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ABSTRACT

The main theme of this thesis is oriented about three objects:

The first one is to study the fundamental concepts of fractional calculus
which are needed for finding the numerical solution of the differential
equations (ordinary and partial) of fractional order.

The second objective is about finding the numerical solution of the
non-linear ordinary differential equations of fractional order using
wavelets methods which are Haar wavelets method, Chebyshev wavelets
method and Legendre wavelets method. The main idea of these methods
Is to reduce the ordinary differential equation of fractional order into a
system of algebraic equations then solved the obtained system. The
solution of this system will give us the values of the coefficients of the
desired solution which is expressed in an infinite series thus greatly
simplifying such equations.

The third objective is to find the numerical solution of the linear
partial differential equations of fractional order using three numerical
methods which are: Chebyshev wavelets method, Haar-Chebyshev
wavelets method and Chebyshev-Legendre wavelets method. The last
two numerical methods (Haar-Chebyshev and Chebyshev-Legendre) are
two modified numerical methods suggested in this thesis. The main
characteristic of these methods is to express the solution of the partial
differential equation as an infinite series in which its coefficients can be
evaluated by converting the partial differential equations of fractional
order into a system of algebraic equations which is named as Lyapunov
type matrix and then solving this system of equations using MATLAB
software which gives us the values of the coefficients and hence the

desired solution of the partial differential equation of fractional order.
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INTRODUCTION

The subject of fractional calculus (that is, calculus of integral and
derivatives of any arbitrary real or complex order) has gained considerable
popularity and importance during the past three decades or so, due mainly to
its demonstrated applications in numerous seemingly diverse and wide spread
fields of science and engineering. It does provide several potentially useful
tool for solving differential and integral equations, and various other problems
involving special functions of mathematical physics, as well as, their

extensions and generalizations in one and more variables [Kilbas, 2006].

Most authors on this topic will cite a particular date of so called
“fractional calculus” in a letter dated in September 30", 1695 L'Hospital

wrote to Leibaniz asking him about a particular notation, he had been used in

his publication for the n™ —derivative of the linear function f(x) =%.

L'Hospital posed the question to Leibniz, what would the result be if n = 1/2.

Leibniz response “An apparent paradox, from which one day useful

consequences will be drawn”. In these words fractional calculus was born.

Following L'Hosptial and Leibniz's first inquisition, fractional calculus
was primary a study reserved for the best minds in mathematics, where
Fourier, Euler and Laplace are among the many authors that dabbled with

fractional calculus and the mathematical consequences [Nishimoto, 1983].

Many authors found, using their own notation and methodology,
definitions that fit the concept of noninteger order integral or derivative. The
most famous of these definitions that have been popularized in the word of
fractional calculus are the Riemann-Liouville and Grunwald-Letnokov
definition. Most of the mathematical theory applicable to the study of
fractional calculus was developed prior to the turn of the 20" century.
However, it is the past 100 years that the most intriguing leaps in engineering

and scientific application have been found.
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The mathematics has in some cases to change to meet the requirements
of physical reality, Caputo[Caputo,1997] reformulated the more ‘classic'
definition of the Riemann-Liouville fractional derivative in order to use
integer order initial conditions to solve his fractional order differential
equations [Podlubny, 1999]. However, during the last ten years fractional
calculus starts to attract much more attention of physicists and
mathematicians. It was found that various; especially interdisciplinary
applications can be elegantly modeled with the help of the fractional
derivatives. For example, the nonlinear oscillation of earthquake can be
modeled with fractional derivatives [He, 1998] and the fluid-dynamic traffic
model with fractional derivatives can eliminate the deficiency arising from the

assumption of continuum traffic flow, [He, 1999].

Fractional differential equations are generalized from classical integer-
order ones, which are obtained by replacing integer-order derivatives by

fractional ones.

Their advantages comparing with integer-order differential equations are
the capability of simulating natural physical process and dynamic system

more accurately [Chen, 2007].

partial differential equations involving derivatives with non-integer
orders have shown to be adequate models for various physical phenomena in
areas, such as damping laws, diffusion processes, etc. Other applications
include electromagnetic, electrochemistry, arterial science, and the theory of

ultra-slow processes and finance, [Wu, 2009].

However, several numbers of algorithms for solving fractional order
partial differential equations have been investigated. Suarez [Suarez, 1997]
used the eigenvector expansion method to find the solution of motion
containing fractional derivative. Podlubny [Podlubny, 1999] used the Laplace

transform method to solve fractional differential equations numerically with
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Riemann-Liouville derivatives definition as well as the fractional partial
differential equations with constant coefficients, Meerscharet and Tadjeran
[Meerscharet, 2006] proposed the finite difference method to find the
numerical solution of two-sided space- fractional partial differential
equations. Momani [Momani, 2007] used a numerical algorithm to solve the
fractional convection-diffusion equation with nonlinear source term. Odibat
and Momani [Odibat, 2009] used the variation iteration method to handle
fractional partial differential equations in fluid mechanics. Jafari and Seifi
[Jafari, 2009] solved a system of nonlinear fractional partial differential
equations using homotopy analysis method. Wu [Wu, 2009] derived a wavelet
operational method to solve fractional partial differential equations
numerically .Chen and Wu [Chen, 2010] used wavelet method to find the
numerical solution for a class of fractional convection-diffusion equation with
variable coefficients. Geng [Geng, 2011] suggested a wavelet method for
solving nonlinear partial differential equations of fractional order. Guo and
etal [Guo, 2013] used the fractional variationl homotopy perturbation

iteration method to solve a fractional diffusion equation.

In this thesis, numerical solution of partial differential equation of
fractional order will be presented using the same approach given in [Wu,
2009 ] but with the aid of Chebyshev wavelets method, Haar-Chebyshev
wavelets method and Chebyshev-Legendre wavelets . Wavelets analysis as a
new approach of mathematics is widely applied in signal analysis, image
manipulation, and numerical analysis, etc. It mainly studies the expression of
functions, that is functions are decomposed into summation of “basic
functions” and every “basic functions” is obtained by compression and
translation of a mother wavelet function with good properties of locality and
smoothness, which makes people able to analyze the properties of locality and

integer in process of expressing functions [Li, 2005]. Beside their
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conventional applications in signal and image processing, wavelet basis had
received attention dealing with numerical solutions of integer order as well as
fractional order differential equations. Wavelet basis can be used to reduce the
underlying problem to a system of algebraic equations by estimating the
integrals using operational matrices [Chen, 2007], [Kilicman, 2007] and
[Saadatmandi, 2010].

Recently the operational matrices of fractional order integration for the
Haar wavelets, the Chebyshev wavelets and the Legendre wavelet have been
developed in [Chen, 1997], [Yuanlu, 2010a], [Yuanlu, 2010b] and [Rehman,
2011] to solve the fractional order differential equations. This work consists
of three chapters as well as this introduction. In chapter one, the fundamental
concepts of fractional calculus are given. While in chapter two the numerical
solution of ordinary differential equations using Haar wavelets method,
Chebyshev wavelets method and Legendre wavelets method is presented.
Finally the numerical solution of linear partial differential equations of
fractional order by using Chebyshev wavelets method, Haar -Chebyshev
wavelets method and Chebyshev-Legendre wavelets method are given in

chapter three.

It is important to mention that, the calculation in chapter two and three
are simplified using MATLAB R2013a computer software. The results are

presented in figures or in a tabulated form.
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Chapter One

Basic Concepts of Fractional Calculus

1.1 Introduction:

This chapter consists of five sections, in section 1.2 the Beta and Gamma
function were given, in section 1.3 we present some definitions of fractional
order integration while in section 1.4 some definitions of fractional order
derivatives are presented, finally in section 1.5 some analytical methods are

used to find the solution of differential equations of fractional order.
1.2 The Gamma and Beta Functions,[Oldham,1974]:

The complete gamma function 7(x) plays an important role in the theory
of fractional calculus. A comprehensive definition of /{x) is that provided by

Euler limit:

Ix) = lim [ NN j,x>0 (1)

Noo| X(X +1)(X +2)..(Xx +N)

but the integral transform definition is given by:
) =[y**eYdy,x>0 ...(1.2)
0

is often more useful, although it is restricted to positive value of x. An

integration by parts applied to eq. (1.2) leads to the recurrence relationship:

T(x+1) =xI(x) ...(L.3)
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This is the most important property of gamma function. The same result is a
simple consequence of eq. (1.1), since I'(1) = 1, this recurrence shows that for

positive integer n:
I{n +1)=n/n)
=n! ..(1.4)

The following are the most important properties of the gamma

function:

. F(l j (-4)"n'x

—-n
2 (2n)!

4"n!

2 r{kan] 201

—mesc( X )
I'(x+1)

3. I'(—x)=

27Z'|: nx }n fi:[l k .
4 rmy = | 25| r(H_j,nEN
N | V27 ] ko n
A function that is closely related to the gamma function is the complete

beta function £(p,q). For positive value of the two parameters p and q; the

function is defined by the beta integral:
r 1 1
A(p.a)=[y* (1-y)*"dy,pa>0 (1.5
0

which is also known as the Euler’s integral of the second kind. If either p or q
IS nonpositive, the integral diverges otherwise A(p,q) is defined by the

relationship:

I'(p)I(q)
I'(p+q)

A(p.g) = ...(1.6)
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where pand q > 0.

Both beta and gamma functions have “incomplete” analogues. The

incomplete beta function of argument x is defined by the integral:
b 1 1
B(pa)=[y " (1-y)i " dy (17
0

and the incomplete gamma function of argument x is defined by:

—X

cX) = i x-la=¥ ¢
7*(c.X) F(X)Jy y
. i ]
; T soeD) .(1.8)

7*(c,X) is a finite single-valued analytic function of x and c.

1.3 Fractional Integration:

There are many literatures introduce different definitions of fractional

integrations, such as:
1. Riemann-Liouville integral, [Oldham, 1974]:

The generalization to non-integer o of Riemann-Liouville integral can be

written for suitable function f(x), x € R ; as:

I“f(x):ﬁ)j(x—s)“‘lf(s)ds,a>0 ...(1.9)
0

and 1°f(x) = f(x) is the identity operator.

The properties of the operator 1” can be founded in [Podlbuny, 1999]

for § >0, a > 0, we have:
1°IB f(x) =I1%*B1(x).

