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Abstract

The main purpose of this work can be classified into four objects.

These are summarized as follows:

The first objective, is to classify the one-dimensional integral

inequalities.

The second objective, is to find explicit bounds for the unknown
function that appeared in special types of the one-dimensional Volterra

linear and non-linear integral inequalities.

The third objective, is to classify the one-dimensional integro-

differential inequalities.

The fourth objective, is to give explicit bounds for the unknown
function that appeared in special types of the one-dimensional Volterra
first order and second order linear and non-linear integro-differential

inequalities.
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Introduction

It is well known truth that the inequalities have always been of
great importance for the development of many branches of mathematics,
[Pachpatte, 2006, p.1].

The mathematical foundations of the theory of inequalities were
established in part during the 18" and 19" century by mathematicians
such as Gauss (1777-1855), Cauchy (1789-1857) and Chebyshev (1812-
1894). In the years thereafter the influence of inequalities has been
immense, and the subject has attracted many distinguished
mathematicians, including Poincaré (1854-1912), Lyapunov (1857-1918),
O. Holder (1859-1937) and J. Hadamard (1865-1963). [Pachpatte, 1998,
p.1].

Nowadays the theory of inequalitics may be regarded as an
independent branch of mathematics. This field is dynamic and
experiencing an explosive growth in both theory and applications. A
particular feature that makes the study of this interesting topic so
fascinating arises from the numerous fields of applications. As a response
to the needs of divers applications, a large variety of inequalities have
been proposed and studied in the literature. This theory added some
techniques which are instrumental in solving many important problems,
[Pachpatte, 2006, p.1].

The integral inequalities that give explicit bounds on unknown
functions provide a very useful and important device in the study of
various properties of solutions of differential and integral equations. One
of the best known and widely used inequalities in the study of nonlinear
differential equations was given by Gronwall T., that in 1919 Gronwall
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found this integral inequality while investigating the dependence of
systems of differential equations with respect to a parameter. In fact the
roots of such an inequality can be found in the work of Peano (1885-
1886), [Pachpatte, 1998, p.4-5].

During the period (1919-1975) a large number of papers appeared
in the literature which were partly inspired by Gronwall inequality and its
applications. An extensive survey of integral inequalities of the Gronwall
type which are adequate in many applications in the theory of differential
and integral equations may found in [Beesack P., 1975].

Pachpatte B. (1994-1997) has proved a number of integral
inequalities which can be used as handy tools in the study of certain new
classes of differential, integral and integro-differential equations,
[Pachpatte B., 1998, p.6].

Integro-differential inequalities are integral inequalities involving
functions and their derivatives.

The integro-differential inequalities have played a significant role in
the developments of various branches of analysis. Pachpatte B. in (1977,
1978, 1982) gave some integro-differential inequalities which are useful
in certain applications in the theory of differential and integro-differential
equations.

The purpose of this work, is to classify the one-dimensional integral
and integro-differential inequalities and finding explicit bounds for the
unknown function in special types of the one-dimensional linear and
nonlinear Volterra integral and integro-differential inequalities.

This thesis consists of two chapters.
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In chapter one, we illustrate some concepts about the one-
dimensional integral inequalities. Also it contains some of the famous
integral inequalities, like Gronwall, Bellman and Bihari inequalities and
their generalizations.

In chapter two, we give a simple classification of the one-
dimensional first order and second order integro-differential inequalities.
Moreover finding explicit bounds for special types of the one-
dimensional integro-differential inequalities is presented.
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Chapter One The One-Dimensional Volterra Integral Inequalities

Introduction

Integral inequalities that give explicit bounds on the unknown
functions provide a very useful and important tool in the study of many
qualitative as well as quantitative properties of solutions of nonlinear
differential equations, [Pachpatte B., 1998, p.4].

The history of integral inequalities goes back to Gronwall T., in
1919, he discovered the integral inequalities and their use in studying
problems of the theory of ordinary differential equations. This justifies
the intensive investigations on integral inequalities, and the appearance of

hundreds of publications on them, [Bainov D. and Simeonov P., 1992].

There are many types of integral inequalities of importance. One
type is known as Gronwall type inequalities. Gronwall type inequalities
are important, and have applications to questions of stability, uniqueness
of solutions, asymptotic behaviour, etc., [Bainov D. and Simeonov P.,
1992, p.vi].

The main purpose of this chapter is to classify the one-dimensional
integral inequalities. Moreover explicit bounds for the unknown function
that appeared in some famous Volterra integral inequalities, like
Gronwall's inequality, Bellman's inequality and Bihari's inequality, and
their generalizations are obtained.

This chapter consists of three sections.

In section one, we give the definition of the integral inequalities and
the classification of special types of the one-dimensional integral

inequalities.
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In section two, we give explicit bounds for the unknown function in
the one-dimensional Volterra linear integral inequalities and some

theorems related with them.

In section three, we give explicit bounds for the unknown function in
special types of the one-dimensional Volterra non-linear integral

inequalities.

1.1 Classification of the One-Dimensional Integral Inequalities:-

The integral inequalities are inequalities involving functions of one
or more than one independent variable appeared under an integral sign
which provide explicit bounds.

The one-dimensional integral inequalities are integral inequalities in
which the unknown function depends only on one-independent variable.
On the other hand, the m-dimensional integral inequalities are integral
inequalities in which the unknown function depends only on m-

independent variables, [Bainov D. and Simeonov P., 1992].

In this section we classify special types of the one-dimensional

Volterra linear and nonlinear integral inequalities.

The simplest form of the one-dimensional linear integral inequality
that contains only one integral operator is:

h(x)y(x)<a(x)+ B(jxi«x,t)y(t)dt, (1.1)

where a is a known function of x, kis a known function of x and t, § and
h are known functions of x, a is a known constant and y is the unknown

function that must determine its explicit bounds.
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The integral inequality (1.1) is called Fredholm linear integral
inequality when B(x)=f, where B, is a known constant. On the other hand,
the integral inequality (1.1) is called the one-dimensional Volterra linear

mtegral inequality in case B(x)=x.

If h(x)=0 in inequality (1.1), then this integral inequality is of the
first kind, and if h(x)=1 then this integral inequality is of the second kind.

Also, if a(x)=0, then the integral inequality (1.1) is homogeneous,
otherwise, it is nonhomogeneous, [Al-Azawi S., 2007, p.22].

On the other hand, the simplest form of the one-dimensional linear
integral inequality that contains more than one integral operator is:

B1(x) B2(x) Ba(t)
h(y()<a(x)+ [ k,(x.y®dt+ | kz(x,t)[ | k3(t,s)y(s)ds}dt, 1.2)

o

where a is a known function of x, k;, k, are known functions of x and t, ks

is a known function of t and s, B,, B, are known functions of x, B; Is a
known function of t, a is a given constant and y is the unknown function

that must determine its explicit bounds.

The integral inequality (1.2) is called Fredholm linear integral
inequality when B1(X)=B1, B2(X)=B. and Bs(X)=P; where Bi, B,, B3 are
known constants. On the other hand, the integral inequality (1.2) is called

Volterra linear integral inequality when B1(X)=,(x)=x and B(t)=t.

If h(x)=0 in inequality (1.2) then this integral inequality is of the
first kind and if h(x)=1then this integral inequality is of the second kind.

Also, if a(x)=0 then the integral inequality (1.2) is said to be

homogeneous, otherwise it is nonhomogeneous.
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Moreover the simplest form of the one-dimensional non-linear

integral inequality that contains only one integral operator is:

()
h(x)y(x)<a(x)+ : .[ k(x,t,y(t))dt

where h, y, a, a, B are defined similar to the previous and k is a known
function of x, t and y(t), in which it is non-linear with respect to y(t), [Al-
Azawi S., 2007, p.23].

On the other hand, the simplest form of the non-linear integral
inequality that contains only two integral operators is:

B1(x) B2(x)
h(x)y(x)<a(x)+ [k (6 ty@)dt+ [k, (x,ty()dt

where h, y, a, a, By, B, are defined similar to the previous and ky, k, are
known functions of x, t and y(t), in which they are non-linear with respect

to y(t).

Finally, similar to the linear case, one can recognize the one-
dimensional Fredholm and Volterra non-linear integral inequalities of the
first and second kinds.

1.2 Solutions of the One-Dimensional Volterra Linear Integral

Inequalities:-

This section consists of some theorems that determine explicit
bounds for the unknown function in the one-dimensional linear integral

inequalities of Volterra type.

First, we give the following lemma which will be needed later.
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Lemma (1.1), [Bainov D. and SimeonovP., 1992, p.2]:-

Let a and ¢ be continuous functions for x>o and let y be a

differentiable function for x>a, and suppose that
y'(x)<a(x)+e(x)y(x), x>0

and y(a)<y,,

then

IC(S)dS X _X[c(s)ds
yosye®  +[ael  dt xq,

(02

Proof:-

Suppose that y'(x)—c(x)y(x)<a(x).
By setting x=t in the above inequality and multiplying the resulting

J.c(s)ds
inequality by the integrating factore ' , One can get:

X X

c(s)ds J.c(s)ds

ly' @) -ctyy®)e:  <a(te

Then the above inequality can be rewritten as:

_X[c(s)ds Tc(s)ds

d
—| y(t)e <a(t)e
” y(t) (t)
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By integrating both sides of the above mequality from o to x, one can

have:

jc(s)ds X jfc(s)ds
y(x)-y, & < j a(t)er dt

o

Hence

X X

Ic(s)ds X jc(s)ds
y(X)<y, & +|a(t)e’ dt | x>q.

o

Gronwall T. in 1919 gave explicit bounds for the unknown function
that appeared in the integral inequality given in the following theorem.

Theorem(1.1), [Gronwall T.,1919]:-

Let y be a continuous function defined on the interval J=[a,a+h] and
0<y(x)<[[cy(t) +aldt, xeJ,

where a and ¢ are nonnegative constants. Then

0<y(x)<ahe™, xeJ.

Proof:-

Suppose that y(x)<a(x—a)+c Iy(t)dt then y(x)<ah+ ¢ I y(t)dt.



Chapter One The One-Dimensional Volterra Integral Inequalities

Let z(x)=ah+ C.X[y(t)dt then y(x)<z(x) and z(a)=ah. But z'(X)=cy(X)<cz(x).

