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Abstract 

The main purpose of this work may be divided into the following 

aspects: 

1. Study the Chebyshev polynomials of the first and second kinds defined on the 

intervals [0,1] and [-1,1] and modify some of their properties. 

2. Use two methods to solve the linear ordinary differential equations with non-

constant coefficients, namely, Chebyshev-matrix method and Chebyshev 

series method. 

3. Devote Chebyshev series method to solve system of linear Fredholm integral 

equations and integro-differential equations. 

 



 

Contents 

0TAbstract0T ..........................................................................................................  

0TIntroduction0T ................................................................................................ 0TI0T 

0TChapter One : The Chebyshev Polynomials 0T ............................................. 0T10T 

0TIntroduction0T................................................................................................ 0T10T 

0TChapter Two: Chebyshev Methods for Solving Linear Ordinary 
Differential Equations0T…………………………………………………... 0T310T 

0TIntroduction0T.............................................................................................. 0T310T 

0T2.1 Chebyshev Series Method for Solving the Linear Ordinary Differential 

Equation0T ................................................................................................... 0T310T 

0T2.2 Chebyshev-Matrix Method for Solving the Linear Ordinary Differential 

Equations0T ................................................................................................. 0T440T 

0TChapter Three : Chebyshev Series Method for Solving Special Types 

of Integral Equations and Integro-Differential Equation0T ................ 65 

Introduction.............................................................................................. 65 

3.1 Chebyshev Series Solutions of Linear Fredholm Integral Equations .... 65 

3.2 Chebyshev Series Solutions of System ofLinear Fredholm Integral 

Equation ........................................................................................75 

3.3 Chebyshev Series Solutions of Linear Fredholm Integro-Differential 

Equation ................................................................................................... 84 

Conclusions and Recommendations ........................................................ 89 

References .................................................................................................. 91 

 



 
 I 

Introduction 

 

 Most areas of numerical analysis as well as many other areas of 

mathematics as a whole  make use of the Chebyshev polynomials. In several 

areas of mathematics polynomial approximation, numerical integration, and 

pseudospectral methods for ordinary and partial differential equations, the 

Chebyshev polynomials take a significant role, the following quote has been 

attributed to a number of distinguished mathematicians. Hence a Chebyshev 

series can be expected to converge more rapidly than any other polynomial 

series. A Chebyshev series also generally converges more rapidly than 

Fourier series particularly for a function which is not truly periodic, [Sarra A., 

2005]. 

 Many authors and researchers studied the Chebyshev polynomials such 

as [Van der pol., 1934] who gave the definition of  the inverse Chebyshev 

series. Also has been decomposed into partial fractions, [Clenshaw C., 1957] 

gave the numerical solutions of the linear differential equations by using 

Chebyshev series, [Muranghan F., 1959] used the near-minimax properties of 

the Chebyshev series, [Veidinger L., 1960] studied the numerical 

determination of the best approximations in the Chebyshev sense, [Clenshaw 

C., 1960] proposed almost 40 years ago a quadrature  scheme for finding the 

integral of non-singular function defined on a finite range by expanding the 

integrand in a series of Chebyshev polynomials and integrating this series 

term by term, [Elliott D., 1961] solved heat equations by using Chebyshev 

series for the numerical integration, [Elliott D., 1964] discussed the evaluation 

and estimation of the coefficients in the Chebyshev series expansion of a 

Legender function, [Fox L., 1965] studied least squares approximation 

method using Chebyshev polynomials to solve second order ordinary 
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differential equation and gave some properties of Chebyshev series 

expansion, [Smith L., 1966] gave an algorithm for finding the inverse 

polynomial with Gauss-type Chebyshev quadratures, [Mason J., 1967] 

developed a numerical method for solving heat equations by using  

Chebyshev series, [Fox L., 1968] studied some important properties of the  

Chebyshev polynomials, [Mason J., 1969] solved special types of linear 

partial differential equations via Chebyshev series, [Kin L., 1970] studied 

high-precision Chebyshev series approximation to the exponential integral, 

[Knibb D., 1971] solved parabolic equations by using Chebyshev series, 

[Broucke R., 1973] studied some approximated methods by truncation of the 

Chebyshev series expansion of an inverse polynomial of degree k in power 

series, [Boateng G., 1975] solved parabolic partial differential equations by 

using Chebyshev collection method, [Alwar R., 1976] gave some of the 

application of Chebyshev polynomials to the nonlinear analysis of circular 

plates, [Gattieb D., 1977] discussed Chebyshev spectral methods, [Doha E., 

1979] discussed some of Chebyshev methods for finding the numerical 

solution of the third boundary value problem parabolic partial differential 

equations, [Evans D., 1981] solved biharmonic equation in a rectangular 

region by using Chebyshev series, [Gemignani L., 1997] gave some 

algorithms for Chebyshev rational interpolation, [Mihaila B., 1998] compared 

the solution of linear and non-linear second order ordinary differential 

equation obtained using the proposed Chebyshev method with numerical 

solution obtained using the finite-difference method, [Pakhshan M., 1999] 

solved the linear Fredholm integral equation of the second kind via 

Chebyshev polynomials, [Nath Y., 2000] solved special types of nonlinear 

partial differential equations by using a quadratic Chebyshev polynomials 

extrapolation technique, [John P., 2000] studied Chebyshev and Fourier 

spectral methods, [Glader C., 2001] discussed method for rational Chebyshev 
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approximation of rational functions on the unit disk and on the unit interval, 

[El-kady M., 2002] solved nonlinear optimal control problems by using 

Chebyshev expansion method, [Rababah A., 2003] proved that the shifted 

Chebyshev polynomials are orthogonal over [0,1], [Bulyshev  Y., 2003] gave 

some new properties of the Chebyshev polynomials used analysis and design 

of dynamic system, [ Mace R., 2005] discussed padé method reconstruct the 

Chebyshev polynomial approximation as a rational approximation, [Ramos 

H., 2007] presented a method based on Chebyshev approximation for solving 

the second order ordinary differential equation. 

  

 The aim of this work is to study Chebyshev polynomials of the first and 

second kinds defined on the intervals [0,1] and [-1,1]. Also some properties of 

such polynomials are discussed and developed. Moreover, we use the integral 

properties of Chebyshev polynomials of the first kind defined on [0,1] to 

produce a method for solving the boundary value problems for linear ordinary 

differential equations with non-constant coefficients and systems of linear 

Fredholm integral and integro-differential equations. 

Another method, named as Chebyshev-matrix method for solving these 

problems is utilized. It depends on the product property of the Chebyshev 

polynomials of the first kind defined on [0,1]. 

 This thesis consist of three chapters: 

 In chapter one, we give two definitions of the Chebyshev polynomials 

of the first and second kinds defined on [0,1] and [-1,1] with some of their 

important properties. 

In chapter two, two approximate methods; namely Chebyshev series 

and Chebyshev-matrix methods are discussed to solve boundary value 

problems of the linear ordinary differential equations with non-constant 

coefficients. 
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 In chapter three, we use Chebyshev series method to solve systems of 

linear Fredholm integral and integro-differential equations. This method 

depend on some properties of the Chebyshev polynomials of the first kind 

defined on [0,1]. 



 



 

 

Chapter One                                                                                                               The Chebyshev Polynomials 

1 

UIntroduction: 

 The aim of this chapter is to give the definitions of the Chebyshev 

polynomials of the first and second kinds defined on the intervals [0,1] and     

[-1,1]. Also some important properties of these polynomials are presented and 

developed. Most of these properties are necessary for practical applications to 

be discussed later. 

 

UDefinition (1.1), [Fox L. and Parker I., 1968]: 

The Chebyshev polynomial of the first kind defined on [-1,1], denoted 

by T RrR(x), is defined by:  

( ) ( )rT x cos r ,  cos x ,  1 x 1θ θ= = − ≤ ≤    

where  r 0 ,1 ,....=  

 

URemark (1.1): 

Since ( ) ( )cos r cos r ,  r=0,1,... ,θ θ= −  then one can define the 

Chebyshev polynomials of the first kind rT ( x )−  defined on [-1,1],  by: 

r rT ( x ) T ( x ), r 0 ,1 ,....− = =  

 

UDefinition (1.2), [ Fox L. and Parker I., 1968 ]: 

The Chebyshev polynomial of the first kind defined on [0,1], denoted 

by  ( )*
rT x , is defined by: 

( )*
r rT x T ( 2 x 1 ), 0 x 1= − ≤ ≤  

 where r 0 ,1 ,....=  
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UDefinition (1.3), [ Fox L. and Parker I., 1968 ]: 
The Chebyshev polynomial of the second kind defined on [-1,1], 

denoted by URrR(x),  is defined by: 

[ ]sin ( 1)
( ) , cos , 1 1

sinr
r

U x x x
θ

θ
θ
+

= = − ≤ ≤  

where r 0,1,....=  

 

URemarks (1.2), [ Fox L. and Parker I., 1968 ]: 

 It is easy to check that  

(i) 
2

2
2 0, 0,1,....r

r
d T r T r
dθ

+ = =  

(ii) 
2

2
2

2cos ( 2 ) 0, 0,1,....
sin

r r
r

d U dU r r U r
dd

θ
θ θθ

+ + + = =  

 

Now, the following proposition is appeared in [Fox L. and Parker I., 

1968] without proof. Here we give its proofs. 

 

UProposition (1.1): 

(i) TRrR (1) =1 for each r 0 ,1 ,....=  

(ii)  
isan even positive integer
isan odd positive integerr

1 r
T ( 1 )

1 r


− = −
 

 

UProof: 

(i) Assume x=1, then cosθ=1 and hence θ=2nπ, n 0 , 1 , 2 ,....=    

Therefore  TRrR (1) = cos(2nrπ) = 1 for r 0 ,1 ,....=  
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(ii) Assume x 1= − , then cos( ) 1θ = − and hence ( 2 n 1 )θ π= + , 

n 0 , 1 , 2 ,....=    

Therefore [ ] isan even positiveinteger
isan odd positiveintegerr

1 r
T ( 1 ) co s r( 2 n 1 )

1 r
π


− = + = −

                 

 

Next, the following proposition is appeared in [Fox L. and Parker I., 

1968] without proof. Here we give its proof. 

 

UProposition (1.2): 

 (i) ( ) ( ) ( )r 1 r r 1T x  2 x T x – T x ,  r 1 ,  2 ,...+ −= =                                       (1.1) 

(ii) ( ) ( ) ( ) ( ){ }s r s r s r
1T x T x  T x T x ,  s  r ,  r ,  s 0 ,1 ,
2 + −= + ≥ = …             (1.2)                           

(iii) ( )( ) ( )( ) ( )s r r s rsT T x T T x  T x ,  r ,s 0 ,1 ,= = = … . 

 

UProof: 

(i) From the trigonometric identity  

( ) ( ) ( ) ( )cos r 1 cos r 1 2cos r  cos , r 1,2,θ θ θ θ+ + − = = …        

one can have   

( ) ( ) ( ) ( )r 1 r 1 r 1T x T x 2T x  T x ,  r 1 ,2 , .+ −+ = = …  

Therefore   

( ) ( ) ( ) ( )r 1 1 r r 1T x 2T x  T x – T x+ −= .  

But T R1R(x) = x , hence  

 ( ) ( ) ( )r 1 r r 1T x 2 xT x – T x ,  r 1 ,2, .+ −= = …  

 (ii) From the trigonometric identity 

[ ] [ ]cos ( r s ) cos ( r s ) 2 cos( r ) cos( s )θ θ θ θ+ + − =  

one can have the desired result. 
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 (iii)  

 

( )( ) ( )
( )

1 1
s r

1

sr

T T x cos s cos cos (r cos x )

cos sr cos x

T ( x )

− −

−

 =  

=

=

 

 

URemarks (1.3), [Fox L. and Parker I., 1968]: 

(1) From the replacement of x by ( 2 x 1 )− in equations (1.1) and (1.2) one 

can have: 
* * *
r 1 r r 1T ( x ) 2( 2 x 1 )T ( x ) T ( x ), r 1 ,2 ,. . .+ −= − − =                            (1.3) 

where 

  0 1T = 1 , T = 2x - 1   

and  

* * * *
s r s r s r

1T ( x )T ( x ) T ( x ) T ( x ) , s r , r ,s 0 ,1 ,. . .
2 + − = + ≥ =             (1.4) 

respectively. 

(2) Since r 2 2 rT (T ( x )) T ( x ),=  then  

2
r 2 rT ( 2 x 1 ) T ( x )− = and this implies that 

1
2

r 2 rT ( 2 x 1 ) T ( x )− = .  

But *
r rT ( 2 x 1 ) T ( x )− = , therefore 

1
2*

r 2 rT ( x ) T ( x )= . 

 

Next, the following proposition give an alternative definition of the 

Chebyshev polynomial of the first kind defined on [-1,1]. 
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UProposition (1.3), [Fox L. and Parker I., 1968]: 

( ) ( )!( ) ( ) , , ,...
!( )!

r 2 k
r 2 k

r
k 0

r 1 r k 1T x 2 x r 1 2
2 k r 2 k

−

=

− − −
= =

−∑                         (1.5) 

 

UProof:     

Consider 

( ) ,
rr ir i

r 0 r 0

p e p e p 1θ θ
∞ ∞

= =

= <∑ ∑   

                 ( ) 1i1 p e θ −
= − { – ( )} 11 p cos i sinθ θ −= +  

                 { } 1 1 p cos i p sinθ θ −= − −  ( )
11

2 21 px ip 1 x
−

  = − − − 
  

 

                 
( )

( ) ( )

1
2 2

2 2 2

1 px ip 1 x

1 px p 1 x

− + −
=

− + −
 

By taking the real part of the above equation one can deduce that  

cos( )
( ) ( )

r
2 2 2 2

r 0

1 px 1 pxp r
1 px p 1 x 1 2 px p

θ
∞

=

− −
= =

− + − − +∑  

But  TRrR(x) = cos(rθ), r=0,1,…. Therefore 

( )r
r 2

r 0

1 pxp T x
1 2 px p

∞

=

−
=

− +∑  

Hence 
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( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) – – –

– –

– – –

1r 2
r

r 0
22 2

22

p T x 1 px 1 2px p

1 px 1 2px p 2px p

11 2xp  1 p 2x p p 2x p
2

∞ −

=

 =  

 = − + + +  
   = + + +    

∑




 

and by evaluating the coefficient of p P

r
P on the right-hand side one can get the 

required result. 

 

Next, the following proposition is appeared in [Fox L. and Parker I., 

1968] without proof. Here we give its proof. 

 

UProposition (1.4): 

( )* 2r r 2r 2 r 1
r

2r 1 2r 21T x 2 x 2 2 x
1 12

− −  − −    
= − − +     

     
  

2r 4 r 22r 2 2r 3
2 2 x , r 1,2,..

2 2
− −  − −    

− − =    
     

                       (1.6) 

 

UProof: 

By replacing  x by 
1
2x and r by 2r in proposition (1.3) one can get: 

(2 ) (2 )

(2 )

1
2

1 1
2 r 2 r 22 2

2 r

1
2 r 42

2 r 1 2 r 21T x x 2 x
1 12

2 r 2 2 r 3
2 x

2 2

−

−

  − −      = − − +             
 − −    

− −     
     



 

Thus 
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1
2 2r r 2r 2 r 1

2r

2r 4 r 2

2r 1 2r 21T x 2 x 2 2 x
1 12

2r 2 2r 3
2 2 x

2 2

− −

− −

  − −      = − − +              
 − −    

− −     
     



 

and from the fact that *( ) ( )
1
2

r 2 rT x T x=  one can get the desired result. 

 

Next, the following proposition gives an alternative definition of the 

Chebyshev polynomial of the second kind defined on [-1,1]. 

