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ABSTRACT 

 

        The main theme of this thesis is oriented about three objects: 

 The first one is to study the fundamental concepts of fractional calculus 

which are needed for finding the numerical solution of the differential 

equations (ordinary and partial) of fractional order. 

      The second objective is about finding the numerical solution of the 

non-linear ordinary differential equations of fractional order using 

wavelets methods which are Haar wavelets method, Chebyshev wavelets 

method and Legendre wavelets method. The main idea of these methods 

is to reduce the ordinary differential equation of fractional order into a 

system of algebraic equations then solved the obtained system. The 

solution of this system will give us the values of the coefficients of the 

desired solution which is expressed in an infinite series thus greatly 

simplifying such equations.  

        The third objective is to find the numerical solution of the linear 

partial differential equations of fractional order using three numerical 

methods which are: Chebyshev wavelets method, Haar-Chebyshev 

wavelets method and Chebyshev-Legendre wavelets method. The last 

two numerical methods (Haar-Chebyshev and Chebyshev-Legendre) are 

two modified numerical methods suggested in this thesis. The main 

characteristic of these methods is to express the solution of the partial 

differential equation as an infinite series in which its coefficients can be 

evaluated by converting the partial differential equations of fractional 

order into a system of algebraic equations which is named as Lyapunov 

type matrix and then solving this system of equations using MATLAB 

software which gives us the values of the coefficients and hence the 

desired solution of the partial differential equation of fractional order. 
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INTRODUCTION      

 

I 
 

        The subject of fractional calculus (that is, calculus of integral and 

derivatives of any arbitrary real or complex order) has gained considerable 

popularity and importance during the past three decades or so, due mainly to 

its demonstrated applications in numerous seemingly diverse and wide spread 

fields of science and engineering. It does provide several potentially useful 

tool for solving differential and integral equations, and various other problems 

involving special functions of mathematical physics, as well as, their 

extensions and generalizations in one and more variables [Kilbas, 2006]. 

        Most authors on this topic will cite a particular date of so called 

“fractional calculus” in a letter dated in September 30
th

, 1695 L'Hospital 

wrote to Leibaniz asking him about a particular notation, he had been used in 

his publication for the n
th 

–derivative of the linear function      
  

   
. 

L'Hospital posed the question to Leibniz, what would the result be if    
  . 

Leibniz response “An apparent paradox, from which one day useful 

consequences will be drawn”. In these words fractional calculus was born. 

        Following L'Hosptial and Leibniz's first inquisition, fractional calculus 

was primary a study reserved for the best minds in mathematics, where 

Fourier, Euler and Laplace are among the many authors that dabbled with 

fractional calculus and the mathematical consequences [Nishimoto, 1983]. 

        Many authors found, using their own notation and methodology, 

definitions that fit the concept of noninteger order integral or derivative. The 

most famous of these definitions that have been popularized in the word of 

fractional calculus are the Riemann-Liouville and Grünwald-Letnokov 

definition. Most of the mathematical theory applicable to the study of 

fractional calculus was developed prior to the turn of the 20
th 

century. 

However, it is the past 100 years that the most intriguing leaps in engineering 

and scientific application have been found. 
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        The mathematics has in some cases to change to meet the requirements 

of physical reality, Caputo[Caputo,1997] reformulated the more 'classic' 

definition of the Riemann-Liouville fractional derivative in order to use 

integer order initial conditions to solve his fractional order differential 

equations [Podlubny, 1999]. However, during the last ten years fractional 

calculus starts to attract much more attention of physicists and 

mathematicians. It was found that various; especially interdisciplinary 

applications can be elegantly modeled with the help of the fractional 

derivatives. For example, the nonlinear oscillation of earthquake can be 

modeled with fractional derivatives [He, 1998] and the fluid-dynamic traffic 

model with fractional derivatives can eliminate the deficiency arising from the 

assumption of continuum traffic flow, [He, 1999]. 

        Fractional differential equations are generalized from classical integer-

order ones, which are obtained by replacing integer-order derivatives by 

fractional ones. 

        Their advantages comparing with integer-order differential equations are 

the capability of simulating natural physical process and dynamic system 

more accurately [Chen, 2007]. 

         partial differential equations involving derivatives with non-integer 

orders have shown to be adequate models for various physical phenomena in 

areas, such as damping laws, diffusion processes, etc. Other applications 

include electromagnetic, electrochemistry, arterial science, and the theory of 

ultra-slow processes and finance, [Wu, 2009]. 

        However, several numbers of algorithms for solving fractional order 

partial differential equations have been investigated. Suarez [Suarez, 1997] 

used the eigenvector expansion method to find the solution of motion 

containing fractional derivative. Podlubny [Podlubny, 1999] used the Laplace 

transform method to solve fractional differential equations numerically with 
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Riemann-Liouville derivatives definition as well as the fractional partial 

differential equations with constant coefficients, Meerscharet and Tadjeran 

[Meerscharet, 2006] proposed the finite difference method to find the 

numerical solution of two-sided space- fractional partial differential 

equations. Momani [Momani, 2007] used a numerical algorithm to solve the 

fractional convection-diffusion equation with nonlinear source term. Odibat 

and Momani [Odibat, 2009] used the variation iteration method to handle 

fractional partial differential equations in fluid mechanics. Jafari and Seifi 

[Jafari, 2009] solved a system of nonlinear fractional partial differential 

equations using homotopy analysis method. Wu [Wu, 2009] derived a wavelet 

operational method to solve fractional partial differential equations 

numerically .Chen and Wu [Chen, 2010] used wavelet method to find the 

numerical solution for a class of fractional convection-diffusion equation with 

variable coefficients. Geng [Geng, 2011] suggested a wavelet method for 

solving nonlinear partial differential equations of fractional order. Guo and 

et.al [Guo, 2013] used the fractional variationl homotopy perturbation 

iteration method to solve a fractional diffusion equation. 

        In this thesis, numerical solution of partial differential equation  of 

fractional order will be presented using the same approach given in [Wu, 

2009 ] but with the aid of Chebyshev wavelets method, Haar-Chebyshev 

wavelets method and Chebyshev-Legendre wavelets . Wavelets analysis as a 

new approach of mathematics is widely applied in signal analysis, image 

manipulation, and numerical analysis, etc. It mainly studies the expression of 

functions, that is functions are decomposed into summation of “basic 

functions” and every “basic functions” is obtained by compression and 

translation of a mother wavelet function with good properties of locality and 

smoothness, which makes people able to analyze the properties of locality and 

integer in process of expressing functions [Li, 2005]. Beside their 
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conventional applications in signal and image processing, wavelet basis had 

received attention dealing with numerical solutions of integer order as well as 

fractional order differential equations. Wavelet basis can be used to reduce the 

underlying problem to a system of algebraic equations by estimating the 

integrals using operational matrices [Chen, 2007], [Kilicman, 2007] and 

[Saadatmandi, 2010]. 

        Recently the operational matrices of fractional order integration for the 

Haar wavelets, the Chebyshev wavelets and the Legendre wavelet have been 

developed in [Chen, 1997], [Yuanlu, 2010a], [Yuanlu, 2010b] and [Rehman, 

2011] to solve the fractional order differential equations. This work consists 

of three chapters as well as this introduction. In chapter one, the fundamental 

concepts of fractional calculus are given. While in chapter two the numerical 

solution of ordinary differential equations using Haar wavelets method, 

Chebyshev wavelets method and Legendre wavelets method is presented. 

Finally the numerical solution of linear partial differential equations of 

fractional order by using Chebyshev wavelets method, Haar -Chebyshev 

wavelets method and Chebyshev-Legendre wavelets method are given in 

chapter three. 

        It is important to mention that, the calculation in chapter two and three 

are simplified using MATLAB R2013a computer software. The results are 

presented in figures or in a tabulated form.    
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CChhaapptteerr  OOnnee  

 

BBaassiicc  CCoonncceeppttss  ooff  FFrraaccttiioonnaall  CCaallccuulluuss  

  

1.1 Introduction: 

This chapter consists of five sections, in section 1.2 the Beta and Gamma 

function were given, in section 1.3 we present some definitions of fractional 

order integration while in section 1.4 some definitions of fractional order 

derivatives are presented, finally in section 1.5 some analytical methods are 

used to find the solution of differential equations of fractional order. 

1.2 The Gamma and Beta Functions,[Oldham,1974]: 

The complete gamma function (x) plays an important role in the theory 

of fractional calculus. A comprehensive definition of (x) is that provided by 

Euler limit: 

(x)  
x

N

N ! N
lim

x ( x 1 )( x 2 )...( x N )

 
 

   
, x > 0 …(1.1) 

but the integral transform definition is given by: 

(x)  
x 1 y

0

y e dy


 
 , x > 0 …(1.2) 

is often more useful, although it is restricted to positive value of x. An 

integration by parts applied to eq. (1.2) leads to the recurrence relationship: 

(x + 1)  x(x) …(1.3) 
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This is the most important property of gamma function. The same result is a 

simple consequence of eq. (1.1), since (1)  1, this recurrence shows that for 

positive integer n: 

(n + 1)  n(n) 

  n! …(1.4) 

The following are the most important properties of the gamma 

function: 

1. 
n1 ( 4 ) n!

n
2 ( 2 n ) !




 
  

 
 

2. 
n

1 ( 2 n ) !
n

2 4 n!



 

  
 

 

3. 
csc( x )

( x )
( x 1 )

 





 


 

4. (nx)  

n
n 1

k 0

2 nx k
x

n n2










   
  

  
 ,      

A function that is closely related to the gamma function is the complete 

beta function (p,q). For positive value of the two parameters p and q; the 

function is defined by the beta integral: 

1
p 1 q 1

0

( p ,q ) y ( 1 y ) dy    , p, q > 0 …(1.5) 

which is also known as the Euler’s integral of the second kind. If either p or q 

is nonpositive, the integral diverges otherwise (p,q) is defined by the 

relationship: 

( p ) ( q )
( p ,q )

( p q )

 






 …(1.6) 
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where p and q > 0. 

Both beta and gamma functions have “incomplete” analogues. The 

incomplete beta function of argument x is defined by the integral: 

x
p 1 q 1

x

0

( p ,q ) y ( 1 y ) dy     …(1.7) 

and the incomplete gamma function of argument x is defined by: 

*(c,x)  

x c
x 1 y

0

c
y e dy

( x )


 

  

 e
x 

j

j 0

x

( j c 1 )



  
  …(1.8) 

*(c,x) is a finite single-valued analytic function of x and c. 

1.3 Fractional Integration: 

There are many literatures introduce different definitions of fractional 

integrations, such as: 

1. Riemann-Liouville integral, [Oldham, 1974]: 

The generalization to non-integer α of Riemann-Liouville integral can be 

written for suitable function f(x), x  ; as: 

I
α
f(x)  

x
1

0

1
( x s ) f ( s ) ds

( )



 

 , α > 0 …(1.9) 

and I
0
f(x)  f(x) is the identity operator. 

