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Abstract: 

Digital images are applied in various fields such us:  physics, computer, 

engineering, chemistry, biology and medication sciences. It have been known that 

any images acquired by optical or electronic means is likely to be degraded by the 

sensing environment. Image restoration, is one  of digital image processing field, 

which is care about improving the degraded image. Image restoration may be 

linear or non-linear and blind or non-blind. The  following research focusing on 

linear non-blind image restoration and assuming that  the degradation model as a 

convolution of the original image with blurring function and distorded by additive 

noise. Image restoration algorithms are trying to "undo" the blurring function and  

the noise from the degraded image by deconvolving the blurring function and 

reducing the noise from the degraded image to produce an estimate image, which it 

approach to the original image. The image have been used, blurred by Gaussian 

blurring function  with selected standard deviation values   = 1,2 and degraded by 

additive Gaussian noise with selected signal to noise ratio values SNR= 5, 10 and 

20. The degradation have been used for three type of images, these are gray image 

(Satellite image), sonar image (Embryo image) and color image (bird image). 

Iterative Tikhonov-Miller filter and Wiener filter have been used to restore the 

degraded images. Using Root Mean Square Error (RMSE) measuring it have been 

concluded that, Iterative Tikhonov-Miller filter has better  performance for less 

degradation parameters, with high SNR and Wiener filter has better  performance 

for more degradation parameters, with low SNR. 
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1.1 Introduction 

Concern in digital image process field started in 1920, at the point when digitized 

picture of  world news events were first send by submarine cable among  New 

York and London.  Application of digital image process concept, began to be 

widespread in 1960's when digital computers began to supply the speed and 

storage ability needed for feasible implementation of digital image process 

algorithms. Digital image process field has, toughened vigorous growth and begin 

to incorporate into science like physics science, computer science, engineering 

science, information processing, chemistry science biology science and medication 

science [1]. 

Digital image process is that, the field of applying variety of computer algorithms 

to improve digital images [2]. Advantage of digital image process is: amelioration 

of pictorial information for human interpretation, and processing of scene 

information for autonomous machine perception. A number of  digital image 

process  applications;  in  physics applications, pictures of experiments in such 

space as high-energy plasmas and electron microscopy habitually improved by 

computer techniques. in medication applications, as an example, physicians are 

power-assisted by computer procedures that enhance the distinction or code the 

intensity levels into color for easier interpretation of x-ray[1]. Another example, 

medical image also used for detection of tumors or different malady in patient. in 

remote sensing applications, pictures obtained by satellites are helpful in following 

of earth resources; geographical mapping like prediction of weather; flood, and 

fireplace control; and lots of different environmental applications. in outer space 

image applications, include recognition and analysis of objects contained in 

pictures got from deep space-probe missions [3]. In transportation applications, 

one in every of the key technological advances is that, the projection automatically 

driven vehicles, where imaging systems play important role in path designing, 

obstacle dodging and servo management, etc [2]. 
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Digital image processing can be categorized into the following fields [3]:    

 Image enhancement   

 Image restoration 

 Image analysis 

 Image reconstruction     

 Image data compression 

 

 Image enhancement 

The aim of  image enhancement, is to accentuate certain image features for 

subsequent analysis or image display. Examples include edge and contrast 

improvement, noise filtering, magnifying, and sharpening [3]. 

 

 Image restoration 

Image restoration mention as removal or minimizing of noted degradations in a 

picture. That includes deblurring of  picture  degraded by defect of optical system, 

or environment, correction of  geometric distortion, and noise filtering [3]. 

 

 Image analysis  

Image analysis is interested with quantitative measurements from an image to 

produce the an overview of it, like measuring the dimension of blood cells in a  

medical image [3]. 

 

 Image reconstruction 

Image reconstruction from projections could be a special category of  picture  

restoration problems, in such away, construct a two (or higher) dimensional target 
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(or object) from one-dimension  projections. Flat projections unit thus, obtained by 

viewing the  target from many various angles. Reconstruction algorithms derive an 

picture of a thin axial slice of the target, giving an indoor scan otherwise 

untouchable whereas not acting full surgery. Such techniques are essentially in 

medical imaging (CT scanners), astronomy, geological exploration, radar imaging, 

and nondestructive testing of assemblies [3]. 

 

 Image data compression 

The amount of  information  associated with visual information  is so huge, that its 

storage would need  monumental storage capability. In spite of, the capacities of 

the many storage media unit are essential, their access speed unit generally 

reciprocally proportional to theirs capability.  Image information compression field 

unit involved, reduction of the amount of bits required to store or transmit picture 

with none appreciable loss of knowledge [3]. 

 

1.2 Image formation 

light is propagated as electromagnetic waves, Light is, however, always  detected 

in separate parts, light-weight quanta or photons, every of that represents an exact 

amount of energy. The energy E is proportional to the frequency   of light [4]: 

     E = h                                                                                                      (1.1) 

The constant of proportion h is termed Plank's constant. 

The intensity of light I, that is, the energy received per unit time  per unit area, it is   

proportional to the square of amplitude "A"; 

                   I     |  |       

Simple image refers to a two-dimensional light intensity function B(x, y),  and the 

value of  B at any pair of coordinates (x,y) is proportional to the brightness (or gray 

level) of the image at that point. The function B(x,y) may be described by two 
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components: first, is the amount of source illumination incident on the scene being 

viewed, and the second,  is the amount of illumination reflected by the target in the 

scene. These  two component denoted by i(x,y) and r(x,y). Then intensity function 

B(x,y) given by [1]: 

 

                 B(x,y) = i(x,y) r(x,y)                                                               (1.2)   

 

i(x,y) is  illumination component, r(x,y) is reflectance component, where x and y 

denote spatial (plane) coordinates. 

The image formation (or modelling) system creates the image point (x,y) by acting 

upon the radiant energy propagating from the target. The tiniest attainable quantity 

of radiant energy transport is zero. However, the image formation system receives 

energy parts not solely from the target point (ξ,η ) however from all different 

points within the target [5]. 

Figure(1) shows the image point (x,y) create by operating of image formation 

system on the target point (ξ,η ). 

 

 

 

 

    

Figure (1-1) diagram of image formation system  

 

Since the image formation system is chargeable for the distribution of energy 

within the target  plane it is convenient to postulate a perform (or function) that 

describes the transformation of energy from target plane to image plane. The 

x 

y 

Image 

 g(x,y) 

η 

ξ 

target 

(ξ,η ) Image formation system 
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function should be mentioned to each coordinates (ξ,η ) and (x,y), to account for 

mutation in distribution of energy in numerous plane. Named this function w, and 

also the energy within the image plane Z in term of  w and also the target radiant 

energy distribution, Ɠ as: 

 

        Z(x,y) = w( , , ξ,η  , Ɠ (ξ,η) )                                                        (1.3) 

 

Where Z (x,y), Ɠ (ξ,η) and w (x,y, ξ,η, Ɠ (ξ,η) ) is image energy distribution, 

target energy distribution, transformation function respectively. 

For linear image formation model, eq.(1.3) becomes: 

w( , , ξ,η  , Ɠ (ξ,η )) = w( , , ξ,η ) Ɠ (ξ,η ) 

 

Image detection and recording are dividing into two major technologies [5]: 

photochemical and photoelectronic. Photochemical technology is exemplified by 

photographic film; photoelectronic  technology is exemplified by tv camera. 

chemistry ways have the advantage of mixing image detection and recording into 

one compact entity the film. Photoelectronic systems, on the opposite hand, 

typically need separation of image detection method  from the image recording 

process; but, Photo electronic systems sense image in a very fashion that produces 

them ideally fitted to conversion to digital. 

The most basic demand for computer processing  of picture is that the picture 

should be obtainable in digital form [3]. Conversion the image to digital by 

digitization, that divide image into tiny fields, every of that, is assigned a value for 

its intensity [5].  Digitizing the coordinate values is termed sampling, and 

digitizing the amplitude values is termed quantization [6]. An example of  

digitizers devise such as, microdensitometer and vidicon cameras [1]. Then digital 

image is an image f(x,y) that has been discretized spatial plane and in brightness, 
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we have a tendency to considering a digital image as a matrix whose row and 

column indices define as point within the image and corresponding matrix 

component mention as the grey level at that point  [1]. A digital image "f(x,y)" can 

be represented in matrix form [1]: 

 

        f(x,y)   

[
 
 
 
 
 
 

 

 (   )                            (   )        (     ) 
 (   )                            (   )        (      )

        
                                                                            
                                                                            
                                                                            

        (     )        (     )       (       ) ]
 
 
 
 
 
 

   

                             (1.4) 

 

Every component of  matrix  array is termed as image component, element, pixel, 

M is rows and N is columns of matrix [1]. 

Pictures is categorized consistent with their supply [6]: Gamma-Ray Imaging, X-

ray Imaging, Imaging within the Ultraviolet Band, Imaging within the Infrared 

Bands and visual Bands, Imaging within the Radio Band, Imaging within the 

Microwave Band. An example on how picture acquisition, radio waves are used in 

magnetic resonance imaging (MRI). This technique places a patient in a powerful 

magnet and passes radio waves through his or her body in short pulses. Each pulse 

causes a responding pulse of radio waves to be emitted by the patient’s tissues. The 

location from which these signals originate and their strength are determined by a 

computer, which produces a two-dimensional picture of a section of the patient. 