 

UProposition (1.5): 

( ) ( )!( ) ( ) , , ,...
!( )!

r 2 k
r 2 k

r
k 0

1 r kU x 2 x r 0 1
k r 2 k

−

=

− −
= =

−∑                              (1.7) 

 

UProof:    

 Consider 

( )rr ir i

r 0 r 0

p e p eθ θ
∞ ∞

= =

=∑ ∑ ( ) 1i1 p e θ −
= −

( )
1

2 2

2

1 px ip 1 x

1 2 px p

− + −
=

− +
 

By taking the imaginary part of the above equation one can deduce that                               
R  

( ) ( )sin

1
2 2r

2
r 0

p 1 xp r
1 2 px p

θ
∞

=

−
=

− +∑  

But R   

[ ]sin ( 1)
( ) , 0,1,....

sinr
r

U x r
θ

θ
+

= =  

Therefore 
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  ( )( ) – – 1r
r 1

r 1

p U x p 1 p 2x p
∞

−
−

=

=   ∑  

                         ( ) ( )– – 22 3p p 2x p p 2x p= + + +  

and by evaluating the coefficient of pP

r
P on the right-hand side one can get  the 

required result. 

 

Next, the following propositions give the relation between the 

Chebyshev polynomials of the first and second kinds. They appeared in [Fox 

L. and Parker I., 1968] without proof. Here we give their proofs. 

 

UProposition (1.6): 

(i) { }( ) ( ) ( ) ( ) , , , , , ,. . .
( )s 1 r 1 s r s r2

1U x U x T x T x x 1 s r r s 1 2
2 1 x− − − += − ≠ ≥ =

−


 

(ii) { }( ) ( ) ( ) ( ) , , , ,..., , ,...r s 1 s r 1 s r 1
1T x U x U x U x s r r 0 1 s 1 2
2− + − − −= + ≥ = =  

(iii) { } { }( ) ( ) ( ) ( ) ( ), , , ,. . .r 1 s s 1 s 1 r r 1 rs 1U T x U x U T x U x U x r s 1 2− − − − −= = =  

 

UProof: 
(i) From the trigonometric identity 

    ( ) ( ) ( ) ( )–cos s r cos s r 2sin s  sin rθ θ θ θ− + =        

one can have:  
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( ) ( ) ( ) ( )–
sin( )sin( ) ( sin )

sin
sin( ) sin( ) ( )

sin sin
( ) ( ) ( ) , , , , ,....

s r s r

2
2

2

2
s 1 r 1

T x T x   2sin s  sin r
2 s r 2

2
s r 2 1 x

U x U x 2 1 x s r r s 1 2

θ θ
θ θ θ

θ
θ θ
θ θ

− +

− −

=

=

 = − 

 = − ≥ = 

 

Hence  

( ) ( ) ( ) ( )  – . , , , ,....
( )s 1 r 1 s r s r2

1U x U x T x T x s r r s 1 2
2 1 x− − − += ≥ =  −

                                            

 (ii) From the trigonometric identity 

      ( ) ( ) ( ) ( ),sin s r sin s r 2sin s  cos r s rθ θ θ θ+ + − = ≥        

one can have  

[ ] [ ]sin ( ) sin ( ) sin( ) cos( )
sin sin sin
s r s r s2 r

θ θ θ θ
θ θ θ
+ −

+ = . 

Therefore    

( ) ( ) ( ) ( ), , , ,..., , ,....s r 1 s r 1 s 1 rU x U x 2U x T x s r r 0 1 s 1 2+ − − − −+ = ≥ = =  

(iii) Consider 

{ } sin( )( ) , co s ( )
sinr 1 s s

rU T x T xθ θ
θ− = =  

and 

sin( )( ) , cos
sin

1
s 1 1

1

sU x xθ θ
θ− = =  

But  ( ) cos( ), coss 2 2T x s xθ θ= =  

Therefore , , , ,...1 2 2n n 0 1 2θ θ π= + =    and cos cos( )2sθ θ= . 

Thus , , , ,....2s 2 n n 0 1 2θ θ π= + =    

Hence 
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{ } [ ] [ ]sin ( ) sin ( )
( ) ( )

sin( ) sin( )

sin( ) sin( )
sin( ) sin( )

sin( )
sin

( ), cos , , , ,....

2 2
r 1 s s 1

2 2

2 2

2 2

2

2

rs 1 2

r s 2 n s 2 n
U T x U x

s 2 n 2 n

rs s
s

rs

U x x r s 1 2

θ π θ π
θ π θ π

θ θ
θ θ
θ
θ

θ

− −

−

  + +
=   + +  
  

=   
  

=

= = =

 

In a similar manner one can prove that { }( ) ( ) ( ).s 1 r r 1 rs 1U T x U x U x− − −=  

 

UProposition (1.7): 

(i) { }* *( ) ( ) ( ) ( ) , , , , , ,....
( )

1 1
2 2

2 s 1 2 r 1 s r s r
1U x U x T x T x x 1 s r r s 1 2

2 1 x− − − += − ≠ ≥ =
−

 

(ii) { }*( ) ( ) ( ) ( ) , , , ,..., , ,....r s 1 s r 1 s r 1
1T x U 2 x 1 U 2 x 1 U 2 x 1 s r r 0 1 s 1 2
2− + − − −− = − + − ≥ = =  

(iii) { } { }* *( ) ( ) ( ) ( )r 1 s s 1 s 1 r r 1U T x U 2 x 1 U T x U 2 x 1− − − −− = −  

( ), , , ,....rs 1U 2 x 1 r s 1 2−= − =  

 

UProof: 

(i) by replacing  s with 2s, r with 2r and x with 
1
2x , in proposition (1.6),(i) 

one can get:  

{ }( ) ( ) ( ) ( )
( )

1 1 1 1
2 2 2 2

2 s 1 2 r 1 2 s 2 r 2 s 2 r
1U x U x T x T x

2 1 x− − − += −
−

.  

But  

*( ) ( )
1
2

2 r rT x T x= , 

*
( )( ) ( ) ( )

1 1
2 2

2 s 2 r 2 s r s rT x T x T x− − −= =  

and 
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*
( )( ) ( ) ( )

1 1
2 2

2 s 2 r 2 s r s rT x T x T x+ + += = . 

Therefore 

{ }* *( ) ( ) ( ) ( )
( )

1 1
2 2

2 s 1 2 r 1 s r s r
1U x U x T x T x

2 1 x− − − += −
−

 

 

(ii) By replacing x by 2 x 1− in proposition (1.6),(ii) we get the result. 

 

(iii) By replacing x by 2 x 1− in proposition (1.16),(iii) we get the result. 

 

Now, the following three propositions describe any positive powers of x 

as a linear combinations of the Chebyshev polynomials of the first and second 

kinds respectively. These propositions appeared in [Fox L. and Parker I., 

1968] without proofs. Here we give their proofs. 

 

UProposition (1.8): 

( ) ( ) ( ) , , ,. . .s
s s 2 s 4s 1

s s1x T x T x T x s 1 2
1 22 − −−

    
= + + + =    

    
               (1.8) 

with a factor 1
2

 associated with the coefficient of ( )0T x for even s. 

 

UProof: 

The proof is followed from the mathematical induction. 

For s=1, x P

s
P=x and { }( ) ( )s 1s 1

1 T x T x x
2 − = = . 

Therefore equation (1.8) is true for s=1. 

For s=2, x P

s
P=x and  
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{ }

( ) ( ) ( ) ( )

.

s s 2 2 0s 1

2 2

s 21 1 1T x T x T x T x
1 12 22

1 2 x 1 1 x
2

−−

      
+ = +      
      

= − + =

 

Therefore equation (1.8) is true for s=2. 

Assume equation (1.8) is true for s=k. That is 

( ) ( ) ( )k
k k 2 k 4k 1

k k1x T x T x T x
1 22 − −−

    
= + + +    

    
  

Then by using proposition (1.2),(ii) one can have: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )

( ) ( )

k 1
k k 2 k 4 1k 1

k 1 k 1 k 1 k 3 k 3k

k 5

k 1 k 1k

k k1x T x T x T x T x
1 22

k k k1 T x T x T x T x T x
1 1 22

k
T x

2

k k k1 T x 1 T x
1 1 22

+
− −−

+ − − − −

−

+ −

    
= + + +    

    
      

= + + + + +      
     

 
+  

  

     
= + + + +    

     





( )

( )

k 3

k 5

T x

k k
T x

2 3

−

−

   +   
  

     + +     
      



But  

, , ,....
k k k 1

i 0 1
i i 1 i 1

+     
+ = =     + +     

 

Therefore 

( ) ( ) ( ) ( )k 1
k 1 k 1 k 3 k 5k

k 1 k 1 k 11x T x T x T x T x
1 2 32

+
+ − − −

 + + +      
= + + + +      

      


and hence equation (1.8) is true for s=k+1. 
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UProposition (1.9): 

* * *( ) ( ) ( ) , , ,. . .s
s s 1 s 22 s 1

2 s 2s1x T x T x T x s 1 2
1 22 − −−

    
= + + + =    

    
        (1.9) 

with a factor 1
2

 associated with the coefficient of *( )0T x . 

 

UProof: 

From the replacement of x by 
1
2x  and s by 2s in equation (1.8) one can 

have: 

( ) ( ) ( ) ( )
1 1 1 1

2 s2 2 2 2
2 s 2 s 2 2 s 42 s 1

2 s 2s1x T x T x T x
1 22 − −−

     = + + +    
     

  

But 

( ) ( )( ) ( ) ( )
1 1 1

* *2 2 2
2s s 2s 2 2 ( s 1 ) s 1T x  T x ,T x T x T x− − −= = =  

( )( ) ( )
1 1

*2 2
2s-4 2(s-2) s 2T x T x T x−= =  and so on.  

Therefore 

* * *( ) ( ) ( ) , , ,. . ..s
s s 1 s 22 s 1

2 s 2s1x T x T x T x s 1 2
1 22 − −−

    
= + + + =    

    
  

 

UProposition (1.10): 

( ) ( ) ( ) , , ,. . .s
s s 2 s 4s

s s s s1x U x U x U x s 0 1
1 0 2 12 − −

           
= + − + − + =           

            


                                                                                                                   (1.10) 
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UProof: 

The proof is followed by the mathematical induction. 

For s=0, x P

s
P=1 and { }( ) ( ) .s 0s

1 U x U x 1
2

= =  

Therefore equation (1.10) is true for s=0. 

For s=1, x P

s
P=x and 

{ }( ) ( ) .s 1s
1 1U x U x x

22
= =  

Therefore equation (1.10) is true for s=1. 

Assume equation (1.10) is true for s=k. That is 

( ) ( ) ( )k
k k 2 k 4k

k k k k1x U x U x U x
1 0 2 12 − −

           
= + − + − +           

            


 

Then by using proposition (1.6),(ii) one can have: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

k 1
k k 2 k 4 1k

k 1 k 1 k 1 k 3k 1

k k k k1x U x U x U x T x
1 0 2 12

k k k k1 U x U x U x U x
1 0 1 02

k k
2 1

+
− −

+ − − −+

           
= + − + − +           

            
           

= + + − + − +           
           

    
−    

   



( ) ( )k 3 k 5
k k

U x U x
2 1− −

    
+ − +     

      


But 

k k k 1 k 1
1 k

1 0 1 0
+ +       

+ − = = −       
       

 

and 

, , ,....
k k k 1 k 1

i 0 1
i 2 i i 2 i 1

+ +       
− = − =       + + +       

 

Therefore 
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( ) ( ) ( )k 1
k 1 k 1 k 3k 1

k 1 k 1 k 1 k 11x U x U x U x
1 0 2 12

+
+ − −+

  + +   + +        
= + − + − +           

            


and hence equation (1.10) is true for s=k+1. 

 

Next, the following three propositions appeared in [Fox L. and Parker I., 

1968] without proof. Here we give their proof. 

 

UProposition (1.11): 

( ) ( ), , , ,...
s

s
r r s 2 is

i 0

s1x T x T x r s 0 1
i2 − +

=

 
= = 

 ∑                                         (1.11) 

 

UProof: 

From equation (1.8) and equation (1.2) one can have:  

[ ] [ ]

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

s
r s s 2 s 4 rs 1

s r s 2 r s 4 rs 1

r s r s r s 2 r s 2s 1

s

s s1x T x T x T x T x T x
1 22

s s1 T x T x T x T x T x T x
1 22

s1 1 1T x T x T x T x
12 22

s1
i2

− −−

− −−

+ − + − − +−

    
= + + +    

    
    

= + + +    
    

  
= + + + +  

  

 
= 









( ), , , ,....
s

r s 2 i
i 0

T x r s 0 1− +
=

=
∑

 

UProposition (1.12): 

* *( ) ( ), , , ,...
2 s

s
r r s i2 s

i 0

2 s1x T x T x r s 0 1
i2 − +

=

 
= = 

 ∑  
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UProof: 

 Replacing x by 
1
2x , r by 2r and s by 2s in equation (1.11) one can have 

*

( )

*

( ) ( ) ( )

( )

( ), , , ,....

1 1
2 2

1
2

2s
s s

r 2r 2r 2s 2i2s
i 0

2s

2 r s i2s
i 0
2s

r s i2s
i 0

2s1x T x x T x T x
i2

2s1 T x
i2

2s1 T x r s 0 1
i2

− +
=

− +
=

− +
=

 
= =  

 

 
=  

 

 
= = 

 

∑

∑

∑

 

 

UProposition (1.13): 

( ) ( ), , , ,...
s

s
r r s 2 is

i 0

s1x U x U x r s 0 1
i2 + −

=

 
= = 

 ∑  

UProof: 

From equation (1.8) and proposition (1.6),(ii) one can get: 

( )

{ }

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

s
r s s 2 s 4 rs 1

s r s 2 r s 4 rs 1

r s r s r s 2 r s 2s

r s 4 r s

s s1x U x T x T x T x U x
1 22

s s1 T x U x T x U x T x U x
1 22

s1 U x U x U x U x
12

s
U x U

2

− −−

− −−

+ − + − − +

+ − −

    
= + + +    

    
    

= + + +    
    

  
= + + + +  

 

 
+ 

 





{ }( )

( ), , , ,....

4

s

r s 2 is
i 0

x

s1 U x r s 0 1
i2

+

+ −
=


+ 



 
= = 

 ∑
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Now, the following two propositions describe the integral of the 

Chebyshev polynomials of the first kind defined on [-1,1] and [0,1] in terms f 

theirselves in case the constant of integration is taken to be zero. 

 

UProposition (1.14), [Fox L. and Parker I., 1968]: 

{ }

( ) ( ) ,
( )

( ) ( ) ,

r 1 r 1

r

0 2

1 1 1T x T x r 1
2 r 1 r 1T x dx
1 T x T x r 1
4

+ −
  − ≠  + − = 
 + =

∫  

 

UProof:    

Consider 

( ) ( )rT x  dx cos r  sin  d  θ θ θ= −∫ ∫                          

                   ( ) ( ){ }1  sin r 1 sin r 1 d
2

θ θ θ= − + − −∫  

Thus 

( ) ( ) ( )cos cosr
1 1 1T x  dx r 1 r 1
2 r 1 r 1

θ θ = + − −       + − ∫  

                   ( ) ( ) , , ,....r 1 r 1
1 1 1T x T x r 2 3
2 r 1 r 1+ −
 = − = + − 

 

 

UProposition (1.15): 

( )
( ) ( )

( ) ( )

* *
r 1 r 1

*
r

* *
2 0

1 1 1T x T x , r 1
4 r 1 r 1T x  dx
1 T x T x , r 1
8

+ −
  − ≠   + − = 
  − = 

∫  
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UProof: 

  We replace x by 2 x 1− in proposition (1.14) to get: 

( ) ( ) ( ) ( )r r 1 r 1
1 1 1T 2 x 1 d 2 x 1 T 2 x 1 T 2 x 1
2 r 1 r 1+ −
 − − = − − − + − ∫  

Therefore 

* *( ) ( ) ( )r r 1 r 1
1 1 1T 2 x 1 dx T x T x
4 r 1 r 1+ −
 − = − + − ∫  

and this implies that   R  

* * *( ) ( ) ( ) , , ,. . .r r 1 r 1
1 1 1T x dx T x T x r 2 3
4 r 1 r 1+ −
 = − = + − ∫  

 

Next, the following proposition describes the integral of Chebyshev 

polynomial of the second kind defined on [-1,1] in terms of itself in case the 

constant of integration is taken to be zero. 

