

Republic of Iraq
Ministry of Higher Education
and Scientific Research
Al-Nahrain University
College of Science

Improving the Security of HTML
Files

A Thesis Submitted to the College of Science,
Al-Nahrain University in Partial Fulfillment

of the Requirements for the Degree of
Master of Science in

Computer Science

Submitted by

Nadia Fadhil Al-Bakri

(B.Sc. 1988)

Superv sed by i

Dr. Loay E. George

 September 2009 Ramadan 1430

Dedication

To the greatest father a person could ever have …

What ever I am … What ever I become … I owe it

 to you.

To my mother the most generous woman …

To my husband for his patience, and support…

To my beloved brother …

To my beautiful daughters: Dania and Zena …

 You are the cause of my success …

Nadia

Acknowledgment

Praise be to God whose will and guidance enables
me to complete my research.

I would like to express my deepest thanks to my
supervisor Dr.Loay E. George for his continued
invaluable guidance, for so many fruitful discussions
and sharing his ideas and for honest efforts given
throughout the progress of this research.

Grateful thanks for the Dean of the College of
Science Dr. Laith Abdul Aziz Al-Ani for his
attention and encouragement.

 Grateful thanks for the Head of the Department
of Computer Science Dr.Taha S.Bashaga for the
continuous support during the period of my studies.

Also, I wish to thank all the doctors and staff in
computer science department at AL-Nahrain
University for their help and giving me advices.

I wish to express my special thanks to my true
friend Dr.Nidaa Flaih for her encouragement and
friendship.

 Nadia

 i

Abstract

Due to its ease and low cost, Internet is considered as the most

important media for securely transferring information contained in

WebPages. These WebPages are established using Hypertext Markup

Language (HTML).

 The main objective of this research is to provide a way to prevent

the illegitimate reading of HTML file contents. The security requirements

we considered in securing HTML file contents are confidentiality, which

is accomplished using encryption methods and integrity detection that is

accomplished using message digest-5 (MD5) hash function... In the

established HTML Secure System (HSS), three encoding methods were

used; they are: random number generator, one-way hash function and

Base64 encoding.

Two random number generators have been used and tested for

generating random numbers for stream ciphering the text, color and font

that may found within HTML files (plain text). The first random

generator is the traditional Linear Feedback Shift Register (LFSR), the

periodicity of its key stream is about 232 bit long (4GByte). The second

random generator is a proposed random number generator; the

periodicity of its key stream is about 2N, where N (N >32) is a variable

value depends on the length of the internal linear generators used in its

scheme. Tests have been conducted to study the performance of the two

generators; it is found that the use of the proposed random generator

reduces the elapsed time required for encryption and decryption processes

in range between (30% to 40%) in comparison with the time required by

LFSR generator. In addition, the proposed random generator produces

longer key stream. Five statistical random tests were performed on the

cipher text for the two generators; the results indicated an acceptable level

of randomness.

Table of Contents

Chapter One: Introduction

1.1 Overview... 1

1.2 HTML′s Role on the Web... 1

 1.2.1 Markup Languages………………………………………………. 2

 1.2.2 HTML Obstructs………………………………………………… 3

1.3 Web Security Aspects.. 4

 1.3.1 Web Security Breach…………………………………………….. 4

 1.3.2 Securing Information in Transit………………………………….. 4

1.4 Cryptography and Web Security... 5

1.5 Literature Review.. 6

1.6 Aim of Thesis... 8

1.7 Thesis Outline.. 8

Chapter Two: Theoretical Concepts

2.1 Introduction... 10

2.2 Beneath the World Wide Web.. 10

 2.2.1 Hyper Text Markup Language (HTML)... 11

2.2.2 Browsers... 23

 2.2.3 Types of Browsers……………………………………………….. 24

 2.2.4 Hyper Text Transfer Protocol (HTTP)…………………………… 24

2.3 Web Security.. 26

 2.3.1 Cryptography……………………………………………………. 27

 2.3.2 Messages and Encryption………………………………………… 27

 2.3.3 Cryptographic Protocols…………………………………………. 29

 ii

 2.3.4 Symmetric Cryptosystems……………………………………….. 30

 2.3.5 Public-Key Cryptosystems………………………………………. 31

 2.3.6 Stream Cipher……………………………………………………. 33

 2.3.7 Pseudo-Random Number Generator (PRNG)…………………… 35

 2.3.8 Linear Feedback Shift Register (LFSR)…………………………. 35

 2.3.9 Randomness Statistical Tests……………………………………. 36

 2.3.10 The 2χ Distribution……………………………………………… 40

2.4 Cryptographic Hash Function.. 40

2.5 Message Digest 5 (MD5).. 41

2.6 Encoding.. 43

2.7 Base64 Encoding…………………………………………………Error

Bookmark not defined.…….

44

Chapter Three: The Improved HSS-Scheme
3.1 Introduction... 50

3.2 System Model.. 51

3.3 Encoding Module.. 51

 3.3.1 Lexical HTML Analyzer.. 53

 3.3.2 Encrypting HTML File... 56

 3.3.3 Random Number Generator... 58

 3.3.4 HSS Encoder…………………………………………………….. 64

 3.3.5 MD5 (Message Digest) Function………………………………… 68

 3.3.6 Base64 Encoder………………………………………………….. 70

3.4 Decoding Module.. 73

3.5 HSS Decoder…………………………………………………………… 73

Chapter Four: Implementation and Testing
4.1 Introduction... 82

 iii

4.2 System Implementation... 83

4.3 System Evaluation.. 96

 4.3.1 Randomness Tests……………………………………………….. 96

 4.3.2 The Elapsed Encoding Time…………………………………….. 112

Chapter Five: Conclusions and Future Works
5.1 Introduction.. 116

5.2 Conclusions... 116

5.3 Future Works…………………………………………………………… 118

List of References…………………………………………...……………… 119

Appendix A ... MD5 Algorithm ……………………………………………

A1

Appendix B… Common Character Entities…………………………………

B1

Appendix C…The Selected Percentiles of the
2χ (Chi-Square) Distribution

C1

 iv

List of Abbreviations

Abbreviation Meaning

ASCII American Standard Code for Information Interchange

EBCDIC Extended Binary Coded Decimal Interchange Code

HSS HTML Secure System

HTML Hyper Text Markup Language

HTTP Hyper Text Transfer Protocol

HTTPS Hyper Text Transport Protocol over SSL

HR Human Resources

LFSR Linear Feedback Shift Register

MAC Message Authentication Code

MD5 Message Digest 5

PRNG Pseudo Random Number Generator

SHTTP Secure Hyper Text Transport Protocol

SSL Secure Sockets Layer

URL Uniform Resource Locator

WWW World Wide Web

W3C World Wide Web Consortium

XML Extensible Markup Language

XOR Exclusive Or

 V

List of Figures

Figure
No.

Description

Page
No.

2.1 The generic structure of HTML document 15

2.2 Font attributes (face, size and color) 22

2.3 Webpage in Microsoft Internet Explorer 22

2.4 Encryption and decryption 28

2.5 Simplified model of symmetric encryption 30

2.6 Public-key encryption 32

2.7 Stream cipher diagram 34

2.8 PRNG using stream cipher 35

2.9 Linear Feedback Shift Register 36

2.10 Hash function mechanism 41

2.11 Message digest generation using MD5 42

2.12 One MD5 operation within a round 43

2.13 Base64 encoding diagram 45

2.14 Base64 encoding 47

2.15 Hexadecimal encoding 48

3.1 The structure of HSS 52

3.2 The process of filling the first location of R_Seed vector 62

3.3 HTML digest generation using MD5 hash function 69

3.4 The integrity check process 79

4.1 HSS interface 83

4.2 HSS main menu 83

 VI

Figure
No.

Description

Page
No.

4.3 File sub menu 84

4.4 Process sub menu 84

4.5 HTML file encryption sub menu 85

4.6 Input text box for secret key assignment 85

4.7 Menu of HTML files 86

4.8 The contents of an HTML fie sample 87

4.9 The source code of HTML file sample 87

4.10
The content of encrypted HTML file sample using the

proposed random generator 88

4.11
The source code of encrypted HTML file sample using the

proposed random generator 88

4.12
The content of encrypted HTML file sample using LFSR

generator 89

4.13
The source code of encrypted HTML file sample using

LFSR generator 89

4.14 The color sub menu 90

4.15 The encrypted HTML file sample after color encryption 91

4.16
The source code of encrypted HTML file after color

encryption 91

4.17 HTML file sample1 92

4.18 The encrypted colors using color names 93

4.19 The font sub menu 94

4.20 HTML file sample2 94

4.21 The encrypted HTML file (text, color, font size) encryption

95

4.22
The results of five randomness tests for the ciphered

HTML file1 using the proposed random generator 98

 VII

Figure
No.

Description

[

Page
No.

4.23
The results of five randomness tests for the ciphered

HTML file1 using LFSR generator 99

4.24
The results of five randomness tests for the ciphered

HTML file2 using the proposed random generator 101

4.25
The results of five randomness tests for the ciphered

HTML file2 using LFSR generator 102

4.26
The results of five randomness tests for the ciphered

HTML file3 using the proposed random generator 103

4.27
The results of five randomness tests for the ciphered

HTML file3 using LFSR generator 104

4.28
The results of five randomness tests for the ciphered

HTML file4 using the proposed random generator 106

4.29
The results of five randomness tests for the ciphered

HTML file4 using LFSR generator 107

4.30
The results of five randomness tests for the ciphered

HTML file5 using the proposed random generator 108

4.31
The results of five randomness tests for the ciphered

HTML file5 using LFSR generator 109

4.32
The results of five randomness tests for the ciphered

HTML file6 using the proposed random generator 111

4.33
The results of five randomness tests for the ciphered

HTML file6 using LFSR generator 112

4.34 The variation of elapsed encoding time versus the file size 113

4.35 The variation of elapsed decoding time versus the file size 113

 VIII

 IX

List of Tables

Table
No. Description Page

No.
2.1 Text formatting elements 17

2.2 HTML simple formatting elements 18

2.3 Body attributes and their functions 19

2.4 Sixteen common color values 20

2.5 The list of attributes of the font tags 21

2.6 The base64 encoding 45

4.1 The randomness tests result for the ciphered HTML file1
using the proposed random generator 97

4.2 The randomness tests result for the ciphered HTML file1
using LFSR generator 99

4.3 The randomness tests result for the ciphered HTML file2
using the proposed random generator 100

4.4 The randomness tests result for the ciphered HTML file2
using LFSR generator 101

4.5 The randomness tests result for the ciphered HTML file3
using the proposed random generator 102

4.6 The randomness tests result for the ciphered HTML file3
using LFSR generator 104

4.7 The randomness tests result for the ciphered HTML file4
using the proposed random generator 105

4.8 The randomness tests result for the ciphered HTML file4
using LFSR generator 106

4.9 The randomness tests result for the ciphered HTML file5
using the proposed random generator 107

4.10 The randomness tests result for the ciphered HTML file5
using LFSR generator 109

4.11 The randomness tests result for the ciphered HTML file6
using the proposed random generator 110

4.12 The randomness tests result for the ciphered HTML file6
using LFSR generator 111

4.13 The elapsed encoding and decoding time values when using
one of the two generators 114

Chapter One
Introduction

1.1 Overview

Web sites are now a key asset to organizations of all sizes, providing

information and services to clients, marketers, suppliers, and employees.

Unfortunately, these developments have opened new security threats to the

enterprise networks, and opened the door to an increasing number of threats

to individual and business computers. There is a growing trend of hackers

attacking networks via home and remote users. These attacks can be range

from partial loss of data to making the system no usable; to privacy can be

completely violated. In the year 2005, the rate of threats had increased by

almost 50%, as cyber criminals joined forces to create targeted malware

attacks for financial gain [Rad07].

Authentication, message integrity and encryption are very important

in cultivating, improving, and promoting Internet security. To protect users

from Internet based attacks and to provide adequate solutions when security

is imposed. cryptographic techniques must be employed to solve these

problems. Message integrity is required because data may be altered as it

travels through the Internet. Without confidentiality by encryption,

information may become truly public [Rhe03].

1.2 HTML's Role on the Web
The World Wide Web (WWW) is composed of millions of Web

pages. A browser (when requested) can present one Webpage at a time. A

Webpage is generally a single HTML document, which might include text,

Introduction Chapter One

graphics, sound files, and hypertext links. Each HTML document is

considered as a single Webpage, regardless of the length of the document

or the amount of information included [Sta96]. HTML is a text document

format, somewhat like word processing or desktop publishing formats, but

considerably less complicated and based on more open standards [NaSt00].

 HTML was originated by Tim Berners-Lee, with revisions and

editing by Dan Connolly and Karen Muldrow. Up until the time when

HTML Working Group (i.e., a Group charged in 1994 with the task of

defining the HTML standard) took over responsibility for the standard, it

was largely an informal effort. Tim Berners-Lee still very much involved in

the evolution of the standard and served as director of the World Wide Web

Consortium (W3C), which is group of corporations and other organizations

with an interest in the World Wide Web. HTML was subsequently

modified to act as a universally understood language; a kind of publishing

mother tongue that all computers may potentially understand [Dar99].

1.2.1 Markup Languages

Markup language is a formal set of special characters and related

capabilities used to define a specific method for handling the display of

files that include markup; HTML, XML and CSS are markup languages

[TiBu05]. A markup language is not a compiled language, it is an

interpreted language. It is interpreted by the browser when it is first read in,

and the results are displayed in the browser window, once that’s done, the

processing is over until different markup is read in and the cycle repeats.

Using Markup within a text file indicates the structure of the document, and

indicates which parts of the document are headings, which parts are

paragraphs, what belongs in a table, and so on.

There are two kinds of markup languages:

 2

Introduction Chapter One

1. The Control Code Markup: using control code that characterizes

typical word processing and page layout applications in the form of

embedded property symbols that are not human readable. Word

processing programs use binary codes. If a document is opened with

a program that does not understand these codes, a bunch of

unreadable characters will be seen.

2. HTML-Style Markup: using plain text characters that are both

human and machine readable. Hypertext markup languages use

human-readable codes in plain text, eventhough the codes are still

meant to be computer processed [Cin99].

1.2.2 HTML Obstructs
It is difficult to say that there are disadvantages in having a Web site,

since most people and companies use their own Websites to enhance their

marketing and customer service efforts, not supplant them. There are a few

hurdles to leap, and they should definitely be considered [NaSt00]:

• Security: Transmitting data via Internet technology, including the Web,

is inherently a rather unsecured process. For data to be transmitted over

the Web it has to pass through a number of different servers and hosts;

and any of the offered information could potentially be read or held by

anyone. This has been a strong argument against commerce on the Web,

because people recognize the dangers in revealing personal information

(for instance; credit card numbers).

• Copyright Issues: The lack of security holds true for the Web designer.

Nearly anything could be created on the Web can easily be read or

copied by anyone has Web access. This is intimidating both to artists

and publishers who want to make sure that Internet access doesn't, in

some way, devalue their published (and profitable) efforts.

 3

Introduction Chapter One

1.3 Web Security Aspects
The World Wide Web (WWW) has both promises and dangers. The

promise is that the Web can dramatically lower costs to organizations for

distributing information, products, and services. The danger is that the

computers linked to the Web are vulnerable.

Web security is a set of procedures, practices, and technologies used

for assuring reliable and predictable operations of Web servers, Web

browsers, other programs that communicate with Web servers, and the

surrounding Internet infrastructure. Unfortunately, the sheer scale and

complexity of the Web makes the problem of Web security dramatically

more complex than the problem of Internet security in general [Gar01].

1.3.1 Web Security Breach
A breach of security can be defined as illegal access to information

that can result in disclosure and/or alteration of information. A Web

security breach can take place in several forms, such as infringement on the

network of an organization, alteration of organizational or individual

information, virus attacks, and theft. A failure in network security could

cost the organization some of its goodwill and reputation. No other

organization would be interested in doing business with an organization

that cannot protect its information and security system [Bha03].

1.3.2 Securing Information in Transit
Much of the initial emphasis in the field of Web security is involved

with the problem of protecting information as it traveled over the Internet

from a Web server to the end user's computer. The concern was that

someone eavesdropping on the network (at intermediate nodes) might copy

sensitive information, or alter information in transit.

 4

Introduction Chapter One

There are many ways to protect information from eavesdropping as it

travels through a network; the most common ways are [Gar01]:

• Physically secure the network, so that eavesdropping becomes nearly

impossible task.

• Hiding the information that needed to be secured within other

information that appears innocuous.

• Encrypt the information so that it cannot be decoded by any party who

is not in possession of the proper key.

Of these techniques, encryption is the only technique that is practical

on a large-scale public network. Physically securing the Internet is

impossible. Information hiding only works if the people who the

information are hidden from do not know it is hidden. Additionally,

encryption can prevent outside alteration, or make it obvious when the

information has been changed.

1.4 Cryptography and Web Security
Cryptography is the fundamental technology used to protect

information as it travels over the Internet. Every day, encryption is used to

protect the content of Web transactions, email, newsgroups, chat, Web

conferencing, and telephone calls as they are sent over the Internet.

Without encryption any crook, thief, Internet service provider, telephone

company, hostile corporation, or government employee who has physical

access to the network media (that carry confidential data) can eavesdrop

upon the exchanged data. Cryptography can be used for more than

scrambling messages. Increasingly, systems that employ cryptographic

techniques are used to control access to computer systems and to sign

digital messages. Cryptographic systems have also been devised to allow

the anonymous exchange of digital money and even to facilitate fair online

 5

Introduction Chapter One

voting. For all of its users, cryptography is a way of ensuring certainty and

reducing risk in an uncertain world [Gar01].

1.5 Literature Review
A few published researches were found, relatively, close to the work

presented in this research. But in the world, there are many companies

adopted this field of work .The following are among them:

1. Ants Soft, (2000), [Ant00], this software company had released a

software tool "HTML Protector" which had offered a protection to

Webpage content by preventing unauthorized users from viewing

HTML source code. This software offered a three JavaScript based

encryption methods to be chosen from. A variety of other features

(like right click disable, printing disable and password protection)

were offered.

2. Protware, (2003) [Pro03], this software company had released

"HTML Guardian", which is a solution for total Website

protection. It prevents stealing and reuse of some codes published in

websites. "HTML Guardian" had offered a design to protect images

on the website. Additional features were offered (like disabling right

click, disabling page printing and disabling text selection).

3. Ozcan, (2003), [Ozc03], in his master thesis (titled "Design and

development of practical and secure E-mail system") presented an

E-mail system that performs public key distribution and management

in a unique way. The system was named "Practical and Secure E-

mail System" (PractiSES). A central authority, which is trusted by

all users, takes the responsibility of key distribution and management

in PractiSES. The PractiSES Client module is an E-mail application

 6

Introduction Chapter One

that is designed for end users. On top of regular E-mail client

features, PractiSES Client can also be used to exchange E-mails

among users in encrypted and/or signed fashion. PractiSES is

designed according to the phases of "Object Oriented Analyses and

Design (OOAD)".

4. Alwash, (2003), [Alw03], in his master thesis (titled "Design and

implementation of an E-mail security system"), he presented a

secure mail system called (SecureMail) that provided the Email

sender with a confidentiality property. This protection was done

using Rijndael encryption algorithm. Also, Frog2prince algorithm

was applied as a linguistic steganography on the encrypted message,

such that the cipher text was hidden in an innocuous English text.

5. Al Moosaway, (2005), [AlM05], in her master thesis (titled

"Encryption and compression of HTML files") suggested the use of

Elgamal public-key encryption algorithm to encode the Webpage’s

documents. The resulted files are further processed using some

compression algorithms (such as LZ77, LZP). These compression

algorithms require a dictionary shared by the compressor and the

decompressor. The basic idea of these algorithms is to define a

unique encryption for each word in the dictionary. After the

implementation of the above two compression algorithms, the

resulted files were processed using some ready made compression

applications (such as WINRAR and WINZIP).

6. Abass, (2006), [Aba06], in his master thesis (titled "An encryption

based security system for E-mail"), used the Blowfish E-mail system

that uses Blowfish algorithm, This system is made to encrypt the text

and send it as E-mail encrypted text. The system decrypt E-mail

 7

Introduction Chapter One

encrypted text using a key called "the usable key". The applied

algorithm uses a single secret key to perform both encryption and

decryption tasks. Also, the system can encrypt bitmap image files

(*.bmp), and sends it as attached file to the recipient who will open

the file and decrypt it.

1.6 Aim of Thesis

The aim of this research is to define the way of applying

cryptography to prevent illegitimated person from viewing HTML file

(Webpage) off line. The legitimated persons can decrypt the encrypted

HTML file (Webpage) by their shared secret key. The structure of the

encrypted HTML file is compatible with HTML file standard structure and

can be viewed by any Web browser but the displayed contents of the

Webpage looks unreadable.

1.7 Thesis Outline
The remainder part of this research consists of four chapters, and

they are organized as follows:

 Chapter 2 (Theoretical Concepts): This chapter introduces the

theoretical concepts of HTML, cryptography and base64 encoding.

 Chapter 3 (The Improved HSS-Scheme): This chapter describes the

structure of the proposed system. The encoding and decoding modules

are described in details.

 Chapter 4 (Implementation and Testing): This chapter presents the

interfaces of the suggested system and shows the results of the tests to

evaluate the performance of the proposed system using different

HTML files.

 8

Introduction Chapter One

 9

 Chapter 5 (Conclusions and Future Work): This chapter introduces

the derived conclusions, and some suggestions for future works are

given.

