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Abstract 

 

       The main purpose of this work can be classified into four objects. 

These are summarized as follows: 

 

        The first objective, is to classify the one-dimensional integral 

inequalities. 

 

        The second objective, is to find explicit bounds for the unknown 

function that appeared  in special types of the one-dimensional Volterra 

linear and non-linear integral inequalities. 

 

         The third objective, is to classify the one-dimensional integro-

differential inequalities.  

 

          The fourth objective, is to give explicit bounds for the unknown 

function that appeared in special types of the one-dimensional Volterra 

first order and second order linear and non-linear integro-differential 

inequalities. 
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Introduction 

 

                              I 

It is well known truth that the inequalities have always been of 

great importance for the development of many branches of mathematics, 

[Pachpatte, 2006, p.1]. 

The mathematical foundations of the theory of inequalities were 

established in part during the 18
th

 and 19
th

 century by mathematicians 

such as Gauss (1777-1855), Cauchy (1789-1857) and Chebyshev (1812-

1894). In the years thereafter the influence of inequalities has been 

immense, and the subject has attracted many distinguished 

mathematicians, including Poincaré (1854-1912), Lyapunov (1857-1918), 

O. Hölder (1859-1937) and J. Hadamard (1865-1963). [Pachpatte, 1998, 

p.1]. 

Nowadays the theory of inequalities may be regarded as an 

independent branch of mathematics. This field is dynamic and 

experiencing an explosive growth in both theory and applications. A 

particular feature that makes the study of this interesting topic so 

fascinating arises from the numerous fields of applications. As a response 

to the needs of divers applications, a large variety of inequalities have 

been proposed and studied in the literature. This theory added some 

techniques which are instrumental in solving many important problems, 

[Pachpatte, 2006, p.1].  

         The integral inequalities that give explicit bounds on unknown 

functions provide a very useful and important device in the study of 

various properties of solutions of differential and integral equations. One 

of the best known and widely used inequalities in the study of nonlinear 

differential equations was given by Gronwall T., that in 1919 Gronwall 
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found this integral inequality while investigating the dependence of 

systems of differential equations with respect to a parameter. In fact the 

roots of such an inequality can be found in the work of Peano (1885-

1886), [Pachpatte, 1998, p.4-5]. 

         During the period (1919-1975) a large number of papers appeared 

in the literature which were partly inspired by Gronwall inequality and its 

applications. An extensive survey of integral inequalities of the Gronwall 

type which are adequate in many applications in the theory of differential 

and integral equations may found in [Beesack P., 1975]. 

         Pachpatte B. (1994-1997) has proved a number of integral 

inequalities which can be used as handy tools in the study of certain new 

classes of differential, integral and integro-differential equations, 

[Pachpatte B., 1998, p.6]. 

         Integro-differential inequalities are integral inequalities involving 

functions and their derivatives. 

         The integro-differential inequalities have played a significant role in 

the developments of various branches of analysis. Pachpatte  B. in (1977, 

1978, 1982) gave some integro-differential inequalities which are useful 

in certain applications in the theory of differential and integro-differential 

equations. 

        The purpose of  this work, is to classify the one-dimensional integral 

and integro-differential inequalities and finding explicit bounds for the 

unknown function in special types of the one-dimensional linear and 

nonlinear Volterra integral and integro-differential inequalities.  

       This thesis consists of two chapters. 
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        In chapter one, we illustrate some concepts about the one-

dimensional integral inequalities. Also it contains some of the famous 

integral inequalities, like Gronwall, Bellman and Bihari inequalities and 

their generalizations. 

        In chapter two, we give a simple classification of the one-

dimensional first order and second order integro-differential inequalities. 

Moreover finding explicit bounds for special types of the one-

dimensional integro-differential inequalities is presented.  
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Chapter One               The One-Dimensional Volterra Integral Inequalities 

                                                                  1 

Introduction 

         Integral inequalities that give explicit bounds on the unknown 

functions provide a very useful and important tool in the study of many 

qualitative as well as quantitative properties of solutions of nonlinear 

differential equations, [Pachpatte B., 1998, p.4]. 