From lemma (1.1), one can have:

I cdt
z(x)<ahe * .
Since a<x<a+h, a>0 and ¢>0 then
7(x)<ahe®*“<ahe™, xe[a,0-+h].

Hence

y(x)<ahe™, Xe[o,a+h].

Bellman R. in 1943 gave explicit bounds for the unknown function
that appeared in the integral inequality given in the following theorem.

Theorem (1.2), [Bellman R., 1943]:-

Let y and ¢ be continuous and nonnegative functions defined on

J=[0,B], and let a be a nonnegative constant. Then the inequality:
y(x)<at [c(t)y(t)dt, Xe

implies that

jc(t)dt
y(x)<ae * , Xel.
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Proof:-

Let z(xX)=a+ I‘c(t)y(t)dt, then z(a)=a and y(x)<z(x). Also

z'(x)=c(x)y(x)
<c(x)z(x), xeJ.

From lemma (1.1), one can get:

X

Ic(t)dt
z(x)<ae “ , Xel.
Hence

Ic(t)dt
y(x)<ae * , Xel.

Bellman R. in 1958 gave the following generalization of theorem
(1.2).

Crollary (1.1), [Bellman R., 1958]:-

Let y and ¢ be continuous and nonnegative functions defined on
J=[0,B], and let a be a continuous, positive and nondecreasing function

defined on J, then

y)<a(x)+ [e®yOdt, X<,
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implies that
Ic(t)dt
y(x)<a(x)e * , Xel.
Proof:-
=y(x) Te(ty YD
Let w(x) 200 Then w(x)<I1+ £ c(t) mdt

Thus

ay(t) 4,
a(x)a(t)

w(x)<1+ jc(t)

a(w(t)
a(x)

dt

=1+ Jx'c(t)
§1+Ic(t)%dt

<1+ j c(t)w(t)dt, xeJ.

Now an application of theorem (1.2) yields:

](.c(t)dt

w(x)<e , Xel.
Hence

j c(t)dt
y(x)<a(x)e * , Xel.
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Next, the following theorem appeared in [Pachpatte B., 1975] without
proof. Here we give its proof.

Theorem (1.3):-

Lety, a, b, ¢ and g be nonnegative continuous functions defined on
J=[a,B], and

y(X)<a(x)+b(x) [[c(®)y(t) + g(B)]dt, xeJ.

Then

b(s)c(s)ds

y(x)<a(x)+b(x) JX'[a(t)c(t) +g(t)]et dt, XelJ.

Proof:-

Let z(x)= I[c(t)y(t) +g(t)]dt, then z(a)=0 and y(x)<a(x)+b(X)z(x).

But z'(x)=c(x)y(x)*+g(x)
<a(x)c(xX)tb(x)e(x)z(x)+g(X).

Fromlemma (1.1), one can have:

» [b(s)c(s)ds
2(x)< [[a(t)c(t) + g(t) ! dt, xeld.

10
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Hence

. [b(s)c(s)ds
y(x)<a(x)+b(x) I [a(t)c(t) +g(t) et dt, XeJ.

Pachpatte B. in 1998 gave the following generalization of theorem
(1.3).

Theorem (1.4), [Pachpatte B., 1998, p.20]:-

Lety, a, b, ¢ and g be nonnegative continuous functions defined on
. ) ..k ) )
J=[0,B]. Let k and its partial derivative - be nonnegative continuous

functions for a<t<x<p. If

VX)) +b(x) [k, DI + 9T, X< J

Then

. [A@E)ds
y(x)<a(x)+b(x) [ B(t)e! dt, XeJ,
where

AG)=K(,X)b()C()+ j% K(x, Dbt Xe d

and

B(X)=K(xX)[a(<)c()+g(]+ j% K(x, D[a(C() + g(OJdt, Xed.

11
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Proof:-
Let z(X)= Tk(x, t)[c(t)y(t) +g(t)]dt, then z(a)=0 and

y(X)<a(x)+b(x)z(x).

By differentiating z and using the above inequality, one can get:
2 (=KX XY+ 2T+ [ 2 k(x, DIeVY(D) + g0t
<k(x,x){c(x)[a(x)tb(x)z(x)[+g(x)}+

X

| % k(x, c(t)ia(t) + b(t)z(t)}+g(t)dt.

By using the fact that z is nondecreasing in x, one can have

7' (x)<z(x)| k(x, x)b(x)c(x) + I‘a% k(x, t)b(t)c(t)dt |+

k(<) [20C0Y I+ - k(x, DIa(t) + 9Ol

=AX)z(x)+B(x), xeJ
where A(X) and B(X) are defined previously.

From lemma (1.1), one can obtain:

§ TA(s)ds
Z(X)S_[ B(t)e' dt, xeJ.

12
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Hence

X

) jA(s)ds
y(x)<a(x)+b(x) I B(t)e ' dt, xelJ.

Now, explicit bounds for the unknown functions that appeared in

another type of integral inequalities is given in the following theorem.

Theorem (1.5), [Pachpatte B., 1973a]:-

Let y, b and ¢ be nonnegative continuous functions defined on
J=[a,00). If

y(x)<a+ ]‘c(t)y(t)dt + Ic(t)ﬁ b(s)y(s)ds}dt , XeJ,

where a iIs a nonnegative constant.

Then

}c(t){u j b(s)ds}dt
y(x)< ae” ¢ , Xel
Proof:-

Let z(x)=a+ _X[c(t)y(t)dt + jc(t)ﬁ b(s)y(s)ds}dt then z(a)=a and y(x)<z(x).

13
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On the other hand

(e00y(0<0 [yt

Therefore

z'(x)gc(x)[z(x) + Tb(t)z(t)dt], xel.

By using the fact that z is a nondecreasing function in x, one can get:
z'(x)Sc(x)[l + jb(t)dt]z(x), xel.

From lemma (1.1), one can have:

a

z(x)<ae’ ,

Tc(t)|:1+ j b(s)ds}dt
xel

Hence

o

fc(t)|:1+ j b(s)ds}dt
y(x)< ae” , XeJ

Next, a modification of theorem (1.5) can be given in the following

corollary.

Corollary (1.2):-

Let y, b and ¢ be nonnegative continuous functions defined on

J=[a,0), a is a positive nondecreasing function defined on J. If

14
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y(x)<a(x)+ I.c(t)y(t)dt + Ic(t)ﬁ b(s)y(s)ds}dt , Xeld
then

}c(t){u j b(s)ds:ldt
y(x)<a(x)e” * , Xe

Proof:-

Let w(X)= % :

Then

o a(t)w(t) ¢ ; a(s)w(s)
w(X) <1+ ! C(t)wdt + B[c(t){ ! b(s) 200 ds}dt.
By using the fact that a is a nondecreasing function in x, one can get:
w(x)<1+ Jx'c(t)w(t)dt + Tc(t)[j. b(s)w(s)ds}dt , Xed.

From theorem (1.5), one can have:

}c(t){u j b(s)ds}dt
Xel

o

W(X)Sea ,

Hence

o

}c(t){u j b(s)ds}dt
y(x)< a(x)e” , XeJ

15
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Next, another extension of the previous theorem can be seen

below.

Theorem (1.6):-

Let y and b be nonnegative continuous functions defined on
) : ... 0ok . .
J=[a,0). Let k and its partial derivative ~ be nonnegative continuous

functions defined on J=[a,). If
yOZa+ [k, (x, Hly(®) + gt + [ [k, (t9)[y(s) +g(s) dsdt, xeJ.

Then

_TA(t)dt X ]SA(s)ds

y(x)Sae“ + j B(t)et dt , Xe\]'

o

where

AX)=k (X, X)+ Ia% k, (X, t)dt + c(x)jf k,(x,t)dt.

o

and

B(X)=k.(x,x)g(x)+ J’ a% k, (x,t)g(t)dt + j k,(x,t)g(t)dt.

o o

16



Chapter One The One-Dimensional Volterra Integral Inequalities

Proof:-

Let
2(X)= a+fk1(x,t)[y(t) + g0t + [ [k, (t.)[y(s) +g(s) dsdt,
then z(a)=a and y(x)<z(x), xeJ.

But Z(x)=ka(x) [0 +900]+ -2k (x Oy() + g0t

a

+ [k, 06 Dy (®) + g0 bt

<Ky (XX 260 + 900+ [k, D[z + 9O +

o

Ikz(x,t)[z(t)+g(t)]dt, xel.

By using the fact that z is a nondecreasing function in x, one can get:
z'(X)=A(x)z(x)+B(x),
where A(X) and B(x) are defined previously.

From lemma (1.1), one can have:

]EA(t)dt ) jA(s)ds
z(x)<ae* +IB(t)e t dt, xeJ.

Hence

I-A(t)dt ) J.A(s)ds
y(x)< ae* +[B(t)e ' dt, xeJ.

17
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1.3 Solutions of the One-Dimensional Volterra Non-linear Integral

Inequalities:-

As seen before in the previous section, all the inequalities that are
discussed are of the linear type. On the other hand, the one-dimensional
Volterra non-linear integral inequalities has many applications in the
theory of integral, differential and integro-differential equations,
[Pachpatte B., 1998].

So this section concerns with finding solutions of special types of

the one-dimensional Volterra non-linear integral inequalities.

Bihari I. in 1956 gave the explicit bounds for the unknown function
that appeared in the following non-linear integral inequality.

Theorem (1.7), [Bihari I., 1956]:-

Let y and ¢ be nonnegative continuous functions defined on J=[a,).

Let w be a positive continuous nondecreasing function defined on J. If

y(x)<a+ 'x[c(t)w(y(t))dt , Xel,

where a is a nonnegative constant, then for 0<x<x;,
y(x)<G™ {G(a) + ]‘c(t)dt} ,

where

¢ dt
G(u):ujm, u> uy>0 (1.3)

18
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and G is the inverse function of G and x,eJ is chosen such that G(a)+

[c(tydt is in the domain of G™ for all xeJ lying in the interval [a,xy].

Proof:-

Let z(x)=a+ 'x[c(t)w(y(t))dt , then z(a)=a, y(x)<z(x) and

Z'(x)=c(x)w(y(x))
<c()w(z(x))
Then from equation (1.3), the above inequality can be rewritten as:

d _Z'(x)
™ G(z(x)) = —W(z(x)) < c(x).