The properties of the operator I
α
 can be founded in [Podlbuny, 1999] 

for    0,  > 0, we have: 

1. I
α   f(x)      f(x). 

2.     f(x)      f(x). …(1.10) 
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2. Weyl fractional integral, [Oldham, 1974]: 

The left hand fractional order integral of order α > 0 of a given function f 

is defined as: 

xI f ( x )
   

x

1

1 f ( y )
dy

( ) ( x y )   
 
  …(1.11) 

and the right fractional order integral of order α > 0 of a given function f is 

given by: 

xI f ( x )
   

1
x

1 f ( y )
dy

( ) ( y x )  




  

3. Abel-Riemann fractional integral, [Mittal, 2008]: 

The Abel-Riemann (A-R) fractional integral of any order  > 0, for a 

function f(x) with x  


 is defined as: 

I

f(x)  

x
1

0

1
( x ) f ( ) d

( )

  
 

 , x > 0,  > 0 …(1.12) 

I
0
  I (identity operator) 

The A-R integral posses the semigroup property: 

I

I

  I

+
, for all ,   0 …(1.13) 

1.4 Fractional Derivatives: 

Many literatures discussed and presented fractional derivatives of certain 

function, therefore in this section, some definitions of fractional derivatives 

are presented: 
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1. Riemann-Liouville  fractional derivatives, [Oldham, 1974], [Nishimoto, 

1983]: 

Among the most important formulae used in fractional calculus is the 

Riemann-Liouville formula. For a given function f(x),  x  [a,b]; the left 

and right hand Riemann-Liouville fractional derivatives of order α > 0 and m 

is a natural number, are given by: 

x aD f ( x )
   

m x

m m 1
a

1 d f ( t )
dt

( m ) dx ( x t )    
  …(1.14) 

x bD f ( x )
   

m m b

m m 1
x

( 1 ) d f ( t )
dt

( m ) dx ( x t )   



 
  …(1.15) 

where m  1 < α  m, m  .  

2. The A-R fractional derivative, [Mittal, 2008]: 

The A-R fractional derivative of order  > 0 is defined as the inverse of 

the corresponding A-R fractional integral, i.e.,  

D

I

  I …(1.16) 

for positive integer m, such that m  1 <   m, 

(D
m
I

m
)I

  D

m
(I

m
I

)  D

m
I

m
  I 

i.e., 

D

f(x)  

 


  

 






m x

m 1 m
a

m

m

1 d f ( )
d , m 1 m

( m ) dx ( x )

d
f ( x ), m

dx




 

  



 …(1.17) 
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3. Caputo fractional derivative, [Caputo, 1967], [Minadri, 1997]: 

In the late sixties of the last century, an alternative definition of 

fractional derivatives was introduced by Caputo. Caputo and Minadri used 

this definition in their work on the theory of viscoelasticity. According to 

Caputo’s definition: 

c
xD

  I
m

D
m
, for m  1 <   m 

which means that: 

c
xD

f(x)  

 


  

 






( m )x

1 m
0

m

m

1 f ( )
d , m 1 m

( m ) ( x )

d
f ( x ), m

dx




 

  



 

The basic properties of the Caputo fractional derivative are: 

1. Caputo introduced an alternative definition, which has the advantage of 

defining integer order initial conditions for fractional order differential 

equations. 

2. I
α c

xD
f(x)  f(x)  

km 1
( k )

k 0

x
f ( 0 )

k !






 . 

3. Caputo’s fractional differentiation is linear operator, similar to integer 

order differentiation: 

c
xD

[f(x) +  g(x)]   
c

xD
f(x) +   c xD

g(x) 

4. Grünwald fractional derivatives, [Oldham, 1974]: 

The Grünwald derivatives of any integer order to any function, can 

take the form: 
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D f(x)  
N 1

N j 0

x

( j ) xN
Lim f x j

( ) ( j 1 ) N



 

  





 

  
  

      
    

  

  …(1.18) 

1.5 Analytic Methods for Solving Fractional Order Differential 

Equations, [Oldham, 1974]: 

In the present section, some analytical methods are presented for solving 

fractional order differential equations, and among such method: 

1.5.1. The Inverse Operator Method: 

Consider the fractional order differential equation: 

d f

dx




  F …(1.19) 

where f is an unknown function and 
d

dx




 is a fractional order derivative of 

Riemann-Liouville sense, hence upon taking the inverse operator 
d

dx








 to 

the both sides of eq.(1.19) gives: 

f  
d F

dx








                                                                                      …(1.20) 

additional terms must be added to eq. (1.20), which are: 

c1x
α1

, c2x
α2

, …, cmx
αm

 

and hence: 

1 2
1 2 ...


  


     m

m

d d
f f c x c x c x

dx dx

 
  

 
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where c1, c2, …, cm are an arbitrary constants to be determined from the initial 

conditions and m  1 <    m. 

Thus: 

1 2 m
1 2 m

d d
f c x c x ... c x f

dx dx

 
  

 


  


      

d
F

dx








  

Hence, the most general solution of eq. (1.19) is given by: 

1 2 m
1 2 m

d
f F c x c x ... c x

dx


  




  


      

where m  1 <    m. 

As an illustration, we shall consider the following example: 

 

Example (1.1): 

Consider the fractional order differential equation: 

3 / 2
5

3 / 2

d
f ( x ) x

dx
  …(1.21) 

Applying 
3 / 2

3 / 2

d

dx




 to the both sides of eq. (1.21), we get: 

3 / 2 5
1/ 2 1/ 2

1 23 / 2

d x
f ( x ) c x c x

dx





    

 

 

 

 



Chapter One                                                                   Basic Concepts of Fractional Calculus 

 9 

1.5.2 Laplace Transform Method: 

In this section, we shall seek a transform of 
m md f dx  for all m and 

differintegrable f, i.e., we wish to relate: 

m m

m m
0

d f d f
exp( sx ) dx

dx dx

 
  

 
L  

to the Laplace transform L{f} of the differintegrable function. Let us first 

recall the well-known transforms of integer-order derivatives: 

 
m km 1

m m 1 k

m k
k 0

d f d f
s f s ( 0 ) m 1,2 ,3 ,...

dx dx


 



 
   

 
L L  

and multiple integrals: 

m
m

m

d f
s { f }, m 0 , 1 , 2 ,...

dx

  
    

  

L L                                           …(1.22) 

and note that both formulae are embraced by: 

 

 


 
  

 


m m 1 km 1
m k

m m 1 k
k 0

d f d f (0 )
s { f } s

dx dx
L L , m  0, 1, 2, … …(1.23) 

Also, formula (1.23), can be generalized to include non integer m by the 

simple extension: 

 

 


 
  

 


m m 1 kn 1
m k

m m 1 k
k 0

d f d f (0 )
s { f } s

dx dx
L L , for all m …(1.24) 

where n is the integer such that n  1 < m  n. The sum is empty vanishes 

when m  0.  

In proving (1.24), we first consider m < 0, so that the Riemann-Liouville 

definition: 
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m x

m m 1
0

d f 1 f ( y )
dy

( m )dx [ x y ] 


 



, m < 0 

may be adopted and upon direct application of the convolution theorem 

[Churchill,1948]: 

1}
x

1 2 2

0

f ( x y ) f ( y )dy { f { f }
  

  
  
L L L  

Then gives: 

}
m

1 m m

m

d f 1
{ x { f } s { f }

( m )dx 

 
  

  
  

L L L L , m < 0 …(1.25) 

So that eq.(1.22) generalized unchanged for negative m. 

       For noninteger positive m, we use the result, [Oldham, 1974]: 

m n m n

m n m n

d f d d f

dx dx dx





   
   

   
 

where n is the integer such that n  1 < m  n.  

Now, on application of the formula (1.23), we find that : 

m n m n

m n m n

d f d d f

dx dx dx





       
    

       

L L  

 

m n n 1 k m nn 1
n k

m n n 1 k m n
k 0

d f d d f
s s ( 0 ).

dx dx dx

   

   


    
    

    
L  

The difference m  n being negative, the first right-hand term may be 

evaluated by use of (1.25).since m  n   the composition rule may be 

applied to the terms within the summation. The result: 

m m 1 kn 1
m k

m m 1 k
k 0

d f d f ( 0 )
s { f } s , 0 m 1,2 ,...

dx dx

 

 


  
    

  
L L  
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Follows from these two operations and is seen to be incorporated in (1.24).  

The transformation (1.24) is a very simple generalization of the classical 

formula for the Laplace transform of the derivative or integral of f. No similar 

generalization exists, however, for the classical formulae, [Oldham, 1974]: 

1 1

1 1

f d { f } d { f }
( s ) ( )

x ds ds

 

 

 
   

 

L L
L  

 
d { f }

xf
ds

 
L

L  

 
n

n

n

d { f }
[ x ] f , n 1,2,...

ds
  

L
L  

As a final result of this section we shall establish the useful formula: 

m
kx m

m

d
exp( kx ) [ fe ] [ s k ] { f }

dx

  
   

  
  

As an illustration, we consider the following example: 

Example (1.2), [Abdulkhalik, 2008]: 

Consider the integro differential equation: 

1 / 2 1 / 2 3 / 2

1 / 2 1 / 2

d f ( x ) d f ( x ) 2 x 4x
2 f ( x ) 6 2x 4

x 3dx dx




      

 
  …(1.27) 

and in order to solve this equation using Laplace transformation method, first 

we take the Laplace transformation to the both sides of equation (1.27): 





     
        

    

1 / 2 1 / 2

1 / 2 1 / 2

d f ( x ) d f ( x ) 2 1
2 { f ( x )}

dx dx x
L L L L  

3 / 26 4
{ x } { x } 2 { x } { 4 }

3
  

 
L L L L  
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Using the definition of the Laplace transformation for the non-integer order 

given by eq.( 1.24 ) thus we get after simple simplification: 

   


 

2

2

2s 3s 1 2 s 4s s
( f )

s ( s 1 2 s )
L  

2

( 2s 1 ) ( s 1 2 s )

s ( s 1 2 s )

   


 
 

Then upon using the inverse Laplace transform, we have:  

f(x)  2 + x 

as the solution of the integro differential equation. 
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2.1 Introduction: 

Wavelet analysis is relatively new area in mathematics research. It 

has been applied widely in signal analysis, time frequency analysis and 

numerical analysis. Wavelet analysis included the expression of 

functions. Which are expanded to summation of “basic function” and 

every “basic function” is achieved by dilation and translation locality. 

This chapter consists of five sections, in section 2.2 Haar wavelets 

method is presented, in section 2.3 Chebyshev wavelets method was 

given, while in section2.4 we present the Legendre wavelets method and 

finally in section 2.5 two illustrative examples are solved via the Haar 

wavelets, Chebyshev wavelets and Legendre wavelets methods and the 

results are documented either in figure or in tabulated form. 

2.2 Haar Wavelets: 

Haar functions have been used since 1910, when they were 

introduced by Hungarian mathematician Alferd Haar, [Haar, 1910]. 

