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Abstract

The main purpose of this work may be divided into the following
aspects:

1.Study the Chebyshev polynomials of the first and second kinds defined on the
intervals [0,1] and [-1,1] and modify some of their properties.

2.Use two methods to solve the linear ordinary differential equations with non-
constant coefficients, namely, Chebyshev-matrix method and Chebyshev
series method.

3.Devote Chebyshev series method to solve system of linear Fredholm integral
equations and integro-differential equations.
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Introduction

Most areas of numerical analysis as well as many other areas of
mathematics as a whole make use of the Chebyshev polynomials. In several
areas of mathematics polynomial approximation, numerical integration, and
pseudospectral methods for ordinary and partial differential equations, the
Chebyshev polynomials take a significant role, the following quote has been
attributed to a number of distinguished mathematicians. Hence a Chebyshev
series can be expected to converge more rapidly than any other polynomial
series. A Chebyshev series also generally converges more rapidly than
Fourier series particularly for a function which is not truly periodic, [Sarra A.,
2005].

Many authors and researchers studied the Chebyshev polynomials such
as [Van der pol., 1934] who gave the definition of the inverse Chebyshev
series. Also has been decomposed into partial fractions, [Clenshaw C., 1957]
gave the numerical solutions of the linear differential equations by using
Chebyshev series, [Muranghan F., 1959] used the near-minimax properties of
the Chebyshev series, [Veidinger L., 1960] studied the numerical
determination of the best approximations in the Chebyshev sense, [Clenshaw
C., 1960] proposed almost 40 years ago a quadrature scheme for finding the
integral of non-singular function defined on a finite range by expanding the
integrand in a series of Chebyshev polynomials and integrating this series
term by term, [Elliott D., 1961] solved heat equations by using Chebyshev
series for the numerical integration, [Elliott D., 1964] discussed the evaluation
and estimation of the coefficients in the Chebyshev series expansion of a
Legender function, [Fox L., 1965] studied least squares approximation

method using Chebyshev polynomials to solve second order ordinary



Introduction]

differential equation and gave some properties of Chebyshev series
expansion, [Smith L., 1966] gave an algorithm for finding the inverse
polynomial with Gauss-type Chebyshev quadratures, [Mason J., 1967]
developed a numerical method for solving heat equations by using
Chebyshev series, [Fox L., 1968] studied some important properties of the
Chebyshev polynomials, [Mason J., 1969] solved special types of linear
partial differential equations via Chebyshev series, [Kin L., 1970] studied
high-precision Chebyshev series approximation to the exponential integral,
[Knibb D., 1971] solved parabolic equations by using Chebyshev series,
[Broucke R., 1973] studied some approximated methods by truncation of the
Chebyshev series expansion of an inverse polynomial of degree k in power
series, [Boateng G., 1975] solved parabolic partial differential equations by
using Chebyshev collection method, [Alwar R., 1976] gave some of the
application of Chebyshev polynomials to the nonlinear analysis of circular
plates, [Gattieb D., 1977] discussed Chebyshev spectral methods, [Doha E.,
1979] discussed some of Chebyshev methods for finding the numerical
solution of the third boundary value problem parabolic partial differential
equations, [Evans D., 1981] solved biharmonic equation in a rectangular
region by using Chebyshev series, [Gemignani L., 1997] gave some
algorithms for Chebyshev rational interpolation, [Mihaila B., 1998] compared
the solution of linear and non-linear second order ordinary differential
equation obtained using the proposed Chebyshev method with numerical
solution obtained using the finite-difference method, [Pakhshan M., 1999]
solved the linear Fredholm integral equation of the second kind via
Chebyshev polynomials, [Nath Y., 2000] solved special types of nonlinear
partial differential equations by using a quadratic Chebyshev polynomials
extrapolation technique, [John P., 2000] studied Chebyshev and Fourier
spectral methods, [Glader C., 2001] discussed method for rational Chebyshev
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approximation of rational functions on the unit disk and on the unit interval,
[El-kady M., 2002] solved nonlinear optimal control problems by using
Chebyshev expansion method, [Rababah A., 2003] proved that the shifted
Chebyshev polynomials are orthogonal over [0,1], [Bulyshev Y., 2003] gave
some new properties of the Chebyshev polynomials used analysis and design
of dynamic system, [ Mace R., 2005] discussed padé method reconstruct the
Chebyshev polynomial approximation as a rational approximation, [Ramos
H., 2007] presented a method based on Chebyshev approximation for solving

the second order ordinary differential equation.

The aim of this work is to study Chebyshev polynomials of the first and
second kinds defined on the intervals [0,1] and [-1,1]. Also some properties of
such polynomials are discussed and developed. Moreover, we use the integral
properties of Chebyshev polynomials of the first kind defined on [0,1] to
produce a method for solving the boundary value problems for linear ordinary
differential equations with non-constant coefficients and systems of linear
Fredholm integral and integro-differential equations.

Another method, named as Chebyshev-matrix method for solving these
problems is utilized. It depends on the product property of the Chebyshev
polynomials of the first kind defined on [0,1].

This thesis consist of three chapters:

In chapter one, we give two definitions of the Chebyshev polynomials
of the first and second kinds defined on [0,1] and [-1,1] with some of their
Important properties.

In chapter two, two approximate methods; namely Chebyshev series
and Chebyshev-matrix methods are discussed to solve boundary value
problems of the linear ordinary differential equations with non-constant

coefficients.
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In chapter three, we use Chebyshev series method to solve systems of
linear Fredholm integral and integro-differential equations. This method
depend on some properties of the Chebyshev polynomials of the first kind
defined on [0,1].



Chapter One

The Chebyshev
Polynomials
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Introduction:

The aim of this chapter is to give the definitions of the Chebyshev
polynomials of the first and second kinds defined on the intervals [0,1] and
[-1,1]. Also some important properties of these polynomials are presented and
developed. Most of these properties are necessary for practical applications to

be discussed later.

Definition (1.1) [Fox L. and Parker 1., 1968]:

The Chebyshev polynomial of the first kind defined on [-1,1], denoted
by T.(x), is defined by:
T, (x)=cos(r@), cosf=x, -1<x <1

where r=0,1,....

Remark (1.1):

Since cos(ré@)=cos(-r@), r=0,1,..., then one can define the

Chebyshev polynomials of the first kind T_, ( x) defined on [-1,1], by:
T ,(x)=T,(x), r=0.1,..

Definition (1.2), [ Fox L. and Parker 1., 1968 |:
The Chebyshev polynomial of the first kind defined on [0,1], denoted

by T, (x), is defined by:
T, (x)=T,(2x -1),0<x <1

where r =0,1,....
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Definition (1.3) [ Fox L. and Parker L., 1968 |:
The Chebyshev polynomial of the second kind defined on [-1,1],
denoted by U,(x), is defined by:

sin[(r +1)6]

Ur()= sin®@

, cosf=x,-1<x<1

where r =0,1,....

Remarks (1.2), [ Fox L. and Parker L., 1968 |:
It is easy to check that

2
(i) i—;+ rT. =0,r=0,1,....

d?U, 2cosé dU,
_|_

2
+(rc+2r)U, =0,r=0,1,....
dg? sind do ( r

(1)

Now, the following proposition is appeared in [Fox L. and Parker 1.,

1968] without proof. Here we give its proofs.

Proposition (1.1):
(i) T, (1) =1 foreach r =0,1,....

N 1 risaneven positive integer
() T,(-1)= _ P

-1 risanodd positive integer
Proof-

(i) Assume x=1, then cos#=1 and hence 6=2nz, n=0,71,72,....

Therefore T, (1) = cos(2nrz) =1 for r =0,1,....
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(if)Assume x =-1, then cos( #) =-1and hence #=(2n+1)r,
n=0,71,72,....

1 risaneven positiveinteger

Therefore T, (-1) =cos[r(2n+1)z]= {_1 r isan odd positiveinteger

Next, the following proposition is appeared in [Fox L. and Parker I.,

1968] without proof. Here we give its proof.

Proposition (1.2):
T, a(x) =2xT,(x)=-T,4(x),r =1, 2,... (1.1)
(i) Ts(x )T, (x):%{TS+Ir (X)+Ts (x)},s2r,1r,5=01,.. (1.2)

(iii)) T (T, (x)) =T, (Ts(x)) =Tys(x),r,s=01,....

(Proof.

(i) From the trigonometric identity

cos| (r +1)6 |+ cos| (r —1)@ | = 2cos(r@) cos(6), r =1.2...
one can have

T (X)+T, 4 (x)=2T,(x) Ty(x), r =1,2,....

Therefore

Troa (X)=2Ty (%) T, (x) =T, 1 (x).

But T1(x) = x, hence

Toa(x)=2xT, (x)-T,1(x), r =1,2....

(if) From the trigonometric identity

cos[(r +s)8]+cos[(r —s)@]=2cos( ro)cos(sH)

one can have the desired result.
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(iii)
T, (T, (x))=cos [s cos™* (cos (rcos™x) )}

:cos(sr cos‘lx)

:Tsr(x)

Remarks (1.3) [Fox L. and Parker 1., 1968]:
(1) From the replacement of x by (2x —1) in equations (1.1) and (1.2) one

can have:

T, (x)=2(2x =1)T, (x) =T, 4(x), r=1,2,.. (1.3)
where

and

* * 1 * *

T2 (X)T, () :E[Ts+r(x)+Ts_r(x)] s>r,r,s=0,1,.. (1.4)

respectively.
(2) Since T, (T,(x)) =T,,(x), then

T, ( 2x?% -1) =T, (x)and this implies that T, (2x —1) =T2r(x%) :

ButT,(2x —1) =T, (x), therefore T, ( x) :T2r(x%) .

Next, the following proposition give an alternative definition of the

Chebyshev polynomial of the first kind defined on [-1,1].
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Proposition (1.3), [Fox L. and Parker L., 1968]:

I’/Z . k . . I
T )=t ED =K =D o yr2k 15 (1.5)
2 kI(r—2k)!
k =0
(Proof.
Consider
0 _ 0 _ r
ZpreerZZ(pelﬁ) , |p|<1
r=0 r=0

:(1 B pem)_l ={l - p(cos@ +i sind)}*

1 -1
= {L-pcosd—i psing}? :{1—px—ip(1—x2)2}

1
1 - px +ip(1—x2)2
S (1-px)2+p2-x?)

By taking the real part of the above equation one can deduce that

o0

1-px 1-px
E " cos(r@) = =
rzop (ro) @-px)2+p?@Q-x2) 1-2px+p?

But T,(x) = cos(ré), r=0,1,.... Therefore

c 1-px
ZprTr(X): P 2
= 1-2px+p

Hence
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iprTr(X)=(1— px )| 1- (2px - |02)T1
r=0

N——

=(1- px

1+(2px - p? ) +(2px - loz)2 +}

:‘:1_%(2xp):| [1+ p(2x - p)+p?(2x - p)° +}

and by evaluating the coefficient of p" on the right-hand side one can get the

required result.

Next, the following proposition is appeared in [Fox L. and Parker I.,

1968] without proof. Here we give its proof.

Proposition (1.4):

T (X):%IZZZ X' —{Z(Zrl_lj—(zrl_zj}zzr2xr1+
{Z(ZI’ — ZJ_(ZT' —3J}22r4xr2 _ :| r=12,. (16)
2 2

1
By replacing X by xZ2and r by 2r in proposition (1.3) one can get:

1 1
Tor (x%)%[(zxsz —{2[21‘1)—[2:2]}(2x2)2f2 +
1
{z[zr ‘ZHZ“ ‘3j}(2xz)2r—4 _}
2 2

Proof:

Thus
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w32 e
SNy

* 1
and from the fact that T, (x) =T,, (x?) one can get the desired result.