 Theoretical Concepts TwoChapter

Chapter Two
Theoretical Concepts

2.1 Introduction
Over the last past years, Internet has grown from being a small

research-based conglomeration of computers and networks to a major

communication environment. Before 20 years, it was rare for a company to

have a Webpage, companies now have multiple pages. Not only those do

major corporations have WebPages, but mostly every organization, club,

group, and individual has a page as well. Unfortunately, with this increased

Web activity, comes the usual growing pain; which is due to the availability

of private or confidential information, computer espionage, and malicious

users wanting to break into the various Web sites for one reason or another

[Fis00].

This chapter reviews three topics. The first one presents a general

introduction to HTML language, some related concepts about HTTP (Hyper

Text Transfer Protocol) and browsers. The second topic is the cryptographic

principles and algorithms for security. The last topic deals with the

conceptual meaning of Base64 encoding.

2.2 Beneath the World Wide Web
The WWW is a web of pages hosted on Web servers around the

world, connected by hyperlinks that connect one page to another. Those

connections rely on a common set of protocols that allow any Web server

machine to be configured in a certain way to distribute documents across

the Internet in a standard way [NaSt00].

 10

 Theoretical Concepts TwoChapter

The WWW uses three technologies [Bro98]:

1. A markup language to handle the display of Web pages like HTML

(Hyper Text Markup Language).

2. A protocol to transmit those pages like HTTP (Hyper Text Transfer

Protocol).

3. A Web client program (i.e., Web browser) to receive the sent data

from server, interprets it, and display the results like Internet

Explorer.

The following sections will explain each of them.

2.2.1 Hyper Text Markup Language (HTML)

HTML stands for Hyper Text Markup Language. This Markup

language was invented by Tim Berners-Lee as a mean of distributing

nonlinear text, called Hypertext, to multiple points across the internet. So,

HTML is a cross-platform language that works on any type of computer,

anywhere in the world. HTML provides a rich lexicon and syntax for

designing and creating useful hypertext documents for the Web [NaTa98,

[TiBu05].

A. HTML Structure [TiBu05]
HTML is a straightforward language for describing Webpage

contents. HTML is not a programming language; it is a static descriptive

language. Markup language is a set of markup tags. The markup tags

describe how text should be displayed.

HTML markup has three types of components:

1. Elements: Identify different parts of an HTML page using tags.

2. Attributes: Information about an instance of an element.

3. Entities: Identify non-ASCII text characters, tag characters.

 11

 Theoretical Concepts TwoChapter

Every HTML markup that describes a Web page’s content includes

some combination of elements, attributes, and entities.

1. Elements [TiBu05]
Elements are the building blocks of HTML. They are used to describe

every piece of text on the page. Elements are made up of tags and the

content within those tags. A tag is the formal name for a piece of HTML

markup that signals a command, usually enclosed in angle brackets <>.

HTML tags are not case sensitive.

There are two main types of elements:

1. Container elements: Elements with content, they made up of a

tag pair and the content that sits between the opening and closing

tag in the pair. Start and end tag pairs look as seen below:

 <tag> content </tag>

Content such as paragraphs, headings, tables, and lists always

uses a tag pair.

2. Empty elements: Elements that insert something into the page

using a single tag as seen below:

 <tag>

2. Attributes [TiBu05]

Attributes allow an element to describe contents. Attributes let

HTML designers to use elements differently depending on the

circumstances. They are included within the start tag of the element and

after the element name but before the ending sign, as seen below:

 <tag attribute=”value” attribute=”value”>

Every HTML element has a collection of attributes that can be used

with it; attributes and elements cannot be mixed or matched. Some

 12

 Theoretical Concepts TwoChapter

attributes can take any text as a value while others have a specific list of

values (such as options for coloring texts in the body section).

3. Character Entities [NaTa98]

Character entities are numeric representations of characters to display

the desired character on the page; regardless of document encoding. The

text part of American Standard Code for Information Interchange (ASCII)

defines a fairly small number of characters. It does not include some special

characters, such as trademark symbols, fractions, and accented characters.

HTML uses entities to represent these Non-text characters. The browser

replaces the entity with the character it references. Each entity begins with

an ampersand (&) and ends with a semicolon (;)

Character entities can be represented in three ways:

1. Numerical entities that use decimal values: To represent entity

(symbol) using decimal values, the following syntax

“&#Unicodevalue;” is used, where Unicode value is a unique number

assigned to this symbol. The example below shows the decimal

numerical entity for the division sign.

 <Tag> I often use the ÷ sign</Tag>

2. Numerical entities that use hexadecimal values: To represent

entities using hex values, the following syntax

“&#xHexadecimalvalue;” is used, where the actual hexadecimal

value of the character replaces Hexadecimalvalue. The following

example shows the hexadecimal representation of the division sign

entity.

 <Tag> I often use the ÷ sign </Tag>

 13

 Theoretical Concepts TwoChapter

3. Named entities: Representing entities using standard HTML list

names instead of numerical values. The example below shows the

division sign entity but referring to it by its standard HTML list

name.

 <Tag>I often use the ÷ sign</Tag>

In addition to non ASCII-characters representations, HTML assumes

that some HTML markup characters, (such as: greater-than and less-than

signs) are meant to be hidden and not displayed on the Webpage, this is

because these symbols are instructions and will not show up on the

Webpage. If these symbols on the Webpage were needed, the entities for

them in the markup are included, as shown in the following example

[TiBu05]:

 <p>The paragraph element identifies some text as a paragraph :</p>

 <p>< p > This is a paragraph. < /p > </p>

Where (<) means (<) and (>) means (>).

The following five items should always be replaced with their

respective entities because most of them are used in markup tags [TiBu05]:

1. Quotation marks (“and”).

2. The less than and greater than signs (< and >).

3. The ampersand (&).

4. Any characters not commonly found in English.

5. Mathematical symbols.

HTML usually consumes multiple white spaces into a single space,

so the special escape sequence “ ” is used in case a real space is

desired in HTML text by the designer [WiBa98].

Table (B.1) in appendix (B) shows all common character entities.

 14

 Theoretical Concepts TwoChapter

B. HTML Document Parts
An HTML document parts must be built on a very specific

framework. The entire document is enclosed in the <HTML></HTML>

container tags. The first part of the document is encapsulated in the

<HEAD></HEAD> container, which itself contains a <TITLE></TITLE>

container. Finally, the body of the Webpage is contained in a

<BODY></BODY> container [Bro98]. The simplest possible HTML

document is given in Figure (2.1).

<! DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">

<HTML>

<HEAD>
 <TITLE>A Very Basic HTML Document</TITLE>

</HEAD>
<BODY>

This is where the text of the document would be.

 </BODY>

</HTML>

Figure (2.1) The generic structure of HTML document

In the above list of tags, the following types are shown:

(1) DOCTYPE Tag [NaTa98]

The DOCTYPE tag always appears in the first line of HTML

documents. It takes the general form of:

 <! DOCTYPE HTML PUBLIC "public identifier">

Where public identifier defines the HTML version employed and the

language used, as shown in Figure (2.1).

 15

 Theoretical Concepts TwoChapter

(2) HTML Tag [NaTa98]
The most fundamental tag used to create an HTML document is the

<HTML> tag. This tag should be the first item in the document (after

DOCTYPE tag), and the corresponding end tag (i.e., </HTML>) should be

the last. Together, these tags indicate that the material contained between

them represents a single HTML document. This is important because an

HTML document is a plain text ASCII file, without these tags, a browser or

other program will not be able to identify the document format and interpret

it correctly.

(3) HEAD Tag
The head element is opened by the start tag <HEAD>, and closed by

the end tag </HEAD>. This tag should follow the <HTML> start tag. The

purpose of the head element is to provide information to the application that

is interpreting the document. With the exception of the TITLE element, the

elements within the head element are not seen by the reader of the

document.

(4) TITLE Tag
A TITLE tag inside the HEAD element, <TITLE>, is a container for

the text describing the document, so a closing tag is required. The text

indicated by the TITLE tag will be displayed in the title bar of the Web

browser.

(5) BODY Tag
The <BODY> container holds all of the information actually seen in

the main browser window. Because HTML is a markup language, the body

of the document is turned on with the start tag <BODY>. Everything that

follows this tag is interpreted according to a strict set of rules that tell the

 16

 Theoretical Concepts TwoChapter

browser about the contents. The body element is closed with the end tag

</BODY>.

C. Block-Level and Inline Elements

Two different main groups of elements can be used within the BODY

section of an HTML document: block-level elements and inline elements.

The difference between the two groups is that when rendered visually in a

web browser, the content of block-level elements starts on a new line, while

the content of inline elements does not. The block-level elements may

contain inline elements while inline elements may only contain text and

other inline elements. Some examples for block-level elements are the

elements used for headings (H), paragraphs (P), forms (FORM), divisions

(DIV), tables (TABLE) and lists (OL/UL/DL).

Inline elements are those which are used to format text differently

from the surrounding text inside the same parent element, such as the

elements used for bold text (B), italic (I), underlined text (U), subscript

(SUB), superscript (SUP) and many more. They can be nested, which

means putting together one inside another; for example, <I> is bold

italic</I> or <I> and so is </I>. Table (2.1) is a list of text

formatting elements (block-level elements), and Table (2.2) is a list of

simplest HTML formatting tags (inline elements) [TiBu05].

Table 2.1 Text formatting elements [Cin99]

Tag Function Attributes

 BR Specifies a line break. CLEAR=“none,left,right,all”

 H1 Bold, very large font, centered. One or two blank lines

above and below.
ALIGN=“left,center,right,justify”

 H2 Bold, large font, flush left. One or two blank lines above

and below.
ALIGN=“left,center,right,justify”

 17

http://www.easywebtutorials.com/html-tutorial/glossary.html#blocklevel
http://www.easywebtutorials.com/html-tutorial/glossary.html#inline

 Theoretical Concepts TwoChapter

Tag Function Attributes

 H3

Italic, large font slightly indented from the left margin.

One or two blank lines above and below.
 ALIGN=“left,center,right,justify”

 H4 Bold, normal font, indented more than H3. One blank line

above and below.
ALIGN=“left,center,right,justify”

 H5 Italic, normal font, indented as H4. One blank line above. ALIGN=“left,center,right,justify”

 H6 Bold, indented same as normal text, more than H5. One

blank line above.
ALIGN=“left,center,right,justify”

 HR
A divider between sections of text; typically a full width

horizontal rule.

ALIGN=“left,center,right,justify”

SIZE=(number of point rule)

WIDTH=(percentage of screen

size) NOSHADE

 P

Indicates a new paragraph. This will cause a line break

before with extra vertical space before. Whether or not

there is space after the paragraph depends on how it ends,

with a closing tag or a different type of text block.

ALIGN=“left,center,right,justify

Table (2.2) HTML simple formatting elements [Cin99]

Tag Function Example

B Display text in bold. Buy now!

I Display text in italics. <I>This is important.</I>

U Display text underlined.

<U>Don’t forget.</U>

S Display text with strikethrough. <S>No longer available.</S>

TT Display text in monospace. <TT>x = c*t</TT>

 18

 Theoretical Concepts TwoChapter

D. BODY Element Attributes
The BODY element supports a large number of attributes. They are

important for determining the general appearance of the document. Table

(2.3) lists these attributes and their functions [Bro98].

Table (2.3) Body attributes and their functions [Bro98]

Attribute Function

ALINK Defines the color of an active link.

BACKGROUND Points to the URL of an image to use for the document background.

BGCOLOR Defines the color of the document background.

BGPROPERTIES If this is set to FIXED, the background image does not scroll.

LEFTMARGIN Sets the width of the left margin in pixels.

LINK Defines the color of an unvisited link.

TEXT Defines the color of the text.

TOPMARGIN Sets the width of the top margin in pixels.

VLINK Defines the color of an already visited link.

The following example shows the way of using BODY attributes:

 <BODY bgcolor="#FFFFFF" text="#000000" link=”#0000FF”>

E. HTML Colors
The first small step toward creating a document is to define the colors

that will be used for any text in the Webpage, as well as to define a

background color for the entire Webpage or some portion of it. If colors are

not specified, the default colors are used [Bro98].

F. Color Values
In HTML, color values are defined in two ways [TiBu05]:

 19

 Theoretical Concepts TwoChapter

1. Color Names
The HTML specification includes 16 color names that can be used to

define colors in WebPages. Table (2.4) lists the 16 standard color names

with their hexadecimal values.

2. Color Numbers

Color numbers allow using any color on WebPages by using

Hexadecimal notation. Colors are defined in HTML using a hexadecimal

coding system (the base 16 numbering system). The system is based upon

the three components (Red, Green, and Blue) which lead to the common

abbreviation of RGB. Each of the components is assigned a hexadecimal

value between 00 and FF (0 and 255 in decimal numbers). These three

values are then concatenated into a single value that is preceded by a pound

sign (#) [Bro98].

Table (2.4) Sixteen common color values [Bro98]

Color Name Hexadecimal ValueColor NameHexadecimal Value

Black #000000 Green #008000
Silver #C0C0C0 Lime #00FF00
Gray #808080 Olive #808000
White #FFFFFF Yellow #FFFF00

Maroon #800000 Navy #000080
Red #FF0000 Blue #0000FF

Purple #800080 Teal #008080
Fuchsia #FF00FF Aqua #00FFFF

When defining colors for HTML document elements color names or

their values can be used. For example, the following lines are equivalent:

 <BODY BGCOLOR="#FFFFFF">

 <BODY BGCOLOR="WHITE">

 20

 Theoretical Concepts TwoChapter

G. FONT Element
The method that HTML uses for providing control over the

appearance of the text is the FONT element. The FONT element is a

container that is opened with the start tag and closed with the

 end tag. The FONT container surrounds the text that a font is

wanted to assign to. Table (2.5) shows how each of the attributes should be

used. The browser needs to have the specified font to be installed on the

computer. If the browser does not have the correct font, it will use the

default font as set in its preferences. Figure (2.2) shows an example of how

a font attributes (FACE, SIZE, and COLOR) is specified and Figure (2.3)

shows the Webpage displayed in Microsoft Internet Explorer [Bro98].

Table (2.5) The list of attributes of the font tag [NaTa98]

Attribute How It’s Used Sample Syntax

SIZE

This attribute can specify absolute sizes from 1 to 7,

or relative sizes such as +3. Relative sizes which are

larger than the defaults are recommended. That is,

use sizes which begin with a + (plus) sign.

Web

design is fun!

Web

design is fun!

Web

design is fun!

COLOR

This attribute can specify the color by name (such as

red), or by hexadecimal value (which gives much

more control over the color).

<FONT

COLOR="#000099">Web

design is fun!

Web

design is fun!

FACE

This attribute defines the typeface. More than one

typeface can be specified and the browser looks for

the first one specified. If the user’s computer has

none of the typefaces specified, the page will be

displayed in the default face. Commas separate the

names of the fonts.

<FONT

ACE="Arial,Helvetica">Web

design is fun!

 21

 Theoretical Concepts TwoChapter

<HTML>
<HEAD>
<TITLE>Font face, Size,color Examples</TITLE>
</HEAD>
<BODY>

This is an example of. Arial selection

This is an example of Verdana selection.

This is an example of Helvetica selection.

Size 5

Size 6

This text is red

</BODY>
</HTML>

Figure (2.2) Font attributes (face, size and color)

 Figure (2.3) Webpage in Microsoft Internet Explorer

 22

 Theoretical Concepts TwoChapter

2.2.2 Browsers
Web browsers were created specifically for the purpose of reading

HTML instructions (known as markup), and displaying the resulting Web

page. Web browsers interpret HTML files in their own way; the same

HTML may not look exactly same from one browser to other [KeMu06].

Web browsers access HTML documents when entering a URL (Uniform

Resource Locator) in the URLs field on the browser, the browser goes

through the following three basic steps [NaSt00]:

1. It determines what protocol to use.

2. It looks up and contacts the server that have the specified address.

3. It requests the specific document (including its path statement) from

the server computer.

The browser usually figures these previous steps by a combination of

the selected protocol and the extension of the filename in question. For

instance, a file called index.html that is accessed using a URL and started

with the http:// protocol will be displayed in the browser as an HTML file,

complete with formatting and hypertext links. However, if that same file is

renamed index.txt, even if it is loaded with an http:// protocol URL, it will

be displayed in the browser as a simple ASCII file, just as if it were being

displayed in notepad, this is because the extension tells the web browser

how to display the file.

Browsers and HTTP (Hyper Text Transfer Protocol) servers need not

be part of the Web to function. There is no need to be connected to the

Internet or to any network to write HTML documents and operate a

browser. Locally stored documents and accessory files can be loaded and

displayed directly on the browser. Many organizations take the advantage of

this capability by distributing catalogs and product manuals, for instance, on

a much less expensive, but much more interactively useful, CD-ROM,

 23

 Theoretical Concepts TwoChapter

rather than via traditional print on paper. Organizations can be connected to

the Internet but also maintain private web sites and document collections for

distribution to clients on their local networks. In fact, private web sites are

fast becoming the technology of choice for the paperless offices during the

last years. With HTML document collections, businesses can maintain

personnel databases complete with employee photographs and online

handbooks, collections of blueprints, parts, assembly manuals, and so on all

readily and easily accessed electronically by authorized users and displayed

on a local computer.

2.2.3 Types of Browsers
The Web world is full of browsers of many versions and feature sets.

Two of the more popular browsers are Microsoft Internet Explorer and

Netscape Navigator. Web browsers are categorized by platform (i.e., the

operating system being used on the computer in question, for example:

Windows, Mac, or UNIX) and by version number. The features of each

browser are slightly different within the same version number across

platforms and are often significantly different across versions. Differences

may be as minor as which font is the default or as major as whether the

browser supports Java or not [TiBu05].

2.2.4 Hyper Text Transfer Protocol (HTTP)
Interaction between browsers and servers are made possible by a set

of computer-communication instructions called Hypertext Transfer Protocol

(HTTP). This protocol defines how browsers should request WebPages and

how Web servers should respond to those requests. Web browsers and Web

servers do all of the HTTP work for the user, so the user only have to put

his Webpages on a server and/or type the Web address into a browser.

 24

 Theoretical Concepts TwoChapter

There are not many security protocols specifically designed for individual

applications. However, because the WWW has become one of the fastest

growing applications in the Internet, a specific security protocols were

designed to be used for secure Web transactions, like; Secure Hyper Text

Transport Protocol (SHTTP) and HTTP over SSL (HTTPS) [Cis89].

A. Secure Hyper Text Transfer Protocol (SHTTP)

SHTTP is a secure message-oriented communication protocol

designed to be used for securing messages using the HTTP protocol. The

protocol preserves the characteristics of HTTP while allowing request and

reply messages to be signed, authenticated, encrypted, or any combination

of these. Multiple key-management mechanisms are supported, including

password-style manually shared secrets and public-key exchange.

prearranged symmetric session keys are used to send confidential messages.

Secure HTTP can verify message integrity and sender authenticity for a

message using the message authentication code (MAC). The MAC is

computed as a keyed hash over the document using a shared secret. No

secure pipe is established between the parties [Cis89].

B. Hyper Text Transfer Protocol over SSL (HTTPS)
Secure Sockets Layer (SSL) was developed by Netscape to provide

security when transmitting information on the Internet. Netscape recognized

the need to develop a process that would ensure confidentiality when

entering and transmitting information on the Web. SSL utilizes both

asymmetric and symmetric key encryption to setup and transfer data in a

secure mode over an unsecured network. When it is used with a browser

client, SSL establishes a secure connection between the client browser and

the server. It sets up an encrypted tunnel between a browser and a Web

 25

 Theoretical Concepts TwoChapter

server over which data packets can travel. The common differences between

SHTTP and HTTPS are:

• HTTPS is connection-oriented and operates at the transport level. It

creates a secure connection over which transactions are transmitted.

• SHTTP is transaction-oriented and operates at the application level.

• HTTPS enjoys wide acceptance, while SHTTP's use is very limited

(specifically designed for HTTP and not for other protocols). Not all

Web browsers support SHTTP [Can01].

2.3 Web Security
Web is an ocean of information where individuals and organizations

are connected to each other through different networks. Therefore, whether

it is an individual or an organization, security on the Web mostly implies

security of information. Web security is essential in order to implement the

following requirements [Bha03]:

1. Confidentiality: It refers to securing critical information from

disclosure to unauthorized users. The extent to which confidentiality should

be maintained depends upon the type of information to be secured. The type

of information an organization shares with its employees, and conversely

with people outside the organization, is an example that illustrates the

difference in levels of confidentiality maintained. An organization would

share all policies and procedures with its employees. In contrast, it would

not like to share such information with outsiders. Similarly, information

about the appraisal of employees would only be accessible to supervisors

and the human resources (HR) department. Such information would not be

accessible to all employees of the company. There were many solutions to

protect (or conceal) the confidential information sent over network from

eavesdroppers, but the most practical way is encryption.

 26

 Theoretical Concepts TwoChapter

2. Integrity: It implies ensuring that unauthorized users do not modify

information. It is essential to maintain the integrity of information on the

Web if users do not want that information to be misinterpreted by the

intended audience. Many Methods were used to address these unauthorized

alteration or modification of data; this is done with digitally signed message

digest codes. Data modification includes things like insertion, deletion, and

substitution [Gar01].

3. Availability: Ensuring the availability of data or information; this

implies that the data or information is available for use whenever the need

arises.

4. Authentication: It is a mechanism for ensuring that an individual who

is trying to access a resource on the Web is “who actually claims to be”.

Also, it implies ensuring that only authorized individuals are permitted to

access information.