By taking x=t in the above inequality and integrating the resulting

inequality over t from a to u, one can obtain:
G(2(W)<G(a)*+ [e(vet, asxsx,

Then

2(x)<G™ {G(a) 4 _x[c(t)dt} , O<X<X.

Hence

y(x)<G™ {G(a) 4 ]('c(t)dt} , 0<X<X;.

19
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Now, the following theorem is a generalization of the previous

theorem.

Theorem (1.8):-

Let y, a, @ and ¢ be nonnegative continuous functions defined on
J=[a,0). Let w be a positive continuous nondecreasing function defined
onJ. If

y(x)<a(x)+ .X[c(t)w(y(t))dt , Xel,
then for a<x<x;
y(x)<G*|G@a(w) + I[a' (x) + c(t)]dt} ,

where

G and G are defined previously and x;eJ is chosen such that
G(a(a))+j[a'(x)+c(t)]dt is in the domain of G™ for all xeJ lying in the

interval [o,Xq].

Proof:-

Let z(X)=a(x)+ Jx'c(t)w(y(t))dt , then z(a)=a(a), y(x)<z(x) and

Z'(x)=a'(x)+c(x)w(y(x))

20
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Therefore
Z'(x)< a'(x)+c(x)w(z(x)).
Let ue R, be any arbitrary number, then for a<x<u, one can get:
z(x)<a'(u)+ c(X)w(z(x))
<[a(u) + (O M(z(x)).

Then from equation (1.3) the above inequality can be rewritten as:

d _Z'(x) ,
o S0 =P < [a' 09 060

By taking x=t in the above inequality and integrating the resulting

inequality over t from o to u, one can obtain:

G(z(u))<G(a())+ j'[a'(t) +c(t) pt, a<u<x;.
Since u is an arbitrary number, then
2(x)<G™* {G (a(o)) + _T[a' (1) + c(t)]dt} , 0=<X<X

Hence

y(x)<G™ {G(a(a)) + T[a' (1) + c(t)]dt} , 0<X<Xj.

Next, we give explicit bounds for the unknown function that

appeared in another type of Volterra nonlinear integral inequality.

21
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Theorem (1.9), [Pachpatte B., 1975]:-

Let y, b, c and g be nonnegative continuous functions defined on
J=[o,0). Let w be a positive continuous nondecreasing and

submultiplicative function defined onJ. If
y(x)<at+b(x) Ig(t)y(t)dt + TC(t)W(y(t))dt , Xed,

where a is a positive constant, then

y(x)<p(x) {a +G 1{6 (A(X)) + ]'c(t)w(p(t))dt}:l , O<X<xy

where

. [b)(s)ds
P(X)=1+b(x) [g(t)e" dt, XxeJ
and

AX)=w(a) [ ctw(p()dt,

G and G™ are as defined in theorem (1.7) and x;J is chosen such that
G(a)+J'c(t)w(p(t))dt is in the domain of G™ for all xeJ lying in the

interval [o,x4].

Proof:-

Let v(x)=a+ Ic(t)w(y(t))dt then y(x)<v(x)+b(x) Ig(t)y(t)dt .

22
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Suppose that z(x)= .ng(t)y(t)dt then y(x)<v(x)+b(x)z(x).

But Z'(x)=g(x)y(x)
<g()v(x)tg(x)b(x)z(x).

From lemma (1.1), one can have:

) [g(s)b(s)ds
2(X)< j g(tv(t)e dt.

o

By using the fact that v is a nondecreasing function in X, one can get:

YX)=p()V(X),
where p(X) is defined previously.

Therefore

v(X)=a+ Jx.c(t)w(y(t))dt
<a+ Ic(t)w(p(t)v(t))dt

<at [eOWROWVO)t
By applying theorem (1.7) to the above inequality, one can obtain:
v(x)<at+G™ {G(A(X)) + IC(t)W (p(t))dt} ,

where A(X) is defined previously.
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Hence

y(X)<p(x) {a +G 1{6 (A(X)) + Ic(t)w(p(t))dt}:l , Xel.

Next, an extension of the previous theorem can be seen below.

Theorem (1.10):-

Let y, b, c and g be nonnegative continuous functions defined on
J=[a,0). Let w be a positive continuous nondecreasing and
submultiplicative function defined on J. Let a be a positive continuous
and nondecreasing function defined on J. If

y(x)<a(x)+b(x) [g()y(t)dt + [c(tw(y(t)dt, xeJ.
Then
Y()=p(x) {a(x) + G*(G(A(x)) +| c(t)w(p(t))dtﬂ ,

where G, G and p(x) are defined previously, x,J is chosen such that
G(A(x))+jc(t)w(p(t))dt is in the domain of G™ for all xeJ lying in the

interval [a,x;] and

AX)= [ etw(pt)w(at)d.
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Proof:-

Let v(x)=a(x)+ Ic(t)w(y(t))dt then y(x)<v(x)+b(x) T g()y(t)dt.

Suppose that z(x)= jg(t)y(t)dt then y(x)<v(x)+b(x)z(x) and

Z'(X)=g(x)y(x).
<g(X)v(x)+g(x)b(x)z(X).

From lemma (1.1), one can have:

) [g(s)b(s)ds
7(x)< I g(t)v(t)e! dt .

o

Then

y(X)=p(x)v(x),
where
p(X) is defined previously.

Therefore
v()=a(X)+ [ctw(y(t)dt .

<a(x)+ Ic(t)w(p(t)v(t))dt.

<a()t+ [cOw(p®)w(v(t)dt.
By applying theorem (1.8) to the above inequality, one can obtain:
v(x)<a(x)+ G‘l[G (A(X)) + Jx. c(t)w(p(t))dtJ .

where A(X) is defined previously.
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Then

y(X)=p(x) {a(x) + Gl(em(x» + c(t)w(p(t»dtﬂ.

26
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Chapter Two The One Dimensional Integro-Differential Inequalities

Introduction

The integro-differential inequalities are inequalities involving one (or
more) unknown function, together with both differential and integral
operations on the unknown functions which provide explicit bounds.

The one-dimensional integro-differential inequalities are integro-
differential inequalities in which the unknown function depends only on one-
independent variable. On the other hand the m-dimensional integro-
differential inequalities in which the unknown function depends only on m-
independent variables. We restrict the discussion here to the simplest types of
one-dimensional integro-differential inequalities, which form a natural
generalization of Volterra and Fredholm integral inequalities, [Pachpatte B.,
1998].

The main purpose of this chapter is to classify the one-dimensional
integro-differential inequalities. Moreover explicit bounds for the unknown
function that appeared in some types of the one-dimensional VVolterra integro-
differential inequalities, like Gronwall-Bellman integro-differential inequality
and their generalizations are obtained.

This chapter consists of three sections.

In section one, a simple classification of special types of the one-
dimensional integro-differential inequalities is given. To the best of our
knowledge, this classification seems to be new.

In section two, we give some theorems for finding solutions of special
types of the one-dimensional Volterra linear integro-differential inequalities of
the first and second order.

In section three, we give some theorems for finding solutions of special
types of the one-dimensional Volterra non-linear integro-differential
inequalities of the first and second order.
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2.1 Classification of the One-Dimensional Integro-Differential

Inequalities:-
The integro-differential inequalities are inequalities involving functions

of one or more than one independent variable appeared under an integral sign
and derivatives sign which provide explicit bounds.

The one-dimensional integro-differential inequalities are integro-
differential inequalities in which the unknown function depends only on one-
independent variable, [Pachpatte B., 1998].

In this section we classify special types of the one-dimensional VVolterra
linear and non-linear integro-differential inequalities of the first and second
order.

The simplest form of the one-dimensional first order linear integro-

differential inequality that contains only one integral operator is:

y (XY (%) +ho(x)y(O<aG)* By (x, DY (0) + ., (YO @.1)
where hy, h,, a, B are known functions of x, k; and k, are known functions of x
and t, a is a given constant and y is the unknown function that must determine
its explicit bounds.

The integro-differential inequality (2.1) is called Fredholm if B(X)=p
where B is a given constant and is called Volterra if p(x)=x.

If hy(X)=h,(x)=0 then the integro-differential inequality (2.1) is said to
be of the first kind and if hy(x)=1 then the integro-differential (2.1) is said to
be of the second kind.

Also, if a(x)=0 then the integro-differential inequality (2.1) is
homogeneous, otherwise it is nonhomogeneous.

On the other hand, the simplest form of the one-dimensional first order
linear integro-differential inequality that contains more than one integral

operator is:
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hi(X)y"(X)+h(X)y’ (x)<a(x)+
1(X) B2 (t)
ﬁj K (DY (0 + K, (4, )Y®) + [[ks(6,5)y' () + K, (t,5)y(S)]ds [dt (2.2)

o a

where hy, h,, a, a, Kq, Ky, y are defined similar to the previous, ks, k, are known
functions of t, s, B; is a known function of x and 3, is a known function of t.

The integro-differential inequality is said to be of Fredholm type if
B1(X)=P1and B,(t)=p, where B, and 3, are known constants and it is said to be
of Volterra type if B,(X)=x and B,(t)=t.

Next, the simplest form of the one-dimensional second order linear
integro-differential inequality that contains only one integral operator is:
hi(X)y" (X)+ha(X)y’ (X)+hs(x) y(x)<a(x)+

B(x)
[T, 06 0y (€)1 (6, )y (£) + K, (6, D (O

where hy, hy, a, B, ki, ky, y are defined similar to the previous, h; is a known
function of x, ks is a known function of x and t.

In a similar manner one can easily define the one-dimensional second
order linear Volterra and Fredholm integro-differential inequalities of the first
and second kinds.

Moreover, the simplest form of the one-dimensional first order non-
linear integro-differential inequality that contains only one integral operator
Is:

B(x)
hy () () +ha(x)y()<a(0)+ [kOxty(D),y' ()t
where h;, h,, a, a, y are defined similar to the previous and k is a known
function of x, t, y(t), in which it is non-linear with respect to y(t).

In a similar manner one can easily define the one-dimensional second
order non-linear integro-differential inequalities. Also, it is easy to recognize
the one-dimensional first and second order non-linear Volterra and Fredholm
integro-differential inequalities of the first and second kinds.
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2.2 Solutions of the One-Dimensional Volterra Linear Integro-

Differential Inequalities:-

In this section, we present some theorems about the one-dimensional
linear integro-differential inequalities of Volterra type which provide explicit

bounds for the unknown function that appeared in them.