 

1.3 Statistical Properties of Images 

It is a quite common in digital image process to use statistic description  of image 

by many parameters as follows [7] .  
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1- Probability density function (pdf) 

The probability that a brightness in a region falls between a and a+ a, by given the 

probability distribution function " P(a)", can be expressed as p(a)  a where p(a) is 

the probability density function [7]: 

                                  

                      ( )   = .
  ( )

  
/                                                                    (1.5) 

 

2- Average 

The average brightness of a region "   " is defined as the sample mean of the 

pixel brightnesses within that region. The average,   , of the brightnesses over the 

R pixels within a region (R) is given by [7]: 

                       =
 

   
∑  , , -( , )                                                          (1.6) 

 

3- Standard deviation 

In terms of image process it shows what quantity variation or "dispersion" exists 

from the average (mean, or expected value).  Low  standard deviation indicates that 

the information points tend to be terribly near the mean, whereas high standard 

deviation indicates that the information points are spread out an oversized vary of 

values [8]. 

Mathematically standard deviation "   "  is given by [7]: 

 

                       = √
 

   
∑ ( , ,  -    )

 
 ,                                          (1.7)     

 

4- Signal to Noise Ratio (SNR) 

Signal to noise ratio describe the impact of the noise on the image, given by [9]: 
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                        = √
  
 

  
 
                                                                           (1.8) 

 

Where    and    are the variances of the true image and the recorded image, 

respectively. 

 

5- Correlation 

Correlation of two functions f(x) and X(x) is mentioned as the integral of the 

multiplicative of     (x) with  (    ), the latter shifted over far ∆x [10]. 

                      

   ( x) = ∫   ( )  (    )  
 

  
                                                                 (1.9) 

 

Where     is correlation of two functions,    and  (    ) are  arbitrary 

function.  

The superscripted asterisk implies that the complex conjugated worth is taken. 

Thus for every shift  x the correlation is calculated. This implies that if a structure 

moves as a full besides random and offset correlations, a correlation going to be 

found at the shift corresponding to the translation [10]. 

 

6- Covariance 

In statistics, covariance could be defined as a measure of how much two random 

variables amendment along. If the larger values of one variable primarily 

correspond with the larger values of the opposite variable, and also the same holds 

for the smaller values, i.e. the variables tend to indicate similar behavior, the 

covariance could be a positive range. Within the opposite case, once the larger 

values of one variable primarily correspond to the smaller values of the  other, i.e. 

the variables tend to indicate opposite behavior, the covariance is negative. 
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Covariance sign leanings appears in the linear relationship between the variables. 

Mathematically covariance between two variable    and    is given as [8]. 

 

              ( ,  ) =
 

 
∑(    ̅)(    ̅)                                                      (1.10) 

 

            are random variables,   ̅ and  ̅ is mean random variable of             

respectively.    ( ,  ) is covariance 

 

7- Root Mean Square Error (RMSE)  

It is one of the criteria to measure the  image  quality. The error between an input 

f(x,y) and the output g(x,y) is given by [11]: 

 

               e(x,y)= g(x,y) – f(x,y),                                                             (1.11) 

The squared error averaged over the image array "    is given by [11]: 

 

                    =
 

  
  ∑  ∑   ( ,  )   

   
   
                                                        (1.12)     

Then one get, 

                   =
 

  
  ∑  ∑  , ( ,  )   ( ,  )-   

   
    

                                       (1.13) 

 

Then the Root Mean Square error " RMSE " of the image is [11]: 

                    = ,   
 

  
  ∑  ∑  , ( ,  )   ( ,  )-    

   
 
       

   -  ⁄                    (1.14) 
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1.4 Literature Review 

Digital computer techniques in image restoration and enhancement had their first 

fruitful application at the JPL of the California Institute of Technology in 1960. As 

part of the program to land a man on moon, it  was decided to land unmanned 

spacecraft initially, which would television back images of the moon's surface and 

test the soil for later manned landing, unfortunately, the limitation on weight and 

power supply made it impossible to launch a "perfect" TV camera system on the 

unmanned craft. Consequently, JPL measure the degradation properties of the 

cameras before they were launch and then used computer processing to remove as 

well as possible, the degradation from the received moon image [5].  

In 1977, Hsieh and Harry [12] were studied Iterative methods for both 

unconstrained and constrained solutions to the normal equation and presents a 

theoretical analysis and computational technique for constrained least squares 

image restoration using spline basis functions.  

In 1988, Reginald L.Lanfendijk and Jan Biemind and Dick E.Boekee [13]  

were proposed a regularized iterative image restoration algorithm, in which ringing 

reduction methods  are included by making use of the theory of the projections 

onto convex sets and the concept of norms in a weighted Hilbert space. 

In 1991, Aggelos K.Katsaggelos and Jan Biemond and Ronald W.Schafer and 

Russell M.Mersereau [14] were proposed adaptive and ono-adaptive algorithm 

based on wiener algorithm. 

In 1992, Christakis Charalambous and  Farah Kamel Ghaddar and Kypros 

Kouris [15] were  present two methods for the recovering of Nuclear Medicine 

images  that has been degraded while being processed. The restoration problem is 

formulated as a constrained optimization problem .The first algorithm reduces the 

problem to the computation of few discrete Fourier transforms and has the ability 

to control the degree of sharpness and smoothness of the restored image where the 

input parameter can be interactively chosen by the observer. The second algorithm 

with weight matrices included enables the handling of edges and flat regions in the 
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image in a pleasing manner for the human visual system. In this case the iterative 

conjugate gradient method is used in conjunction with the discrete Fourier 

transform to minimize the Lagrangian function. 

In 1994, Byung-Eul Jun and  Dong-Jo Park [16] were develop A new steepest 

descent least mean square adaptive filter algorithm. 

In 1995, Ayad A. Al-ani [17] was adapted Wiener filter and the maximum entropy 

method to restore optical astronomical images. 

In 1997, Ebtesam Fadhl [18] was adopting wiener and homomorphic  as non-

iterative restoration method , and an iterative restoration method based on the least 

–square criterion. 

In 2000, Michael K. Ng  and  Robert J. Plemmons and  Felipe Pimentel [19] 

Were proposed A new approach of  blind deconvolution, such as Constrained total 

least squares image deconvolution algorithm with Neumann boundary conditions. 

In 2006, Ayad A. Al-ani [20] was adapted in many image restorations an iterative 

Wiener filter. To estimate the power spectral density of the original image from 

degraded image using an iterative method. The adapted filter was designed for 

restoring astronomical images that are blurred with space-invariant point spread 

function and corrupted with additive noise .The result using an adaptive filter were 

compared, quantitatively, using mean square error (MSE). His result shows that 

this method has better performance for restoring the degraded images, especially 

for high signal to noise ratio. 

In 2006, Michael R. Charest Jr and Michael Elad and Peyman Milanfar [21] 

were proposed methods for image denoising such as, Osher et al.’s Method, 

iterative regularization method, Iterative ”Twicing” Regularization Method and 

Iterative Unsharp Regularization Method, with using the Bilateral Filter and Total 

Variation Filter. 

In 2008, Jun Ma [22] was formulated a new approach to medical image 

reconstruction from projections in emission tomography, Similar to the 

Richardson-Lucy algorithm. 

In 2008, Mohammed Khudier [23] was adopt different types of restoration filters 
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Such as, Inverse filter,  Wiener filter, Constrained Least-Squares Filter and terative 

restoration. 

In 2011, E. Loli Piccolomini and  F. Zama [24] were proposed an iterative 

algorithm based on Constrained Least Squares Regularization Algorithm to restore 

the image. 

In 2013, Amudha.J and  Sudhakar.R and  Ramya.M [25] were proposed three 

restoration algorithms namely, Local Polynomial Approximation Intersection of 

Confidence Interval rule and Sparse Prior Deconvolution Algorithm and  

Richardson-Lucy Deconvolution Algorithm. 

In 2013, P. Sureka  and G. Sobiyaraj  and R. Suganya  and T.N.Prabhu [26] 

were proposed  iterative image restoration such as wiener filter to restore the  

degraded face images, which improved the recognition performance and the 

quality of the images. 

In 2014,  Fernando Pazos and Amit Bhaya [27] were adapted  Iterative gradient 

descent algorithms such as Barzilai-Borwein Algorithm and  the Conjugate 

Gradient Algorithm to restore the images. 

In 2015, Aswathi V M and James Mathew [28] were studied and  compared  

various image restoration techniques  of medical images, such as iterative 

restoration algorithms, etc. 

1.5 Aim of this research 

The goal of this work to improve the quality of the degraded images by using           

an iterative linear restoration filter such as Tikhonov-Miller regularized restoration 

filter using a prior information about the degradation phenomena, i.e. type blurring 

function and the noise, when we stopping the iteration and effect of the regularize 

parameter on the result. Compared the obtained results from Tikhonov-Miller filter  

and another non iterative filter such as Wiener  filter by  Root Mean Square Error 

(RMSE) quantitative test measure. 
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1.6 Thesis Layout 

The thesis is organized as follows: 

Chapter  two define image restoration and classify image restoration according to 

blurring operator is unknown or known: Blind image restoration and Non-Blind 

image restoration. Then shows  some type of degradation such as degradation in 

the case of  blurring only and degradation in the case of  noise only, and their 

sources. Then define some important operator and matrices. 

Chapter three, show  what is the image restoration filters effective it's depending, 

and image restoration algorithm will be presented such as; unconstrained or a 

constrained algorithm. 

Chapter four, discuss the achieved results from our work and conclude some 

information from it. Also, suggested for future works 

Figure(1-2) represented the structure of the thesis  including  all chapters and what 

it's contained.  
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Figure (1-2) Block diagram describing the structure of the thesis 
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2.1 Background: 

 Image restoration is mention as improving the image quality that is degraded by  

blurring and noise function. This degradation is as a result of numerous defects that 

injury the standard of a picture [29]. 

The restoration of the image is divided into two phase process section called 

degradation phase and restoration phase, mentioned every phase below [30]:         

1- Degradation phase 

During this phase, the original image is degraded with blurring  and the extra 

noise. The resultant image of this section is called a degraded image.             