2.3.1 Cryptography

Cryptography is the science of using mathematics to encrypt and

decrypt data. Cryptography enables users to store sensitive information or

transmit it across insecure networks (like the Internet) so that it cannot be

read by anyone except the intended recipient. While cryptography is the

science of securing data, cryptanalysis is the science of analyzing and

breaking secure communication. Cryptanalysts are also called attackers.

Cryptology embraces both cryptography and cryptanalysis [Net90].

2.3.2 Messages and Encryption
The information that the sender wants to send to the receiver, which it

is called “plaintext” can be English text, numerical data or stream of bits.

 27

 Theoretical Concepts TwoChapter

The sender encrypts the plaintext, using a predetermined key, and sends the

resulting ciphertext over the channel. The attacker, upon seeing the

ciphertext in the channel by eavesdropping, cannot determine what the

plaintext was; but the receiver, who knows the encryption key, can decrypt

the ciphertext and reconstruct the plaintext.

This concept is described more formally using the following

mathematical notation: A cryptosystem is a five-tuple (P, C, K, E, D)

system, where the following conditions are satisfied:

1. P is a finite set of possible plaintexts.

2. C is a finite set of possible ciphertexts.

3. K, the key space, is a finite set of possible keys.

4. For each (K∈K), there is an encryption rule (EK∈E) and a

corresponding decryption rule (DK ∈D). Each (EK: P → C) and (DK:

C →P) are functions such that (DK (EK(x)) = x) for every plaintext (x

∈ P). It must be the case that each encryption function EK is an

injective function (i.e., one-to-one), otherwise, decryption could not

be accomplished in an unambiguous manner [Sti95]. Figure (2.4)

illustrates the encryption and decryption processes.

 Figure (2.4) Encryption and decryption [Men96]

 28

 Theoretical Concepts TwoChapter

2.3.3 Cryptographic Protocols

A protocol is a series of steps, involving two or more parties designed

to accomplish a task. The parties can be friends trust each other implicitly or

they can be adversaries and do not trust one another. A cryptographic

protocol involves some cryptographic algorithms [Sch96]. Encryption and

decryption algorithms, cryptographic hash functions and pseudorandom

generators are the basic building blocks for solving problems involving

secrecy, authentication and data integrity. Randomness and the security of

cryptographic schemes are closely related. There is no security without

randomness. An encryption method provides secrecy only if the ciphertexts

appear random to the adversary [Net90].

Cryptographic systems are characterized along three independent

dimensions [Sta05]:

1. The type of operations used for transforming plaintext to ciphertext.

All encryption algorithms are based on two general principles:

(a) Substitution: In which each element in the plaintext (bit, letter,

group of bits or letters) is mapped into another element.

(b) Transposition: In which elements in the plaintext are rearranged.

The fundamental requirement in both cases is that no information be

lost.

2. The number of keys used: If both sender and receiver use the same key,

the system is referred to as symmetric, single-key, secret-key, or

conventional encryption. If the sender and receiver use different keys,

the system is referred to as asymmetric, two-key, or public-key

encryption.

3. The way in which the plaintext is processed: A block cipher processes

the input as one block of elements at a time, producing an output block

 29

 Theoretical Concepts TwoChapter

for each input block. A stream cipher manipulates the input elements

continuously, producing output one element at a time.

2.3.4 Symmetric Cryptosystems

Any symmetric encryption scheme has five elements as shown in

figure (2.5), they are [Sta05]:

1. Plaintext: The original intelligible message or data that is fed into the

algorithm as input.

2. Encryption algorithm: The encryption algorithm performs various

substitutions and transformations on the plaintext.

3. Secret key: The secret key is also input to the encryption algorithm.

The key is a value independent of the plaintext and of the algorithm.

The algorithm will produce different output depending on the specific

key being used at the time.

4. Ciphertext: The scrambled message produced as output. It depends on

the plaintext and the secret key. For a given message, two different

keys will produce two different ciphertexts. The ciphertext is an

apparently random stream of data and is unintelligible.

5. Decryption algorithm: The encryption algorithm runs in reverse. It

takes the ciphertext and the secret key and produces the original

plaintext.

Figure (2.5) Simplified model of symmetric encryption [Sta05]

 30

 Theoretical Concepts TwoChapter

Challenges with secret key encryption include the following [Cis89]:

1. Changing the secret keys frequently avoiding the risk of compromising

 plaintext to

e of

ciphertext until an intelligible translation into plaintext is obtained.

2.3.5

.e., G, E, D); its algorithms satisfy the following conditions

 (called the ciphertext). The notation (c

the keys.

2. Securely generating the secret keys.

3. Securely distributing the secret keys.

The objective of attacking an encryption system is to recover the key

in use rather than recover the plaintext of a single ciphertext. There are two

general approaches for attacking a conventional encryption scheme [sta05]:

1. Cryptanalysis: Cryptanalytic attacks rely on the nature of the algorithm

plus some knowledge of the general characteristics of the

deduce a specific plaintext or to deduce the key being used.

2. Brute-force attack: The attacker tries every possible key on a piec

 Public-Key Cryptosystems
A public-key encryption (asymmetric algorithm) scheme has triple

elements, (i

[GoBe01]:

1. Key generation algorithm: Algorithm G, which, on input k (the

security parameter) produces a pair (e, d) where e is called the public

key and d is the corresponding private key (in a mathematical

notation (e, d) ∈ G (k)). The pair (e, d) refers to the pair of

encryption/decryption keys. Asymmetric algorithms rely on one key

for encryption and a different but related key for decryption [Sta05].

2. An encryption algorithm: Algorithm E, which takes as input a

security parameter k, a public-key e from the range of G(k) and string

m ∈{0,1} (called the message), and produces as output, a string c
∈{0,1} ∈E (k, e, m) is used to

 31

 Theoretical Concepts TwoChapter

denote that the message m is encrypted using key e with security

parameter k.

3. A decryption algorithm: Algorithm D, which takes as input, a

security parameter k, a private-key d from the range of G(k), and a

ciphertext c from the range of E(k, e, m). As output it produces a

string m´ ∈ (0, 1), such that for every pair (e, d) in the range of G (k),

for every m, for every c ∈ D (k, e, m), the probability (D (k, d, c)
≠m´) is negligible. Public key encryption scheme is illustrated in

Figure (2.6).

Figure (2.6) Public-key encryption [Sta05]

Among all encryption algorithms, symmetric-key encryption

algorithms have the fastest implementations in hardware and software.

Therefore, they are very well-suited to the encryption of large amounts of

data. Symmetric-key ciphers can be employed as primitives to construct

various cryptographic mechanisms including pseudorandom number

generators and hash functions. Public key encryption algorithms are rarely

used for data confidentiality because of their performance constraints.

Instead, public key encryption algorithms are typically used in applications

 32

 Theoretical Concepts TwoChapter

involving authentication using digital signatures and key management

[Cis89, Sch96].

2.3.6 Stream Cipher
 A stream cipher is still playing an important role in cryptography.

Many of the most commonly used symmetric encryption systems are stream

ciphers [Sti95]. Stream cipher system converts plaintext to cipher text bit by

bit. Figure (2.7) presents a simple diagram of a stream cipher. A keystream

generator (sometime called a running-key generator) outputs a stream of

bits: K1, K2, K3,…, Ki. This keystream is XORed with a stream of plaintext

bits, P1, P2, P3,…., Pi to produce the stream of ciphertext bits:

iii KPC ⊕= ………………………………………………..…. (2.1)

At the decryption end, the ciphertext bits are XORed with an identical

and synchronized keystream to recover the plaintext bits:

 …………………………………………………….. (2.2) iii KCP ⊕=

Because,

 …..………………………………………….… (2.3) iiii PKKP =⊕⊕

The system's security depends entirely on the keystream generator. If

the keystream generator outputs an endless stream of zeros, then the

produced ciphertext is equal to the plaintext and the whole operation

becomes worthless. If the keystream generator spits out an endless stream of

random bits, a prefect security will be obtained [Sch96].

The stream cipher is similar to the one-time pad; the difference is that

a one-time pad uses a genuine random number stream whereas a stream

cipher uses a pseudorandom number stream. The important design

 33

 Theoretical Concepts TwoChapter

considerations should be taken when dealing with a stream cipher system

are:

1. The encryption sequence should have a large period. A pseudorandom

number generator uses a function that produces a stream of bits that

eventually repeated. The longer the period of repeat the more difficult

it will be to do cryptanalysis.

2. The key stream should approximate the properties of a true random

number stream as close as possible.

3. The output of the pseudorandom number generator is mainly depends

on the value of the input key.

Stream ciphers are often breakable if the key stream repeats itself or

has redundancy. To be unbreakable; a random sequence must be as long as

the plaintext [Dor83]. In stream cipher, the plaintext is modulated by the

random key sequence. The XOR operation often acts as a modulation

operation. Some random sequence generators have been reported to

generate a random key sequence such as linear feedback shift register

(LFSR) [Lia09].

Figure (2.7) Stream cipher diagram [Sta05]

 34

 Theoretical Concepts TwoChapter

2.3.7 Pseudo-Random Number Generator (PRNG)
There is a close relationship between encryption and randomness.

The security of encryption algorithms usually depends on the random

choice of keys and bit sequences [DeKn07]. However, generating random

values on a computer is a very difficult task. One possible method for such

generation is to use a pseudo-random numbers generator.

A pseudo-random number generator (PRNG), as shown in Figure

(2.8), is a function that once initialized with some random value (called the

seed) it outputs a sequence that appears random, in the sense that an

observer who does not know the value of the seed cannot distinguish the

output from that of a (true) random bit generator. PRNG is a deterministic

process: if the same state put back, the same sequence will be reproduced.

This property makes PRNGs suitable for use as stream ciphers. PRNG

structure is composed of a seed repository, an output function producing

some random-looking bits from the seed and a feedback function that

iteratively transforms the seed. It can be shown that a PRNG is necessarily

periodic: the sequence it produces will repeat itself after a (possibly

extremely long) period [Til05].

Figure (2.8) PRNG using stream cipher [Til05]

2.3.8 Linear Feedback Shift Register (LFSR)
LFSR is one of the appealing aspects of keystream generation in

which the keystream can be produced efficiently (but insecure) in hardware

[Opp05]. A LFSR, as depicted in Figure (2.9), is composed of a register

 35

 Theoretical Concepts TwoChapter

which is an array of memory cells, each capable of storing one binary value

and a feedback function which consists of the XOR operator applied to a

selected cells of the register (taps). For each new unit of time, the following

operations are performed:

1. The content of the last memory cell is output.

2. The register is processed through the feedback function, in which the

selected memory cells are XORed together to produce one bit of

feedback.

3. Each element of the register advances one position, the last element

being discarded, and the first one receives the result of the feedback

function.

LFSR can produce sequences with large periods and good statistical

distribution and theoretically well understood. However, they are not

cryptographically highly secured; because efficient techniques are known to

reconstruct the content of the register, and hence the full LFSR’s output, by

observing a short output sequence. Nevertheless, LFSRs can be used as

building blocks to construct a secure Pseudo-Random Number Generator
PRNG [Til05].

Figure (2.9) Linear feed back shift register [Til05]

2.3.9 Randomness Statistical Tests [Men96]
This section presents some of the well-known statistical tests

designed to measure the quality of a random bit generator. These tests are

 36

 Theoretical Concepts TwoChapter

accomplished by taking a sample output sequence of the generator and

subjecting it to some statistical tests. Each statistical test determines whether

the sequence possesses a certain attribute that a truly random sequence

would be likely to exhibit. Passing the tests merely provides probabilistic

evidence that the generator produces sequences, which have to some extent

certain characteristics of random sequences.

Let be a binary sequence of length n. The statistical

tests that are commonly used for determining whether the binary sequence

{s} possesses some specific characteristics of randomness are:

1210 ,...,,, −= nsssss

1. Frequency Test (monobit test)
The purpose of this test is to determine whether the number of 0’s

and 1’s in {s} are approximately same, as would be expected for a random

sequence. Let denote the number of 0’s and 1’s in s, respectively. The

used monobit measure is:

10 , nn

n

nn
X

2
10

1
)(−

= ………………..……………….….………… (2.4)

Which approximately follows a 2χ distribution with 1 degree of

freedom (υ) if n ≥10.

2. Serial Test (two-bit test)
The purpose of this test is to determine whether the number of

occurrences of 00, 01, 10, and 11 as subsequences of s are approximately

the same, as would be expected for a random sequence.

Let denote the number of 0’s and 1’s in s, respectively, and let

 denote the number of occurrences of 00, 01, 10, 11 in s,

10 , nn

11, n100100 ,, nnn

 37

 Theoretical Concepts TwoChapter

respectively. It is noted that)1(11100100 −=+++ nnnnn since the

subsequences are allowed to overlap. The used statistical measure is:

 (
1

4 2
10

2
01

2
002 +++

−
= nnn

n
X 1)(2) 2

1
2
0

2
11 ++− nn

n
n ………….… (2.5)

Which approximately follows a 2χ distribution with 2 degrees of

freedom (υ) if n ≥ 21.

3. Poker Test

Let m be a positive integer such that ⎥⎦
⎥

⎢⎣
⎢

m
n)2(5 m×≥ , and

let ⎥⎦
⎥

⎢⎣
⎢=

m
nK . The sequence {s} is divided into k non-overlapping parts each

has length m, and let ni be the number of occurrences of one’s in the type

of sequence of length ,

thi

m mi 21 ≤≤ . The poker test determines whether the

sequences of length appear, approximately, the same number of times in

{s}, as would be expected for a random sequence. The used statistical

measure is:

m

 kn
k

X
m

i
i

m

−⎟
⎠
⎞

⎜
⎝
⎛= ∑

=

2

1

2
3

2
.…………………………………….. (2.6)

Which approximately follows a 2χ distribution with degrees of

freedom (

12 −m

υ). It is noted that the poker test is a generalization of the

frequency test, when setting m = 1 in the poker test yields the frequency

test.

 38

 Theoretical Concepts TwoChapter

4. Runs test
The purpose of the runs test is to determine whether the number of

runs (of either zeros or ones) of various lengths in the sequence {s} is as

expected for a random sequence. The expected number of gaps or blocks of

length i in a random sequence of length n is () 22/3 ++−= i
i ine

iB iG

 . Let k be

equal to the largest integer i for which . Let and be the number

of blocks and gaps, respectively, of length i in {s}; for each i, 1 ≤ i ≤ k. The

used statistical measure is:

5≥ie

() ()∑∑

==

−
+

−
=

k

i i

ii
k

i i

ii

e
eG

e
eB

X
1

22

1
4 …..………………….…… (2.7)

Which approximately follows a 2χ distribution with (2× k − 2)

degrees of freedom (υ).

5. Autocorrelation test
The purpose of this test is to check the degree of correlations may

found between the parts of sequence{s} and the (non-cyclic) shifted

versions of it. Let d be a fixed integer, such that ⎣ ⎦2/1 nd ≤≤ . The number

of bits in{s} not equal to their d-shifts is where denotes

the XOR operator. The statistic used to conduct the autocorrelation test is:

() ∑
−

=

=
dn

i

dA
−

+⊕
1

0
dii ss ⊕

 ………………………………. (2.8) () dn−dndAX ⎟
⎠
⎞

⎜
⎝
⎛ −

−= /
2

25

Which approximately follows a standard normal distribution, if (n-d

10). ≥

 39

 Theoretical Concepts TwoChapter

2.3.10 The 2χ Distribution

This distribution can be used to compare the goodness-of-fit of the

observed frequencies of events to their expected frequencies under a

hypothesized distribution. The chi-square distribution with (υ)degrees of

freedom arises in practice when the squares of (υ) independent random

variables having standard normal distributions are summed.

 Table (C.1) in appendix C presents more details about the 2χ distribution.

2.4 Cryptographic Hash Function
A hash function is an algorithm that takes a block of input data and

generates a shorter fixed length piece of it. This process is done by applying

some functions, like that shown in Figure (2.10). The purpose of a hash

function is to produce a “fingerprint” of a block of data, and it attains a high

level of confidence in the integrity of the block of data during transit. A

special variant is “Cryptographic Hash Function”, which has specific

features making it suitable in cryptography [Can01].

A hash function must exhibit the following properties if it is

considered cryptographically suitable [Cis89]:

1. It must be consistent; that is, the same input must always create certain

output.

2. It must be random ;(or give the appearance of randomness) to prevent

guessing the original message.

3. It must be unique; that is, it should be nearly impossible to find two

messages have the same digest (stands for digital signature).

4. It must be one way; that is, if the output is given, it must be extremely

difficult, if not practically impossible, to ascertain the input message.

To achieve secure transmission, integrity protection should be

ensured, and this requirement could fulfilled by a message digest or hash

 40

 Theoretical Concepts TwoChapter

algorithm, which is applied to produce a hash value that is concatenated

with the transmitted message (usually before encryption). If an attacker

changes the content of the message during the transmission, the calculated

hash value and the transmitted hash value at the receiving end will not

match. A widely used message digest or hash algorithm is message digest 5

(MD5), which is adopted in this work.

Figure (2.10) Hash function mechanism

2.5 Message Digest 5 (MD5) [Ber92]

It is one in a series of message digest algorithms; it was designed by

professor Ronald Rivest of MIT. When the analytic work indicated that

MD5's predecessor MD4 was likely to be insecure, then MD5 was designed

in 1991 to be a secure replacement. MD5 digests have been widely used in

the software world to provide some assurance that a transferred file has

arrived intact. For example, file servers often provide a pre-computed MD5

checksum for the files, so that a user can compare the checksum of the

downloaded file to it.

MD5 algorithm processes a variable-length message into a fixed-

length output of 128 bits. As illustrated in Figure (2.11), the input message

is broken up into chunks of 512-bit blocks (sixteen 32-bit); the message is

padded so that its length becomes divisible by 512. The padding works as

follows: first, a single bit, its value is 1, is appended to the end of the

message. This is followed by as many zeros as are required to bring the

 41

 Theoretical Concepts TwoChapter

length of the message up to 64 bits less than a multiple of 512. The

remaining bits are filled up with a 64-bit integer representing the length of

the original message (in bits).

The main MD5 algorithm operates on a 128-bit state, divided into

four 32-bit words, denoted A, B, C and D. These are initialized to certain

fixed constants. The main algorithm then operates on each 512-bit message

block in turn, each block modifying the state. The processing of a message

block consists of four similar stages, termed rounds; each round is

composed of 16 similar operations based on: (a non-linear function (F),

modular addition, and left rotation).

Figure (2.11) Message digest generation using MD5 [Sta05]

Figure (2.12) illustrates one operation within a round. MD5 consists of

64 of these operations (grouped in four rounds of 16 operations). As shown

in the Figure, (Mi) denotes a 32-bit block of the message input, and (Ki)

denotes a 32-bit constant, different for each operation. The symbol ()

denotes addition modulo 232, and the symbol (s) denotes a left bit rotation

by (s) places; (s) varies for each operation.

 There are four possible functions; a different one is used in each

round:

 ………………………………………………………………………………………………... .9) (2

 42

 Theoretical Concepts TwoChapter

………………………………………………………………………………………...………... 0) (2.1

……………………………..…………... 1)

 (2.1

……… 2)

 (

 (2.1

Where the symbols (())) denote the XOR, AND, OR and

NOT operations respectively. The main operations and the four rounds are

mentioned in appendix A.

Figure (2.12) One MD5 operation within a round [Ber92]

2.6 Encoding
 Coding means the replacement of one word with another word or

symbol. In contrast, a cipher means a character-for-character or bit-for-bit

transformation, without regard to the linguistic structure of the message

[Tan03].

In short:

• Encoding = to convert format, not necessarily securely.

• Encryption = encipherment = make secret.

Encoding covers many different processes, including [Bar05]:

 43

 Theoretical Concepts TwoChapter

1. Storing textual data encoded in various formats: ASCII, EBCDIC and

Unicode.

2. Encoding ciphertext and other binary data that cannot be printed using

various formats (like base64, hexadecimal).

3. Encoding the plaintext in a specific format before encrypting it.

2.7 Base64 Encoding [BoFr93]
The base64 encoding scheme was originally devised to make it

possible to reliably transmit eight-bit data through transmission systems

constrained to handle seven-bit data. The use of base64 encoding makes it

possible to:

• Transmit image data reliably across the Internet.

• Transmit non-English characters reliably across the Internet.

The base64 (content-transfer-encoding) is designed to represent

arbitrary sequences of octets in a form that need not be humanly readable.

The encoding and decoding algorithms are simple, but the encoded data are

consistently only about 33 percent larger than the unencoded data. A 65-

character subset of US-ASCII is used, enabling 6 bits to be represented per

printable character (The extra 65th character, "=", is used to signify a

special processing function).
The encoding process as shown in Figure (2.13) represents 24-bit

groups of input bits as output strings of 4 encoded characters. Proceeding

from left to right, a 24-bit input group is formed by concatenating three 8-

bit (byte) input groups. These 24 bits are then treated as 4 concatenated 6-

bit groups, each of which is translated into a single digit in the base64

alphabet. When encoding a bit stream via the base64 encoding, the bit

stream must be presumed to be ordered with the most significant bit first.

That is, the first bit in the stream will be the high-order bit in the first 8-bit

 44

 Theoretical Concepts TwoChapter

byte, and the eighth bit will be the low-order bit in the first 8-bit byte, and

so on. Each 6-bit group is used as an index into an array of 64 printable

characters. The character referenced by the index is placed in the output

string. These characters, identified in Table (2.6), are selected so as to be

universally representable, and the set excludes characters with particular

significance (e.g., ".", CR, LF). A full encoding quantum is always

completed at the end of a body. When fewer than 24 input bits are available

in an input group, zero bits are added (on the right) to form an integral

number of 6-bit groups. Padding at the end of the data is performed using

the "=" character.

