.3)

Where:

SF[i] is the standard the frequencies of character i in English plaintext, DF[i] is the measured frequency of the decoded character i in the ciphertext, SDF is the standard frequency of diagrams, and DDF is the measured frequency of diagram. 


The first summation term is the sum of the differences between the standard frequency of each character and the frequency of the ciphertext character, which decodes of the character. When measured frequencies match the standard frequencies, the summation terms evaluate to 0 so the fitness value is 1. As result, the search process is always moving towards fitness values closer to 1. The overall guiding concept is that keys, which produce plaintext with single character, and diagram frequencies close to that of stander English are “better” than keys which produce plaintext with poor frequency distributions.


Algorithm (3.1) and algorithm (3.2), are applied to solve this experiment after coding scheme and fitness function are available, where an initial population is created using a random number generator. Each string contains characters of the alphabet, as shown below: 


The fitness value of each key in the population is computed as follows: 



The type of crossover used in this experiment is a PMX because the individual indicate to characters of alphabet and repetition is not allowed and used inversion operator, and the maximum number of generations equal 100. The string of the maximum fitness value in the last generation is the optimal key, which is used to decipher the cipher text to obtain the plaintext. The star topology was used for the neighborhood topology in PSO algorithm, the search space size for this problem equal to (26 Ị).
3.5 Summary

This chapter presented an implementation of three problems (SLAE, SNQP, and SC), which are chosen, as the domain of this work. The two algorithms GA and PSO are used to implement them. Different coding schemes, fitness function, crossover operations and inversion or mutation types, depending on the problem to be solved, are presented in this chapter.  The next chapter concerns with the results and behavior of each problem obtained from this work and the comparisons between the algorithms are also discussed.

4.1 Introduction
This chapter shows the effect issues of using GA and PSO in problem solving. To study the behavior of each of the above algorithms, three different problems were suggested to be solved (by the above algorithms), these are SLAE, SNQP, and SC that were defined in chapter three. Finally, a performance comparison is making between these algorithms (i.e. reaching optimal solution, time, and number of generations).

4.2 Individuals Description
The first step in each GA and PSO algorithm is to link the real world to the algorithm world that is to set up a bridge between the original problem context and the problem solving space where evolution will take space. Each individual represents a possible candidate solution to the problem. These solutions usually take the form of bit or character string, though in some cases more complex data structures like abstract program trees or multi-dimensional vectors are used. The representation of the individual solution is the most critical aspect of the algorithms. For the purposes of this project, several different individual descriptions were used. In the three selected problems, the individual is encoded as a set of bit-values (string), the bits are not linked together. Each individual consists of the same number of bits, fixed number (as 12 bits in SLAE and 26 bits in SC) or variable number of bits (as in SNQP according to the numbers of queens (n)) and each of these bits have a value according to the nature of each problem (as a binary in SLAE, integer number in SNQP, and ASCII code in SC).

4.3 Initialization
The initial population in each GA and PSO algorithm is seeded by randomly generated individuals. In our works the maximum number of generation is dependent on the problem itself. The population/swarm size (i.e. individuals numbers) is set to 10, 20, 30,… and 100. Ten runs were performed for each population/swarm size, and the population/swarm size not changing during the evolutionary search.

4.4  Fitness Function
The fitness function is a rating the quality of each individual in the population’s solution. As illustrated and described in chapter three, the fitness value is problem-dependent.

4.5 Experiments Results
This section illustrates the performance of GA and PSO on three different problems (Solving Linear Algebraic Equations (SLAE), Solving N-Queens problem (SNQP), and Substitution Cipher (SC)).

4.5.1 Solving Linear Algebraic Equations
For solving Linear Algebraic Equations, the operators and parameters setting for both GA and PSO algorithm are illustrated in tables (4.1) and (4.2) respectively.