 

UProposition (1.16): 

( )( ) , int .r 1
r

T xU x dx r is an even positive eger
r 1
+=
+∫  

 

UProof: 

Consider 
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[ ]

[ ]

[ ] ( )

[ ]

[ ]

1

sin ( 1)
( )

sin
sin ( 1)

sin
sin ( 1)

sin
sin

sin ( 1)

cos ( 1)
1

( ) , int .
1

r

r

r
U x dx dx

r dx d
d

r
d

r d

r
r

T x r is aneven positive eger
r

θ
θ

θ
θ

θ θ
θ

θ θ
θ

θ θ

θ

+

+
=

+
=

+
= −

= − +

+
=

+

=
+

∫ ∫
∫
∫
∫

 

 

 

URemarks (1.4):U  

(i)
, ( )isan even positiveinteger

( ) ( )
( ) ( )

, ( )isan odd positiveinteger

1 2 2

i j

1

1 1 i j
1 i j 1 i j

T x T x dx

0 i j
−

 + + − + − −= 

 +

∫  

For the proof, see [Fox L. and Parker I., 1968]. 

(ii) Since *
r rT ( x ) T ( 2 x 1 ), r 0 ,1 ,...,= − = then 

* *( ) ( ) ( ) ( )

, ( ) int
( ) ( )

, ( ) int

1 1

i j i j

0 1

2 2

1T x T x dx T x T x dx
2

1 1 1 i j is an even positive eger
2 1 i j 1 i j

0 i j is an odd positive eger

−

=

  
+ +  

− + − −  = 

 +

∫ ∫
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Next, the following proposition gives the derivative of the Chebyshev 

polynomials of the first and second kinds. It appeared in [Fox L. and Parker I., 

1968] without proof. Here we give its proof. 

 

UProposition (1.17): 

 (i) ( ) ( ), , , .r r 1T x rU x  r 1  2−′ = = …  

(ii) ( ) ( ) ( ) ( ) ( )–2
r r r 11 x U x  x U x r 1 T x+′− = + . 

(iii) ( ) ( )r 1 2
rT x 1 r+′ =    at   x = 1  . 

(iv) ( ) ( )* , , ,....r r 1T x 2 rU x  r 1 2−
′ = =  

(v) ( ) ( ) ( ) ( ) ( ) ( )*2
r r 1 r2 x x U 2x 1   r 1 T x 2x 1 U 2x 1+′− − = + − − − . 

UProof:U  

(i) Since ( ) cos( )rT x rθ= , then   ( ) [ ]cos( )r
d dT x r

d dx
θθ

θ
′ = . But  x = cosθ. 

    Thus  
sin

d 1
dx
θ

θ
−

= . Hence  sin( )( ) ( ), , ,....
sinr r 1

r rT x rU x r 1 2θ
θ −′ = = =      

(ii) From  ( ) ( )[ ]rsin U x sin r 1θ θ= + , one can have:  

[ ]cos ( ) sin ( ) ( )cos ( )r r
d dU x U x r 1 r 1
dx dx
θ θθ θ θ′+ = + + . 

But 
sin

d 1
dx
θ

θ
−

= , therefore 

P

 ( ) ( ) ( ) ( )– [ ]2
r rcos U x  sin  U x r 1 cos r 1θ θ θ′ = + +

P. P

 
P                             (1.12) 

Since , 2 2 2x cos  sin  1 cos   1 xθ θ θ= = − = −  and ( ) ( )[ ] r 1cos r 1  T xθ ++ =  

hence equation (1.12) becomes 

   ( ) ( ) ( ) ( ) ( )– 2
r r r 1x U x   1 x  U x  r 1 T x+′− = + . 
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(iii ) It is easy to check that  

( ) ( ) ( ) ( ) 2
rT x r cos r 1 r cos r 2 cos r cos  r 3 cosθ θ θ θ θ′ = − + − + − + +           

( ) ( ) ( )           , , , .r 3 r 1 r cos 2  cos 2r cos   r 3 4θ θ θ− −+ = …  

For x=1, θ=2nπ, , , ,...n 0 1 2=    . Therefore  

( ) ( ) ( ) ( )rT 1 r cos 2 r 1 n r cos 2 r 2 n cos 2nπ π π′ = − + − +      
( ) ( ) ( )( ) ( ) ( )2 r 3 r 1r cos 2 r 3 n cos 2n r cos 4n  cos 2n 2r cos  2nπ π π π π− −− + + +   

        , , ,...2

r 2times
r r r r 2r r r 3 4

−

= + + + + + = =



 

On the other hand, since ( ) , ( ) an d ( ) 2
0 1 2T x 1 T x x T x 2 x 1= = = − , thus 

( ) , ( ) an d ( ) .0 1 2T x 0 T x 1 T x 4 x′ ′ ′= = =  

Therefore 

( ) , , , .2
rT 1 r r 0 1 2′ = =  

On the other hand, for x= 1− , θ=(2n+1)π, , , ,...n 0 1 2=   . 

 Therefore 

( ) ( )( ) ( )( ) ( )rT  1 r cos r 1 2n 1 r cos r 2 2n 1  cos 2n 1  π π π′ − = − + + − + + +          
( )( ) ( )2r cos r 3 2n 1  cos 2n 1π π− + + + +       

( ) ( ) ( )( ) ( )r 3 r 1r cos 2 2n 1 cos 2n 1 2r cos 2n 1π π π− −+ + + +           . 

Thus 

( ) ( ) ( ) . . .( ) ( )r 1 r 1 r 1 r 1
r

r 2 times

T 1 r 1 r 1 r 1 2 r 1+ + + +

−

′ − = − + − + + − + −


( ) , , ,....r 1 21 r r 3 4+= − =  

On the other hand, 

 ( ) ( ), ( ) ( ) . an d ( ) . .2 2 3 2
0 1 2T 1 0 T 1 1 1 1 T 1 4 1 2′ ′ ′− = − = = − − = − = −  

 

(iv) Since ( )* ( ) cos( )r rT x T 2 x 1 r= − = θ , and cos( ) ,r 2 x 1θ = −  then    
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( ) [ ]cos( )*
r

d dT x r
d dx

θ′ = θ
θ

. But  ,
sin

d 2
dx
θ

θ
−

=  hence 

sin( )( ) ( ).
sin

*
r r 1

2 r rT x 2 rU xθ
θ −

′ = =      

 

(v) We replace x by 2x 1− in ( ) ( )[ ]rsin U x sin r 1θ θ= +  to get: 

[ ]sin ( ) sin ( ) .rU 2x 1 r 1θ θ− = +  

Therefore 

[ ]cos ( ) sin ( ) ( )cos ( )r r
d dU 2x 1 U 2x 1 r 1 r 1
dx dx
θ θθ θ θ′− + − = + +  

But 
sin

d 2
dx
θ

θ
−

= , thus 

( ) ( ) ( ) ( )– [ ]2
r r

1cos U 2x 1  sin  U 2x 1 r 1 cos r 1
2

θ θ θ′− − = + +              (1.13) 

Since , ( )2 2 22x 1 cos  sin   1 2x 1 4 x 4 xθ θ− = = − − = − −   

and ( ) ( )* ( ) [ ]r 1 r 1T x T 2x 1 cos r 1 θ+ += − = + , hence equation (1.13) becomes 

   ( ) ( ) ( ) ( ) ( )* .2
r r r 1(2x 1) U 2x 1  + 2 x x  U 2x 1  r 1 T x+′− − − − = +  

 

Now, we give some properties of the finite Chebyshev series of degree N 

that takes the form: 

 *( ) ( ),
N

r r
r 0

y x a T x 1 x 1
=

= − ≤ ≤∑
/
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where the prime denotes that the first term is taken with factor 1
2

 and in 

which y P

*
P(x) is the truncation of the infinite Chebyshev series: 

( ) ( ),r r
r 0

y x a T x 1 x 1
∞

=

= − ≤ ≤∑
/

  

where { }r 0a ∞
= are the Chebyshev coefficients. P

 
PWe start by the following 

remark. 

 

URemark (1.5), [Fox L. and Parker I., 1968]: 

Let [ , ]x 1 1∈ −  and consider a function y defined on the interval [-1,1]. 

Then  

( ) (cos ) ( ),y x y g 0θ θ θ π= = ≤ ≤  

The function g is even and periodic. The cosine Fourier series takes the form 

( ) cos( )0 k
k 1

1g a a k
2

θ θ
∞

=

= +∑                                                                     (1.14) 

where  

( )cos( ) , , ,....k

0

2a g k d k 0 1
π

θ θ θ
π

= =∫  

Therefore by interpreting equation (1.14) in terms of the original variable x, 

we produce the infinite Chebyshev series: 

( ) ( )

( )

0 k k
k 1

k k
k 0

1y x a a T x
2

a T x

∞

=
∞

=

= +

=

∑

∑
/

 

where 
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( ) ( ) ( ) , , ,....
1

2

1
2

k k

1

2a 1 x y x T x dx k 0 1
π

−

−

= − =∫  

 

UTheorem (1.1), [Fox L. and Parker I., 1968]:UR  

Let  

( ) ( )
N

r r
r 0

y x a T x
=

=∑
/

                                                                             (1.15) 

Then R            

( ) ( )
N 1

r r
r 0

y x c T x
−

=

′ =∑
/

                                                                           (1.16)  

where 

( )
, , , .

N 1 N

N 2 N 2

r 1 r 1 r

c 2N a
c 2 N 1  a
c c   2r a  r 1 2,  N 2

−

− −

− +

=

= −

= + = … −

 

 

 

UProof: 

It is easy to check that, from equation (1.15) one can get equation 

(1.16). Next, by integrating both sides of equation (1.16) and using remarks 

(1.4) and proposition (1.14) one can get: 

[ ]( ) ( ) ( ) ( )

( ) ( )

0
1 1 0 2

N 1

r r 1 r 1
r 2

c 1y x T x c T x T x
2 4

1 1 1c T x T x A
2 r 1 r 1

−

+ −
=

= + + +

 − + + − ∑
                                      (1.17) 

where A is the constant of integration. 
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By equating the coefficients of T RrR (x) on each side of equation (1.15) and 

equation (1.17) one can have:  

( ), , ,...,

( )

and ( )

r r 1 r 1

N 1 N 2

N N 1

1a c c r 1 2 N 2
2 r

1a c
2 N 1

1a c
2 N

− +

− −

−


= − = − 


= − 


= 


                                         (1.18) 

 

URemark (1.6), [Fox L. and Parker I., 1968]: 

From theorem (1.1) one can calculate cRrR in succession, for decreasing r 

from the general recurrence relation  

, , ,...,r 1 r 1 rc c 2r a r 1 2 N 2− += + = −  

with starting conditions given by the last two equations of equation (1.18) to 

get:  

( )
( )

N 1 N

N 2 N 1

N 3 N 2 N

1 2 4 6

0 1 3 5

c   2N a
c   2 N 1  a

c   2 N 2  a   2N a

c   4 a   8 a  12a   
c   2 a   6 a  10a  

−

− −

− −

=

= −

= − +

= + + +

= + + +







                                                        (1.19) 

Each series in equation (1.19) being finite, stopping at the term aRNR or aRN-1R. 

 

Next, the following theorem gives the same result as in theorem (1.1) but 

for the finite Chebyshev series defined on [0,1]. 
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UTheorem ( 1.2), [Fox L. and Parker I., 1968]U: 

Let 

*( ) ( )
N

r r
r 0

y x a T x
=

=∑
/

                                                                                 (1.20) 

Then R            

*( ) ( )
N 1

N r
r 0

y x c T x
−

=

′ =∑
/

                                                                              (1.21)  

where 

( )
, , , .

N 1 N

N 2 N 2

r 1 r 1 r

c 4N a
c 4 N 1  a
c c   4r a  r 1 2, N 2

−

− −

− +

=

= −

= + = … −

 

 

UProof: 

It is easy to check that, from equation (1.20) one can get equation 

(1.21). Next, by integrating both sides of equation (1.21) and using remarks 

(1.4) and proposition (1.15) one can get:  

* * * *

* *

( ) ( ) ( ) ( ) ( )

( ) ( )

0
0 1 1 2 0

N 1

r r 1 r 1
r 2

c 1y x T x T x c T x T x
4 8

1 1 1c T x T x A
4 r 1 r 1

−

+ −
=

   = + + − +   

 − + + − ∑
                             (1.22) 

where A is the constant of integrations. 

By equating the coefficients of *( )rT x on each side of equation (1.20) and 

equation (1.22) one can have:  

( ), , ,...,

,
( )

r r 1 r 1

N 1 N 2 N N 1

1a c c r 1 2 N 2
4 r

1 1a c a c
4 N 1 4 N

− +

− − −

= − = − 

= =

− 

                                                  (1.23) 
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URemark (1.7), [Fox L. and Parker I., 1968]: 

From theorem (1.2) one can calculate cRrR in succession, for decreasing r 

from the general recurrence relation  

, , ,...,r 1 r 1 rc c 4r a r 1 2 N 2− += + = −  

with starting conditions given by the last two equations of equation (1.23) to 

get:  

( )
( )

N 1 N

N 2 N 1

N 3 N 2 N

1 2 4 6

0 1 3 5

c   4N a
c   4 N 1  a

c   4 N 2  a   4N a

c   8 a   16 a  24a   
c   4 a   12 a  20a  

−

− −

− −

=

= −

= − +

= + + +

= + + +







                                                        (1.24) 

Each series in equation (1.24) being finite, stopping at the term aRNR or aRN-1R. 

 

Next, we generalize the previous theorems for the infinite Chebyshev 

series. These theorems appeared in [Sezer M. and Kaynak M., 1996] without 

proofs. Here we give their proof. 

 

UTheorem (1.3): 

 Let 

( ) ( )r r
r 0

y x a T x
∞

=

=∑
/

                                                                                 (1.25) 

and   

( ) ( )r r
r 0

y x c T x
∞

=

′ =∑
/

                                                                                (1.26)   
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Then 

, , ,...r 1 r 1 rc c 2r a r 1 2− += + =  

 

UProof: 

By integrating both side of equation (1.26) and using remarks (1.4) and 

proposition (1.14) one can get:  

[ ]( ) ( ) ( ) ( )

( ) ( )

0
1 1 0 2

r r 1 r 1
r 2

c 1y x T x c T x T x
2 4

1 1 1c T x T x A
2 r 1 r 1

∞

+ −
=

= + + +

 − + + − ∑
                               

where A is the constant of the integration. Therefore    

[ ] [ ]

[ ] [ ]

( ) ( ) ( ) ( )

( ) ( )

1 0 0 2 1 1 3 2

2 4 3 r 1 r 1 r

1 1 1y x c T x c c T x c c T x
4 2 4
1 1c c T x c c T x
6 2 r − +

= + − + − +

− + + − +                        (1.27) 

and by equating the coefficients of TRrR (x) on each side of equation (1.25) and 

equation (1.27) one can have:  

[ ], , ,....r r 1 r 1
1a c c r 1 2
2 r − += − =  

Therefore 

, , ,....r 1 r 1 rc c 2r a r 1 2− += + =  

 

UTheorem (1.4): 

Let  

*( ) ( )r r
r 0

y x a T x
∞

=

=∑
/

                                                                                 (1.28) 

and   
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*( ) ( )r r
r 0

y x c T x
∞

=

′ =∑
/

                                                                                (1.29)   

Then 

, , ,...r 1 r 1 rc  c 4r a r 1 2− += + =  

 

UProof: 

By integrating both side of equation (1.29) and using remarks (1.4) and 

proposition (1.15) one can get  

* * * *

* *

( ) ( ) ( ) ( ) ( )

( ) ( )

0
0 1 1 2 0

r r 1 r 1
r 2

c 1y x T x T x c T x T x
4 8

1 1 1c T x T x A
4 r 1 r 1

∞

+ −
=

   = + + − +   

 − + + − ∑
                               

where A is the constant of integration. Therefore    

[ ] [ ]

[ ] [ ]

* * *

* *

( ) ( ) ( ) ( )

( ) ( )

0 1 0 0 2 1 1 3 2

2 4 3 r 1 r 1 r

1 1 1 1y x c c T x c c T x c c T x
4 8 4 8

1 1c c T x c c T x
12 4 r − +

 = − + − + − +  

− + + − +        (1.30) 

and by equating the coefficients of *( )rT x on each side of equation (1.29) and 

equation (1.30) one can have:  

[ ], , ,....r r 1 r 1
1a c c r 1 2

4 r − += − =  

Therefore 

, , ,....r 1 r 1 rc c 4r a r 1 2− += + =  
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URemarks (1.8): 

From the previous theorems, it is easy to check that: 

(1) If ( ) ( )r r
r 0

y x a T x
∞

=

=∑
/

     and     ( ) ( )( ) ( )n n
r r

r 0

y x a T x
∞

=

=∑
/

     then   

( ) ( ) ( ) , , ,....n 1 n 1 n
rr 1 r 1a  a 2ra  r 1 2+ +

− += + =  

(2) If *( ) ( )r r
r 0

y x a T x
∞

=

=∑
/

     and     ( ) ( ) *( ) ( )n n
r r

r 0

y x a T x
∞

=

=∑
/

     then   

( ) ( ) ( ) , , ,...n 1 n 1 n
rr 1 r 1a  a 4ra  r 1 2+ +

− += + =  

where ( )n
ra and aRr R are Chebyshev coefficients such that ( ) , , ,....0

r ra a r 0 1= =  
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UIntroduction  

 It is known that the ordinary differential equations with non constant 

coefficients are usually difficult to solve analytically [Rainville E. and 

Bedient P., 1989]. In many cases, it is required to approximate their solutions. 