Next, the following proposition gives an alternative definition of the

Chebyshev polynomial of the second kind defined on [-1,1].

Proposition (1.5):
r/2 k
N DT =KR) 2k
Ur(X)_kZ:;‘ ATEETAY (2x) 2K r=0.1,.. (1.7)
Proof-
Consider

G ® 1—px+ip(1—x2);

ZpreirHZZ(pem)r :(1_ pem)—l _ T

By taking the imaginary part of the above equation one can deduce that

1

ipr sin(rg)= pL-x*)?
r=0

1-2px + p?
But
sin[(r +1)8
Ur(x):M, r=0,1...
sing
Therefore
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> p'U () =p[1-p(2x-p)]"
r=1

—p+p2(2x-p)+p3(2x -p) +---
and by evaluating the coefficient of p" on the right-hand side one can get the

required result.
Next, the following propositions give the relation between the

Chebyshev polynomials of the first and second kinds. They appeared in [Fox
L. and Parker 1., 1968] without proof. Here we give their proofs.

Proposition (1.6):

(MU, (XU, 4 (x)= 5 1 Ter (X)-Te (X))} x £#FL,s21,r,5=1,2,.

L-x%)
(i) T, (x)US_l(x):%{USH_l(x)JrUS_r_l(x)}, s>r,r=0,1,.,s=1,2,..

(iii) U, {Ts(x)}us—l(x) =Ug 4 {Tr (X)}Ur—l(x):Urs—l(X)a r,s=12,

(Proof.

(i) From the trigonometric identity
cos|(s—r)6 |-cos[(s+r)6 |=2sin(se) sin(ro)

one can have:
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To_ (X)-Ts.r (x) = 2sin(sB) sin(ro)

_ 2 sin(s@)sin(r ) (2 sin? 0)
2sin% 0

_sin(s@) sin(r o) 2

~ sing  sing [2(1 X )]

=Us_1(X)Ur_1(X)[2(1—X2)], s>r, r,s=1,2,...
Hence

Ugt(X)U, 5 (x)= —

_ mﬁs_r (X)=Teur (x)] s>r, r,s=1,2,...

(if) From the trigonometric identity
sin[(s+r)@|+sin[(s—r)0]=2sin(sO) cos(ro), s=r
one can have

sin[(s+1)0] N sin[(s —r)0] _,sin(so) cos(r 6)
sing sin@ in@ |

Therefore
Ugira(X)+Ug 1 (X)=2Ug 4 (X)T,(x), s=r, r=0,1,.,5=1,2,..

(iii) Consider
sin(r )

U T.(X)} = , Co0 B=T.(X

r—l{ s( )} sin@ s( )
and

sin(sé,)

U X)= , COSE, =X

s—l( ) Sil’l@l 1

But T.(x)=cos(sé,), cosé, =x
Therefore 6, =6, +2nz, n=0,71, 72,... and cosé =cos(sb, ).
Thus =56, +2nz, n=0,71,%2,....

Hence
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sin[r (s6, +2 n;z)]](sin [s(6, +2 n;z)]]

sin(sé@, +2nr) sin(@, +2nr)

[ sin(rsé,) | sin(s6,)
| sin(s,) )\ sin(6,)
:sin(rsez)

siné,
=U _;(x), cosb, =x, r,s=1,2,....

Ur—l {TS(X)}Usl(X):[

In a similar manner one can prove that Ug_y {T, (X)} U,_;(X) =U s 1 (X).

Proposition (1.7):

1
2(1—x)

- L L * *
() U, 1 (X2, 4(x2)= T 00 =T 0O} X #1,521,1,5=1,2,...
(i) T, (\)Ug4 (2 ~1) =%{Us+r_1(2x ~1)+Ug_ 4 (2x-1)},521,r =0,1,..,5=1,2,....

(iii) U,y {Ts 00)}U 3 (2% =1) =U oy T, (U, (2x 1)

=U,1(2x-1), r,s=1,2,....

Proof-
(i) by replacing s with 2s, r with 2r and x with x%, in proposition (1.6),(i)
one can get:
1 1 1 i 1
Upsa(X? o 4 (X?) = 20 %) Tos 2r (X?) =Togyr (X?)-

But

T2r (X %) :Tr*(x) '

1 1 *
Tos_or (X?) :TZ(S—r)(X ?)=Ts_; (X)

and

10
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1 1 *
Tosior (X?) :T2(s+r)(x ?) =Tgr (X).

Therefore

U 2s-1 (X%)U 2r-1 (X%) = {Ts*—r (X) _Ts*+r (X )}

2(1-x)
(i1) By replacing x by 2x —1in proposition (1.6),(ii) we get the result.
(iii) By replacing x by 2x —1in proposition (1.16),(iii) we get the result.
Now, the following three propositions describe any positive powers of x
as a linear combinations of the Chebyshev polynomials of the first and second

kinds respectively. These propositions appeared in [Fox L. and Parker I.,

1968] without proofs. Here we give their proofs.

Proposition (1.8):

x° :%{TS(X)+(iJTS2(X)+(;)TS4(X)+“}, s=1,2, (1.8)

with a factor % associated with the coefficient of T, (x ) for even s.

(Proof.

The proof is followed from the mathematical induction.
1
For s=1, xX>=x and F{TS(X)} =T, (X)=Xx.

Therefore equation (1.8) is true for s=1.

For s=2, x>=x and

11
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2
%{Ts (x) + G}rs—z (x )} = %{Tz (x)+ %[1 jTo (x )}

:%{2 ?-1+41f=x.

Therefore equation (1.8) is true for s=2.

Assume equation (1.8) is true for s=k. That is

xk—i{T 0+ 200+ 3 | (x)+--}
k-l k 1] k-2 o | k-4

Then by using proposition (1.2),(ii) one can have:

k k
Xk+1—%{Tk(x)+(1ka2(x)+(2ka4(x)+--}Tl(x)
k k k
zzik{-rkﬂ(x)J’Tkl(X)J{lek1(X)+£1]Tk3(X)+(2}rk3(x)+
k
[Zka—s(X)Jr"}
Al Ok SN
T oK ke (X) + +£1] kg (X)+ (1]+(2] k3 (X)+
k k
(543 Jpest0+]
But

)

Therefore

Xk+1—L{T (X)+(k+1JT (X)+£k+1)T (X)+[k+1)T (X)+“}
ok k+1 1 k-1 2 k-3 3 k-5

and hence equation (1.8) is true for s=k+1.

12
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Proposition (1.9):

with a factor % associated with the coefficient of To*(x).

Proof:

1
From the replacement of x by x 2 and s by 2s in equation (1.8) one can

have:

1 1 2 1 1
O 1{T25(x )+[ 15]725_2 (x2)+[ ZSJT254(x2)+--}

But

1 1 1
Tos(x2) = Tg (X),Tas 5 (x2) =Tp(s1)(X?) =T¢4(X)

1 1
Toss (X2) =Tyep (x2)=T,_,(x) and so on.

Therefore
1 2SS\« 2s) .
XS 2251{1_ (X)+[1JT81(X)+(2JTSZ(X)+”'}1 S:112,- .

Proposition (1.10):

xS:%{US(XH{Ej—[;j}USz(x)+{(;j—GJ}US4(x)+...:l,s:0,1,. -

(1.10)

13
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(Proof.

The proof is followed by the mathematical induction.
For s=0, x*>=1 and {U (x)}=Uq(x) =1L

Therefore equation (1.10) is true for s=0.

For s=1, x>=xand

ZS{U (x )}——Ul(X) X.

Therefore equation (1.10) is true for s=1.

Assume equation (1.10) is true for s=k. That is

.k _zl—kl:Uk(x)+{l;j(gj}ukz(xﬂ{[g(i]}uk4(x)+..1

Then by using proposition (1.6),(ii) one can have:

xkﬂ_zl_k{uk(m{[;j(;j}ukz(x)+{(;j(;}U“(XH..}TMX)

-t {Um(x)wk 1‘”*{@‘@}%1(X)+{(:_—(gj}uks(X>+
e e
oo oA HT

and

M

Therefore

14
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K4l 1 k +1 k +1 k +1 k +1
X =TT Uy (X)+ ( 1 j—[ 0 jUk—l(X)Jr ( 5 j—( 1 jUk—:%(X)"‘”'

and hence equation (1.10) is true for s=k+1.

Next, the following three propositions appeared in [Fox L. and Parker I.,
1968] without proof. Here we give their proof.

Proposition (1.11):

1 s
X T, (X) :¥;(i JTr_Sm (x),r,5=0,1,.. (1.11)
Proof-

From equation (1.8) and equation (1.2) one can have:

KT, 00 = 5 {T (x)+@ sz(x)+@Ts4(x)+--}Tr(x)

_2:: {T ()T, (x)+(S}TS_z(x)Tr (x)+£;jTS4(x)Tr(x)+..}

= %{%[THS (X)+T, s (x)] +%Gj[Tr+s_2 (X)+T, g2 (X)] +}

1 s
25 ( jTr _si0i (X), r,s=0,1,..
Proposition (1.12):
x 1 2s
X °T, (X):FZ{ i )Tr oy (X),r,5=01,...
i =0

15
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Proof-
1
Replacing x by x 2, r by 2r and s by 2s in equation (1.11) one can have
2s
* 1 1 2s 1
X, (X) = X°Ty, (X2)=? ( i jTZr—25+2i(X2)
i=0
2s
1 2s 1
=52 i Tor—s+iy (X?)
i=0
2s
1 2S\__«
:? i T _¢.i(x), r,s=0,1,...
i=0
Proposition (1.13):
1 (s
x°U, (X):Eg(i jUr+S—2i (x), r,s=0,1,...

Proof:

From equation (1.8) and proposition (1.6),(ii) one can get:

x°U, (x)= 2:_1 Ts(x)+GJTS—2(X)+GJTS—4(X)+”1Ur(X)

57| TV ) +®Ts_2 (W, <x>+@n_4 0 (x) +}

:%|:Ur+s(X)+Ur—s(X)+(ij{Ur+s_2 (xX)+U, <.» (X)}—l—

[Zj{ur+3_4(x)+ur_s+4(x>}+--1

1 ~(s
:; (i Jur+s—2i(x), r,s=0,1,....
i =0

16
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Now, the following two propositions describe the integral of the
Chebyshev polynomials of the first kind defined on [-1,1] and [0,1] in terms f

theirselves in case the constant of integration is taken to be zero.

Proposition (1.14), [Fox L. and Parker 1., 1968]:

1{ 1
>y r+( ) r (X)} r#1
jTr(x)dx: 21 r+1 N
Z{TO (x)+T,(x)}, r=1
Proof:
Consider

J-Tr (x) dx :—fcos(re) sing do

=—% J’{sin(r +1)0—sin(r -1)6}d6

Thus
ITr (x) dx :%{Lcos[ r+1) ]——cos[ r-1 0]}
%{i () r1(x)}, =23,
Proposition (1.15):
1] 1 _« 1 _-
77 () ox - Zl[Hl ) :Tr‘l(x)] e
o172 () -To (x)]. r=1

17
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Proof-
We replace x by 2x —1in proposition (1.14) to get:

[T @x-1dex —1)=§{rljm<2x ~1)- T, (2X —1)}

Therefore

1) 1 =« 1
frecex =200 1T )

and this implies that

* 1 1 * 1 *
v o030 - 200 ) r-2,

Next, the following proposition describes the integral of Chebyshev

polynomial of the second kind defined on [-1,1] in terms of itself in case the

constant of integration is taken to be zero.