Figure (2.13) Base64 encoding diagram [Mel04]

Table (2.6) Base64 encoding [Mel04]

 45

 Theoretical Concepts TwoChapter

 Since all base64, input is an integral number of octets; only the

following cases can arise:

1. When the final quantum of encoding input is an integral multiple of

24 bits; the final unit of encoded output will be an integral multiple of

four characters with no "=" padding.

2. When the final quantum of encoding input is exactly 8 bits; the final

unit of encoded output will be two characters followed by two "="

padding characters.

3. When the final quantum of encoding input is exactly 16 bits; the final

unit of encoded output will be three characters followed by one "="

padding character.

Because "=" is used only for padding at the end of the data, the

occurrence of any "=" characters may be taken as evidence that the end of

the data has been reached (without truncation in transit). Any characters

outside of the base64 alphabet are to be ignored in base64-encoded data.

In addition to base64 encoding, many types of encoding algorithms

exist, like hexadecimal encoding. Hexadecimal encoding uses two symbols

(i.e., {0, 1, 2,..., F}) to encode each byte character. In this encoding scheme,

sixteen readable characters could be used to represent all variations in one

nibble (i.e., half part of a byte).

Example (2.1) listed below shows the steps required to encode a

small binary string into base64 encoding and hexadecimal encoding.

Example (2.1)
a. Base64

Suppose the binary string is 001100110011000111111000. The 24-bit

binary string can be divided into four sets of 6 bits:

001100 110011 000111 111000

 46

 Theoretical Concepts TwoChapter

If the 6-bit binary numbers are converted to base-10 notation, then:

0 × 32 + 0 × 16 + 1 × 8 + 1 × 4 + 0 × 2 + 0 × 1 =12

1 × 32 + 1 × 16 + 0 × 8 + 0 × 4 + 1 × 2 + 1 × 1 =51

0 × 32 + 0 × 16 + 0 × 8 + 1 × 4 + 1 × 2 + 1 × 1 =7

1 × 32 + 1 × 16 + 1 × 8 + 0 × 4 + 0 × 2 + 0 × 1 =56

looking up 12, 51, 7 and 56 in the base64 Table (2.6), they are ‘M’ for

12, ‘z’ for 51,’H’ for 7 and ‘4’ for 56. This binary sequence can be

represented as four text characters ‘MzH4’. Figure (2.14) shows the applied

steps for base64 encoding operation.

3 ASCII characters (24-bits)

00110011 00110001 11111000

 Base64 Encoder

Binary 001100 110011 000111

111000

Decimal 12 51 7 56

 Base64 M z H 4
 4 Base64 characters (24-bits)

Figure (2.14) Base64 Encoding

b. Hexadecimal
The same 24-bit binary string can be divided into six sets of 4 bits:

0011 0011 0011 0001 1111 1000

 47

 Theoretical Concepts TwoChapter

If 4-bit binary number is converted to decimal notation, then

0 × 8 + 0 × 4 + 1 × 2 + 1 × 1=3

0 × 8 + 0 × 4 + 1 × 2 + 1 × 1=3

0 × 8 + 0 × 4 + 1 × 2 + 1 × 1=3

0 × 8 + 0 × 4 + 0 × 2 + 1 × 1=1

1 × 8 + 1 × 4 + 1 × 2 + 1 × 1=15

1 × 8 + 0 × 4 + 0 × 2 + 0 × 1=8

Then, the above binary string is represented as six hex digits ‘3331F8’.

Figure (2.15) depicts the steps performed in hexadecimal encoding

operation.

3 ASCII characters (24-bits)

00110011 00110001 11111000

Hex Encoder

Binary 0011 0011

 0011 0001

1111

1000

Decimal 3 3 3 1 15 8

Hex 3 3 3 1 F 8
 6 Hex digits (24-bits)

Figure (2.15) Hexadecimal encoding

 48

 Theoretical Concepts TwoChapter

 49

The results of the above-mentioned example indicate that the 24-bit

binary string (consist of 3 characters, each character is represented by 8-

bit) can be coded to 4 ASCII characters using base64 encoding and to 6

hex digits using hexadecimal encoding.

CChhaapptteerr TThhrreeee TThhee IImmpprroovveedd HHSSSS-- SScchheemmee

Chapter Three
The Improved HSS-Scheme

3.1 Introduction
This chapter is dedicated to present the design considerations, which

were taken throughout the construction stages of the proposed HTML

security system. The system deals with HTML files, and adds some

security aspects on them, to make them more secured in comparison with

the conventional HTML files (WebPages). The security demands relevant

to the confidentiality of HTML files contents have been given the highest

priority.

The system implies the steps of encoding the text messages to

produce a sequence of text characters, such that this sequence is not

meaningful to an unintended recipient. Beside to confidentiality, the

integrity detection aspect of the contents of HTML file had been taken as a

major demand, and it was fulfilled by adding digital signature to the

content of the file. In addition, the HTML structure condition (i.e., the

structure of the HTML file should be preserved) was taken into account.

In our proposed system, some of the theoretical concepts discussed

in chapter- 2 were utilized to provide a practical way to secure HTML files.

The name of the proposed system is chosen to be HSS (an acronym for

HTML Secure System). The main target of this system is to encrypt the

content of HTML file (i.e., Webpage) including text, color, and font,

without changing the structure of HTML file. In addition, the system can

decode the secured HTML files and display the contents by any HTML

browser.

 50

CChhaapptteerr TThhrreeee TThhee IImmpprroovveedd HHSSSS-- SScchheemmee

Two methods were used to generate a sequence of random numbers

for encrypting and decrypting HTML file. The first method is Linear Feed

Back Shift Register (LFSR). The second method is a proposed method that

uses the concept of Pseudo-Random Number Generator (PRNG).

3.2 System Model
The general structure of the proposed HSS consists of two main

modules as illustrated in Figure (3.1). These two modules are:

1. Encoding Module.

2. Decoding Module.

Each one of these two modules consists of sub modules. In the

encoding module, HTML file content is passed through the encoding

stages, and subjected to various operations to produce encrypted HTML

file (encrypted Webpage) carrying a digital signature. In decoding module,

the encrypted HTML file is passed through similar stages, and subjected to

the same previous sequence of operations, but in reverse order. The

functionality of decoding stages is reversed to retrieve the original HTML

file (Webpage). The structure of the established HSS and the functionality

of its modules will be discussed in details in the next sections.

3.3 Encoding Module
As shown in Figure (3.1a), this module consists of many sub

modules, which are all together responsible for encrypting the desired

HTML file content, and as a result producing the encrypted Webpage. In

the following subsections, the functional and structural descriptions for

each sub module are given.

 51

CChhaapptteerr TThhrreeee TThhee IImmpprroovveedd HHSSSS-- SScchheemmee

a. Encoding Module

b. Decoding Module

Figure (3.1) The structure of HSS

 52

CChhaapptteerr TThhrreeee TThhee IImmpprroovveedd HHSSSS-- SScchheemmee

3.3.1 Lexical HTML Analyzer
The first step in HSS encoding stage is the lexical analyzing of

HTML files. The established lexical HTML analyzer reads HTML files,

specifies the fixed attributes within tag contents, and extracts the implied

text within body section to be ciphered. For each line found within the

HTML file, the lexical analyzer is invoked to perform the intended

operations until the end of body section within the HTML file. This

analyzer is the major part in the implementation steps of the HSS because it

detects the desired tokens to be ciphered.

The lexical HTML analyzer implies the following two main

processes:

A. Parsing process.

B. Extraction process.

A. Parsing Process
Initially, HTML file may be stored on any storage device (or it is

downloaded via Internet and temporarily stored on a local storage media).

The established system opens the desired HTML file and scans its contents

line by line until the (<BODY> or <body>) tag is met; this process is

illustrated in Algorithm (3.1).

Algorithm (3.1) Read HTML file
Goal:
 Find <BODY>or<body>tag position of HTML file

 Input:
 HTML file
 Output:
 < BODY > or <body> tag position, tags before <body>tag saved in output
 file(“E_HTML”)

 Step1: Open HTML file for read

 Step2: Read first line of the HTML file

 Continued

 53

CChhaapptteerr TThhrreeee TThhee IImmpprroovveedd HHSSSS-- SScchheemmee

 Step3: Repeat this step until<BODY> or <body> tag is found

 Save line in “E_HTML” file
 Read next line of “HTML” file

 Step4: End

B. Extraction Process

After finding the <body> tag position, then the extraction process is

applied to extract the existing text inside the <body> section. The main text

data in HTML files lays in the body part. Since all of information presented

by any HTML browser is contained in the body, so the extraction process is

applied on the body section only.

As illustrated in Algorithm (3.2), the extraction process is performed

on each line inside the body section. The process can be summarized as

follows:

1. Read the contents of the line as a string. Check if this string contains

color or font tags (attributes). If a color attribute is found, then

algorithm (3.8) is called to cipher the color attribute value, while if a

font attribute is found, then algorithm (3.9) is called to cipher the

font attribute value.

2. Scan the string to find the existence of a pra symbol “<”, if it is

found then, allocate its position. The existence of this symbol means

the beginning of HTML tag. The characters come after this pra

symbol should be scanned and collected until reaching the end of the

tag (i.e., till meeting the ket “>” symbol). Then the collected

characters (i.e., tags content) are saved in output file called “E-

HTML”. The reason behind Saving HTML tags is to preserve the

structure of HTML file.

3. Scan the characters coming after the ket”>” symbol, and collect

these characters until reaching the pra “<” symbol. The string of

 54

CChhaapptteerr TThhrreeee TThhee IImmpprroovveedd HHSSSS-- SScchheemmee

collected characters that lay between the ket”>” and the pra “<”

symbols is ciphered and encoded. For each extracted character

within the collected string, the random key generator will be invoked

to generate a random byte to cipher this character. During the

implementation of this stage, it was noticed that, when a pra-ket

symbol (“<” or “>”) is detected within the text, the browser will

consider it a character entity and replace it with its reference value

(for more details about character entities, see chapter-2). In case of

ciphering text content (i.e., not color and font attributes); the

produced cipher text is encoded using base64 encoding scheme.

4. The overall extracted characters will be accumulated in a single

string to be used in computing the message digest of the text using

MD5 function (for integrity check).

Algorithm (3.2) Extraction Process in HSS Encoder
Goal: Extract text from the <body> container, and identify color and font
 attributes
Input:
 HTML file
Output:
 Output file”E_HTML”
Step1: \\ Initialize buffers and strings
 Set Str_Char 0 \\ Accumulates text characters for message digest ←
 process.
 Set Num_of_char←0
 Set Str_line←” “

Step2:\\ Reading, extracting, ciphering and encoding tokens
 While not end of HTML file
 Read line of HTML file
 Assign line from HTML file to Str_line string
 Set Str_line ←Lcase(Str_line)
 If” color” or “bgcolor”or”text”or”background” in Str_line is found then
 Call algorithm (3.8) to cipher color
 If ” font” in Str_line is found then
 Call algorithm (3.9) to cipher font
 Read Character from Str_line in <body> container

Continued

 55

CChhaapptteerr TThhrreeee TThhee IImmpprroovveedd HHSSSS-- SScchheemmee

 Repeat \\ Reading characters between tag content
 Save character in “E_HTML” file \\ Saving tag content in output file to

 order the browser to display Webpage
 Read next character from file in sequence
 Until character =”>”

 Repeat \\ Finding the desired text after the ending tag
 Read next character from file in sequence \\ Read the character to be
 ciphered
 Call random number generator \\ To generate random_number
 Set Cipher_char character Xor random_number ←
 Set Ciphered_ char(Num_of_char)← Cipher_char
 Increment Num_of_char by 1
 If Num_of_char=3 then \\ Counter to encode 3 ciphered characters
 Call algorithm (3.10) to encode ciphered_char vector using Base 64
 encoding
 Set Num_of_char←0 \\ Reset counter for base64 encoding next 3
 Characters
 Save encoded ciphered_char in “E_HTML” file
 End If
 Set Str_Char Str_Char + character \\ Accumulate text to be ←
 processed by MD5 function
 Until character=”<”
 End While

 Step3: \\ Integrity check
 Call MD5 function to compute the message digest of HTML file
 Call random number generator to cipher message digest
 Call algorithm (3.10) to encode message digest using Base64 Encoding
 Concatenate ciphered encoded text with ciphered encoded message digest
 Step4: Return “E_HTML”

3.3.2 Encrypting HTML File

When confidentiality is a requirement, a high price of private

dedicated network connections must be paid or data must be encrypted, so

that no one who tries to intercept this data can know its content anyway.

Since the encryption provides greater flexibility and lower cost, it is

increasingly becoming the predominant solution. In this work, two fast

encryption methods were adopted to scramble the text hold within the

HTML file, in such a way it becomes safe to send it across the public

 56

CChhaapptteerr TThhrreeee TThhee IImmpprroovveedd HHSSSS-- SScchheemmee

network and only the intended receiver can read it. Thus, eavesdroppers

will not be able to make a sense of what they have just received.

To ensure system secrecy, the key entered by the user must be kept

as large as possible, and its correctness should be ensured during the

initialization stage of the key generation. The user entry cannot be trusted

since a failure may occur during the entry of the long secret key. As a help

tool, a systematic method was used to expand the user input key by

padding its secret key. This method ensures the use of long length secret

key and provides strength to the generator without depending on the user.

 The user enters the secret key (its maximum length is 20 characters

for the proposed random generator and 8 characters for LFSR); and

padding operation is performed if the entry is less than the mentioned

characters. The operations applied for padding characters is by taking the

sum of the existing ASCII input characters, then modulating the sum by

256 and converting the result to character form by applying the chr ()

function. This method is repeated until the length of the secret key is

satisfied. When using LFSR generator, the eight characters produced from

padding process are reduced to four characters (each with 8-bit). The

suggested simple method to perform key padding is illustrated in algorithm

(3.3).

Algorithm (3.3) Secret Key Padding
Goal:
 Padding the secret key
Input:
 Secret key (Sec_key)
 K() a predefined filler matrix
Output:
 Padded secret key

Step 1: \\Padding the secret key, secret key length is N characters
 Set J 1 \\ N is 20 for the proposed generator ←
 and 8 for LFSR Continued

 57

CChhaapptteerr TThhrreeee TThhee IImmpprroovveedd HHSSSS-- SScchheemmee

 While Length (Sec_key) < N
 Set Sum←0

 For each I from 1 to length(sec_key) do
 Set Sum Sum + (K(I,J)← × Asc(Mid(Sec_key,I,1))
 End For
 Set Sum Sum mod 256 ←
 Set Sec_key Sec_key+Chr(Sum) ←
Set J← j+1

 End While
Step2: Return(Padded secret key)

After padding, the extended key needs to be converted to the binary

form to be used in encryption process. Algorithm (3.4) illustrates the

process of conversion to binary form.

Algorithm (3.4) Binary Form Conversion
 Goal:
 Converting secret key to binary form
 Input:
 Secret key
 Output:
 Vector Bit () of binary digits

Step1: \\ Convert Sec_key characters to vector Bit() of binary digits

 Set j -1 \\Initialize counter ←
 For each I from 1 to N do
 Set k ← Asc(Mid(Sec_key, I, 1) \\ Each time convert one character of
 secret key to binary form
 For each M from 0 to 7 do \\ convert to binary form (8-bits)
 Set j ← j + 1: If (k And 2M) = 0 Then Set Bit (j)←0 Else Set Bit(j) 1 ←
 End For
 End For

 Step2: Return vector Bit()

3.3.3 Random Number Generators

After the manipulation of user’s key, this key is used to generate the

initial values of random number generator parameters, which in turn used

to generate pseudo random numbers for encryption transformations.

 58

CChhaapptteerr TThhrreeee TThhee IImmpprroovveedd HHSSSS-- SScchheemmee

Two random number generators have been used in HSS, they are:

A. The Linear Feedback Shift Register (LFSR).

B. The Proposed Random Number Generator.

A. Linear Feedback Shift Register (LFSR)
Since a long time ago, LFSRs have been used as pseudo-random

number generator to perform stream ciphering. In this project, this method

was adopted to perform the first step in ciphering stage. The Bit () vector

resulted from algorithm (3.4) is input as bits to the shift register.

Linear Feed Back Shift Register (LFSR) implies two processes, as

illustrated in algorithm (3.5), they are:

1. Selection process: When selecting bit positions (taps), two

considerations need to be taken into account [Til05]:

a. The maximal length tap sequences should always be an even

number.

b. The tap values in the maximal length tap sequence should be

relatively prime with each other.

2. Shifting process: The bits contained in selected cells (taps) in the

shift register are combined using (XOR) function, and the result is

stored in Bit_out () vector to form the key that used to cipher the text

of the HTML file. Each position of the Bit_out () vector contains the

result of Xoring tap sequence for each stage. When the selected bit

values are Xored together before the register is shifted, the result of

the feedback function is inserted into the shift register during the

shift step, to fill the position that is emptied as a result of the shift.

Then, the generated random number is used for ciphering process.

 59

http://en.wikipedia.org/wiki/Pseudo-random_number_generator
http://en.wikipedia.org/wiki/Pseudo-random_number_generator
http://en.wikipedia.org/wiki/Stream_cipher

CChhaapptteerr TThhrreeee TThhee IImmpprroovveedd HHSSSS-- SScchheemmee

Algorithm (3.5) Key Generation Method Using Linear Feed Back
Shift Register(LFSR)

Goal : Generating keys to encrypt HTML file
Input: Secret key
Output: Random_ Number

Step 1: \\ Construct vector Bit_out (), each cell contains the result of Xoring tap
 sequence. Length of Bit_out () is 8-bit. vector Bit() contains the binary
 digit of secret key
 Choose taps from Bit() vector

 For each k from 0 to 7 do \\ Repeating 7 times to form the key used
 for ciphering, key length is 8-bits(byte)

 Set Bit_out(k) Bit(2) Xor Bit(7)Xor Bit(17)Xor Bit(31) ←
 For each I from 31 to 1 \\ Bit() vector size is 32-bit
 Set Bit(I) Bit(I-1) \\ Shift cells one bit to the right ←
 End For
 End For
 Set Bit(0) Bit_out(k) \\Result of Xoring will refill the first ←
 position
Step2: \\ Binary to decimal conversion
 Set Random_ Number ←0
 For each I from 7 to 0 do
 Set Random_ Number ← Random_ Number +Bit_out(I)× 2)7(i−

 End For

Step3: Re turn(Random_ Number)

B. Proposed Random Number Generator

In this work, a simple and fast random number generator was

suggested to extend the level of security; it has lower computational cost in

comparison with LFSR. This additional level of security is obtained by

using a method to generate long random sequence of numbers. Two built-in

functions were used in the generator; Rnd () function and Set Seed ()

function.

The system uses a secret key of length 20 characters (20 8 bit=160

bit). The secret key is input to a pseudo random number generator, then as

a first initial step, three vectors are constructed from the secret key input,

these vectors are:

×

 60

CChhaapptteerr TThhrreeee TThhee IImmpprroovveedd HHSSSS-- SScchheemmee

1. Vector R_Seed (), which is composed of six entries, each entry

contains an integer value, calculated from the secret key using a

convolution process. In this process, every sixth bit of vector Bit ()

is collected in a buffer to form a binary number. Then this binary

number is converted to a decimal form. The decimal number will

then be modulated by 32768 and the result is stored in the first entry

of vector R_Seed () as shown in Figure (3.2). The other five entries

of vector R_Seed () will be filled in same way but using the next

coming bits (after the sixth bit). The implementation steps are

illustrated in step 1 of algorithm (3.6). These six values in R_Seed ()

vector will be used to reinitialize (start) the random number

generator to generate six sequences of random numbers.

2. Vector Set_Rnd (); which consists of six entries, each entry contains

an integer value; the value of these entries are calculated using the

same steps followed for calculating the entries values of R_Seed ()

vector, but the difference is that the process will start from location

twelve in Bit vector (), and taking every coming seventh location.

The result will be modulated by 256 and stored in the first entry of

Set_Rnd () vector. The next entry value of Set_Rnd () will be

calculated by applying the same previous steps with a start point at

thirteenth bit. After filling Set_Rnd () vector, its contents will be

used to make jumps in the calls of Rnd () function. The

implementation steps are illustrated in step 2 of algorithm (3.6).