2. I%IPf(x) =IP1%f(x). ...(1.10)
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2. Weyl fractional integral, [Oldham, 1974]:

The left hand fractional order integral of order o > 0 of a given function f

is defined as:

o 1 f(y)
LIef(x) = () _{o(x—y)l‘“dy (111

and the right fractional order integral of order o > 0 of a given function f is

given by:

ot (xy oL T ()
OO T ra o

3. Abel-Riemann fractional integral, [Mittal, 2008]:

The Abel-Riemann (A-R) fractional integral of any order « > 0, for a

function f(x) with x € R™ is defined as:
|af(X)—L)j.(X—T)a_lf(T)dT x>0,a>0 (1.12)
(), : : (1.

1° =1 (identity operator)
The A-R integral posses the semigroup property:

1” = 1/ for all o, >0 ..(1.13)
1.4 Fractional Derivatives:

Many literatures discussed and presented fractional derivatives of certain
function, therefore in this section, some definitions of fractional derivatives

are presented:
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1. Riemann-Liouville fractional derivatives, [Oldham, 1974], [Nishimoto,
1983]:

Among the most important formulae used in fractional calculus is the
Riemann-Liouville formula. For a given function f(x), "'x € [a,b]; the left
and right hand Riemann-Liouville fractional derivatives of order o > 0 and m

Is a natural number, are given by:

. 1 dm f(t)
D,.f = ..(1.14
X “a+ (X) I—v(m_a)dxmi(x_t)a—mﬂ ( )
« _ (=™ d™m R (1)
, Dy f (x) = T(m—a) dx’“xj(x—t)“‘"‘“ dt .(1.15)

wherem-1<a<m me N.
2. The A-R fractional derivative, [Mittal, 2008]:

The A-R fractional derivative of order « > 0 is defined as the inverse of

the corresponding A-R fractional integral, i.e.,
DA% =1 ...(1.16)
for positive integer m, such thatm -1 < ¢ <m,

(D™™ )1 =D"(I"“%) =D"I" = |

l.e.,
- ml 5 mj f(z;)ﬂ_m dr, m-—1l<a<m
pety = | 7 (M=) X a(x=7) (117)
dm
f(x), a=m
o (x)
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3. Caputo fractional derivative, [Caputo, 1967], [Minadri, 1997]:

In the late sixties of the last century, an alternative definition of
fractional derivatives was introduced by Caputo. Caputo and Minadri used
this definition in their work on the theory of viscoelasticity. According to

Caputo’s definition:
‘DI =1""D", form-1<a<m

which means that:

X (m)
F(ml )j(f )((Zfl)_mdr, m-l<a<m
e —a)y(x-7
D f(x) = 4 0
— f(x), a=m
o (x)

The basic properties of the Caputo fractional derivative are:

1. Caputo introduced an alternative definition, which has the advantage of
defining integer order initial conditions for fractional order differential

equations.
m-1 K Xk
2. 1°°DXf(x)=f(x) — > () (0") =—.
k=0 k!

3. Caputo’s fractional differentiation is linear operator, similar to integer

order differentiation:
"Dy [A(x) + ug()] = 2 * D F(x) + 1 “ Dy g(x)
4. Grinwald fractional derivatives, [Oldham, 1974]:

The Grinwald derivatives of any integer order to any function, can

take the form:
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Xj R \
D%f(x) = Lim (N s L =a)

AN
Nool I'(—a)  jo £(])+1) N

S

-

VT

..(1.18)

1.5 Analytic Methods for Solving Fractional Order Differential
Equations, [Oldham, 1974]:

In the present section, some analytical methods are presented for solving
fractional order differential equations, and among such method:

1.5.1. The Inverse Operator Method:

Consider the fractional order differential equation:

..(1.19
e (1.19)

a

~ is a fractional order derivative of

where f is an unknown function and

dx
Riemann-Liouville sense, hence upon taking the inverse operator dd — to
X
the both sides of eq.(1.19) gives:
f= d _F ...(1.20)
dx ~“

additional terms must be added to eq. (1.20), which are:
cX“ L e L X

and hence:

d™* d“
f— S f=cX* e X 2 . +C x>
X~ dx
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where ¢y, Cy, ..., ¢y are an arbitrary constants to be determined from the initial

conditionsand m -1 < o <m.

Thus:
_ _ _ d?* d¢“
f—cxt_c,x*? .. —c x*M= f
! 2 m dx % dx ¢
_d F
dx ¢

Hence, the most general solution of eq. (1.19) is given by:
-

dx ¢

f = F+o X% +0,x* % +..+c,x "

wherem —-1< o <m.

As an illustration, we shall consider the following example:

Example (1.1):

Consider the fractional order differential equation:

d3/2

0 —377 f(x)= X° ...(1.21)

-3/2
Applying (;j to the both sides of eq. (1.21), we get:

d—3/ 2 1/2 1/2
f(X):dX_T-FClX +C2X_
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1.5.2 Laplace Transform Method:

In this section, we shall seek a transform of d™f /dx™ for all m and

differintegrable f, i.e., we wish to relate:
d™f T d™f

L = |exp( —sx dx
{dx m } g P(=sx) dx ™

to the Laplace transform L{f} of the differintegrable function. Let us first

recall the well-known transforms of integer-order derivatives:

m m-1
L{(;fn}:smL Zs‘”df(O)m =1,2,3,.
X

and multiple integrals:

L{dmf}_smL{f} m=0,-1,-2,. ..(1.22)
dx ™

and note that both formulae are embraced by:

m-1-k
L{(; f} s"L {f}- Z g f(o), m=0, 1, #2, ... ...(1.23)
X

dmlk

Also, formula (1.23), can be generalized to include non integer m by the
simple extension:

m-1- k
L {d f} sL {f}- z gk ( ) ,forall m ...(1.24)
dx™ dx™"

where n is the integer such that n —1 < m < n. The sum is empty vanishes
when m <0.

In proving (1.24), we first consider m < 0, so that the Riemann-Liouville
definition:
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d™f 1 % f
j (y)

m:F_ _ m+1dy’m<o
dx (=m)o[x-y]

may be adopted and upon direct application of the convolution theorem
[Churchill,1948]:

L {I fl(X_Y)fz(Y)dY}:L {f3 {f,}
0

Then gives:

a™ | 1 em Com
L{dxm}_r(_m)L{x Wf}=s"f}, m<O ...(1.25)

So that eq.(1.22) generalized unchanged for negative m.

For noninteger positive m, we use the result, [Oldham, 1974]:
d™f | d"|[d™"f
dx™ | dx"| dx™"

where n is the integer such thatn —1 <m<n.

Now, on application of the formula (1.23), we find that :

m n m-n
Cfame] [ [dm
dx™ dx"| dx™™"

:SnL{d m-ng }_nzlsk g -1k |:d m-ng :l(o)

dx™ " | dx MK gx ™"

The difference m — n being negative, the first right-hand term may be
evaluated by use of (1.25).since m — n< 0,the composition rule may be

applied to the terms within the summation. The result:

m n-1 m-1-k
WL TFS S St A C) Ry S S
dx " k =0 dx "o

10
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Follows from these two operations and is seen to be incorporated in (1.24).

The transformation (1.24) is a very simple generalization of the classical
formula for the Laplace transform of the derivative or integral of f. No similar

generalization exists, however, for the classical formulae, [Oldham, 1974]:

-1 -1
L{—f} L{f}() L{f}()

X ds
dL { f
L oy =L
L {[—x]”f}:%,nzl,z,...
S

As a final result of this section we shall establish the useful formula:

{exp( —kx kX]}z[s+k]m {f}

As an illustration, we consider the following example:

Example (1.2), [Abdulkhalik, 2008]:

Consider the integro differential equation:

1/2 -1/2 3/2
ddxlf/(zx)+ddx_1f,(zx) 2f(x)= X A oxed ...(1.27)

=

and in order to solve this equation using Laplace transformation method, first

we take the Laplace transformation to the both sides of equation (1.27):

d1’2f(x) d—l/Zf(X) _i {i}
L {—dxllz }+L {—dxl’z }+2L{f(x)}—J;L X +

6 4 3/2
JZL {&}+3£L {x323+2L {x}+L {4}

11



Chapter One Basic Concepts of Fractional Calculus

Using the definition of the Laplace transformation for the non-integer order

given by eq.( 1.24 ) thus we get after simple simplification:

252 +33+1+2«/§+4s«/§
SZ(S+1+2«/§)

L (f)=

_(2s+1)+(s +1+2»\/s_)
- sz(s+1+2»\/§)

Then upon using the inverse Laplace transform, we have:
f(x) =2 +x

as the solution of the integro differential equation.

12
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Chapter Two

Wavelets Methods for Solving Ordinary
Differential Equations of Fractional Order

2.1 Introduction:

Wavelet analysis is relatively new area in mathematics research. It
has been applied widely in signal analysis, time frequency analysis and
numerical analysis. Wavelet analysis included the expression of
functions. Which are expanded to summation of “basic function” and
every “basic function” is achieved by dilation and translation locality.
This chapter consists of five sections, in section 2.2 Haar wavelets
method is presented, in section 2.3 Chebyshev wavelets method was
given, while in section2.4 we present the Legendre wavelets method and
finally in section 2.5 two illustrative examples are solved via the Haar
wavelets, Chebyshev wavelets and Legendre wavelets methods and the

results are documented either in figure or in tabulated form.
2.2 Haar Wavelets:

Haar functions have been used since 1910, when they were

introduced by Hungarian mathematician Alferd Haar, [Haar, 1910].

The orthogonal set of Haar functions is defined as shown in Figures
(2.1-2.8) that is a square waves with magnitude of =1 in some interval

and zero elsewhere. The first curve of Figure (2.1) is that hy(x) = 1
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during the whole interval [0,1]. It is called the scaling function. The
second curve hy(x) is the fundamental square wave, or mother wavelet
which also spans the whole interval [0,1]. All the other subsequent curve
are generated from hy(x) with two operations translation and dilation,
ho(x) is obtained from hy(x) with dilation, i.e., h;(x) is compressed from
the whole interval [0,1] to half interval [0,1/2] to generate hy(X), hs(X) is
the same as h,(x) but shifted (translated) to the right by 1/2. Similarly,
ho(x) is compressed from the half interval to a quarter interval to
generate hy(x). The function hy(x) is translated to the right by 1/4, 2/4,
3/4 to generate hs(x), he(x) and h,(x); respectively.