Proposition (1.16):

J.Ur(x)dx :TrL(i(), r isaneven positiveinteger.
r+

(Proof.

Consider

18
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IUr(x)dx:dex

sin@
_(sin[(r+1)0] dx
_.[ sing  do
_J-sin[(r +1)6]

sin@

do
(-sing)de

=—jsin[(r +1)0]d6

_cos|[(r+1)0]
o+l
Tra(X)
r+l1

, risaneven positiveint eger.

Remarks (1.4):

! +
1-(+j)* 1-(-j)*

(i + ] )isaneven positiveinteger

1
(i) jTi (X)T, (x)x =
-1

0 , (i +])isanodd positiveinteger
For the proof, see [Fox L. and Parker I., 1968].
(ii) Since T, (x) =T,(2x -1), r =0,1,...,then

1 1
ITi*(x)Tj*(X)dX :%ITi ()T (x)dx
0 -1

1 +
1-(+j)* 1-G-j)?]

1 L L
> (i + ] )isaneven positiveinteger

0 , (i +])isanodd positiveinteger
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Next, the following proposition gives the derivative of the Chebyshev
polynomials of the first and second kinds. It appeared in [Fox L. and Parker I.,

1968] without proof. Here we give its proof.

Proposition (1.17):

MT/(x)=rU,_4(x), r=1,2,...

(ii) (1-x2)U7 (x) =x U, (x)=(r +1)T o ().

(i) T/(x)=(#1)""r? at x=71.

(iv) T, (x)=2rU, 4 (x), r=1,2,..

() 2(x® =x U/ (2 1) = (r+1)T, 3 (x)-(2x 1)U, (2x -1).
Proof:

(i) Since T, (x ) = cos(r ) , then Tr’(x):;—e[cos(re)]g—f. But X = cos/.

Thus d_6?:—_1 Hence T/(x)= rs'_n(m):rur_l(x), r=12,..
dx siné sing

(ii) From sindU, (x )=sin[(r +1)&], one can have:

coseur(x)d—9+sin0Ur’(x):(r +1)cos[(r +1)6?]d—‘9.
dx dx
But d_H:—_l therefore
dx sind
cosf U, (x)- sin0 U[(x)=(r +1)cos[(r +1)6] (1.12)

Since x =cos@, Sin“0 =1-cos”0 = 1-x? and cos[(r +1)d] =T,,;(X)

hence equation (1.12) becomes

XU, (x) = (1=x2) U7 (x)= (r +1)T 1 (x).
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(iii) It is easy to check that

T/(x)=rcos[(r-1)@]+r cos[(r —2)@]cos@ +rcos[( r-3)0]cos’O+---+
rcos(26) cos'" 29 +2rcos" o, r =3,4,....

For x=1, 6=2nz, n=0,71,%2,... . Therefore

T/(1)=rcos| 2(r -1)nz |+rcos| 2(r —2)nx Jcos(2nz) +

r cos| 2(r —3)nz |cos?2nz +---+ 1 cos(4nr) cos" ¥ (2n7) + 2r cos" P (2n7)

—P4T+r+-+r+2r=r r=34,..
r—2times

On the other hand, since To(x)=1, T(x)=xan @,(x)=2x°-1, thus

To(x)=0,T/(x)=1an @, (x)=4x.

Therefore

T/A)=r% r=01,2

On the other hand, for x=-1, #=(2n+1)z, n=0,71,%2,...

Therefore

T, (-1)=rcos|(r -1)(2n+1)z ]+rcos[(r —2)(2n+1)x ]| cos[(2n+1) 7 |+
reos[(r-3)(2n+1)z | cos®[(2n +1)x |+ +

reos[2(2n+1)x Jeos" [ (2n+1)x |+ 2rcos" D[ (2n +1)x ].

Thus

T/(-1)=r D)D) "+ wrED) M 2r-)

r—2times

=(-1)"*"r? [ r=34,..
On the other hand,

Ty (-1)=0,T/(-1)=1=(-1)*.1% an Tg(-1)=-4=(-1)%.2%

(iv) Since T, (x ) =T, (2x —1) =cos(r @), and cos(r 9) = 2x -1, then
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%) d do dg -2

T =— 0)|[—. But —=——, hence
r (%) de[COS(r )]dx dx sin@

% 2rsin(ré
T, (X):ﬁzzrur—l(x)-

(v) We replace x by 2x —1in sindU, (x )=sin[(r +1)6] to get:
sind U, (2x—1) =sin[(r +1)8].

Therefore
cosdU , (2x —1)d—9+sin0Ur’(2x —1) =(r +1)cos|[(r +1)9]d—9
dx dx
But d_H:i thus
dx sind
c0s0U, (2x~1)- sin?0 U7 (2x ~1)=(r +L)cos[(r +1)0] (1.13)

Since 2x —1=cos6, sin®6 = 1—(2x —1)® =-4x? —4x
and T, (X) =T, (2x —1)=cos[(r +1)6], hence equation (1.13) becomes

(2x=1) U, (2x-1) + 2(x* =x) U (2x=1)= (r +1)T;,4(x).

Now, we give some properties of the finite Chebyshev series of degree N

that takes the form:

N _/
y*(X)=Z aT (x), -1<x<1
=0
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where the prime denotes that the first term is taken with factor % and in

which y(x) is the truncation of the infinite Chebyshev series:
®_/

y(x):z aT (x) -1<x<1
-0

where {a}:ozo are the Chebyshev coefficients. We start by the following

remark.

Remark (1.5), [Fox L. and Parker L., 1968]:

Let x €[-1,1] and consider a function y defined on the interval [-1,1].

Then
y(X)=y(cosd)=9g(0),0<0<r

The function g is even and periodic. The cosine Fourier series takes the form

o0

g0 :%ao +Z:ak cos(k ) (1.14)

k=1

where
2 T
a, =—jg(9)cos(k9)d¢9, K=01..
T
0

Therefore by interpreting equation (1.14) in terms of the original variable X,

we produce the infinite Chebyshev series:

0

V() =2 + Y 8T (X)
k=1

x®_/

ZZ a Ty (x)

k=0

where
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1
2 > _
a, :;Jl(l—xz) y ()T, (x)dx, k =0,1,....

Theorem (1.1), [Fox L. and Parker L., 1968]:

Let

N /
y(x)=> aT.(x) (115)

r=0
Then

N-1,

y'(x) = Z ¢, T, (X) (1.16)
where
Cn 1 = 2N ay

Cn-2=2(N -1) ay
C,1=C, +2ra,r=12,...,N-2

(Proof.

It is easy to check that, from equation (1.15) one can get equation
(1.16). Next, by integrating both sides of equation (1.16) and using remarks
(1.4) and proposition (1.14) one can get:

y(x) =&T1(x)+1q[To(x)+Tz(x)]+

_Z |: r+1( ) r 1(X)}

where A is the constant of integration.

(1.17)
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By equating the coefficients of T, (X) on each side of equation (1.15) and

equation (1.17) one can have:

1
a, :E(Cr‘l —C, 1), r=1,2,..,N -2

1

1 :mCN ) (1.18)

aN

1
and ay ZW(CN 1)

Remark (1.6), [Fox L. and Parker 1., 1968].

From theorem (1.1) one can calculate ¢, in succession, for decreasing r

from the general recurrence relation
C,1=C4+2ra,r=12,..,N-2
with starting conditions given by the last two equations of equation (1.18) to

get:

(1.19)

c, =4a, + 8g,+ 128, +--
Cg =28 + 6ag+ 10a5 +---

Each series in equation (1.19) being finite, stopping at the term ay or ay.1.

Next, the following theorem gives the same result as in theorem (1.1) but

for the finite Chebyshev series defined on [0,1].
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Theorem (1.2), [Fox L. and Parker 1., 1968]:

Let
N /
y(x)=) aT (x) (1.20)
r=0
Then
N-1,
y'(x) = Z oy T, (X) (1.21)
where

C,1=C . +4ra,r=12,..N-2

(Proof.

It is easy to check that, from equation (1.20) one can get equation
(1.21). Next, by integrating both sides of equation (1.21) and using remarks
(1.4) and proposition (1.15) one can get:

Y () =2 [T5 0047700+ £ [T60-To ()] +

_Z |: r+1( ) —1Tr 1(X):l+A

where A is the constant of integrations.

(1.22)

By equating the coefficients of Tr*(x)on each side of equation (1.20) and

equation (1.22) one can have:

1
a, :H(Cr_l —C 1) r=1,2,.,N -2
(1.23)

ay -1 = Cn-2:8N =

1
— ——c¢C
4(N -1) 4N Nt
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Remark (1.7), [Fox L. and Parker 1., 1968].

From theorem (1.2) one can calculate ¢, in succession, for decreasing r

from the general recurrence relation
Cr_l :Cr+1 +4'r af’ r 21!21---’N _2

with starting conditions given by the last two equations of equation (1.23) to

get:

Cn_1 = 4N ay

Cn_p = 4(N-1)ay_,

cyz =4(N-2)ay , +4Nay (1.24)

C, =8a + 1648, + 24 +---
Co =4 + 12a3+ 20a5 +---

Each series in equation (1.24) being finite, stopping at the term ay or ay.1.

Next, we generalize the previous theorems for the infinite Chebyshev
series. These theorems appeared in [Sezer M. and Kaynak M., 1996] without

proofs. Here we give their proof.

Theorem (1.3):
Let
y(x)=i/am (x) (1.25)
and h
y'(x) = i/chr (x) (1.26)
r=0
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Then
C,1 =C,q,+2ra,r=12,..

Proof:

By integrating both side of equation (1.26) and using remarks (1.4) and
proposition (1.14) one can get:

y(x)=C7°T1<x)+1c1[To(x>+T2(x)]+

_Z |: Ty (X) - rl(X):|+A

where A is the constant of the integration. Therefore
1 1 1
y (X) :ZC:LTO (X)+§[Co %) ]T1(X) +z[01 —C3 ]Tz (x)+

1 1
E[CZ _C4]T3 (x)+ "'+E[Cr—1 _Cr+1]Tr (X)+-- (1.27)

and by equating the coefficients of T, (X) on each side of equation (1.25) and

equation (1.27) one can have:

1
a, :z—r[cr_1 —Crq ] r=12,..
Therefore

C_1=C. +2ra,r =12,..

Theorem (1.4):
Let

©_/
y(x)=) aT (x) (1.28)
r=0

and
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© _/
y')=Y ¢ (x) (1.29)

r=0
Then
C,y =C,+4ra,r=12,.