3. Vectors Sqg1 () to Sqg6 (); each vector is composed of pre-specified

prime number of entries. These six vectors contain random sequence

of numbers, which will be used to encrypt the plain text. The

 61

CChhaapptteerr TThhrreeee TThhee IImmpprroovveedd HHSSSS-- SScchheemmee

Figure (3.2) The process of filling the first location of R_Seed vector

Algorithm (3.6) Proposed Random Number Generator
Goal :
 Generating keys to encrypt HTML file
Input:
 Vector Bit()
Output:
 Random_ Number

 Step 1: \\ C onstruct vector R_Seed(), each location contains seed values

 For each I from 0 to 5 do \\Number of R_seed() locations
 Set R_Seed (I)← 0
 Set K← I \\ Begins from index 1 of Bit()vector
 Set J←1
 While K < 159 do \\ Sec_key consists of 20 characters
 Set R_Seed(I)← R_Seed(I)+J× Bit(K)
 Set J←J×2 \\ Convert binary bits to decimal
 Set K K+6 \\ Overlapping(jump) every 6 positions inBit()←
 vector
 End While Continued

 62

CChhaapptteerr TThhrreeee TThhee IImmpprroovveedd HHSSSS-- SScchheemmee

 Set R_Seed (I)← R_Seed (I) mod 32768 \\ 32768 is the maximum
 positive value of Randomize

statement
 End For

Step2: \\ Construct vector Set_Rnd() ,each location contains number of times the
 Rnd() statement is repeated

 For each I from 0 to 5 do \\Number of Set_Rnd() locations
 Set Set_Rnd(I)← 0
 Set K← I+12 \\ Begins from index 12 of Bit()vector
 Set J←1
 While K<159 do
 Set Set_Rnd (I)←Set_Rnd (I)+J×Bit(K)
 Set J J 2 ← ×
 Set K←K+7 \\ Overlapping(jump) 7 positions in Bit() vector
 End While
 Set Set_Rnd (I)← Set_Rnd (I) mod 256 \\ Restricting the limit of
 numbers to 256
 End For

 Step3: \\Construct six sequence generator vectors, Sqg1, Sqg2, Sqg3, Sqg4, Sqg5,Sqg6
 \\ Rnd is a function that returns random number.
 \\ Randomize is a function initialize random-number generator, and generate
 new sequence of random numbers

 Set M1 ← 252:Redimension Sqg1 to M1
 Randomize R_seed(o) \\Set seed value according to the first value of

R_seed() vector
 For each J from 0 to M1 do
 For each I from 0 to Set_Rnd (o) do
 Set X ← Rnd \\ X is dummy variable, Rnd function is repeated
 until the value of(Set_Rnd(0)) is reached
 End For
 Set Sqg1(J) ←255 × Rnd \\Filling(Sqg1) vector with the random values
 End For
 \\ Construct Sqg2, Sqg3, Sqg4, Sqg5,Sqg6 in same way as Sqg1 Such that
 M2=312,M3=230, M4=258 , M5=282 and M6=196 ,these numbers must be
 relatively prime
 \\ initialize counters

Set K1 ← -1: K2 ← -1: K3 ← -1: K4 ← -1: K5 ← -1: K6 ← -1

 Step 4: \\ Generate random number
 Call algorithm (3.7) to generate random number

 Step 5: Return(Random_ Number)

After carrying out the steps of algorithm (3.6), then algorithm (3.7)

is invoked to generate the required random number by Xoring the values

 63

CChhaapptteerr TThhrreeee TThhee IImmpprroovveedd HHSSSS-- SScchheemmee

stored in vectors (Sqg1 () to Sqg6 ()). Algorithm (3.7) is invoked when

there is a need to cipher each character in the plaintext.

Algorithm (3.7) Random Number Generator

Goal :
 Generating random numbers using the proposed random generator to encrypt
 HTML file
Input:
 (Sqg1(),Sqg2(), Sqg3(), Sqg4(), Sqg5(),Sqg6()) vectors
 (K1,K2,K3,K4,K5,K6) counters
 (M1,M2,M3,M4,M5,M6) constants
Output:
 Random_ Number

 Step1: \\ Generating random number from sequence generator vectors
 If K1 < M1 then Set K1←K1 + 1 else Set K1 ← 0
 If K2 < M2 then Set K2←K2 + 1 else Set K2 ← 0
 If K3 < M3 then Set K3←K3 + 1 else Set K3 ← 0
 If K4 < M4 then Set K4←K4 + 1 else Set K4 ← 0
 If K5 < M5 then Set K5←K5 + 1 else Set K5 ← 0
 If K6 < M6 then Set K6←K6 + 1 else Set K6 ← 0
 Set Random_ Number ←Sqg1(K1) Xor Sqg2(K2) Xor Sqg3(K3) Xor Sqg4(K4)

 Xor Sqg5(K5) Xor Sqg6(K6)
Step2 :Return(Random_ Number)

3.3.4 HSS Encoder
The HSS encoder performs three tasks to secure HTML file, they

are:

A. Text Contents Encryption

HSS uses stream cipher encryption. As mentioned in chapter 2,

stream cipher could be arranged to cipher one byte (or character) at each

call instance. So, the sequence of random numbers (bytes) generated by

each of the two random generators of HSS is used to encrypt the characters

of the extracted strings from the body container. The steps of ciphering

process are shown within algorithm (3.2).

 64

CChhaapptteerr TThhrreeee TThhee IImmpprroovveedd HHSSSS-- SScchheemmee

B. The Value of Color Attributes Encryption
This process is concerned with encrypting the color values found in

the scanned HTML file. The reason behind changing the color is to

increase the probability of not recognizing the visual appearance of the

Webpage by unauthorized users. Thus, this process can add more

confusion to eavesdroppers. Since, color values in HTML file can be

referred either by name or by hexadecimal numbers (as mentioned in

chapter-2), the color ciphering is performed in two ways according to its

identified form in HTML.

 Algorithm (3.8) illustrates the steps taken to cipher the values of

color attribute. This algorithm is invoked when a color attribute (bgcolor,

color or text) is met during the scanning stage of each line in the HTML

file. The value of the designated attribute will be ciphered in two ways,

according to its form, and they are:

1. If the color value is in hexadecimal form; then a “#” symbol must be

detected. After that the values of the three-color components (red,

green, blue) are extracted separately. The value of each color

component is represented by two hexadecimal digits, and it is ciphered,

by, first, converting it to a decimal form and, then, Xoring it with the

generated random number. After ciphering the three-color components,

the ciphered values (in their hexadecimal form) of the color components

are concatenated to form the ciphered color value, which is replaced

with the original color value. The entire background and foreground

color values of the existing text in Webpage are encrypted.

2. If a name is used to refer to a color value in HTML file, then the list of

color names used in HTML (shown in Table 2.4 in chapter-2) is used as

a reference table. When one of the color names is met during the line

scan process, then the reference color list will be searched to determine

 65

CChhaapptteerr TThhrreeee TThhee IImmpprroovveedd HHSSSS-- SScchheemmee

the position of this color name in the color reference table. The position

index of the found color name will be Xored with the generated random

byte, and then the ciphered result value will be used as a position index

to get the ciphered color name from the reference color table.

Algorithm (3.8) Encrypting Color of Webpage
 Goal : Changing color of the Webpage
 Input: String (Str_line)
 Output: Ciphered_color

 Step1: \\Construct vector table_name() of all common color names used in HTML

 St ep2: \\If ’color’ or ‘bgcolor’ or’ text’ or ‘background’ word is found

 While “color” or “bgcolor” or “text” or “background” found do
 Read next character
 \\ Find the ‘#’ position in the line

 If ‘#’ is found then \\ Indicates that color is referred by hexadecimal number
 Set color_component 0 ←

 Read the three color components(RGB)
 Put first color component(Red) in color_component
 Call random number generator
 Compute cipher_color (Val(“&h”+color_component)) Xor random_number←

 Replace color_component with cipher_color
 \\Manipulate other two color components in the same way as with red color

 Write line in E_HTML file

 Else \\ If ‘#’ not found, indicates that color is referred by name
 Find Position of the beginning‘ “ ‘ in the line after color attribute
 Set color_name 0 ←
 Repeat
 Read next character \\ Extract color name
 Set color_name color_name+ character ←
 Until the ending ‘ “ ‘ reached
 \\ Find color_name in the table_name
 For table_ index from 0 to size of table_name do \\ size of table_name=17

 If color_name = table_name(table_ index) then
 Get table_ index of table_name
 Call random number generator
 Set New_index ABS(random_number-(table_ index Xor random_number))+1 ←
 Set Cipher_color← table_name(New_index)
 Replace color_name with cipher_color in the line
End If

 End For
 End If
 End While
Step3: Return(ciphered_color)

 66

CChhaapptteerr TThhrreeee TThhee IImmpprroovveedd HHSSSS-- SScchheemmee

C. The Font Size Elements Encryption

This stage is concerned with encrypting the font size values might be

met when scanning the HTML file. The first step in the process of

encrypting font size values is the extraction of the size value and then Xor

it with a generated random number. The ciphered value is then replaced

with the corresponding original size number. Algorithm (3.9) illustrates the

steps implemented for encrypting the font size.

This size range limitation is due to the relative scale of font size

attribute in HTML files, it is bounded to be within the range [1...7]. The

size attribute value 5 can be assigned in two different ways: (1) the size can

be stated absolutely, with a statement like <size=5>, or (2) can be assigned

relatively with respect to the default font size “which is 3”, for example the

font size becomes 5 when the statement <size=+2> is met. These two size

assignment cases have been taken into consideration in the implementation

steps of encrypting font size values.

Algorithm (3.9) Encrypting Font of the Webpage
Goal:
 Changing font of Webpage
Input:
 String (Str_line)
Output:
 Ciphered_font

Step1: \\ When “ font” word is found in Str_line
 Set Size_number 0 ←
 Read next characters in string after” font” word
 Find “size” word

Step2: Repeat
 Read next characters in the string after” size” word
 Until beginning of ‘ “ ‘ is reached

Step3: Repeat
 Read next character in the string
 If character=”+” then

 Read next character \\Skip the plus sign if found(see font
table in chapter2) Continued

 67

CChhaapptteerr TThhrreeee TThhee IImmpprroovveedd HHSSSS-- SScchheemmee

 End If
 Set Size_number Size_number+ character \\Required size number is ←
 Until ending of ‘ “ ‘ is reached between quotation marks
 Set size_number←Val(size_number) \\Convert string to numeric
 Call random number generator
 Set Cipher_font ABS(random_number-(size_number Xor random_number))+1←
 Replace size_number with cipher_font
 Write line in “E_HTML” file

 Step4:Return (Cipher_font)

The main consideration taken when the proposed system perform

text, color and font encryption is preservation of the main structure of the

HTML file; so that the Web browser can interpret the HTML file correctly

with no error, and the Webpage can be transmitted correctly through the

internet via HTTP (Hyper Text Transfer Protocol).

3.3.5 MD5 Function (Message Digest 5)

 In our proposed system, integrity is the second requirement that

must be fulfilled after confidentiality. To attain a high level of integrity

confidence to the text lay inside the body of HTML, a method must be put

in place to prevent or detect alteration during transit. The method employed

in this work is based on using MD5 (Message Digest) hash function. A

hash function takes the text, of any length, and computes a product value of

fixed length (hash value). The hash value can be used to determine if

HTML file has been subjected to modification. Figure (3.3) depicts the

overall encoding process for computing the digest using MD5 hash

function and embedding it within the HTML file to produce a singed

HTML file.

 68

CChhaapptteerr TThhrreeee TThhee IImmpprroovveedd HHSSSS-- SScchheemmee

MD5
Hash

Function

HTML file

Text

Extractor Concatenate

Text Message
 digest

Base64
Encoder

 Text

Digest

Signed
HTML file

Key

 Ciphered
 text

Ciphered
Message

 digest

Figure (3.3) HTML digest generation using MD5 hash function

The following list clarifies the operations applied to determine the

message digest of text lay within the HTML file:

1. After extracting the whole text from the body of the HTML file, as

illustrated in algorithm (3.2), it is stored in as a string (Str_Char). This

string is entered as input to MD5 hash function.

2. The output of MD5 hash function (128 bit long) is called hash value or

message digest. The probability of finding other message have same

digest is of order of 1282− .

3. The hash value is concatenated with a synchronous pattern and put

between two tags, after the <\HTML> tag. Only the intended receivers

who have the secret key can check the message digest value. This hash

value could be used as a fingerprint to check the integrity of HTML file

after receiving it at the receiver side.

4. The extracted text and the calculated hash value are encrypted using one

of the suggested encryption methods. The reason behind encrypting the

hash value (message digest) is that the eavesdroppers cannot utilize the

 69

CChhaapptteerr TThhrreeee TThhee IImmpprroovveedd HHSSSS-- SScchheemmee

message digest of the HTML file even if they can get and succeed in

reading it.

5. After making encryption, to make the result of encrypted message digest

readable by the receiver, the base64 encoding is used to convert the

ciphered result into a screen printable form. The encoding process is

shown in algorithm (3.10). The encrypted coded message digest will not

be visible for the users (when using HTML browsers), only the decoder

can display it using its own secret key.

 3.3.6 Base64 Encoder
To transmit ciphertext data over a text-only medium (such as the

body section of HTML file) an encoding method is needed to convert the

binary ciphertext to only text form that still ambiguous to unauthorized

recipient. The existence of binary data in HTML file is not acceptable.

Binary data can be corrupted when it is passed through Web routes. Some

systems may interpret some of the binary bytes as control characters and

causes unintended results. For example, some control characters may cause

certain actions by some software applications, like Control-C (also

abbreviated as ^C) terminates a process.

In HSS encoder, the ciphertext data is coded using base64 encoding

as shown in algorithm (3.10). The input to this algorithm is three ciphered

bytes; each byte, which is 8 bit long, will be converted to a binary form.

Then, all the binary digits of the three bytes are arranged in one array

Binary_digit (). To get the resulting base64 encoding characters, the

Binary_digit () array is partitioned into four groups, and each group will

consist of six bits. Then, the six bits of each group are combined to form an

integer number, which in turn is used as index to choose a characted from

the base64 table (i.e., Table 2.6 in chapter-2). The resulting sequence of

base64 characters are concatenated to form the cipher text that can be

 70

CChhaapptteerr TThhrreeee TThhee IImmpprroovveedd HHSSSS-- SScchheemmee

easily laid within the HTML file instead of the original text. This base64-

coded text can be decoded back into binary at the destination side before

decryption.

As depicted in example (2.1 in chapter-2), the reason behind not

adopting hexadecimal encoding in our proposed system is that “each ASCII

character (which is one byte long in storage space) is represented by two

hexadecimal nibbles (digits), so any text translated into hexadecimal form

will be exactly twice as big as the original data”. This might not seem like a

problem for a short message, but sending a megabyte or more, the original

size will be doubled. Sending this over a slow Internet connection takes

twice time as long. The output of hexadecimal coding scheme is longer

than that produced by base64 (which takes one third as much space), and

for this reason the later coding is adopted in HSS.

Algorithm (3.10) Base64 Encoding

Goal:
 Converting unreadable characters into readable form
Input:
 Vector (Ciphered_ char) , Num_of_char
Output:
 Base64_character1, Base64_character2, Base64_character3, Base64_character4

Step1: \\ Filling last(1 or 2) byte of HTML file with 0’s when the size of HTML file not
 divisible by 3

 Initialize Sum_character1, Sum _character2, Sum _character3,Sum_character4
 to 0

 While (Num_of_char mod 3) <> 0 do \\When (Num_of_char) less than3
 Set Ciphered_ char (Num_of_char)←0 \\ Fill last bytes with 0
 Increment Num_of_char by 1
 End While

 Step2: \\ In base64 encoding, three ciphered characters at a time are taken.

 Set M 7 \\ Saving from LSB(least significant bit) of byte ←
 For I from 1 to 3 do \\ Number of ciphered characters to be encoded
 For J from 0 to 7 do
 Set Binary_digit(M-J)← (Ciphered_char(I) And (2))\ 2 j j

 End For

Continued

 71

CChhaapptteerr TThhrreeee TThhee IImmpprroovveedd HHSSSS-- SScchheemmee

 Increment M by 8 \\ Each character is 8-bit(byte)
 End for

 Step3:\\Convert the 24 bits from three 8-bit groups to four 6-bit groups and
 Convert each of the four 6-bit groups into decimal form.
 For I from 5 to 0 do \\ Six digits

 Set Sum_character1 Sum_character1+Binary_digit(I)← ×25-i

 End For
 For I from 11 to 6 do

 Set Sum_character2 Sum_character2+Binary_digit(I)← × 211-i
 End For
 For I from 17 to 12 do

 Set Sum_character3 Sum_character3+Binary_digit(I)← × 217-i
 End For
 For I from 23 to 18 do

 Set Sum_character4 Sum_character4+Binary_digit(I)← × 223-i
 End For

 Step4:\\ Use each of the four decimals to look up the base64 character code
 Set Base64_character1 Chr(Base64_table(Sum_character1)) ←
 Set Base64_character2 Chr(Base64_table(Sum_character2)) ←
 Set Base64_character3 Chr(Base64_table(Sum_character3)) ←
 Set Base64_character4 Chr(Base64_table(Sum_character4)) ←

Step5:Return(Base64_character1, Base64_character2)
 (Base64_character3, Base64_character4)

To encode characters, the table of base64 code words needs to be

constructed. Algorithm (3.11) shows the steps of base64 table construction

process.

Algorithm (3.11) Generation of Base64 Table
Goal:
 Set up a mapping of values (0 through 63) to base64 characters (A-Z, a-z, 0-9,
 '+', and '/')
Input:
 Empty (Base64_table) vector
Output:
 (Base64_table) vector filled with base64 characters

Step1: \\Construct base64 table
 Set J 0 ←
 For I from Asc(“A”) to Asc(“Z”) do
 Set Base64_table(J) ← I
 Increment J by 1 Continued

 72

CChhaapptteerr TThhrreeee TThhee IImmpprroovveedd HHSSSS-- SScchheemmee

 End For
 For I from Asc(“a”) to Asc(“z”) do
 Set Base64_table(J) ← I
 Increment J by 1
 End For
 For I from Asc(“0”) to Asc(“9”) do
 Set Base64_table(J) ← I
 Increment J by 1
 End For

 Set Base64_table(J) ←Asc(“+”)
 Increment J by 1
 Set Base64_table(J) ←Asc(“\”)
Step2:Return(Base64_table)

3.4 Decoding Module
The main stages of the decoding module are illustrated in Figure (3.1

b). As mentioned previously, the sequence of its stages has the inverse

order in comparison with the order of the encoding module stages.

The following subsections describe the functionality of the main

stages of the decoding module with an illustration to the way of

implementing them.

3.5 HSS Decoder
 In decoding process, the HSS decoder asks the user to assign the

name of the encrypted HTML file. Then, it is loaded, and then the lexical

HTML analyzer is invoked to parse the encrypted HTML file and extracts

the desired tokens. In HSS decoder, the same parsing process (i.e.,

algorithm 3.1, which is previously illustrated in HSS encoder section) is

invoked but the difference is reading the encrypted HTML file to be parsed,

decoded and outputting the reconstructed HTML file. The extraction

process in HSS decoder is same like that used in HSS encoder (i.e.,

algorithm 3.2 that previously mentioned in section 3.3.1); the difference is

manipulating the base64 characters first then deciphering the characters to

 73

CChhaapptteerr TThhrreeee TThhee IImmpprroovveedd HHSSSS-- SScchheemmee

get the original text. Also, in extraction stage the ciphered values of color

and font attributes are deciphered to retrieve their original values.

Algorithm (3.12) shows how the extraction process is invoked in HSS

decoder and how it works to extract the encrypted tokens.

Algorithm (3.12) Extraction Process in HSS Decoder
Goal: Extract encrypted and encoded text from the <body> tag
Input:
 ”E_HTML” file
Output:
 Output file “HTML” file

Step1: \\ Initialize buffers and strings
 Set Str_Char 0 \\ Accumulates text characters for message digest ←
 process.
 Set Num_of_char←0, Str_line← “ ”

Step2:\\ Reading, extracting, ciphering and encoding tokens
 While not end of “E_HTML” file
 Read line of “E_HTML” file
 Assign line from E_HTML file to Str_line string
 Set Str_line ←Lcase(Str_line)
 If” color”or “bgcolor”or”text”or”Background” in Str_line is found then
 Decrypt color value
 If ” font” in Str_line is found then
 Decrypt font size value
 Read Character from <body> container in E_HTML file

 Repeat \\ Reading character between tag content
 Save character in “HTML” file \\ Saving tag content in output file to

 order the browser to display Webpage
 Read next character from file in sequence
 Until character =”>”

 Repeat \\ Finding the desired text after the ending tag
 Read next character from file in sequence \\ Read the character to be
 decoded and deciphered
 Set Str_Char Str_Char + character \\ Accumulate text to be ←
 processed by MD5 function
 Increment Num_of_char by 1
 If Num_of_char=4 then \\ Counter to decode 4 ciphered characters
 Call algorithm (3.13) to decode ciphered_char vector using base64
 decoding
 For I from 1 to 3 do \\ Returned 3 characters from decoding

process

Continued

 74

CChhaapptteerr TThhrreeee TThhee IImmpprroovveedd HHSSSS-- SScchheemmee

 Call random number generator
 Set Deciphered_char←Asc(Decoded_char(I)) Xor Random-number
 Save Chr(Deciphered_char) in “HTML” file
 Next I
 Set Num_of_char←0 \\Reset counter for decoding next 4 ciphered
 Characters
 End If
 Read next character from file in sequence
 Until character=”<”
 End While

 Step3: Return “HTML” file

After analyzing the encrypted HTML file, HSS decoder asks the user

to enter the secret key. Only the intended recipients must know this secret

key, this is a major condition because HSS uses stream ciphering and,

consequently, should satisfy the common conditions of symmetric

cryptosystem. The processes, padding and conversion to binary form are

invoked in a way similar to that mentioned in HSS encoder; see algorithms

(3.3) and (3.4).

 The HSS decoder performs the following tasks to retrieve the original

HTML file:

A. Base64 decoding the ciphered text found in the body section, then

B. Decrypting the decoded text contents.

C. Decrypting the values of found ciphered color attributes.

D. Decrypting the values of ciphered font size.

E. Checking the integrity of HTML file.

In the following next sections, the implementation of the above-

mentioned tasks is explained.