 

2-Restoration phase 

At this phase, the restoration of degraded image using many filters, and an 

estimated image of the original image is produced as an output.   

 

Image Restoration  kind are often can be divided into two kinds: Blind and Non-

Blind. Blind restoration, the one within which operation of blurred unknown 

factor, therefor it create an estimate of the blurring operator and so using that 

estimate we have to deblur the image. Non-Blind restoration is that the one within 

which the blurring operator is noted, then try  remove blur from the degraded 

image using  the noted of blurring function.      

2.2 Mathematical Model of  Degradation: 

The degradation method model consists of  two portion, the blurring perform (or 

function)  and also the noise function. In the case of additive noise, the degradation 

model in spatial domain is given by [1]: 
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        g(x,y) = H(x,y) ⊛f(x,y) + n(x,y)                                                       (2.1) 

 

Where  g(x,y) is  degraded image, f(x,y)  is original image, n(x,y) is additive noise, 

H(x,y)  is circulant matrix. 

 

And the model  in the Frequency domain is given by: 

 

      G(u, v) = H(u, v) ⦁ F(u, v) + N(u, v)                                                  (2.2) 

 

For: u,v=0,1,2,3,4………,N-1, and (u,v) is an spatial frequency coordinates, 

G(u,v), H(u,v), F(u,v) and  N(u,v) is Fourier transform of g(x,y), H(x,y), f(x,y), 

n(x,y), respectively. 

 

2.3 Priori Knowledge of Degradation Sources:                              

A picture may be a signal carrying data about physical target that is not directly 

noticeable. Generally the data consists of  a degraded illustration of the original 

target, one will roughly distinguish two sources of degradation: the method (or 

process) of  image formation and also the method of image recording [31]. The 

degradation result from method of image formation is sometimes denoted by 

blurring and may be a type of band limiting of target, while the degradation caused 

by recording method is sometimes denoted by noise, which is because of activity 

error, count errors, etc.  

 

2.3.1. Degradation in case of blurring only 

As a result of diffraction limitation, the image of a point target (or some extent 

supply is not any longer point). It is a patch of light intensity known as the point 

spread function PSF [11]. 
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Then the  blurring  model  given as [1]: 

         

        g (x,y)= H(x,y) f  ( ,  )                                                                            (2.3) 

 

Where g (x,y) is  blurred image. H is said to be a linear operator if  [32]: 

 

  H [     ( ,  )       ( ,  )- =      ,  ( ,  )-       [  ( ,  )] 

                      

Where    ,    are arbitrary constants and   ( ,  ),   ( ,  ) images (of the same size), 

respectively. The above equation    indicates that the output of a linear operation 

due to the sum of two inputs is the same as acting of sum of individual inputs [32]. 

Point spread function could be define as  a two dimension  impulse response 

produced from a point source of light passing through the degradation system in 

the absence of noise [33]. 

Blur model can be categorized into two types [17]:                                         

i-Space-Invariant Point Spread Function (SIPSF)                                              

ii-Space-Variant Point Spread Function (SVPSF)                                                   

 

i-Space-Invariant Point Spread Function (SIPSF)                                                       

Point spread function changes solely the position of the input however simply 

changes the placement of the output with keeping identical perform, This 

characteristic seems within the linear system [17].  

 

 ii-Space-Variant Point Spread Function (SVPSF)                                                                 
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this kind changes shape and position, i.e. the PSF depends on the location of the 

target, this property related to nonlinear system [17]. 

 

We will conjointly classify the blur sorts as follows [23]: 

1- Liner motion blur  2- Defect of optical system  3-Inhomogeneous optical 

media. 

 

1- Liner motion blur 

The best example of  blurring is that result from relative motion, throughout 

exposure between the camera and target. Suppose  ( )( ) be illuminance from 

target, which might result in the image plane of camera within the absence of 

relative motion between the camera and target. The blurring is space-invariant 

solely within the case where the target  and image planes area unit parallel, and 

also the motion is translation. If we tend to assume that these conditions are 

applied, then the translation motion is delineate by a time-dependent vector [31]: 

       

    Y(t) = {  ( )    ( )+,          0      

 

Where   ,    are time-dependent vectors and  T is the exposure interval.  

This vector defines the trail, with regard to a fixed coordinated system within the 

image plane that is delineate by the origin of a coordinated mounted with regard to 

the moving target. One can assume that, at time equal to 0, the origins of  two 

systems coincide. Then the flight delineate by an arbitrary point  ́ of the moving 

target is given by  ́+Y(t), in order that , if m may be a given point  within the 

mounted fixed image plane, this point   is reached at time t, by the  point of  

moving target that, at time equal to zero, is given by  ́ =    ( ). If the noise-
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free image   ( )( )  at the point m is the result of the addition of the contribution 

all points  ́ =    ( ) passing through m in the interval [0,T], i.e. [31]: 

 

     ( )( ) = 
 

 
  ∫  ( ),(   ( )-  

 

 
                                                             (2.4) 

 

The factor (  ⁄ ) is introduced as a normalization factor. 

 

2- defect of optical system 

The medium through that the waves should propagate whereas passing from the 

target to the imaging system is itself optically imperfectness. Since the particular 

resolution that a faraway from than the theoretical optical phenomenon limit that 

obtained by Rayleigh criterion given by [23]: 

 

         =      
 

  
                                                                                           (2.5) 

 

Where    is resolving power and  λ is the wavelength of light,    is 

the diameter of the lens aperture.  

Another defect of optical system is aberration. One of aberration type is out-of-

focus, within the case of a lens associate point of target is focused If the distance 

from the lens,   , satisfy the lens conjugation law [31]: 

 

                      
 

  
 

 

  
=

 

  
                                                                             (2.6) 

 

https://en.wikipedia.org/wiki/Wavelength
https://en.wikipedia.org/wiki/Diameter
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Wherever     is that the distance between the lens and the image plane and    is 

that the focal length of lens. If condition of eq.(2.6) is not satisfied, then the image 

of the point, forever in line with geometrical optics, is a disc, known as the circle 

of confusion (COC). The radius of  COC may depend on the wavelength through 

the refractive index of the lens, operate of    ,   ,   and of effective lens diameter. 

Finally, as issues the intensity distribution among the COC it follows from 

geometrical optics that it is around uniform over  COC so the image of an out-of-

focus point, situated on the optical axis, is given by: 

 

            H(x) = 
 

         
     ( )                                                                     (2.7) 

 

Where H(x) is point spread function,      is the radius of COC and      is the 

characteristic function of the COC. 

 

3- Inhomogeneous optical media 

Atmospheric region turbulence is due to random variation within the index of 

refraction of medium between the target and imaging system. This means, the 

wave-front transmission of point source origin through a turbulent medium (e.g. 

the planet atmosphere) causes turbulence in phase and degrades the quality of the 

shaped image. The blur may be  describe by Gaussian function  [34]: 

 

       H(x,y) = 
 

√    
  ( 

    )                                                                       (2.8) 

  

Where    is standard deviation of the Gaussian function.  
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Although, the blur introduced by region turbulence depends on many parameter 

such as temperature, wind speed, exposure time [35]. 

Figure (2-1) shows  perspective a plot and image display of Gaussian blurring 

function [6] 

              

                           (a)                                                                          (b) 

Figure (2.1) represent (a) Perspective a plot of Gaussian blurring function (b) Gaussian blurring 

function displayed as an image 

 

2.3.2 Degradation in the case of  noise only 

The noise embedded in a picture manifests in several types. These types may 

uncorrelated or correlated, also it may  signal dependent or freelance. The 

information regarding to the imaging system and visual perception of The image 

assists in generation of noise model and the estimating of the applied statistical 

characteristics of  noise embedded in a picture is a crucial as a result of it helps in 

removing the noise from the beneficial image signal [36].  

In the case of additive noise, the noise  model  equation is given by [37]: 
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       g(x,y) = f(x,y) + n (x,y)                                                                      (2.9) 

 

Where g(x,y) is  noisy image. 

 

There is four important classes of noise [36]:  

 

1- Additive noise                                                                                          

Additive noise is a sort of distortion that happens within the image. And it is 

caused by dispersion within the atmosphere caused by the scattering of 

electromagnetic waves in a distinct directions and that it due to the presence of 

minutes of dust or impurities with comparatively tiny diameters within the air and 

imaging system, inflicting a block  light-weight of sunshine in an area within the 

image and a rise in light in different areas. The mathematical form of the Gaussian 

noise is given by [38]. 

 

       (b,s) = 
 

√             
 
  ( 

    )                                                               (2.10) 

Where     (b,s)  is Gaussian noise, b is the distance from the center to the vertical 

axis and s is the distance from the center to the horizontal axis,    represents the 

standard deviation of Gaussian noise. 

 

2. Multiplicative noise 

The granularity noise from photographic plates is actually multiplicative in 

nature. The spots noise from imaging system as ultrasound imaging etc. is 

multiplicative in nature, which can be modeled as [36] 
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              g(x, y) = f(x, y) *    (x, y)                                                                                      (2.11) 

 

Where    (x, y) is the multiplicative noise.  

 

3. Impulse noise  

Very often the sensors generate a loud noise pulsed. generally noise generated 

from a digital (or analog) image transmission system is impulsive in nature, 

which may be modeled as [36]. 

            

                   ( ,  ) = (   ) ( ,  )     ( ,  )                                           (2.12) 

 

where q(x, y) is the impulsive noise and   is a binary parameter that assumes the 

values of either 0 or 1. Impulse noise is also simply detected from the distorted 

image due to the distinction anomalies. Once the noise impulses are detected, 

these are replaced by the signal samples [36]. 