The orthogonal set of Haar functions is defined as shown in Figures 

(2.1-2.8) that is a square waves with magnitude of 1 in some interval 

and zero elsewhere. The first curve of Figure (2.1) is that h0(x)  1 
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during the whole interval [0,1]. It is called the scaling function. The 

second curve h1(x) is the fundamental square wave, or mother wavelet 

which also spans the whole interval [0,1]. All the other subsequent curve 

are generated from h1(x) with two operations translation and dilation, 

h2(x) is obtained from h1(x) with dilation, i.e., h1(x) is compressed from 

the whole interval [0,1] to half interval [0,1/2] to generate h2(x), h3(x) is 

the same as h2(x) but shifted (translated) to the right by 1/2. Similarly, 

h2(x) is compressed from the half interval to a quarter interval to 

generate h4(x). The function h4(x) is translated to the right by 1/4, 2/4, 

3/4 to generate h5(x), h6(x) and h7(x); respectively.  

In general: 

hn(x)  h1(2
j
x  k/2

j
), n  2

j
 + k, j  0, 0  k  2

j
 

 

Figure (2.1) First Haar function. 

 

 

Figure (2.2) Second Haar function. 
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Figure (2.3) Third Haar function. 

 

 

Figure (2.4) Fourth Haar function. 

 

Figure (2.5) Fifth Haar function. 

 

Figure (2.6) Sixth Haar function. 
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Figure (2.7) Seventh Haar function. 

 

Figure (2.8) Eighth Haar function. 

This orthogonal basis is a reminiscent of the Walsh basis, in which 

each Walsh function contains many wavelets to fill the interval [0,1] 

completely, and to form a global basis. While each Haar function 

contains just one wavelet during some subinterval of time, and remains 

zero elsewhere the Haar set form a local basis. 

All the Haar wavelets are orthogonal to each other: 

1

0

( ) ( ) 2 j
i ih x h x dx    

 
2 , 2

0,

j j ki

i

   



 

Therefore, they form a very good transform basis. 
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2.2.1 Haar Wavelets Operational Matrix: 

In this section we shall begin with the more convenient way for 

representing Haar wavelets in computer and for x[A,B] which was 

given by [Lepik, 2009] and for this purpose we define the quantity M=2
J
 

where J is the maximal level of resolution and divide the interval [A,B] 

into 2M subintervals of equal length; each subinterval has the length  

x  (B – A)/2M. 

Two parameters are introduced the dilation parameter j for which  

j0,1,…, J and the translation parameter             where    

  . The wavelets number i is identified as         the i
th
 Haar 

wavelet is defined as:  

       
                      

                       
            

         

Where:  

                                     

                  ,      
   

The case     corresponding to the scaling function   

        
             
            

         

The following notations are introduced: 

,1

0

( ) ( )
x

i i
p x h d     
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, 1 ,

0

( ) ( ) 1,2,...
x

i v i v
p x p d v


     

These integrals can be evaluated by using def. (2.1) and the first two of 

them are given by: 




1 1 2

i .1 3 2 3

x ( i ), x ( i ), ( i ) )

p ( x ) ( i ) x, x ( i ), ( i ) )

0, Otherwise.

 


  



  

     …(2.3) 







2

1 1 2

2

3 2 32

i ,2

32

1
( x ( i )) , x ( i ), ( i ) )

2

1 1
( ( i ) x ) , x ( i ), ( i ) )

p ( x ) 4m 2

1
, x ( i ),1)

4m

0, Otherwise.


 


   

 






  

  



 

…(2.4) 

In general: 

1

1 1 2

,

1 2 2 3

1 2 3 3

0, ( )

1
( ( )) , [ ( ), ( )]

!
( ) 1

( ( )) 2( ( )) , [ ( ), ( )]
!

1
( ( )) 2( ( )) 2( ( )) , ( )

!

n

i n n n

n n n

x i

x i x i i
n

p x
x i x i x i i

n

x i x i x i x i
n



  



 
     


        



  

   

     

 …(2.5) 

For example, if J  2, then: 

     
 

  
 

       
     
 
 

 
  

 
 

    
   

   

And if J  3, then: 
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8,1

  32   -16    -8    -8    -4    -4    -4  -4

  16     0    -8     8    -4    -4     4     4

   4     4     0     0    -4     4     0      0

   4    -4     0     0     0     0    -4      41

   1    64
P 

 1     2     0     0     0     0      0

   1     1    -2     0     0     0     0      0

   1    -1     0     2     0     0     0      0

   1    -1     0    -2     0     0     0      0

 
 
 
 
 
 





 








 

Following figures (2.9-2.16) represent the first integral of      , for 

all i  1, 2, …, 8. 

 

Figure (2.9) Integration of the first Haar wavelet. 

 

Figure (2.10) Integration of the second Haar wavelet. 

|

1

|

1
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Figure (2.11) Integration of the third Haar wavelet. 

 

Figure (2.12) Integration of the forth Haar wavelet. 

 

Figure (2.13) Integration of the fifth Haar wavelet. 

||

1

1

||

1

||

1/4



                                                               

 

03 

 

Wavelets Methods for Solving Ordinary 

Differential Equations of Fractional Order 

 

Chapter Two 

 

Figure (2.14) Integration of the sixth Haar wavelet. 

 

Figure (2.15) Integration of the seventh Haar wavelet. 

 

Figure (2.16) Integration of the eighth Haar wavelet. 

 

Any function f(x)  L
2
[0,1] can be expanded in terms of Haar series 

as: 

1

||

1/4

|

1/2

1

|||

1/2 3/4

1

||

3/4
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        6) 

Where the coefficients    are determined by: 

               
 

 
  

      If      is piecewise constant or may be approximated as piecewise 

constant, then the sum in eq.(2.6) may be terminated after 2M terms, that 

is:  

                  
               

  
    ...(2.7) 

   denotes the truncated sum, the Haar coefficients vector     and Haar 

vector        are defined as:  

                  
    

                             
  …(2.8) 

Taking the collocation points as following  

                         …(2.9) 

By letting A = 0, B = 1 and hence    
 

  
 in eq.(2.9) We define the  

2M-square Haar matrix        as:  

             
 

  
      

 

  
      

    

  
     …(2.10) 

Correspondingly, we have:  

          
 

  
     

 

  
      

    

  
      

          …(2.11) 

Because the 2M – square Haar wavelets matrix         is an invertible 

matrix, the Haar coefficients vector    
  can be gotten by:  

   
                

   …(2.12) 
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2.2.2 Block Pulse Function (BPF): 

Defines a 2M – Set of  Block Pulse Function (BPF) as:  

        
        

 

  
   

   

  
                         

                                                                   
  …(2.13) 

where                . 

The functions       are disjoint and orthogonal, that is:  

            
                                      
                                 

   …(2.14) 

Kilicman and Zhour [Kilicman, 2007] had given the block pulse 

operational matrix of fractional order integration F

 as following:  

                   …(2.15) 

where: 

   
 

     
 

      

 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 

  
  
 
 
 
 

    

 
 

     
     

      
 
 
 

 
 
 

 

 
 
 
 
 
 

 …(2.16) 

where: 

                           ,k=1,2,…,2M-1 

2.2.3 Operational matrix of the fractional order integration of Haar 

Wavelet Functions: 

The integration of        defined in Eq.(2.8) can be approximated by 

Haar series with Haar coefficient matrix      as:  

           
 

 
                    …(2.17) 
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where a 2M-square matrix Pha is called the Haar wavelets operational matrix 

of integration [Chen, 1997].  

Zhao, [Zhao, 2010] derive the Haar wavelets operational matrix of the 

fractional order integration.  

He introduced the Riemann-Liouville fractional order integration, as 

given in chapter one as:  

          
 

    
                

 

    
    

 

 
       …(2.18) 

where      is the order of integration,      is the Gamma function and 

          is the convolution product of      and     . 

Now if      is expanded in Haar function, the Riemann- Liouville 

fractional order integration is solved via the Haar function, because the Haar 

functions are piecewise constant, it may be expanded into 2M- term Block 

Pulse Function (BPF) as: 

                     …(2.19) 

where                            

Next, the Haar wavelets operational matrix of the fractional order 

integration is derived by letting  

                    
        …(2.20) 

Where the 2M – square matrix           
  is called the Haar wavelets 

operational matrix of the integration. 

Using Eqs.(2.15) and (2.19) we have  

                                    
          

        
          …(2.21) 

From eqs.(2.20) and (2.21), we get: 
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 =          
           …(2.22) 

Then the Haar wavelet operational matrix of the fractional order of integration 

         
  is given by  

         
             

         
    …(2.23) 

For example, let       ,     hence 2M = 8, the operational matrix 

         
  is computed below as: 

       
    

 
 
 
 
 
 
 
 
                                                       
           6             6                    6       
      
      
      
      
      
      

      
       
     6
      
       
       

      
          
      
       

 
 

       
      
       
       
      
       

       
 

      
 
 
 

   6  
 

       
      

 
 

       
       
      6
       
      

 

     6 
   6  
       
      6
       
       

 
 
 
 
 
 
 

 

2.3 Chebyshev Wavelets: 

Wavelets are a family of function constructed from dilation and 

translation of a single function called mother wavelet. 

In this section we will present another type of wavelets which is so 

called the second kind Chebyshev wavelets as follows: 

When the dilation parameter a and the translation parameter b vary 

continuously, we have the following family of continuous wavelets as 

[Fan, 2008]: 

1
2

, ( ) , , , 0a b

x b
x a a b a

a

  
     

 
  …(2.24) 

If we restrict the parameters a and b to discrete values as a  0
ka ,  

b  nb0
k

0a , a0 > 1, b0 > 0, where n and k are positive integers, the 

family of discrete wavelets are defined as: 
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k,n(x)  |a0|
k/2 k

0 0( a x nb )   …(2.25) 

where k,n forms a wavelet basis for L
2
( ). In particular, when a0  2 

and b0  1, k,n(x) forms an orthogonal basis. 

The second kind Chebyshev wavelets n,m(x)  (k,n,m,x) involve 

four arguments n  1, 2, …, 2
k1

; k is assumed any positive integer, m is 

the degree of the second kind Chebyshev polynomial and x is the 

normalized time. They are defined on the interval [0,1] as [Fan, 2008]: 

n,m(x)
k / 2 k

m k 1 k 1

n 1 n
2 U ( 2 x 2n 1), x

2 2

0, Otherwise

 


   





  …(2.26) 

where: 

        
 

 
       …(2.27) 

and m  0, 1, …, M  1. Here are the second kind Chebyshev polynomial 

of degree m with respect to the weight function 2( ) 1x x    on the 

interval [1,1] and satisfy the following recursive formula: 

U0(x)  1 

U1(x)  2x 

      

Um+1(x)  2xUm(x)  Um1(x), m  1, 2, … . 