Proof:

By integrating both side of equation (1.29) and using remarks (1.4) and
proposition (1.15) one can get

Y () =2 [T5 0047700+ £ [T60-To ()] +

_Z |: r+1( ) —1Tr 1(X)}+A

where Ais the constant of integration. Therefore

Y (x) {%co —écl}To*(x) # 2[00~ T 00+ S e —03 15 () +
%[CZ —Cy ]TS*(X) + "'+4:_L_r[cr—1 —Cra ]Tr*(x) +--- (130)

and by equating the coefficients of Tr*(x)on each side of equation (1.29) and

equation (1.30) one can have:

1
a = e —C, ] r=12,...
Therefore

C_1=C. +4ra,r =12,..
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Remarks (1.8):

From the previous theorems, it is easy to check that:

0 7 © 7
MIFy)=> aT(x) and y™)=> a™T,(x) then
=0 =0
(1) _g01) 4 g™ Z12
N x 7
@1Fy()=Y aT/(x) and yP)=> a7 (x) then
r=0 r=0

0 o0 sl 1 =12,

where a{™ and a, are Chebyshev coefficients such that a® =a, r =0,1,....
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Chapter Two Chebyshev Methods for Solving Linear
Ordinary Differential Equations

Introduction

It is known that the ordinary differential equations with non constant
coefficients are usually difficult to solve analytically [Rainville E. and
Bedient P., 1989]. In many cases, it is required to approximate their solutions.
For this propose, the aim of this chapter is to give some methods which are
based on Chebyshev polynomials and their properties to solve linear ordinary
differential equations with variable coefficients.

This chapter consist of two sections. In section one we give a method to
solve linear ordinary differential equations with nonconstant coefficients by
transforming them to system of algebraic equations. This method is based on
the finite Chebyshev series of the first kind defined on [0,1] with some of
their properties and it is a simple modification of the method that appeared in
[Fox L. and Parker I., 1968].

In section two, a matrix method which is caled Chebyshev-matrix
method for finding approximated solutions of linear ordinary differential
equations in terms of Chebyshev polynomials is presented. This method is
based on taking the truncated Chebyshev series of the first kind defined on
[0,1] in the linear ordinary differential equations and then substituting their
matrix forms into the given linear ordinary differential equations. Therefore
the linear ordinary differential equation reduces to a matrix equation, which
corresponds to a system of linear algebraic equations with unknown

Chebyshev coefficients.

2.1 Chebyshev Series Method for Solving Linear Ordinary

Differential Equations:

In this section, we use the finite Chebyshev series as a method for solving

linear ordinary differential equations with non-constant coefficients. To do
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this, consider first the first-order linear ordinary differential equation with
non-constant coefficients:

gXx)y'(x)+r(x)y(x)=f (x), 0<x <1 (2.1.9
together with the boundary condition:

ay(Q+py@)=y (2.1.b)
where q, r and f are polynomials of x, such that q(x)=0,vO0<x <1, a, B

and y are known constants and y is the unknown function that must be
determined.

The Chebyshev series method is begin by integrating both sides of
equation (2.1.a) to get:

q(x)y(x)+J'[r(x)—q'(x)]y(x)dx :J.f (x)dx + A (2.2)

where A is the constant of integration.

Assume that the solution of equation (2.1) may be written in the form:
®_/
y(x):z a T (x), 0<x <1 (2.3)
r=0

where {a}:ozo are the Chebyshev coefficients that must be determined, then by

substituting equation (2.3) into equation (2.2) one can have:

0 x _/
)Y’ arTr*(x>+j[r<x)—q'(x)]Z a T, (x)dx =jf () +A  (24)
r=0

r=0
The known formula for products x°T r*(x) in terms of Chebyshev

polynomials (see proposition (1.12)) and the integrals of such quantities (see

proposition (1.15)), enable us to express the left-hand side of equation (2.4) as

infinite Chebyshev series, in which the coefficient of Tr* (x) isafinite linear

combination of coefficients {a}io. The right- hand side is a finite series and
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the comparison of corresponding terms produces an infinite set of linear
algebraic equations.

Next, consider the finite Chebyshev series:
N _/
Yy ()=) aT/ (x),0<x<1 (2.5)
r=0

Then y is the truncation of the infinite Chebyshev series give by equation
(2.3).

By substituting equation (2.5) into equation (2.2) one can have:

N , N _/
900" a T, 00+ [[re)-a')lY” a T, (dk = [f ()b +A  (26)

r=0 r=0

Also, the known formula for products x °T r* (x) interms of Chebyshev
polynomials and the integrals of such quantities, enable us to express the left-
hand side of equation (2.6) as finite Chebyshev series, in which the coefficient

of Tr* (x) isafinite linear combination of coefficients {a}?‘zo. The right-hand

side is a finite series and the comparison of corresponding terms produces a
finite set of linear algebraic equations.
Moreover, there is an extra equation resulting from the boundary condition

given by equation (2.1.b). This equation takes the form:
N , N ,
@Y AT (@+B)Y al @)=y 27)
r=0 r=0

But

1 r isaneven positiveinteger
—1 risanodd positiveinteger

T (=T, (-)= {

and
T, (D)=T,(D=1r=041,...

Hence, if N is an even positive integer then equation (2.7) becomes
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(a+ﬂ)%+(ﬂ—a)a1+(a+ﬂ)az+(ﬁ—a)a3+---+(a+/5’)aN =y (28

On the other hand if N is an odd positive integer then equation (2.7)
becomes

(a+ﬂ)%+(ﬁ—a)al+(a+ﬂ)az+(ﬂ—a)as+---+(/3—a)aN =y (29)
Thus by solving the above system of linear algebraic equations one can get
the values of {a}?‘zoand by substituting these values into equation (2.5) one

can get the approximated solution of equation (2.1).
Second, Consider the second-order linear ordinary differential equation

with non-constant coefficients

PX)Y"(X)+g(xX)y'(x)+r(x)y(x)=f (x), 0<x <1 (2.10.9)
together with the boundary conditions:

0) =
zgl)): ; (2.10.0)

where p, q, r and f are polynomials of x, such that p(x) #0,v0< x <la and

[ are known constants and Y is the unknown function that must be determined.
The Chebyshev series method is begin by integrating both sides of
equation (2.10.a) to get:

POOY()+{a6) = P}y ()+ [{P 60 =0 ()+r ()} y ()d X
=If (X)dx + A
and a second integration of both sides of the above equation gives
POy () + [ {60 -2 00}y () + [ [ (P70 ~a'0) + 1 ()} y (x)aeae

:Hf (x)dx dx + AX + B
(2.11)

where A and B are the constants of integrations.
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Assume the solution of equation (2.10) can be approximated of a finite
Chebyshev series given by equation (2.5) which is the truncation of the
infinite Chebyshev series give by equation (2.3).

By substituting equation (2.5) into equation (2.11) one can have

N / N v/
P & T (9+ [{a00-2p(0} D & T, (9dx
r=0 r=0

[treo-qoo+ r(x)}ZN:/a,Tr*(x) = [ [ (9 ceaicr A+ B
r=0

(2.12)
Also, the known formula for products x°T r* (x) in terms of Chebyshev
polynomials and the integrals of such quantities, enable us to express the left-

hand side of equation (2.12) as finite Chebyshev series, in which the

coefficient of Tr* (x) isafinite linear combination of coefficients {a}?‘zo. The

right-hand side is a finite series and the comparison of corresponding terms
produces afinite set of linear algebraic equations.
Moreover, there are two extra equations coming from the boundary

conditions given by equation (2.10.b). These equations take the forms:
N_/
Z aT (0)=«a (2.13)
r=0
and
N_/
D atm=4 (2.14)
r=0

But

1 r isaneven positiveinteger
—1 risanodd positiveinteger

T (=T, (-)= {

and
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T (M)=T, () =1 r=041,..

Hence, if N is an even positive integer then equation (2.13) becomes

%—a1+a2—a3+---+a,\,:a (2.15)

and if N is an odd positive integer then equation (2.13) becomes

%—a1+a2—a3+---—a,\,:a (2.16)
On the other hand if N is an even or odd positive integer then equation (2.14)
becomes

% at+a,1a+-+a =p (2.17)
> & +a+ag N = -

Thus, by solving of the above system linear algebraic equations one can get
the values of {a}?‘zoand by substituting these values into equation (2.5) one

can get the approximated solution of equation (2.10).

The following examples illustrate these methods.

Example (2.1):

Consider the first order linear ordinary differential equation:
A+X)Y'(X)+A+x +x)y(x)=x*+x3+x%-2, 0<x <1 (2.18.3)
together with the boundary condition:

3 -5
0--y@Q=— 2.18.b
y(© 2 y(® 2 ( )

By integrating both sides of the above differential equation one can get:
I(1+x)y'(x)dx +J-(1+x +x2)y (x)dx :I(x4+x3+x2—2)dx, 0<x <1

(2.19)
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But
J-(1+x)y’(x)dx :(1+x)y(x)—J-y(x)dx

By substituting the above equation into equation (2.19) yields:

5 4 X3

y(x)+xy(x)+J'xy(x)d ><+jx2 y(x)d )@XE+X7+?—2X+A (2.20)

Assume that the solution of equation (2.18) can be written as in equation
(2.3). Then by substituting equation (2.3) into equation (2.20) one can get:

i/afTr*(X)H i/aTTr*(xnjx i/arTr*(x)d X+szi/arTr*(x)d X
r=0 r=0 r=0 r=0

5 4 3
XXX oA
5 4 3

therefore
0 7 . 0/ . 0/ . 0/ 2*
D aT 00+ & lxT (l+ Y & [xT 00d %) & [x*T, (x)d
r=0 r=0 r=0 r=0

5 4 3

XX X owgA (2.21)
5 4 3

From proposition (1.12) one can have:

. 2 (2) .
XTr (X) :2_122(i jTr—1+i (X)

i =0

_ %{Tr*_l(x) 2T (9 + T, () (2.22)
and
. 1 (4.
X2Tr (X) —yizc;(i jTr—2+i (X)
1

= et T200) + AT 4 (X) + 617 (<) + 4T/ 4 () T, 2(x)]

and from proposition (1.12) one can get:
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j XT (X)dx = %I[Tr*_l(x) 2T (0 +T7 (0 |
1

1 1 .
= 16(!‘—2) r 2() ( ) r+1() 8( _1) r—1(X)+16(r+2)Tr+2(X)
(2.23)
and
2T G0 = [T7000 41,400+ BT, ()4 4T, 4 (3) 4T, Je
5 1 1 .
64( -1 rl( )— 16( ~2) T, _ 2( )_MT“3(X)+
5 1 _. 1 .
B4(r +1) Tral)+ 16(r+2)T X A +3)T”3(X)
(2.24)
Moreover, from proposition (1.9) one can get
1+ .
X :E{Tl (X)+T, (x)} (2.25)
- ST+ B (9+6T;09+T; ()
x4 = 128{3 T (X)+5 6 (X)+2 8 (X)+8T, (x)+T4(x)} (2.26)
X = 512 {126TO (X) + 210T; (X) +120T, (X) + 45T, (x) + 10T, (X) + T, (x)}

By substituting equations (2.22)-(2.26) into equation (2.21) and after

simple computations one can obtain:

1, i1, 8, f11) 1 1 Tl
64raf3 arz Gatsa 11 &2 64rar+3 r

4 64 4 64r 8r
1703 167 21 67 3 1 .
- T (0 ———T () + =T () +——Ta (X) +—T T (X
[7680 }0() 256 1()+ 1282() 15363() 5124() 25605()
(2.27)

From the boundary condition given by equation (2.18.b) one can have:
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X/ x 7/

* 3 x -5

2.aT O3> aT/ =7 (2.28)

r=0 r=0

But

Tr* (0) = Lr i.saneven posi.ti.vei.rteger (2.29)
-1, risanodd positiveint eger

and

T, M=% r=01.. (2.30)

By substituting equations (2.29)-(2.30) into equation (2.28) and after simple
computations one can have:

1 l 7 1 7 -5

R LR (23D

Hence, the following system of linear equations consists of equation (2.31)
and the other equations can be obtained by substituting r=1,2,... into equation
(2.27):

1a0—1a1+1a2—Za3+1a4—za5+---:_—5
8 43 4% 4 4
@ao 13 Sar ia 21167
64 2 83 64 256
iao+—a1+§a2+£a3—ia4—ia5:£
128 % 16 * 128 ° 128
____ao al _§1_ +E§ag__j%i. __E_as_n___a% :_EEL_
192 192 2 2% 192 192 1536
L L1 ﬂ § ,ot 1.3
256 1 T 32 T g B T oM T g T 3% T 556 T a2
____324_;£_ _gg_ +£§a€ _El_ae__JE_ _ 1 ab:: 1
320 2 208 T30 T 2% T 30% T 20 2560
1 ia 09, .3 ﬁ _ta_ Tt a0
384 8 48 T 3gg B 2% T 3ga ™ a8 384ag
(2.32)
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Now, assume that the solution of equation (2.18) can be approximated
as a finite Chebyshev of degree two, then the above system reduces to the

following system:

1 7 1 -5
P e L s

4
209 13 1 -167
620 g6 T 56
iao+§ai+§a2:£
16 ° 64 1 272 128

which has the solution &, :_713, 81:% and a, :%. Hence

y(x)z 8T, (X) =275 (x) +aTy () +agT; (x)

=230+ ST () +2T5 ()

=x%-2
IS the approximated solution of equation (2.18). By substituting this
approximated solution into left-hand side of equation (2.18.a) one can get:

A+x)y " (X)+@Q+X +X2)y (x)=1-X

Inthiscase y (x)=x 2 —2 is the exact solution of equation (2.18).