 

4. Quantization noise 

The quantization noise is actually a signal dependent noise. This noise 

is characterized by the size of signal quantization interval Such noise 

produces image-like artifacts and will turn out false contours round the 

target. The quantization noise additionally removes the image details 

that are of low-contrast [36]. 
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2.4 Some important definitions 

2.4.1 Fourier transform   

An essential to transform the digital image to organize its information. So we will 

define Some of transformations kind such  as  Fourier transform, possibly, the most 

powerful tool in signal analysis [4].   

Fourier series can represent  light composed of a discontinuous set of wavelengths 

λ/  ,    = 1, 2, ··· , That is, a discontinuous set of colors. Complex Fourier series 

 ( ) formulas is given by [39]: 

 

                      ( ) = ∑    
        

                

                                                                                                               (2.13)                                                      

                       =
 

  
∫  ( )
 

  
                 

 

Where x is coordinates of particle, l is period,      is Fourier series coefficients. 

Fourier transform  extend or modify Fourier series to cover the case of a 

continuous spectrum of wavelengths of light containing a continuous set of 

frequencies . An integral part is to limit sum, which is  replace the Fourier series 

(any amount of terms) by Fourier integrated. Then the Fourier integration can be 

used to represent the functions of non-rotating, for example, a flash of light, or 

voltage pulse and one not to be repeated, or sound that does not repeat. It 

represents an integral part of  Fourier also a continuous range of frequencies, for 

example, a full range of Light colors rather than a discontinuous group. the 

formulas corresponding to  eq.(2.9) for a continuous range of frequencies is given 

by [39]. 
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                         ( ) = ∫   ( )       
 

  
                                                           

                                  (2.14) 

                          ( ) =
 

  
∫  ( )     
 

  
                    

Compare eq.(2.13) and eq.(2.14); j( ) corresponds to   ,   corresponds to d and 

∫               ∑   
  

 

  
 The two functions  ( ) and j( ) are called a pair of 

Fourier transforms. Usually,  j( ) is called the Fourier transform of  ( ), and 

 ( ) is called the inverse Fourier transform of j( ). 

 

2.4.2 Toeplitz and Circulant matrices 

Toeplitz matrix S is a matrix containing the constant elements along the diagonal 

diameter and the sub diagonals. This means the elements S(M, N) depend only on 

the difference (M – N),  i.e., S(M, N)  =        Thus N X N Toepliz matrix is of 

the form [3]: 

                  S = 

[
 
 
 
 
 
 
            
             
      
     
     
       

              ]
 
 
 
 
 
 

                                           (2.15) 

 

And is completely defined by the (2N-1) elements. Toeplitz Matrices describing 

inputs and outputs transformation of one-dimensional linear shift systems and 

correlation matrices of stationary sequences. 
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The so-called matrix z circulant if  both it is rows (or columns) is a circular shift of 

the previous row (or column), i.e: 

 

                  z = 

[
 
 
 
 
 
 
           

                 
     
     
     
       
           ]

 
 
 
 
 
 

                                       (2.16) 

 

Circulate matrices describing the behavior of the input and output of one 

dimensional linear periodic systems and correlation matrices of periodic 

sequences. 

For large matrix, Circulants are good approximation to Toeplitz forms, the Fourier 

series signal processing become immediately applicable [5]. 

 

2.4.2 Convolution 

The mathematical description of the convolution process between function h(x,y) 

and function f(x,y) is given by [3]: 

 

g(x,y) = h(x,y) ⊗ f(x,y)   ∫  (   ̀,    ̀)  ( ̀,  ̀)      
 

  
                     (2.17) 

 

While the Discrete representation of Eq.(2.17) is given by: 

g(x,y)  = h(x,y) ⊗ f(x,y)    ∑∑  (   ̀,    ̀)  ( ̀,  ̀) 
 ̀, ̀                     (2.18) 
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The Fourier transform of Eq.(2.18) is given by: 

 

G(u,v) = H(u,v) F(u,v)                                                                           (2.19) 

 

This means that the Fourier transform of convolution process in spatial domain 

leads to a simplest multiplication in frequency domain.  
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3.1 Background: 

Any image acquired by optical or electronic means is likely to be degraded by the 

sensing environment [3]. Image restoration algorithms trying to"undo" the blurring 

function and  the noise from the degraded image by deconvolving the blurring 

function and reducing the noise from the degraded image to produce an estimate 

image, which is approach to the original image [40]. The effectiveness of image 

restoration filter depends on extent and the accuracy of  the knowledge of 

degradation process, and it also depends on the filter design criterion . One of 

criterion usually used is Root Mean Square Error and maximum entropy criterion 

sometimes used [3].  

3.2 Algebric Approach to Restoration  

The aim of image restoration is to estimate an original image, given a degraded 

image and some knowledge or assumption about blurring and noise function. 

Central to the algebraic approach is the concept of seeking an estimate of original 

image, which minimizes a predefined criterion of performance. Because of 

simplicity, the approach attention on least-squares criterion function. The well-

known restoration methods are result of considering either an unconstrained or a 

constrained approach to least-square restoration problem [1]. According to the 

affected of blurring function (PSF), whether its space invariant or space variant  

image  restoration  can be classified into [23]:                                                              

I- Linear restoration: associated with  space invariant PSF                                   

II-  Non-Linear restoration: associated with  space variant PSF                              

 

The Linear restoration techniques, in turn, can be classified into the following [23]:                                                                                                                 

I- Unconstrained linear restoration  techniques                                                        

II- Constrained linear restoration  techniques  
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The constrained  techniques are classified into [23]:                                                                                                                      

I- Direct solution: also known as, linear, non-iterative, or one shot solution.     

II- Indirect solution: also known as iterative solution.                                                                             

 

3.2.1 Unconstrained Restoration 

The noise term of the degradation model is given by [1]: 

 

                   =                                                                                 (3.1) 

  

In the absence of any information about n, a meaningful criterion function is to 

seek an estimate of original image,  denoted by  ̂ such that H  ̂ approximates g in a 

least-squares sense by assuming that the norm of the noise ‖ ‖ , is as small as 

possible. In other word , find   ̂ such that: 

 

                     ‖ ‖  = ‖     ̂ ‖
 
                                                                     (3.2) 

  

Where   ̂  is restored image. 

 ̂  is minimum, where, by definition, ‖ ‖ =  ́  and ‖     ̂ ‖
 
=(     ̂)  

(     ̂) are squared norms of n and (      ̂ ), respectively. From Eq.(3.2), it 

could be equivalent view this problem as one of minimizing the criterion function 

 

              J( ̂) = ‖     ̂ ‖
 
                                                                                (3.3) 
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 Where J is a criterion function, a said from the requirement that it minimize 

Eq.(3.3),   ̂ is not constrained in any way. 

Minimization of Eq.(3.3), is straightforward. Simply by differentiate  J with 

respect to  ̂, and set the result equal to the zero vector; that is: 

 

      
  (  ̂ )

   ̂ 
  = 0 =  - 2 ́(      ̂ )                                                     (3.4)  

 

Where  ́ is transpose of  H. 

Solving Eq.(3.4) for   ̂  yields:  

 

    ̂ = ( ́  )    ́                                                                         (3.5) 

By letting M = N so that H is square matrix, and assuming that     exists, 

Eq.(3.5) Reduce to:  

 

      ̂ =    ( )́    ́g                                                                      (3.6) 

                          =    g  

 

3.2.2 Invers Filtering 

Image restoration techniques by considering the unconstrained result given in 

eq.(3.6), can be derive by using elementary matrix theory,  in which, H may be 

expressed in the form [1], 

                      H =                                                                                    (3.7) 

                       ́ =                                                                                    (3.8) 
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Where D is a diagonal matrix of  ,    is the complex conjugate of D,    is 

eigenvector of  H,      is the inverse of     

Eq.(3.7) and Eq.(3.8) shows the Fourier transform of the block elements of H and 

 ́. By substitution Eq.(3.7) in Eq.(3.6) we get:  

 

 ̂ =                                                                                         

                           = (       )   g 

                          = W        g                                                                     (3.9) 

 

Premultiplying both sides of eq.(3.9) by     yields: 

 

                ̂ =                                                                          (3.10) 

 

Where       ̂  and         is recognize as discrete Fourier transform of   ̂ and g. 

Then Eq.(3.10) can be written in the form: 

 

        ̂( ,  ) = 
 ( , )

 ( , )
                                                                       (3.11) 

 

This relation is the formal solution to the Inverse filtering problem. The 

reconstructed signal f is determined by it is Fourier transform  ̂, which in turn is 

obtained from the system function H and the Fourier transform  G of degraded 

signal. The system function of the inverse filter is, thus, [4]: 
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          =   ⁄                                                                               (3.12) 

 

Since the effect of the blur is described by a convolution, the inverse process, the 

reconstruction of signal before blurring is called a deconvolution. Unfortunately, 

the above direct method turns out to be useless in practice.  Not unexpectedly, the 

reason turns out  to be noise and incomplete knowledge of the system function H.  

A more serious difficulty arise in the present of noise, multiplying both sides of 

Eq.(2.1) by      and using Eq.(3.7) we get [1]. 

 

                     =        ̂                                                                (3.13) 

 

Then Eq.(3.13) can be written in the form: 

 

 ̂ =  
 ( , )

 ( , )
  

 ( , )

 ( , )
                                                               (3.14) 

 

In general, the noise may very well possess large component at high frequencies 

(u,v), while g and h normally will be dominated by low-frequency components. 

For large values, we have G(u,v) = 0 and H(u,v) = 0. The latter relation have, as 

evidenced by Eq.(3.14), devastating effect.  