We should note that in dealing with the second kind Chebyshev 

wavelet, the weight function ( ) (2 1)x x    have to be dilated and 

translated as: 
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( ) (2 2 1)n x kx n     

2.3.1 Function Approximation and Operational Matrix: 
A function      defined over [0,1] may be expanded as:  

                     
                 

   
    
     …(2.28) 

where C and      are           matrice given by: 

                                                         

           
   …(2.29) 

and 

                                                          

             
  …(2.30) 

From now we define         

Taking the collocation points as following:  

   
    

   
            

The second kind Chebyshev wavelets matrix      is given by:  

        
 

  
    

 

  
      

    

  
   …(2.31) 

For example, when M = 3 and K = 2, the second kind Chebyshev 

wavelets is expressed as 

6 6

 1.5959    1.5958    1.5958         0               0           0

 -2.1278      0          2.1278         0               0           0

 1.2415   -1.5958    1.2415         0               0        
 

   0

      0           0              0          1.5959    1.5958    1.5958

      0           0              0          -2.1278        0        2.1278

      0           0              0         1.2415    -1.5958    1.2415

 
 
 
 
 
 
 
 
 
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Correspondingly, we have:  

        
 

  
     

 

  
       

    

  
    …(2.32) 

Because the second kind wavelets matrix      is an invertible matrix, 

the Chebyshev wavelets coefficients vector C
T
 can be determined by:  

         
  

   
  …(2.33) 

The convergence of the second kind Chebyshev wavelet bases was given 

by Wang [Wang, 2011]. 

2.3.2 Operational Matrix of the Fractional Order Integration of 

Chebyshev Wavelet Functions: 

The integration of      defined in eq.(2.30) can be approximated 

by Chebyshev series with Chebyshev coefficient matrix PCh as:  

         
 

 
                 …(2.34) 

where a     square matrix PCh is called the Chebyshev wavelets 

operational matrix of integration. 

Next, we shall present the derivation of the second kind Chebyshev 

wavelets operational matrix of the fractional order integration.  

Now, if       is expanded in a second kind Chebyshev wavelets, as 

given in Eq.(2.28). The Riemann- Liouville fractional integration 

becomes  

         
 

    
           

    
 

    
             …(2.35)  
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Thus if           can be integrated then expanded in the second kind 

Chebyshev wavelets, the Riemann-Liouville fractional integration is 

solved via the second kind Chebyshev wavelets. 

Because the Chebyshev wavelets are piecewise constant, it may be 

expanded into m – term Block Pulse Function (BPF) as: 

                 …(2.36) 

where: 

                                
   

Next, we shall derive the Chebyshev wavelets operational matrix of 

the fractional order integration by letting: 

                 
        …(2.37) 

where the matrix         
  is called the Chebyshev wavelets operational 

matrix of the fractional integration  

Using eqs.(2.36) and (2.15), we have: 

                              
         

      
        …(2.38) 

where   defined in eq. (2.16)with 2M= m. 

From eqs.(2.37) and (2.38), we get: 

       
               

              

=        
          …(2.39) 

Then the second kind Chebyshev wavelet operational matrix of the 

fractional integration        
  is given by  

       
           

       
    …(2.40) 
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2.4 Legendre Wavelets: 

The Legendre wavelets constitute a family of functions constructed from 

dilation and translation of single function called the mother wavelet     . 

They are defined by: 

        
 

    
  

   

 
                  

where a is dilation parameter and b is translation parameter. 

 By restricting a, b to discrete values as: 

    
 
        

 
 where a0 > 1, b0 > 0 and      ,   

we get following family of discrete wavelets as 

            
 

     
 
        

The set of wavelets forms an orthogonal basis of      .In particular, when  

a0  2 and b0  1, then         forms an orthonormal basis. The Legendre 

polynomial of order m, denoted by       are defined on the interval [1,1] 

and can be determined with the aid of the following recurrence formulae: 

                         

        
    

   
       

 

   
                     .  

The Legendre wavelets are defined on interval [0,1), by: 

         
      

 

  
 

     
          

    

  
   

    

  

                                                                          

   

where k=2,3,…,       ,n=1,2,3,…,2
k-1

,m=0,1,2,…,M-1 is the order of the 

Legendre polynomials and M is fixed positive integer . 
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2.4.1 Function Approximation and Operational Matrix: 

A function f(x) defined over [0,1] may be approximated as:  

                     
                 

   
    
     …(2.41) 

where C and      are           matrices given by  

                                                       

                      
     

and 

                                                

                                  
T
 …(2.42) 

From now we will define         

Talking the collocation point as following:  

   
    

   
            

The Legendre wavelets matrix     , is given by:  

        
 

  
    

 

  
      

    

  
    …(2.43) 

Correspondingly, we have:  

        
 

  
     

 

  
       

    

  
    …(2.44) 

 

2.4.2 Operational Matrix of the Fractional Order Integration of the 

Legendre Wavelets Functions: 

The integration of      defined in Eq.(2.42) can be approximated by 

Legendre series with Legendre coefficient matrix        as: 

         
 

 
                …(2.45) 
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where a     square matrix        is called the Legendre wavelets 

operational matrix of integration.  

Next, we shall present the derivation of the Legendre wavelets 

operational matrix of the fractional order integration.  

Now if       is expanded in the Legendre wavelets. The Riemann- 

liouville fractional integration becomes: 

         
 

    
           

   
 

    
             …(2.46)  

Thus if           can be integrated, then expanded in the Legendre 

wavelets, the Riemann-Liouville integration is solved via the Legendre 

wavelets. 

Because the Legendre wavelets are piecewise constant, it may be 

expanded into m- term Block Pulse Function (BPF) as  

                …(2.47) 

                                

Next, we shall derive the Legendre wavelets operational matrix of the 

fractional order integration by letting  

                 
       …(2.48) 

where the matrix        
  is called the Legendre wavelets operational matrix 

of the fractional integration  

Using eqs.(2.47) and (2.15), we have: 

                             
         

       
       …(2.49) 

From eqs. (2.48) and (2.49), we get: 
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 =        
         …(2.50) 

Then the Legendre wavelets operational matrix of the fractional order of 

integration       
  is given by  

      
           

       
    

In particular, if k = 3, M = 2 and       the Legendre wavelets operational 

matrix of fractional integration is given by: 

0.5

 0.3761    0.1272      0.3116   -0.0602    0.2028   -0.0153    0.1640   -0.0080

 -0.0954    0.1558     0.0452   -0.0247    0.0115   -0.0026    0.0060   -0.0009

     0               0         0.

L m mp  

3761    0.1272    0.3116   -0.0602    0.2028   -0.0153

     0               0        -0.0954    0.1558    0.0452   -0.0247    0.0115   -0.0026

     0               0              0             0        0.3761    0.1272    0.3116   -0.0602

     0               0              0             0       -0.0954    0.1558    0.0452   -0.0247

     0               0              0             0             0             0        0.3761    0.1272

     0               0              0             0             0             0       -0.0954    0.1558

 
 
 
 
 
 
 
 
 
 
 
  

 

2.5 Numerical Examples: 

Next, we will use the Haar wavelets, Chebyshev wavelets and Legendre 

wavelets operational matrices of the fractional order integration in order to 

solve the fractional order differential equations for the sake of demonstrating 

the effectiveness of these schemes. The results obtained using Haar, 

Chebyshev and Legendre wavelets operational matrices of fractional order 

integration are compared with the analytical solution or with the solution 

obtained using the existing methods. 

Example (2.1): 

Consider the Bagley – Torvik equation  

                                   …(2.51)  

We will consider the case:  
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Subject to the following initial condition: 

      ,          

The exact solution of this problem [Zhao, 2010] is         . 

In order to find the solution of eq. (2.51), we let: 

       =    
         …(2.52) 

Together with the initial states, we have:  

                            
           

            …(2.53) 

and 

          
                          

    
                      …(2.54) 

Therefore: 

         
            

        

               
                        …(2.55) 

Similarly, the input signal      can be expanded by the Haar 

functions as follows:  

    =    
         …(2.56) 

where    
  is known constant vector substituting eqs.(2.52), (2.53), 

(2.55) and (2.56) into eq.(2.51), then we get: 

   
           

          
              

          
        

               
                                

         

 …(2.57) 
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Thus eq.(2.51) has been transformed into a system of algebraic 

equations. Solving the system (2.57) of algebraic equations, we obtain 

the coefficients    
  and hence by using eq.(2.55), we get our desired 

solution of eq. (2.51). 

Following table (2.1) represent a comparison between the numerical 

solution using Haar, Chebyshev and Legendre wavelets methods and the 

exact solution of example (2.1) 

Table (2.1) 

The numerical and the exact solution of example (2.1). 

x 
YHaar 

J=2,2M=8 

YLegendre 

J=2,M=2,K=3 

YChebyshev 

J=2,M=2,K=3 
Exact solution 

0.0625 
0.1875 
0.3125 
0.4375 
0.5625 
0.6875 
0.8125 
0.9375 

1.0653 

1.2072 

1.3277 

1.4587 

1.5721 

1.78 

2.0042 

2.0068 

1.0545 

1.0933 

1.1978 

1.2998 

1.5425 

1.5979 

1.7984 

1.9856 

1.0630 

1.1880 

1.4175 

1.4625 

1.5125 

1.6625 

1.8375 

1.9875 

1.0625 

1.1875 

1.3125 

1.4375 

1.5625 

1.6875 

1.8125 

1.9375 

 

For more accurate solution one can use larger values of J and hence 

M. 

Example (2.2): 

Consider the nonlinear fractional order differential equation  

                             …(2.58) 

Subject to the initial condition       . 

Also, in order to find the approximate solution of Eq.(2.58), we let: 
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          …(2.59) 

Together with the initial states, then we have  

         
           

           …(2.60) 

Hence: 

         
           

                 …(2.61) 

Suppose that: 

    
           

                         …(2.62) 

and using Eq.(2.61), we have: 

                                     
   

   
         

            
         

    
    

      
         …(2.63) 

Substituting eqs.(2.59) and (2.63) into eq.(2.58), we have  

    
                    

     
       

          

                                                           …(2.64) 

This is a nonlinear system of algebraic equations which can be solved 

easily using MATLAB. 
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The solution of Eq.(2.58) for J = 2 is presents by the following figure

 

Figure (2.1) 

 Numerical solution of example (2.2). 

It seems from Figure (2.1) that our results are coincides with the 

results that have been found in [Arikoglu, 2007]. 
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CChhaapptteerr  TThhrreeee  

 

WWaavveelleettss  MMeetthhoodd  ffoorr  SSoollvviinngg  PPaarrttiiaall  

DDiiffffeerreennttiiaall  EEqquuaattiioonnss  ooff  FFrraaccttiioonnaall  OOrrddeerr    

  

3.1 Introduction: 

        In this chapter, we shall present the application of Chebyshev 

wavelets, Haar-Chebyshev and Chebyshev-Legendre wavelets methods for 

solving linear partial differential equations of fractional order.                   