Theorem (2.1), [Pachpatte B., 1977]:-

Let y, ¥y, a, b and ¢ be nonnegative continuous functions defined on
J=[a,0).
() If b(x)>1 for each xeJ and

Y9=a()+b(x) Oy +y Ok, xe

then

Y(O<y(o)+ f{a(t) + j{b(s)c(s)[A(s) +B(s)]+ b'(s)ic(r)[A(r) + B(r)]dr}ds}dt , Xel.
where

A)=y(o)ta(x)+ I a(t)dt, xel

and

« . T{H b(s)c(s) + b'(S)jC(t)dr:lds
B(x)= j{b(t)c(t)A(t) +o c(s)A(s)ds}et “ dt. xel.
(ii) If

y'(x)fa(x)+b<x){y<x> Jeyo+y <t>]dt} e,
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then
yX)<y(o)t

X j[b(s)+c(s)+b(s)c(s)]ds t j[b(r)+c(r)+b(r)c(r)]dz
[ a(t) + b(ey y(oe: + [a@)i+c(s) k! ds! fdt

o (04

Proof:-

) Let  zX)=bX[ c®Oy®O+y' ®ldt  then  za)=0,
Z'(x)=b(x)c(X) [y )+y’ (x)]+b'(x)fc(t)[y(t>+ y' ()t and

y'(x)<a(x)+z(X), XeJ.
By setting x=t in the above inequality and integrating the resulting inequality

over t from a to x, one can get:
YX)<y(o)+ [a(tydt+ [z(t)dt, xeJ.
Therefore

Z'(x)<b(X)c(x) [y((x)+ a(x) + Jx'a(t)dt +2(X) + j z(t)dt] +
b'(X) .X[c(t){y(a) +a(t) + ja(s)ds +z(t) + j‘z(s)ds}dt , Xel.

=b(x)c(x) {A(x) +z(X) + .sz(t)dt} +b' (x)Ic(t)[A(t) +z(t) + _t[ z(s)ds}dt , Xel.
where A(X) is defined previously.

Let v(X)=z(x)* [2(0)dt, xJ, then v(o)=0,

Z'(x)<b(x)c(x) [A(X) + v(X)]+ b'(x)JX.c(t)[A(t) +v(t)pt,

and

V' (x)=Z'(X)+2(X), xel.
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By using the fact that v is a nondecreasing function in x, one can have:
V'(x)<b(x)c(x)A(x)+b’(X) Ic(t)A(t)dt + [1 +b(x)c(X) + b’ (X)I c(t)dt} V(X).

From lemma (1.1), one can have:
V(x)<B(x), xeJ

where B(x) is defined previously.
Then

Z(x)b(YCONA+BHT+b'(x) [o(OAD + BO .

By taking x=t in the above inequality and integrating the resulting inequality

over t from o to X, one can have:
Z(X)S]('{b(t)c(t)[A(t) +B()]+ b'(t)jc(s)[A(s) + B(s)]ds}dt , Xeld.
Hence

Y(X)<y(a)+ I.{a(t) + j{b(s)c(s)[A(s) +B(s)]+ b'(s)jc(r)[A(r) + B(r)]dr}ds}dt , Xel.

(i) Let z(X)=y(x)+ ]'c(t)[y(t) +y'(t)]dt, xeJ, then z(a)=y(a) and

y'(xX)<a(x)+b(x)z(x), Xel.
By using the above inequality and the fact that y(x)<z(X), one can have:
Z(xX)=y' (X)+e)yx)ty'(x)]
=[1+c®) ]y’ ®)+ex)y(x)
<[14+cx)][a(x)+b(x)z(x)]*+c(X)z(X)
=a(X)[1+c(x)]+[b(X)+c(X)+b(X)c(X)]z(X), XeJ.
From lemma (1.1), one can get:

X

X
I[b(t)+c(t)+b(t)c(t)]dt X I[b(S)+C(S)+b(S)C(S)]ds
L0y (@) +Ja®i+c! dt ey
o
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Hence

yx)<y(a)+

X j[b(s)+c(s)+b(s)c(s)]ds t j[b(r)+c(r)+b(r)c(r)]dz

[ a(t) + b(ey y(oe: + [a@)i+c(s) k! ds! fdt

Next, the following theorem is a modification of the first part of the

previous theorem.

Theorem (2.2):-

Let y, y', a, b and ¢ be nonnegative continuous functions defined on

J=[o,0). Let kiJxJ—J, a<t<x be a nonnegative continuous function. If

y®<a@)+ [ k(x Hly® +y’ (©]dt, xel.
then

y@sy@r [ [a®+ [ {k(s5) [AG)+ [ B(D)e:PP%dr| +
[F k(s [A@+ [[B(9)ehP@do] dr} ds| dt, e
where
AFy(a)rax)+ [ adt, xe),
B(x)=K(X, X)A(X)+ fj:—xk(x,t)A(t)dt, xel,
and

X
04

D(X)=1+k(xX)+ [ = k(x)dt, xel

Proof:-
Let z(x)= f: k(x,t)[y(t)+y’(t)]dt then z(a)=0 and

y'(x)<a(x)+z(x), xeJ.
By setting x=t in the above inequality and integrating the resulting inequality

over t from a to x, one can obtain:
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yX)<y(a)+ [ a(Dde+ [ z(Ddt xel.
Therefore
Z(0=k(0)lyC+y 1+ [ kD [y © +y' (9]de
<k(x,x)[y(@+a(x)+ [, a(Ddt+z(x)+ [, z(Ddt]+
[ 2k(x)[y(@+a®+ [ a(s)ds+z(t)+ f, z(s)ds]dt

G|

:k(x,x)[A(X)+Z(X)+f: Z(t)dt]"'fo? ox

k(xt)[A(D+z(®)+ [, z(s)ds]dt
where A(X) is defined previously.

Let v(X)=z(x)+ f: z(t)dt  then v(a)=0, V'(X)=2'(X)*+2z(X) and
Z/(X)<k(x,x)[Ax)+v(x) ]|+ f;;—xk(x,t) [A®)+v(D)]dt, xel.

By using the above inequality and the fact that z(x)<v(x), one can get:
V(X)<k(x,x)[AX)+v(x)]+ f(::—xk(x,t) [A®)+v (D) ]dt+v(x), xel.

By using the fact that v is a nondecreasing function in X, one can have:

VEKXIAK [ Sk DA [1+kGx) + [ k(xdt| v ().

<B(x)+D(x)v(x), xeJ.
where B(x) and D(x) are defined previously.

From lemma (1.1), one can obtain:
Vo< B(9ek PO dt, xe.

Then

7'(x)<k(x,X) [A(X) + f(: B(t) el DG)ds dt]+

N ;—Xk(x,t) [A(t)+ [ B(s)ekP@drg S] dt. xel.

34



Chapter Two The One Dimensional Integro-Differential Inequalities

By setting x=t in the above inequality and integrating the resulting inequality

over t from a to X, one can have:
200 [kt [AD+ [/ Bt PO ds| + [ k() [A(s) +
[{ B P@Pgr]ds} dt, xel.
Hence
y@=y @[ [a+ [ {k(ss) [A©)+ [ B0 P@Pdr] +

[ 2k(s0) [A@+ [ B®)ehP@uds| dr}ds|dt, xel.

The following theorem appeared in [Pachpatte B., 1978] without proof.

Here we give its proof.

Theorem (2.3):-
Let y, y', b and ¢ be nonnegative continuous functions defined on
J=[a,00). If
y<a+ [} b [y(©+y' (1) + f; c(s){y(s)+y'(s)}ds]dt, xeJ.
Then

Y(X)<y(o)+a(x—0)+ ﬁ{A(s) b(s)B(s) + b(s)j.c(r)B(r)dr}dsdt  xel.
where

A0 (@) a0 x-0)-+ a0l +at -k |

and

y T{H b(s) + b(s)j'c(r)df}ds
B(X)= [A(t)e’ ? it xel
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Proof:

Let z(x)=J_ b(t) [y(t) +y'® + [, c(s){y(s) +y’ (S)}dS] dt,

Then z(a)=0 and y'(x)<a+z(x), xeJ.

By setting x=t in the above inequality and integrating the resulting inequality

over t from o to X, One can get:

YOOSy(aya(x-ayt [2()dt, Xel

Therefore a

Z(®)<b(X)[y(0) +alx — o + 1) + z(x) + [ z(®)de+ [ e(®) {y (@) +
a(t—o+1)+2z(0) + [ z(s)ds} dt].

Let v(x)=z(x) + [ z(t)dt, then v()=0, z(x)<v(x) and

Z(SAXHDONV+D() eV

where A(X) is defined previously.
Thus

VI(X)=Z'(X)+2(X)

<AX)+[1 + bE)VX)+b() [cv(Det
By using the fact that v is a nondecreasing function in X, one can get:
V'(X)<A(X)+ {1+ b(x) + b(x).x[c(t)dt}v(x) :

From lemma (1.1), one can have:
V(x)<B(X),

where B(x) is defined previously.
Then

z(x)sj[A(t) +b(t)B(t) + b(t)jc(S)B(s)ds}dt . xel.
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Hence

y(X)<y(a)+a(x—a)+ jj A(S) + b(s)B(s) + b(s)j.c(r)B(r)dr}dsdt, xel.

Next, a modification of theorem (2.3) can be given in the second part of

the following theorem.

Theorem (2.4):-

Let y, ¥, a, b and ¢ be nonnegative continuous functions defined on
J=[a,0).
(i) If
Y (x)<a(x)+ [ b(o) [y(t) +y' (O + [Lcs)y’ (s)ds] dt, xeJ.
Then
y(x)<y(a)+

. » o {1+ b(9) + b(S)Ic(q)dq}dS jb(r)jc(s\)dgdr
[aydt+[[| As) + b(s) [ A(x)e’ ¢ drle® @ dsdt,

where

AX=bX)[y(e) +a(x) + [ a(Odt+ [ c(Da(t)dt].