In general:

ha(X) = hi(2X —k/2), n=2"+k,j>0,0<k < 2

Figure (2.1) First Haar function.

Figure (2.2) Second Haar function.
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Figure (2.3) Third Haar function.

Figure (2.5) Fifth Haar function.

Figure (2.6) Sixth Haar function.
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1 o
hg © ' :
b 1
-1 | i
Figure (2.7) Seventh Haar function.
1 [
hs 0 !

Figure (2.8) Eighth Haar function.

This orthogonal basis is a reminiscent of the Walsh basis, in which
each Walsh function contains many wavelets to fill the interval [0,1]
completely, and to form a global basis. While each Haar function
contains just one wavelet during some subinterval of time, and remains

zero elsewhere the Haar set form a local basis.

All the Haar wavelets are orthogonal to each other:

}hi (x)h,(x) dx =215,
0

271 j=p=21%
Y

Therefore, they form a very good transform basis.
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2.2.1 Haar Wavelets Operational Matrix:

In this section we shall begin with the more convenient way for

representing Haar wavelets in computer and for xe[A,B] which was

given by [Lepik, 2009] and for this purpose we define the quantity M=2’

where J is the maximal level of resolution and divide the interval [A,B]

into 2M subintervals of equal length; each subinterval has the length

AX = (B — A)/2M.

Two parameters are introduced the dilation parameter j for which

j=0,1,..., J and the translation parameter k = 0,1, ..., m — 1 where m =

2J. The wavelets number i is identified as i = m + k + 1 the i Haar

wavelet is defined as:

1, forx € [&(D), &3],
hi(x) =4 -1, forx € [£,(i),&(0)],

0, elsewhere.
Where:
E.(D) =A+2kudx , &) =A+ 2k + 1)udx

@) =A+2(k+ Dudx, p=M/y,

The case i = 1 corresponding to the scaling function

1,for x € [A4, B]
0, elsewhere

m() = |

The following notations are introduced:

p..(%) =§hi (r)dz

17
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0.0 =] P, (D)dr v=12,..

These integrals can be evaluated by using def. (2.1) and the first two of

them are given by:

(X_él(i)’ Xe[é(')!&z(l))

p.(X)=1&(1)—x, xe[&(i).5,(i)) ..(2.3)
kO, Otherwise.
1 . o
E(X—é(')) : xe[&(1).5,(1))
L Le)-xy. xel&i)e(i))
p,(X)=14m* 27 2L (2.4
= xe[&())
0, Otherwise.
In general:
o, x < £(i)
%(X—é‘l(i))”, x [& ), &, ()]
P ()= Lx- &0 -2 ) x e [&, (i), &, (i)]
L x-50) ~2x- &) +2x-£,0)' ] x> £,0)
.(2.5)

For example, if J = 2, then:

8 —4 -2 =2
_ 114 0 -2 2
Pyr = ll 1 0 0 ‘
1 -1 0 0
And if J = 3, then:
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[ 32 -16 -8 -8 -4 -4 -4 -4]

16 0 8 8 -4 -4 4 4

4 4 0 0 4 4 0 O

b 1 4 -4 0 O O O -4 4
®> 64/ 1 1 2 0 0 0O 0O O

1 1 -2 0 O O O o0

1 1 0 2 O O O O

1 -1 0 -2 0 0 0 O]

Following figures (2.9-2.16) represent the first integral of h;(x), for
alli=1,2,...,8.

Figure (2.9) Integration of the first Haar wavelet.

|/

Figure (2.10) Integration of the second Haar wavelet.
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Figure (2.11) Integration of the third Haar wavelet.

A

Figure (2.12) Integration of the forth Haar wavelet.

A

!
1/4 1
Figure (2.13) Integration of the fifth Haar wavelet.
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VAN .,

I
1/4  1/2 1

Figure (2.14) Integration of the sixth Haar wavelet.

A

N

1/2  3/4 1

/

Figure (2.15) Integration of the seventh Haar wavelet.

A

VAN

I
3/4 1

Figure (2.16) Integration of the eighth Haar wavelet.

Any function f(x) e L?[0,1] can be expanded in terms of Haar series

as.
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f(x) = 221 cihi(x) ..(2.6)

Where the coefficients c; are determined by:

¢c; =2/ folf(x)hi(x)

If f(x) is piecewise constant or may be approximated as piecewise
constant, then the sum in eq.(2.6) may be terminated after 2M terms, that
Is:

f(x) = X2 cihi(x) = Coy Hom(x) = f() (2.7)

f denotes the truncated sum, the Haar coefficients vector C,,, and Haar

vector H,,,(x) are defined as:

Con = 1, €2y s Copgl T

Hyp (x) = [hy(x), hy (%), ..., hyp (O)]T ...(2.8)
Taking the collocation points as following

x;=A+ (@ —05)Ax,i=1.2..2M ...(2.9)
By letting A =0, B = 1 and hence Ax = ﬁ in eg.(2.9) We define the

2M-square Haar matrix ®,y;oMm as:

I [HZM (%) Hom (ﬁ) Hyy (4141\;1)] ...(2.10)

Correspondingly, we have:

fZM = [f (ﬁ) f(ﬁ) f(4f1\;1)] = Cam Pomxam ..(2.11)

Because the 2M — square Haar wavelets matrix @,y IS an invertible

matrix, the Haar coefficients vector CJ,, can be gotten by:
CéFM = fZM q)Z_I\}IXZM .(2.12)
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2.2.2 Block Pulse Function (BPF):

Defines a 2M — Set of Block Pulse Function (BPF) as:
i i+1
bi(x)={ Lo =%<oy ...(2.13)
0, Otherwise
wherei =0,1,2...,2M — 1.
The functions b; (x) are disjoint and orthogonal, that is:

b, ()b, (x) = {gi(x) i ’ L(2.14)

Kilicman and Zhour [Kilicman, 2007] had given the block pulse

operational matrix of fractional order integration F* as following:

19Baw () = F*Bau(x) .(2.15)
where:
(1 & & $om—1
O 1 61 €2M—2
a—_1 _t 10 0 1 .. &y
T em@r+2)|i i 2M 3 ...(2.16)
0 0 0 o

where:
& = (k+ 1)t — 2k 4 (k — 1)**1 k=1,2,...,2M-1

2.2.3 Operational matrix of the fractional order integration of Haar

Wavelet Functions:

The integration of H,,(x) defined in Eqg.(2.8) can be approximated by

Haar series with Haar coefficient matrix P, as:

foxHZM(T)dT ~ Phaamxem Hapm(X) ..(2.17)
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where a 2M-square matrix Py, is called the Haar wavelets operational matrix
of integration [Chen, 1997].

Zhao, [Zhao, 2010] derive the Haar wavelets operational matrix of the

fractional order integration.

He introduced the Riemann-Liouville fractional order integration, as

given in chapter one as:

— x L% f(x) ...(2.18)

I“NE) = 1y =D f(@dr =

where a € R is the order of integration, I'(a) is the Gamma function and
x% 1« f(x) is the convolution product of x*~1 and f(x).

Now if f(x) is expanded in Haar function, the Riemann- Liouville
fractional order integration is solved via the Haar function, because the Haar
functions are piecewise constant, it may be expanded into 2M- term Block
Pulse Function (BPF) as:

Hyp (%) = @Popsam Bom (X) ...(2.19)
where B,y (x) £ [by (x)by(x) ... byp (%)]

Next, the Haar wavelets operational matrix of the fractional order

integration is derived by letting

(I“Hap) (%) = Prg amsamHom (%) ...(2.20)

Where the 2M — square matrix Py, ,yx2m 1S Called the Haar wavelets

operational matrix of the integration.
Using Egs.(2.15) and (2.19) we have
(I“Hom) () = (I9PypsamBam) (X) = Popyxan (1% Bay) (%)
~ Oy prsam FEBap (%) ..(2.21)

From eqs.(2.20) and (2.21), we get:
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Pra 2mxam Ham (%) = Prg amxom Pamxzm Bam (%)
= Dyysam F* Boy(x) ...(2.22)
Then the Haar wavelet operational matrix of the fractional order of integration
Pra 2mxz2m 18 given by
Praamxam = Pomxam F* (Dz_z\}leM ...(2.23)

For example, let a =0.5, ] =2 hence 2M = 8, the operational matrix

Py, 2mxam 1S computed below as:

0.7523 —0.2203 —-0.1558 —0.0820 —0.1102 -0.0580 —0.0447 —0.0377]

0.2203 0.3116 —0.1558 0.2296 -0.1102 -0.0580 0.1756 0.0782

0.0410 0.1148 0.2203 —-0.0350 -0.1102 0.1623 —0.0389 -0.0063

Pr?'s —10.0779 -0.0779 0 0.2203 0 0 —0.1102 0.1623

@88 7°10.0094 0.0196 0.0812 —0.0032 0.1558 —0.0247 —0.0026 —0.0009

0.0112 0.0439 —0.0551 -0.0194 0 0.1558 —0.0247 —-0.0026

0.0145 —-0.0145 0 0.0812 0 0 0.1558 —0.0247

+0.0275 —0.0275 0 —0.0551 0 0 0 0.1558 4

2.3 Chebyshev Wavelets:

Wavelets are a family of function constructed from dilation and

translation of a single function called mother wavelet.

In this section we will present another type of wavelets which is so

called the second kind Chebyshev wavelets as follows:

When the dilation parameter a and the translation parameter b vary
continuously, we have the following family of continuous wavelets as
[Fan, 2008]:

‘Pa7b(x):|a|_% T(%),a,beR,aio ...(2.24)

If we restrict the parameters a and b to discrete values as a = ag~,

b = nboao"‘, ag > 1, bg > 0, where n and k are positive integers, the

family of discrete wavelets are defined as:
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Wn(X) = a0l (a5 x —niy ) ..(2.25)

where ., forms a wavelet basis for L(R). In particular, when ay = 2

and bg = 1, ykna(x) forms an orthogonal basis.