      This chapter consists of four sections, in section 3.2 Chebyshev 

wavelets method for solving partial differential equations of fractional order is 

presented, while in section 3.3 the Haar-Chebyshev wavelets method will be 

given for solving partial differential equations of fractional order Finally the 

Chebyshev-Legendre wavelets method for solving partial differential 

equations of fractional order will be presented   in section 3.4. 

3.2 Chebyshev Wavelets Method for Solving Partial 

Differential Equations of Fractional Order: 

In this section, we shall use the second kind Chebyshev wavelet 

operational matrix of fractional integration for solving linear partial 

differential equations of fractional order.  

By using this method the fractional order linear partial differential 

equation is translated into Lyapunov type matrix equation which can be 

solved easily using MATLAB. 
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3.2.1 Function Approximation and Operational matrix: 

      A function 2( , ) ( )y x t L may be expanded as 

…(3.1)                                                                    ,

1 1

( , ) ( ) ( )i j j i

i j

y x t c x t
 

 

   

Where 

  

…(3.2)                                    

                  

Eq. (3.1) can be written into the discrete form as: 

      ( , ) ( ) ( ) TY x t x C t                                                                        …(3.3) 

Taking the collocation points by following  

            
    

   
  ,i=1,2,…,m 

            
    

   
 ,j=1,2,…,m 

Here Y(x,t) is the discrete form of y(x,t),and the matrices and C are given 

by: 

1 ,1 1 ,2 1 ,m 1 ,1 1 ,2 1 ,m

2 ,1 2 ,2 2 ,m 2 ,1 2 ,2 2 ,m

m ,1 m ,2 m ,m m ,1 m ,2 m ,m

c c c

c c c
,C

c c c

  

  


  

   
   
    
   
   
   

 

Where         and C is the coefficient matrix of Y, which can be 

obtained by the following formula 

…(3.4)                                                                                    T 1 1C ( ) Y   

 

1 1

,

0 0

( , ) ( ) ( , ) ( )i j i jc y x t x dx y x t t dt   
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3.2.2 The Numerical Approach for solving linear partial differential 

equations of fractional order: 

In this section we shall use the numerical approach given by [Wu, 2009] 

to find the numerical solution for the linear partial differential equations of 

fractional order but by using the second kind Chebyshev wavelet. 

consider the following first-order PDE of fractional order 

        
y y

k
x t

 

 

 
 

 
                                                                                   …(3.5) 

The fractional integration of order α with respect to the variable t of     

TY ( x ,t ) ( x )C ( t )   

It yields: 

 T T T

t t t Ch m mI Y I ( x )C ( t ) ( x )C I ( t ) ( x )CP ( t )        
             …(3.6)                                                              

Similarly, the fractional integration of order α where      of Y(x,t) 

with respect to the variable x can be expressed as: 

  T

x xI Y I ( x )C ( t )   

 
                    

T

xI ( x ) C ( t )   

                 


   
T

Chm mP ( x ) C ( t )  

 
                  T T

Chm m( x )( P ) C ( t )                                                        …(3.7) 

In general, performing the double integration to the function Y(x,t) with 

fractional order  to  the variable t and to the variable x, we obtain: 

  T T

x t Chm m Chm mI I Y ( x )( P ) CP ( t )                                             …(3.8) 
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eqs. (3.6), (3.7) and (3.8) are the main formulae for solving a fractional 

order partial differential equation (3.5) numerically via the second kind 

Chebyshev wavelet operational method. 

Next we will give two illustrative examples in order to illustrate the 

above scheme and the results obtained using this scheme will be compared 

with the analytical solution or the solution obtained by using other methods or 

approaches. 

Example (3.1):  

Solve the following partial differential equation:    

         
 

  
 

y y
1, x,t 0

x t
                                                       … (3.9) 

with the initial conditions y(0,t)  y(x,0)  0. 

First we shall integrate Eq. (3.9) with respect to t, yields to: 

 


  
 

t t

0 0

y
dt y( x,t ) y( x,0 ) dt

x
                                         …(3.10) 

then integrating (3.10) with respect to x, we obtain: 


 

    
x t x x t

0 0 0 0 0

y
dtdx ydx dtdx

x
                                                   …(3.11) 

or: 

      
t x x t

0 0 0 0

y( x,t ) y(0,t ) dt y dx dtdx                                  …(3.12) 

    
t x x t

0 0 0 0

y dt y dx dtdx                                                          …(3.13) 
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For solving the partial differential equation (3.9) by the proposed 

method, we shall let  

TY ( x ,t ) ( x )C ( t )   and substitute (3.6) and (3.7) using α=1 into 

(3.13), it gives: 

    T T T T T

Chm m Chm m Chm m Chm mCP ( P ) C ( P ) JP        …(3.14) 

where J is the matrix  

          
1

T 1

m m

1 1 1

1 1 1
J

1 1 1






 
 
   
 
 
 

                                                    

Multiplying Eq.(3.14) from the left  by  
1

T ( x )


  and from the right by 

1( t )   , it yields: 

          T T

Chm m Chm m Chm m Chm mCP ( P ) C ( P ) JP                                    …(3.15) 

Which is a Lyapanov equation and if m  8 (k = 3, M = 2), then 

Eq.(3.15) becomes 
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1 ,1 1 ,2 1 ,3 1 ,4 1 ,5 1 ,6 1 ,7 1 ,8

2 ,1 2 ,2 2 ,3 2 ,4 2 ,5 2 ,6 2 ,6 2 ,6

3 ,1 3 ,2 3 ,3 3 ,4 3 ,5 3 ,6 3 ,6 3 ,6

4 ,1 4 ,2 4 ,3 4 ,4 4 ,5 4 ,6 4 ,6 4 ,6

5 ,1 5 ,2 5 ,3 5 ,4 5 ,5 5 ,6 5 ,6 5 ,6

6 ,1 6 ,2 6 ,3 6 ,4 6 ,5 6 ,6 6 ,6 6 ,6

7 ,1

8 ,1

c c c c c c c c

c c c c c c c c

c c c c c c c c

c c c c c c c c

c c c c c c c c

c c c c c c c c

c

c

7 ,2 7 ,3 7 ,4 7 ,5 7 ,6 7 ,7 7 ,8

8 ,2 8 ,3 8 ,4 8 ,5 8 ,6 8 ,7 8 ,8

 0.1250    0.1250    0.2500         0    0.2500         0    0.2500         0

 -0.0313        0         0         0    

c c c c c c c

c c c c c c c

 
 
 
 
 
 
 
 
 
 
 
  

     0         0         0        0

      0         0    0.1250    0.1250    0.2500         0    0.2500         0

      0         0   -0.0313         0         0         0         0         0

      0         0         0         0    0.1250    0.1250   0.2500         0

      0         0         0         0   -0.0313         0         0         0

      0         0         0         0         0         0    0.1250    0.1250

      0         0         0         0         0         0   -0.0313         0

 0.1250    0.1250    0.2500         0    0.2500         0    0.2500         0

 
 
 
 
 
 
 
 
 
 
 
  



 -0.0313        0         0         0         0         0         0        0

      0         0    0.1250    0.1250    0.2500         0    0.2500         0

      0         0   -0.0313         0         0         0         0         0

      0         0         0         0    0.1250    0.1250   0.2500         0

      0         0         0         0   -0.0313         0         0         0

      0         0

T

1 ,1 1 ,2 1 ,3 1 ,4 1 ,5 1 ,6

2 ,1 2 ,2 2 ,3

c c c c c c

c c c

         0         0         0         0    0.1250    0.1250

      0         0         0         0         0         0   -0.0313         0

 
 
 
 
 
 
 
 
 
 
 
  

1 ,7 1 ,8

2 ,4 2 ,5 2 ,6 2 ,6 2 ,6

3 ,1 3 ,2 3 ,3 3 ,4 3 ,5 3 ,6 3 ,6 3 ,6

4 ,1 4 ,2 4 ,3 4 ,4 4 ,5 4 ,6 4 ,6 4 ,6

5 ,1 5 ,2 5 ,3 5 ,4 5 ,5 5 ,6 5 ,6 5 ,6

6 ,1 6 ,2 6 ,3 6 ,4 6 ,5 6 ,6 6 ,6 6 ,6

7 ,1 7 ,2 7 ,3 7 ,4 7 ,5 7 ,6

8 ,1 8 ,2 8 ,3 8 ,4 8 ,5

c c

c c c c c

c c c c c c c c

c c c c c c c c

c c c c c c c c

c c c c c c c c

c c c c c c

c c c c c

7 ,7 7 ,8

8 ,6 8 ,7 8 ,8

c c

c c c

 0.1250    0.1250    0.2500         0    0.2500         0    0.2500         0

 -0.0313        0         0         0         0         0         0        0

 
 
 
 
 
 


 
 
 
 
 
  

      0         0    0.1250    0.1250    0.2500         0    0.2500         0

      0         0   -0.0313         0         0         0         0         0

      0         0         0         0    0.1250    0.1250   0.2500         0

      0         0         0         0   -0.0313         0         0         0

      0         0         0         0         0         0    0.1250    0.1250

      0         

T
 0.1963        0    0.1963      0    0.1963     0    0.1963     0

         0         0         0          0      

0         0         0         0         0   -0.0313         0

 
 
 
 
 
 
 
 
 
 
 
  

   0         0         0         0

    0.1963     0    0.1963      0    0.1963     0    0.1963     0

         0         0         0          0         0         0         0         0

    0.1963     0    0.1963      0    0.1963     0    0.1963     0

         0         0         0          0         0         0         0         0

    0.1963     0    0.1963      0    0.1963      0    0.1963    0

         

 0.1250    0.1250    0.2500         0    0.2500         0    0.2500         0

 -0.0313        0        

0         0         0          0         0          0         0        0

 
 
 
 
 
 
 
 
 
 
 
  

 0         0         0         0         0        0

      0         0    0.1250    0.1250    0.2500         0    0.2500         0

      0         0   -0.0313         0         0         0         0         0

      0         0         0         0    0.1250    0.1250   0.2500         0

      0         0         0         0   -0.0313         0         0         0

      0         0         0         0         0         0    0.1250    0.1250

      0         0         0         0         0         0   -0.0313         0

 
 
 
 
 
 
 
 
 
 
 
  

 

solving the above equation with respect to the matrix C yields: 

 0.0153    0.0123    0.0245        0        0.0245        0      0.0245        0

 0.0123    0.0123    0.0245        0        0.0245        0      0.0245        0

 0.0245    0.0245    0.0644    0.0123 

C 

  0.0736        0      0.0736        0

      0             0        0.0123    0.0123   0.0245        0      0.0245        0 

 0.0245    0.0245    0.0736    0.0245   0.1135    0.0123  0.1227       0

      0             0             0             0       0.0123    0.0123  0.0245       0

 0.0245    0.0245    0.0736    0.0245   0.1227    0.0245  0.1626    0.0123

      0            0              0             0            0             0      0.0123    0.0123

 
 
 
 
 
 
 
 
 
 
 
  

 

Hence, the matrix form of the approximate solution (see Appendix A 

program1) given by equation (3.3) at the point       

  

                                                   

  