Since F(u,v)   -N(u,v) / H(u,v), Where both the numerator is large and the 

denominator small ( in absolute term). This qualitative argument shows that the 

noise will be amplified considerably in the inverse filtering, and the directly 

reconstructed signal will be worthless. The same conclusion is obtained by noting 
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that, since (low pass) filtering remove noise, inverse filtering must add noise. As is 

evident, an incompletely known function H(u,v) may give rise to the same effect, 

since small, erroneous, values of  H(u,v) will imply large value of F(u,v) [4]. 

 

3.2.3  Constrained Restoration 

Let Q be a linear operator on  ̂. Consider the least-squares restoration problem as 

one of minimizing functions of the form ‖  ̂‖
 
, subject to  the constraint ‖  

  ̂‖
 
= ‖ ‖ . This approach introduces considerable flexibility  in the restoration 

process because it produces different solutions for different choices of Q [1].  

The addition of an equality constraint in the minimization problem can be handled 

without difficulty by using the method of Lagrange multipliers The procedure is to 

express the constraint in the form  (‖    ̂‖
 
- ‖ ‖ ) and then append it to the 

function ‖  ̂‖
 
.  In other words, seek  ̂ that minimizes the criterion function. 

 

    J( ̂) = ‖  ̂‖
 
  (‖    ̂‖

 
= ‖ ‖ )                                       (3.15) 

 

where   is a constant called the Lagrange multiplier and Q linear operator. Once 

the constraint has been appended, minimization is carried out in the usual way. 

Differentiating Eq.(3.15) with respect to  ̂ and setting the result equal to the zero 

vector yields: 

 

    
  ( ̂)

  ̂
 = 0  = 2   ́    ̂ -2   ́(g  -  H  ̂)                                           (3.16) 
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The solution is obtained by solving eq.(3.16) for  ̂ ;that is: 

 

          ̂ =(   ́     ́ )   ́                                                                (3.17) 

 

Where    =
 

 
 . This quantity must be adjusted so that the constraint is satisfied. 

 

3.2.4 Least-Mean-Square (Wiener) Filter 

Let           as denoted the correlation matrices of f and n as, respectively, and 

defined by [1]: 

 

          = K{   ̂}                                                                                (3.18) 

        = K*   ́+,                                                                             (3.19) 

 

Where  * + is denotes the expected value operation. Assuming that the correlation  

between any two pixels is a function of the distance between the pixels and not 

their position, Using   and   to define,    and    respectively, then we  have: 

   =      
                                                                           (3.20) 

  =                                                                                  (3.21) 

 

Where   and   are diagonal matrix of      and    respectively. the Fourier 

transform these correlations is called the power spectrum (or spectral density) of  

f(x, y) and n(x, y), respectively, and will be denoted in the following discussion by 

   (u, v) and   (u,v), by supposing that: 
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 ́  =   
                                                                              (3.22) 

 

          are correlation matrices of f and n respectively. 

and substituting eq.(3.22) in eq. (3.17) we obtain:  

 

  ̂= (    ́     
    )

   ́                                                     (3.23) 

 

Using eq.(3. 7), eq. (3. 8), eq. (3.20) and eq. (3.21) yields in Eq.(3.23): 

 

 ̂ = (                    )                            (3.24) 

 

After multiplying both sides by     and some matrix manipulations this equation 

reduce to the form: 

                           ́ = (           )                                                (3.25) 

 

Then Eq.(3.25) can be written in the form: 

 

                   ̂ = [
  ( , )

| ( , )|       [  ( , )   ( , )⁄ ]
]  ( ,  )                                       (3.26) 
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When  =  , the term inside the outer brackets in Eq. (3.26) reduces to so-called 

Wiener filter. If    is variable we refer to this expression as the parametric Wiener 

filter. In the absence of noise,   ( ,  ) = 0, Wiener filter reduce to ideal inverse 

filter. When   ( ,  ) and   ( ,  ) are not known it is sometimes useful to 

approximate eq.(3.26) by the relation followed: 

 

        ̂   0
  ( , )

| ( , )|      
1  ( ,  )                                                        (3.28) 

 

Where   is constant. 

 

3.2.5 Constrained Least-Squares Restoration 

Constrain least squares suggested by phillips [1], to formulate a criterion of 

optimality based on a measure of smoothness such as, for example, minimizing 

some function of second derivative.  

Given a discrete function f(x), x = 0, l , 2, ... , it   may approximate its second 

derivative at a point x by the expression [1]: 

                  
   ( )

   
    (   )    ( )   (   )                                          (3.29) 

 

A criterion based on this expression, then, might be to minimize ,   ( )    ⁄ -   

over x; that is [1]: 

Minimizing * ∑ , (   )    ( )   (   )-   + 

or in a matrix notation, 
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                      ὤ = 

[
 
 
 
 
 
 
 
 
   
    

    
 

    
   

 ]
 
 
 
 
 
 
 

                                (3.30) 

Where ὤ is smoothing matrix. 

In the case of two-dimensional case considering a direct extension of eq.(3.29). 

In this case the criterion  is to [1]: 

 

minimize 0
   ( , )

   
  

   ( , )

   
1
 

                                                                          (3.31) 

 

Where the derivative function is approximated by the expression [1]: 

   
   ( )

   
  f(x+1,y) - 2f(x,y) + f(x-1,y)+f(x,y+1) - 2f(x,y) + f(x,y-1) 

              f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)                              (3.32) 

The derivative function given in eq.(3.31) is recognized as Laplacian operator "C", 

and given by: 

 

C(x,y) = [
   
    
   

]                                                             (3.33) 

 

the above smoothness criterion in a block circulant matrix: 
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  =

[
 
 
 
 ( ,  )  ( ,    )   ( ,  )

 ( ,  )  ( ,  )          ( ,  )

 
 ( ,    )  ( ,    )   ( ,  )]

 
 
 
                        (3.34) 

 

Since C is block circulant, it diagonalized by the matrix W: 

 

                          =                                                                              (3.35) 

Where    is Diagonal matrix of   

 

The optimal solution is given by eq.(3.17) with  Q   ; that is: 

 

 ̂ = (  ́       ́  )    ́                                                             (3.36) 

 

By using eq.(3.7), eq. (3.8), eq.(3.35), eq.(3.36) in eq.(3.36) gave as: 

          ̂ = (                       )                                           (3.37) 

After multiplying both side by     and some matrix manipulations. This equation 

reduces to 

 

    ̂ = (           )                                                (3.38) 

eq.(3.38) could be express by the form: 
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 ̂( ,  ) = 0
  

| ( , )|   | ( , )| 
1                                              (3.39) 

For u,v = 0, 1, 2, ... N - I, Where  | ( ,  )| =   ( ,  ) ( ,  ) 

 

3.3 VanCittert's Iteration 

The simplest of the iterative restoration methods have a long history. It goes back 

at least to the work of VanCittert in the 1930's, and may in fact have even older 

antecedents [41].  

 

3.3.1 Formulation of the Algorithm 

The advantage iterative procedures that are  no matrix inverses need to be 

implemented, and the additional deterministic constraints can be incorporated into 

the solution algorithms [41]. 

by  applying the method of successive approximations to compute a solution to Eq. 

(2.1)  given as [41]:     

 

                                  ̂= 0 

                  

                     ̂   =  ̂ +  (g - H  ̂ )                                                                   (3.40) 

 

Where k is number of iteration,  ̂   is restored image after k+1 iterations,  ̂  is 

restored image after k iterations,   is control the convergence of the iterations. 

Inspected iterative restoration algorithms need a first estimate to start their 

iterations, and it may be estimated as follows [40]: 

 The recorded image 

 An obvious choice of the first estimate is to use the degraded image. 

 the mean of the recorded image 
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 Kaufman (1987) has argued that starting from a uniform first guess is a good 

approach shot if no other sensible guess as a first estimate can be obtained. We 

have used the mean of degraded image as a uniform first estimate. 

 The original object 

Ideally, the restoration algorithms should produce the original object. Utilizing the 

original target as a first estimate enables us to test whether this is the solution 

found by these algorithms under realistic circumstances. 

 The result of Tikhonov-Miller restoration 

The iterative algorithms based on the Tikhonov functional should converge more 

quickly on their solutions if a first estimate close to the final solution is provided.  

 

3.3.2 Deblurring Procedure 

deblurring is equivalent to applying the VanCittert procedure to the identity [41]: 

 

 

 =      (    )                                                                (3.41) 

yielding the iteration gives [41]: 

 

                     ̂   =  ̂    
 (    ̂ )                                                           (3.42) 

 

An alternative way to derive Eq. (3.42) is from the viewpoint of minimizing the 

norm of the residual (    ̂) because for a good restoration result the blurred 

estimate   ̂ should be approximately equal to the observed image g. Iterative 

minimization of the criterion function using eq.(3.3), by the method of steepest 

descent yields [28]: 

 

 

 ̂   =  ̂     =  ̂  
  

 
     ( )| ̂                                           (3.43)  
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                                 =  ̂    
 (    ̂ )      

 

Where    =  
 

 
    ( )|   ̂   is called the steepest descent direction which points in 

the direction of the negative gradient of the objective function at  ̂ .  

 

3.3.3 Iterative Tikhonov-Miller Solution 

Iterative Tikhonov-Miller Solution usually used because of [41]: 

 

1- the iterative computation of the Tikhonov-Miller regularized solution might 

be easier than the direct evaluation of (3.36) 

 

2- the use of an iterative scheme allows for additional constraints to be imposed 

on the solution . 

 

We use the method of  the steepest descent to minimize the objective function 

J( ̂) in (3.15). This gives the following iterations: 

 

                        ̂   =  ̂     =  ̂  
 

 
       ( )| ̂  

                     =  ̂   .( 
       ) ̂   

  / 

                      =(I-     ) ̂    
 (    ̂ )                                         (3.44) 

  

This iteration reduces to the (deblurred) VanCittert iteration if   = 0 (no   

Tikhonov-Miller regularization). 