The second kind Chebyshev wavelets ynm(X) = w(k,n,m,x) involve
four arguments n = 7, 2, ..., 2%; k is assumed any positive integer, m is
the degree of the second kind Chebyshev polynomial and x is the

normalized time. They are defined on the interval [0,1] as [Fan, 2008]:

3 _1 n
K2 (Kx—2n+1) T tcx<
W m(X)= m( ) ok-1 ok-1 ...(2.26)
0, Otherwise
where:
U () = |2 Up (x) .(2.27)

andm=20, 1, ..., M —1. Here are the second kind Chebyshev polynomial

of degree m with respect to the weight function o(x) =+v1—x* on the

interval [-1,1] and satisfy the following recursive formula:
Uo(X) =1

U;(x) =2x

Un+1(X) =2XUn(X) —Una(X), m=1, 2, ...

We should note that in dealing with the second kind Chebyshev

wavelet, the weight function ®(x)=w(2x—1) have to be dilated and

translated as:
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@, (X)=w(2kx —2n +1)
2.3.1 Function Approximation and Operational Matrix:

A function f(x) defined over [0,1] may be expanded as:

k-1 _ o
f(X) ~ $l=1 %=%) Cnm Lpnm(x) = (T Lp(x) = f (X) (228)
where C and W(x) are 2% *M x 1 matrice given by:
C 2 [C10' C11s =+» Cl(M—l)' C20,C21y =) CZ(M—l)' . Czk—lo, Czk—ll, ey
Czk—l(M_l)]T ...(2.29)
and
W(x) = [lpw; Y11, - ’1/J1(M—1); Y20, Y215 o) 1/)2(M—1); »wzk—loﬂl’zk—ll’
""lpzk_l(M—l)]T .(230)
From now we define m = 2%"1M

Taking the collocation points as following:

2i—-1 .

Xi = S b= 12,....,m

The second kind Chebyshev wavelets matrix Q,,,.., 1S given by:

Qo = [tp (ﬁ)w(%) ...,111(2’2”;)] ..(2.31)

For example, when M = 3 and K = 2, the second kind Chebyshev

wavelets is expressed as

15959 15958 15958 0 0 0

212718 0 212718 0 0 0

o0 - 12415 -15958 12415 0 0 0
>e 0 0 0 15959 1.5958 1.5958
0 0 0 21278 0 21278
0 0 0 12415 -1.5058 1.2415
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Correspondingly, we have:

fu=f (52) F () - F (B .(2.32)

2m 2m

Because the second kind wavelets matrix Q. IS an invertible matrix,

the Chebyshev wavelets coefficients vector C' can be determined by:

CT= fn Q7 ...(2.33)

Xm

The convergence of the second kind Chebyshev wavelet bases was given
by Wang [Wang, 2011].

2.3.2 Operational Matrix of the Fractional Order Integration of

Chebyshev Wavelet Functions:

The integration of W(x) defined in eq.(2.30) can be approximated

by Chebyshev series with Chebyshev coefficient matrix Pcy, as:
JyP@d T~ Pepmsm P () ...(2.34)

where a m X m square matrix Pcy, is called the Chebyshev wavelets

operational matrix of integration.

Next, we shall present the derivation of the second kind Chebyshev

wavelets operational matrix of the fractional order integration.

Now, if f(x) is expanded in a second kind Chebyshev wavelets, as
given in EQ.(2.28). The Riemann- Liouville fractional integration

becomes
a —_— 1 a— *
I“F)0) = 7= xhx f(%)

~ T 1 (a1
~C F(O(){x‘)‘ * W(x)} ...(2.35)
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Thus if x*~1 x f(x) can be integrated then expanded in the second kind
Chebyshev wavelets, the Riemann-Liouville fractional integration is

solved via the second kind Chebyshev wavelets.

Because the Chebyshev wavelets are piecewise constant, it may be

expanded into m — term Block Pulse Function (BPF) as:

V(%) = Qs B (%) ...(2.36)
where:

B, (x) £ [by(x)by (%) ... b; () ... by _1 (2)]T

Next, we shall derive the Chebyshev wavelets operational matrix of

the fractional order integration by letting:

(") (x) = Pl mxmPm (X) ...(2.37)

where the matrix P&, .« 1S called the Chebyshev wavelets operational

matrix of the fractional integration
Using egs.(2.36) and (2.15), we have:
(%) () = (L Bim) () = Qs (1* By ()
~ 0, FEB, (%) ...(2.38)
where F*defined in eq. (2.16)with 2M=m.
From egs.(2.37) and (2.38), we get:
Phmxm $m(X) = Pép mxm @msxm B (%)
=0 F By (%) ...(2.39)

Then the second kind Chebyshev wavelet operational matrix of the

fractional integration P&, ,,,«m 1S given by

Pghmxm = 'mem F* Qr_nlxm (240)
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2.4 Legendre Wavelets:

The Legendre wavelets constitute a family of functions constructed from
dilation and translation of single function called the mother wavelet ¥ (x).
They are defined by:

Yar@ =7=9 (7). abeR a0,

where a is dilation parameter and b is translation parameter.

By restricting a, b to discrete values as:
a= a{;,b = kboaé where ap>1,by>0andn,k € N,

we get following family of discrete wavelets as

P, 00) = lagls3p(agx = kebo)
The set of wavelets forms an orthogonal basis of L?(R).In particular, when
a = 2 and by = 1, then ;. (x) forms an orthonormal basis. The Legendre
polynomial of order m, denoted by L,,(x) are defined on the interval [-1,1]
and can be determined with the aid of the following recurrence formulae:
Li(x)=1, Li(x)=x,

2m+1
m+1

Lyt (x) = xL,, (x) — %Lm_l(x), m=123,...

The Legendre wavelets are defined on interval [0,1), by:
1k X A A-1 fi+1
(2m+ 1)222Lm(2 X—Tl), ?Sx <?

0, elsewhere,

1:bn,m (x) =

where k=2,3,....An = 2n — 1,n=1,2, 3, ...,2"'1,m=0,1,2,...,M-1 is the order of the

Legendre polynomials and M is fixed positive integer .
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2.4.1 Function Approximation and Operational Matrix:

A function f(x) defined over [0,1] may be approximated as:

k-1

f() = Tio1 Tt Cam Ynm () = CTP() = f (x) ...(2.41)

where C and W(x) are 2¥71M x 1 matrices given by

C 2 [Cl,O' Cl,l' ey Cl,(M—l)’ Cz’o, Cz’l, seey CZ,(M—l)' e ) Czk_l,O’
Cok-1 CHok-1 T
2k=1 15 s Cok=1 (pr_1)]

and
Y(x) = [¢1,0»¢1,1» ) 1/’1,(M—1)» ¢2,0r ?,02,1, »1/J2,(M—1):
ey Yokt g Wokm1 1, eee, Y1 1y ...(2.42)
From now we will define m = 2k-1Mm

Talking the collocation point as following:

2i-1 .
il 1,2, .. m

X; =

The Legendre wavelets matrix 0,,,..,, IS given by:

O, m = [lp (ﬁ) A (%) W (2'2"7;1)] ...(2.43)
Correspondingly, we have:
b = [E(5) 0(), - F(E)) .(2.44)

2.4.2 Operational Matrix of the Fractional Order Integration of the

Legendre Wavelets Functions:

The integration of ¥(x) defined in Eq.(2.42) can be approximated by

Legendre series with Legendre coefficient matrix P, ,,,x,, as:

JF¥@AT~ Ppmyn P(x) .(2.45)
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where a m X m square matrix P, ..., 1S called the Legendre wavelets

operational matrix of integration.

Next, we shall present the derivation of the Legendre wavelets

operational matrix of the fractional order integration.

Now if f(x) is expanded in the Legendre wavelets. The Riemann-

liouville fractional integration becomes:
a __1 a1
AP = 7=x s f(%)

~ CTﬁ{x“‘l « W(x)} ...(2.46)

Thus if x* 1% f(x) can be integrated, then expanded in the Legendre
wavelets, the Riemann-Liouville integration is solved via the Legendre

wavelets.

Because the Legendre wavelets are piecewise constant, it may be

expanded into m- term Block Pulse Function (BPF) as
P (x) = 0,,5mBm (X) ...(2.47)
B (x) £ [b1(x)by(x) ... b (x) ... by ()]

Next, we shall derive the Legendre wavelets operational matrix of the

fractional order integration by letting

(Ia"um)(x) = PLamxml‘Um(x) ...(2.48)

where the matrix P« 1S called the Legendre wavelets operational matrix

of the fractional integration
Using egs.(2.47) and (2.15), we have:
(1) (x) = (" OmumBm) (x) = Oy (17 Bp) (%)
~ OpsmF “Bpy (X) ...(2.49)

From egs. (2.48) and (2.49), we get:
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Pl mxm Pm(X) = P mxm Omxm B (%)
= 0,,5m F% B,(x) ...(2.50)
Then the Legendre wavelets operational matrix of the fractional order of
integration P, IS given by
Plmxm = Omxm F® Onmxm
In particular, if k = 3, M = 2 and a = 0.5 the Legendre wavelets operational

matrix of fractional integration is given by:

(03761 01272 03116 -0.0602 0.2028 -0.0153 0.1640 -0.0080
-0.0954 0.1558 0.0452 -0.0247 0.0115 -0.0026 0.0060 -0.0009

0 0 03761 01272 03116 -0.0602 0.2028 -0.0153

s 0 0  -0.0954 0.1558 0.0452 -0.0247 0.0115 -0.0026
Prmn =1 g 0 0 0 03761 01272 0.3116 -0.0602
0 0 0 0 -0.0954 0.1558 0.0452 -0.0247

0 0 0 0 0 0 03761 0.1272

0 0 0 0 0 0 -0.0954 0.1558 |

2.5 Numerical Examples:

Next, we will use the Haar wavelets, Chebyshev wavelets and Legendre
wavelets operational matrices of the fractional order integration in order to
solve the fractional order differential equations for the sake of demonstrating
the effectiveness of these schemes. The results obtained using Haar,
Chebyshev and Legendre wavelets operational matrices of fractional order
integration are compared with the analytical solution or with the solution

obtained using the existing methods.