                                                   

becomes:  
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    0.0312    0.0625    0.0625    0.0625    0.0625    0.0625    0.0625    0.0625

    0.0625    0.1563    0.1875    0.1875    0.1875    0.1875    0.1875    0.1875

    0.0625    0.1875    0.281

ChebyshevY 

2    0.3125    0.3125    0.3125    0.3125    0.3125

    0.0625    0.1875    0.3125    0.4062    0.4375    0.4375    0.4375    0.4375

    0.0625    0.1875    0.3125    0.4375    0.5312    0.5625    0.5625    0.5625

    0.0625    0.1875    0.3125    0.4375    0.5625    0.6563    0.6875    0.6875

    0.0625    0.1875    0.3125    0.4375    0.5625    0.6875    0.7813    0.8125

    0.0625    0.1875    0.3125    0.4375    0.5625    0.6875    0.8125    0.9062

 
 
 
 
 
 
 
 
 
 
 
  

 

The exact solution of the example (3.1)[Wu,2009] is given by: 

t, x t
y(x, t)

x, t x


 


 

Hence the matrix form of the exact solution is given by: 

exact

0.0625    0.0625    0.0625    0.0625    0.0625    0.0625    0.0625    0.0625

0.0625    0.1875    0.1875    0.1875    0.1875    0.1875    0.1875    0.1875

0.0625    0.1875    0.3125    0.3125    0

y 

.3125    0.3125    0.3125    0.3125

0.0625    0.1875    0.3125    0.4375    0.4375    0.4375    0.4375    0.4375

0.0625    0.1875    0.3125    0.4375    0.5625    0.5625    0.5625    0.5625

0.0625    0.1875    0.3125    0.4375    0.5625    0.6875    0.6875    0.6875

0.0625    0.1875    0.3125    0.4375    0.5625    0.6875    0.8125    0.8125

0.0625    0.1875    0.3125    0.4375    0.5625    0.6875    0.8125    0.9375

 
 
 
 
 
 
 
 
 
 
 
  

 

and therefore, the error matrix will be  

    0.0313      0        0        0         0         0         0         0

        0      0.0313    0        0         0         0         0         0

        0          0    0.0313    0         

error 

0         0         0         0

        0          0        0    0.0313    0          0         0         0

        0          0       0          0    0.0313     0         0         0

        0          0       0          0        0    0.0313      0         0

        0         0        0          0        0          0    0.0313     0

        0         0       0           0        0          0         0    0.0313

 
 
 
 
 
 
 
 
 
 
 
  
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Example 3.2:  

      Consider the linear partial differential equation of fractional order: 

      

1 1

2 2

1 1

2 2

y y
1, x, t 0

x t

 
  

 

                                                                 …(3.16) 

with zero initial conditions. 

Applying the fractional order integration of order 
 

 
 twice with respect to 

x and t respectively, thus we get 

        
 

  

 

1 1
1 1 1 1 1 12 2
2 2 2 2 2 2

t X t X t X1 1

2 2

y y
I I I I I I 1, x,t 0

x t

                                      …(3.17) 

Also, we shall let the approximate solution of eq.(3.16) given by  

          TY( x,t ) ( x )C ( t )   

Then eq.(3.16) becomes: 

         

1 1 1 1

2 2 2 2

T T

T T T

Ch m m Ch m m Ch m m Ch m mP C CP P JP ,   

   
       

   
       …(3.18)  

Multiplying  Eq.(3.18) from the left by  
1

T ( x )


and from the right by 

1( t )  , it yields: 

               

1 1 1 1

2 2 2 2

T T

Ch m m Ch m m Ch m m Ch m mP C CP P JP ,   

   
    

   
                       …(3.19) 

where J is the matrix  
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 
1

T 1

m m

1 1 1

1 1 1
J

1 1 1






 
 
   
 
 
 

                                               

In the case of    8 (k = 3, M = 2), solving the Lyapunov eq.(3.19) with 

respect to the matrix C therefore we get 

    0.0392    0.0153    0.0528    0.0029    0.0569    0.0015    0.0593    0.0009

    0.0153    0.0090    0.0249    0.0023    0.0283    0.0012    0.0303    0.0008

    0.0528    0.0249    0.0790    0.00

C 

66    0.0888    0.0036    0.0947    0.0024

    0.0029    0.0023    0.0066    0.0014    0.0089    0.0009    0.0104    0.0006

    0.0569    0.0283    0.0888    0.0089    0.1024    0.0051    0.1108    0.0035

    0.0015    0.0012    0.0036    0.0009    0.0051    0.0006    0.0062    0.0005

    0.0593    0.0303    0.0947    0.0104    0.1108    0.0062    0.1213    0.0043

    0.0009    0.0008    0.0024    0.0006    0.0035    0.0005    0.0043    0.0004

 
 
 
 
 
 
 
 
 
 
 
  

 

And the numerical solution of example 3.2 using Chebyshev 

wavelet operational matrix will be similar to the Haar wavelet matrix 

given by [Wu, 2009] as below(see Appendix A program1):  

Chebyshev

    0.1330    0.1881    0.2011    0.2098    0.2157    0.2201    0.2235    0.2262

    0.1881    0.2888    0.3221    0.3425    0.3568    0.3675    0.3759    0.3827

    0.2011    0.3221    0.370

Y 

2    0.4003    0.4217    0.4379    0.4508    0.4614

    0.2098    0.3425    0.4003    0.4376    0.4645    0.4853    0.5019    0.5157

    0.2157    0.3568    0.4217    0.4645    0.4960    0.5205    0.5404    0.5569

    0.2201    0.3675    0.4379    0.4853    0.5205    0.5482    0.5709    0.5899

    0.2235    0.3759    0.4508    0.5019    0.5404    0.5709    0.5960    0.6171

    0.2262    0.3827    0.4614    0.5157    0.5569    0.5899    0.6171    0.6401

 
 
 
 
 
 
 
 
 
 
 
  

the error was given by the matrix : 
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    0.0139    0.0083    0.0611         0        0.1860    0.0638    0.0444    0.1499

    0.0139    0.0111    0.0500    0.0167    0.3053    0.0167    0.1166    0.2831

    0.0278    0.0111  

error 1 10 

  0.0999    0.0333    0.3275    0.0500    0.1055    0.3830

    0.0416    0.0111    0.0999    0.0111    0.3608    0.0722    0.1443    0.4108

    0.0472    0.0056    0.0444    0.0555    0.3275    0.1332    0.2109    0.4330

    0.0444    0.0111    0.0500    0.0611    0.3775    0.1554    0.1665    0.4330

    0.0111    0.0444    0.0777    0.0333    0.3886    0.0777    0.1332    0.4219

    0.0167    0.0278    0.0666    0.0333    0.3775    0.1110    0.1665    0.4552

 
 
 
 
 
 
 
 
 
 
 
  

 

 

3.3 Haar- Chebyshev Wavelets Method for Solving Linear Partial 

Differential Equations of Fractional Order: 

In this section, we shall suggest a new approach for solving linear 

partial equations of fractional order by mixing the Chebyshev wavelets 

method with Haar wavelet method by expanding the required 

approximate solution as the elements of Chebyshev basis functions of 

the second kind in time and the Haar basis function in space. 

By using this approach, the fractional order partial differential 

equation is translated also into Lyapunov type matrix equations which 

can be solved easily using MATLAB. 

 

3.3.1 Function Approximation using Haar-Chebyshev wavelets method: 

A function 2( , ) ( )y x t L may be also expanded as: 

          …(3.20)                                             
,

1 1

( , ) ( ) ( )
 

 

  i j j i
i j

y x t c h x t      
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Where ( )

j
h x  and ( )

i
t are the Haar functions and the Chebyshev 

functions respectively, the coefficients appear in eq. (3.20) can be 

obtained as:  

        

1 1

,

0 0

( , ) ( ) . ( , ) ( )  i j i j
c y x t h x dx y x t t dt  (3.21)  

Eq.(3.20) can be written into the discrete form as follow: 

      ( , ) ( ) ( ) TY x t H x C t  …(3.22) 

The matrices , C and H are given by  

1,1 1,2 1, 1,1 1,2 1,

2,1 2,2 2, 2,1 2,2 2,

,1 ,2 , ,1 ,2 ,

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

,

m m

m m

m m m m m m m m

m

m

m m m m

c c c

c c c
C

c c c

h h h

h h h
H

h h h

     
   
  
     
   
   
     

 
 
 
 
 
 

 

The coefficients matrix C of Y can be obtained by the following formula  

             …(3.23)                         1 1( )  TC H Y                                                                                                        

3.3.2 The Numerical Approach: 

For solving the linear partial differential equation of fractional order 

(3.5) using Haar-Chebyshev wavelets method the integration of 

 TY( x,t ) H ( x )C ( t )  with respect to the variable t yields: 

  
    

T T T

t t t Chm mI Y I H ( x )C ( t ) H ( x )C I ( t ) H ( x )CP ( t )           

or 
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 T

t Chm mI Y H CP                                                                 …(3.24) 

Similarly, the fractional integration of order α of Y(x,t) with respect to 

variable x can be expressed as: 

 T

x xI Y I H ( x )C ( t )  

 
T

xI H ( x ) C ( t )      

T

ha m mP H ( x ) C ( t ) 
   

 
T T

ha m mH ( x )( P ) C ( t ) 

 T T

ha m mH ( x )( P ) C ( t )                                                  …(3.25) 

In general, performing the fractional order integration of order α twice 

with respect to the variables x and t respectively, we obtain: 

           
T T

t x ha m m Ch m mI I Y H ( x )( P ) CP ( t )                    …(3.26) 

Eq.(3.24), (3.25) and (3.26) are the main formulae for solving a 

fractional partial differential equation numerically via the Haar- Chebyshev 

wavelet operational method. 

The above procedure will be clear and illustrated by considering the 

following numerical examples. 

Example 3.3: 

In this example we will consider the problem given in example (3.1) we 

will follow the same approach considered in example (3.1) to solve this 

problem via Haar-Chebyshev wavelets method and therefore we let 

        TY( x,t ) H ( x )C ( t )  

and substitute (3.25) and (3.26) with     into (3.13), it gives: 
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T T T T T

Ch m m ha m m ha m m Ch m mH ( x )CP ( t ) H ( x )( P ) C ( t ) H ( x )( P ) JP ( t )       …(3.27) 

where J is given by: 

 






 
 
 
 
 
 

1
T 1

m m

1 1 1

1 1 1
J H ( x ) ( t )

1 1 1

  

Multiplying Eq.(3.27) from the left by T 1( H ( x ))  and by 1( t )    from 

the right, it yields: 

    T T

Chm m ha m m ha m m Chm mCP ( P ) C ( P ) JP  

If  m  8 (k  3,M  2), solving the above equation yields: 

    0.1420    0.1371     0.3769    0.0979     0.5336   0.0587    0.6119     0.0196

   -0.0147   -0.0196   -0.0930   -0.0587   -0.2203   -0.0587   -0.2986   -0.0196

   -0.0208   -0.0277   -0.0900   -0.