(i) If
Y(=a(x)+ [ b [y(O +y' (©) + [ c(8){y() + ' (5)}ds| dt, xeJ,
then

yX)=y(a)+ Ta(t)dt + IWA@) +b(s)B(s) + b(s)_s[ c(r)B(r)dr}dsdt , Xel

where

AX)=b()|y (+a)+ [ a®dt+ [ c®fy(@+a®+ [ a(s)ds}dt],
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Chapter Two The One Dimensional Integro-Differential Inequalities

and

) T{u b(s) + b(s)j‘c(r)dr}ds
BJ= [ Ame ‘ dt, xel

Proof:-

() Letz()=[b(® [y(® +y'©® + [;c(s)y'(s)ds|dt
then z(a)=0 and y'(x)<a(x)+z(x).

By setting x=t in the above inequality and integrating the resulting inequality

over t from a to X, one can get:

y<y(ay [ [a®) + z(D)]dt

Therefore
Z(X)<b(x)[y (@) +a(x) +z(x)+ f;{a (© + c(Da(®)+z(D)+c(Dz(t) }dt.
Let v(x)=2(x)+ [ z(t)dt then

V' (X)<AX)+[1+b(x)]v(x)+b(X) Tc(t)v(t)dt , Xel.

where A(X) is defined previously.
By using the fact that v is a nondecreasing function in X, one can get:

V' (X)<A(X)+

1+b(x) + b(x) J'c(t)dt ]V(X), Xel.
From lemma (1.1), one can obtain:

x T{lﬂLb(S)ﬁLb(S)jC(r)dr}ds
V(X)SJA(t)et o dt. xeld.

Then

X

‘ T{“ b(s) + b(S)j.C(r)dr}ds
dt + b(x) [ c(z(t)dt, xel.

Z(X)<AX)+b(x) [ Ae’ “
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By using the fact that z is a nondecreasing function in X, one can have:

) T{l+ b(s) + b(S)j.C(r)dr}dS )
2(X)SAX)TD(X) [A(t)e’ u dt +b(x)z(x) [ c(t)dt, xel.

From lemma (1.1), one can get:

X t }{u b(r)+b(«;)jc(9)d9}dr Tb(s)ic(r)drds
() )= [| A +bO) [ Als)e “ et o dt, XeJ.

Hence
yx)=y(a)t

S

X X t S '[
j a(t)dt + j j A(S) + b(s) j A(r)e’

a

1+b(9) + b(9)| c(q)dq}dS }b(r)jc(S)der
dele® @

Tle dsdt.

(i) Let 209= [ DOy +y' © + [ c(s)y()+y'()}ds]dt,
then

y(X)<y(a)+ f: a(t)dt+ f: z(t)dt, xel.

Therefore
Z(x)<b(x)|y () + a(x) + z(x) + [[a(®) +z(®]dt+ [ c(®) {y(e) +a(®) +

z(t) + f(:[a(s) + z(s)]ds}dt], xed.

Let v(x)=z(x) + f:: z(t)dt, then z(x)<v(x) and
Z(X)ZAC)DRVE+D(X) [Vt

where A(X) is defined previously.
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Thus

VR)SAG)H1+bGOVEI D) [e(vindt, xed.

By using the fact that v is a nondecreasing function in x, one can get:
V/(X)<A(X)+| 1+ b(x) + b(x)jc(t)dt}v(x) :

From lemma (1.1), one can have:
v(x)<B(x)

where B(x) is defined previously.
Then

Z(X)SJX‘{A(t) +b(t)B(t) + b(t)jc(s)B(s)ds}dt .
Hence

yX)<y(a)+ Ia(t)dt + Jx.j.{A(s) +b(s)B(s) + b(s)j. c(r)B(r)dr}dsdt , Xel.

Now, another modification of theorem (2.3) can be given in the second

part of the following theorem.

Theorem (2.5):-

Let y, ¥, b and ¢ be nonnegative continuous functions defined on

ok, ok .
—1 —% pe nonnegative
X 0x

J=[a,0). Let ki, k, and their partial derivatives

continuous functions for a<t<x.

@ If

y'(x)<a+ f(: k, (x0)[y(D)+y' (D)]dt+ f; fof k, (t,s)y'(s)dsdt, xel.
Then

Xt s P jjkz(f,g)dgdf
y(X)<y(o)+a(x—a)+ j j [A(s) +k,(s,5)B(s) + j . Kk, (s, r)B(r)dr}ew dsdt,
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where
AX)=k1(X,X) [y(a) +a(x — o +1)]+ Ia% K, (x, t)[y(or) + a(x — o + 1) dt + aI' K, (x, t)dt

and

; 14k, (s, s)+_[—k (s, r)dr+jk (s,7)dr |d
B(X)= j A(t)e’ dt.

(ii) If
Yo [l DIy (O+y' ©)dt + [ [ ko (69) [y(s)+y' ()] dsdt, xel.
Then

y(X)<y(a)ta(x—o)+ ﬁ[A(s) + Ky (5,5)B(5) + i% k, (s, 7)B(t)dt + j K, (s, r)B(T)dr}dsdt ,
where

AX)=k; (X, ) [y(e) +a(x —a+D)]+[y(a) +at—a+1) j[— Ky (X, t) + K, (X, t)}d

and

I

1+Kk, (s, s)+_|.—k (s, r)dr+jk (s, r)dr:I

B(X)= j A(te' dt.

Proof:-
(i) Let

0=/ k;, D [y®O+y' ©1dt+ [ [k, (68)y’ (s)dsdt,
then z(a)=0, y'(x)<a+z(x) and y(x)<y(a)+a(x—a)+ f: z(t)dt.

Therefore

2()=ks (XY GO +y' GO [ Lk (D [y() +y' (D] de+ [k, (x,Dy' (Dt
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and

Z'(X)<k4(Xx,X) {y(a) +a(X—a+1)+z(x)+ Iz(t)dt}
+ Jx'i k, (X, t)[y(a) +a(x—o+1)+z(t) + j‘z(s)ds}dt
o aX o

_X[kz(x,t)[a+z(t)]dt, xel.

Thus

X

Z'(X)=AX)+ ki(X,X) [z(x) + Jx.z(t)dt} + j % K, (X, t){z(t) + j z(s)ds}dt

+ ]'kz(x,t)z(t)dt,
where A(X) is defined previously.

Let v(X)=z(x)+ Iz(t)dt , then v(a)=0, V'(x)=2'(x)+z(x) and

Z'(X)<AX)+Kq (X, X)V(X)+ T% k, (X, t)v(t)dt + ]. k,(x,t)z(t)dt, Xel.

Therefore

V'(X)<SAX)+ [L+k, (x, x)]v(X)+ jg k, (X, )v(t)dt + b(x)'x|. K, (X, )v(t)dt .

a

By using the fact that v is a nondecreasing function in x, one can get:
V(X)<AX)+ [1 +k, (x,x)+ f;:—x ky (x0dt+ [ k, (x,0) dt] v(x).

From lemma (1.1), one can have:

v(x)<B(Xx), xel,

where B(x) is defined previously.

Then

Z()=AX)* K, (x0BGO+ [ Lk, (5O BOdt+2(x) [k, (x.t)dt|
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From lemma (1.1), one can obtain:

X

, s [ [ko(s,7)dxds
Z(x)< j [A(t) +k, (t,)B(t) + j = kl(t,s)B(s)ds}e‘“ dt.

Hence

.t : s [Tko(%,9)d9dr
y(X)<y(o)+a(x—a)+ j j {A(s) +k,(s,5)B(s) + j . k, (s, r)B(r)dr}ew dsdt.

(i) Let z()=[" ks D [y®+y' Odt + [ [k, (65) [y(s)+y'()]dsdt,
then z(a)=0 and y'(x)<at+z(x).
By setting x=t in the above inequality and integrating the resulting inequality

over t from a to X, One can get:
y(x)<y(a)+a(x—o)+ j z(t)dt.

Therefore

Z'(x)<kq(X,X) {y(a) +a(X—o+1)+z(x)+ ]‘z(t)dt} +

X

J.i k, (X, t){y(a) +a(t—a+1)+z(t)+ j.z(s)ds}dt +
OX °

o

I K, (X, t){y(a) +a(t—a+1)+z(t)+ j.z(s)ds}dt .
Let v(X)=z(x)+ Iz(t)dt then v(a)=0, z(x)<v(x) and

Z'(x)<A(x)+ky (X, X)v(X)+ Ta% k, (X, t)v(t)dt + j k, (x,t)v(t)dt,

where A(X) is defined previously.
Therefore

V'(X)=Z'(x)+2(x)
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V' (X)SAX)+ L+ k, (x, x) v(x) + Iaix k, (x, t)v(t)dt + j K, (x, t)v(t)dt.
By using the fact that v is a nondecreasing function in x, one can get:
V' (X)<AX)*|1+k, (X, X) + j% k, (X, t)dt + JX- K, (X, t)dt}v(x) :

From lemma (1.1), one can have:

v(x)<B(x).

where B(X) is defined previously.

Then

Z'(X)<AX)tky (X,X)B(X)+ Ia% k, (X, t)B(t)dt + j k, (x,t)B(t)dt.

o

and
Z(X)SI[A(t) +k, (1, 1)B(t) + j% k, (t,5)B(s)ds + j K, (t,s)B(s)ds}dt .
Hence

y(X)<y(o)+a(x—o)+ ﬁ[A(S) +K,(5,5)B(s) + j% k, (s, 7)B(t)dt + j K, (s, r)B(r)dr}dsdt .

Now, explicit bounds for the unknown function that appeared in the
one-dimensional second order Volterra linear integro-differential inequality

can be seen below.

Theorem (2.6), [Pachpatte B., 1980]:
Let y, ¥, y" and ¢ be nonnegative continuous functions defined on
J=[a,0). If

y'(x)<at [cy(®) +y'(t) +y" ®)}t, xel,

where a is a nonnegative constant.
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Then

YOSy(@rHy (@) x—of+ 2= 4

‘s . s JRrembr | je(@dg
[[]{A@ +c@ ]| A®)+[A@)e dq [e® d9 tdrdsdt, XeJ

a oo

where

A(x):c(x){y(oc) Ly (@)X o+ T ¢ XD 2 ) ¢ 2]} .

2

Proof:

Let z(x)= .X[c(t)[y(t) +y' (1) +y" ()]dt, then y"(x)<a+z(X),
Y (X)y' (o) +a(x—o)+ j z(t)dt and

ysy(@yry (@lx-od+ 20D [ [t (s)ds de.
Therefore
Z’(X)SC(X)[y(aHy’(a){x —a+

a[(x —a)? +2(x —a) + 2]

1
H >

+z(x)+jz(t)dt+f: f;z(s)dsdt .