A. Base64 Decoder

In HSS decoder, the ciphered text is first decoded (i.e., converted

from base64 character set to ASCII character set) before decrypting it. So,

base64 decoder is invoked to decode the ciphered characters. During the

 75

CChhaapptteerr TThhrreeee TThhee IImmpprroovveedd HHSSSS-- SScchheemmee

extraction stage, every four-base64 characters are taken from the ciphered

text, and sent them to base64 decoder to convert them, as one set, into three

ASCII characters. Algorithm (3.13) illustrates base64 decoding process.

Algorithm (3.13) Base64 Decoding

Goal:
 Converting base64 coding characters into ASCII 8-bit characters
Input:
 Vector Ciphered_ char() , Num_of_char
Output:
 ASCII_character1, ASCII _character2, ASCII _character3

Step1: \\ Filling last(1 or 2) byte of HTML file with A’s when the size of HTML file not
 divisible by 4

 Initialize Sum_character1, Sum _character2, Sum _character3 to 0
 While (Num_of_char mod 4) <> 0 do \\When Num_of_char less than4

 Set Ciphered_ char (Num_of_char)←”A” \\ Fill last bytes with A’s
 Increment Num_of_char by 1
 End While

 Step2: \\ In base64 decoding, four ciphered characters at a time are taken.
 For I from 0 to 3 do \\ Number of ciphered characters to be decoded
 For J from 0 to 63 do
 If ASC(Ciphered_char(I))= Base64_table(J) then
 Set Ciphered_ch (I)←J
 Exit For J
 End If
 End For J
 End For I
 Set M 5 \\ Saving from LSB(least significant bit) ←
 For I from 0 to 3 do \\ Number of ciphered characters to be decoded
 For J from 0 to 5 do
 Set Binary_digit(M-J)← (Ciphered_ch (I) And (2))\ 2 j j

 End For
 Increment M by 6 \\ Each character is 6-bit
 End For

 Step3:\\Convert the 24 bits from four 6-bit groups to three 8-bit groups and Convert

each of the three 8-bit groups into decimal form.

 For I from 7 to 0 do \\ eight bits
 Set Sum_character1 Sum_character1+Binary_digit(I)← × 27-i

 End For
 For I from 15 to 8 do

 Set Sum_character2 Sum_character2+Binary_digit(I)← × 215-i
 End For

Continued

 76

CChhaapptteerr TThhrreeee TThhee IImmpprroovveedd HHSSSS-- SScchheemmee

 For I from 23 to 16 do

 Set Sum_character3 Sum_character3+Binary_digit(I)← × 223-i
 End For

 Step4:\\ the 8-bit character is returned by taking the Chr() function of the sum
 Set ASCII _character1 Chr((Sum_character1)) ←
 Set ASCII _character2 Chr((Sum_character2)) ←
 Set ASCII _character3 Chr((Sum_character3)) ←

 Step5:Return (ASCII _character1, ASCII _character2
 ASCII _character3)

As illustrated in the above algorithm, each set of four-base64

characters is entered as an input, then the table index of each base64

character is assigned. The index value of each base64 character is

converted to its binary form to construct the vector Binary_digit () that has

24-bit length. Then, this vector is partitioned into three portions, each

consist of 8-bits. The bits of each portion are combined to get the index

value of the ASCII character, which is in turn, is established using the Char

() function.

B. Decrypting Text
After the retrieval of ciphered ASCII characters using base64

decoder, these characters need to be deciphered. So, the same two random

number generators, used in encoding module, are invoked to generate the

same sequence of random bytes in order to decrypt the ciphered text. The

major condition that must be hold when using HSS decoder is that “the

recipient must choose the same secret key that was chosen at HSS encoding

stage”, this condition is necessary to get the same sequence of random

numbers (bytes). Algorithm (3.5) illustrates the process of generating a

random number using linear feed back shift register (LFSR), and algorithm

(3.6) illustrates the steps of the proposed random number generator. The

random byte generated by the random number generator is used to decrypt

 77

CChhaapptteerr TThhrreeee TThhee IImmpprroovveedd HHSSSS-- SScchheemmee

the ciphered text characters inside the body section by performing the XOR

operation. Algorithm (3.12) illustrates the applied steps to perform the

XOR operation.

C. Decrypting the Value of Color Attributes
In HSS decoder, the value of color attributes of the encrypted HTML

file is decrypted. During the extraction process, the lexical HTML analyzer

searches the lines of the encrypted HTML file to find the color attributes

that had been encrypted in encoding stage. Then, the process of decrypting

the color value is performed using steps like those followed in encryption

process (see algorithm 3.8) but in reverse order. In brief words, the random

number generator is invoked to decrypt the three-color components (RGB)

of the ciphered color value and the ciphered color name to obtain the

original color of the text found in the decrypted Webpage.

D. Decrypting the Value of Font Size
In a way similar to that followed for decrypting the value of color

attributes, the value of font size is decrypted. In HSS decoder, the lexical

HTML analyzer scans the encrypted HTML file to detect and extracts the

font elements. When it detects a font size attribute, its value is decrypted by

Xoring its extracted value with the generated random number. The steps of

the decryption process are like those applied in encryption process (i.e.,

algorithm 3.9) but in reverse order. The ciphered value of font size is Xored

with the generated random number to obtain the original value of the font

size.

 78

CChhaapptteerr TThhrreeee TThhee IImmpprroovveedd HHSSSS-- SScchheemmee

E. Checking the Integrity of HTML File
In HSS decoding phase, the integrity of HTML file must be checked.

As shown in Figure (3.4), the integrity check process of HTML file can be

done by applying the following steps:

Key

MD5
Hash

Function

Encoded
Ciphered
Message

 Digest (1)

Ciphered
Message

 Digest (1)

Ciphered
 text

 Text

Message
 Digest (1)

 Message
 Digest (2)

The file was
 corrupted

 Yes

No

 Encoded
Ciphered
 text Text and

 message
 digest
Extractor

Singed
HTML
 file

Base64

Decoder Xor

 Is
equal

The file is not
 corrupted

Figure (3.4) The integrity check process

1. At the receiver, the singed HTML file (produced by HSS encoder) is

input to the text and message digest handler, in order to extract the

encoded ciphered text and the encoded ciphered message digest that was

created in the encoding phase. This message digest is numbered by (1)

in Figure (3.4). The reason behind extracting the encoded ciphered text

is to redetermine the digest (i.e., digest (2) in the Figure) by applying

 79

CChhaapptteerr TThhrreeee TThhee IImmpprroovveedd HHSSSS-- SScchheemmee

MD5 hash function on the decoded and decrypted text which was

extracted from the encrypted HTML file.

2. The encoded ciphered message digest (1) is input to base64 decoder to

be decoded (i.e., converted from base64 characters to ASCII characters).

3. Then the ASCII message digest is decrypted using the same secret key

that was chosen at the HSS encoding stage.

4. As a final step in the integrity checking stage, a comparison process is

done between message digest (1) and message digest (2). If they are

equal, it indicates that the transmitted HTML file was not modified or

altered during its transition via internet channel, and a message “The

HTML file is not corrupted” is prompted to user. Otherwise, if the two

digests are not equal, then this indicates that a modification was done on

the transmitted HTML file, in such case the message “The HTML file

was corrupted” is issued to acknowledge the user.

Algorithm (3.14) illustrates the applied steps for checking the

integrity of the signed HTML file.

Algorithm (3.14) Integrity Check

Goal:
 Checking the integrity of sent HTML file
Input:
 Singed HTML file
Output:
 A prompted message

Step1:\\ Integrity check
 Extract message digest from “E_HTML” file
 Call algorithm (3.13) to decode message digest using Base64 decoding
 Call random number generator
 Decrypt message digest(1)
 Call MD5 function to compute the message digest(2) of decrypted “E-HTML”
 File

 Continued

 80

CChhaapptteerr TThhrreeee TThhee IImmpprroovveedd HHSSSS-- SScchheemmee

 81

 Compare message digest (1) and (2)

 If message digest(1)=message digest(2) then
 A message“ The HTML file is not corrupted”
 Else
 A message” The HTML file is corrupted”
 End if
Step2: Return (prompted message)

Chapter Four Implementation and Testing

Chapter Four
Implementation and Testing

4.1 Introduction

This chapter is devoted to present the implementation part of our

research work, and to present the established user interfaces of the system.

Also, in this chapter the results of the conducted randomness tests are

presented in order to evaluate the secrecy level of the system, taking into

consideration that two types of random generators have been used to

perform ciphering, the first one is Linear Feedback Shift Register (LFSR)

and the second one is our proposed random generator.

The results of conducted statistical tests on the ciphertext produced

by using each of the random generators are displayed for comparison

purpose. Beside to random test results, the elapsed encoding time is

computed to evaluate the system performance.

The proposed system was established using Visual Basic (version

6.0) programming language. The developed programs were tested under

the environment of windows XP service pack2 operating system, the

hardware environment was a laptop computer (Processor Intel ® core ™

Duo CPU 1.83 GHz, RAM 504 M-byte).

 82

Chapter Four Implementation and Testing

4.2 System Implementation
Figure (4.1) shows the start form of HSS system.

Figure (4.1) HSS interface

While Figure (4.2) shows the main form, its menu consists of the

following options:

Figure (4.2) HSS main menu

 83

Chapter Four Implementation and Testing

1. File: through this option, the user can select one of the existing HTML

files stored in the local storage media and display its contents by

making a call to the Internet explorer. Also, HSS system program

could be terminated by selecting the Exit option. Figure (4.3) presents

the File sub menu.

Figure (4.3) File sub menu

2. Process: this menu option consists of the following two sub-menu lists

as shown in Figure (4.4):

 Figure (4.4) Process sub menu

A. HTML File Encryption: When a user make a mouse click on this

menu option, another sub menu will be displayed to let the user

select the type of used random generator. Through HSS, the user

can select one of the two random number generators (i.e., either

 84

Chapter Four Implementation and Testing

Linear Feedback Shift Register or the proposed random number

generator) as shown in Figure (4.5).

Figure (4.5) HTML file encryption sub menu

Once the type of the random generator is selected, then a text

box, shown in Figure (4.6), will displayed asking the user to enter

the secret key. If the user’s entry is less than 20 characters (i.e.,

length of the secret key), then HSS generates the required padded

characters to keep the length of secret key equal to 20.

Figure (4.6) Input text box for secret key assignment

After entering the secret key, the process of converting it from a

character string form to a binary form is performed. Then, the

selected generator is initialized using the binary contents of secret

key. After the initialization stage, HSS system becomes ready to

 85

Chapter Four Implementation and Testing

encrypt any selected HTML file. The encryption of any HTML file

is started directly after choosing the HTML fie name and its path by

the common dialog control, which is shown in Figure (4.7).

Figure (4.7) Menu of HTML files

Figures (4.8) and (4.9) show a sample of an HTML file and its

source code before encryption (i.e., the plain text). Figures (4.10)

and (4.11) show the contents of the corresponding encrypted

HTML file (i.e., ciphertext) and its source code after encryption by

the proposed random number generator. While, Figure (4.12) and

Figure (4.13) present the contents of encrypted HTML file by

Linear Feedback Shift Register generator. In all above mentioned

figures, the ciphered text lay within the ciphertext version of the

HTML file, is encoded using base64 encoding scheme.

 86

Chapter Four Implementation and Testing

Figure (4.8) The contents of an HTML file sample (i.e., plaintext)

Figure (4.9) The source code of HTML file sample (i.e., plaintext)

 87

Chapter Four Implementation and Testing

Figure (4.10) The contents of encrypted HTML file sample using the
proposed random generator (i.e., ciphertext)

Figure (4.11) The source code of encrypted HTML file sample using the

proposed random generator (i.e., ciphertext)

 88

Chapter Four Implementation and Testing

Figure (4.12) The contents of encrypted HTML file sample using LFSR

generator (i.e., ciphertext)

Figure (4.13) The source code of encrypted HTML file sample using

LFSR generator (i.e., ciphertext)

 89

Chapter Four Implementation and Testing

B. HTML File Decryption: With this option, the user can follow same

sequence of the steps performed with HTML file encryption, but

with reversed order. The decryption process is performed using one

of the two random number generators mentioned previously.

3. Color: this option is used to encrypt and decrypt the color attributes

may found in the body section of HTML file. So, when choosing this

option, a sub-menu appears on screen asking user to choose either

Color Encryption or Color Decryption, as depicted in Figure (4.14).

After choosing color encryption process and assigning the type of

random generator, a text box appears asking the user to enter the secret

key, then a common dialog box control is displayed to let the user

choose the HTML file whose color is going to be encrypted. Figures

(4.15) and (4.16) show the encrypted HTML file sample and its source

code after encrypting its colors. Due to color decryption option, the

original colors of the Webpage could be retrieved.

 Figure (4.14) The color sub menu

 90

Chapter Four Implementation and Testing

 Figure (4.15) The encrypted HTML file sample after color encryption

 Figure (4.16) The source code of encrypted HTML file sample after

color encryption

 91

Chapter Four Implementation and Testing

A comparison between the original content of the HTML file

sample, shown in Figure (4.9), and its encrypted version shown in

Figure (4.16), the original background color (bgcolor) value

#AABBCC, shown in the first Figure, is encrypted to #9584F3. While

the color of the whole text value #BBAA0F is encrypted to #849530.

The colors used to define specific paragraphs like #FF0000, #22470A

and #2245AA are encrypted to #C03F3F, #1D7835 and #1D7A95,

respectively.

Another HTML file sample was taken such that it contains color

attributes referred by names. As depicted in Figure (4.17), the

background color of the HTML file is red, the color of the whole text

is blue and the color of a specific paragraph is green. After color

encryption, the ciphered color names become cyan, silver and white,

respectively, as shown in Figure (4.18).

Figure (4.17) HTML file sample1

 92

Chapter Four Implementation and Testing

Figure (4.18) The encrypted colors using color names

4. Font: this option is used to encrypt and decrypt the font size values,

which may found in the body section of HTML file. When choosing

this option, a sub-menu appears showing two possible choices: (1)

Font Size Encryption and (2) Font Size Decryption, as depicted in

Figure (4.19).

After selecting the required option, a text box appears requesting the

user to enter the secret key, after that a dialog box control appears to

allow user selects the HTML file. Once the user chooses the HTML

file target, then the Encryption (or Decryption) process for the font

color size is started. Figure (4.20) shows HTML file sample before

text, color, font encryption. While Figure (4.21) shows the same

HTML sample file after encrypting its text, colors and the size of

fonts. By decryption, the original font size values are retrieved.

 93

Chapter Four Implementation and Testing

 Figure (4.19) The font sub menu

 Figure (4.20) HTML file sample 2

 94

Chapter Four Implementation and Testing

Figure (4.21) The encrypted HTML file (text, color, font size) encryption

5. HTML Integrity Check: this option is used by recipient (i.e., receiver)

only, because the message digest of HTML file is calculated during the

file encryption stage, and the value of the message digest is attached to

the encrypted HTML file. When, a recipient tries to decrypt the HTML

file, the integrity of the HTML file is checked by enabling the HTML

Integrity Check option. The user should first enter the secret key, if

the contents of encrypted HTML file was not modified and

consequently its digest is correct, then a message box appears to

inform the user that the tested HTML file is not corrupted during its

transfer from server side to client side, otherwise a message box

appears to acknowledge that the tested HTML file was corrupted

during its transfer.

 95

Chapter Four Implementation and Testing

6. System Test: this option is used for evaluation purpose. The encrypted

text could be evaluated using the five traditional statistical randomness

tests.

4.3 System Evaluation
Many measures could be used to assess the performance of any

developed security system. In this section, the evaluation results of HSS

are presented, the evaluation is based on two kinds of metrics; they are:

• The randomness test measures applied on the produced ciphertext.

• The elapsed encoding time to perform the encryption and

decryption processes.

4.3.1 Randomness Tests
The randomness degree of a stream cipher system was investigated

using the following statistical tests:

a. Frequency test

b. Serial test

c. Poker test

d. Run test

e. Autocorrelation test

 These five traditional randomness tests have been applied on the

cipher text contained in the body section of the encrypted HTML file. In

this kind of tests, different ciphertext subjects with different sizes were

selected. The chosen ciphertext samples are produced using one of the

applied random generators: (i.e., Linear Feedback Shift Register (LFSR)

and the proposed random number generator).

The randomness tests program can asses the degree of randomness

of the produced encrypted text found in each tested HTML file. The test

 96

Chapter Four Implementation and Testing

results could be shown as charts and tables for each HTML file. The table

specifies whether each encrypted HTML file has passed or failed in each

test of the five traditional randomness tests. In the remaining part of this

chapter, the symbols in the incoming charts have the following meaning:

N represents the number of bits in the ciphered text.

N0 represents the number of zero’s in the ciphered text.

N1 represents the number of one’s in the ciphered text.

N00 represent every successive two zeros in the ciphered text.

N11 represent every successive two ones in the ciphered text.

N01 represent every successive pair of zero-one in the ciphered text.

N10 represent every successive pair of one-zero in the ciphered text.

The following six samples of encrypted HTML files are experimented:

HTML File1:
1. Testing the ciphertext produced from file1.html using the proposed

random number generator: Figure (4.22) shows the results of five

randomness tests applied on the ciphertext version of HTML file1.

Table (4.1) illustrates the corresponding evaluation result.

 Table (4.1) The randomness tests result for the ciphered HTML file1

using the (proposed random generator)

Random tests Value Chi-square value

Frequency test 1.47
P <=3.841

Serial test 1.07
P <=5.991

Poker test 3
P <=43.77

Run test 20.9
P <=26.3

HTML
File1
Size=
(1KB)

Autocorrelation
 test

1.6
P <=3.841

 97

Chapter Four Implementation and Testing

HTML File1 Serial Test

N00
23

N01
25

N10
25

N11
26

20

21

22

23

24

25

26

27

Number of transitions

%

HTML File1 Frequency Test

N0
51

N1
52

46

47

48

49

50

51

52

Number of (0,1) elements

%

HTML File1 Run Test

0

2

4

6

8

10

12

14

Run Length

N
um

be
r o

f g
ap

s
an

d
bl

oc
ks Sum of gabs

Sum of blocks

HTML File1 Poker Test

N0
0.8

N1
4.2

N2
7.2

N3
9.4

N4
5

N5
1.2

0

2

4

6

8

10

Number of blocks

%

 HTML File1 Autocorrelation Test

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Shift values

Co
rr

el
at

io
n

C
oe

ffi
ci

en
t

Figure (4.22) The results of five randomness tests for the ciphered HTML
file1 using the (proposed random generator)

2. Testing the ciphertext produced from file1.html using Linear

Feedback Shift Register generator: Figure (4.23) shows the results of

five randomness tests applied on the ciphertext version of HTML

file1, and Table (4.2) summarizes the evaluation results.

 98

Chapter Four Implementation and Testing

Table (4.2) The randomness tests result for the ciphered HTML file1
using (LFSR random generator)

Random tests Value Chi-square value

Frequency test 0
P <=3.841

Serial test 0.04
P <=5.991

Poker test 1
P <=43.77

Run test 45.24
F <=33.29

HTML
File1
Size=
(1KB)

Autocorrelation
test

1.76
p <=3.841

HTML File1Serial Test

N00
25.1

N01
25.1

N10
25.2

N11
25.0

24.5
24.6
24.7
24.8
24.9
25.0
25.1
25.2
25.3

Number of transitions

%

HTML File1 Frequency Test

N0
50

N1
50

0

10

20

30

40

50

60

Number of (0,1) elements

%

HTML File1 Run Test

0
2

4
6
8

10
12

14
16

Run Length

Nu
m

be
r

of
 g

ap
s

an
d

bl
oc

ks SUM OF GAPS
SUM OF BLOCKS

HTML File1 Poker Test

N0
1.2

N1
4.4

N2
8.2

N3
8.4

N4
4.6

N5
1

0

2

4

6

8

10

Number of blocks

%

HTML File1 Autocorrelation Test

0
1
1
2
2
3
3
4
4
5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Shift values

Co
rr

el
at

io
n

Co
ef

fic
ie

nt

Figure (4.23) The results of five randomness tests for the ciphered HTML
file1 using (LFSR random generator)

 99

Chapter Four Implementation and Testing

HTML File 2:
1. Testing the ciphertext produced from file2.html using the proposed

random number generator: Figure (4.24) shows the results of the five

randomness tests applied on the ciphertext version of HTML file2,

and Table (4.3) summarizes the evaluation results.

 Table (4.3) The randomness tests for the ciphered HTML file2 using

the (proposed random generator)

Random tests Value Chi-square value
Frequency test 0.12

P <=3.841

Serial test 1.8
P <=5.991

Poker test 4
P <=43.77

Run test 27.6
P <=41.34

HTML
File2
Size=

(7.99KB)

Autocorrelation
test

0.2
P

<=3.841

HTML File2 Serial Test

N00
24.904

N01
25

N10
25.01

N11
24.896

24.5

24.7

24.9

25.1

Number of transitions

%

HTML File2 Frequency Test

N0
49.9

N1
50.1

49

50

51

Number of (0,1) elements

%

HTML File2 Run Test

0
2
4
6
8

10
12
14
16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Run length

nu
m

be
r

of
 g

ap
s

an
d

bl
oc

ks

sum of gaps
sum of blocks

HTML File2 Poker Test

N0
22.2

N1
132.8

N2
254.6

N3
260.2

N4
131.4

N5
24

0

50

100

150

200

250

300

Number of blocks

%

 100

Chapter Four Implementation and Testing

HTML File2 Autocorrelation Test

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

shift values
co

re
la

tio
n

co
ef

fic
ie

nt

Figure (4.24) The results of the five randomness tests for the ciphered
HTML file2 using the (proposed random generator)

2. Testing the ciphertext produced from file2.html using linear feedback

shift register generator: Figure (4.25) shows the results of the five

randomness tests applied on the ciphertext version of HTML file2,

and Table (4.4) summarizes the evaluation results.