For this propose, the aim of this chapter is to give some methods which are 

based on Chebyshev polynomials and their properties to solve linear ordinary 

differential equations with variable coefficients. 

This chapter consist of two sections. In section one we give a method to 

solve linear ordinary differential equations with nonconstant coefficients by 

transforming them to system of algebraic equations. This method is based on 

the finite Chebyshev series of the first kind defined on [0,1] with some of 

their properties and it is a simple modification of the method that appeared in 

[Fox L. and Parker I., 1968]. 

In section two, a matrix method which is called Chebyshev-matrix 

method for finding approximated solutions of linear ordinary differential 

equations in terms of Chebyshev polynomials is presented. This method is 

based on taking the truncated Chebyshev series of the first kind defined on 

[0,1] in the linear ordinary differential equations and then substituting their 

matrix forms into the given linear ordinary differential equations. Therefore 

the linear ordinary differential equation reduces to a matrix equation, which 

corresponds to a system of linear algebraic equations with unknown 

Chebyshev coefficients. 

 

U2.1 Chebyshev Series Method for Solving Linear Ordinary 

Differential Equations: 

In this section, we use the finite Chebyshev series as a method for solving 

linear ordinary differential equations with non-constant coefficients. To do 
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this, consider first the first-order linear ordinary differential equation with 

non-constant coefficients: 

( ) ( ) ( ) ( ) ( ), 0 1q x y x r x y x f x x′ + = ≤ ≤                                           (2.1.a) 

together with the boundary condition: 

(0) (1)y yα β γ+ =                                                                               (2.1.b) 

where q, r and f are polynomials of x, such that ( ) 0, 0 1q x x≠ ∀ ≤ ≤ , α, β 

and γ are known constants and y is the unknown function that must be 

determined. 

The Chebyshev series method is begin by integrating both sides of 

equation (2.1.a) to get: 

[ ]( ) ( ) ( ) ( ) ( ) ( )q x y x r x q x y x dx f x dx A′+ − = +∫ ∫                           (2.2) 

where A is the constant of integration. 

Assume that the solution of equation (2.1) may be written in the form: 

*

0

( ) ( ), 0 1r r
r

y x a T x x
∞

=

= ≤ ≤∑
/

                                                                  (2.3) 

where { } 0ra ∞
=  are the Chebyshev coefficients that must be determined, then by 

substituting equation (2.3) into equation (2.2) one can have: 

[ ]* *

0 0

( ) ( ) ( ) ( ) ( ) ( )r r r r
r r

q x a T x r x q x a T x dx f x dx A
∞ ∞

= =

′+ − = +∑ ∑∫ ∫
/ /

     (2.4) 

The known formula for products *( )s
rx T x  in terms of Chebyshev 

polynomials (see proposition (1.12)) and the integrals of such quantities (see 

proposition (1.15)), enable us to express the left-hand side of equation (2.4) as 

infinite Chebyshev series, in which the coefficient of *( )rT x  is a finite linear 

combination of coefficients { } 0ra ∞
= . The right- hand side is a finite series and 
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the comparison of corresponding terms produces an infinite set of linear 

algebraic equations. 

Next, consider the finite Chebyshev series: 

* *

0

( ) ( ), 0 1
N

r r
r

y x a T x x
=

= ≤ ≤∑
/

                                                             (2.5) 

Then y P

*
P is the truncation of the infinite Chebyshev series give by equation 

(2.3). 

By substituting equation (2.5) into equation (2.2) one can have: 

[ ]* *

0 0

( ) ( ) ( ) ( ) ( ) ( )
N N

r r r r
r r

q x a T x r x q x a T x dx f x dx A
= =

′+ − = +∑ ∑∫ ∫
/ /

     (2.6) 

Also, the known formula for products *( )s
rx T x  in terms of  Chebyshev 

polynomials and the integrals of such quantities, enable us to express the left-

hand side of equation (2.6) as finite Chebyshev series, in which the coefficient 

of *( )rT x  is a finite linear combination of coefficients { } 0
N
ra = . The right-hand 

side is a finite series and the comparison of corresponding terms produces a 

finite set of linear algebraic equations. 

Moreover, there is an extra equation resulting from the boundary condition 

given by equation (2.1.b). This equation takes the form: 

* *

0 0

(0) (1)
N N

r r r r
r r

a T a Tα β γ
= =

+ =∑ ∑
/ /

                                                         (2.7) 

But 

* 1 int
(0) ( 1)

1 intr r
r is an even positive eger

T T
r is an odd positive eger


= − = −

 

and 
*(1) (1) 1, 0,1,....r rT T r= = =  

Hence, if N is an even positive integer then equation (2.7) becomes 



 
 

 

Chapter Two                                                                                         Chebyshev Methods for Solving Linear           
                                                                                                                    Ordinary Differential Equations       

34 

0
1 2 3( ) ( ) ( ) ( ) ( )

2 N
a a a a aα β β α α β β α α β γ+ + − + + + − + + + =      (2.8) 

On the other hand if N is an odd positive integer then equation (2.7) 

becomes 

0
1 2 3( ) ( ) ( ) ( ) ( )

2 N
a a a a aα β β α α β β α β α γ+ + − + + + − + + − =     (2.9) 

Thus by solving the above system of linear algebraic equations one can get 

the values of { } 0
N
ra = and by substituting these values into equation (2.5) one 

can get the approximated solution of equation (2.1). 

Second, Consider the second-order linear ordinary differential equation 

with non-constant coefficients 

( ) ( ) ( ) ( ) ( ) ( ) ( ), 0 1p x y x q x y x r x y x f x x′′ ′+ + = ≤ ≤                        (2.10.a) 

together with the boundary conditions: 

(0)
(1)

y
y

α
β

=
=

                                                                                                  (2.10.b) 

where p, q, r and f are polynomials of x, such that ( ) 0, 0 1p x x≠ ∀ ≤ ≤ α and 

β are known constants and y is the unknown function that must be determined. 

The Chebyshev series method is begin by integrating both sides of 

equation (2.10.a) to get: 

{ } { }( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

p x y x q x p x y x p x q x r x y x d x

f x dx A

′ ′ ′′ ′+ − + − +

= +

∫
∫

 

and a second integration of both sides of the above equation gives 

{ } { }( ) ( ) ( ) 2 ( ) ( ) ( ) ( ) ( ) ( )

( )

p x y x q x p x y x dx p x q x r x y x dx dx

f x dx dx Ax B

′ ′′ ′+ − + − +

= + +

∫ ∫∫
∫∫

                                                                                                                   (2.11) 

where A and B are the constants of integrations. 
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Assume the solution of equation (2.10) can be approximated of a finite 

Chebyshev series given by equation (2.5) which is the truncation of the 

infinite Chebyshev series give by equation (2.3). 

By substituting equation (2.5) into equation (2.11) one can have 

{ }

{ }

* *

0 0

*

0

( ) ( ) ( ) 2 ( ) ( )

( ) ( ) ( ) ( ) ( )

N N

r r r r
r r

N

r r
r

p x a T x q x p x a T x d x

p x q x r x a T x dxdx f x dxdx Ax B

= =

=

′+ − +

′′ ′− + = + +

∑ ∑∫

∑∫∫ ∫∫

/ /

/
 

                                                                                                                (2.12) 

Also, the known formula for products *( )s
rx T x  in terms of  Chebyshev 

polynomials and the integrals of such quantities, enable us to express the left-

hand side of equation (2.12) as finite Chebyshev series, in which the 

coefficient of *( )rT x  is a finite linear combination of coefficients { } 0
N
ra = . The 

right-hand side is a finite series and the comparison of corresponding terms 

produces a finite set of linear algebraic equations. 

Moreover, there are two extra equations coming from the boundary 

conditions given by equation (2.10.b). These equations take the forms: 

*

0

(0)
N

r r
r

a T α
=

=∑
/

                                                                                    (2.13) 

and 

*

0

(1)
N

r r
r

a T β
=

=∑
/

                                                                                     (2.14) 

But 

* 1 int
(0) ( 1)

1 intr r
r is an even positive eger

T T
r is an odd positive eger


= − = −

 

and 
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*(1) (1) 1, 0,1,....r rT T r= = =  

Hence, if N is an even positive integer then equation (2.13) becomes 

0
1 2 32 N

a a a a a α− + − + + =                                                                              (2.15) 

and if N is an odd positive integer then equation (2.13) becomes 

0
1 2 32 N

a a a a a α− + − + − =                                                                    (2.16) 

On the other hand if N is an even or odd positive integer then equation (2.14) 

becomes 

0
1 2 32 N

a a a a a β+ + + + + =                                                                   (2.17) 

Thus, by solving of the above system linear algebraic equations one can get 

the values of { } 0
N
ra = and by substituting these values into equation (2.5) one 

can get the approximated solution of equation (2.10). 

 

The following examples illustrate these methods. 

 

UExample (2.1): 

Consider the first order linear ordinary differential equation: 
2 4 3 2(1 ) ( ) (1 ) ( ) 2, 0 1x y x x x y x x x x x′+ + + + = + + − ≤ ≤              (2.18.a) 

together with the boundary condition: 

3 5(0) (1)
4 4

y y −
− =                                                                                  (2.18.b) 

By integrating both sides of the above differential equation one can  get: 

2 4 3 2(1 ) ( ) (1 ) ( ) ( 2) , 0 1x y x dx x x y x dx x x x dx x′+ + + + = + + − ≤ ≤∫ ∫ ∫                    

                                                                                                                   (2.19) 
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But  

(1 ) ( ) (1 ) ( ) ( )x y x dx x y x y x dx′+ = + −∫ ∫        

By substituting the above equation into equation (2.19) yields: 
5 4 3

2( ) ( ) ( ) ( ) 2
5 4 3
x x xy x x y x x y x d x x y x d x x A+ + + = + + − +∫ ∫             (2.20) 

Assume that the solution of equation (2.18) can be written as in equation 

(2.3). Then by substituting equation (2.3) into equation (2.20) one can get: 

* * * 2 *

0 0 0 0
5 4 3

( ) ( ) ( ) ( )

2 .
5 4 3

r r r r r r r r
r r r r

a T x x a T x x a T x d x x a T x d x

x x x x A

∞ ∞ ∞ ∞

= = = =

+ + +

= + + − +

∑ ∑ ∑ ∑∫ ∫
/ / / /

therefore 

* * * 2 *

0 0 0 0

( ) [ ( )] ( ) ( )r r r r r r r r
r r r r

a T x a x T x a x T x d x a x T x d x
∞ ∞ ∞ ∞

= = = =

+ + +∑ ∑ ∑ ∑∫ ∫
/ / / /

5 4 3
2

5 4 3
x x x x A= + + − +                                     (2.21) 

From proposition (1.12) one can have: 
2

* *
12

0

21( ) ( )
2r r i

i

x T x T x
i − +

=

 
=  

 ∑  

 { }* * *
1 1

1 ( ) 2 ( ) ( )
4 r r rT x T x T x− += + +                                                   (2.22) 

and  

{ }

4
2 * *

24
0

* * * * *
2 1 1 2

41( ) ( )
2

1 ( ) 4 ( ) 6 ( ) 4 ( ) ( )
16

r r i
i

r r r r r

x T x T x
i

T x T x T x T x T x

− +
=

− − + +

 
=  

 

= + + + +

∑
 

and from proposition (1.12) one can get: 
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* * * *
1 1

* * * *
2 1 1 2

1( ) ( ) 2 ( ) ( )
4

1 1 1 1( ) ( ) ( ) ( )
16( 2) 8( 1) 8( 1) 16( 2)

r r r r

r r r r

xT x dx T x T x T x dx

T x T x T x T x
r r r r

− +

− + − +

 = + + 

=− + − +
− + − +

∫ ∫

                                                                                                                                (2.23) 

and  

2 * * * * * *
2 1 1 2

* * *
1 2 3

* * *
1 2 3

1( ) ( ) 4 ( ) 6 ( ) 4 ( ) ( )
16

5 1 1( ) ( ) ( )
64( 1) 16( 2) 64( 3)

5 1 1( ) ( ) ( )
64( 1) 16( 2) 64( 3)

r r r r r r

r r r

r r r

x T x dx T x T x T x T x T x dx

T x T x T x
r r r

T x T x T x
r r r

− − + +

− − −

+ + +

 = + + + + 

−
= − − +

− − −

+ +
+ + +

∫ ∫
 

                                                                                                              (2.24) 

Moreover, from proposition (1.9) one can get 

{ }* *
1 0

1 ( ) ( )
2

x T x T x= +                                                                               (2.25) 

{ }
{ }
{ }

3 * * * *
0 1 2 3

4 * * * * *
0 1 2 3 4

5 * * * * * *
0 1 2 3 4 5

1 1 0 ( ) 1 5 ( ) 6 ( ) ( )
32
1 3 5 ( ) 5 6 ( ) 2 8 ( ) 8 ( ) ( )

128
1 126 ( ) 210 ( ) 120 ( ) 45 ( ) 10 ( ) ( )

512

x T x T x T x T x

x T x T x T x T x T x

x T x T x T x T x T x T x

= + + + 

= + + + + 

= + + + + + 

 (2.26) 

By substituting equations (2.22)-(2.26) into equation (2.21) and after 

simple computations one can obtain: 

*
3 2 1 1 2 3

* * * * * *
0 1 2 3 4 5

1 1 1 13 3 1 13 1 1 ( )
64 8 4 64 2 4 64 8 64

1703 167 21 67 3 1( ) ( ) ( ) ( ) ( ) ( )
7680 256 128 1536 512 2560

r r r r r r r ra a a a a a a T x
r r r r r r

A T x T x T x T x T x T x

− − − + + +
    + + + + + − − −        
 = + − + + + +  

                                                                                                                   (2.27) 

From the boundary condition given by equation (2.18.b) one can have: 
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* *

0 0

3 5(0) (1)
4 4r r r r

r r

a T a T
∞ ∞

= =

−
− =∑ ∑

/ /

                                                          (2.28) 

But 

* 1, int
(0)

1, intr
r is an even positive eger

T
r is an odd positive eger


= −

                                                 (2.29) 

and 
*(1) 1, 0,1,....rT r= =                                                                                    (2.30)  

By substituting equations (2.29)-(2.30) into equation (2.28) and after simple 

computations one can have: 

0 1 2 3 4 5
1 7 1 7 1 7 5
8 4 4 4 4 4 4

a a a a a a −
− + − + − + =                                           (2.31) 

Hence, the following system of linear equations consists of equation (2.31) 

and the other equations can be obtained by substituting r=1,2,… into equation 

(2.27): 

0 1 2 3 4 5

0 1 2 3 4

0 1 2 3 4 5

0 1 2 3 4 5 6

1 2 3 4

1 7 1 7 1 7 5
8 4 4 4 4 4 4
29 13 1 1 1 167
64 8 16 8 64 256
1 23 3 19 1 1 21

16 64 2 128 16 128 128
1 1 61 3 35 1 1 67

192 24 192 2 192 24 192 1536
1 1 77 3 51

256 32 256 2 256

a a a a a a

a a a a a

a a a a a a

a a a a a a a

a a a a

−
− + − + − + =

−
+ + − − =

+ + + − − =

+ + + − − − =

+ + + +



5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

1 1 3
32 256 512

1 1 93 3 67 1 1 1
320 40 320 2 320 40 320 2560

1 1 109 3 83 1 1 0
384 48 384 2 384 48 384

a a a

a a a a a a a

a a a a a a a

− − =

+ + + + − − =

+ + + + − − =



        

                                                                                                                   (2.32) 
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Now, assume that the solution of equation (2.18) can be approximated 

as a finite Chebyshev of degree two, then the above system reduces to the 

following system: 

0 1 2

0 1 2

0 1 2

1 7 1 5
8 4 4 4
29 13 1 167
64 8 16 256
1 23 3 21

16 64 2 128

a a a

a a a

a a a

−
− + =

−
+ + =

+ + =

  

which has the solution 0 1
13 1,
4 2

a a−
= =  and 2

1
8

a = . Hence 

2
* * * *0

0 1 1 2 2
0

* * *
0 1 2

2

( ) ( ) ( ) ( ) ( )
2

13 1 1( ) ( ) ( )
8 2 8

2

r r
r

ay x a T x T x aT x a T x

T x T x T x

x

=

= + +

−
= + +

= −

∑
/

 

is the approximated solution of equation (2.18). By substituting this 

approximated solution into left-hand side of equation (2.18.a) one can get: 

* 2 *(1 ) ( ) (1 ) ( ) 1x y x x x y x x′+ + + + = −  

In this case * 2( ) 2y x x= −  is the exact solution of equation (2.18). 