Table (4.1): illustrates GA’s operators and parameters for solving SLAE.
	Initialization 
	Random

	Representation
	Binary String of Length=12

	Selection
	Tournament Selection

	Recombination
	Single Crossover

	Mutation 
	Flip-Flop

	Mutation Probability
	0.5

	Population Size
	10, 20, 30,…, 50

	Maximum Number of  Iterations(NoG)
	100

	Stopping Condition
	Solution or Number of Generations= NoG


Table (4.2): illustrates PSO parameters for solving SLAE.
	Initialization 
	Random

	Representation
	Binary String of Length=12

	w
	w= ((Tmax - G) * (0.9 - 0.4) / Tmax) + 0.4

	c1 and c2
	2

	r1 and r2
	Uniform Random

	Neighborhood Topology
	Star Topology

	Population Size or Number of Particles
	10, 20, 30,…, 50

	Maximum Number of  Iterations(Tmax)
	100

	Stopping Condition
	Solution or Number of Iterations= Tmax


The comparison results from using the above parameters and operators between GA and PSO after running the algorithms for 10 times and for different populations/Swarms size the best 3 results are shown below in table (4.3).

Table (4.3): comparison results between GA and PSO to solve SLAE.
	Pop/Swarm Size
	GA
	PSO

	
	No. of  Generations
	Time/Sec
	No. of  Iterations
	Time/Sec

	10
	8
	1.5343
	30
	1.9443

	
	9
	1.7765
	44
	1.6299

	
	14
	1.9999
	75
	1.9999

	20
	3
	1.2300
	39
	1.7888

	
	9
	1.7655
	54
	1.9999

	
	12
	1.8999
	76
	1.9888

	30
	6
	1.4321
	5
	1.3399

	
	9
	1.9888
	52
	1.9865

	
	10
	1.9999
	91
	2.0000

	40
	2
	1.5466
	1
	1.0000

	
	5
	1.8766
	37
	1.5622

	
	6
	1.9987
	41
	1.9888

	50
	1
	1.9999
	6
	1.2076

	
	3
	1.9843
	10
	1.2497

	
	6
	2.0000
	44
	1.9999


4.5.2 Solving N-Queens Problem
Tables (4.4) and (4.5) describe the GA and PSO operators and parameters that are used in solving n-queen problem.

Table (4.4): describes GA’s operators and parameters for solving SNQP.
	Initialization 
	Random

	Representation
	Integer String of Length= n

	Selection
	Tournament Selection

	Recombination
	Partial Matched Crossover (PMX)

	Mutation 
	Swap

	Mutation Probability
	0.5

	Population Size
	10, 20, 30,…, 100

	Maximum Number of  Iterations(NoG)
	100

	Stopping Condition
	Solution or Number of Generations= NoG


Table (4.5): describes PSO parameters for solving SNQP.
	Initialization 
	Random

	Representation
	Integer String of Length= n

	w
	w= ((Tmax - G) * (0.9 - 0.4) / Tmax) + 0.4

	c1 and c2
	2

	r1 and r2
	Random

	Neighborhood Topology
	Star Topology

	Population Size or Number of Particles
	10, 20, 30,…, 100

	Maximum Number of  Iterations(Tmax)
	100, 30000

	Stopping Condition
	Solution or Number of iterations= Tmax


For ten times running and for 10, 20, 30, …, 100 Population/Swarm size, the best three result for 8-queens, table (4.6) illustrate that PSO give us best solutions than GA in number of generations and time.

Table (4.6): comparison results between GA and PSO to solve SNQP, n=8.
	PopSize
	GA
	PSO

	
	No. of  Generations
	Time/Sec
	No. of  Iterations
	Time/Sec

	10
	5
	1.5622
	2
	0.9999

	
	12
	1.9856
	14
	1.0044

	
	18
	1.9978
	23
	1.5888

	20
	3
	1.5666
	1
	0.9999

	
	5
	1.5634
	3
	1.6689

	
	13
	1.9859
	8
	1.4536

	30
	2
	1.5000
	1
	0.9999

	
	3
	1.5666
	2
	1.6888

	
	5
	1.5626
	4
	1.8922

	40
	1
	1.0555
	1
	0.9999

	
	3
	1.5555
	4
	1.8665

	
	5
	1.5788
	7
	1.4552

	50
	2
	1.3989
	1
	0.9999

	
	5
	1.5989
	3
	1.7998

	
	7
	1.3999
	6
	1.3447

	60
	1
	1.8742
	1
	1.0000

	
	2
	1.5529
	3
	1.5399

	
	3
	1.8849
	4
	1.8777

	70
	1
	1.8000
	1
	1.0009

	
	2
	1.9433
	3
	1.8878

	
	3
	1.9765
	7
	1.9744

	80
	1
	1.8879
	2
	1.5779

	
	4
	1.8887
	3
	1.9856

	
	5
	2.0000
	4
	1.9999

	90
	1
	1.9999
	2
	1.9984

	
	2
	2.5774
	3
	2.7699

	
	6
	2.5542
	6
	2.0000

	100
	1
	1.9999
	1
	1.9999

	
	4
	2.5999
	2
	2.0000

	
	5
	2.8779
	4
	2.5000


But, for 16-queens, table (4.7) shows the solutions by using GA are better than using PSO.