 

the term (I-     ) in Eq.(3.44) behaves like a low-pass filter, suppressing the 

noise in the iterates. The optimal value of   at the iteration k is given by [41]: 
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  =
‖  ‖

 

‖    ‖
   ‖    ‖

                                                           (3.45) 

 

the optimized method of steepest descent will converge faster than the method of 

steepest descent with a fixed value for  . Although the optimization procedure for 

  increases the convergence speed of the algorithm, the improvements are usually 

moderate and may not justify the efforts involved. 

A drawback of these iterative methods is the fact that the quality of the restored 

image does not necessarily increase monotonically. So it seems thus reasonable to 

stop the iteration when     ̂      [42]. 

3.3.4 Image Restoration Algorithm 

 

The procedure has been used to applying restoration algorithm as follow: 

1- Read binary or color original image with a size of 256 × 256 pixel. 

2- Generating Gaussian function (size 256 × 256) with selected standard deviations 

values σ =1,2. 

3- Generating random Gaussian noise with selected signal to noise ratio values 

SNR=5,10,20 

4- Convolve original image with  Gaussian function to produce a blurred image. 

5- Add Gaussian noise to the blurred image to produce a degraded image. 

6-  Select a three value of regularizing parameter  α = 0.25, 1,2 for Tikhonov-

Miller regularized restoration filter. 

7- Estimate original image using two restoration filter these are, Tikhonov-Miller 

regularized restoration filter and Wiener filter. 

8- Calculate the Root Mean Square Error (RMSE) of restored images obtained by 

filters. Figure (4-1) shows flowchart of the program. 
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Figure (4-1) Flowchart of Image Restoration Algorithm
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4.1 Introduction 

This chapter is conducted  to present the result and discussion that have been a 

chivied in this study. The effectiveness of image restoration filter depends on the 

accuracy of  the knowledge of degradation process, and  it also depend on the filter 

design criterion. RMSE is one of the most important criterion, that is used to 

measure the quality of  image. The research assumed that, the degradation model, 

as a convolution of the original image with blurring function and distorded by 

additive noise. Image restoration algorithms  could be define as, a trying to "undo" 

the blurring function and  the noise from the degraded image by deconvolving the 

blurring function and reducing the noise from the degraded image to produce an 

estimate image, which is approach to the original image. 

The numerical result of  research focuses on a linear non-blind image restoration, 

in which the blurring function is known and it is a space invariant. Matlab program  

have been used to  apply  a written  algorithm  on three type of images, these are 

gray image (Satellite image), sonar image (Embryo image) and color image (bird 

image) are 256*256 pixels in size, to blur images with Gaussian blurring  function 

with selected standard deviation values " σ =1,2 " and degraded it with additive 

Gaussian noise with selected signal to noise ratio "SNR= 5,10,20" to produce 

degraded images. By applying   another  written  algorithm on degraded images to 

restore it, using Tikhonov-Miller filter and Wiener filter. Display  the relation 

between Root Mean Square Error  and  signal to noise ratio for σ = 1,2 for the 

degraded image,  the restored image using Wiener  filter. Display  the relation 

between Root Mean Square Error  and SNR, number of iteration with different 

SNR and number of iteration with different  regularizing parameters    = 0.25, 

1,2" for restored image using Iterative Tikhonov-Miller filter.  
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4.2 Test and Result 

Constrained images restoration techniques in frequency domain are adopted to 

restore the degraded images using Matlab program, which is: 

 Non-iterative solution using Wiener filter. 

 Iterative solution using Iterative Tikhonov-Miller filter. 

Also, Gaussian blurring function  were  adopted with different standard deviation 

values " σ ", σ = 1 and 2. and Gaussian noise, with different noise selected signal to 

noise ratio" SNR =5, 10, and 20", with zero mean. 

 

4.2.1 Degraded images  

Three images has been selected, these are gray image (Satellite image), sonar 

image (Embryo image) and color image (bird image) are 256*256 pixels in size, 

each of them convolved with Gaussian blurring function for selected standard 

deviation values " σ = 1,2 ", and degraded by additive Gaussian noise  at selected 

signal to noise ratio "SNR =5,10,20" to produce a degraded images and the result 

display in the following tables.  

Tables ((4-1)-(4-3)) describe the result value of  Root Mean Square Error (RMSE) 

of images after degradation for selected standard deviation values " σ = 1,2 " and 

selected signal to noise ratio values "SNR =5,10,20". the result value of  Root 

Mean Square Error  of  restoring images using Iterative Tikhonov-Miller filter with 

selected regularizing parameter values  = 0.25, 1,2  and result value of  Root 

Mean Square Error  of  restoring images using Wiener  filter. Where RMSE 

decrease or increase with parameter value of σ, SNR and    

Table (4-1) display the result value of  RMSE for Satellite degraded, restored   

Satellite image. 
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SNR=20 

RMSE 

SNR=10 

RMSE 

SNR=5 

RMSE 

σ  

 

29 36 41 1  

 

Degraded image 

30 37 44 2 

28 27 26 1  

 

Wiener  filter 
23 21 22 2 

18 

13 iter 

 

21 

15 iter 

 

35 

9 iter 
 

1  

Restore image Using 

Tikhonov Filter when  =0.25 

18 

2 iter 

 

24 

4 iter 

32 

4 iter 

 

2 

18 

14 iter 

 

21 

16 iter 

 

26 

22 iter 

 

1  

Restore image Using 

Tikhonov Filter when  =1 

17 

2iter 

 

 

23 

3 iter 

 

31 

5 iter 

2 

18 

13 iter 

 

26 

8 iter 

 

29 

13 iter 

 

1  

Restore image Using 

Tikhonov Filter when  =2 

 

Table (4-1) shows the RMSE of Satellite restored images with different type of filters 

Table (4-2) display the result value of  RMSE for Embryo degraded, restored   

Embryo image. 
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SNR=20 

RMSE 

SNR=10 

RMSE 

SNR=5 

RMSE 

σ  

23 44 55 1  

 

Degraded image 

27 50 64 2 

35 36 32 1  

              Wiener filter 

34 35 29 2 

7 

17 iter 

14 

19 iter 

21 

20 iter 

1  

 

Restore image Using 

Tikhonov Filter when  =0.25 
7 

2iter 

15 

3 iter 

25 

4 iter 

2 

8 

17 iter 

13 

20 iter 

21 

21iter 

1 Restore image Using 

Tikhonov Filter when  =1 

7 

3 iter 

15 

5 iter 

24 

5 iter 

2 

7 

17 

13 

22 iter 

21 

21 iter 

1 Restore image Using 

Tikhonov Filter when  =2 

7 

3 iter 

14 

3 iter 

23 

5  

2 

 

Table (4-2) shows the RMSE of  Embryo restored image with different type of filters 

Table (4-3) display the result value of  RMSE for bird degraded, restored   bird 

image. 
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SNR=20 

RMSE 

SNR=10 

RMSE 

SNR=5 

RMSE 

σ  

 

18 35 42 1  

 

Degraded image 

20 36 50 2 

17 15 17 1  

 

Wiener  filter 
10 13 15 2 

8 

16 

12 

19 iter 

17 

24 iter 

1  

Restore image Using 

Tikhonov Filter when  =0.25 

9 

3 iter 

17 

5 iter 

23 

5 iter 

2 

8 

14 iter 

12 

19 iter 

17 

24 iter 

1  

Restore image Using 

Tikhonov Filter when  =1 

8 

3 iter 

15 

4 iter 

22 

5 iter 

2 

8 

15 iter 

13 

22 iter 

18 

25 iter  

1  

Restore image Using 

Tikhonov Filter when  =2 

9 

3 iter 

16 

4 iter 

23 

4 iter 

2 

Table (4-3) shows the RMSE of  Bird restored image with different type of filters 

 

 Satellite image 

Satellite image of  Baghdad  zoo is 256*256 pixels in size, convolved with 

Gaussian blurring function  for  selected standards deviation values " σ = 1,2 ", and 

degraded by additive Gaussian noise  at selected signal to noise ratio "SNR 

=5,10,20" to produce degraded Satellite image as shown in figures (4-1) and (4-2). 
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Figure (4-1) Present (a) original image. (b)-(d) degraded image, Gaussian function of σ = 1 and 

Gaussian noise of  SNR = 20, 10 and 5 respectively. 
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Figure (4-2) Present (a) original image. (b)-(d) degraded images, Gaussian function of σ = 2 and 

Gaussian noise with  SNR = 20, 10 and 5 respectively 

 

 sonar image 

Sonar image of Embryo is 256*256 pixels in size, convolved with Gaussian 

blurring function  for selected standard  deviation values " σ = 1,2 ", and degraded 
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by additive Gaussian noise  at selected signal to noise ratio "SNR =5,10,20" to 

produce degraded sonar image as shown in figures (4-3) and (4-4). 

 

 

Figure (4-3) Present (a) original image. (b)-(d) degraded images, Gaussian function of σ = 1 and 

Gaussian noise with  SNR = 20, 10 and 5 respectively. 
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Figure (4-4) Present (a) original image. (b)-(d) degraded images, Gaussian function of σ = 2 and 

Gaussian noise with  SNR = 20, 10 and 5 respectively 

 

 

 Color image 

Color image of bird image is 256*256 pixels in size, convolved with Gaussian 

blurring function  for selected standard deviation values " σ = 1,2 ", and degraded 
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by additive Gaussian noise  at selected signal to noise ratio "SNR =5,10,20" to 

produce degraded color image as shown in figures (5) and (6). 