 

UExample (2.2): 

Consider the second order linear ordinary differential equation: 
2 3( ) ( ) 2 ( ) 4 2, 0 1y x x y x x y x x x′′ ′+ + = + ≤ ≤                              (2.33.a) 

together with the boundary condition: 

(0) 0
(1) 1

y
y

=
=

                                                                                             (2.33.b) 

By integrating both sides of equation (2.33.a) one can get: 
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2 4( ) ( ) 2y x x y x x x A′ + = + +  

and a second integration of both sides of the above equation gives  
5

2 2( ) ( )
5

xy x x y x d x x Ax B+ = + + +∫                                                (2.34) 

Assume that the solution of equation (2.33) can be written as in equation 

(2.3). Then by substituting this solution into equation (2.34) one can have: 

5
* 2 * 2

0 0

( ) ( )
5r r r r

r r

xa T x a x T x d x x Ax B
∞ ∞

= =

+ = + + +∑ ∑ ∫
/ /

                  (2.35) 

From proposition (1.12) one can obtain: 

{ }

4
2 * *

24
0

* * * * *
2 1 1 2

41( ) ( )
2

1 ( ) 4 ( ) 6 ( ) 4 ( ) ( )
16

r r i
i

r r r r r

x T x T x
i

T x T x T x T x T x

− +
=

− − + +

 
=  

 

= + + + +

∑
 

Therefore from proposition (1.15) one can get: 

2 * * * * * *
2 1 1 2

* * *
1 2 3

* * *
1 2 3

1( ) ( ) 4 ( ) 6 ( ) 4 ( ) ( )
16

5 1 1( ) ( ) ( )
64( 1) 16( 2) 64( 3)

5 1 1( ) ( ) ( )
64( 1) 16( 2) 64( 3)

r r r r r r

r r r

r r r

x T x dx T x T x T x T x T x dx

T x T x T x
r r r

T x T x T x
r r r

− − + +

− − −

+ + +

 = + + + + 

−
= − − +

− − −

+ +
+ + +

∫ ∫
                       

                                                                                                                                       (2.36) 

Moreover, from proposition (1.9) one can get: 

{ }* *
1 0

1 ( ) ( )
2

x T x T x= +                                                                          (2.37) 

{ }2 * * *
2 1 0

1 ( ) 4 ( ) 3 ( )
8

x T x T x T x= + +                                                      (2.38) 

and 
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5 * * * * * *
5 4 3 2 1 0

1 ( ) 10 ( ) 45 ( ) 120 ( ) 210 ( ) 126 ( )
512

x T x T x T x T x T x T x = + + + + + 
                                                                                                                   (2.39) 

By substituting equations (2.36)-(2.39) into equation (2.35) and after simple 

computations one can obtain: 

*
3 2 1 1 2 3

* * * *
0 1 2 3

* *
4 5

1 1 5 5 1 1 ( )
64 16 64 64 16 64

66 82 22 27( ) ( ) ( ) ( )
128 2 128 2 128 1536
1 1( ) ( )

256 2560

r r r r r r r ra a a a a a a T x
r r r r r r

A AB T x T x T x T x

T x T x

− − − + + +
 + + + − − −  
   = + + + + + + +      

+

                                                                                                                   (2.40) 

From the boundary conditions given by equation (2.33.b) one can have: 

*

0

(0) 0r r
r

a T
∞

=

=∑
/

                                                                                   (2.41) 

and 

*

0

(1) 1r r
r

a T
∞

=

=∑
/

                                                                                    (2.42) 

But  
*( ) (2 1)r rT x T x= − , 

* 1, int
(0)

1, intr
r is an even positive eger

T
r is an odd positive eger


= −

                                            (2.43) 

and 
*(1) 1, 0,1,....rT r= =                                                                               (2.44)  

By substituting equations (2.43)-(2.44) into equations (2.41)-(2.42) one 

can have:  

0 1 2 3
1 0
2

a a a a− + − + =  
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0
1 2 1

2
a a a+ + + =  

Hence, the following system of linear equations consists of the above two 

equations and the other equations can be obtained by substituting r=2,3,… 

into equation (2.40): 

0 1 2 3

0
1 2

0 1 2 3 4 5

0 1 2 3 4 5 6

1 2 3 4 5 6 7

2 3 4 5 6

1 0
2

1
2
1 6 5 1 1 22

32 128 128 32 128 128
1 1 5 5 1 1 27

192 48 192 192 48 192 1536
1 1 5 5 1 1 1

256 64 128 256 64 256 256
1 1 5 5 1

320 80 320 320 80

a a a a

a a a

a a a a a a

a a a a a a a

a a a a a a a

a a a a a

− + − + =

+ + + =

+ + − − − =

+ + + − − − =

+ + + − − − =

+ + + − −





7 8

3 4 5 6 7 8 9

1 1
320 2560

1 1 5 5 1 1 0
384 96 384 384 96 384

a a

a a a a a a a

− =

+ + + − − + =



 

Now, assume that the solution of equation (2.33) may be approximated 

as a finite Chebyshev series of degree three, then the above system reduces to 

the following system: 

0 1 2 3

0 1 2

0 1 2 3

0 1 2

1 0
2
1 1
2
1 6 5 22

32 128 128 128
1 1 5 27

192 48 192 1536

a a a a

a a a

a a a a

a a a

− + − =

+ + =

+ + − =

+ + =

  

which has the solution 
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0 1 2
3 1 1, ,
4 2 8

a a a= = =  and 3 0a =  

Hence 

* 2

2

3 1 1( ) (2 1) (8 8 1)
8 2 8

y x x x x

x

= + − + − +

=
 

which is the exact solution of equation (2.33). 

 

U2.2 Chebyshev-Matrix Method for solving Linear ordinary 

Differential Equations: 

In this section, we use Chebyshev-matrix method to solve linear ordinary 

differential equations with nonconstant coefficients. This method is a 

modification of the method that appeared in [Sezer M. and Kaynak M., 1996]. 

To do this, consider the boundary value problem given by equations (2.1). 

This method begin by approximating the solution y as a finite  

Chebyshev series given by equation (2.5). Also, assume that f can be 

approximated as a finite Chebyshev series that takes the form: 

* *

0

( ) ( ) ( )
N

r r
r

f x f x f T x
=

≈ =∑
/

                                                                     (2.45) 

Therefore 

0

1* * * *
0 1

1
2

( ) ( ) ( ) ( ) . . . ( )N

N

a

a
y x y x T x T x T x

a

 
 
 
  ≈ =    
 
 
  



 

and 
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0

1* * * *
0 1

1
2

( ) ( ) ( ) . . . ( )N

N

f

f
f x T x T x T x

f

 
 
 
  =    
 
 
  



 

This implies that 
* *( )y x T A=  

and 
* *( )f x T F=  

where 

0

1

1
2

N

a

aA

a

 
 
 

=  
 
 
  



, 

0

1

1
2

N

f

fF

f

 
 
 

=  
 
 
  



 and * * *
0 1( ) ( ) . . . ( ) .NT T x T x T x =    

Assume that the functions q and r can be expressed in the forms 

0

( )
m

i
i

i

q x q x
=

=∑                                                                                      (2.46) 

0

( )
m

i
i

i

r x r x
=

=∑                                                                                     (2.47) 

which are Taylor polynomials of degree m at x=0. 

By substituting equations (2.46)-(2.47) into equation (2.1.a) one can have: 

{ }* *

0

( ) ( ) ( )
m

i i
i i

i

q x y x r x y x f x
=

′ + =∑                                                    (2.48) 

By approximating * ( )y x′  as a finite Chebyshev series one can have: 
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* (1) *

0

( ) ( ) ( ), 0 1
N

r r
r

y x y x a T x x′

=

′ ≈ = ≤ ≤∑
/

 

where { }(1)
0

N

r
a

=
 are the Chebyshev coefficients defined by remarks (1.9),(2). 

Hence 
(1) (1)

1 14 , 1,2,...r r rr a a a r− += − =  

Thus 
(1) (1)

1 2
(1) (1)

3 2 4
(1) (1) (1)

5 4 6

4( 1)

4( 3)

4( 5)

r r r

r r r

r r r

r a a a

r a a a

r a a a

+ +

+ + +

+ + +

+ = −

+ = −

+ = −



 

and so on. 

Therefore 
(1)

1 3 54( 1) 4( 3) 4( 5) .r r r rr a r a r a a+ + ++ + + + + + =  

and this implies that 

(1)
2 1

0

4 ( 2 1) , 0,1,...r r i
i

a r i a r
∞

+ +
=

= + + =∑                                                    (2.49) 

Now, we discuss two cases on N: 

Case 1: If N is an even positive integer, then by substituting  

0,1,...,r N=  into equation (2.49) one can have: 
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[ ]

[ ]

(1)
2 10

0

1 3 5 1

(1)
2 21

0

2 4 6

(1)
21

0

4 (2 1)

4 3 5 ( 1) ,

4 (2 2)

4 2 4 6 ,

4 (2 )

4

i
i

N

i
i

N

i NN
i

N

a i a

a a a N a

a i a

a a a N a

a i N a

N a

∞

+
=

−

∞

+
=

∞

+−
=

= +

= + + + + −

= +

= + + + +

= +

=

∑

∑

∑







 

and 

(1)
2 1

0

4 ( 2 1) 0.N iN
i

a N i a
∞

+ +
=

= + + =∑  

Therefore 

(1)
0 0

(1)
1 1
(1)(1)

22

(1)
11

(1)

1 11 3 5 10 0 0 02 22 2 2 2
0 0 2 0 4 0 0
0 0 0 3 0 5 1 04 .

0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

NN

NN

Na a

a aN
a aNA

aNa
aa

−−

  −                   −= =                          







         





 

and hence   
(1) 4A MA=                                                                                                  (2.50) 

where 
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1 3 5 10 0 0 0
2 2 2 2

0 0 2 0 4 0 0
0 0 0 3 0 5 1 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

N

N
NM

N

− 
 
 
 
 −=  
 
 
 
  







        





                                          (2.51) 

 

Case (2): If N is an odd positive integer, then by substituting 

0,1,...,r N=  into equation (2.49) one can have 

(1)
2 10

0

1 3 5

4 (2 1)

4[ 3 5 ... ],

i
i

N

a i a

a a a Na

∞

+
=

= +

= + + + +

∑  

(1)
2 21

0

2 4 6 1

4 (2 2)

4[2 4 6 ... ( 1) ],

i
i

N

a i a

a a a N a

∞

+
=

−

= +

= + + + + −

∑



 

(1)
21

0

4 (2 )

4

i NN
i

N

a i N a

Na

∞

+−
=

= +

=

∑  

and 

(1)
2 1

0

4 (2 1) 0.i NN
i

a i N a
∞

+ +
=

= + + =∑  

Therefore 
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(1)

1 3 50 0 0 0
2 2 2 2

0 0 2 0 4 0 1 0
0 0 0 3 0 5 04

0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

N

N
NA

N

 
 
 

− 
 =  
 
 
 
  







        





 

and hence   
(1) 4A MA=                                                                                                  (2.52) 

where  

1 3 50 0 0 0
2 2 2 2

0 0 2 0 4 0 1 0
0 0 0 3 0 5 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

N

N
NM

N

 
 
 

− 
 =  
 
 
 
  







        





                                          (2.53) 

The Chebyshev expansion of terms *( )ix y x and * ( ),ix y x′  

0,1,...,i m= in equation (2.48) are obtained by means of the formula: 

 
2

( ) 2 ( ) *

0 0

2
( ) 2 ( ), 0,1

N i
i s i s

rr i j
r j

i
x y x a T x s

j
−

− +
= =

   = =    ∑ ∑
/

                       (2.54) 

The matrix representation of equation (2.54) can be given by 

( ) * ( )( ) , 0,1i s s
ix y x T M A s  = =   

where  AP

(0)
P=A. 

From equation (2.50) and equation (2.52) the above equation becomes 

( ) *( ) 4 , 0,1,..., , 0,1i s s
ix y x T M M A i N s  = = =                                         (2.55) 

where  
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0

1 0 0 0
0 1 0 0
0 0 1 0

0
0 0 0 1

M

 
 
 
 =
 
 
  







   



 

1 2

2 1 0 0 0 0 0
2 2 1 0 0 0 0
0 1 2 1 0 0 01

2
0 0 0 0 1 2 1
0 0 0 0 0 1 2

M

 
 
 
 

=  
 
 
 
 







       





 

2 4

6 4 1 0 0 0 0 0
8 7 4 1 0 0 0 0
2 4 6 4 1 0 0 01

2
0 0 0 0 0 4 6 4
0 0 0 0 0 1 4 6

M

 
 
 
 

=  
 
 
 
 







        





 

3 6

20 15 6 1 0 0 0 0
30 26 16 6 1 0 0 0
12 16 20 15 6 0 0 01

2
0 0 0 0 0 15 20 15
0 0 0 0 0 6 15 20

M

 
 
 
 

=  
 
 
 
 







        





 

and so on. 

By substituting equation (2.55) back into equation (2.48) one can have: 

{ }
0

4
m

i i i i
i

q M M r M A F
=

+ =∑                                                            (2.56) 
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which correspond, to a system of N+1 algebraic equations for the unknown 

Chebyshev coefficients { } 0
N
ra = . This equation can be rewritten in the form: 

W A=F                                                                                                  (2.57) 

where 

{ }
0

4 , , 0,1,...,
m

n m i i i i
i

w q M M r M n m N
=

= + =∑  

Then the augmented matrix of equation (2.57) is:  

[ ]

0,0 0,1 0, 0

1,0 1,1 1,
1

1,0 1,1 1,
1

,0 ,1 ,

1
2

:

N

N

N N N N
N

N N N N
N

w w w f
w w w f

W F
w w w f
w w w f

− − −
−

 
 
 
 

=  
 
 
 
 





   







                                  (2.58) 

Now, by substituting equation (2.5) in the boundary condition given by 

equation (2.1.b) one can have equation (2.8) or equation (2.9). 