Table (4.7): comparison results between GA to solve SNQP, n=16, NoG=100

and PSO to solve it, n=16 NoG=30000.
	PopSize
	GA
	PSO

	
	No. of  Generations
	Time/Sec
	No. of  Iterations
	Time/Sec

	10
	41
	1.0000
	20134
	53.0000

	
	50
	1.9999
	22478
	59.9999

	
	90
	2.9999
	28031
	73.0000

	20
	34
	2.9999
	5924
	30.9999

	
	81
	3.0000
	21955
	114.9999

	
	95
	3.0000
	27455
	142

	30
	21
	1.9999
	2700
	20.9999

	
	36
	2.0000
	13166
	101

	
	59
	3.0000
	14143
	108.9999

	40
	22
	1.9999
	10150
	104.9999

	
	28
	2.0000
	10530
	107.9999

	
	43
	3.0000
	22330
	230.0000

	50
	21
	1.9999
	9412
	120.9999

	
	25
	2.0000
	13104
	167.9999

	
	28
	3.0000
	22936
	294.9999

	60
	13
	1.9999
	5772
	87.9999

	
	22
	1.9999
	14814
	227.9999

	
	37
	4.0000
	19157
	296.0000

	70
	25
	3.9999
	1827
	32.9999

	
	39
	5.0000
	4539
	82

	
	42
	5.0000
	5195
	94.0000

	80
	29
	3.9999
	3025
	61.9999

	
	31
	3.9999
	4166
	86.0000

	
	48
	6.9999
	6138
	126.0000

	90
	29
	4.0000
	4337
	101

	
	30
	4.9999
	6797
	157.9999

	
	31
	4.9999
	10346
	243

	100
	28
	4.9999
	2690
	69.9999

	
	36
	6.0000
	3755
	96.9999

	
	53
	9.0000
	7199
	186


4.5.3 The Substitution Cipher
After implementing this problem, very rapidly the populations reach local maxima or never seem to converge to anything resembling English. Larger populations might yield more useful result but because of the interpreted nature of the language the program running times are already long. Within 2000 generations nearly all sub-populations reach stable states. The first suspicion is that the fitness function is not adequately distinguishing between good and bad candidates. A brief investigation shows that, this is not so. The fitness function does indeed do a good job of evaluating the fitness of a candidate. A correct solution gets a very good fitness score while a random solution gets a very poor score with a smooth distribution in between. In order to solve the SC problem, and because of the natural language difficulties, we assume the plain text and it’s specific key to cipher it, as shown in figure (4.1).

	Plain Text:
	geneticalgorithmsandparticleswarmoptimization

	Key for  Ciphering:
	k x a h f w e q u o d m c z j b p y g n r i l t s v

	Cipher Text:
	efzfnuakmejyunqcgkzhbkynuamfglkycjbnucuvknujz


Figure (4.1): plain text, ciphering key, and cipher text.

For SC problem, tables (4.8) and (4.9) summarize the parameters and operators for both GA and PSO algorithm respectively.

Table (4.8): summarize GA’s operators and parameters for solving SC.
	Initialization 
	Random

	Representation
	ASCII Code String of Length=26

	Selection
	Tournament Selection

	Recombination
	Partial Matched Crossover (PMX)