Example (2.1):

Consider the Bagley — Torvik equation
aD?y(x) + bD y(x) + cy(x) = f(x),0<x <1 ...(2.51)
We will consider the case:
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f(x)=c(x+1),a=1,b=1c=1
Subject to the following initial condition:
y(0)=1y'(0)=1
The exact solution of this problem [Zhao, 2010] is y(x) = x + 1.
In order to find the solution of eq. (2.51), we let:
D2y (x) = CL; Hyp (%) ...(2.52)
Together with the initial states, we have:
D™ y(x) = (I°°D*y)(x) = Cim Praamxam Ham (%) ...(2.53)
and
Dy(x) = Ciy Phazmxam Ham (x) +y'(0)
= Cam Pha2mxzm Hom (%) + 1 ...(2.54)
Therefore:
y(xX) = Coum Prgamxzm Ham (%) +
(1,1, ...1]P2px2m Pra 2mxzm Ham () + y(0) ...(2.55)

Similarly, the input signal f(x) can be expanded by the Haar

functions as follows:

f ()= fouHau (x) ...(2.56)
where £, is known constant vector substituting egs.(2.52), (2.53),
(2.55) and (2.56) into eq.(2.51), then we get:

ComHon (x) + CzTMPi?dszMxZMHZM(x) + (Com P 2mxamHon (X)) +
[1,1, ...,11® 20 x2m Pra 2mxam Hane () + [1,1, ..., 1]) = £y Hap (%)

...(2.57)
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Thus eq.(2.51) has been transformed into a system of algebraic
equations. Solving the system (2.57) of algebraic equations, we obtain
the coefficients CI,, and hence by using eq.(2.55), we get our desired

solution of eq. (2.51).

Following table (2.1) represent a comparison between the numerical
solution using Haar, Chebyshev and Legendre wavelets methods and the

exact solution of example (2.1)

Table (2.1)
The numerical and the exact solution of example (2.1).

YHaar YLegendre YChebyshev .
Exact solution
J=22M=8 | 3=2.m=2k=3 | 3=2.M=2k=3 | =~ ut

For more accurate solution one can use larger values of J and hence
M.

Example (2.2):

Consider the nonlinear fractional order differential equation
DY¥y(x) =[y(x)]?+1 0<x<1 ...(2.58)
Subject to the initial condition y(0) = 0.

Also, in order to find the approximate solution of Eq.(2.58), we let:
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DY y(x) = Cl Hyp (%) ...(2.59)

Together with the initial states, then we have

y(x) = CZM Pha amxzmHan (X) ...(2.60)
Hence:
(x) = CZM ha omxzm PamxamBay (X) ...(2.61)
Suppose that:
CZM Pha amx2m Pomxam = [a1,a2: ey O] ...(2.62)

and using Eq.(2.61), we have:
[y(0]? = [arby (%) + azby(x) + -+ + azybay (X)]?
= a?b,(x) + asb;(x) + -+ + a5y byp (%)
= [a%, a3, ...a5, 1By (%) ...(2.63)
Substituting eqgs.(2.59) and (2.63) into eq.(2.58), we have

CZTM DoMx2M BZM(X) - [3%; a%, - alzn] BZM(X) -

[1,1,...,1]B,m(x) = 0 ...(2.64)

This is a nonlinear system of algebraic equations which can be solved
easily using MATLAB.
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The solution of Eq.(2.58) for J = 2 is presents by the following figure
0.8 -
0.7 -
0.6 -
0.5 -
0.4 -
0.3 -
0.2 -

0.1 -

0

0 Ojl Oj2 OI.3 014 015 016 017 018 019 i
Figure (2.1)
Numerical solution of example (2.2).

It seems from Figure (2.1) that our results are coincides with the
results that have been found in [Arikoglu, 2007].
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Chapter Three

Wavelets Method for Solving Partial
Differential Equations of Fractional Order

3.1 Introduction:

In this chapter, we shall present the application of Chebyshev
wavelets, Haar-Chebyshev and Chebyshev-Legendre wavelets methods for

solving linear partial differential equations of fractional order.

This chapter consists of four sections, in section 3.2 Chebyshev
wavelets method for solving partial differential equations of fractional order is
presented, while in section 3.3 the Haar-Chebyshev wavelets method will be
given for solving partial differential equations of fractional order Finally the
Chebyshev-Legendre wavelets method for solving partial differential

equations of fractional order will be presented in section 3.4.

3.2 Chebyshev Wavelets Method for Solving Partial

Differential Equations of Fractional Order:

In this section, we shall use the second kind Chebyshev wavelet
operational matrix of fractional integration for solving linear partial

differential equations of fractional order.

By using this method the fractional order linear partial differential
equation is translated into Lyapunov type matrix equation which can be
solved easily using MATLAB.
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3.2.1 Function Approximation and Operational matrix:

A function y (x,t) eL*(R)may be expanded as

y(X,t):iici'j‘I’j(X)‘Pi ) (3.
Where
c :'([y(x,t)\Pi (x)dx{y(x,t)‘l’j(t)dt .G2)
Eq. (3.1) can be written into the discrete form as:
...(3.3)

Y (x,t) = QT (X)CQ(t)

Taking the collocation points by following

2i—-1

i = S, A=12, ...m
2j-1 .

G = gk S 2m

by:
5Ul 1 Tl,Z SZ/l,m Cl,l C1,2 Cl,m
,Q _ 5UZ 1 51122 5[/2.,m C _ C2,l C2,2 C2 m
SUm 1 Y/m,z SUm,m Cm 1 Cm 2 Cm m

Where m = 2¥~1M and C is the coefficient matrix of Y, which can be

obtained by the following formula

.34

C=(2")'vy o'
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3.2.2 The Numerical Approach for solving linear partial differential

equations of fractional order:

In this section we shall use the numerical approach given by [Wu, 2009]
to find the numerical solution for the linear partial differential equations of

fractional order but by using the second kind Chebyshev wavelet.
consider the following first-order PDE of fractional order

oy oy

g5 _k ...(3.5
ox“* ot” (3.5)

The fractional integration of order o with respect to the variable t of

Y (x,t) =" (x)Ct)
It yields:
1Y =17 (2 (x)Ct))=a"(x)C [ 17(t) |= 2 (X)CPg . 1) ...(3.6)

Similarly, the fractional integration of order a where 0 < a < 10f Y(x,t)

with respect to the variable x can be expressed as:
1Y =17 (Q7(x)CeAt))
=[170(x)] ca(t)
T
=[ RS maf2(X) ] CLA(t)

= Q" (X)(PSma ) CEA1) .(3.7)

In general, performing the double integration to the function Y(x,t) with

fractional order o to the variable t and to the variable x, we obtain:

1Y = Q2" (X)(Réiman ) CREman (1) ..-(3.8)
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egs. (3.6), (3.7) and (3.8) are the main formulae for solving a fractional
order partial differential equation (3.5) numerically via the second kind

Chebyshev wavelet operational method.

Next we will give two illustrative examples in order to illustrate the
above scheme and the results obtained using this scheme will be compared
with the analytical solution or the solution obtained by using other methods or

approaches.

Example (3.1):

Solve the following partial differential equation:

@+@=1, X,t>0 ... (3.9)
ot

OX
with the initial conditions y(0,t) = y(x,0) = 0.

First we shall integrate Eq. (3.9) with respect to t, yields to:

t@ B ~ t

[Zdt+(y(xt)-y(x,0))=dt ...(3.10)
0 aX 0

then integrating (3.10) with respect to X, we obtain:

X t X Xt
| Y g + [ yax = [ dtdx ...(3.11)
OOaX 0 00

or:
j(y(x,t)—y(O,t))dt+jde=ﬁdtdx ...(3.12)
0 0 00

jydt+jydx=ﬁdtdx ...(3.13)
0 00

0
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For solving the partial differential equation (3.9) by the proposed
method, we shall let

Y (x,t)=Q"(x)C«(t) and substitute (3.6) and (3.7) using a=1 into
(3.13), it gives:

‘QTCPChmxm‘Q + ‘QT( I:)Chmxm )T C‘Q = ‘QT( I:)Chmxm )T JI:)Chm><m‘(2 . (314)
where J is the matrix
J=(Q )’1 °n
_1 1 T 1_ mxm

Multiplying Eq.(3.14) from the left by (&' )_l(x) and from the right by

Q7(t) , ityields:

CP

Chmxm

+(PChm><m )TC:(PChmxm )T‘JP (315)

Chmxm

Which is a Lyapanov equation and if m = 8 (k = 3, M = 2), then
Eq.(3.15) becomes
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(6, €, C G Cg Cjs Gy Cpl[01250 01250 02500 0 0250 0 02500 O
Ca G Gz Gy G5 Cp Cpp Cpg || -0.0313 0 0 0 0 0 0 0
Ciy C3p Ci3 Gy C35 Cip Gy Cag 0 0 01250 0.1250 0.2500 0 0.2500 0
Cir Cp Cg Ciy Cus Gy Cis Cug 0 0 -0.0313 0 0 0 0 0
Gy Csp G Coo Cos G Cop Cop 0 0 0 0 01250  0.1250 0.2500 0
Co1 Cop Cos Cou Cos Cog  Cop Cop 0 0 0 0 -0.0313 0 0 0
Gy G, G Gu Cs Gy Gy Gy 0 0 0 0 0 0 01250 0.1250
_Cx 1 %2 G Coe Css Cgs Co; Cog gL 0 0 0 0 0 0 -0.0313 0 ]
01250 0.1250 0.2500 0  0.2500 0 02500 0 J[ey €y, Gy Gy Cs Cs Gy G
’00313 0 0 0 0 0 0 0 CZ 1 CZ 2 CZ‘S 02‘4 CZ 5 CZ.E CZ‘S CZ‘G
0 0 01250 01250 02500 0 02500 O | |Cyy Csp Css Cye Css Cyp  Cop Cag
+ O 0 '00313 0 O 0 0 0 C4‘1 CA.Z c4.3 CA‘A CbS CA‘B Cbﬁ Cbﬁ _
0 0 0 0 01250 0.1250 0.2500 0 Csi C5p Cs3 Csu G55 Csg  Csp Csp
0 0 0 0 -0.0313 0 0 0 Coi G2 Coz Cou Cos Cog  Cop Cop
0 0 0 0 0 0 01250 0.1250 | |¢;; €, Gy G4 Cs Cp Gy Gy
L 0 0 0 0 0 0 -0.0313 0 JC: Co Cos Cou Cos Cos Coy Cop |
[0.1250 0.1250 0.2500 0 02500 0  0.2500 0 T[019%63 0 01963 0 01963 0 01963 07 01250 0.1250 0.2500 0.2500 0  0.2500 0 ]
-0.0313 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0| -0.0313 0 0 0 0 0 0 0
0 0 01250 0.1250 0.2500 0 0.2500 0 01963 0 01963 0 01963 0 01963 0 0 0 01250 0.1250 0.2500 0 0.2500 0
0 0 -0.0313 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.0313 0 0 0 0 0
0 0 0 0 01250 0.1250 0.2500 0 01963 0 01963 0 01963 0 0.1963 0 0 0 0 0 01250 0.1250 0.2500 0
0 0 0 0 0.0313 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0313 0 0 0
0 0 0 0 0 0 01250 0.1250 01963 0 01963 0 01963 0 0.1963 0 0 0 0 0 0 0 01250 0.1250
0 0 0 0 0 0  -0.0313 0 || 0 0 0 0 0 0 0 0 0 0 0 0 0 0  -0.0313 0 |

solving the above equation with respect to the matrix C yields:

[ 0.0153

0.0123

0.0245
0

0.0245
0

0.0245
0

0.0123

0.0123

0.0245
0

0.0245
0

0.0245
0

0.0245 0

0.0245 0

0.0644 0.0123

0.0123 0.0123

0.0736 0.0245
0 0

0.0736 0.0245
0 0

0.0245
0.0245
0.0736
0.0245
0.1135
0.0123

0.1227 0.0245 0.1626 0.0123
0.0123 0.0123]

0

0 0.0245
0 0.0245
0 0.0736
0 0.0245

0.0123 0.1227
0.0123 0.0245

0

0
0
0
0
0

0

Hence, the matrix form of the approximate solution (see Appendix A

programl) given by equation (3.3) at the point

X =

[0.0625 0.1875 0.3125 0.4375 0.5625 0.6875 0.8125 0.9375]

t =

[0.0625 0.1875 0.3125 0.4375 0.5625 0.6875 0.8125 0.9375]

becomes:
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0.0312 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 ]
0.0625 0.1563 0.1875 0.1875 0.1875 0.1875 0.1875 0.1875
0.0625 0.1875 0.2812 0.3125 0.3125 0.3125 0.3125 0.3125
0.0625 0.1875 0.3125 0.4062 0.4375 0.4375 0.4375 0.4375
crebyster | 0,0625 0.1875 0.3125 0.4375 05312 05625 0.5625 0.5625
0.0625 0.1875 0.3125 0.4375 0.5625 0.6563 0.6875 0.6875
0.0625 0.1875 0.3125 0.4375 0.5625 0.6875 0.7813 0.8125
0.0625 0.1875 0.3125 0.4375 0.5625 0.6875 0.8125 0.9062

Y

The exact solution of the example (3.1)[Wu,2009] is given by:

t, x>t
X, t<X

y(x,t) ={

Hence the matrix form of the exact solution is given by:

10.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625
0.0625 0.1875 0.1875 0.1875 0.1875 0.1875 0.1875 0.1875
0.0625 0.1875 0.3125 0.3125 0.3125 0.3125 0.3125 0.3125
0.0625 0.1875 0.3125 0.4375 0.4375 0.4375 0.4375 0.4375
0.0625 0.1875 0.3125 0.4375 0.5625 0.5625 0.5625 0.5625
0.0625 0.1875 0.3125 0.4375 0.5625 0.6875 0.6875 0.6875
0.0625 0.1875 0.3125 0.4375 0.5625 0.6875 0.8125 0.8125

10.0625 0.1875 0.3125 0.4375 0.5625 0.6875 0.8125 0.9375|

yexact =

and therefore, the error matrix will be

00313 O 0 0 0
0.0313 0 0 0

0 00313 0 0

0 0 00313 0

0
0
0
0 0 0 0 0.0313
0
0
0

0
0
0
0
error =
0

o O O o o
o O O o o

0 0 0 00313 O 0
0 0 0 00313 O
0 0 0 0 0.0313

0
0 0
0 O
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Example 3.2:

Consider the linear partial differential equation of fractional order:

1 1

o2y 0%y
1 + 1

ox2  ot?

=1, x,t>0 ...(3.16)

with zero initial conditions.

Applying the fractional order integration of order % twice with respect to

x and t respectively, thus we get

1
5 11

Y 12121, x,t>0 ..(3.17)

1
2
+ 1213 T

1
OX? ot?

1
02 0

1
2

<

XN~

1
2
2l

Also, we shall let the approximate solution of eq.(3.16) given by
Y(x,t)=0"(x)CAt)

Then eq.(3.16) becomes:

Chmxm Chmxm Chmxm Chmxm*= =

L T 1 1 T o
QT(PZ jCQ+QTCP2 QzQT[PZ )JPZ Q ...(3.18)

Multiplying Eq.(3.18) from the left by (&' )’1(x) and from the right by

«Q7(t), ityields:

L T 1 1 T 1
[Péhmxm] C+CPCzhm><m:[Péhm><m] ‘]PCzhmxm’ (319)

where J is the matrix

45



Chapter Three

Wavelets Methods for Sotving Partial Differential
ZFquations of Fractional Order

J=

CURE

11

1

dmxm

Q—l

In the case of m =8 (k = 3, M = 2), solving the Lyapunov eq.(3.19) with

respect to the matrix C therefore we get

0.0392
0.0153
0.0528
0.0029
0.0569
0.0015
0.0593
0.0009

0.0153
0.0090
0.0249
0.0023
0.0283
0.0012
0.0303
0.0008

And the numerical

0.0528
0.0249
0.0790
0.0066
0.0888
0.0036
0.0947
0.0024

solution

0.0029
0.0023
0.0066
0.0014
0.0089
0.0009
0.0104
0.0006

0.0569
0.0283
0.0888
0.0089
0.1024
0.0051
0.1108
0.0035

0.0015
0.0012
0.0036
0.0009
0.0051
0.0006
0.0062
0.0005

0.0593
0.0303
0.0947
0.0104
0.1108
0.0062
0.1213
0.0043

0.0009 |
0.0008
0.0024
0.0006
0.0035
0.0005
0.0043
0.0004

of example 3.2 using Chebyshev

wavelet operational matrix will be similar to the Haar wavelet matrix

given by [Wu, 2009] as below(see Appendix A programl):

Y,

Chebyshev =

0.1330
0.1881
0.2011
0.2098
0.2157
0.2201
0.2235
0.2262

0.1881
0.2888
0.3221
0.3425
0.3568
0.3675
0.3759
0.3827

0.2011
0.3221
0.3702
0.4003
0.4217
0.4379
0.4508
0.4614

0.2098
0.3425
0.4003
0.4376
0.4645
0.4853
0.5019
0.5157

the error was given by the matrix :
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0.2157
0.3568
0.4217
0.4645
0.4960
0.5205
0.5404
0.5569

0.2201
0.3675
0.4379
0.4853
0.5205
0.5482
0.5709
0.5899

0.2235
0.3759
0.4508
0.5019
0.5404
0.5709
0.5960
0.6171

0.2262 ]
0.3827
0.4614
0.5157
0.5569
0.5899
0.6171
0.6401
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0.0139 0.0083 0.0611 0 0.1860 0.0638 0.0444 0.1499]
0.0139 0.0111 0.0500 0.0167 0.3053 0.0167 0.1166 0.2831
0.0278 0.0111 0.0999 0.0333 0.3275 0.0500 0.1055 0.3830
0.0416 0.0111 0.0999 0.0111 0.3608 0.0722 0.1443 0.4108
0.0472 0.0056 0.0444 0.0555 0.3275 0.1332 0.2109 0.4330
0.0444 0.0111 0.0500 0.0611 0.3775 0.1554 0.1665 0.4330
0.0111 0.0444 0.0777 0.0333 0.3886 0.0777 0.1332 0.4219
0.0167 0.0278 0.0666 0.0333 0.3775 0.1110 0.1665 0.4552

error =1 x10™

3.3 Haar- Chebyshev Wavelets Method for Solving Linear Partial

Differential Equations of Fractional Order:

In this section, we shall suggest a new approach for solving linear
partial equations of fractional order by mixing the Chebyshev wavelets
method with Haar wavelet method by expanding the required
approximate solution as the elements of Chebyshev basis functions of

the second kind in time and the Haar basis function in space.

By using this approach, the fractional order partial differential
equation is translated also into Lyapunov type matrix equations which

can be solved easily using MATLAB.

3.3.1 Function Approximation using Haar-Chebyshev wavelets method:

A function y (x,t) eL*(R)ymay be also expanded as:

y(x,t) =3¢ h ()%, () ...(3.20)

i=1 j=1
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Where h(x) and ¥(t)are the Haar functions and the Chebyshev

functions respectively, the coefficients appear in eq. (3.20) can be
obtained as:

C, =

O e

y(x,t)h (x)dx.j y(x, )Y, (t)dt (3.21)

Eq.(3.20) can be written into the discrete form as follow:
Y (x,t) = HT (X)CQ(t) ...(3.22)

The matrices(2, C and H are given by

qyll FPiZ q?Lm Cll C12 CLm
Q— ‘P21 LPZZ LIJZ,m C_ C21 C22 C2m
L m,l m,2 \PmJn_ _CmJ Cm2 CmJn_
hlJ h12 h1m1
Fi'_ h21 hZZ hlm
_hm,l hm,2 I"lm,m_

The coefficients matrix C of Y can be obtained by the following formula
C=H")'YQ" ...(3.23)
3.3.2 The Numerical Approach:

For solving the linear partial differential equation of fractional order

(3.5) wusing Haar-Chebyshev wavelets method the integration of

Y(x,t)=HT(x)C(t) with respect to the variable t yields:

LY =17 (HT(x)C(t)) = HT(x)C[ 1:42(t) |= H" (x)CPg,

Chmxm

Q1)

or
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1Y =H"CPZ 0 ...(3.24)

Chmxm

Similarly, the fractional integration of order o of Y(x,t) with respect to

variable x can be expressed as:

LAY =17 (HT(x)Ca(t))
=[17H(x) ] cat)

=[P H(x)] caAt)
—HT(X)(PZn.n) CLAt)
=HT ()Pl ) CA1) -(3.25)

In general, performing the fractional order integration of order a twice

with respect to the variables x and t respectively, we obtain:
Italan :HT(X )( Ph(a)\{mxm )TCPCimxm‘Q(t) (326)

Eq.(3.24), (3.25) and (3.26) are the main formulae for solving a
fractional partial differential equation numerically via the Haar- Chebyshev

wavelet operational method.