Thus the boundary condition given by equation (2.1.b) can be written as: 

AU γ=                                                                                                      (2.59) 

where 

[ ]0 1 1N NU u u u u−=   

If N is an even or odd positive integer then 

int
inti

i is aneven positive eger
u

i is anodd positive eger
α β
β α
+

=  −
 

The augmented matrix given by equation (2.59) is: 

0 1 Nu u u γ                                                                              (2.60) 

Now, by replacing the row matrix given by equation (2.60) by the last 

row of augmented matrix given by equation (2.58), we have the new 

augmented matrix: 
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00 01 0 0

10 11 1
1

1,0 1,1 1,
1

0 1

1
2N

N

N N N N
N

N

w w w f
w w w f

w w w f
u u u γ

− − −
−

 
 
 
 
 
 
 
 
 





   







  

Let 

00 01 0

10 11 1
*

1,0 1,1 1,

0 1

N

N

N N N N

N

w w w
w w w

W
w w w
u u u

− − −

 
 
 
 =
 
 
  





   





,   

0

1*

1

1
2

N

f

f
F

f
γ
−

 
 
 
 =  
 
 
  



 

If * 0W ≠  then 

* 1 *( )A W F−=  

and thus the matrix A is a uniquely determined. By substituting the values of 

{ } 0
N
ra =  into equation (2.5) one can get the approximate solution of equations 

(2.1). 

Second, consider the boundary value problem given by equations 

(2.10). 

This method is begin by approximating the solution as a finite  

Chebyshev series give by equation (2.5) and  f can be approximated as a finite 

Chebyshev series given by equation (2.45). Also assume that the functions p, 

q and r can be expressed in the forms: 

0

( )
m

i
i

i

p x p x
=

=∑                                                                                        (2.61) 
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0

( )
m

i
i

i

q x q x
=

=∑                                                                                         (2.62) 

0

( )
m

i
i

i

r x r x
=

=∑                                                                                          (2.63) 

which are Taylor polynomials of degree m at x=0.    

By substituting equations (2.61)-(2.63) into equation (2.10.a) one can 

have: 

 { }* * *

0

( ) ( ) ( ) ( )
m

i i i
i i i

i

p x y x q x y x r x y x f x
=

′′ ′+ + =∑                            (2.64) 

By approximating * ( )y x′′  as a finite Chebyshev series one can have: 

* (2) *

0

( ) ( ), 0 1
N

r r
r

y x a T x x
=

′′ = ≤ ≤∑
/

 

where  { }(2)
0

N

r
a

=
 are the Chebyshev coefficients defined by remarks (1.9),(2). 

Hence 
(1) (2) (2)

1 14 , 1,2,...r r rr a a a r− += − =  

Thus 
(1) (2) (2)

1 2
(1) (2) (2)

3 2 4
(1) (2) (2)

5 4 6

4( 1)

4( 3)

4( 5)

rr r

r r r

r r r

r a a a

r a a a

r a a a

+ +

+ + +

+ + +

+ = −

+ = −

+ = −



 

and so on. 

Therefore 
(1) (1) (1) (2)

51 34( 1) 4( 3) 4( 5) rrr rr a r a r a a++ ++ + + + + + = . 

and this implies that  
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(2) (1)
2 1

0

4 ( 2 1) , 0,1,...r r i
i

a r i a r
∞

+ +
=

= + + =∑                                             (2.65) 

Now, we shall discuss two cases on N: 

Case 1: If N is an even positive integer, then by substituting 0,1,...,r N=  

into equation (2.65) one can have: 
(2) (1)4A M A=  

Case 2: If N is an odd positive integer, then by substituting 0,1,...,r N=  

into equation (2.65) one can have 
(2) (1)4A M A=  

But AP

(1)
P =4MA, Therefore 

AP

(2)
P =4 P

2
P MP

2
P A.                                                                                             (2.66) 

The Chebyshev expansions of terms * *( ), ( )i ix y x x y x′  and 

* ( ), 0,1,...,ix y x i m′′ =  in equation (2.64) are obtained by means of the 

formula:  
2

( ) 2 ( ) *

0 0

( ) 2 ( ), 0,1,2
N i

i s i s
rr i j

r j

i
x y x a T x s

j
−

− +
= =

 
= = 

 ∑ ∑
/

                                 (2.67) 

The matrix representation of equation (2.67) can be given by  
( ) * ( )( ) , 0,1,2i s s

ix y x T M A s= =  

where AP

(0)
P=A 

From equation (2.66) the above equations becomes: 
( ) 2 * ( )( ) 4 , 0,1,..., , 0,1,2i s s

ix y x T M M A i N s= = =                                    (2.68) 

where MRiR can be calculated in a similar manner used previously.  

By substituting equation (2.68) into equation (2.64) one can have: 

{ }2

0

16 4
m

i i i i i i
i

p M M q M M r M A F
=

+ + =∑                                            (2.69) 
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which corresponds to a system of N+1 algebraic equations for the unknown 

Chebyshev coefficients { } 0
N
ra = . This equation can be rewritten in the form: 

WA=F                                                                                                         (2.70) 

where  

{ }2
,

0

16 4 , , 0,1,..
m

n m i i i i i i
i

W p M M q M M r M n m N
=

= + + =∑  

Then the augmented matrix of equation (2.70) is: 

[ ]

0,0 0,1 0, 0

1,0 1,1 1,
1

1,0 1,1 1,
1

,0 ,1 ,

1
2

:

N

N

i

N N N N
N

N N N N
N

w w w f
w w w f

W F
w w w f
w w w f

− − −
−

 
 
 
 

=  
 
 
 
 





   







                                 (2.71) 

Now, by substituting equation (2.5) in the first and second boundary 

conditions given by equation (2.10.b) one can have equation (2.15) or 

equation (2.16) and equation (2.17). 

Thus the first boundary condition given by equation (2.10.b) can be written 

as: 

AU α=                                                                                                       (2.72) 

If N is an even or odd positive integer then 

1 int
1 inti

i is aneven positive eger
u

i is anodd positive eger


= −
 

The augmented matrix of equation (2.72) is: 

0 1 Nu u u α                                                                                (2.73) 

and the second boundary condition given by equation (2.10.b) can be written 

as: 

AV β=                                                                                                        (2.74) 
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where 

[ ]0 1 1N Nv v v v−  

If N is an even or odd positive integer 

1, 0,1,...,iv i N= =  

The augment matrix of equation (2.74) is: 

0 1 Nv v v β                                                                                 (2.75) 

Now, by replacing the two rows matrices given by equation (2.73) and 

equation (2.75) by the last two rows of augmented matrix given by equation 

(2.71), we have the new augment matrix: 

00 01 0 0

10 11 1
1

2,0 2,1 2,
2

0 1

0 1

1
2

N

N

N N N N
N

N

N

w w w f
w w w

f

w w w
f

u uu
v v v

α
β

− − −
−

 
 
 
 
 
 
 
 
 
 





   









 

Let 

00 01 0 0

10 11 1
1

* *

2,0 2,1 2,
2

0 1

0 1

1
2

,

N

N

N N N N
N

N

N

w w w f
w w w

f
W F

w w w
f

u uu
v v v

α
β

− − −
−

             = =                





   









 

If * 0W ≠  then 

* 1 *( )A W F−=  
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and thus the matrix A is a uniquely determined. By substituting the values of 

{ } 0
N
ra =  into equation (2.5) one can get the approximated solution of equations 

(2.10). 

To illustrate this method consider the following examples: 

 

UExample (2.3): 

Consider example (2.1). Assume that the solution y and the function f 

can be approximated by the finite Chebyshev series of degree four. 
4

* *

0

( ) ( )r r
r

y x a T x
=

=∑
/

                                                                             (2.76) 

and 
4

4 3 2 *

0

* * * * *
0 0 1 1 2 2 3 3 4 4

2
0 1 2

3 2
3

4 3 2
4

( ) 2 ( )

1 ( ) ( ) ( ) ( ) ( )
2
1 (2 1) (8 8 1)
2

(32 48 18 1)

(128 256 160 32 1).

r r
r

f x x x x f T x

f T x f T x f T x f T x f T x

f f x f x x

f x x x

f x x x x

=

= + + − =

= + + + +

= + − + − + +

− + − +

− + − +

∑
/

 

This implies that: 0 1 2 3 4
133 45 17 3 1, , , and
64 32 32 32 128

f f f f f−
= = = = = . 

Therefore 
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133
128
45
32
17
32
3

32
1

128

F

− 
 
 
 
 
 
 =
 
 
 
 
 
  

. 

Since q(x)=1+x and r(x)=1+x+x P

2
P, then from equations (2.46)-(2.47) one 

can have: 

qR0R= qR1 R=1, qR2R=qR3R=qR4 R= 0  

and 

rR0R= rR1R= rR2R=1, rR3R=rR4R=0 

Then by substituting the above results into equation (2.56) one can get: 

{ }0 0 1 1 24 4M M M M M M M A F+ + + + =                                            (2.77) 

where 

0 1

1 3 1 0 0 0 0 2 1 0 0 00 0 0
2 2

0 1 0 0 0 2 2 1 0 00 0 2 0 4 1, ,0 0 1 0 0 0 1 2 1 00 0 0 3 0 4
0 0 0 1 0 0 0 1 2 10 0 0 0 4
0 0 0 0 1 0 0 0 1 20 0 0 0 0

M M M

                    = = =                    

 

and 2

6 4 1 0 0
8 7 4 1 0

1 2 4 6 4 1
16

0 1 4 6 4
0 0 1 4 6

M

 
 
 
 =
 
 
  

 

Therefore, equation (2.77) becomes 
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1 1 0 0 0
2 4
1 1 10 2 0 6 0 1 0 0 0 0 0 1 2 3 4 0 0
2 2 40 0 8 0 1 6 0 1 0 0 0 0 1 4 6 8

1 1 10 0 0 1 2 0 0 0 1 0 0 0 0 2 6 8 0 0
4 2 4

0 0 0 0 1 6 0 0 0 1 0 0 0 0 3 8 1 1 10 00 0 0 0 0 0 0 0 0 1 0 0 0 0 4 4 2 4
1 10 0 0
4 2

  
  
  

      
      
      
      + + + +
      
      
             
 
  

0

1

2

3

4

3 1 1 1330 0
8 4 16 128

11 7 1 1 4 50 22 16 4 16 32
1 1 3 1 1 17
8 4 8 4 16 32

1 1 3 1 30
16 4 8 4 32

1 1 3 10 0
16 4 8 128

a

a
a
a
a












 −   
   
                   =                     

   
      
 

After simple computations, the augmented matrix of equation (2.77) is: 

15 7 33 1339 4
8 2 16 128

47 25 97 451 24
16 2 16 32

1 1 31 37 129 17
8 2 8 2 16 32

1 1 39 49 30
16 2 8 2 32

1 1 47 10 0
16 2 8 128

 − 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                              (2.78) 

Now, by substituting equation (2.5) in the boundary condition given by 

equation (2.18.b) one can get the augmented matrix: 

1 7 1 7 1 5
4 4 4 4 4 4
 − − − 
 
 

                                                                        (2.79) 
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By replacing the row matrix given by equation (2.79) by the last row of 

augmented matrix given by equation (2.78), we have the new augmented 

matrix: 

15 7 33 1339 4
8 2 16 128

47 25 97 451 24
16 2 16 32

1 1 31 37 129 17
8 2 8 2 16 32

1 1 39 49 30
16 2 8 2 32

1 7 1 7 1 5
4 4 4 4 4 4

 −
 
 
 
 
 
 
 
 
 
 
 − − −
 
 

                                                             (2.80) 

Therefore 
1

0

1

2

3

4

15 7 33 1339 4 138 2 16 128
1 847 25 97 451 242 116 2 16 32

21 1 31 37 129 17
18 2 8 2 16 32
81 1 39 49 30 016 2 8 2 32
01 7 1 7 1 5

4 4 4 4 4 4

a

a
a
a
a

− −   
    − 
                            = =                          
   − − −  
      

.











 

Hence 

0 1 2 3
13 1 1, , , 0
8 2 8

a a a a−
= = = = and 4 0a =  

by substituting these values into equation (2.76), one can obtain: 

* * * *
0 1 2

2

13 1 1( ) ( ) ( ) ( )
8 2 8

2.

y x T x T x T x

x

−
= − +

= −
 

Note that this solution is the exact solution of equation (2.18). 
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UExample (2.4):  

Consider the second order linear differential equation: 
3 2( ) 2 ( ) 8 ( ) 0, 0 1y x x y x x y x x′′ ′− + = ≤ ≤                                               (2.81.a) 

together with the boundary conditions: 

1(0) 1, (1)
3

y y= =                                                                                    (2.81.b) 

Assume that the solution y can be approximated by the finite Chebyshev 

series of degree five: 
5

* *

0

( ) ( )r r
r

y x a T x
=

=∑
/

                                                                             (2.82) 

Since p(x)=1, q(x)= −2x P

3
P and r(x)=8x P

2
P, then from equations (2.61)-(2.63) one 

can have: 

0 1 2 3 4 5

0 1 2 4 5 3

1, 0
0, 2

p p p p p p
q q q q q q

= = = = = =

= = = = = = −
 

and 

0 1 3 4 5 20, 8r r r r r r= = = = = =  

Then, by substituting the above expressions into equation (2.69) one can get: 

{ }2
0 2 316 8 8 0M M M M M A+ − =                                                              (2.83) 

where 

0

1 3 5 1 0 0 0 0 00 0 0
2 2 2

0 1 0 0 0 00 0 2 0 4 0
0 0 1 0 0 00 0 0 3 0 5 , ,
0 0 0 1 0 00 0 0 0 0 0
0 0 0 0 1 00 0 0 0 0 5
0 0 0 0 0 10 0 0 0 0 0

M M

             = =                
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2

6 4 1 0 0 0
8 7 4 1 0 0
2 4 6 4 1 01
0 1 4 6 4 016
0 0 1 4 6 0
0 0 0 1 4 6

M

 
 
 
 

=  
 
 
 
 

 and 3

20 15 6 1 0 0
30 26 16 6 1 0
12 16 20 15 6 01
2 6 15 20 15 064
0 1 6 15 20 0
0 0 1 6 15 20

M

 
 
 
 

=  
 
 
 
 

 

 

Therefore 

1
8

1 0 0 0 0 0 0 0 1 0 8 0 6 4 1 0 0 0 2 01 5 6 1 0
0 1 0 0 0 0 0 0 0 6 0 3 0 8 7 4 1 0 0 3 02 61 6 6 1
0 0 1 0 0 0 0 0 0 0 1 2 0 2 4 6 4 1 0 1 21 62 01 5 6116
0 0 0 1 0 0 0 0 0 0 0 2 0 0 1 4 6 4 0 2 6 12
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 4 6 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 4 6

−

     
     
     
     

+     
     
     
     
     

0

1

2

3

4

5

0
0
0

5 20 15 0
0 1 6 15 20 0
0 0 1 6 15 20

11 3 5 00 0 0
22 2 2

00 0 2 0 4 0
00 0 0 3 0 5
00 0 0 0 0 0
00 0 0 0 0 5
00 0 0 0 0 0

a

a
a
a
a
a

  
  
  
  
  
  
  
  
  

                        =                        
after simple computations the augmented matrix of equation (2.83) is: 

3 513 6 120 10 04 4
13 9 6794 16 460 08 2 8
5 131 1 177 20 0
4 4
3 1 2405 00 3 11
8 2 8

1 1 65 00 0 5
4 4 4

1 19 00 0 0 2
8 8

 
− − 

 
− − 

 − − −
 
 

− − 
 
 − −

− 
 
 
  

                                                         (2.84) 
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Now, by substituting equation (2.5) in the boundary conditions given by 

equation (2.81.b) one can get the augmented matrix: 

1 1 1 1 1 11

11 1 1 1 1 1
3

 − − −  
 
  

                                                                          (2.85) 

By replacing the two row matrices of equation (2.85) by the last two 

row of augmented matrix of equation (2.83), one can get the new augmented 

matrix: 

0
3 513 6 120 10
4 4 0

13 9 6794 16 460
8 2 8 0
5 131 1 177 20
4 4 0
3 1 24050 3 11 18 2 8

1 1 1 1 1 1
11 1 1 1 1 1
3

 
 − −
 
 − −
 
 −

− − 
 
 

− − 
 

− − − 
 
  

                                                  (2.86) 

Therefore 

1

0

1

2

3

4

5

1573 513 6 120 10 1924 41 0 713 9 6792 04 16 460 248 2 8
0 75 131 1 177 20 4804 4

113 1 24050 3 11 2418 2 8
131 1 1 1 1 1

192
1 1 1 1 1 1 0

a

a
a
a
a
a

−   − − 
     −−    −    
    − −    − −= =    

−    
   − − 
     −       − − −

 
  

.
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Hence 

0 1 2 3 4
157 7 7 1 1, , , ,
96 24 48 24 192

a a a a a− − − −
= = = = =  and 5 0a =  

By substituting these values into equation (2.82) one can obtain: 

* * * * * *
0 1 2 3 4

4

157 7 7 1 1( ) ( ) ( ) ( ) ( ) ( )
192 24 48 24 192

21 .
3

y x T x T x T x T x T x

x

= − − − −

= −
 

Note that this solution is the exact solution of equation (2.81). 
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UIntroduction 

 The aim of this chapter is to use the finite Chebyshev series method of 

the first kind defined on the interval [0,1] as a method to solve special types 

of integral equations namely systems of linear Fredholm integral and integro-

differential equations. 