=A(X)+c(X) {z(x) + Iz(t)dt + ﬁz(s)dsdt :
where A(X) is defined previously.
Let u(x)=z(x)+ Iz(t)dt + fo’: f; z(s)dsdt,
then it is easy to check that

U (x)< A)+UX)+CQUX)+ [u(ddt, xel.

a
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By setting v(x):u(x)+ju(t)dt, then u(x)<v(x) and u'(x)<A(X)+c(X)u(X)+v(x).

o

Therefore
VX)<SAX)F[2 + c(x)v(X), xel.

From lemma (1.1), one can obtain:

N T[Z +c(s) Pis
V(X)SIA(t)et dt, xel.

and this implies that

x T[Z + c(s)}js
U ()<AX)+ [A(Det dt +c(X)u(x).

From lemma (1.1), one can have:

) o [re@pe | Jes)ds
u(x)< I A(t)-ﬁ-.[A(S)es ds let dt.

Then

. . [rc@br | Jes)ds
z’(x)SA(X)+C(X)I A(t) + J.A(s)eS ds le dt,

and this implies that

) t . @S | Je(de
Z(X)< [JA®) +c)[| AG)+ [ A(r)e: dr [es ds bdt .

Hence

a(x —a)? +

YX)<y(a)+y (o) [x—a]+

s : s (el | je(dg
j j j A(t)+c(t)j A(9) + j A(q)e® dq le® dg tdrdsdt, xeJ.

a o o
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Next, the following theorem is a generalization of the previous theorem.

Theorem (2.7):-

Let y, y', y”, aand c be nonnegative continuous functions defined on
J=[a,0). If

y'(x)<a(+ [ c(®y(® + y' (0 +y” ©ldt, xed
Then

YX)y(@)ry'(@)[x—al+ | [a(s)ds +

Xt : 9 ?[2+C(v)]dv fc(q)dg
[[]1A@+c@[| A®) + [ A dq [e® d9 bdedsdt, xeJ.

a o o

where

A(X)=c(x) {y(a) +y ()X —a+T+a(x) + .X[a(t)dt + 'X[j‘a(s)dsdt} :

Proof:-

Let z(x)= f:: c()[y®) +y'(t) +y"” (t)]dt then z(a)=0 and

y'(X)<a(x)2(x), Y=y (@[ [a) + z(D]dt, and

YOy (x—al+ [ [ a(s)dsdt+ [ [ z(s)dsdt, xel.
Thus

Z'(X)Sc(x)[y(oc) +y'(@{x—a+1}+alx) + f; a(t)dt + f:: f:a(s)ds dt+
2(x) + J z(Odt+ [ [ z(s)dsd],

§A(x)+c(x)[z(x) + [, z(Ddt+ [, f: z(s)ds dt],
where A(X) is defined previously.

Let u(x)=z(x)+ f;z(t)dt+ f:: f:z(s)ds dt.
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Then it is easy to check that

UR)SAX)F u)H+CUE)+ [ u(®dt, xel.

Let v(x)=u(x)+ /. u(t)dt then v(@)=0, u(x)<v(x) and
U'(xX)<AX)+c(X)u(x) + v(x).

Therefore

V' (X)<AX)+[2 + c(x)]v(x).

From lemma (1.1), one can have:

V<[ Ak 2o yey,

and this implies that:

A [ A®ER 2+ gt 4 c(u(x), xel
From lemma (1.1), one can get:

u(x)gf:: [A(t) + f;A(s)efst[“C(T)]dtds] el c©ds dt, xel.
Then

Z(O<AR+C) T {AM + [LA()eh el gg) ok s gy
and this implies that

S : . @S | (e
Z(X)< [{A®M) + e[| AGs) + [A(r)e: dr les ds bdt .

Hence

YX)=y(a)+y'(a)[x—a]+ I j a(s)ds+

) ts . 5 ?[2+C(v)]dv }c(q)dq
j j j A(r)+c(r)j A(9) + j A(q)e* dq |e® d9 bdrdsdt, XeJ.

a o o

Now, another extension of theorem (2.6) can be given below.
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Theorem (2.8):-

Let v, ¥y and y” be nonnegative continuous functions defined on

: . ... 0k : .
J=[o,0). Let k and its partial derivative o be nonnegative continuous
functions for o<t<x. If

y'(sat [} k(x O[y(©0 +y' (0 +y" (0] dt xe),
where a is a nonnegative constant.
Then

x—al

Y=y @)y @lx-al+ ek

I I f {A(T) +k(r,7)B(1) +j—k(«: S)B(S)df}}drdsdt xel,

oo a

where

AX)=K(X,X) {y(a) +y' ()X —a+1}+ al(x —0)" +2(x ) + 2]} +

2

X

| a_ax k(x, t){y(a) +y (@) {t-o+3+

o

a[(t—a)? +2(t—o) + 2]}dt
2

and

j{2+ k(t,7) + j K@ S)dS}

X t

f{k(s,s) ' i% K(s, r)dr}ds
B()=[| A(t)+ j A(s)e 3 “

ds dt.

Let z(x)=J. k(x, O[y(©) +y’'(® + y" (©]dt then z(@)=0, y"(x)<a+z(X),

Y (X)<y'(@)ta(x—a)+ [ z(Ddt and

yX)<y(a)+y'(a)[x— O(]+ i f f z(s)dsdt.
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Therefore

Z'(x)sk(x,x)[y(a) +y' (@fx— o+ 1)+ AX=D* 22(><—oc)+2] L 200 +
[, z(®dt+ [ f;Z(s)det]

al(t-)’ +2(t-0)+2] |
2

+f;a—ax k(x,t) [y(oc) +y'(){t—a+1}+
z(t) + [ z(s)ds + [ f:z(r)drds] dt.
Z'(X)<A(x)+k(x,x) [z(x) + _X[z(t)dt + ﬁz(s)dsdt} +

,X[a% k(x, t){z(t) + j z(s)dt + ﬁ Z(r)drds}dt . Xel.

o

Let u(x)=z(x)+ f; z(t)dt+ f:: f; z(s)dsdt.
Then it is easy to check that
U ()<AX)HU(R) kX X)UR)+ [ ai k(x, Hu®dt+ [ u(®dt
By setting v(x)=u(x)+ " u(t)dt, one can have:
v(0)=0, u(x)<v(x) and
U (R)=AM)+HKO XU+ [ ai k(x, Du()dt + v(x).
Therefore
V'(X)=u'(x)+u(x),
A2 + kx0IVE) + [ -k Ov(Ddt, xel
By using the fact that v is a nondecreasing function in x, then one can obtain:
V'(X)SA(X)+[2 + k(x,x) + fo)c(a_i k(x, t)dt] v(x), xel.

From lemma (1.1), one can get:
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) | 2+K(s.s) +i§k(s,r)dr}ds
VX< [A(t)e’ ‘ dt, xed.

Thus

X X T
' (x)<AX)+K(X,X)u(x)+ j a% k(x, t)u(t)dt + j A(be'

o

2+K(s,s) + j agk(s,r)dr:lds
S
* dt

By using the fact that u is a nondecreasing function in X, one can have:

X

fl2+ k(s,s)+j‘§k(s,r)dr}ds
U'(x)< A(X)+.[A(t)et * dt{k(x,x) +J'§ k(x,t)dt}u(x)

From lemma (1.1), one can obtain:

u(x)<B(x), xeJ

where B(x) is defined previously.

Then

Z'(x)<AX)+K (X, X)B(X)+ fja—ik(x, DBt xel.

and
Z(X)SI{A(t) +k(t,1)B(t) + j% k(t, s)B(s)ds}dt :

Hence

ol

YISyt (@)x-al+ 2P

Xxts

j j j {A(r) +Kk(t,7)B(x) +j§ k(r,S)B(S)dS}drdsdt, XeJ,

oo a

Next, explicit bounds for the function that appeared in another type of
the one-dimensional second order Volterra linear integro-differential
inequality can be given below.
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Theorem (2.9):-

Let y, ¥y, y¥” and a be nonnegative continuous functions defined on

J=[a,0). Let k and its partial derivative g—k be nonnegative continuous
X

functions for o<t<x. If

y'()<a@)+ [ kO y(O+y (9]dt xel.
Then

yE<y(@+y@x—al+ [ [ [a(s) + [ {A@ + k(@0 [ B(@)dq +
[7 = k(r, @[ B(8)do]da} d|dsdt,

where

AX)=K(X,X) [y(a) +y'(@fx—a+1}+ [a®dt+ [ f a(s)dsdt] +
L2kt [y(@+y @ft— a+ 131+ [La(s)ds + [ [ a(t)drds| dt

and

X

j{1+ (s—a)k(s,s) + j‘% k(s,t)(t—oa)dt ds

B(X)= JX'A(t)et dt.

Proof:-

Let z(x)=J. k(x,)[y(t) +y’ (9)]dt, then z(0)=0, y"(x)<a(x)+z(x).

Therefore

YRy (0)+f; a(Ddt + [ z(Ddt

and

y(X)<y(a)+y' (o) {x—a}+ f; f;[a(s) + z(s)]dsdt, xel.

Since z is a nondecreasing function in x for xeJ then
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Z'(X)<AX)+
k(o x) [ [ {20+ [ z(s)ds]dt+ [ = k(x0)[[{z()+ [} z(D)d)ds]de],
where A(X) is defined previously.
Let v(x)=2(x)+ " z(t)dt,
then
Z(@<ARKED) [ VO dt+ [Tk ) [ [ vs)ds|dt, zxsv)
and
V'(X)=2'(X)+z(x),
Therefore
V)SAGHHKE) [ VO dt+ [ k(x, ) [ f;V(s)ds] dt + v(x).
By using the fact that v is a nondecreasing function in x, one can have:
VESAGH |1+ (x — k(%) + [ 2 k(1) (t— a)dt| v (o).
From lemma (1.1), one can obtain:
V(x)=B(x),
where

X

) j{1+ (s—a)k(s,s) +Js'%k(s,r)(r—a)dr}ds
B(x)=[A(t)e’ z it

Then

z(x)SI{A(t) +k(t, t)_t[ B(s)ds + j% k(t, s)ﬁ B(r)dr}ds}dt xel.