 

 

Figure (4-5) Present (a) original image. (b)-(d) degraded images Gaussian function of σ = 1 and 

Gaussian noise with  SNR = 20, 10 and 5 respectively. 
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Figure (4-6) Present (a) original image. (b)-(d) degraded images, Gaussian function of σ = 2 and 

Gaussian noise with  SNR = 20, 10 and 5 respectively. 

 

4.2.2 Restored images 

The degraded images that have shown in figure ((4-1)-(4-6)) have been  restored 

using Iterative Tikhonov-Miller filter and Wiener  filter as follow: 
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I- Iterative Tikhonov-Miller filter 

Iterative Tikhonov-Miller filter improved  three selected images as follow:  

 satellite image 

Iterative Tikhonov-Miller filter improved degraded satellite images, with using   

=1, which have generally minimum result value of RMSE. 

 

Figure (4-7) Present (a) original image. (b) degraded image, Gaussian function of σ = 1 and 

Gaussian noise of  SNR = 20. (c) restored image.  
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Figure (4-8) Present (a) original image. (b) degraded image, Gaussian function of σ = 1 and 

Gaussian noise of  SNR = 10. (c) restored image. 
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Figure (4-9) Present (a) original image. (b) degraded image, Gaussian function of σ = 1 and 

Gaussian noise of  SNR = 5. (c) restored image. 
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Figure (4-10) Present (a) original image. (b) degraded image, Gaussian function of σ = 2 and 

Gaussian noise of  SNR = 20. (c) restored image. 
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Figure (4-11) Present (a) original image. (b) degraded image, Gaussian function of σ = 2 and 

Gaussian noise of  SNR = 10. (c) restored image. 
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Figure (4-12) Present (a) original image. (b) degraded image, Gaussian function of σ = 2 and 

Gaussian noise of  SNR = 5. (c) restored image. 

 

 Embryo image 

Iterative Tikhonov filter, in which optimum regularization parameter"      have  

value   = 2 which have generally best value of  RMSE, use to Restore the degraded 
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Embryo image, blurring with Gaussian blurring function  for selected standard 

deviations values and distorted with Gaussian noise at different noise ratio values 

"SNR =5,10,20, as shown in the following  figures. 

 

 

Figure (4-13) Present (a) original image. (b) degraded image, Gaussian function of σ = 1 and 

Gaussian noise of  SNR = 20 (c) restored image. 
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Figure (4-14) Present (a) original image. (b) degraded image Gaussian function of σ = 1 and 

Gaussian noise of  SNR = 10 (c) restored image. 
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Figure (4-15) Present (a) original image. (b) degraded image, h Gaussian function of σ = 1 and 

Gaussian noise of  SNR = 5 (c) restored image.  
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Figure (4-16) Present (a) original image.  (b) represent the degraded image, Gaussian function of 

σ = 2 and Gaussian noise of  SNR = 20. (c) restored image.  
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Figure (4-17) Present (a) original image. (b) degraded image, Gaussian function of σ = 2 and 

Gaussian noise of  SNR = 10 (c) restored image. 
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Figure (4-18) Present (a) original image (b) degraded image, Gaussian function of σ = 2 and  

Gaussian noise of  SNR = 5 (c) restored image. 

 

 bird image 

Iterative Tikhonov filter, in which optimum regularization parameter"      have  

value   =1 which have generally best value of RMSE, use to Restore the degraded 

bird image, blurring with Gaussian blurring function  for different standard 
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deviation values and distorted with Gaussian noise at different noise ratio as shown 

in the following  figures. 

 

Figure (4-19) Present (a) original image. (b) degraded image, Gaussian function of σ = 1 and 

Gaussian noise of  SNR = 20. (c) restored image. 
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Figure (4-20) Present (a) original image. (b) degraded image, Gaussian function of σ = 1 and 

Gaussian noise of  SNR = 10. (c) restored image using. 
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Figure (4-21) Present (a) original image. (b) degraded image, Gaussian function of σ = 1 and 

Gaussian noise of  SNR = 5. (c) restored image. 
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Figure (4-22) Present (a) original image. (b) degraded image,  Gaussian function of σ = 2 and 

Gaussian noise of  SNR = 20. (c) restored image. 
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Figure (4-23) Present (a) original image. (b) degraded image, Gaussian function of σ = 2 and 

Gaussian noise of  SNR = 10. (c) restored image. 

 

 

 



 

72 
 

 

Figure (4-24) Present (a) original image. (b) degraded image, Gaussian function of σ = 2 and 

Gaussian noise of  SNR = 5. (c) restored image. 

 

II.  Wiener filter 

Wiener filter improve most the three selected images and the best result of 

quality image showed by the minimum value of RMSE. And the result of filter 

shown in the following figures as follow: 
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 satellite image 

Wiener filter, use to Restore the degraded satellite image, blurring with Gaussian 

blurring function  for different standard deviation values and distorted with 

Gaussian noise at different noise ratio as shown in the following  figure. 

 

 

Figure (4-25) Present (a) original image.  (b) degraded image, Gaussian function of σ = 1 and 

Gaussian noise of  SNR = 20. (c) restored image. 
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Figure (4-26) Present (a) original image. (b) degraded image, Gaussian function of σ = 1 and 

Gaussian noise of  SNR = 10. (c) restored image. 
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Figure (4-27) Present (a) original image.  (b) degraded image, Gaussian function of σ = 1 and 

Gaussian noise of  SNR = 5. (c) restored image. 

 

 



 

76 
 

 

 

 

Figure (4-28) Present (a) original image.  (b) degraded image, Gaussian function of σ = 2 and 

Gaussian noise of  SNR = 20. (c) restored image. 
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Figure (4-29) Present (a) original image. (b) degraded image, Gaussian function of σ = 2 and 

Gaussian noise of  SNR = 10. (c) restored image. 
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Figure (4-30) Present (a) original image. (b) degraded image, Gaussian function of σ = 2 and 

Gaussian noise of  SNR = 5. (c) restored image. 

 

 Embryo image 

Wiener filter, use to Restore the degraded Embryo image, blurring with Gaussian 

blurring function  for different standard deviation values and distorted with 

Gaussian noise  at different noise ratio as shown in the following  figures. 
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Figure (4-31) Present (a) original image. (b) degraded image, Gaussian function of σ = 1 and 

Gaussian noise of  SNR = 20. (c) restored image. 
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Figure (4-32) Present (a) original image. (b) degraded image, Gaussian function of σ = 1 and 

Gaussian noise of  SNR = 10. (c) restored image. 
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Figure (4-33) Present (a) original image. (b) degraded image, Gaussian function of σ = 1 and 

Gaussian noise of  SNR = 5 (c) restored image. 
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Figure (4-34) Present (a) original image.  (b) degraded image, Gaussian function of σ = 2 and 

Gaussian noise of  SNR = 20. (c) restored image. 
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Figure (4-35) Present (a) original image. (b) degraded image, Gaussian function of σ = 2 and 

Gaussian noise of  SNR = 10 (c) restored image. 
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Figure (4-36) Present (a) the original image (b) degraded image, Gaussian function of σ = 2 and 

Gaussian noise of  SNR = 5 (c) restored image. 

 

 bird image 

Wiener filter, use to Restore the degraded bird image, blurring with Gaussian 

blurring function  for different standard deviation values and distorted with 

Gaussian noise at different noise ratio as shown in the following  figures. 
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Figure (4-37) Present (a) original image.  (b) degraded image, Gaussian function of σ = 1 and 

Gaussian noise of  SNR = 20. (c) restored image. 
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Figure (4-38) Present (a) original image. (b) degraded image, Gaussian function of σ = 1 and 

Gaussian noise of  SNR = 10. (c) restored image. 
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Figure (4-39) Present (a) original image.  (b) degraded image, Gaussian function of σ = 1 and 

Gaussian noise of  SNR = 5. (c) restored image. 
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Figure (4-40) Present (a) original image.  (b) degraded image, Gaussian function of σ = 2 and 

Gaussian noise of  SNR = 20. (c) restored image. 
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Figure (4-41) Present (a) original image. (b) degraded image, Gaussian function of σ = 2 and 

Gaussian noise of  SNR = 10. (c) restored image. 
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Figure (4-42) Present (a) original image. (b) degraded image, Gaussian function of σ = 2 and 

Gaussian noise of  SNR = 5. (c) restored image. 

4.2.3 Relation between parameters  

Root mean square error has been used as a criterion to check the effectiveness of 

image restoration filter. Plotting the relation between Root Mean Square Error and 
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many parameters " SNR and Diff. No. of iteration"  to discuss the results as shown 

in the following figures. 

 

Figure (4-43) show that the RMSE of  three selected degraded images increase 

with  increment standard deviation values " σ = 1,2" of  Gaussian blurring function 

and decrease with increasing SNR. 

 

Figure (4-43) shows (a) RMSE Versus SNR of  satellite degraded image (b) RMSE Versus SNR 

of  Embryo  degraded image (c) RMSE Versus SNR of  bird  degraded image 

 

Figure (4-44) show (a)  Root mean square error of  satellite restored image using 

Wiener filter decrease with increase standard deviation values " σ " of Gaussian 

blurring function and in general increase for σ =1,2 with increment SNR. (b) Root 

Mean Square Error of  Embryo restored image using Wiener filter decrease with 

increase standard deviation values " σ " of Gaussian blurring function and in 
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general increasing for σ =1,2  with increase SNR. (c) Root mean square error of  

bird restored image using Wiener filter decrease with increase standard deviation 

values " σ " of Gaussian blurring function and in general decreasing for σ =1,2 

with increase SNR 

Figure (4-44) shows (a) RMSE Versus SNR of  satellite restored  image using Wiener filter (b) 

RMSE Versus SNR of  Embryo  restored  image using Wiener filter (c) RMSE Versus SNR of  

bird  restored  image using Wiener filter. 