Example (2.2):

Consider the second order linear ordinary differential equation:

V' (X)+x2y'(X)+2xy(x)=4x3+2, 0<x <1 (2.33.3)
together with the boundary condition:

y(0)=0
y@=1

By integrating both sides of equation (2.33.a) one can get:

(2.33.b)
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V' (X)+x2y(x)=x*+2x + A

and a second integration of both sides of the above equation gives
5

y(x)+jx2y(x)d X=X?+X2—I—AX+B (2.34)
Assume that the solution of equation (2.33) can be written as in equation

(2.3). Then by substituting this solution into equation (2.34) one can have:

X _/

> arTr*(x)+i

r=0 r=0

/

5
arJ‘szr*(x)d :xx?+x2+Ax +B (2.35)

From proposition (1.12) one can obtain:

. (4) .
X2Tr (x) :2_];12& jTr—2+i (x)

i =0
- %{Tr*—z(x) + 4Tr*—1(X) + 6Tr* (x)+ 4Tr*+1(x) +Tr*+2(x)}

Therefore from proposition (1.15) one can get:

_[ szr*(x)dx:l—U[Tr*_z(x)+4T 1100+ 6T7 () + 477,100 + T (x) |

-5 1 * 1 x
m r 1( )—mTr—z(X)—64(r_3)Tr—3(x)+
5 1 1
64( +1) r+1( ) ( i ) r+2( ) ( 3) r+3()
(2.36)
Moreover, from proposition (1.9) one can get:
X :%{Tf (X)+Tq (x)} (2.37)
x?= %{T; (X)+ 4Ty (x) +3T5 () (2.38)

and
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x5 :5—12[T§(x)+10T2(x)+45l'§(x)+120T2*(x)+210I'1*(x)+126'l'g(x)]
(2.39)
By substituting equations (2.36)-(2.39) into equation (2.35) and after ssimple

computations one can obtain:

il ~ a .+ _5 1 1 T (X)
64rar3 & _ o+ ar—l a a1 16rar+2 rar+3 r

16r 64r
66 A 82 A 27
= —+—+ +——T, (X) + ——T, (X
[1282 }o()[ T A=Ay
T (X
256 T 09+ 2560 5 (9
(2.40)
From the boundary conditions given by equation (2.33.b) one can have:
®©_/
Z a T (0)=0 (2.41)
r=0
and
o0 / .
Z a T (D=1 (2.42)
r=0
But

T, (x)=T,(2x -1),

x 1, r isaneven positiveint eger
T, (0)= . e (2.43)
-1, risanodd positiveint eger
and
T, (D=1 r=041,... (2.44)

By substituting equations (2.43)-(2.44) into equations (2.41)-(2.42) one

can have:

1
E%—q+%—%+m:0
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% 1

_+ +a +.--:
> &+

Hence, the following system of linear equations consists of the above two
equations and the other equations can be obtained by substituting r=2,3,...
into equation (2.40):

1
E%—q+%—%+m=0

%+a1+a2+---:1

ia0+iail-+a2__a3_ia4_ia5:£
32 128 128 32 128 128
L, 5, 5, 1. 1. 27
192 48 192 192 438 192 1536
1., 5., 5, 1. 1. 1
256 64 128 256 64 256 256
i5‘2Jria3+ia4+‘5‘5—iaﬁ—_""7— : Ag = :
320 80 320 320 80 320 2560

1

—a +ia +i + _ia _i +i —O
382 3 95 "33 5 % T30 958 T3y ™

Now, assume that the solution of equation (2.33) may be approximated
as afinite Chebyshev series of degree three, then the above system reduces to

the following system:

1

E%—%+%—%:O

1

§%+%+%:1

1o 8 aia_2a-2
320 1gM T T g% T g

27
1536

Lo tay
1620 " 8% " 102

which has the solution

ay
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3 1 1
=—, ay=—, & =—and a, =0
=) 4 & 5 %273 3

X)=—+—(2X -1 +—(8x“—-8x +1
Y () =g+ S @x -+ )

which is the exact solution of equation (2.33).

2.2 Chebyshev-Matrix Method for solving Linear ordinary

Differential Equations:

In this section, we use Chebyshev-matrix method to solve linear ordinary
differential equations with nonconstant coefficients. This method is a
modification of the method that appeared in [Sezer M. and Kaynak M., 1996].
To do this, consider the boundary value problem given by equations (2.1).

This method begin by approximating the solution y as a finite
Chebyshev series given by equation (2.5). Also, assume that f can be
approximated as a finite Chebyshev series that takes the form:

f(X)~ f (X)= ZN: / f T (X) (2.45)
r=0
Therefore
T
an
Y=Y (=[T0 T .. W] *
ay

and
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x R x R f
00 =[To() 7). T 0]

Thisimplies that

y (x)=T A

and

f (x)=T'F

where
S 1
2% |20

andT:[Tg(x) (X .. T;,(x)].

Assume that the functions g and r can be expressed in the forms

a(x) = iqi X
i=0

r(x)=

(2.46)

NgE

r X ! (2.47)
i =0

which are Taylor polynomials of degree m at x=0.

By substituting equations (2.46)-(2.47) into equation (2.1.a) one can have:

o x v 00+ 0%y (0= () (248)
i=0

By approximating y*' (x) asafinite Chebyshev series one can have:
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N_/
y(X) =y (X):Z a® T’ (x), 0<x<1
r=0

N

where {a(l)} , are the Chebyshev coefficients defined by remarks (1.9),(2).

r=

Hence

4r a, :ar(l_)l— (131, r=212,..
Thus

Ar+Da ., =" -7,

Ar +3a,3=a2 —a,
A(r +5)3% =8, -a%

and so on.

Therefore

Ar +0)a, ., +4(r +3)a, 5+ 4(r +5)a, s +---=al.
and this implies that

al® = 4Z(r +2i +1a,,p 4, 1 =01,... (2.49)
i =0

Now, we discuss two cases on N:

Case 1. If N is an even positive integer, then by substituting
r =0,1,...,N into equation (2.49) one can have:
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a5 =4Z(2i +1ay 3
i =0
=4[a +333+5a5+---+ (N —D)ay 4],
al® =4) (2 +2)ay .
i=0

=4[2a, +4a, +635+---+N ay |,

al =4 (2 +N)ay
i=0

=4N ay

and

o0

a,(\,l) :4Z(N +2i +1) ay .5 ,1=0.

i =0

Therefore
1 ] T ST
5% ol g3,2 NI 41
2(1) 2 2 2 2 2%
) 002040 . 0 NIl &
AO_| af’ |—40 00305 .. N-1 0| &
o 000O0GO OO0 - 0 N |lay
a0 0000O0O- 0 0] a|
and hence
AY = 4MA (2.50)

where
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0to0202 Nty
2 2 2 2
002040 .. 0 N
M={000305..N-120 (2.51)
000O0O 0 N
000000 0 0

Case (2): If N is an odd positive integer, then by substituting
r =0,1,...,N into equation (2.49) one can have
al) =4 (2 +1) a5 4
i =0

=48, + 385+ 5a5 +...+ Nay |,

ot =4 (2+2) .,
i=0

=4[ 2a, + 4a, + 6ag +...+ (N —Day 4],

ar(\ll)—1:42(2i +N) ay
i =0

= 4Nay

and

o0

all :4Z(Zi +N +1) ay =0
i=0

Therefore
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0 1 0 § 0 S 0 N
2 2 2 2
O 02040 N-1 O
AD_4/0 0 0O 3 05 0 N
O 0O0OO0OO0OO O -- 0
0 000 0O - 0 0 |
and hence
AY = 4MA (2.52)
where
0 1 0 E 0 E 0 &
2 2 2 2
0O 020 40 N-1 O
M=/0 0 0 3 05 0 N (2.53)
O OO0 OO0 -- 0 N
000 00O - 0 0

The Chebyshev expansion of terms x'y (x)and x'y"(x),

I =0,1,...,minequation (2.48) are obtained by means of the formula:
. e i (2 .
ERAIDID XL IMATERE 254
r=0 j=0

The matrix representation of equation (2.54) can be given by

[x‘ y(s)(x)}:T*Mi AG) s=0,1
where AQ=A,

From equation (2.50) and equation (2.52) the above equation becomes

[xi y(s>(x)] =4T°"M;M3A, i=01,..,N,s=01 (2.55)

where
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<

o

I

o

o

.-.H
P O O O o

-
o
=
N P
-
o o
o o
o o

o cee

O O cee
o

o
NN B~ OO
=
- NP O O O -
- o
o o
o o
o o

0O 00O0O
O 00O0O0- - 146

2015 6 1 0 .- 0 0 O
30 26 16 6 1 - O O O
1(12 16 20 15 6 O 0 O

and so on.
By substituting equation (2.55) back into equation (2.48) one can have:
m
D {49, MM+ M JA=F (2.56)
i =0
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which correspond, to a system of N+1 algebraic equations for the unknown
Chebyshev coefficients {a} ?'zo. This eguation can be rewritten in the form:

WA=F (2.57)

where

m
an:Z{A'qi M; M +r, Mi}’ nm=01..,N
i=0

Then the augmented matrix of equation (2.57) is:

Woo  Wo1 - WonN % fo
Mo M N g
[W:F]=| : : Lo ; (2.58)
Wn-10 Wn-11 0 Wn-an fl\.l—l
Wno  Wna o 0 W fy

Now, by substituting equation (2.5) in the boundary condition given by
equation (2.1.b) one can have equation (2.8) or equation (2.9).
Thus the boundary condition given by equation (2.1.b) can be written as:
AU =y (2.59)
where
U=[uy u - uyyg Uy]
If N isan even or odd positive integer then
. :{a+ﬂ i isaneven positiveint eger
' f-a iisanodd positiveint eger
The augmented matrix given by equation (2.59) is:
(U u - uy]7] (2.60)
Now, by replacing the row matrix given by equation (2.60) by the last

row of augmented matrix given by equation (2.58), we have the new
augmented matrix:
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~ L
Woo Wo1 Won 5 fg
Wio Wi, WiN f,
Wn-10 Wn-11 WN-1N fr
Ug U Un y
Let
_ _ '1 ]
Woo Wor Won Efo
Wio W11 WiN £,
W= : Fr=| .
WNn-10 WN-12 WN 1N fr 1
| Ug U, Uy ) y
If ’\N +0 then
* _1 *
A=W )F

and thus the matrix A is a uniquely determined. By substituting the values of
{a}?‘zo into equation (2.5) one can get the approximate solution of equations

(2.2).