C 

0277   -0.1108         0       -0.1108         0

         0             0             0             0        -0.0208   -0.0277   -0.0900   -0.0277

   -0.0196  -0.0196    -0.0392        0        -0.0392         0       -0.0392          0

         0            0        -0.0196   -0.0196   -0.0392         0       -0.0392          0

         0            0              0             0       -0.0196   -0.0196   -0.0392          0

         0            0              0             0             0              0      -0.0196   -0.0196

 
 
 
 
 
 
 
 
 
 
 
  

 

The matrix form of Y(x,t) (see Appendix A program1) is given by: 

H ,Ch

    0.0313    0.0625    0.0625    0.0625    0.0625    0.0625    0.0625    0.0625

    0.0625    0.1563    0.1875    0.1875    0.1875    0.1875    0.1875    0.1875

    0.0625    0.1875    0.2813    

Y 

0.3126    0.3126    0.3126    0.3126    0.3126

    0.0625    0.1875    0.3126    0.4064    0.4376    0.4376    0.4376    0.4376

    0.0625    0.1875    0.3126    0.4376    0.5314    0.5626    0.5626    0.5626

    0.0625    0.1875    0.3126    0.4376    0.5626    0.6564    0.6877    0.6877

    0.0625    0.1875    0.3126    0.4376    0.5626    0.6877    0.7815    0.8127

    0.0625    0.1875    0.3126    0.4376    0.5626    0.6877    0.8127    0.9065

 
 
 
 
 
 
 
 
 
 
 
  

 

And the matrix form of the exact solution is given by: 
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 0.0625    0.0625    0.0625    0.0625    0.0625    0.0625    0.0625    0.0625

 0.0625    0.1875    0.1875    0.1875    0.1875    0.1875    0.1875    0.1875

 0.0625    0.1875    0.3125    0.3125  

exactY 

  0.3125    0.3125    0.3125    0.3125

 0.0625    0.1875    0.3125    0.4375    0.4375    0.4375    0.4375    0.4375

 0.0625    0.1875    0.3125    0.4375    0.5625    0.5625    0.5625    0.5625

 0.0625    0.1875    0.3125    0.4375    0.5625    0.6875    0.6875    0.6875

 0.0625    0.1875    0.3125    0.4375    0.5625    0.6875    0.8125    0.8125

 0.0625    0.1875    0.3125    0.4375    0.5625    0.6875    0.8125    0.9375

 
 
 
 
 
 
 
 
 
 
 
  

 

The error was given by: 

 0.0312    0        0         0         0         0        0        0

     0    0.0312    0         0         0          0       0        0

     0        0    0.0312     0         0         0     

error 

   0        0

     0        0         0    0.0311     0         0        0        0

     0        0         0        0     0.0311     0        0        0

     0        0         0        0          0    0.0311    0        0

     0        0         0        0          0        0    0.0310    0

     0        0        0         0          0        0         0    0.0310

 
 
 
 
 
 
 
 
 
 
 
  

 

Example 3.4: 

The same example considered in example(3.2) will be considered and to 

find the solution via the Haar-Chebyshev wavelets method so we let 

( , ) ( ) ( ) TY x t H x C t  

and by substituting Eq.(3.24), (3.25) and (3.26) using 
1

2
   into(3.16)thus we 

have  

     
   

   
    

   

T T
1 1 1 1

2 2 2 2
ha m m Chm m ha m m Chm mP C CP P JP , 

Solving the above equation in terms of the matrix C m=8 (k = 3, M=2) thus we 

get: 
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    0.0392    0.0153    0.0528    0.0029    0.0569    0.0015    0.0593    0.0009

    0.0153    0.0090    0.0249    0.0023    0.0283    0.0012    0.0303    0.0008

    0.0528    0.0249    0.0790    0.00

C 

66    0.0888    0.0036    0.0947    0.0024

    0.0029    0.0023    0.0066    0.0014    0.0089    0.0009    0.0104    0.0006

    0.0569    0.0283    0.0888    0.0089    0.1024    0.0051    0.1108    0.0035

    0.0015    0.0012    0.0036    0.0009    0.0051    0.0006    0.0062    0.0005

    0.0593    0.0303    0.0947    0.0104    0.1108    0.0062    0.1213    0.0043

    0.0009    0.0008    0.0024    0.0006    0.0035    0.0005    0.0043    0.0004

 
 
 
 
 
 
 
 
 
 
 
  

 

And the numerical solution of the above example using Haar-

Chebyshev wavelet operational matrix will be given as below (see 

Appendix A program1): 

H ,Ch

    0.1330    0.1881    0.2011    0.2098    0.2157    0.2201    0.2235    0.2262

    0.1881    0.2888    0.3221    0.3425    0.3568    0.3675    0.3759    0.3827

    0.2011    0.3221    0.3702    

Y 

0.4003    0.4217    0.4379    0.4508    0.4614

    0.2098    0.3425    0.4003    0.4376    0.4645    0.4853    0.5019    0.5157

    0.2157    0.3568    0.4217    0.4645    0.4960    0.5205    0.5404    0.5569

    0.2201    0.3675    0.4379    0.4853    0.5205    0.5482    0.5709    0.5899

    0.2235    0.3759    0.4508    0.5019    0.5404    0.5709    0.5960    0.6171

    0.2262    0.3827    0.4614    0.5157    0.5569    0.5899    0.6171    0.6401

 
 
 
 
 
 
 
 
 
 
 
  

and 

hence the error matrix 

14

   0.0111    0.0222    0.0722    0.0222    0.2137    0.0583    0.1082    0.1971

    0.0056    0.0222    0.0666    0.0111    0.3109    0.0111    0.1388    0.3275

    0.0083    0.0222    0.0

error 1 10   

555    0.0222    0.3553    0.0555    0.1665    0.3775

    0.0305         0        0.0666    0.0111    0.3775    0.0666    0.1665    0.4108

    0.0250    0.0056    0.0611    0.0278    0.3775    0.0888    0.1776    0.4219

    0.0194    0.0056    0.0555    0.0333    0.4108    0.1221    0.1776    0.4219

    0.0250    0.0056    0.0444    0.0444    0.4330    0.1443    0.1887    0.4552

    0.0167    0.0056    0.0500    0.0333    0.4330    0.1443    0.1776    0.4663

 
 
 
 
 
 
 
 
 
 
 
  

 

3.4 Chebyshev - Legendre Wavelets Method for Solving Partial 

Differential Equations of Fractional Order 

In this section, a similar approach that have been given in section 3.3 

will be given to solve partial differential equations of fractional order but by 
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mixing the Chebyshev wavelets method with Legendre wavelet method by 

expanding the required approximate solution as the elements of Chebyshev 

basis functions of the second kind in time and the Legendre basis function in 

space. 

By using this method the fractional order partial differential equation is 

translated also into Lyapunov type matrix equation which can be solved easily 

using MATLAB. 

3.4.1 Function Approximation using Chebyshev-Legendre wavelets method: 

A function 2( , ) ( )y x t L may be expanded as  

…(3.28)                                                             
,

1 1

( , ) ( ) ( )
 

 

  i j j i
i j

y x t c L x t 

Where the coefficients ,i jc  are given by  

                             

1 1

,

0 0

( , ) ( ) . ( , ) ( )  i j i j
c y x t L x dx y x t t dt         …(3.29) 

Equation (3.28) can be written in discrete form as  

                            ( , ) ( ) ( ) TY x t x C t           …(3.30) 

Where: 





   
   
    
   
   
   

 
 
 
 
 
 

1,1 1,2 1,m 1,1 1,2 1,m

2 ,1 2 ,2 2 ,m 2 ,1 2 ,2 2 ,m

m,1 m,2 m,m m,1 m,2 m,m

1,1 1,2 1,m

2 ,1 2 ,2 2 ,m

m,1 m,2 m,m

c c c

c c c
,C

c c c

L L L

L L L

L L L

  

  


  


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The matrix C is the coefficient matrix of the approximate solution Y(x,t) , and 

it can be obtained  by the formula  

…(3.31)          1 1( ( )) ( )   TC x Y t                                        

3.4.2 The Numerical Approach: 

For solving the partial differential equation of fractional order (3.5) 

using the Chebyshev–Legendre wavelet method we integrate: 

 TY( x,t ) ( x )C ( t )    

Fractionally of order α with respect to the variable t it yields: 

 T T T

Ch m mI Y I ( x )C ( t ) ( x )C I ( t ) ( x )CP ( t )       
      

…(3.32) 

Similarly, the fractional integration order α of Y(x,t) with respect to 

variable x can be expressed as: 

 T

x xI Y I ( x )C ( t )   

 
T

xI ( x ) C ( t )      

T

L m mP ( x ) C ( t )  
   

 
T T

L m m( x )( P ) C ( t ) 

 T T

L m m( x )( P ) C ( t )                                             …(3.33) 

In general, performing the fractional order integration of order α twice 

with respect to the variables x and t respectively, we obtain: 

T T

t x L m m Ch m mI I Y ( x )( P ) CP ( t )                                       …(3.34) 
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Eqs. (3.32),(3,33) and (3.34) are the main formulae for solving a 

fractional partial differential equation numerically via the Chebyshev-

Legendre wavelets operational matrices method. 

The above procedure will be clear and illustrated by the following 

numerical examples given in the next section 

3.4.3 Numerical Examples: 

In this section we will use the Chebyshev-Legendre wavelets 

operational matrices of the fractional integration to solve linear 

fractional order partial differential equations and the results obtained 

using this scheme will be compare with the analytical solution or the 

solution obtained using other method or approaches. 