	Mutation 
	Swap

	Mutation Probability
	0.5

	Population Size
	10, 20, 30,…, 100

	Maximum Number of  Iterations(NoG)
	100, 500, 1000, 2000

	Stopping Condition
	Solution or Number of Generations= NoG


Table (4.9): summarize PSO parameters for solving SC.
	Initialization 
	Random

	Representation
	ASCII Code String of Length=26

	w
	w= ((Tmax - G) * (0.9 - 0.4) / Tmax) + 0.4

	c1 and c2
	2

	r1 and r2
	Random

	Neighborhood Topology
	Star Topology

	Population Size or Number of Particles
	10, 20, 30,…, 100

	Maximum Number of  Iterations(Tmax)
	100, 500, 1000, 30000

	Stopping Condition
	Solution or Number of Iterations= Tmax


Table (4.10) shows the results by using GA for solving SC problem.
Table (4.10): Results of GA to solve SC.
	PopSize
	GA

	
	No. of  Generations
	Time/Sec

	10
	604
	37.0000

	
	974
	59.9999

	
	1500
	91.9999

	20
	213
	25.9999

	
	320
	40.0000

	
	451
	56.0000

	30
	177
	32.9999

	
	185
	34.0000

	
	267
	48.9999

	40
	118
	28.9999

	
	144
	35.9999

	
	146
	35.9999

	50
	99
	29.9999

	
	102
	31.9999

	
	114
	35.9999

	60
	72
	26.9999

	
	74
	27.9999

	
	93
	34.9999

	70
	35
	14.9999

	
	98
	43.0000

	
	114
	50.0000

	80
	40
	21.0000

	
	45
	22.9999

	
	99
	50.0000

	90
	46
	26.0000

	
	71
	41

	
	74
	41.9999

	100
	32
	19.9999

	
	37
	23.9999

	
	58
	37.0000


In this problem (SC), the PSO algorithm does not reach to any solutions with different population/Swarm size (Pop/Swarm Size) and different maximum number of generations (NoG).
4.6 Discussion

The three problems, (SLAE, SNQP, and SC), have been solved by both GA and PSO, ten times for each population size were carried out for each problem. 

In the first problem, SLAE, both GA and PSO consistently found good solutions for 10, 20, 30, 40 and 50 population size as shown in table (4.3).

In the second problem, SNQP, the results of both GA and PSO are satisfactory, they obtained when number of queens (n) equal to 8, but when is increased, the GA does better and faster than PSO, as illustrated in table (4.7).

In the third problem SC, the GA find a solution with a long running time and with large number of generations as shows the results listed in table (4.10), but when  number of generations its small reaches to an indication to correct solution, while the PSO algorithm does not reach or converge to any possible solution.

The Overall results indicate that GA determines solutions which are closer to the optimal solutions than PSO does.

4.7  Summary

The result of three problems (SLAE, SNQP, and SC), using GA and PSO algorithm were analyzed in this chapter. Also comparison between them is done. In the next chapter, the conclusions of this work will be presented, and some future work will be suggested.

5.1 Conclusions

1. For linear problem (Solving Linear Algebraic Problem), and with 212 search space size, both PSO and GA make good performance from time and No. of Generations point of view.

2.  For Non-linear problems (Solving N-Queen Problem with n=8 and n=16, and Substitution Cipher), with ((8-k)Ị ,(16-k)Ị), and 26Ị search space size respectively, we conclude that GA with its own simple operators (selection , crossover and mutation), was stable in its performance under different search space, the GA can reach optimal or near optimal solution.

While the PSO, perform well in small search space size but decrease its capabilities with more complicated problem when it has large space size.

3. The main difference between the PSO approach compared to GA is that PSO does not have genetic operators such as crossover and mutation. Particles update themselves with the internal velocity; they also have a memory that is important to the algorithm. 

In PSO, only the ‘best’ particle gives out the information to others. It is a one-way information sharing mechanism, the evolution only looks for the best solution.

4. The computational effort of PSO is less than of the GA because there are few parameters to adjust, so it is faster than GA for the same problem.

5.2 Suggestion Works

1. A hybrid system between GA and PSO may be implemented and evaluated under different applications.

2. Try to apply PSO algorithm to solve those problems attacked successfully using GA (such as: The Transposition Cipher, The Traveling Salesman Problem, Image and Voice Registration). 