The above procedure will be clear and illustrated by considering the

following numerical examples.

Example 3.3:

In this example we will consider the problem given in example (3.1) we
will follow the same approach considered in example (3.1) to solve this

problem via Haar-Chebyshev wavelets method and therefore we let
Y(x,t)=H"(x)C(t)

and substitute (3.25) and (3.26) with @ = 1 into (3.13), it gives:
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) CAt) =H" (X)(Prapn)" P

Chmxm

HT(x)CP A1) ...(3.27)

Chmxm

Q) +HT(x)(P

hamxm

where J is given by:

(o)L A

11 1

L dmxm

Multiplying Eq.(3.27) from the left by (H'(x))™ and by @(t)* from
the right, it yields:

)T ‘JPCh mxm

CP.

Chmxm

+( I:)hamxm )TC :( F)h

amxm

If m=8 (k =3,M =2), solving the above equation yields:

0.1420 0.1371 0.3769 0.0979 0.5336 0.0587 0.6119 0.0196 |
-0.0147 -0.0196 -0.0930 -0.0587 -0.2203 -0.0587 -0.2986 -0.0196
-0.0208 -0.0277 -0.0900 -0.0277 -0.1108 0 -0.1108 0

Co 0 0 0 0 -0.0208 -0.0277 -0.0900 -0.0277
-0.0196 -0.0196 -0.0392 0 -0.0392 0 -0.0392 0
0 0 -0.0196 -0.0196 -0.0392 0 -0.0392 0
0 0 0 0 -0.0196 -0.0196 -0.0392 0

0 0 0 0 0 0 -0.0196 -0.0196 |

The matrix form of Y(x,t) (see Appendix A programl) is given by:

0.0313 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 |
0.0625 0.1563 0.1875 0.1875 0.1875 0.1875 0.1875 0.1875
0.0625 0.1875 0.2813 0.3126 0.3126 0.3126 0.3126 0.3126
y | 00625 0.1875 0.3126 0.4064 0.4376 0.4376 0.4376 0.4376
Heh Tl 0.0625 0.1875 0.3126 0.4376 0.5314 0.5626 0.5626 0.5626
0.0625 0.1875 0.3126 0.4376 0.5626 0.6564 0.6877 0.6877
0.0625 0.1875 0.3126 0.4376 0.5626 0.6877 0.7815 0.8127
0.0625 0.1875 0.3126 0.4376 0.5626 0.6877 0.8127 0.9065

And the matrix form of the exact solution is given by:
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[ 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625]
0.0625 0.1875 0.1875 0.1875 0.1875 0.1875 0.1875 0.1875
0.0625 0.1875 0.3125 0.3125 0.3125 0.3125 0.3125 0.3125
0.0625 0.1875 0.3125 0.4375 0.4375 0.4375 0.4375 0.4375

®et 1 0.0625 0.1875 0.3125 0.4375 0.5625 0.5625 0.5625 0.5625
0.0625 0.1875 0.3125 0.4375 0.5625 0.6875 0.6875 0.6875
0.0625 0.1875 0.3125 0.4375 0.5625 0.6875 0.8125 0.8125

| 0.0625 0.1875 0.3125 0.4375 0.5625 0.6875 0.8125 0.9375 |

The error was given by:

(0032 0 0 0 0 0 0 0 ]
0 0032 0 0 O 0 0 0
0 00032 0 0 0 0 O
0O 0 00031 0 0 0 0
M= 6 0 0 0 00311 0 0 O
0O 0 0 0 0 0031 0 O
0O 0 0 0 0 0 00310 0
. 0 0 0 0 0 0 0 00310]
Example 3.4:

The same example considered in example(3.2) will be considered and to

find the solution via the Haar-Chebyshev wavelets method so we let

Y (x,t) = H" (X)CQ(t)

and by substituting Eq.(3.24), (3.25) and (3.26) using « :% into(3.16)thus we

have
LR 1 1\ 2
[Phgmxm) C + CPCZh mxm [Phgmxmj ‘]Pczh mxm ?

Solving the above equation in terms of the matrix C m=8 (k = 3, M=2) thus we

get:
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0.0392 0.0153
0.0153 0.0090
0.0528 0.0249
0.0029 0.0023
0.0569 0.0283
0.0015 0.0012
0.0593 0.0303
0.0009 0.0008

0.0528
0.0249
0.0790
0.0066
0.0888
0.0036
0.0947
0.0024

0.0029
0.0023
0.0066
0.0014
0.0089
0.0009
0.0104
0.0006

0.0569
0.0283
0.0888
0.0089
0.1024
0.0051
0.1108
0.0035

0.0015
0.0012
0.0036
0.0009
0.0051
0.0006
0.0062
0.0005

0.0593
0.0303
0.0947
0.0104
0.1108
0.0062
0.1213
0.0043

0.0009 |
0.0008
0.0024
0.0006
0.0035
0.0005
0.0043
0.0004

And the numerical solution of the above example using Haar-

Chebyshev wavelet operational matrix will be given as below (see

Appendix A programl):

0.1330
0.1881
0.2011
0.2098
0.2157
0.2201
0.2235
0.2262

YH,Ch:

0.1881
0.2888
0.3221
0.3425
0.3568
0.3675
0.3759
0.3827

hence the error matrix

error =1x10 "

0.0056
0.0083
0.0305
0.0250
0.0194
0.0250
0.0167

0.2011
0.3221
0.3702
0.4003
0.4217
0.4379
0.4508
0.4614

0.0222
0.0222
0
0.0056
0.0056
0.0056
0.0056

0.0666
0.0555
0.0666
0.0611
0.0555
0.0444
0.0500

0.2098
0.3425
0.4003
0.4376
0.4645
0.4853
0.5019
0.5157

0.0111
0.0222
0.0111
0.0278
0.0333
0.0444
0.0333

0.2157
0.3568
0.4217
0.4645
0.4960
0.5205
0.5404
0.5569

0.3109
0.3553
0.3775
0.3775
0.4108
0.4330
0.4330

0.2201
0.3675
0.4379
0.4853
0.5205
0.5482
0.5709
0.5899

0.0111
0.0555
0.0666
0.0888
0.1221
0.1443
0.1443

0.2235
0.3759
0.4508
0.5019
0.5404
0.5709
0.5960
0.6171

0.1388
0.1665
0.1665
0.1776
0.1776
0.1887
0.1776

0.2262 |
0.3827
0.4614
0.5157
0.5569
0.5899
0.6171
0.6401

[ 0.0111 0.0222 0.0722 0.0222 0.2137 0.0583 0.1082 0.1971 |

0.3275
0.3775
0.4108
0.4219
0.4219
0.4552
0.4663

3.4 Chebyshev - Legendre Wavelets Method for Solving Partial

Differential Equations of Fractional Order

and

In this section, a similar approach that have been given in section 3.3

will be given to solve partial differential equations of fractional order but by
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mixing the Chebyshev wavelets method with Legendre wavelet method by
expanding the required approximate solution as the elements of Chebyshev
basis functions of the second kind in time and the Legendre basis function in

space.

By using this method the fractional order partial differential equation is
translated also into Lyapunov type matrix equation which can be solved easily
using MATLAB.

3.4.1 Function Approximation using Chebyshev-Legendre wavelets method:

A function y(x,t) e *(IR) may be expanded as

y(x,t) =Y 3¢ L ()P, (t) ..(3.28)

i1 j=1

Where the coefficients c, ; are given by

C,,

1 y(X,t) Li(x)dx.1 y(x, )WV (t)dt ...(3.29)
[0t 000 ey

Equation (3.28) can be written in discrete form as

Y (x,t) = ¥ ()CQ(t) ...(3.30)

Where:

i y/1,1 yjl,z yjl,m | | C. Cp Cim |
0= T‘Z,l y/.z,z yj%,m C= C,. Gy Com

_yjm,l m2 5Um,m_ _Cm,l Con Cm,m_

[ L1,1 L1,2 Ll,m' |
W — Lz 1 Lz 2 L2,m’

L I_m 1 Lm 2 Lm m_|
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The matrix C is the coefficient matrix of the approximate solution Y(x,t) , and

it can be obtained by the formula
C=(¥"(x)'YQ()™ ...(3.31)
3.4.2 The Numerical Approach:

For solving the partial differential equation of fractional order (3.5)

using the Chebyshev—-Legendre wavelet method we integrate:
Y(xt)=%T(x)CaA(t)
Fractionally of order a with respect to the variable t it yields:

1Y =1(#T(x)Ct) ) =¥ (X)C[1“At) [=#T (X )CPy A1) ...(3.32)

h mxm

Similarly, the fractional integration order o of Y(x,t) with respect to

variable x can be expressed as:
LY =17 (27 (x)Cet))
[0 ] cat)
=[P4 7(x) ] CAt)
=" (X)(Pm) CLAL)
=T (x)(P% ) Cat) ...(3.33)

In general, performing the fractional order integration of order o twice

with respect to the variables x and t respectively, we obtain:

10y =" (x)(P% ) CPE «t) ...(3.34)

L mxm

54



Wavelets Methods for Sotving Partial Differential
Chapter Three ZFquations of Fractional Order

Egs. (3.32),(3,33) and (3.34) are the main formulae for solving a
fractional partial differential equation numerically via the Chebyshev-

Legendre wavelets operational matrices method.

The above procedure will be clear and illustrated by the following

numerical examples given in the next section
3.4.3 Numerical Examples:

In this section we will use the Chebyshev-Legendre wavelets
operational matrices of the fractional integration to solve linear
fractional order partial differential equations and the results obtained
using this scheme will be compare with the analytical solution or the

solution obtained using other method or approaches.