 Table (4.4) The randomness tests for the ciphered HTML file2 using

(LFSR random generator)

Random tests Value Chi-square value
Frequency test 0.03

P <=3.841

Serial test 2.4
P <=5.991

Poker test 5
P <=43.77

Run test 63.9
F <=43.77

HTML
File2
Size=

(7.99KB)

Autocorrelation
test

0.26
P

<=3.841

HTML File2 Serial Test

N00
24.7

N01
25.3

N10
25.3

N11
24.8

24.4
24.5
24.6
24.7
24.8
24.9

25
25.1
25.2
25.3
25.4

Number of transitions

%

HTML File2 Frequency Test

N0
49.9

N1
50.1

49

50

51

Number of (0,1) elements

%

 101

Chapter Four Implementation and Testing

HTML File2 Poker Test

n0
23.6

n1
129.8

n2
263.4

n3
254.6

n4
124.2

n5
29.6

0

50

100

150

200

250

300

Number of blocks

%

HTML File2 Run Test

0

5

10

15

20

25

30

35

1 3 5 7 9 11 13 15

Run length

N
um

be
r

og
 g

ap
s

an
d

bl
oc

ks

Sum of gaps

Sum of bloks

HTML File2 Autocorrelation Test

1.
1.
1.
1.

fic
en

t

0
0.2
0.4
0.6
0.8

1
2
4
6
8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Shift values

C
or

re
la

tio
n

C
oe

f

Figure (4.25) The results of the five randomness tests for the ciphered
HTML file2 using (LFSR random generator)

HTML File 3:
1. Testing the ciphertext produced from file3.html using the proposed

random number generator: Figure (4.26) shows the results of five

and Table (4.5) summarizes the evaluation results.

 (4.5) The randomness tests result for the ciphered HTML file3
n oposed r om generator)

randomness tests applied on the ciphertext version of HTML file3,

 Table
usi g the (pr and

Random Tests Value Chi-square value
Frequency test 2.2

P <=3.841

Serial test 2.5
P <=5.991

Poker test P <=43.77
4

Run test 50.52
F <=43.77

HTML
File3
Size=

(27KB)

Autocorrelation
 test

1.15
P

<=3.841

 102

Chapter Four Implementation and Testing

 HTML File3 Serial Test

N00
24.9

N01
25

N10
25

N11
25.1

24.6
24.7
24.8
24.9
25.0
25.1
25.2
25.3
25.4
25.5

number of transitions

%

HTML File 3 Frequency Test

N0
49.8

N1
50.2

49.0
49.2
49.4
49.6
49.8
50.0
50.2
50.4

Number of(0,1) elements

%

g linear feedback

shift register generator: Figure (4.27) shows the results of five

randomness tests applied on the ciphertext version of HTML file3,

and Table (4.6) summarizes the evaluation results.

HTML File 3 Run Test

0

5

10

15

20

25

30

35

1 3

Figure (4.26) The results of five randomness tests for the ciphered HTML
file3 using the (proposed random generator)

2. Testing the ciphertext produced from file3.html usin

HTML File 3 Poker Test

N0
221

N1
1108

N2
2238

N3
2260

N4
1122

N5
234

0

500

1000

1500

2000

2500

Number of blocks

%

5 7 9 11 13 15 17 19

Run length

Nu
m

be
r

of
 g

ab
s

an
d

bl
oc

ks Sum of Gabs

Sum of Blocks

HTML File 3 Autocorrelation Test

0.8

1

1.2

1.4

Shift values

on
 C

oe
ffi

en
t

0

0.2

0.4

0.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
or

re
la

ti

 103

Chapter Four Implementation and Testing

Table (4.6) The randomness tests result for the ciphered HTML file3
u d n

e results of five randomness tests for the ciphered HTML
file3 (using LFSR random generator)

sing (LFSR ran om ge erator)

Figure (4.27) Th

Random tests Value Chi-square value
Frequency test 0.4 <=3.841 P

Serial test 0.6 <=5.991 P

Poker test 2
P

<=43.77

Run t 403.15 <=55.76 est F

HTML
File3
Size=

(27KB)

Autocorrelation
test

0.35
P

<=3.841

HTML File 3 Frequency Test

49.2
49.4
49.6
49.8
50.0
50.2
50.4

%

N0
49.9

N1
50.1

49.0

Number of(0,1) elements

HTML File3 Serial Test

24.8
24.9
25.0
25.1
25.2
25.3
25.4
25.5

%

N00
25

N01
25

N10
25

N11
25.1

24.6
24.7

number of transitions

HTML File 3 Poker Test

N0 N1
1111

N2
2241

N3
2240

N4
1132

N5
226.6

0

500

1000

1500

2000

2500

Number of blocks

%

229

HTML File 3 Run Test

0
2

4
6
8

10
12
14

16
18

1 3 5 7 9 11 13 15 17 19 21 23

Run length

N
um

be
r

of
 g

ab
s

an
d

bl
oc

ks Sum of gabs

Sum of Blocks

HTML File 3 Autocorrelation Test

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45

Co
rr

el
at

io
n

C
oe

ffi
en

t

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Shift values

 104

Chapter Four Implementation and Testing

HTML File 4:
1. Testing the ciphertext produced from file4.html using the proposed

random number generator: Figure (4.28) shows the results of the five

randomness tests on the ciphertext version of HTML file4, and Table

(4.7) summarizes the evaluation results.

Table (4.7) The rando TML file4 using the
d e

mness tests for the ciphered H
(proposed ran om gen rator)

Random tests Value Chi-square value
Frequency test 0.09

P <=3.841

Serial test 0.5
P <=5.991

Poker test 5
P <=43.77

Run test 37.9
P <=43.77

HTML

(31.4KB)

Autocorrelation 0.36 <=3.841

File4
Size=

test P

HTML File 4 Frequency Test

N0
50

N1
50

49

50

51

Number of(0,1) elements

%

HTML File4 Serial Test

N00
25

N01
25

N10
25

N11
25

24

25

26

%

number of transitions

HTML File 4 Poker Test

N0
215

N1
1100

N2
2207

N3
2177

N4
1092

N5
230.8

0

500

1000

1500

2000

2500

Number of blocks

%

HTML File 4 Run Test

0

5

10

15

20

25

N
um

be
r

of
 g

ab
s

an
d

bl
oc

ks

1 3 5 7 9 11 13 15 17

Run length

Sum of gabs

Sum of Blocks

 105

Chapter Four Implementation and Testing

HTML File 4 Auto

correlation Test

0.2

0.4

0.6
0.8

1

1.2

1.4

C
or

re
la

tio
n

C
oe

ffi
en

t

 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Shift values

Figure (4.28) The result of five randomness tests for the ciphered HTML

esults of the five

randomness tests applied on the ciphertext version of HTML file4,

Table (4.8) The randomness tests for the ciphertext of HTML file4 using

o ra

file4 using the (proposed random generator)

2. Testing the ciphertext produced from file4.html using linear feedback

shift register generator: Figure (4.29) shows the r

and Table (4.8) summarizes the evaluation results.

(LFSR rand m gene tor)

Random tests Value Chi-square value
Frequency test 0.71 <=3.841 P

Serial test 0.7 <=5.991 P

Poker test 3
P

HTML

<=43.77

Run te 14.91
P <=43.77 st

File4
Size=

(31.4KB)

Autocorrelation
test

0.05
P

<=3.841

HTML File 4 Frequency Test

N0
50.1

N1
49.9

49.0

50.0

51.0

Number of(0,1) elements

%

HTML File4 Serial Test

N00
25.1

N01
25

N10
25

N11
24.9

24.5

25.0

25.5

number of transitions

%

 106

Chapter Four Implementation and Testing

HTML File 4 Run Test

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Run length

Nu
m

be
r

of
 g

ab
s

an
d

bl
oc

ks Sum of gabs

Sum of Blocks

HTML File 4 Poker Test

N0
221

N1
1095

N2
2209

N3
2188

N4
1097

N5
210.4

0

500

1000

1500

2000

2500

Number of blocks

%

HTML File 4 Autocorrelation Test

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Shift values

C
or

re
la

tio
n

Co
ef

fie
nt

Figure (4.29) The results of five randomness tests for the ciphered HTML
file4 using (LFSR random generator)

HTML File 5:
1. Testing the ciphertext produced from file5.html using the proposed

random number generator: Figure (4.30) shows the results of five

randomness tests applied on the ciphertext version of HTML file5,

and Table (4.9) summarizes the evaluation results.

 Table (4.9) The randomness tests for the ciphertext of HTML file5 using
the (proposed random generator)

 Random tests Value Chi-square value
Frequency test 3.3

P <=3.841

Serial test 3.4
P <=5.991

Poker test 25
P <=43.77

Run test 35.28
P <=43.77

HTML
File5
Size=

(42.9KB)

Autocorrelation
test

2.34
P

<=3.841

 107

Chapter Four Implementation and Testing

HTML File5 Serial Test

N00
25

N01
25

N10
25

N11
25

24

25

25

26

Number of transitions

%

HTML File5 Frequency Test

N0
50

N1
50.2

49

50

Number of (0,1) elements

%

HTML File5 Poker Test

N0
362

N1
1897

N2
3777

N3
3895

N4
1932

N5
357

300.0

1300.0

2300.0

3300.0

Number of blocks

%

HTML File5 Run Test

0

4

8

12

16

20

24

28

Run length
N

um
be

r
of

 b
lo

ck
s

an
d

ga
bs

HTML File 5 Autocorrelation Test

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Shift values

C
or

re
la

tio
n

co
ef

fic
ie

nt

Figure (4.30) The results of five randomness tests for the ciphertext of

HTML file5 using the (proposed random generator)

2. Testing the ciphertext produced from file5.html using linear feedback

shift register generator: Figure (4.31) shows the results of the five

randomness tests applied on the ciphertext version of HTML file5,

and Table (4.10) summarizes the evaluation results.

 108

Chapter Four Implementation and Testing

Table (4.10) The randomness tests result for the ciphered HTML file5
using (LFSR random generator)

Random tests Value Chi-square value
Frequency test 3.3

P <=3.841

Serial test 5.8
P <=5.991

Poker test 6
P <=43.77

Run test 30.1
P <=43.77

HTML
File5
Size=

(42.9KB)

Autocorrelation
test

0.05
P

<=3.841

HTML File5 Serial Test

N00
24.9

N01
24.9

N10
24.9

N11
25.2

24.0

24.5

25.0

25.5

Number of transitions

%

HTML File5 Frequency Test

N0
49.8

N1
50.2

49.2

50.2

Number of (0,1) elements

%

HTML File5 Poker Test

N0
378

N1
1910

N2
3784

N3
3813

N4
1941

N5
394

300.0

1300.0

2300.0

3300.0

Number of blocks

%

HTML File5 Run Test

0

4

8

12

16

Run length

N
um

be
r

of
 b

lo
ck

s
an

d
ga

bs

HTML File 5 Autocorrelation Test

0
0.5

1
1.5

2
2.5

3
3.5

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Shift values

C
or

re
la

tio
n

co
ef

fic
ie

nt

Figure (4.31) The results of five randomness tests for the ciphered HTML
file5 using (LFSR random generator)

 109

Chapter Four Implementation and Testing

HTML File 6:
1. Testing the ciphertext produced from file6.html using the proposed

random number generator: Figure (4.32) shows the results of the five

randomness tests applied on the ciphertext version of HTML file6,

and Table (4.11) summarizes the evaluation results.

 Table (4.11) The randomness tests for the ciphered HTML file6

using the (proposed random generator)
 Random tests Value Chi-square value

Frequency test 0.3
P <=3.841

Serial test 2.2
P <=5.991

Poker test 8
P <=43.77

Run test 40.29
P <=43.77

HTML
File6
Size=

(66.5 KB)

Autocorrelation
test

1.3
P

<=3.841

HTML File6 Serial Test

N00
25

N01
24.9

N10
24.9

N11
25.2

24

25

26

Number of transitions

%

HTML File6 Frequency Test

N0
49.9

N1
50.1

49.2

50.2

Number of (0,1) elements

%

 HTML File6 Run Test

0

4

8

12

16

20

Run length

N
um

be
r o

f b
lo

ck
s

an
d

ga
bs

HTML File6 Poker Test

N0
190

N1
1009

N2
1964

N3
1954

N4
997

N5
207

170

1170

2170

Number of blocks

%

 110

Chapter Four Implementation and Testing

HTML File 6 Autocorrelation Test

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Shift values

C
or

re
la

tio
n

co
ef

fic
ie

nt

Figure (4.32) The results of the five randomness tests for the ciphered
HTML file6 using the (proposed random generator)

2. Testing the ciphertext produced from file6.html using linear feedback

shift register generator. Figure (4.33) shows the results of five

randomness tests applied on the ciphertext version of HTML file6,

and Table (4.12) summarizes the evaluation results.

Table (4.12) The randomness tests for the ciphered HTML file6 using

(LFSR random generator)

Random tests Value Chi-square value
Frequency test 0.11

P <=3.841

Serial test 1.98
P <=5.991

Poker test 7
P <=43.77

Run test 24.4
P <=43.77

HTML
File6
Size=

(66.5 KB)

Autocorrelation
test

0.08
P

<=3.841

 HTML File6 Serial Test

N00
25.1

N01
24.9

N10
24.9

N11
25

24.5

25.5

Number of transitions

%

HTML File6 Frequency Test

N0
50

N1
50

49

50

Number of (0,1) elements

%

 111

Chapter Four Implementation and Testing

 HTML File6 Poker Test

N0
204

N1
992

N2
1983

N3
1938

N4
1002

N5
202

170

1170

2170

Number of blocks

%

HTML File6 Run Test

0

4

8

12

Run length

N
um

be
r o

f b
lo

ck
s

an
d

ga
bs

HTML File 6 Autocorrelation Test

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Shift values

C
or

re
la

tio
n

co
ef

fic
ie

nt

Figure (4.33) The results of five randomness tests for the ciphered HTML

file6 using (LFSR random generator)

The results of the experimental tests of randomness can be

summarized that, after applying the five random tests, the results show

that, the proposed random number generator and the linear feedback shift

register have sufficient degree of randomness.

4.3.2 The Elapsed Encoding Time
In this section, the elapsed encryption time by HSS is investigated.

The elapsed time was measured by applying ciphering and deciphering

processes on different HTML files having different sizes.

In HSS encoding stage, the total time is computed as the

summation of the (1) the time taken for key generation, (2) the time taken

for encryption process, (3) the time taken for bas64 encoding, (4) the time

taken for color encryption and (5) the time taken for font size encryption.

 112

Chapter Four Implementation and Testing

The time for key generation is measured for each one of the two

applied random number generators (i.e., LFSR and the proposed random

number generator). Figure (4.34) shows the variation of measured

encoding time for five HTML files.

In HSS decoding stage, the total time is computed by summing the

elapsed times of all stages of HSS decoder. Figure (4.35) shows the

elapsed decoding time for five HTML files using two random number

generators. Table (4.13) illustrates the encoding and decoding time with

different HTML file sizes.

Encryption Time

0.02

0.52

1.02

1.52

2.02

2.52

3.02

1 6 11 16 21 26 31 36 41
HTML file size (KB)

To
ta

l e
nc

od
in

g
tim

e
(s

ec
)

Encryption time using
proposed generator

Encryption time using
LFSR

Figure (4.34) The variation of elapsed encoding time versus HTML file
size

Decryption Time

0.04

0.54

1.04

1.54

2.04

2.54

3.04

1 6 11 16 21 26 31 36 41
HTML file size (KB)

To
ta

l d
ec

od
in

g
tim

e
(s

ec
)

Decryption time using
proposed generator

Decryption time using
LFSR generator

Figure (4.35) The variation of elapsed decoding time versus HTML file
size

 113

Chapter Four Implementation and Testing

Table (4.13) The elapsed encoding and decoding time values when using
one of the two generators

Encryption Time (MSec) Decryption Time (MSec) HTML
File
Size
(KB)

Proposed
Generator

LFSR
Generator

The
difference in
Time (MSec)

Proposed
Generator

LFSR
Generator

The
difference in
Time (MSec)

1 0.03 0.03 Zero(MSec) 0.04 0.04 Zero(MSec)
7.99 0.17 0.22 30% 0.25 0.33 30%
27 1 1.3 30% 1.3 1.7 30%

31.4 1.1 1.44 30% 1.4 1.83 30%
42.9 1.8 2.53 40% 2.1 2.94 40%
66.5 1.2 1.69 40% 1.8 2.54 40%
274 6.7 9.4 40% 9.5 13.3 40%

The test results of the elapsed encoding and decoding time can be

summarized as follows:

1. From the results in Figure (4.34) and Figure (4.35), the elapsed

encoding and decoding time using the proposed random number

generator is less than the required time using linear feedback shift

register generator. Therefore, the proposed generator is faster.

2. From the results in Table (4.13), the total difference between

encoding and decoding time when using proposed random number

generator or linear feedback shift register is increased when the size

of HTML file increases.

3. The elapsed time taken for color and font encryption shown in

Figures (4.16) and (4.21) is about (1 milliseconds to 1.5

milliseconds) of the total encryption time, and the elapsed time for

color and font decryption has nearly the same percentage.

 114

Chapter Four Implementation and Testing

 115

4. The difference in encoding time values of the two HSS variants

(i.e., using LFSR or proposed random generators) increases when

the size of the HTML files is increased. As illustrated in Figure

(4.34), the difference between the two encryption times increases

when choosing large HTML files. In some cases, it was found that

when the size of HTML files increases, the encoding time

decreases. This is because some HTML files contain images, videos

more than text data. See sixth raw in Table (4.13).

Chapter Five Conclusions and Future Works

Chapter Five
Conclusions and Future Works

5.1 Introduction
Through the discussion presented in previous chapter, some

remarks related to the performance behavior of the introduced HSS

scheme have given. In this chapter a list of conclusions are presented

and some recommendations for further work are given, they could

contribute in increasing the level of HTML security.

5.2 Conclusions

A summary of some derived conclusions are given in the

following:

1. The results of the conducted tests indicated that the proposed

scheme (HSS) can satisfy the two security requirements (i.e.,

confidentiality and integrity). Also, HSS can secure any HTML

file without changing its structure, and any Internet Explorer can

interpret and display the contents of secured HTML file as an

encrypted Webpage and the hosting servers can transmit the

Webpage via HTTP (Hyper Text Transfer Protocol) media.

2. Two optional random number generators have been used in HSS.

The traditional linear feedback shift register and the proposed

random number generator. The results of the conducted

comparisons between the two generators indicated that:

A. The output sequence of the proposed random generator has

longer period than that for LFSR. The periodicity of its

output is about 2N, where N is the product of multiplying the

 116

Chapter Five Conclusions and Future Works

length value of the six vector generators used in the proposed

random number generator. The six values representing the

length of the vectors must be relatively prime numbers. The

output sequence length is long enough to encrypt the huge

HTML files. Since the period length of the key stream

depends on the length of the individual generators used in the

scheme, the number of generators could be increased when

there is a need to elongate the period.

B. In linear feedback shift register generator, the periodicity of

its key stream is about 232 bit long (i.e., 4 GBytes), and this

relatively short periodicity is fair enough to encrypt HTML

files.

C. The output sequence of the two generators has shown

acceptances level of randomness according to the statistical

randomness tests.

D. The proposed random generator is faster than LFSR

generator. This was indicated from the results of the

conducted time tests. It was found that the proposed random

generator is (30% to 40%) faster than the traditional

generator. This percentage range varies according to the size

and contents of HTML file.

3. From Figure (4.34) and Figure (4.35), the relation between the

HTML file size and the total encoding time shows a sort of

approximately linear dependency. This linear relationship is

obvious when the contents of encrypted HTML file are of text

type. While, when HTML file has significant ratio of non-text

data, then the encoding time become less than the time expected

by the linear relationship.

 117

Chapter Five Conclusions and Future Works

 118

4. The decoding time takes more than the encoding time, because the

size of the encrypted HTML file is larger than the size of its

original form (i.e., plaintext).

5. The time taken for color and font encryption and decryption is

about (1% to 2%) of the total time of whole encryption and

decryption operations.

5.3 Future Works
1. Improve the workflow of the proposed HSS to be online HTML file

security system.

2. Using public key encryption methodology to extend the application

domain of the proposed HSS (i.e., become applicable by more than

one corporation).

3. Extend the work of the proposed HSS to be capable to secure other

types of Web-files (like, Extensible Markup Language XML).

4. Improve the proposed HSS to encrypt a Website not only a

Webpage, by improving the system capability to trace hyperlinks.

References

[Aba06] Abass, A.; “An Encryption Based Security System for E-mail “;

M.Sc. thesis; Informatics Institute for Postgraduate Studies;

Iraq; 2006.

[Alm05] Al Moosaway, E.; “Encryption and Compression of HTML

Files”; M.Sc. thesis; University of Technology; Iraq; 2005.

[Alw03] Alwash, W.; “Design and Implementation of an E-mail Security

System”; M.Sc. thesis; College of Science; Al-Nahrain

University; Iraq; 2003.

[Ant00] Ants Soft; “HTML Protector”; Web Master Software Tools;

2000.

[Bar05] Baker, E.; “Recommendation for Key Management”; NIST

Special Publication 800-57; 2005.