Second, consider the boundary value problem given by equations
(2.10).

This method is begin by approximating the solution as a finite
Chebyshev series give by equation (2.5) and f can be approximated as afinite
Chebyshev series given by equation (2.45). Also assume that the functions p,

g and r can be expressed in the forms:

p(x)=) p; x’ (2.61)
i=0
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()= g x' (2.62)
i =0

r(x) :Zri X! (2.63)
i =0

which are Taylor polynomials of degree m at x=0.

By substituting equations (2.61)-(2.63) into equation (2.10.a) one can
have:

Do lpx y e Xy )+ Xy ) = (x) (264)
i=0

By approximating y " (x) as afinite Chebyshev series one can have:

N_/
y*"(x):z a@T" (x), 0<x<1
r=0

N

where {a(z)} , are the Chebyshev coefficients defined by remarks (1.9),(2).

r=
Hence

1 2 2
aral =a? o, r=12..
Thus

4(r +Da% -2 -2,

1 2 2
4r +3)al;=al?,-al?,
1 2 2
4(r +5)a =a?, —al?;

and so on.

Therefore
4(r + 1)a7(1+)1 +4(r + 3)aT(1+)3 +4(r +5) (1+)5 4= ar(z) :
and this implies that
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a? —4Z(r +2i +a®, ., r=01,. (2.65)

Now, we shall discuss two cases on N:

Case 1: If N is an even positive integer, then by substituting r =0,1,...,N
into equation (2.65) one can have:

A2 = am AW

Case 2: If N is an odd positive integer, then by substituting r =0,1,...,N
into equation (2.65) one can have

A2 = am AW
But AY =4MA, Therefore
A® =42 M? A, (2.66)

The Chebyshev  expansions of terms Xy (x),Xy'(x) and

Xy"(x),i=01...m in equation (2.64) are obtained by means of the

formula:

Xy (x) = Z/Zz-zu( ] (rS)I+J|T (x), s=0,1,2 (2.67)

The matrix representation of equation (2.67) can be given by

Xy x)=T"M,A® s=012

where A9=A

From equation (2.66) the above equations becomes:

X yO(x)=42TMMOA i=01,..,N, s=0,1,2 (2.68)
where M; can be calculated in a similar manner used previously.

By substituting equation (2.68) into equation (2.64) one can have:

m
D {16pM M 244, MM+ M, JA=F (2.69)
i =0
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which corresponds to a system of N+1 algebraic equations for the unknown
Chebyshev coefficients {a} ?'zo. This equation can be rewritten in the form:

WA=F (2.70)

where

m

Wn,m:Z{16F’|MiM2+4QiMiM +riMi}1 n,m=0,1..N
i=0

Then the augmented matrix of equation (2.70) is:

Wo,0 Wopa - WoN 5 fo
Mo M N g
W:F]=| : " : : (2.71)
Wn-10 Wn-11 0 Wn-an f-N .
Wno  Wna o o0 Wi fy

Now, by substituting equation (2.5) in the first and second boundary
conditions given by equation (2.10.b) one can have equation (2.15) or
equation (2.16) and equation (2.17).

Thus the first boundary condition given by equation (2.10.b) can be written

as:
AU = (2.72)
If N is an even or odd positive integer then
. {1 i isaneven positiveint eger

' |-1 iisanodd positiveint eger

The augmented matrix of equation (2.72) is:

(U W - Uy ] (2.73)
and the second boundary condition given by equation (2.10.b) can be written
as.

AV = j (2.74)
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where

Vo vi - Vv V]

If N isan even or odd positive integer

v,.=11i=01..,N

The augment matrix of equation (2.74) is:

(o v - w |B] (2.75)
Now, by replacing the two rows matrices given by equation (2.73) and

equation (2.75) by the last two rows of augmented matrix given by equation
(2.71), we have the new augment matrix:

1
Woo Wor == Won Efo
Wio Wiqq WiN f
: 1
WNn-20 WnN-21 WN_2N f
N -2
Ug Uy Uy o
Vo Vi VN B
Let
[ w "y Won | 1.
00 01 ON Efo
W Wi WiN ¢
: 1
W = ' , F=|
Wno2o Wn-21 0 Wn-o2N ¢
N—2
uo ul cee uN o
i VO Vl VN | ﬂ
If ’\N*‘;to then
* _1 *
A=W ) F
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and thus the matrix A is a uniquely determined. By substituting the values of

{a} ?:o into equation (2.5) one can get the approximated solution of equations
(2.10).

To illustrate this method consider the following examples:

Example (2.3):

Consider example (2.1). Assume that the solution y and the function f

can be approximated by the finite Chebyshev series of degree four.
4 /
Y (=) aT (¥ (2.76)
r=0
and

4
f (x):x4+x3+x2—2zz fT(x)
r=0

l * * * * *
:EfOTO (X)+f, T (X)+F,T, (X)) +f5T3 (X)+f,T,(x)

:%fo+f1(2x —1)+f,(8x%—8x +1) +

fo(32x3—48x2+18x —1)+
f 4(128x * — 256x > +160x 2 —32x +1).
~133 45 17 3 1

Thisimpliesthat: fj=—,f,=—,f,=—, f;=—and f , =—.
07 64 "1 322732 33 47128

Therefore
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133
128
45
32
17
32
3
32
1
| 128 |

Since q(x)=1+x and r(x)=1+x+x%, then from equations (2.46)-(2.47) one

can have:

Qo= 01=1, 02=03=q4= 0
and
ro=ri=ro,=1,r3=rs=0

Then by substituting the above results into equation (2.56) one can get:

{4MOI\/I +My+4M M +M1+M2}A:F (2.77)
where
O%OSO 1 0 0 0 O] 2 1 0 0 O]
002 0 4 01000 122100
M:OO030’M0:00100’M12201210
0000 4 00010 001 21
0000 0 0 0 00 1 0 0 0 1 2]
6 4 1 0 O]
l87410
andM,=—/2 4 6 4 1
16
01 4 6 4
0 01 4 6]

Therefore, equation (2.77) becomes
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1% 00
2 4

020 6 0] [1t0000f01234 111,

008 016|011 000 |014648 |2 24

000120+00100+00268+0%%%O+

000 O 11600010 |00O0S3 8 11 1
0 0 = = =

000 0 0O/ |00O0O0TU1 |[00O0 O 4 R
0oo0oo0 <1
i 4 2]

§1i00 —133

8 4 16 | 128

1

i 71 1 5% 4 P

2 16 4 16 32

1103 1 1A | w

8 4 8 4 16||| & 32

o L 1 3 1} 3 3

16 4 8 4||[a | | 32

o o L+ 1 3 1

L 16 4 8| | 128 |

After simple computations, the augmented matrix of equation (2.77) is:

5 7 8B o |13
8 2 16 128
16 2 16 32
11 31 37 129 17 @)
8 2 8 2 16| 32
o L 1 39 493
16 2 8 2| 32
o o L 1 471
i 16 2 8 | 128 |

Now, by substituting equation (2.5) in the boundary condition given by
eguation (2.18.b) one can get the augmented matrix:

{1 -7 1 -7 1‘—5} (2,79

4 4 4 4 4

4
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By replacing the row matrix given by equation (2.79) by the last row of

augmented matrix given by equation (2.78), we have the new augmented

matrix:
25 _Z _§§ 9 4 —133
8 2 16 128
1 A B % B
16 2 16 32
1103 3 129 17
8 2 8 2 16| 32
o 1 1 39 493
6 2 8 2| 32
1 -1 -7 1}-5
4 4 4 4 4| 4 |
Therefore
15 7 38 o ]
| 8 2 16
1
an 1ﬂ§ﬂ24
16 2 16
a |1 1 3 37 12
2 8 2 8 2 16
e 0 1 1 39 4
3y | 6 2 8 2
i -r 1 -r 1
4 4 4 4 4
Hence
-13 1 1

-133]
128

= y=—, & =—, ag=0and a,=0
9o 3 & 5 25 & 4

by substituting these values into equation (2.76), one can obtain:

Y (9="T5(0- 2T, (9+ T3 (9

Note that this solution is the exact solution of equation (2.18).

—x% -2

60

1

I
=
w

O O Ik N|IF oo‘

(2.80)
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Example (2.4):

Consider the second order linear differential equation:

Y'(X)—2x°y'(X) +8x° y(x) =0, 0<x<1 (2.81.a)

together with the boundary conditions:
1
yQO=Ly@= 3 (2.81.b)

Assume that the solution y can be approximated by the finite Chebyshev

series of degree five:
S/
Y (=) aT (¥ (2.82)
r=0

Since p(x)=1, g(x)= —2x% and r(x)=8x?, then from equations (2.61)-(2.63) one
can have:

Po=L PL=P2=P3=Ps=pPs=0

G=h=0=0=0=0, gg=-2
and

lg=h=r=r,=r5=0,1,=8

Then, by substituting the above expressions into equation (2.69) one can get:

{16MM? +8M, ~8M3M | A=0 (2.83)
where
o%ogog 10 0 0 0 0]
002040 010000
M:ooosoS,M0_001ooo,
00000 0 000100
000005 000010
00000 0 0000 0 1]
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6 41 000 (20 15 6 1 0 O
8 7 4100 30 26 16 6 1 O
112 4 6 410 1(12 16 20 15 6 O
16/0 1 4 6 4 0 642 6 15 20 15 O
001 460 0O 1 6 15 20 O
0 001 4 6] 0 0 1 6 15 20]
Therefore
1 00 0O0O0|fOO0O1O0 8 0] [641000 [2056 1 00
01 0000/|O0OO0O0SG6 0 3 |87 4100 (302666 1 0
160010000000120+12464101121620156O
000100/[000O0TO0Z2/02/0146 4082 6 152 15 0
000O010/0000O0O 001 460 0 1 6 15 20 0
0000010000 0 O] (0001 46|/ [0 0 1 6 1520
1 3 501 ] rar
0 =0 =0 =|l= 0
2 2 2(||2% 0
0 020 40|l 4y
00030 5|a|°
00000 0flla]||°
0 000 O0 5|(|| a 0
_000000__a5_—0—
after simple computations the augmented matrix of equation (2.83) is:
3 3 3 -6 120 -10|4
4 4
s B9 e e
8 2 8
12 1 B g7 200
gl * 2405 (284)
o - = -3 -11 —/=0
8 2 8
001__1_5 =650
4 4 4
00 0o L o B
i 8 8 [ ]
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Now, by substituting equation (2.5) in the boundary conditions given by
eguation (2.81.b) one can get the augmented matrix:

1 -11 -1 1 -1
{111111%}

By replacing the two row matrices of equation (2.85) by the last two

(2.85)

row of augmented matrix of equation (2.83), one can get the new augmented

matrix:
_ 3 51 0]
3 - — -6 120 -10
4 4 0
4 B 2 55 45 60
8 2 8 0
5 -13
1 - -1 — 177 -20 ]
4 4 0 (2.86)
o 3 1 g 44 H
8 2 8 |1
1 -1 1 - 1 -1
11 1 1 1 14
L 3]
Therefore
- --1 (157 |
3 3 3% & 120 -10 192
_1 N 4 4 _o_ _7
Zao 4 1—3 _—9 @ -16 460 0 24
8 2 8
% 5 -13 0 _—7
3.2 =1 Z -1 T 177 -20 0= 48 |.
3 1 2405 ——
% | |1 -1 1 -1 1 -1 | 3. 1_9—2
11 1 1 1 1 | 0
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Hence
—E —__7 a —__7 a—__l a —__1and =0
0795 AT op BTy BT Mg %

By substituting these values into equation (2.82) one can obtain:

x 157 __« 7 _« 7 _« 1_« 1 _«
X)=—T (X) ——T, (X)——T, (X) ——T5 (X) ——T, (X
y (X) 1920() 241() 482() 243() 1924()
_1-2x
3

Note that this solution is the exact solution of equation (2.81).
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Chapter Three Chebyshev Series Method for Solving Specia Types
of Integral Equations and Integro-Differential Equations

Introduction

The aim of this chapter is to use the finite Chebyshev series method of
the first kind defined on the interval [0,1] as a method to solve special types
of integral equations namely systems of linear Fredholm integral and integro-
differential equations.