Example 3.5:

We will consider also in this example the same equation given in
example 3.1 and in order to find the approximate solution of this equation

using Chebyshev-Legendre wavelets method, we let:
Y(x,t)=%T(x)CeAt)
and substitute (3.34) ,(3.35)and (3.36) into (3.9), we get::

¥TCP 2+ T (P 1) ' CQ =¥ (Pl i) P -..(3.35)

mxm mxm)

where J is the matrix given by the following formula:

=) e
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Multiply eq. (3.35) from the left by (\PT)_land from the right by o*,we

get

CP

Chmxm

+(P. ) C=(P .. ) P

Chmxm

If m =8 (k=23,M = 2), then the coefficient matrix C becomes:

0.0122 0.0057 0.0196 0 0.0196 0 0.0196 0
0.0098 0.0057 0.0196 0 0.0196 0 0.0196 0
0.0196 0.0113 0.0514 0.0057 0.0587 0 0.0587 0
Co 0 0 0.0098 0.0057 0.0196 0 0.0196 0
0.0196 0.0113 0.0587 0.0113 0.0906 0.0057 0.0979 O
0 0 0 0 0.0098 0.0057 0.0196 O
0.0196 0.0113 0.0587 0.0113 0.0979 0.0113 0.1297 0.0057
0 0 0 0 0 0 0.0098 0.0057 |

And hence the solution matrix Y(x,t) (see Appendix A programl) is

given by:
[ 0.0312 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 |
0.0625 0.1563 0.1875 0.1875 0.1875 0.1875 0.1875 0.1875
0.0625 0.1875 0.2813 0.3125 0.3125 0.3125 0.3125 0.3125
y 0.0625 0.1875 0.3125 0.4063 0.4375 0.4375 0.4375 0.4375

ot 7| 00625 01875 03125 04375 05313 05625 0.5625 0.5625
0.0625 0.1875 0.3125 0.4375 0.5625 0.6563 0.6875 0.6875
0.0625 0.1875 0.3125 0.4375 0.5625 0.6875 0.7812 0.8125

| 0.0625 0.1875 0.3125 0.4375 0.5625 0.6875 0.8125 0.9062 |

Example3.5:

The same example considered in example3.2 will be considered and to find

the solution via the Chebyshev-Legendre wavelets method so we let

Y (x,t) =¥ (x)CQ()

and by substituting Eq.(3.32), (3.33) and (3.34) using « =% into(3.16)thus we

have
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LY E ER U
(PLzmme C +CPC$1m><m Z(PLzmxmj ‘]Pcﬁmxm’

Solving the above equation in terms of the matrix C m=8 (k=3, M=2) thus we

get
[ 0.0122 0.0057 0.0196 0 0.0196 0 0.019% 0 |
0.0098 0.0057 0.0196 0 00196 0 0019 0
0.0196 0.0113 0.0514 0.0057 0.0587 0  0.0587 0
c| O 0  0.0098 00057 0019 0 0019% 0
0.0196 0.0113 0.0587 0.0113 0.0906 0.0057 0.0979 0
0 0 0 0  0.0098 0.0057 0.0196 0
0.0196 0.0113 0.0587 0.0113 0.0979 0.0113 0.1297 0.0057
0 0 0 0 0 0 00098 0.0057|

And the numerical solution of the above example using Chebyshev-

Legendre wavelet operational matrix will be given as below:

[ 0.0312 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 |
0.0625 0.1563 0.1875 0.1875 0.1875 0.1875 0.1875 0.1875
0.0625 0.1875 0.2813 0.3125 0.3125 0.3125 0.3125 0.3125
0.0625 0.1875 0.3125 0.4063 0.4375 0.4375 0.4375 0.4375

7| 0.0625 0.1875 0.3125 0.4375 05313 05625 0.5625 0.5625
0.0625 0.1875 0.3125 0.4375 0.5625 0.6563 0.6875 0.6875
0.0625 0.1875 0.3125 0.4375 0.5625 0.6875 0.7812 0.8125

| 0.0625 0.1875 0.3125 0.4375 0.5625 0.6875 0.8125 0.9062
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Conclusions and Future Works

From the present study, we can conclude the following:

. Wavelets methods have been proved to be powerful methods for solving
non-linear differential equations of fractional order.

. Chebyshev, Haar-Chebyshev and Chebyshev-Legendre wavelets methods
gave reasonable results when they used to solve partial differential
equations of fractional order.

. It seems from the results that Haar-Chebyshev wavelets method gave
more accurate results than the other methods (Chebyshev wavelets and

Chebyshev-Legendre wavelets).
Also, we recommend the following problems as future work:

. Wavelets methods for solving nonlinear fuzzy differential equations of
fractional order,

. Wavelets methods for solving fuzzy integral equations of fractional order.
. Wavelets methods for solving differential algebraic equations and delay

differential equations of fractional order.
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APPENDIX A

Program].
clc

clear
k=3
M1=2
al=input('enter the value of alpha )
J=2
M=2A]
mMm=2A(k-1)*MT
for=1:2*M
x(1)=(1-0.5)/(2*M);
end
x1=x
t=x
for j=0:J
mM=2A];
for k=0:m-1
i=k+m+1;
z1(i)=k/m;
72(i)=(k+0.5)/m;
z3(i)=(k+1)/m;
for n=1:2*M
h(1,n)=1/((2*M)N0.5);
x=x1(n);
if x>=z1{(i) && x<=z2(i)
h(i.n)=(1/(2*M)N0.5)*(2A(j/2));
elseif x>=z2(i) && x<=z3(i)
h(i.n)=(1/(2*M)N0.5)*-2/(j/2);
elseif x>=z3(i) && x<=1
h(i,n)=0;
else
h(i,n)=0;
end
end
end
end
h
a0=[2.82842.828400000 0;-2.44952.4495 00 0000;002.8284 2.82840
000;00-2.44952.44950000;00002.8284 2.8284 00;00 00 -2.4495
2.449500,0000002.8284 2.8284;,0000 00 -2.4495 2.4495]
ch=[4/piN0.5 -2/piN0.500000 0 ;4/piN0.5 2/piIAN0.5000000;0 0 4/pIN0.5
-2/pin0.50000;0 0 4/pin0.5 2/piN0.50000;000 0 4/pin0.5 -2/piN0.500
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;0000 4/pin0.5 2/piN0.500;0000 00 4/piN0.5 -2/piN0.5;000000
4/piN0.5 2/pIN0.5]'
fors1=1.8
fors2=1.8
if x1(s1)>=t(s2)
yexact(s1,52)=t(s2);
else
yexact(s1,s2)=x1(s1);
end
end
end
yexact
fori=1:mm
Z1="(iI+ 1A (a1 +1)-2%((I)AN (a1+1))+(i-1)A(al+1);
zz1(i)=eval(z1);
end
z1
771
for jj=1:mm
forii=1:mm
if ii==jj
ppf1(i.j)=1;
elseif ii>jj
pPpf1(iljj)=0;
elseif ii<jj
Ppf1(il.jj)=zz1 (ji-i):
end
end
end
ppfl
ppff1=(1/(mm)Aal)*(1/(gamma(al+2)))*ppfl
ph=h*ppff1*inv(h)
pch=ch*ppff1*inv(ch)
pa=aa*ppffl1*inv(aaq)
foru=1:8
foruu=1:8
J1(u,uu)=1;
end
end
J1
Ja=inv(aad')*J1*inv(aa)
Jh=h*J1*inv(h)
Jch=inv(ch')*J1*inv(ch)
Jhch=h*J1*inv(ch)
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Jehl=inv(ch')*J1*inv(aa)
Aa=pa'
Ah=ph'
Ach=pch’
A2=ph'
A3=pch'
Ba=pa
Bh=ph
Bch=pch
B2=pch
B3=pa
Qh=-1*(ph™*Jh*ph)
Qch=-1*(pch*Jch*pch)
Qa=-1*(pa*Ja*pa)
Q2=-1*(ph"*Jhch*pch)
Q3=-1*(pch™*Jchl*pa)
C=lyap(Aa,Ba,Qaq)
Ch=lyap(Ah,Bh,Qh)
Cch=lyap(Ach,Bch,Qch)
C2=lyap(A2,82,Q2)
C3=lyap(A3,B3,Q3)
Ya=aa*C*aa
Yh=h"*Ch*h
Ych=ch*Cch*ch
Ymixhaarchebyshev=h"*C2*ch
Ymixchebyshevlegendre=ch*C3*aa
yexact

A-3



bl D0 Jeasady Alil) adgd aii )l Caagll

die dalal) L Bl Cagn illy (pml laall 2l oalaad) iy g8 J¥1 Cangl)
el oyl 3 (Aia s daliie]) Alalisll iV alaall (gaal) Jall slay)

aphd yeg apld anliel) Lbalal cYalaall gaaadl dall alag) g8 B Cargll

Clase Tl s Glaise diph o lly Slaygd) Bk Alasiuly 4l (o) @l
vl Gilagge Ayl il

Gl cld Laltie ) dlalail) ¥ aleall (dn L) sa @bkl s3] Al 3 Sl

Jall clalaall ad Lisdary Cagus aUail) 131 Jall c¥alaall (o (gron s Ja A 430<0)

On g VS8 S an Ul b 1S agledl alubiie JS e Jies s (g3
c Y aladl)

Gl il dlaall Aiiall Alalill cialeall gasedl dall slag) s Gl Cangl)
Slagse diphy Chebyshev  layse diph oo Al Gl SO Hasiuly 43S
oAy plisaedl usy,lll «Chebyshev-Legendre 4,k Haar-Chebyshev
A Obuas e oldyla La (Haar- Chebyshev and Chebyshev-Legendre)
Allyll 38 8 Lagal 8l

LeDlolrn Cumy Ailel aludidio JSE e Jall 55 5 Gl o3¢) il oS
ol I Al il il i) adialill e aladl Jigad ok oo Lol o
e ol Al 13 Js b ooy Gl g ligiias e sl Y aladl (e
Juani Gigu agley cdlabaall e Jeant Cigw MATLAB  zaliy alainly cialadl

el i) 3 Agiall Alealall e abeall (igllaall Jal) e



aladl Eadly ) adath) 3 )5
Sl Al o

p slal) Ayl

G galad) lBiadat g Cludaly ) acdd

il 3 Aglalial) ey laall Lpsad) J glal

Ll
RN Axala — o ghall 48 (ulaa ) dasia
asle imale 4 o Ja cladhkia (e g3 (A
Cilualy ) A

S (e
Gl a8l de (s
(G dadla) 2011 Cus s

) )
daaa daa dalad. o, ?’i