[Ber92] Berson, A.;”Differential Cryptanalysis Mod 232 with

Applications to MD5”; EUROCRYPT: 71-80; ISBN 3-540-

56413-6.

[Bha03] Bhasin, S.; “Web Security Basics”; Premier Press; 2003.

[BoFr93] Borenstein, N. and Freed, N.; ”MIME (Multipurpose Internet

Mail Extensions) Part One: Mechanisms for Specifying and

 119

Describing the Format of Internet Message Bodies”; Bell core;

Inn soft; RFC 1521; September; 1993.

[Bos93] Bosselaers, A; ”Collisions for the Compression Function of

MD5”; Springer; pp. 239-304; London; ISBN 3-540-57600-2.

[Bro98] Brown, M. R.; ”Special Edition Using HTML 4”; Macmillan

Computer Publishing; Indianapolis; USA; 1998.

[Can01] Canavan, E.;” Fundamentals of Network Security”; Artech

House Inc.; London; 2001; ISBN 1-58053-176-8.

[Cin99] Cintron, D.; “Fast Track Web Programming: A Programmer’s

Guide to Mastering Web Technologies”; Wiley Computer

Publishing; 1999.

[Cis89] Cisco; “Designing Network Security”; Cisco Press Publications;

1989.

[Dar98] Darnell, R.; ”HTML 4 Un-Leashed”; Macmillan Computer

Publishing; 2nd Edition; 1998.

[DeKn07] Delfs, H., Knebl, H.; ”Introduction to Cryptography Principles

and Applications”; Springer; 2007.

[Dor83] Dorothy, E.; ”Cryptography and Data Security”; Addison-

Wesley Publication Inc.; 1983.

 120

[Gar01] Garfinkel, S.; “Web Security: Privacy & Commerce”; 2nd

Edition; O' Reilly; 2001.

[GoBe01] Goldwasser, S. and Bellare, M.; “Lecture Notes on

Cryptography”; MIT Laboratory of Computer Science; USA;

2001.

[KeMu06] Kennedy, B. and Musciano, C.; “HTML & XHTML: The

Definitive Guide”; O’Reilly Publishing; 6th Edition; 2006.

[Lia09] Lian, S.; “Multimedia Content Encryption Techniques and

Applications”; CRC Press Inc.; 2009.

[Mel04] Melnick; C.; ”What is Base64”; Copyright 2004; Website:

http://www.aardwulf.com

[Men96] Menezes, J.; ”Handbook of Applied Cryptography”; CRC Press

Inc.; 1996.

[NaSt00] Navarro, A. and Stauffer, T.; “HTML by Example”; Que

Printing; Indiana; 2000.

[NaTa98] Navarro, A. and Tabinda, K.; ”Effective Web Design: Master

the Essentials”; Sybex Inc.; 1998.

[Net90] Network Associates Inc.; ”Introduction to Cryptography”; 1990.

[Opp05] Oppliger, R.;”Contemporary Cryptography”; Aretch House Inc.;

2005.

 121

http://www.aardwulf.com/

 [Ozc03] Ozcan, M.; “Design and Development of Practical and Secure E-

mail System”; M.Sc. thesis; Graduate School of Engineering

and Natural Sciences”; Sabanci University; Istanbul; 2003.

[Pfa00] Pfaffenberger, B.; “HTML Bible”; 2nd Edition; IDG Books;

Worldwide Inc.; 2000.

[Pro03] ProtoWare; “HTML Guardian”; Protoware Inc.; Shareware

Connection; 2003.

[Rad07] Radhamani, G.; “Web Service Security and E-Business”; IDEA

Group publishing; Multi Media University; Malaysia; 2007.

[Rhe03] Rhee, M.; “Internet Security Cryptographic Principles,

Algorithms and Protocols”; John Wiley & Sons Ltd.; Seoul

National University; 2003.

[Sch96] Schneier, B.; ”Applied Cryptography: Protocols, Algorithm, and

Source Code in C”; Wiley Computer Publishing; John Wiley &

Sons Inc.; 2nd Edition; ISBN: 0471128457; 1996.

[Sta96] Staffer, T.;” HTML by Example”; Que printing; 1996.

[Sta03] Stallings, W.; “Cryptography and Network Security Principles

and Practices”; Prentice Hall; 2nd Edition; New Jersey; 2003.

[Sta05] Stallings, W.; “Cryptography and Network Security Principles

and Practices”; Prentice Hall; 4th Edition; New Jersey; 2005.

 122

 123

[Sti95] Stinson, D.; ”Cryptography: Theory and Practice”; CRC Press

Inc; 1995.

[Tan03] Tanenbaum; A.; ”Computer Network”; 4th Edition; Prentice Hall

Publishing; March 2003.

[TiBu05] Tittel, E. and Burmeister, M.; ”HTML 4 for Dummies”; Wiley

Publishing Inc.; 5th Edition; Indiana; 2005.

[Til05] Tilorg, V.; ”Encyclopedia of Cryptography and Security”;

Springer; 2005.

[WiBa98] Williams, A. and Barber, K.; “Active Server Pages Black

Book”; Coriolis Group; 1998.

Appendix A The MD5 Algorithm

Appendix A
This appendix illustrates the MD5 operations and its rounds, which

are used in the implementation of the proposed system.

A. The MD5 Message Digest [Sch96]
1. The four 32-bit variables (A, B, C, D) are initialized to have the

following values:

A = 0x01234567

B = 0x89abcdef

C = 0xfedcba98

D = 0x76543210

These are called chaining variables.

2. The four variables are copied to different set of variables (i.e., a, b, c,

d): a gets A, b gets B, c gets C, and d gets D.

3. The main loop has four rounds. Each round uses different operation 16

times. Each operation performs a nonlinear function on three elements

of the set {a, b, c, d}. then, the result is added to the fourth variable, a

sub-block of the text and a constant. Then, rotates that result to the left

for a variable number of bits and adds the result to one of {a, b, c, d}.

Finally, the result replaces one of {a, b, c, d}.

4. If Mj represents the j th sub-block of the message (from 0 to 15), and

<<<s represents a left circular shift of s bits, then, the four following

operations are applied:

FF(a,b,c,d,Mj,s,ti) denotes a = b + ((a + F(b,c,d) + Mj + ti) <<< s)

GG(a,b,c,d,Mj,s,ti) denotes a = b + ((a + G(b,c,d) + Mj + ti) <<< s)

Α 1

Appendix A The MD5 Algorithm

HH(a,b,c,d,Mj,s,ti) denotes a = b + ((a + H(b,c,d) + Mj + ti) <<< s)

II(a,b,c,d,Mj,s,ti) denotes a = b + ((a + I(b,c,d) + Mj + ti) <<< s)

Such that, the following four rounds (64 steps) are applied:

Round 1:

FF (a, b, c, d, M0, 7, 0xd76aa478)

FF (d, a, b, c, M1, 12, 0xe8c7b756)

FF (c, d, a, b, M2, 17, 0x242070db)

FF (b, c, d, a, M3, 22, 0xc1bdceee)

FF (a, b, c, d, M4, 7, 0xf57c0faf)

FF (d, a, b, c, M5, 12, 0x4787c62a)

FF (c, d, a, b, M6, 17, 0xa8304613)

FF (b, c, d, a, M7, 22, 0xfd469501)

FF (a, b, c, d, M8, 7, 0x698098d8)

FF (d, a, b, c, M9, 12, 0x8b44f7af)

FF (c, d, a, b, M10, 17, 0xffff5bb1)

FF (b, c, d, a, M11, 22, 0x895cd7be)

FF (a, b, c, d, M12, 7, 0x6b901122)

FF (d, a, b, c, M13, 12, 0xfd987193)

FF (c, d, a, b, M14, 17, 0xa679438e)

FF (b, c, d, a, M15, 22, 0x49b40821)

Round 2:

GG (a, b, c, d, M1, 5, 0xf61e2562)

GG (d, a, b, c, M6, 9, 0xc040b340)

GG (c, d, a, b, M11, 14, 0x265e5a51)

GG (b, c, d, a, M0, 20, 0xe9b6c7aa)

GG (a, b, c, d, M5, 5, 0xd62f105d)

GG (d, a, b, c, M10, 9, 0x02441453)

GG (c, d, a, b, M15, 14, 0xd8a1e681)

GG (b, c, d, a, M4, 20, 0xe7d3fbc8)

Α 2

Appendix A The MD5 Algorithm

GG (a, b, c, d, M9, 5, 0x21e1cde6)

GG (d, a, b, c, M14, 9, 0xc33707d6)

GG (c, d, a, b, M3, 14, 0xf4d50d87)

GG (b, c, d, a, M8, 20, 0x455a14ed)

GG (a, b, c, d, M13, 5, 0xa9e3e905)

GG (d, a, b, c, M2, 9, 0xfcefa3f8)

GG (c, d, a, b, M7, 14, 0x676f02d9)

GG (b, c, d, a, M12, 20, 0x8d2a4c8a)

Round 3:

HH (a, b, c, d, M5, 4, 0xfffa3942)

HH (d, a, b, c, M8, 11, 0x8771f681)

HH (c, d, a, b, M11, 16, 0x6d9d6122)

HH (b, c, d, a, M14, 23, 0xfde5380c)

HH (a, b, c, d, M1, 4, 0xa4beea44)

HH (d, a, b, c, M4, 11, 0x4bdecfa9)

HH (c, d, a, b, M7, 16, 0xf6bb4b60)

HH (b, c, d, a, M10, 23, 0xbebfbc70)

HH (a, b, c, d, M13, 4, 0x289b7ec6)

HH (d, a, b, c, M0, 11, 0xeaa127fa)

HH (c, d, a, b, M3, 16, 0xd4ef3085)

HH (b, c, d, a, M6, 23, 0x04881d05)

HH (a, b, c, d, M9, 4, 0xd9d4d039)

HH (d, a, b, c, M12, 11, 0xe6db99e5)

HH (c, d, a, b, M15, 16, 0x1fa27cf8)

HH (b, c, d, a, M2, 23, 0xc4ac5665)

Round 4:

II (a, b, c, d, M0, 6, 0xf4292244)

II (d, a, b, c, M7, 10, 0x432aff97)

II (c, d, a, b, M14, 15, 0xab9423a7)

Α 3

Appendix A The MD5 Algorithm

Α 4

II (b, c, d, a, M5, 21, 0xfc93a039)

II (a, b, c, d, M12, 6, 0x655b59c3)

II (d, a, b, c, M3, 10, 0x8f0ccc92)

II (c, d, a, b, M10, 15, 0xffeff47d)

II (b, c, d, a, M1, 21, 0x85845dd1)

II (a, b, c, d, M8, 6, 0x6fa87e4f)

II (d, a, b, c, M15, 10, 0xfe2ce6e0)

II (c, d, a, b, M6, 15, 0xa3014314)

II (b, c, d, a, M13, 21, 0x4e0811a1)

II (a, b, c, d, M4, 6, 0xf7537e82)

II (d, a, b, c, M11, 10, 0xbd3af235)

II (c, d, a, b, M2, 15, 0x2ad7d2bb)

II (b, c, d, a, M9, 21, 0xeb86d391)

The constants, ti, were chosen as follows:

In step i, ti is the integer part of 232 *ABS (sin (i)), where i is in

radians.

5. After all of this, a, b, c, and d are added to A, B, C, D, respectively,

and the algorithm continues with the next block of data. The final

output is the concatenation of A, B, C, and D.

 Appendix B Tables

Appendix B

Table (B.1) Common character entities
Name Symbol Decimal Description

quota “ " Quotation mark

 & & ampersand

lt < < Less than

gt > > Greater than

nbsp Non breaking space

iexcl i ¡ Inverted exclamation mark

cent ¢ ¢ Cent sign

pound £ £ Pound sign

curren ¤ Currency sign

yen ¥ ¥ Yen sign = yuan sign

brvbar ¦ ¦ Broken bar = broken vertical bar

sect § § Section sign

uml ¨ ¨ Diaeresis = spacing diaeresis

copy © © Copyright sign

ordf ª ª Feminine ordinal indicator

laquo « « Left-pointing double angle quotation mark

not ¬ ¬ Not sign

shy ­ Soft hyphen = discretionary hyphen

reg ® ® Registered sign = registered trade mark sign

macr – ¯ Macron = spacing macron = overline

deg ° ° Degree sign

plusmn ± ± Plus-minus sign = plus-or-minus sign

sup2 2 ² Superscript two = superscript digit two

sup3 3 ³ Superscript three = superscript digit three

acute ´ ´ Acute accent = spacing acute

micro µ µ Micro sign

Β 1

 Appendix B Tables

Name Symbol Decimal Description

para ¶ ¶ Pilcrow sign = paragraph sign

middot · · Middle dot = Georgian comma

cedil ¸ ¸ Cedilla = spacing cedilla

sup1 1 ¹ Superscript one = superscript digit one

ordm º º Masculine ordinal indicator

raquo » » Right-pointing double angle quotation mark

frac14 ¼ ¼ Fraction one quarter

frac12 ½ ½ Fraction one half

frac34 ¾ ¾ Fraction three quarters

iquest ¿ ¿ Inverted question mark

Agrave À À Latin capital letter A with grave

Aacute Á Á Latin capital letter A with acute

Acirc Â Â Latin capital letter A with circumflex

Atilde Ã Ã Latin capital letter A with tilde

Auml Ä Ä Latin capital letter A with diaeresis

Aring Å Å Latin capital letter A with ring above

AElig Æ Æ Latin capital letter AE

Ccedil Ç Ç Latin capital letter C with cedilla

Egrave È È Latin capital letter E with grave

Eacute É É Latin capital letter E with acute

Ecirc Ê Ê Latin capital letter E with circumflex

Euml Ë Ë Latin capital letter E with diaeresis

Igrave Ì Ì Latin capital letter I with grave

Iacute Í Í Latin capital letter I with acute

Icirc Î Î Latin capital letter I with circumflex

Iuml Ï Ï Latin capital letter I with diaeresis

ETH Ð Ð Latin capital letter ETH

Ntilde Ñ Ñ Latin capital letter N with tilde

Ograve Ò Ò Latin capital letter O with grave

Oacute Ó Ó Latin capital letter O with acute

Ocirc Ô Ô Latin capital letter O with circumflex

Β 2

 Appendix B Tables

Name Symbol Decimal Description

Otilde Õ Õ Latin capital letter O with tilde

Ouml Ö Ö Latin capital letter O with diaeresis

times x × Multiplication sign

Oslash Ø Ø Latin capital letter O with stroke

Ugrave Ù Ù Latin capital letter U with grave

Uacute Ú Ú Latin capital letter U with acute

Ucirc Û Û Latin capital letter U with circumflex

Uuml Ü Ü Latin capital letter U with diaeresis

Yacute Ý Ý Latin capital letter Y with acute

THORN Þ Þ Latin capital letter THORN

szlig ß ß Latin small letter sharp s = ess-zed

agrave à à Latin small letter a with grave

aacute á á Latin small letter a with acute

acirc â â Latin small letter a with circumflex

atilde ã ã Latin small letter a with tilde

auml ä ä Latin small letter a with diaeresis

aring å å Latin small letter a with ring above

aelig æ æ Latin small letter ae

ccedil ç ç Latin small letter c with cedilla

egrave è è Latin small letter e with grave

eacute é é Latin small letter e with acute

ecirc ê ê Latin small letter e with circumflex

euml ë ë Latin small letter e with diaeresis

igrave ì ì Latin small letter i with grave

iacute í í Latin small letter i with acute

icirc î î Latin small letter i with circumflex

iuml ï ï Latin small letter i with diaeresis

eth ð ð Latin small letter eth

ntilde ñ ñ Latin small letter n with tilde

ograve ò ò Latin small letter o with grave

oacute ó ó Latin small letter o with acute

Β 3

 Appendix B Tables

Β 4

Name Symbol Decimal Description

ocirc ô ô Latin small letter o with circumflex

otilde õ õ Latin small letter o with tilde

ouml ö ö Latin small letter o with diaeresis

divide ÷ ÷ Division sign

oslash ø ø Latin small letter o with stroke

ugrave ù ù Latin small letter u with grave

uacute ú ú Latin small letter u with acute

ucirc û û Latin small letter u with circumflex

uuml ü ü Latin small letter u with diaeresis

yacute ý ý Latin small letter y with acute

thorn þ þ Latin small letter thorn

yuml ÿ ÿ Latin small letter y with diaeresis

 Appendix C Tables

Appendix C

Table (C.1) The Selected percentiles of the 2χ (chi-square) distribution
α υ

0.100 0.050 0.025 0.010 0.005 0.001
1 2.7055 3.8415 5.0239 6.6349 7.8794 10.8276
2 4.6052 5.9915 7.3778 9.2103 10.5966 13.8155
3 6.2514 7.8147 9.3484 11.3449 12.8382 16.2662
4 7.7794 9.4877 11.1433 13.2767 14.8603 18.4668
5 9.2364 11.0705 12.8325 15.0863 16.7496 20.5150
6 10.6446 12.5916 14.4494 16.8119 18.5476 22.4577
7 12.0170 14.0671 16.0128 18.4753 20.2777 24.3219
8 13.3616 15.5073 17.5345 20.0902 21.9550 26.1245
9 14.6837 16.9190 19.0228 21.6660 23.5894 27.8772
10 15.9872 18.3070 20.4832 23.2093 25.1882 29.5883
11 17.2750 19.6751 21.9200 24.7250 26.7568 31.2641
12 18.5493 21.0261 23.3367 26.2170 28.2995 32.9095
13 19.8119 22.3620 24.7356 27.6882 29.8195 34.5282
14 21.0641 23.6848 26.1189 29.1412 31.3193 36.1233
15 22.3071 24.9958 27.4884 30.5779 32.8013 37.6973
16 23.5418 26.2962 28.8454 31.9999 34.2672 39.2524
17 24.7690 27.5871 30.1910 33.4087 35.7185 40.7902
18 25.9894 28.8693 31.5264 34.8053 37.1565 42.3124
19 27.2036 30.1435 32.8523 36.1909 38.5823 43.8202
20 28.4120 31.4104 34.1696 37.5662 39.9968 45.3147
21 29.6151 32.6706 35.4789 38.9322 41.4011 46.7970
22 30.8133 33.9244 36.7807 40.2894 42.7957 48.2679
23 32.0069 35.1725 38.0756 41.6384 44.1813 49.7282
24 33.1962 36.4150 39.3641 42.9798 45.5585 51.1786
25 34.3816 37.6525 40.6465 44.3141 46.9279 52.6197
26 35.5632 38.8851 41.9232 45.6417 48.2899 54.0520
27 36.7412 40.1133 43.1945 46.9629 49.6449 55.4760
28 37.9159 41.3371 44.4608 48.2782 50.9934 56.8923
29 39.0875 42.5570 45.7223 49.5879 52.3356 58.3012
30 40.2560 43.7730 46.9792 50.8922 53.6720 59.7031
31 41.4217 44.9853 48.2319 52.1914 55.0027 61.0983
63 77.7454 82.5287 86.8296 92.0100 95.6493 103.4424
127 147.8048 154.3015 160.0858 166.9874 171.7961 181.9930
255 284.3359 293.2478 301.1250 310.4574 316.9194 330.5197
511 552.3739 564.6961 575.5298 588.2978 597.0978 615.5149
1023 1081.3794 1098.5208 1113.5334 1131.1587 1143.2653 1168.4972

C1

	Binder8.pdf
	Binder7.pdf
	Binder6.pdf
	Binder4.pdf
	improving the security of HTML files.pdf
	english title Republic of Iraq.pdf
	Republic of Iraq

	أيه
	supervisor certification
	cerification committte
	Dedication

	Acknowledgment
	Abstract
	Table of Contents
	List of Abbreviations
	List of figures and tables
	chapter1
	1.4 Cryptography and Web Security

	chapter2
	B. HTML Document Parts
	(2) HTML Tag [NaTa98]
	(3) HEAD Tag
	(5) BODY Tag
	C. Block-Level and Inline Elements
	D. BODY Element Attributes
	Table (2.3) Body attributes and their functions [Bro98]

	E. HTML Colors

	The first small step toward creating a document is to define the colors that will be used for any text in the Webpage, as well as to define a background color for the entire Webpage or some portion of it. If colors are not specified, the default colors are used [Bro98].
	F. Color Values

	In HTML, color values are defined in two ways [TiBu05]:
	Table (2.4) Sixteen common color values [Bro98]
	1. Key generation algorithm: Algorithm G, which, on input k (the security parameter) produces a pair (e, d) where e is called the public key and d is the corresponding private key (in a mathematical notation (e, d) G (k)). The pair (e, d) refers to the pair of encryption/decryption keys. Asymmetric algorithms rely on one key for encryption and a different but related key for decryption [Sta05].
	2. An encryption algorithm: Algorithm E, which takes as input a security parameter k, a public-key e from the range of G(k) and string m {0,1} (called the message), and produces as output, a string c {0,1} (called the ciphertext). The notation (c E (k, e, m) is used to denote that the message m is encrypted using key e with security parameter k.
	3. A decryption algorithm: Algorithm D, which takes as input, a security parameter k, a private-key d from the range of G(k), and a ciphertext c from the range of E(k, e, m). As output it produces a string m´ (0, 1), such that for every pair (e, d) in the range of G (k), for every m, for every c D (k, e, m), the probability (D (k, d, c) m´) is negligible. Public key encryption scheme is illustrated in Figure (2.6).

	chapter three
	last version22 Chapter Four
	Chapter Five

	References
	appendix A

	APPENDIX B
	APPENDIX C

	الخلاصه
	الخلاصه1
	arabic title