Therefore by substituting this result in the estimate of y(x) one can get the

desired result.

2.3 Solutions of the One-Dimensional Volterra Non-linear Integro-

Differential Inequalities:
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As seen before in the previous section, all the previous integro-
differential inequalities are of the linear type. Here we give some theorems
which determine explicit bounds for the unknown function in special types of
the one-dimensional Volterra non-linear integro-differential inequalities of the

first and second order.

First we give the following lemma which will be needed later.

Lemma (2.1), [Bainov D. and Simeonov P., 1992, p.38]-
Let y be a positive differentiable function satisfying the inequality

y'(®)=a®)y(x)+b(x)y’ (x), xeJ=[a,p]

and
V()<Yo
where a and b are continuous functions defined on J and p+#1 is a nonnegative
integer.
Then
) t 1
[a(t)dt x —qgfa(s)ds |d

yx<er  |yi+qfb(tle «  dt| , xe[o,py),

where q=1-p and PB; is chosen such that the expression between [...] is

positive in the subinterval [a,).

Now the following theorem determined explicit bounds for the
unknown function for special types of the one-dimensional Volterra
nonlinear integro-differential inequalities of the first order.

Theorem (2.10), [Pachpatte B., 1977b]:-

Lety, y' and b be nonnegative continuous functions defined on J=[a,).
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Chapter Two The One Dimensional Integro-Differential Inequalities

If
y'(xX)<a+ .X[ bty (®[y(t) +y'(t)jdt, for xeJ,

where a is a positive constant.
Then

t —1,8
YR<y(@)+a [ el @Ub@EEIT S ds gy [q,00),

where

E(x)=e"-[aty(a)] jb(t)etdt :

Proof:-
Let z(x)=a+ Ib(t)y' ®[y®) +y'()Jot then z(a)=a and y'(x)<z(x).

By setting Xx=t in the above inequality and integrating the resulting inequality

over t from a to x, one can get:
y(X)<y(a)+ J' z(t)dt.

Therefore
Z(x)=bx)y'®)[y(x) +y'(x)],

<b(®)2(%)| y(@) +2(x) + [2(0et .

Let V(X)Zy((x)‘FZ(X)‘FIZ(t)dt then z(x)<v(x) and z'(x)<b(x)z(X)v(X).

Therefore
V(X)FZ (X)+z(x),
<DV (X)+V(X).

From lemma (2.1) one can have:
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v(¥)<e*[a+y()][EX)] ™, xe[o,),
where E(x) is defined previously.
Then

Z(xX)<b(x)e*[a+ y()][E(x)] ! z(X), Xe[a,).
From lemma (1.1), one can obtain:
z(x)Sae[a+3’(°‘)] f; etb(t)[E(t)]_ldt’ Xe [a,oo)

Hence

t o _
y(X)<y(a)+a f;‘ elaty (@] J e5D(s) [E(s)] 1dsdt, xe [01,00).
Next, the following theorem is a generalization of the previous theorem.

Theorem (2.11):-

Let y and y’ be nonnegative continuous functions defined on J=[a,)
: : : . .9k :
and a>0 is a constant. Let k and its partial derivative P be nonnegative

continuous functions for a<t<x. If

y'(x)<at [, k(x, Dy’ (O[y(®) +y' (©]dt, xeJ,

Then

yX)<y(a)ta f:: platy(@)] Jalk(s.9)eSEs)] 1+ f;o%k(s,ﬂ)eﬂ[E(B)]_ldB]ds dt, xe[0,%0),
where

E(x)=e — [a+y(e)] [ et |[k(t, ) + [} k(t, s)ds| dt.

Proof:-

Let z(X)=a+ f:: kx, )y ®[y(t) +y'(t)]dt  then za)=a and

yR)<y()+ [ z(Ddt

Therefore

Z(x)=kxX)Y Ly () + 3’ (] + [ = k(x, Dy Oly(©) + y'(®)]dt
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Chapter Two The One Dimensional Integro-Differential Inequalities

Z()<k(xx)2(x)[y (@) + 2(x) + J 2(Ddt] + [ k(x 0z(t) [y (@) +
z(t) + f;z(s)ds] dt

Let v(x)=y(o)+z(x)* [ z(t)dt then v(a)=a+y(®), z(x)<v(x) and
2 (x)<k(x,X)Z(X)V(x)+ f;‘a—i k(x, Dz(Ov(D)dt.
Thus
V'(X)=2'(X)+z(X),

KXV )+ [k, DVE(DdE+ v(x).
By using the fact that v is a nondecreasing function in X, one can get:
VI(X)<V(X)+ [k(x, X) + J) - k(x t)dt] v2(%).
From lemma (2.1) one can have:

v(x)<[a + y(a)]e*[Ex)] 7, xe[o,p),
then

Z(x)k(x.%)[a + y(00)]eX[E@)] " 2(x) + J -~ k(x, De [E(D)] " z(t)dt

By using the fact that z is a nondecreasing function in x, one can have:
7)< kG0 {a + y(0)}eX[E@)] ™ + f 2 k(x, e [E®)] dtz(x)

From lemma (1.1), one can obtain:

f[k(tt) [a+y(a)]et[E®)] 1, [0 —k(t,s)eS[E(s)]~ 1ds]

Z(X)<ae'@ %ot , X€[0,00),
Hence
y(X)Sy(a)Jrf;a ef [k(s s)a+y(a)]eS[E(s) |~ +f 2KG, 0e'[E()]~ 1dt]dsdt, xe [0,00).

Now, solutions of another type of the one-dimensional first order linear
Volterra non-linear integro-differential inequality are given below.
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Theorem (2.12), [Pachpatte B., 19771]:-

Let y, y" and b be nonnegative continuous functions defined on J=[a,0)
and b(x)>1 for each xeJ. Let w be a positive continuous nondecreasing

function defined on J and a>0 be a constant. If
y'(x)<a+ [ bt)wly(t) + y' () dt, xe .

Then for o<x<x;

y<y(@rralx— al+ [ [ b(s)w{G 1 [G(A(S)) + [ b(t)dr]}Jdsdt,
where
AX)=y(a) + a[x— a+ 1]

and

G(u)= I (t) >0, Ug>0 2.3)

and G™ is the inverse of G, and x;eJ is chosen such that G(A(x))+jb(t)dt IS in

the domain of G™ for xeJ lying in the interval [o.x4].

Proof:-
Let z(X)=J" b(Ow(y(t) +y’ (©)]dt then z()=0, y'(x)<a+z(x) and

yE)Sy(@)talx—al+ [7 z(Ddt
Therefore
Z(x)=b(wly () +y' (x)]

<bx)w[y(a) +alx —a+ 1] +z(x) + f:: z(t)dt]

=b(x)W[A(x) + z(x) + f:: z(t)dt],
where A(X) is defined previously.

Let ue R, be any arbitrary number then for a<x<u, one can obtain:

Z(x)<bEW[A(W) +z(x) + [, z(Ddt].
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Let v(x)=AU)+z(x)* [ z(t)dt then v(c)=A(u) and
Z'(X)<b(x)W(V(X)).
By using the above inequality and the fact that z(x)<v(x) in the equation
V'(X)=2'(x)+z(x),
<b)W(V(x))+v(x),
<bx)[v(x) + w(v(x))]
By dividing the above inequality by [v(x) + w(v(x))] and integrating the
resulting inequality from o to x and using equation (2.3), one can get:
G(V(x)<G(Au)+ ] b(Ddt
Then
Z(x)<bx)w{G[G(AW) + [, b(Ddt]}.
By integrating the above mequality from a to X, one can have:
2x)=[) bOW{G*|G(AW) + [, b(s)ds|}dt
Since u is an arbitrary number then
2x)=[ bOW{G|G(AG) + [ b(s)ds|}dt

Hence

y<y(@rralx— al+ [ [ b(s)w{G 1 [G(A(S)) + [ b(r)dt]}dsdt.
Now, an extension of theorem (2.12) can be seen below.

Theorem (2.13):-

Let y, y, a and b be nonnegative continuous functions defined on
J=[a,0) and b(x)>1. Let w be a positive continuous nondecreasing function
defined on J. If

y(x)<a)+ [ bOWly(®) +y’ ()]dt, xel.
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Then

yX)Sy(o)+ [ {a(t) + [ b()W[G{G(A®)) + [ b(D)dt]] ds}dt,

where

A=y(@)yrat [, a(ddt,

G and G' are defined previously and x;eJ is chosen such that
G(AMX)+ f;b(t)dt is in the domain of G™ for all xeJ lying in the interval

[U.,X]_].

Proof:-

Let z(x)= f:: b(®)wly(t) + y'(t)]dt then z(a)=0 and
yX)<y(o)+ [, a(Ddt + [ z(Ddt
Therefore

Z'(X)=b(x)wW[y(x) +y' (x)],
and

Z(X)<bw]y (@) +a(x) + [ a(Ddt+z(x) + [ z(dt].

<DEW[AX) + z(x) + [ z(Ddt]
where A(X) is defined previously.
Let ueR. be any arbitrary number then for a<x<u, one can obtain:
Z(x)<bEW[A(W) +z(x) + [ z(Ddt].
Let v(x)=AU)+z(x)* [ z(t)dt then v(c)=A(u) and
Z/(X)<b(X)W(V(X)).
By using the above inequality and the fact that z(x)<v(x) one can have:
V'(X)=2'(x)+z(x),
<b()W(v(x))+v(x),
<bx)[v(x) + w(v(x))]
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By dividing the above inequality by [v(x) + w(v(x))] then integrating the
resulting inequality from o to x and using equation (2.3), one can get:
G(v(x)<G(Au)+ ] b(Ddt

Then

Z(x)<bx)wW{G[G(AW) + J, b(Ddt]}.

By integrating the above inequality from a to x, one can have:

2x)=[ bOW{G*|G(AW) + [;b(s)ds|}dt

Since u is an arbitrary number then

2x)=[ bOW{G|G(AG) + [ b(s)ds|}dt

Hence

y(X)<y(a)+ f; {a(t) + f;b(s)w[G‘l (G(A(s) + f;b(r)dr)]ds} dt.

Now, the following theorem appeared in [Pachpatte B.,1998, p.176]
without proof. Here we give its proof.