This chapter consists of three sections. 

In section one, we use the Chebyshev series method to solve the 

homogeneous and nonhomogeneous linear Fredholm integral equations. This 

method is based on some properties that appeared in chapter one and it is a 

modification of the method that appeared in [Sezer M. and Dogan S.,1996]. 

In section two, we use the same method to solve systems of linear 

Fredholm integral equations of the second kind. 

In section three, solutions of the linear Fredholm integro-differential 

equations via Chebyshev series method are presented. 

 

U3.1 Chebyshev Series Method for Solving  Linear Fredholm Integral      

Equations: 

In this section we use the finite Chebyshev series as a method to solve 

the homogeneous and the nonhomogeneous linear Fredholm integral 

equations. To do this, consider first the nonhomogeneous linear Fredholm 

integral equation: 

1

0

( ) ( ) ( , ) ( ) , 0 1u x f x k x t u t dt xλ= + ≤ ≤∫                                             (3.1) 
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where  f  is a known function of  x, named as the driving term, k is a known 

function of  x and t, known as the kernel of the integral equation, λ is a scalar 

parameter  and u is the unknown function that must be determined. 

Assume that the solution of the above integral equation may be 

approximated as a finite Chebyshev series that takes the form: 

* *

0

( ) ( ) ( ), 0 1
N

r r
r

u x u x a T x x
=

≈ = ≤ ≤∑
/

                                                       (3.2) 

where { } 0
N
ra = are the Chebyshev coefficients that must be determined. This 

approximated solution may be written in matrix form as: 

                             * *( ) xu x T A=                                                                   (3.3) 

where  * * * *
0 1( ) ( ) . . . ( )x NT T x T x T x =    and  0 1

1 ... .
2

T

NA a a a =   
 

Moreover, assume that the function  f  may be approximated as a finite 

Chebyshev series that takes the form: 

* *

0

( ) ( ) ( )
N

r r
r

f x f x f T x
=

≈ = ∑
/

 

where { } 0
N
rf = are known Chebyshev coefficients. 

Then *( )f x  can be written in the matrix form: 

               * *( ) xf x T F=                                                                                 (3.4) 
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where 0 1
1 ... .
2

T

NF f f f =   
  

Assume that the kernel function k  can be approximated by a double finite 

Chebyshev series of degree N in both x and t that takes the form: 

* * *
,

0 0

( , ) ( , ) ( ) ( )
N N

r s r s
r s

k x t k x t k T x T t
= =

≈ = ∑ ∑
/ /

 

where { } ,
, 0,0

N N
r sk  are the known double Chebyshev coefficients. 

Then the approximated kernel function k P

*
P can be written in the matrix form: 

* * *( , ) T
x tk x t T K T=                                                                                      (3.5) 

where 

0,0 0,1 0,

* * * * 1,0 1,1 1,
0 1

,0 ,1 ,

1 1 1...
4 2 2
1 ...

( ) ( ) . . . ( ) , 2

1 ...
2

N

N
t N

N N N N

k k k

k k k
T T t T t T t K

k k k

 
 
 
 

   = =   
 
 
  

   

  

On the other hand, for the unknown function u in the integrand, we write:  

                 * *( ) ( ) tu t u t T A≈ =                                                                    (3.6) 

By substituting the matrix forms given by equations (3.3)-(3.6) into equation 

(3.1) and by simplifying the resulting equation one can get: 
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1
* *

0

T
t tA F K T T dt Aλ

  = +  
  
∫          

or 

( )I KQ A Fλ− =                                                                                           (3.7)  

where  

1 1 1
* * * * * *

0 0 0 1 0
0 0 0

1 1 1
* * * * * *

1 0 1 1 1
0 0 0

1 1 1
* * * * * *

0 1
0 0 0

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

...

...

...

N

N

N N N N

T t T t d t T t T t d t T t T t d t

T t T t d t T t T t d t T t T t d t

T t T t d t T t T t d t T t T t d t

Q

 
 
 
 
 

=  
 
 
 
 
 

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫

   

 

and I is the ( ) ( )N 1 N 1+ × + identity matrix. The elements of the matrix Q 

are denoted by q RijR and take the form: 

Let  
1

* *

0
( ) ( )ij i jq T t T t d t= ∫  

2 2
1 1 1 ( ) int
2 1 ( ) 1 ( )

0 ( ) int

ij

i j is aneven posetive eger
i j i jq

i j is anodd posetive eger

  
+ +  

− + − −  = 

 +

 

In equation (3.7), if 0I KQλ− ≠ ,  then  

( ) 1A I KQ Fλ −= −                                                                                      (3.8) 
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Thus the unknown coefficients { } 0
N
ra =  are uniquely determined by equation 

(3.8) and hence the integral equation (3.1) has a unique approximate solution 

given by equation (3.2). 

Second, consider the homogeneous linear Fredholm integral equation 

that takes the form: 

1

0

( ) ( , ) ( ) , 0 1u x k x t u t dt xλ= ≤ ≤∫                                                         (3.9) 

The problem here is to determine the generalized eigenvalue λ of the pair of 

operators 
1

0

, ( , ).I k x t dt
 
 
 
 
∫  with the corresponding eigenfunction u, where I is 

the identity operator.  

In this case (λ,u) is said to be the generalized eigenpair of the pair of 

operators 
1

0

, ( , ).I k x t dt
 
 
 
 
∫ ,[Jerri A., 1985]. 

By substituting the matrix forms given by equations (3.3),(3.5)-(3.6) into 

equation (3.9) and by simplifying the resulting equation one can get: 

1
* *

0

T
t tA K T T dt Aλ

  =  
  
∫  

or 

( ) 0I KQ Aλ− =                                                                                          (3.10) 

where I, K and Q P

 
Pare defined previously. 
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In equation (3.10) if  

0I KQλ− =                                                                                          (3.11)                       

then λ is the algebraic generalized eigenvalue of the pair of matrices (I,KQ). 

By substituting the values of λ into equation (3.10) and solving the resulting 

system of equations one can get the corresponding eigenvectors A. 

By substituting the values of { } 0
N

r ra =  one can get the approximated eigenpairs 

(λ,uP

*
P) of the pair of operator 

1

0

, ( , ).I k x t dt
 
 
 
 
∫ . 

To illustrate this method consider the following examples: 

 

UExample (3.1): 

Consider the nonhomogeneous linear Fredholm integral equation: 

1
2 2

0

( ) ( 5 ) ( ) , 0 1
4
xu x xt x t u t dt x−

= + + ≤ ≤∫  

Assume that the solution u can be approximated by the finite Chebyshev 

series of degree two. That is: 

2
*

0

( ) ( )r r
r

u x a T x
=

≈ ∑
/

                                                                                (3.12) 

where { }2
0r ra =  are the unknown Chebyshev coefficients that must be 

determined 

By using proposition (1.9) one can get: 
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* *
0 1

( )
4
1 1( ) ( )

8 8

xf x

T x T x

−
=

−
= −

 

and 

2 2 * * * *
0 1 0 1

* * * * * *
0 1 2 0 1 2

* * * * * * * *
0 0 0 1 0 1 0 2

* *
0 2 1

1( , ) 5 ( ) ( ) ( ) ( )
4
5 3 ( ) 4 ( ) ( ) 3 ( ) 4 ( ) ( )

64
61 76 76 15( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
64 64 64 64
15 96( ) ( )
64 64

k x t xt x t T x T x T t T t

T x T x T x T t T t T t

T x T t T x T t T t T x T x T t

T t T x T

   = + = + + +   

   + + + +   

= + + + +

+ * * * * * *
1 1 2 1 2

* *
2 2

20 20( ) ( ) ( ) ( ) ( ) ( )
64 64

5 ( ) ( )
64

x T t T x T t T t T x

T x T t

+ + +

Therefore  

1
8
1

8
0

F

− 
 
 
− =
 
 
 
  

 and 

61 76 15
64 64 64
76 96 20 .
64 64 64
15 20 5
64 64 64

K

 
 
 
 =
 
 
 
  

 

On the other hand 

11 0
3

10 0
3

1 70
3 15

Q

− 
 
 
 =
 
 − 
  

. 

By substituting these matrices into equation (3.8) one can have: 
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1

0

1

2

61 76 15 1 11 01 a 64 64 64 3 81 0 02 76 96 20 1 1a 0 1 0 0 0
64 64 64 3 8

a 0 0 1 15 20 5 1 7 00
64 64 64 3 15

1 19 5
8 48 24
13 1 1

12 2 4
5

24

−
 −  −     

        
         
  −       = −         
           −                      

−

−
=

− −

1 1 3
8 8
1 1 .

8 2
5 25 10

48 24 8

− −     
     
     

−     =
     
     
     
          

 

Therefore 

0
1 2

a 3 1 1, a and a
2 8 2 8
= = = . 

By substituting these values into equation (3.12) one can obtain  

* * *
0 1 2

2

2

3 1 1u(x) T (x) T (x) T (x)
8 2 8
3 1 1( 2x 1) ( 8x 8x 1)
8 2 8
x

≈ + +

= + − + − +

=

 

is the approximated solution of the above integral equation. In this case, 

u(x)≈ x P

2
P is the exact solution of this example. 

 

UExample (3.2): 

Consider the homogeneous linear Fredholm integral equation: 
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1

0

( ) ( ) , 0 1u x xt u t dt xλ= ≤ ≤∫  

Assume that the approximated solution is given by equation (3.12). By using 

proposition (1.9) one can have: 

* * * *
0 1 0 1

* * * * * * * *
0 0 0 1 0 1 1 1

1( , ) ( ) ( ) ( ) ( )
4
1 1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).
4 4 4 4

k x t xt T x T x T t T t

T x T t T x T t T t T x T x T t

   = = + +   

= + + +
 

Hence   

1 1 0
4 4
1 1 0 .
4 4

0 0 0

K

 
 
 
 =  
 
 
  

 

Therefore 

11 1 1 00
34 41 0 0

1 1 10 1 0 0 0 0
4 4 3

0 0 1 1 70
3 150 0 0

1 1 1
4 12 121 0 0
1 1 10 1 0
4 12 12

0 0 1 0 0 0

I KQλ λ

λ

  − 
   
    
    − = −     
      −   
     

− 
 

   
−   = −   
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1
4 12 12

1 0
4 12 12
0 0 1

I KQ

λ λ λ

λ λ λλ

−
−

−
− = − =  

Therefore 

2
1 1 0

4 12 48
λ λ λ  − − − =  

  
 and this implies that λ=3. 

By substitution λ=3 into equation (3.10) one can have: 

0

1

2

1 1 1 1 a4 4 4 023 3 1 a 0
4 4 4

a 00 0 1

− 
  
    
 −    =    
            

. 

By solving the above homogeneous system of linear equations one can have 

1 0 2
1 and 0
2

a a a= =  

By substituting these values into equation (3.12) one can obtain  

[ ]

* *0
0 0 1

0

0 0

a 1u(x) T (x) a T (x)
2 2
a 1 2x 1
2

a x, a 0.

= +

= + −

= ≠
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Hence ( )0 03, , 0a x a ≠  is the approximated eigenpair of the pair of operators 

1

0

, .I xt dt
 
 
 
 
∫ . In this case (3,a R0Rx) is the exact eigenpair of the pair of operations 

1

0

, .I xt dt
 
 
 
 
∫ . 

 

U3.2 Chebyshev  Series Method for Solving Systems of Linear 

Fredholm Integral  Equations: 

In this section we modify the previous method to solve systems of 

linear Fredholm integral equations that take the form: 

1

1 0

( ) ( ) ( , ) ( ) , 0 1, 1,2,...,
n

i i ij ij j
j

u x f x k x t u t dt x i nλ
=

= + ≤ ≤ =∑ ∫              (3.13) 

where  fRiR  is a known functions of  x, kRijR is a known functions of  x and t, λRijR is 

a scalar parameter and { } 1
n
iu =  are the unknown functions that must be 

determined. 

Assume that the solution { } 1
n
iu = of the above system of integral 

equations can be approximated as a finite Chebyshev series that takes the 

form: 

* *

0

( ) ( ) ( ), 1,2,...,
N

i i ir r
r

u x u x a T x i n
=

≈ = =∑
/

                                               (3.14) 
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where { } ,
1,0
n N

ira  are the Chebyshev coefficients that must be determined. This 

approximated solution can be written in the matrix form: 

                             * *( ) , 1,2,...,i x iu x T A i n= =                                           (3.15) 

where *
xT  is defined previously and 0 1

1 ... .
2

T

i i i iNA a a a =   
 

Moreover, assume that the function  fRiR  can be approximated as a finite 

Chebyshev series that takes the form: 

* *
,

0

( ) ( ) ( ), 1,2,...,
N

i i i r r
r

f x f x f T x i n
=

≈ = =∑
/

  

where { } ,
, 1,0

n N
i rf  are known Chebyshev coefficients. Then  *( )if x  can be 

written in the matrix form: 

                             * *( ) , 1,2,...,i x if x T F i n= =                                           (3.16) 

where ,0 ,1 ,
1 ... , 1,2,..., .
2

T

i i i i NF f f f i n = =  
  

Assume that the approximated kernel function kRijR  can be approximated by a  

double finite Chebyshev series of degree N in both x and t that takes the form: 

* , * *

0 0

( , ) ( , ) ( ) ( ), , 1,2,...,
N N

r s
ij ij ij r s

r s

k x t k x t k T x T t i j n
= =

≈ = =∑ ∑
/ /

 

where { } ,,
1, , 0

n Nr s
ij ij r s

k
= =

 are the known double Chebyshev coefficients. 
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Then the approximated kernel function *
ijk  can be written in the matrix form: 

* * *( , ) , , 1,2,...,T
ij x ij tk x t T K T i j n= =                                                             (3.17) 

where 

0,0 0,1 0,

1,0 1,1 1,

,0 ,1 ,

1 1 1...
4 2 2
1 ...

, , 1,2,...,2

1 ...
2

N
ij ij ij

N
ij ij ij

ij

N N N N
ij ij ij

k k k

k k k
K i j n

k k k

 
 
 
 
 = =
 
 
 
  

   

  

On the other hand, for the unknown function ju in the integrand, we write  

                 * *( ) ( ) , 1,2,...,j j t ju t u t T A j n≈ = =                                         (3.18) 

By substituting the matrix forms given by equations (3.15)-(3.18) into 

equation (3.13) and then by simplifying the resulting equation one can get: 

1

, 1,2,...,
n

i i ij ij j
j

A F K Q A i nλ
=

= + =∑                                                    (3.19)  

Let  

10 11 1 20 21 2 0 1
1 1 1
2 2 2

T

N N n n nNA a a a a a a a a a =   
   

1,0 1,1 1, 2,0 2,1 2, ,0 ,1 ,
1 1 1
2 2 2

T

N N n n n NF f f f f f f f f f =   
   

and 
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11 11 12 12 1 1

21 21 22 22 2 2

1 1 2 2

n n

n n

n n n n nn nn

k Q k Q k Q
k Q k Q k Q

K

k Q k Q k Q

λ λ λ
λ λ λ

λ λ λ

 
 
 =
 
 
 





   



 

then equation (3.19) can be rewritten as: 

( )I K A F− =  

where I is the identity matrix. 

In the above equation, if 

0I K− ≠ , then 

1( )A I K F−= −                                                                                           (3.20)  

Thus the unknown coefficients{ } ,
1,0
n N

ira  are uniquely determined by equation 

(3.20) and hence the system of integral equations given by equation (3.13) has 

a unique solution given by equation (3.14). 