This chapter consists of three sections.

In section one, we use the Chebyshev series method to solve the
homogeneous and nonhomogeneous linear Fredholm integral equations. This
method is based on some properties that appeared in chapter one and it is a
modification of the method that appeared in [Sezer M. and Dogan S.,1996].

In section two, we use the same method to solve systems of linear

Fredholm integral equations of the second kind.

In section three, solutions of the linear Fredholm integro-differential

eguations via Chebyshev series method are presented.

3.1 Chebyshev Series Method for Solving Linear Fredholm Integral

Eqguations:

In this section we use the finite Chebyshev series as a method to solve
the homogeneous and the nonhomogeneous linear Fredholm integral
equations. To do this, consider first the nonhomogeneous linear Fredholm

integral equation:

1
u(x)=f (x)+/1J.k(x,t)u(t)dt, 0<x <1 (3.1)
0
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where f is aknown function of x, named as the driving term, k is a known
function of x and t, known as the kernel of the integral equation, A is a scalar

parameter and u is the unknown function that must be determined.

Assume that the solution of the above integral equation may be
approximated as a finite Chebyshev series that takes the form:

N

u(x) = U’ (x) = Z a T (x), 0<x<1 (3.2)

r=0

where {a}?‘zoare the Chebyshev coefficients that must be determined. This

approximated solution may be written in matrix form as:

u (x)=T, A (3.3)

-
where T;:[Tg(x) T, (X) . .Ty (x)} and A:Ea0 a .. aN} .

Moreover, assume that the function f may be approximated as a finite
Chebyshev series that takes the form:

N 7/
fO)~F" ()= D T (x)
r=0

where {f }?‘zoare known Chebyshev coefficients.

Then f"(x) can be written in the matrix form:

f'(x)=T, F (3.4)
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1 T

Assume that the kernel function k can be approximated by a double finite
Chebyshev series of degree N in both x and t that takes the form:

/ /

N N
k=K G = Y0 Y ke T, (TS )
r=0 s=0

where {k, }:c’)N are the known double Chebyshev coefficients.

Then the approximated kernel function kK can be written in the matrix form:

o) =T KT, 65
where
-, . ) ]
Zk0,0 EkO,l EKO,N
T, :[To(t) T, ) .. Ty (t)], K| oK K ki
1
5K k .k
2 N0 N1 NN

On the other hand, for the unknown function u in the integrand, we write:
ut)~u @t)=T, A (3.6)

By substituting the matrix forms given by equations (3.3)-(3.6) into equation
(3.1) and by simplifying the resulting equation one can get:
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1
A=F + 1K th*TTt*dt A
0

or
(1 -AKQ)A=F (3.7)
where
M1 1 1 N
.[TO 1Ty (t)d tJ‘T0 T, Od t ... ITO Ty )d
0 0 0
1 1 1
_ ITl Ty t)d t ,[Tl T, 1)d t ... ITl Ty ®)d
Q_ 0 0 0

1 1 1
IT,:; ()T, (t)d tITN* OT, ©d t... ITN (t)Ty (0)d
0 0 0

and | isthe (N +1)x(N +1)identity matrix. The elements of the matrix Q

are denoted by g;; and take the form:

1
Let q; = [T, ()T, (t)d
0

1 1 1 L .

— + | + ]) 1ISaneven posetivelnt eger

o o 2 1_@_,-)2} ) PR
ij —

. 0 (i+ j) isanodd posetiveint eger
In equation (3.7), if || —AKQ|=0, then

A=(1 -IKQ)"'F (3.8)
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Thus the unknown coefficients {a}?‘zo are uniquely determined by equation

(3.8) and hence the integral equation (3.1) has a unique approximate solution
given by equation (3.2).

Second, consider the homogeneous linear Fredholm integral equation
that takes the form:

1
u(x):ﬂjk(x,t)u(t)dt, 0<x <1 (3.9)
0

The problem here is to determine the generalized eigenvalue A of the pair of

1
operators [I ,J.k(x,t).dt] with the corresponding eigenfunction u, where | is
0

the identity operator.

In this case (A,U) is said to be the generalized eigenpair of the pair of

1
operators [I ,J.k(x,t).dt} JJderri A., 1985].
0

By substituting the matrix forms given by equations (3.3),(3.5)-(3.6) into
equation (3.9) and by simplifying the resulting equation one can get:

1
A—/”LK{J"I}*T'I}*dt}A
0
or

(1-2KQ)A=0 (3.10)

where |, K and Q are defined previously.
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In equation (3.10) if
I -2KQ|=0 (3.11)

then A is the algebraic generalized eigenvalue of the pair of matrices (I,KQ).
By substituting the values of A into equation (3.10) and solving the resulting

system of equations one can get the corresponding eigenvectors A.

N

By substituting the values of {a, } "

one can get the approximated eigenpairs

1
(\,u’) of the pair of operator I,J.k(x,t).dt .
0

To illustrate this method consider the following examples:

Example (3.1):

Consider the nonhomogeneous linear Fredholm integral equation:

1
u(x):%+f(xt +5x2t2)u(t)dt, 0<x <1
0

Assume that the solution u can be approximated by the finite Chebyshev

series of degree two. That is:

2

u(x) ~ Z a T, (x) (3.12)

r=0

where {a,}rzzo are the unknown Chebyshev coefficients that must be

determined

By using proposition (1.9) one can get:
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f(x):%(

-1_« 1_-
=—Ty(X)—=T; (X
80()81()

and

K(x,t)=xt +5x %2 = [To(x)nl(x)]ﬁo(t)nl(t)]
{300+ 41 00 +T; 00 36 O + 41 ©+T5 0

6Lr (x )To(t)+—To< Iy (t)+—To(t)T1( )+aTo( i)+

?To (075 00+ 217 (0T, O+ 2273 0OT5 () + T @05 )+
ST 0075 ()
Therefore

(61 76 15]

64 64 64
76 9% 20

64 64 64|
15 20 5

64 64 64

o wl . w| .

On the other hand

1 0 2
3
1
-lo = o/
Q 3
1y 7
3 15 |

By substituting these matrices into equation (3.8) one can have:
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— _ S —— -
(1 ] % 7_6 E 1 0 __1 T__l
A W) P =
0 0o 64 64 64 3 8
" 1520 5|1 o 7|0
- | 64 64 64 3 151 |
1-19 51771 73]
8 48 24| | 8| |8
e A Y R
12 2 4 8 2|
5 5 25|01
| 24 48 24| | | [8]
Therefore
@:Qal:landaz:l.
2 8 2 8

By substituting these values into equation (3.12) one can obtain

3* 1* 1*
uXxX) = =To (X)+ =T (X) + =T (X
=2 To 09+ 5T ()+2T2 ()

=§+3(2x—1)+1(8x2—8x+1)
8 2 8

is the approximated solution of the above integral equation. In this case,

u(x)~ x° is the exact solution of this example.

Example (3.2):

Consider the homogeneous linear Fredholm integral equation:
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1
u(x):lfxtu(t)dt, 0<x<1
0

Assume that the approximated solution is given by equation (3.12). By using
proposition (1.9) one can have:

Kx) =3t =T (9 +T; (9 [T 0+, 0]

= OO+ T T O+ TS OF (9 + 4T (9T O

Hence
11,
4 4
k=X L1 o
4 4
0 0 0]
Therefore
Y R
100 ‘1“1‘ 13
|I—/1KQ|=010—/1——0 O = 0
00 1 4 4 3
14 7
_000__3 15 |
(11 -1
1 0 0 4 12 12
=010—/11i_—1
00 1 4 12 12
O 0 O
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A A A
4 12 12
|I—/IKQ|: 4 1—i i:0
4 12 12
0 0 1
Therefore
2
1- A 1—1 A = 0 and this implies that A=3.
4 12) 48

By substitution A=3 into equation (3.10) one can have:

1 11 5

4 4 4|5 o
3 3 1

= 2 = a |=|0].
4 4 4 .
0 0 1| &

By solving the above homogeneous system of linear equations one can have
1

= an and a, =0

By substituting these values into equation (3.12) one can obtain

)= 2T 09+ ST, (9

=211 2x-1]
2

=gyX, 8y = 0.
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Hence (3,ayx ), 8, # 0 is the approximated eigenpair of the pair of operators

I, I xt.dt |. Inthiscase (3,a0X) is the exact eigenpair of the pair of operations

3.2 Chebyshev Series Method for Solving Systems of Linear
Fredholm Integral Equations:

In this section we modify the previous method to solve systems of

linear Fredholm integral equations that take the form:
n 1
=l o

where f; isaknown functions of x, kjj is aknown functions of x and t, A;; is
a scalar parameter and {u}’ are the unknown functions that must be
determined.

Assume that the solution {u}in:lof the above system of integral

eguations can be approximated as a finite Chebyshev series that takes the

form:

N 7
u(X) ~ U (X) = Z a, T (X), i=12,..,n (3.14)
r=0
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where {a }; ’ON are the Chebyshev coefficients that must be determined. This

approximated solution can be written in the matrix form:

u (x)=T,A,i=12..,n (3.15)
1 T
where T, is defined previously and A =[Eai0 &1 . aiN} :

Moreover, assume that the function f; can be approximated as a finite
Chebyshev series that takes the form:

N 7/
f(x)~f, (x)= Z f T, (x), i =12,..,n
r=0

where {fi r}n’N are known Chebyshev coefficients. Then fi*(x) can be
1,0

written in the matrix form:

f (x)=T, F,i=12..n (3.16)

1 T
where F, :[Efi’o fii . fi,N} ,1=12,..,n

Assume that the approximated kernel function k;; can be approximated by a
double finite Chebyshev series of degree N in both x and t that takes the form:

/ /

N N
ki O,8) ~Ki, (X,t) = Z Z KiS T, ()T (t), i,i =120

r=0 s=0

N
where {k”r S}n Lo e the known double Chebyshev coefficients.
ij=1r,s=
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Then the approximated kernel function ki’; can be written in the matrix form:

k:; (X,t):T): KIJ TI*T’ |,J ::LZ’___’n

(3.17)
where
1,00 1,01 1, 0N |
2590 ST 5K
Lo (N
KIJ = 2 J ] ; J ] I’J :11271n
1. N0 N2 N,N
PAE i
On the other hand, for the unknown function u; in the integrand, we write
uj ) ~uj ) =T, A;, j =12,...n (3.18)

By substituting the matrix forms given by equations (3.15)-(3.18) into
equation (3.13) and then by simplifying the resulting equation one can get:

n
A =F +Zﬂij KiQ A, i =12..,n
j=1

(3.19)
Let
- T
1 1
A= EaELO &1 AN Eazo A1 AN Eano 1 " AN
1 1 1 '
F:_Efl,o fig - fan Efz,o for - fon - Efn,o frg - fn,Nj|
and
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[ 1k Q Aok Q- Agkg Q|
/121k21Q A’ZZkZZQ /12nk2nQ

AnKnQ  AnoKnoQ - Ak Q
then equation (3.19) can be rewritten as:
(I -K )A =F

where | is the identity matrix.