3. Compare GA and PSO with the other evolutionary optimization algorithm (such as: Memetic Algorithm, Ant Colony Optimization, and Shuffled Frog Leaping Algorithm).
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الخلاصة
الخوارزمية الجينية (GA) بحثٌ عام وإجراءات تحقيقِ أمثلية.  أُلهم بمبدأِ التطور الحيويِ للبقاء للأصلح. والأستعمال التجريدي للمصطلح أستعير مِنْ حقلِ التطورِ الحيويِ.
الطريقة الأخرى لتحقيقِ الأمثلية، تحقيق أمثلية حشدِ الجزيئات (PSO)، قادر على إنْجاز نفس الهدفَ كالخوارزمية الجينية عَلى نَحوٍ جديد. عملية الفكر وراء الخوارزميةَ أُلهمتْ بالسلوك الاجتماعي مِنْ الحيواناتِ، مثل تَجَمُّع الطيور. تحقيق أمثلية حشدِ الجزيئات مشابهة الى الخوارزمية الجينية بأنّ تَبْدأُ بالتوليد العشوائي، على خلاف الخوارزمية الجينية؛ فإن تحقيق أمثلية حشدِ الجزيئات لَيْسَ لهُ عوامل تطورِ مثل الانتقالِ والتغيير.
في هذه الأطروحة، تم إختيار ثلاث مشاكلِ للمُقَارَنَة مابين الخوارزمية الجينية و أمثلية حشدِ الجزيئات لأداءَ تحقيقِ الأمثلية. وهذه المشاكلِ هي (حْلُّ المعادلاتَ الجبريةَ الخطيّةَ (SLAE)، حَلّ مشكلة N من الملكاتِ (SNQP)، و الشفّرة الاستبدالية (SC)).
حَلّ المشكلةِ الجبريةِ الخطيّةِ هي مشكلة بسيطة مع (212)  حجم فضاء بحثي لإيجاد الحَلِّ للمعادلاتِ الخطيّة، كلتا الخوارزمية الجينية و أمثلية حشدِ الجزيئات وَجدتا حلولاًَ جيدةَ. مشكلة N من الملكاتِ هي مشكلة وَضْع n من الملكات على n×n رقعة شطرنج،مع((n-k)!) حجم فضاء بحثي بحيث لا تتقاطع أحداهما مع الأخرى. تم استخدام ثمانية وست عشْرة ملكةَ في هذا التطبيقِ. الخوارزمية الجينية كانت أحسن وأسرع مِنْ أداء أمثلية حشدِ الجزيئات عندما يَزِيدُ عددَ الملكاتِ. أخيراً، مشكلة الشفّرة الاستبدالية هي من المشاكل الصعبة. والفضاء الرئيسي الكامل لكُلّ المفاتيح المحتملةِ فُتّشتْ مع(26!)  حجم فضاء بحثي، وهذا التطبيقِ كان نجاحه محدوداً.

مقارنة تقريبية بين الخوارزمية الجينية وأمثلية حشد الجزيئات

رسالة مقدمة الى كلية العلوم في جامعة النهرين كجزء من متطلبات نيل شهادة الماجستير في علوم الحاسوب
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Pseudo code 1: {Tournament Selection} 


Input:


         PopSize: Population Size is the number of strings.


         Chrom:  array of generated strings.


        


        TorSize: Tournament Size.


Output:


           Chrom: the updated array of strings.





Algorithm:


           For all PopSize 


          {


             Select strings randomly from Chrom according To TorSize.


             Chose the best string according their Fitness Value.


             Save the best string.


 	}





Pseudo code 2: { Single Crossover } 


Input:


  PopSize: Population Size is the number of strings.


  Chrom:  array of strings.


StrL: string length.


Output:


  Chrom: the updated array of strings.





Algorithm:


   For all PopSize


   {


      Select randomly two different strings and one position.


       For j = position to StrL-1


      	Swap the contents of the two selected strings.


       Next j


 }





Pseudo code 3: { Partially Matched Crossover (PMX)} 


Input:


 PopSize: Population Size is the number of strings.


 Chrom:  array of strings.


Output:


  Chrom: the updated array of strings.





Algorithm:





  For all PopSize


  {


      Select two different strings randomly. 


      Select two different positions randomly namely match section.


    Check the mirror and make the crossover of each bit in match section for the two strings and return the individuals of the offspring.


 }





Pseudo code 4: {Inversion} 


Input:


 PopSize: Population Size is the number of strings.


 Chrom:  array of strings.


  InvProb: Inversion probability.


Output:


  Chrom: the updated array of strings.