Theorem (2.14):-

Let y, y' and ¢ be nonnegative continuous functions on J=[a,). Let w
be a positive continuous nondecreasing function defined on J. Let a>0 and
b>0 be constants. If

y(x)<atb[y(x) + [ c(Owly® +y' (9]dt], xel.
then

yeosy(@yraix—al+ [ [by(@ela® + [(As) + be(s)w]G {G(by (@) +

f; [A(T) + (1 + b)c(r)]dr}])efstb‘1T ds] dt, a<x<xy

where
A(X)=b[a+ cx)w{y(a) + a(x—a+ 1)}],
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G and G are defined previously and x;eJ is chosen such that G[a+
(1+b)y()]+ (1+b) [ c(dt is in the domain of G for all xeJ lying in

the interval [a,X4].

Proof:-

Let z(x)=b[y(x) + f; c(®wly() + y’ (t)]dt] then z(a)=by(c) and

y(X)<y(a)+a[x—a]+ f:: z(t)dt.
Therefore
Z(x)=b[y'(x) + cIwly(x) +y' )]].
<bla+z(x) + cwiy(e) + alx — a + 1} +z(x) + [ z(D)dt}].
<bla+ c(x)w{y(a) + a[x—a + 1]}]+b[z(x) + c(x)w{z(x) +
[; z(Ddd)].
=AX)+b[z(x) + cEwfz(x) + [ z(Ddt}],
where A(X) is defined previously.
Let v(x)=2(x)+ ] z(t)dt then v(c)=by(w), z(x)<v(x) and
Z'(x)<AX)+b[z(x) + cx)w(v(x))].
Thus
V'(X)=2'(X)+2(X),
<AX)+H(1+b)v(X)+bc(X)W(V(X)).
<AX)*+(1+b)ec(x)[v(x) + w(v(x)].
By dividing the above inequality by [v(x)+ w(v(x))], one can have:

v' (%) A®X)
[v(x) +w(vG)] ~ [vx) +w(v(x))] +(1+ b)C(X):
<A (1+D)o(0).
Then

v(x)<GH{G(by(a) + [ [A(D + (1 + b)c(D)]dt},
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and
Z(x\)<AX)Tbe(x)w[GH{G(by () + [, [AD + (1 + b)c(D]dt}] + bz(x).
From lemma (1.1), one can get:
2()<by(@)ele >4 + [* (A + be®w |67 {G(by (@) + [TAG) +
(1+ b)e(s)lds]]) el osde
Hence
y®<y(@)ta[x—al+ [ [by(oc)efottbds + [ (AG) + be(s)w[G {G(by (@) +

JEIA@ + (1 + b)e(v)]dr]])e < ds] e

Next, the following two theorems are generalizations of the previous
theorem.

Theorem (2.15):-

Let y, ¥, a and ¢ be nonnegative continuous functions defined on
J=[a,00). Let w be a positive continuous nondecreasing function defined on J

and b>0 be a constant. If

y'(x)<a®)+b[y(x) + [ c(Owly(®) + y'(©]dt], xeJ.

Then

yX<y(o)+ [ [a(t) + by(a)elbds + L (A(s) + be(s)w[G{G(by()) +
LA+ 1+ b)c(r)]dr}])efstbdfds] dt, a<x<x

where

AX)=b[ax) + cIw(y(@) +ax) + [ a(Ddt)],

where G and G are as defined in theorem (2.12) and x; €J is chosen such that
G(by(c)) + [ [A(D) + (1 +b)c()]dt is in the domain of G for all xeJ

lying in the interval a<x<xj.
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Proof:-

Let z(X)=b [y(x) + f; c®Owly(t) +y’ (t)]dt] then z(a)=by(a)

and
yy()+ [ a(®)dt + f) z(t)dt
Therefore
Z(X)=b[y'(x) + c)wly(x) +y' )]].
<bla(x) +z(x) + cw(y(e) +a) + [ a(®dt+ z(x) + [ z(Ddt)].

<b [a(x) + c(x)w{y(a) +a(x) + f; a(t)dt}]+b[z(x) + C(X)W{z(x) +

J; z(Ddt}].
Thus
Z()AN)b[2(x) + c)w{z() + [ z(Ddt}].
where A(X) is defined previously.
Let v(x)=2(x)+ [ z(t)dt then v(a)=by(), z(x)<v(x) and
Z'(x)<A(X)+b[z(x) + cx)w(v(x))].
Thus
V'(X)=z'(x)+z(x),
<AX)+(1+b)v(X)+bc(x)w(v(X)).
<AX)+(1+b)c(X¥)[v(x) + w(v(x))].
By dividing the above inequality by [v(x)+ w(v(x))], one can have:

v' (%) A(x)
[vx) +w(vG)] — [v(x) +w(v(x))

<AX)+H(1+b)c(X).

7t (14 b)c(x),

Then

vX)<G G (by(a) + [, [A® + (1 + b)c(t)]dt},

and

Z(x)<AX)Hbe(x)W[GH{G(by () + [ [A(®) + (1 + b)c(D]dt}] + bz (x).

From lemma (1.1), one can get:
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2(x)<by(a)ela 4 [* (AW + bew |6 {G(by(@) + [;[A(s) +

(1+b)e(s)]ds}] ) ek Pdt

Hence
y(x)<y(o)+ f:: [a(t) + by(oc)efottde + f;(A(s) + be(s)w[GH{G(by(w)) +

[EIA@ + (1 + b)c(v)]dr)])e < ds] dt

Theorem (2.16):-

Let y and y' be nonnegative continuous functions defined on J=[a,0).

Let w be a positive continuous nondecreasing function defined on J. Let k and
. : ... ok . : : :
its partial derivative . be nonnegative continuous functions defined on J.

If

y'(x)<a+b[y(x) + f; k(x, Owly(t) +y' (©]dt], xel.
Then
yX)<y(o)ta[x—a]+

. Jbds 5 bdz
[|by@es  +] {A(S)+b{k(s,s)+ | —k(s,r)dr}w(B(s))}es ds [dt,
’ » 0S

where

A(X)=b {a + KX, x)W{y(or) +a(x —a +1)} + .Xfa% K(x, t)wiy(o) +a(x — o+ 1)}dt} ,

o

B(X):G*1 {G(by(a)) + I{A(x) +(b +1)[k(t, t) + j% k(t, s)ds}}dt} ,

G and G are defined previously and x;eJ is chosen such that G(A(u) +
by(a)) + f::(b +1) [1 + k(t,t) + f:%k(t, s)ds] is in the domain of G for

all xeJ lying in the interval [o,X4].

Proof:-

65



Chapter Two The One Dimensional Integro-Differential Inequalities

Let z(X)=b[y(x) + [ k(x,Hw[y(® +y'(D]dt] then z(@)=by(a)

and

y(x)<y(a)ra[x—o]+ [ z(t)dt

Therefore

2(9=bly' () + kCe Iwly() +y' (] + [ - kG Dwly® +y' (0] de]

Sb[a +z(x) + k(x,x)w{y(a) +alx—a+1]+z(x) + f;z(t)dt} +

X2 kG Ow [y (@ + alx— o+ 1]+ 2(0) + [ z(s)ds]|

=A(X)+b l:z(x) +k(x, x)w{z(x) + ].z(t)dt} + -X[aix k(X, t)w{z(t) + j.z(s)ds}dt}

a

where A(X) is defined previously.

Let v(x)=2(x)+ ] z()dt then v(a)=by(), z(x)<v(x) and
Z'(x)<AX)+b[z(x) + k(x, )w(v ()] + f:% k(x, w(v())dt
By using the fact that w is a nondecreasing function, one can get:
Z/(x)AX)+bz(x)+b [k(x, %) + 2 k(x, t)dt]w(v(x)).

Thus

V(X)=z'(x)+z(x),

Therefore
V(X)SAX)+b+DV(x)1+b k(e x) + [ k(x dt| w(v(x).
<AX)+(b+1) [k(x, )+ [Tk, t)dt] [v(x) + w(v()]
Let ueR. be any arbitrary number then for a<x<u, one can obtain:
V’(x)SA(u)+(b+1)[k(X, X) + f::a—ax k(x,t) dt] [v(x) + w(v(x))]
By dividing the above inequality by [v(x) + w(v(x))] and then integrating the

resulting inequality from o to x and using equation (2.3), one can obtain:

V(X)SG_l {G(by(a)) + I‘{A(u) +(b+ 1){k(t, t) + j% k(t, s)dstt} , 0=<x<u.
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Then for x=u, one can get:
v(x)<B(x)

where B(x) is defined previously.
then

Z/(X)<AX)+ b[k(x, X) + 1 k(x, t)dt] w(B(X))+bz(x).
From lemma (1.1), one can obtain:

fbdt . [bds
z(x)<by(a) e« +J'{A(t)+b{k(t,t)+ '[ ak(t,s)ds}w(B(t))}et dt.

Hence
y(X)<y(a)ta[x—a]+

t

X J.bds t s a j‘bdf
[|by@es  +] {A(s)+b{k(s,s)+ | Ek(s,r)dr}w(B(s))}es ds [dt .

o
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Conclusions and Recommendations

From the present study, we can conclude the following :

(1) The classification of the one-dimensional integral and integro-
differential inequalities can be extended to include the multi-
dimensional integral and integro-differential inequalities.

(2) Defining the one-dimensional n-th order integro-differential
inequalities is similar to the definition of the one dimensional first
order integro-differential inequalities.

(3) The upper bound for the unknown function in the previous integral
and integro-differential inequalities may not be unique.

(4) The existence of the upper bound for the unknown function in all
of the integral and integro-differential inequalities is based on the
existence of the lower bound of it.

(5) Finding explicit bounds for the unknown function of the integral
and integro-differential inequalities that contains the sign > instead
of the sign < can be easily discussed.

(6) Discussing the existence of the solutions of integral and integro-
differential inequalities depends on the existence of the solutions

of special types of differential inequalities.

Also, for further work, we can recommend the introduction of the
following open problems:
(1) Use the integro-differential inequalities to ensure the existence and
uniqueness of the solutions for the integro-differential equations.
(2) Find explicit bounds for the unknown functions in the integro-
differential inequalities of Fredholm type.
(3) Determine explicit bounds for the unknown function in the multi-

dimensional integro-differential inequalities.
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