In the above equation, if

I =K |0, then

A=( -K)F (3.20)

n,N

Thus the unknown coefficients{air } ’

1o aeuniquely determined by equation

(3.20) and hence the system of integral equations given by equation (3.13) has
a unique solution given by equation (3.14).

To illustrate this method consider the following example:

Example (3.3):

Consider the system which consist of two linear Fredholm integral

equations:
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1 1
u(x)=x2—1—§x+ (3X +4t)u,(t)dt + | xtu,(t)dt, 0<x <1
1 5 1 2
0 0

1 1
u2(x)=x3—%x2—%x —%+J‘(x2+t)u1(t)dt +jxt3u2(t)dt, 0<x <1

0
Assume that the solution {u}izz1 can be approximated by the finite Chebyshev

series of degree three. That is:

3/

()= Y a T (x) (3.22)
r=0

and
3/

U ()= D 8T, (x) (3.22)
r=0

By using proposition (1.9) one can have:

6
fl(x):xz—l—gx

=80 00+ 4 () +T5 () ]-Tg () =T () +T, (x)

49 * 1 * 1 *
=—T ——T; (X)+=T, (X
20 10 () =35T1 (0 +3T2 ()

32[l T (x)+1 T8 (x) +6T, (x) +T3 (X)]_—To( )—

Zi[srs <x>+4rf(x)+T£(x)}——[T5(x)+Tf(x)}
=T )+ Ty () + 2T () + 22T ()
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Kip(X,t)=3x +4t
=T 00T 0+ 2T +T, )]

=£Tg (X)T, (t) +§T5 ()T, (x)+2T7 ()T (x)

ko (X,t) =xt
=m0+ 0T 0+ T )]

= 3T0 0TSO+ T3 BT (0+ 4TS (TG @)+ 4T3 0TS O

Koy (X, 1) =x%+t
=200+ 2T 00+ 375 (0 + 2T O +T7 )

= £To 0Ta )+ 5T (T @)+ T3 0)Tg )+ 573 (T (),

and

Kop(x ) =xt®
:%[Tg(x)ﬂl*(x)]:g—lz[l Tg (t)+1 By (1) + 6T, (1) +T5 (1)
=6—14[1 Ty (X)To (1) +1 By (X)Ty () + 6T (X)T, () +To (XT3 () +

1Ty (X)To (1) +1 By (T () + 6Ty ()T, () +Ty (T3 ¢) |

80



[Chapter Three

Chebyshev Series Method for Solving Specia Types
of Integral Equations and Integro-Differential Equations

]

Hence
49 ;792 -
‘_"i 310
I:1: E ) I:2: 1344 ) K11—
7
= %
8 1
O - L
- - | 32 |
7145 "
? i 64
— - 00 10
Ko = i 2 and Ky =| &y
g 0O 0O 0
0 0 0 0] 0
On the other hand
1 0] _—1 0
3
0 5 0 %
Q=4 7 '
— 0 — O
3 15
SR,
L 5 35|

O O NlwNIN

15
64
15
64
0

0

o

o o R|o Rlo
o o g|H §||—\

o

o O

O O NP NP

By substituting these matrices into equation (3.19) one can have:
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_ [-49] . 11 0 2 o o
1 0115200 1 ° || 2
2310 -1 : 0 2 0 % 2310
a, |=| 10 |+ E 0 0O 1 . aq
P % ooool|lz ° P
&3 _ &3
Las ] g floooof, 2 17|
- B i 5 35
11 411 O _—1 0| _
22 °° 1 ° 1| La
0 = 0 —=|27%
1 1 3 5
— — 00 a1
4 4 1, 7
0 0003 15 %2
_ a3
0000, -1 o 17| %]
L 5 35
and
@, 0 2]
Za 210 8 2 1 1 E
2 24| |z T oo 3 © _? 2
Ay |= +12 2 T
Tl 14 7
2| |28 | |5 0003 15 %2
3 _ A3
‘ L lloooofo =t o [
| 32 | ~ L 5 35
_ 1 _
0 15 6 17" % 3 g
64 64 64 64| 1 1]
0156 1)° 3 ° 5|2
64 64 64 641 o 7 2
0O 0 0 0|3 15 %2
0 0 0 O 1, L 723
5 35
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The above two systems of equations can be rewritten as:

1 ) 1
S30 | [_1p057 [ 35 0667 -1167 -04 025 0083  -0083  -0.05| o0
a1 o1 15 0 05 0 025 0083 0083 005 4,
ap | | 0125 0o 0 0 o 0 0 0 0 | ap
as || o |, 0 0 0 O 0 0 0 0 | ap
1 ~0.134| |0.875 0167 -0292 -01 0.125 0075 -8.333x10°° -0039| 1
2720 | 0231 3 2720
. : 05 0 0167 0 0125 0075 -8333x10° 0039 °
21| 10146 ) |p125 0 -0042 0O 0 O 0 0 21
220 1008) | o o 0o 0 0 0 0 0 ||
| 823 | B T a3 |
Therefore
o1 _
30| [-0239 -0181 0413 0108 -0127  -0048 0036 0028 | —1.205]
a | |-0456 0708 0152 0175 0.076 0020  -002 -0017 | —o1
a0 0 0 1 0 0 0 0 0 0.125
a3 0 0 0 1 0 0 0 0 0
~|-0341 -0054 0113 0033 1.037 0.049 0024  -0023 || _0134
—a
270 | 10175 -0105 0058 0063 0.027 1.062 0014  -003 || 0231
@1 | | _003 -0023 9.654x10°> 0014 -0.016 -5998x107° 1005 3.478x107° || 0.146
21| o 0 0 0 0 0 0 1 | 0031
| a3 |

and this implies that:

a, 3 1 1. % 10 15 6 1
—_— = =—, =—, = ’—:—’a :—’a = =
a1 SV, a3 5 T T 2T, 3735

By substituting these values into equation (3.21) and equation (3.22) one can

obtain:
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W0 ==T5 (9 +2T, (9 +2T5 (9
3 1
:§+2(2x 1)+ (8x2% —8x +1)
=x?2

and

10, 15« = 6 1 _.
U090~ To 9+ 5T 9+ T (9 + T (4

_10 E(2 —1)+—(8x —8x+1)+i(32x3—48x2+18x—1)
32 32 32
=X .

In this case u,(X) = X2, U,(X) ~ X is the exact solution of this example.
U 2

3.3 Chebyshev Series Method for Solving Linear Fredholm Integro-

Differential Equations:

In this section we use the finite Chebyshev method to solve the first

order linear Fredholm integro-differential equation of the second kind:
u'(x)=f (x)+ﬂ,jk(x,t)u(t)dt, 0<x<1 (3.23)

where f isaknown function of X, kisaknown function of x and t, known as
the kernel of the integro-differential equation, A is a scalar parameter and u is

the unknown function that must be determined.
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Assume that the solution u can be approximated as in equation (3.3), f can be
approximated as in equation (3.4) and the kernel function k can be
approximated as in equation (3.5).

Form equation (2.55) u’(x) can be written in the form:
u'(x) zT; AW

—4T'M A
(3.24)

By substituting the matrix forms given by equations (3.4)-(3.6) and equation
(3.24) into equation (3.23) and then by simplifying the resulting equation one
can get:

AIMA=F + AKQA
or
(4M - 2KQ)A=F (3.25)

where Q is defined previously and M is defined either by equation (2.51) or
equation (2.53)

In equation (3.25), if [4M —AKQ|=0, then
1
A=(4M - 1KQ) 'F (3.26)

Thus the unknown coefficients {a}lo are uniquely determined by equation

(3.26) and hence the integro-differential equation (3.23) has a unique
approximatesol ution given by equation (3.2).

To illustrate this method consider the following example:
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Example (3.4):

Consider the nonhomogeneous linear Fredholm integro-differential

equation:

u'(x) = 2X—%X +— I(x +t)u(t)dt, 0< x<1.

Assume that the solution u can be approximated by the finite Chebyshev

series of degreetwo. That is

2
u) = D & T, (x)
r=0

By using proposition (1.9) one can get:

f(x)= 2x—gx +g
=T )+, ()~ 35 () + 415 () +T5 () ]+

= To 00+ 3T () =T ()

and

k(x,t)=x2+t

3* 4* 1* l * 1 *
=—To(X)+=T{ (X)+=T, (X)+=To ) +=T, (t
STo () + 5T () +2T2 () + 5 To O +5T1 O

Therefore
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By substituting these values into equation (3.27) one can obtain:

u(x) ~§To() —T1 (x) + —Tz (x)
11 3 2
E —(2 —1)+§(8x -8x +1)

—x2%4+2x

which is the exact solution of this example.

Remark (3.1):

This method can be also extended to solve system of first order linear

Fredholm integro-differential equations of the second kind:

h 1
ui (x)=f; (x)+z/11-jjkij (x,tu; (t)dt, 0<x <L i=12..n
i=1 0
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Conclusions and Recommendations

From the present study, we can conclude the following:

. When the problem is defined in a finite range a<x <b, then by using the
linear transformations X :%(b —at +%(b +a) and x =(b—-a)t +a, the

range a<x <b can be transformated to the range —-1<t <1 and 0<t <1
respectively, which are the domain of T, and T, respectively.
. The Chebyshev polynomials of the second kind defined on [0,1], denoted
by U, (x), can be defined by:

U, /(x)=U,(2x -1), 0<x <1, r=0,1,...

. Proposition (1.16) does not hold in case r is an odd positive integer since

the constant of integration is taken to be nonzero. For example:
Iul(x)dx :IZX dx =x?% +¢ :%Tz(x) +%To(x) +¢,=T,(x)+cC.

. From remark (1.5) one can see that the set of the Chebyshev polynomials
of the first kind does not form an orthogonal sequence.

. Remark (1.6) can be also include the sine Fourier series which is the
infinite Chebyshev series of the second kind.

. Chebyshev series method can be also used to solve the linear Fredholm
integral equations of the first kind in case K™ exists.

. Chebyshev-matrix method fails to be applied in case a, = 0for r > N.

For future work the following problems could be recommended:
. Modify the Chebyshev series method to solve the linear Volterra integral

and integro-differential equations.

89



Conclusions and Recommendations]

. Extend the Chebyshev-matrix method to solve nonlinear differential
equations.

. Use Chebyshev series method for solving nonlinear problems.

. Devote the Chebyshev polynomials of the second kind defined on [-1,1]

and [0,1] as a method to solve non-linear problems.
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