Example 3.5: 

We will consider also in this example the same equation given in 

example 3.1 and in order to find the approximate solution of this equation 

using Chebyshev-Legendre wavelets method, we let: 

         TY( x,t ) ( x )C ( t )   

and substitute (3.34) ,(3.35)and (3.36) into (3.9), we get:: 

T T T T T

Ch m m L m m Lm m Ch m mCP (P ) C (P ) JP           …(3.35) 

where J is the matrix given by the following formula:  

 
1

T 1

1 1 1

1 1 1
J

1 1 1




 
 
   
 
 
 
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Multiply eq. (3.35) from the left by  

1
T



 and from the right by 1 ,we 

get 

T T

Ch m m Lm m Lm m Ch m mCP (P ) C (P ) JP      

If  m  8 (k = 3,M = 2), then the coefficient matrix C becomes: 

  0.0122    0.0057    0.0196         0       0.0196         0       0.0196        0

  0.0098    0.0057    0.0196         0       0.0196         0       0.0196        0

  0.0196    0.0113    0.0514    

C 

0.0057   0.0587         0       0.0587        0

       0             0        0.0098    0.0057   0.0196         0       0.0196        0

  0.0196    0.0113    0.0587    0.0113   0.0906    0.0057    0.0979       0

       0            0              0             0       0.0098    0.0057    0.0196       0

  0.0196    0.0113    0.0587    0.0113    0.0979   0.0113    0.1297    0.0057

       0            0              0             0             0           0         0.0098    0.0057

 
 
 
 
 
 
 
 
 
 
 
  

 

And hence the solution matrix Y(x,t) (see Appendix A program1) is 

given by: 

         ,

 0.0312    0.0625    0.0625    0.0625    0.0625    0.0625    0.0625    0.0625

 0.0625    0.1563    0.1875    0.1875    0.1875    0.1875    0.1875    0.1875

 0.0625    0.1875    0.2813    0.3125   

Ch LY 

 0.3125    0.3125    0.3125    0.3125

 0.0625    0.1875    0.3125    0.4063    0.4375    0.4375    0.4375    0.4375

 0.0625    0.1875    0.3125    0.4375    0.5313    0.5625    0.5625    0.5625

 0.0625    0.1875    0.3125    0.4375    0.5625    0.6563    0.6875    0.6875

 0.0625    0.1875    0.3125    0.4375    0.5625    0.6875    0.7812    0.8125

 0.0625    0.1875    0.3125    0.4375    0.5625    0.6875    0.8125    0.9062

 
 
 
 
 
 
 
 
 
 
 
  

 

Example3.5: 

 The same example considered in example3.2 will be considered and to find 

the solution via the Chebyshev-Legendre wavelets method so we let 

  ( , ) ( ) ( )TY x t x C t   

and by substituting Eq.(3.32), (3.33) and (3.34) using 
1

2
   into(3.16)thus we 

have  
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T T

1 1 1 1

2 2 2 2
L m m Ch m m L m m Ch m mP C CP P JP ,   

   
    

   
 

Solving the above equation in terms of the matrix C m=8 (k=3, M=2) thus we 

get 

  0.0122    0.0057    0.0196         0        0.0196         0        0.0196        0

  0.0098    0.0057    0.0196         0        0.0196         0        0.0196        0

  0.0196    0.0113    0.0514

C 

    0.0057    0.0587         0        0.0587        0

      0             0         0.0098    0.0057    0.0196         0        0.0196        0

  0.0196    0.0113    0.0587    0.0113    0.0906    0.0057    0.0979        0

       0            0              0             0        0.0098    0.0057    0.0196        0

  0.0196    0.0113    0.0587    0.0113    0.0979    0.0113    0.1297    0.0057

      0             0             0              0             0             0        0.0098    0.0057

 
 
 
 
 
 
 
 
 
 
 
  

 

And the numerical solution of the above example using Chebyshev-

Legendre wavelet operational matrix will be given as below:

Ch ,L

 0.0312    0.0625    0.0625    0.0625    0.0625    0.0625    0.0625    0.0625

 0.0625    0.1563    0.1875    0.1875    0.1875    0.1875    0.1875    0.1875

 0.0625    0.1875    0.2813    0.3125   

Y 

 0.3125    0.3125    0.3125    0.3125

 0.0625    0.1875    0.3125    0.4063    0.4375    0.4375    0.4375    0.4375

 0.0625    0.1875    0.3125    0.4375    0.5313    0.5625    0.5625    0.5625

 0.0625    0.1875    0.3125    0.4375    0.5625    0.6563    0.6875    0.6875

 0.0625    0.1875    0.3125    0.4375    0.5625    0.6875    0.7812    0.8125

 0.0625    0.1875    0.3125    0.4375    0.5625    0.6875    0.8125    0.9062

 
 
 
 
 
 
 
 
 
 
 
  
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From the present study, we can conclude the following:  

1. Wavelets methods have been proved to be powerful methods for solving 

non-linear differential equations of fractional order.  

2. Chebyshev, Haar-Chebyshev and Chebyshev-Legendre wavelets methods 

gave reasonable results when they used to solve partial differential 

equations of fractional order. 

3. It seems from the results that Haar-Chebyshev wavelets method gave 

more accurate results than the other methods (Chebyshev wavelets and 

Chebyshev-Legendre wavelets). 

Also, we recommend the following problems as future work:  

1. Wavelets methods for solving nonlinear fuzzy differential equations of 

fractional order.  

2. Wavelets methods for solving fuzzy integral equations of fractional order.  

3. Wavelets methods for solving differential algebraic equations and delay 

differential equations of fractional order.  
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APPENDIX A 
Program1. 

clc 

clear 

k=3 

M1=2 

a1=input('enter the value of alpha    ') 

J=2 

M=2^J 

mm=2^(k-1)*M1 

for l=1:2*M 

    x(l)=(l-0.5)/(2*M); 

end 

x1=x 

t=x 

for j=0:J 

    m=2^j; 

    for k=0:m-1 

        i=k+m+1; 

        z1(i)=k/m; 

        z2(i)=(k+0.5)/m; 

        z3(i)=(k+1)/m; 

        for n=1:2*M 

            h(1,n)=1/((2*M)^0.5); 

            x=x1(n); 

            if x>=z1(i)&& x<=z2(i) 

        h(i,n)=(1/(2*M)^0.5)*(2^(j/2)); 

    elseif x>=z2(i) && x<=z3(i) 

        h(i,n)=(1/(2*M)^0.5)*-2^(j/2); 

    elseif x>=z3(i)&& x<=1 

        h(i,n)=0; 

    else 

        h(i,n)=0; 

    end 

        end 

    end 

end  

h 

aa=[2.8284 2.8284 0 0 0 0 0 0;-2.4495 2.4495  0 0  0 0 0 0;0 0 2.8284  2.8284 0 

0 0 0;0 0 -2.4495 2.4495 0 0 0 0;0 0 0 0 2.8284 2.8284  0 0;0 0 0 0 -2.4495 

2.4495 0 0;0 0 0 0 0 0 2.8284 2.8284;0 0 0 0 0 0 -2.4495 2.4495] 

ch=[4/pi^0.5 -2/pi^0.5 0 0 0 0 0 0 ;4/pi^0.5  2/pi^0.5 0 0 0 0 0 0;0 0 4/pi^0.5 

-2/pi^0.5 0 0 0 0;0 0 4/pi^0.5  2/pi^0.5 0 0 0 0;0 0 0 0 4/pi^0.5 -2/pi^0.5 0 0 
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;0 0 0 0 4/pi^0.5 2/pi^0.5 0 0;0 0 0 0 0 0 4/pi^0.5 -2/pi^0.5; 0 0 0 0 0 0 

4/pi^0.5 2/pi^0.5]' 

for s1=1:8 

    for s2=1:8 

        if x1(s1)>=t(s2) 

            yexact(s1,s2)=t(s2); 

        else  

            yexact(s1,s2)=x1(s1); 

        end 

    end 

end 

yexact  

for i=1:mm 

    z1='(i+1)^(a1+1)-2*((i)^(a1+1))+(i-1)^(a1+1)'; 

    zz1(i)=eval(z1); 

end 

z1 

zz1 

for jj=1:mm 

    for ii=1:mm 

        if ii==jj 

            ppf1(ii,jj)=1; 

        elseif ii>jj 

            ppf1(ii,jj)=0; 

        elseif ii<jj 

            ppf1(ii,jj)=zz1(jj-ii); 

        end 

    end 

end 

ppf1 

ppff1=(1/(mm)^a1)*(1/(gamma(a1+2)))*ppf1 

ph=h*ppff1*inv(h) 

pch=ch*ppff1*inv(ch) 

pa=aa*ppff1*inv(aa) 

 for u=1:8 

     for uu=1:8 

         J1(u,uu)=1; 

     end 

end 

 J1 

    Ja=inv(aa')*J1*inv(aa) 

     Jh=h*J1*inv(h) 

     Jch=inv(ch')*J1*inv(ch) 

     Jhch=h*J1*inv(ch) 
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     Jchl=inv(ch')*J1*inv(aa) 

            Aa=pa' 

             Ah=ph' 

             Ach=pch' 

              A2=ph' 

              A3=pch' 

            Ba=pa 

               Bh=ph 

               Bch=pch 

               B2=pch 

               B3=pa 

               Qh=-1*(ph'*Jh*ph) 

                Qch=-1*(pch'*Jch*pch) 

            Qa=-1*(pa'*Ja*pa) 

            Q2=-1*(ph'*Jhch*pch) 

            Q3=-1*(pch'*Jchl*pa) 

            C=lyap(Aa,Ba,Qa) 

               Ch=lyap(Ah,Bh,Qh) 

               Cch=lyap(Ach,Bch,Qch) 

               C2=lyap(A2,B2,Q2) 

               C3=lyap(A3,B3,Q3) 

            Ya=aa'*C*aa  

             Yh=h'*Ch*h 

             Ych=ch'*Cch*ch 

              Ymixhaarchebyshev=h'*C2*ch 

              Ymixchebyshevlegendre=ch'*C3*aa 

            yexact 
 



 المستخلص
 

 :الهدف الرئيسي لهذه الرسالة يتمحور حول تلاثة أهداف       

لها الحاجة عند  ساسية للحساب الكسري والتي سوف تطرأالهدف الأول هو دراسة المبادئ الأ
 .ذات الرتب الكسريه( ة و وجزئيةعتياديإ) ةالحل العددي للمعادلات التفاضلي إيجاد

خطيه وغير خطيه عتياديه الإ لتفاضليةايجاد الحل العددي للمعادلات الهدف الثاني هو إ      
 وطريقة مويجات جات هارطريقه موي بإستخدام طرائق المويجات والتي هي ذات الرتب الكسرية

 .ات ليجيندروطريقه مويج  تشيبيشيف

ذات الرتب عتيادية هو إنها تخفض المعادلات التفاضلة الإالفكرة الرئيسية لهذه الطرائق       
النظام سوف يعطينا قيم المعاملات للحل  نظام جبري من المعادلات الحل لهذاالكسريه الى حل 

حد كبير هكذا نوع من  والذي هو ممثل على شكل متسلسله لانهائيه وهكذا فهي تبسط الى
 .المعادلات 

الخطية ذات الرتب معادلات التفاضلية الجزئية الهدف الثالث هو إيجاد الحل العددي لل      
وطريقة مويجات   Chebyshevبإستخدام ثلاث طرائق والتي هي طريقه مويجات  الكسرية

Haar-Chebyshev  وطريقهChebyshev-Legendre ، تان الطريقتان العدديتان الاخير
(Haar- Chebyshev and Chebyshev-Legendre)  هما طريقتان عدديتان جديدتان تم

 .سالةاقتراحهما في هذه الر 

الفكره الرئيسية لهذه الطرائق هو تمثيل الحل على شكل متسلسله  لانهائية بحيث معاملاتها       
الى نظام جبري  جزئيه ذات الرتب الكسريةفاضليه اليتم حسابها عن طريق تحويل المعادلات الت

من ذا النظام الجبري من المعادلات والذي يسمى مصفوفات نوع ليابانوف وعن طريق حل ه
سوف نحصل على المعاملات وعليه سوف نحصل   MATLABستخدام برنامج المعادلات بإ

 .ذات الرتب الكسرية الحل المطلوب للمعادلات التفاضلية الجزئيةعلى 
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