To illustrate this method consider the following example: 

 

UExample (3.3): 

Consider the system which consist of two linear Fredholm integral 

equations: 
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1 1
2

1 1 2

0 0
1 1

3 2 2 3
2 1 2

0 0

6( ) 1 (3 4 ) ( ) ( ) , 0 1
5

1 1 1( ) ( ) ( ) ( ) , 0 1
3 7 4

u x x x x t u t dt xt u t dt x

u x x x x x t u t dt xt u t dt x

= − − + + + ≤ ≤

= − − − + + + ≤ ≤

∫ ∫

∫ ∫
 

Assume that the solution { }2
1iu =  can be approximated by the finite Chebyshev 

series of degree three. That is: 

3
*

1 1
0

( ) ( )r r
r

u x a T x
=

= ∑
/

                                                                              (3.21) 

and 

3
*

2 2
0

( ) ( )r r
r

u x a T x
=

= ∑
/

                                                                             (3.22) 

By using proposition (1.9) one can have: 

2
1

* * * * * *
0 1 2 0 0 1

* * *
0 1 2

6( ) 1
5

1 63 ( ) 4 ( ) ( ) ( ) ( ) ( )
8 10

49 1 1( ) ( ) ( )
40 10 8

f x x x

T x T x T x T x T x T x

T x T x T x

= − −

   = + + − − +   

−
= − +

 

3 2
2

* * * * *
0 1 2 3 0

* * * * *
0 1 2 0 1

* * * *
0 1 2 3

1 1 1( )
4 3 7

1 11 0 ( ) 1 5 ( ) 6 ( ) ( ) ( )
32 4
1 13 ( ) 4 ( ) ( ) ( ) ( )
24 14

90 310 7 1( ) ( ) ( ) ( )
672 1344 48 32

f x x x x

T x T x T x T x T x

T x T x T x T x T x

T x T x T x T x

= − − −

 = + + + − − 

   + + − +   

−
= + + +
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11

* * * *
0 1 0 1

* * * * * *
0 0 0 1 1 0

( , ) 3 4
3 ( ) ( ) 2 ( ) ( )
2
7 3( ) ( ) ( ) ( ) 2 ( ) ( )
2 2

k x t x t

T x T x T t T t

T x T t T t T x T t T x

= +

   = + + +   

= + +

 

 

 

12

* * * *
0 1 0 1

* * * * * * * *
0 0 0 1 1 0 1 1

( , )
1 ( ) ( ) ( ) ( )
4
1 1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),
4 4 4 4

k x t xt

T x T x T t T t

T x T t T x T t T x T t T x T t

=

   = + +   

= + + +

 

 

2
21

* * * * *
0 1 2 0 1

* * * * * * * *
0 0 1 0 2 0 1 0

( , )
3 1 1 1( ) ( ) ( ) ( ) ( )
8 2 8 2
7 1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),
8 2 8 2

k x t x t

T x T x T x T t T t

T x T t T x T t T x T t T t T x

= +

 = + + + + 

= + + +

  

and 

 

3
22

* * * * * *
0 1 0 1 2 3

* * * * * * * *
0 0 0 1 0 2 0 3

* * * * * * * *
1 0 1 1 1 2 1 3

( , )
1 1( ) ( ) 1 0 ( ) 1 5 ( ) 6 ( ) ( )
2 32
1 1 0 ( ) ( ) 1 5 ( ) ( ) 6 ( ) ( ) ( ) ( )
64

1 0 ( ) ( ) 1 5 ( ) ( ) 6 ( ) ( ) ( ) ( )

k x t xt

T x T x T t T t T t T t

T x T t T x T t T x T t T x T t

T x T t T x T t T x T t T x T t

=

   = + + + +   

= + + + +

+ + + 
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Hence 

1

49
40

1
10
1
8
0

F

− 
 
 
− 

 =
 
 
 
  

, 2

90
672
310

1344
7
48
1

32

F

− 
 
 
 
 

=  
 
 
 
 
 

, 11

7 2 0 0
2
3 0 0 0
2
0 0 0 0
0 0 0 0

K

 
 
 
 =  
 
 
  

, 12

1 1 0 0
4 4
1 1 0 0
4 4
0 0 0 0
0 0 0 0

K

 
 
 
 =  
 
 
  

, 

21

7 1 0 0
8 2
1 1 0 0
2 2
1 0 0 0
8
0 0 0 0

K

 
 
 
 
 =
 
 
 
  

 and 22

10 15 6 1
64 64 64 64
10 15 6 1

.
64 64 64 64
0 0 0 0
0 0 0 0

K

 
 
 
 =  
 
 
  

 

On the other hand 

11 0 0
3

1 10 0
3 5 .

1 70 0
3 15

1 170 0
5 35

Q

− 
 
 

− 
 

=  − 
 
 −
 
 

 

By substituting these matrices into equation (3.19) one can have: 
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10 10

11 11

12 12

13 13

149 1 0 07 32 0 01 140 2 1 11 0 02 23 3 50 0 010 2 1 71 0 00 0 0 0 3 158
0 0 0 0 1 170 0 0

5 35

1 1 0 0
4 4
1 1 0 0
4 4
0 0 0 0
0

a a

a a
a a
a a

− −              −  −          = + +   −                      −       

20

21

22

23

11 0 0
3 1

1 10 0 2
3 5

1 70 0
3 15

0 0 0 1 170 0
5 35

a

a
a
a

− 
        −           −               −   
 

 

and 

20 10

21 11

22 12

23 13

90 17 1 1 0 00 0672 31 18 2
310 1 11 1 0 02 20 01344 3 52 2

7 1 71 0 00 0 048 3 158
1 1 170 0 0 0 0 0
32 5 35

10
6

a a

a a
a a
a a

− −                  −              = + +   −                        −        

20

21

22

23

11 0 015 6 1 3 14 64 64 64 1 10 0 210 15 6 1 3 5 .
64 64 64 64 1 70 00 0 0 0 3 15
0 0 0 0 1 1 70 0

5 35

a

a
a
a

− 
        −           −               −   
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The above two systems of equations can be rewritten as: 

10

11

12

13

20

21

22

23

1
3.5 0.667 1.167 0.4 0.25 0.083 0.083 0.051.2252
1.5 0 0.5 0 0.25 0.083 0.083 0.050.1
0 0 0 0 0 0 0 00.125
0 00

1 0.134
2 0.231

0.146
0.031

a

a
a
a

a

a
a
a

 
− − − −  − 

    − − −−   
   
   
   = +   −   
   
   
   
     
 

10

11

12

13
3

203
21

22

23

1
2

0 0 0 0 0 0

10.875 0.167 0.292 0.1 0.125 0.075 8.333 10 0.039
20.5 0 0.167 0 0.125 0.075 8.333 10 0.039

0.125 0 0.042 0 0 0 0 0
0 0 0 0 0 0 0 0

a

a
a
a

a

a
a
a

−

−

 
   
   
   
   
   
   
   − − − × −   
   − − × −   
   −
   
   

 
 

Therefore 

10

11

12

13

20

21

22

23

1
0.239 0.181 0.413 0.108 0.127 0.048 0.036 0.0282
0.456 0.708 0.152 0.175 0.076 0.029 0.022 0.017

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

0.341 0.054 0.113 0.033 1.037 0.049 0.0241
2

a

a
a
a

a

a
a
a

 
  − − − −
  − − − 
 
 
 

=  − − −
 
 
 
 
 
 
 

3 3 3

1.225
0.1

0.125
0

0.023 0.134
0.175 0.105 0.058 0.063 0.027 1.062 0.014 0.03 0.231

0.1460.03 0.023 9.654 10 0.014 0.016 5.998 10 1.005 3.478 10
0.0310 0 0 0 0 0 0 1

− − −

  − 
   −   
   
   
   
   −   − − −   
   − − × − − × ×  
    




 

and this implies that: 

10 20
11 12 13 21 22 23

3 1 1 10 15 6 1, , , 0, , , and
2 8 2 8 2 32 32 32 32

a aa a a a a a= = = = = = = =  

By substituting these values into equation (3.21) and equation (3.22) one can 

obtain: 
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* * *
1 0 1 2

2

2

3 1 1u (x) T (x) T (x) T (x)
8 2 8
3 1 1( 2 x 1 ) ( 8 x 8 x 1 )
8 2 8
x

≈ + +

= + − + − +

=

 

and 

* * * *
2 0 1 2 3

2 3 2

3

10 15 6 1u (x) T (x) T (x) T (x) T (x)
32 32 32 32
10 15 6 1( 2x 1) ( 8x 8x 1) ( 32x 48x 18x 1)
32 32 32 32
x .

≈ + + +

= + − + − + + − + −

=

 

 In this case 2 3
1 2( ) , ( )u x x u x x≈ ≈  is the exact solution of this example. 

 

U3.3 Chebyshev  Series Method for Solving Linear Fredholm Integro-

Differential  Equations:  

In this section we use the finite Chebyshev method to solve the first 

order linear Fredholm integro-differential equation of the second kind: 

1

0

( ) ( ) ( , ) ( ) , 0 1u x f x k x t u t dt xλ′ = + ≤ ≤∫                                          (3.23) 

where  f  is a known function of  x, k is a known function of  x and t, known as 

the kernel of the integro-differential equation, λ is a scalar parameter  and u is 

the unknown function that must be determined. 
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Assume that the solution u can be approximated as in equation (3.3), f can be 

approximated as in equation (3.4) and the kernel function k can be 

approximated as in equation (3.5). 

Form equation (2.55) ( )u x′  can be written in the form: 

* (1)( ) xu x T A′ ≈  

*4T M A=                                                                                          

(3.24) 

By substituting the matrix forms given by equations (3.4)-(3.6) and equation 

(3.24) into equation (3.23) and then by simplifying the resulting equation one 

can get: 

4M A F KQ Aλ= +  

or 

( )4M KQ A Fλ− =                                                                                    (3.25)  

where Q P

 
Pis defined previously and M is defined either by equation (2.51) or 

equation (2.53)  

In equation (3.25), if 4 0M KQλ− ≠ ,  then  

( ) 14A M KQ Fλ −= −                                                                                 (3.26) 

Thus the unknown coefficients  { } 0
N
ra =  are uniquely determined by equation 

(3.26) and hence the integro-differential equation (3.23) has a unique 

approximatesolution given by equation (3.2). 

To illustrate this method consider the following example: 
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UExample (3.4): 

Consider the nonhomogeneous linear Fredholm integro-differential 

equation: 

1
2 2

0

4 13( ) 2 ( ) ( ) , 0 1.
3 12

u x x x x t u t dt x′ = − + + + ≤ ≤∫  

Assume that the solution u can be approximated by the finite Chebyshev 

series of degree two. That is 

2
*

0

( ) ( )r r
r

u x a T x
=

≈ ∑
/

                                                                                (3.27) 

By using proposition (1.9) one can get: 

2

* * * * *
0 1 0 1 2

* * *
0 1 2

4 13( ) 2
3 12

1 13( ) ( ) 3 ( ) 4 ( ) ( )
6 12

19 1 1( ) ( ) ( )
12 3 6

f x x x

T x T x T x T x T x

T x T x T x

= − +

 = + − + + + 

= + −

 

and 

2

* * * * *
0 1 2 0 1

( , )
3 4 1 1 1( ) ( ) ( ) ( ) ( )
8 8 8 2 2

k x t x t

T x T x T x T t T t

= +

= + + + +
 

Therefore  
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19
12
1
3
1

6

F

 
 
 
 =
 
 − 
  

 and 

7 1 0
8 2
4 0 0 .
8
1 0 0
8

K

 
 
 
 =
 
 
 
  

 

On the other hand 

11 0
3

10 0
3

1 70
3 15

Q

− 
 
 
 =
 
 − 
  

 and 

10 0
2

0 0 2 .
0 0 0

M

 
 
 

=  
 
 
 

 

By substituting these matrices into equation (3.26) one can have: 

1

0

1

2

1

7 1 1 190 1 01 a 8 2 3 120 2 02 4 1 1a 0 0 8 0 0 0 0
8 3 3

a 0 0 0 1 1 7 10 0 0
8 3 15 6

7 11 7 1
8 6 24
1 490

2 6
1 10

8 24

−

−

 −      
        
         
         = −         
           − −                     

− 
 
 
− =

 
 − 
  

119
812

1 3
3 2

11
86

  
  
  
   =
  
  −   

      

 

and this implies that 

0
1 2

11 3 1, and .
2 8 2 8
a a a= = =  
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By substituting these values into equation (3.27) one can obtain: 

* * *
0 1 2

2

2

11 3 1u(x) T (x) T (x) T (x)
8 2 8

11 3 1( 2 x 1 ) ( 8 x 8 x 1 )
8 2 8
x 2 x

≈ + +

= + − + − +

= +

 

which is the exact solution of this example. 

 

URemark (3.1): 

This method can be also extended to solve system of first order linear 

Fredholm integro-differential equations of the second kind: 

1

1 0

( ) ( ) ( , ) ( ) , 0 1, 1,2,...,
n

i i ij ij j
j

u x f x k x t u t dt x i nλ
=

′ = + ≤ ≤ =∑ ∫ . 
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UConclusions and Recommendations 
 

From the present study, we can conclude the following: 

1. When the problem is defined in a finite range a x b≤ ≤ , then by using the 

linear transformations 1 1( ) ( )
2 2

x b a t b a= − + +  and ( )x b a t a= − + , the 

range a x b≤ ≤  can be transformated to the range 1 1t− ≤ ≤  and 0 1t≤ ≤  

respectively, which are the domain of  rT  and *
rT  respectively. 

2. The Chebyshev polynomials of the second kind defined on [0,1], denoted 

by *( )rU x , can be defined by: 

*( ) (2 1), 0 1, 0,1,....r rU x U x x r= − ≤ ≤ =  

3. Proposition (1.16) does not hold in case r is an odd positive integer since 

the constant of integration is taken to be nonzero. For example: 

2
1 1 2 0 1 2

1 1( ) 2 ( ) ( ) ( )
2 2

U x dx x dx x c T x T x c T x c= = + = + + = +∫ ∫ . 

4. From remark (1.5) one can see that the set of the Chebyshev polynomials 

of the first kind does not form an orthogonal sequence. 

5. Remark (1.6) can be also include the sine Fourier series which is the 

infinite Chebyshev series of the second kind. 

6. Chebyshev series method can be also used to solve the linear Fredholm 

integral equations of the first kind in case KP

-1
P exists. 

7. Chebyshev-matrix method fails to be applied in case 0ra ≠ for r N> . 

 

For future work the following problems could be recommended: 

1. Modify the Chebyshev series method to solve the linear Volterra integral 

and integro-differential equations. 
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2. Extend the Chebyshev-matrix method to solve nonlinear differential 

equations. 

3. Use Chebyshev series method for solving nonlinear problems. 

4. Devote the Chebyshev polynomials of the second kind defined on [-1,1] 

and [0,1] as a method to solve non-linear problems. 
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  المستخلص

  

  :الغرض الرئيسي من هذا العمل يمكن تقسيمه إلى المحاور التالية

تشيبيتشيف من النوع الأول والثاني والمعرفة على الفترات  دراسة متعددة حدود.١

 .وتطوير بعض خواصهم] 1,1-[و] 0,1[

أستعمال طريقتين لحل المعادلات التفاضلية الأعتيادية الخطية ذات المعاملات الغير ثابتة .٢

 .وهما طريقة مصفوفة تشيبيتشيف وطريقة متسلسلة تشيبيتشيف

تبني طريقة متسلسلة تشيبيتشيف لحل أنظمة من معادلات فريدهولم التكاملية و .٣

  .الخطية التفاضلية-التكاملية



  
  
  
  
  
  
  

  
  

طرق متسلسلة تشیبتشیف لحل بعض 
  المسائل الخطیة

  
  

  
 

   
  

  

  
      ) ٢٠٠٥ ،النھرین ةجامع ،بكالوریوس علوم(

  

  

  
  

   

 جمهورية العراق
 وزارة التعليم العالي و البحث العلمي

 جامعة النهرين
  كلية العلوم

 قسم الرياضيات وتطبيقات الحاسوب

١٤٢٩ 
٢٠٠٨ 
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