Algorithm:


     For InvProb


     {


         Select one string randomly.


         Select two different positions randomly.


         Swap the values of the two positions.


     }








Pseudo code 5: {Mutation} 


Input:


 PopSize: Population Size is the number of strings.


 Chrom:  array of strings.





MutProb: mutation probability.


Output:


  Chrom: the updated array of strings.





Algorithm:


 For MutProb


  {


      Select one string randomly.


      Select one position randomly and flip-flop its value.


 }











Pseudo code 6: {Modify Velocity}


Input:


 SwarmSize: Swarm Size is  the number of strings.


 particle:  array of strings.


 Velocity: array of generated velocity.


 Fit: array of fitness values.


 PreviousFit: array of previous fitness values.


Output:


  Velocity: the updated array of velocity.





Algorithm:


          Set the parameters c1, c2 to 2.0 


           r1, r2 ([0..1] (randomly values).


           Evaluate weight according to w= ((Tmax - G) * (0.9 - 0.4) / Tmax) + 0.4


           For all SwarmSize


           {


               Update Velocity by using 


                             vi (t+1) = wvi (t) + c1r1 (t)(pi(t) – xi(t)) + c2r2(t)(pg(t) – xi(t))


           }





Pseudo code 7: {Modify Value} 


Input:


 SwarmSize: Swarm Size is the number of strings.


 particle:  array of strings.





Velocity: the updated array of velocity.


Output:


particle: the updated array of strings.





Algorithm:


             For all SwarmSize


          {


             Update each string according to its Velocity by using


                     xi (t+1) = xi (t) + vi (t+1)                                                            


           }











Pseudo code 8: {Initialization Population Size of (SLAE)}


Input:


 Pop/SwarmSize: Population/Swarm Size is the number of strings.


           StrL: string length=12.


Output:


  Chrom/particle: the array of strings.





Algorithm:


        For all Pop/SwarmSize


          {


     For j = 1 to StrL


      	        Generate the individuals/particles randomly


      Next j


          }











Pseudo code 9: {Evaluate Fitness Value of (SLAE)}


Input:


 Pop/SwarmSize: Population/Swarm Size is the number of strings.


          Chrom/particle: the array of strings. 


Output:


Fit: array of fitness values.





Algorithm:


         For all Pop/swarmSize


          {


     Determine fitness value according equation (3.2)


        }











Pseudo code 10: {Initialization Population Size of (SNQP)}


Input:


 Pop/SwarmSize: Population/Swarm Size is the number of strings.


           StrL: string length= n, (n=8, n=16).


Output:


  Chrom/particle: the array of strings.





Algorithm:


           For all Pop/SwarmSize


             {


         For j = 1 to StrL


                    Generate randomly unduplicated individuals/particles with unduplicated string bits values.


      Next j


        }











Pseudo code 11: {Evaluate Fitness Value of (SNQP)}


Input:


 Pop/SwarmSize: Population/Swarm Size is the number of strings.


          Chrom/particle: the array of strings. 


          StrL: string length= n.


Output:


Fit: array of fitness values.





Algorithm:


         For all Pop/sawarmSize


          {


         Set left and right diagonals to 0


          For J=1 to StrL


                 Increment left and right diagonals


          Next j


          Fit=0


          For J =1 to (2 StrL-1)


                   Counter=0


                 If  (left diagonal>1) then counter=counter + left diagonal-1    


                 If  (right diagonal>1) then counter=counter + right diagonal-1    


                   Fit = Fit + counter


             Next j


  }





Pseudo code 12: {Initialization of SC Population Size}


Input:


 Pop/SwarmSize: Population/Swarm Size is the number of strings.


           StrL: string length= 26.


Output:


  Chrom/particle: the array of strings.





Algorithm:


         For all Pop/SwarmSize


          {


     For j = 1 to StrL


                Generate randomly unduplicated individuals/particles with unduplicated string bits values.


      Next j


        }











Pseudo code 13: {Evaluate Fitness value of SC}


Input:


 Pop/SwarmSize: Population/Swarm Size is the number of strings.


          Chrom/particle: the array of strings. 


          StrL: string length= 26.


Output:


Fit: array of fitness values.





Algorithm:


         For all Pop/SwarmSize


          {


       Compute fitness value according equation (3.3)


  }
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