 

 

Figure (4-45) Root mean square error of three restored images using Iterative 

Tikhonov-Miller filter "  =    for satellite and bird images and   =    for 
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Embryo  image"  increase with increase standard deviation values " σ " of 

Gaussian blurring function and decrease with increasing SNR. 

 

Figure (4-45) shows (a) RMSE Versus SNR of  satellite restored  image using Iterative 

Tikhonov-Miller filter (b) RMSE Versus of  SNR of Embryo restored  image using Iterative 

Tikhonov-Miller filter (c) RMSE Versus SNR of  bird  restored  image using Iterative Tikhonov-

Miller filter. 

From figure (4-46) (a) it combinational, the relationship between  RMSE of  

satellite restored images using Iterative Tikhonov-Miller filter "  =     for 

different  SNR  decrease with increase the number of iteration.  But  when SNR= 5 

after 22 iter , SNR= 10 after 16 iter and SNR= 20 after 14 iter,  RMSE  start to 

increase  with increase the number of iteration. (b) it combinational,  the 

relationship between  RMSE of  Embryo restored images using Iterative Tikhonov-

Miller filter "  =    for different SNR, in general decrease with increase the 

number of iteration.  But when SNR= 5 after 21 iter and SNR= 10 after 22 iter, 

SNR= 20 after 17 iter,  RMSE  start to increase  with increment the number of 
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iteration. (c) it combinational, the relationship between RMSE of  Bird restored 

images using Iterative Tikhonov-Miller filter "  =    in general decrease with 

increase the number of iteration.  But when SNR= 5 after 24 iter and SNR= 10 

after 19 iter, SNR= 20 after 14 iter,  RMSE start to increase  with increment the 

number of iteration, so we stopping the iteration. 

 

Figure (4-46) shows (a) RMSE Versus no. of iterations of  satellite restored image with 

Tikhonov Filter, and  blur with   =1 (b) RMSE Versus no. of iterations of  Embryo  restored 

image with Iterative Tikhonov-Miller filter, and  blur with   =1(c) RMSE Versus no. of 

iterations of  bird  restored image with Iterative Tikhonov-Miller filter, and  blur with   =1 

 

Figure (4-47) show RMSE of  satellite restored image using Iterative Tikhonov-

Miller filter "  =    decrease with increase the number of iteration for SNR= 5,10 

and 20, but after two iteration when the SNR = 10 and 20 it start increased. (b) 

RMSE of  Embryo  restored image using Iterative Tikhonov-Miller filter "  =    



 

95 
 

decrease with increase the number of iteration for SNR= 5,10 and 20, but after 

three iteration when the SNR = 10 and 20 it start increased. 

(c) RMSE of  Bird  restored image using Iterative Tikhonov-Miller filter "  =    

decrease with increase the number of iteration for SNR= 5,10 and 20. But when 

SNR = 5 after 5 iter, SNR= 10 after 4 iter and SNR= 20 after 3 iter  RMSE start  to 

increased with number of iteration increment. 

 

Figure (4-47) shows (a) RMSE Versus no. of iterations of  satellite restored image with 

Tikhonov Filter, and  blur with   =2 (b) RMSE Versus no. of iterations of  Embryo  restored 

image with Iterative Tikhonov-Miller filter, and  blur with   =2 (c) RMSE Versus no. of 

iterations of  bird  restored image with Iterative Tikhonov-Miller filter, and  blur with   =2 

Figure (4-48) show the  better result value of RMSE of restored satellite images 

using Iterative Tikhonov-Miller filter , when  the regularization parameter of  

iterative Tikhonov-Miller filter have value equal to 1.  
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Figure (4-48) shows RMSE Versus number of iteration of  satellite restored  image using 

Iterative Tikhonov-Miller filter, blur with   =1, SNR = 5, 10 and 20 respectively 

 

Figure (4-49) show the  better result value of RMSE restored satellite images 

using Iterative Tikhonov-Miller filter , when the regularization parameter of  

iterative Tikhonov-Miller filter have value equal to 1.  
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Figure (4-49) shows RMSE Versus number of iteration of  satellite restored  image using 

Iterative Tikhonov-Miller filter, blur with    =2, SNR = 5, 10 and 20 respectively 

 

Figure (4-50) show the  better  result value of RMSE of  restored  Embryo  images 

using Iterative Tikhonov-Miller filter,  when the regularization parameter of  

iterative Tikhonov-Miller filter have value equal to 2. 
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Figure (2-50) shows RMSE Versus number of iteration of  Embryo  restored  image using 

Iterative Tikhonov-Miller filter, blur with   = 1, SNR= 5, 10 and 20 respectively 

 

Figure (4-51) show the  better result value of RMSE of restored  Embryo  images  

using Iterative Tikhonov-Miller filter , when the regularization parameter of  

iterative Tikhonov-Miller filter have value equal to 2. 
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Figure (4-51) shows RMSE Versus number of iteration of  Embryo  restored  image using 

Iterative Tikhonov-Miller filter , blur with   = 2, SNR = 5, 10 and 20 respectively 

  

Figure (4-52) show the  better  result value of RMSE of restored  bird  images 

using Iterative Tikhonov-Miller filter , when, the regularization parameter of  

iterative Tikhonov-Miller filter have value equal to 1.  
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Figure (4-52) shows RMSE Versus number of iteration of  bird restored  image using Iterative 

Tikhonov-Miller filter, blur with   =1, SNR = 5, 10 and 20 respectively 

   

Figure (4-53) show the  better  result value of  RMSE restored  bird  images  using 

Iterative Tikhonov-Miller filter , when the regularization parameter of  iterative 

Tikhonov-Miller filter have value equal to 1.  
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Figure (4-53) shows RMS error Versus number of iteration of  bird restored  image using 

Iterative Tikhonov-Miller filter, blur with    =2, SNR = 5, 10 and 20 respectively 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

102 
 

5.1 Conclusions 

The effectiveness of image restoration techniques studied by using root mean 

square error as follow 

 Wiener filter has better  performance for more degradation parameters, with 

low SNR. 

 Iterative Tikhonov-Miller filter has better  performance when increasing the 

number of iteration till it divergence, the performance will be low, also  has 

better  performance for less degradation parameters, with high SNR. 

 Choose the regularize parameter of  Iterative Tikhonov-Miller filter of depend 

on image type. 

 

5.2 Suggestions for Future Work 

 

From the work of this research, some notes can be suggested as 

future work: 

1- Use a nonlinear technique of image restoration to restore the images. 

2- Using nonlinear  iterative restoration and compare the results with another kind 

of iterative image restoration. Such as maximum entropy method, POC methods.  

3- Using nonlinear iterative restoration with different regularization parameter. 

4. Using a blind deconvolution to restore images. 

6- Using another programs to apply restoration algorithm such as C#. 

7- Using another type of blurring and noise function such as motion blur. 
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 الخلاصت:

انفُشَبء وانحبطىة وانهُذطخ  انًعبنجبد انصىرَخ فٍ انعذَذ يٍ انًجبلاد انعهًُخ كعهىو نمذ رى رطجُك 

 وجصزَخ اان يٍ انًعزوف اٌ عًهُخ انحصىل عهً انصىرح ثبطزخذاو انطزقوانكًُُبء وانجُىنىجُب وانطت. 

بل رزيُى انصىرح هى  احذي يعزضخ نهزشىَه يٍ لجم ثُئخ انًزحظض. يجركىٌ  وانزٍ عبدح يب كززوَُخنالا

يجبلاد يعبنجخ انصىرح انزلًُخ انذٌ َهزى ثزحظٍُ انصىرح انًشىهخ. رزيُى انصىرح يًكٍ اٌ َكىٌ خطٍ 

انجحث عهً رزيُى انصىر انخطٍ وانغُز اعًً  رى انززكُش فٍ هذا او غُز خطٍ واعًً او غُز اعًً. 

انغشبوح ثبنصىرح الاصهُخ وارهفذ ثبضبفخ  وفزض اٌ يىدَم رشىَخ انصىرح هى عجبرح عٍ انزفبف دانه

خىارسيُخ رزيُى انصىرح هٍ يحبونخ نهزخهص يٍ دانه انغشبوح وانضىضبء يٍ اٌ ضىضبء جًعُخ و

انصىرح انًشىهخ ثفك انزفبف دانخ انزشىَه ثبنصىرح انًشىهخ ورمهُم انضىضبء لاَزبج صىرح يمذرح لزَجخ 

 ثىاططخ دانخ غشبوح كبوطُخ يخزهفخ الاَحزاف انًعُبرٌ يٍ انصىرح الاصهُخ . انصىر انًظزخذيخ شىهذ

انزشىَخ . ,SNR =4,2, ,1 الاشبرح انً انضىضبء ثُظجخوضىضبء كبوطُخ جًعُخ يخزهفخ  2,1=    

(صىرح انجٍُُ)  (صىرح انظزلاَذ )وصىرح انظىَبر صىرح انزيبدَخاننصىر وهٍ ااطزخذو نعذح أَىاع يٍ 

ركُهىف انزكزارٌ اطزخذيذ نززيُى انصىر  -يُهزوفهزز وَُز فهزز وانصىرح انًهىَخ (صىرح انطبئز). 

انًشىهخ. ثىاططخ يمُبص جذر يعذل يزثع انخطبء نمذ اطزُزجُب اٌ افضم اداء نىَُز فهزز هى عُذيب َكىٌ 

ركُهىف انزكزارٌ هى عُذيب َكىٌ  -اء نًُهزَظجخ الاشبرح انً انضىضبء لهُهخ وافضم اداٌ اٌ انزشىَه عبنٍ 

 .َظجخ الاشبرح انً انضىضبء عبنُخ اٌ اٌ انزشىَه لهُم
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