         The history of integral inequalities goes back to Gronwall T., in 

1919, he discovered the integral inequalities and their use in studying 

problems of the theory of ordinary differential equations. This justifies 

the intensive investigations on integral inequalities, and the appearance of 

hundreds of publications on them, [Bainov D. and Simeonov P., 1992]. 

         There are many types of integral inequalities of importance. One 

type is known as Gronwall type inequalities. Gronwall type inequalities 

are important, and have applications to questions of stability, uniqueness 

of solutions, asymptotic behaviour, etc., [Bainov D. and Simeonov P., 

1992, p.vi]. 

         The main purpose of this chapter is to classify the one-dimensional 

integral inequalities. Moreover explicit bounds for the unknown function 

that appeared in some famous Volterra integral inequalities, like 

Gronwall's inequality, Bellman's inequality and Bihari's inequality, and 

their generalizations are obtained. 

        This chapter consists of three sections. 

In section one, we give the definition of the integral inequalities and 

the classification of  special types of the one-dimensional integral 

inequalities. 
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In section two, we give explicit bounds for the unknown function in 

the one-dimensional Volterra linear integral inequalities and some 

theorems related with them. 

In section three, we give explicit bounds for the unknown function in  

special types of the one-dimensional Volterra non-linear integral 

inequalities. 

 

1.1 Classification of the One-Dimensional Integral Inequalities:- 

The integral inequalities are inequalities involving functions of one 

or more than one independent variable appeared under an integral sign 

which provide explicit bounds. 

The one-dimensional integral inequalities are integral inequalities in 

which the unknown function depends only on one-independent variable. 

On the other hand, the m-dimensional integral inequalities are integral 

inequalities in which the unknown function depends only on m-

independent variables, [Bainov D. and Simeonov P., 1992].  

In this section we classify special types of the one-dimensional 

Volterra linear and nonlinear integral inequalities. 

The simplest form of the one-dimensional linear integral inequality 

that contains only one integral operator is: 

h(x)y(x)≤a(x)+ 




)x(

dt)t(y)t,x(k ,                                                                (1.1) 

where a is a known function of x, k is a known function of x and  t, β  and 

h are known functions of x, α is a known constant and y is the unknown 

function that must determine its explicit bounds. 
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The integral inequality (1.1) is called Fredholm linear integral 

inequality when β(x)=β, where β, is a known constant. On the other hand, 

the integral inequality (1.1) is called the one-dimensional Volterra linear 

integral inequality in case β(x)=x. 

If h(x)=0 in inequality (1.1), then this integral inequality is of the 

first kind, and if h(x)=1 then this integral inequality is of the second kind.  

Also, if a(x)=0, then the integral inequality (1.1) is homogeneous, 

otherwise, it is nonhomogeneous, [Al-Azawi S., 2007, p.22]. 

On the other hand, the simplest form of the one-dimensional linear 

integral inequality that contains more than one integral operator is: 

h(x)y(x)≤a(x)+   










 












)x(1 )x(2 )t(3

321 dtds)s(y)s,t(k)t,x(kdt)t(y)t,x(k ,             (1.2) 

where a is a known function of x, k1, k2 are known functions of x and t, k3 

is a known function of t and s, 1, 2 are known functions of x, 3  is a 

known function of t, α is a given constant and y is the unknown function 

that must determine its explicit bounds. 

The integral inequality (1.2) is called Fredholm linear integral 

inequality when 1(x)=1, 2(x)=2 and 3(x)=3 where 1, 2, 3 are 

known constants. On the other hand, the integral inequality (1.2) is called 

Volterra linear integral inequality when 1(x)=2(x)=x and 3(t)=t. 

If h(x)=0 in inequality (1.2) then this integral inequality is of the 

first kind and if h(x)=1then this integral inequality is of the second kind. 

Also, if a(x)=0 then the integral inequality (1.2) is said to be 

homogeneous, otherwise it is nonhomogeneous. 
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Moreover the simplest form of the one-dimensional non-linear 

integral inequality that contains only one integral operator is: 

h(x)y(x)≤a(x)+ 




)x(

dt))t(y,t,x(k      

where h, y, a, α,  are defined similar to the previous and k is a known 

function of x, t and y(t), in which it is non-linear with respect to y(t), [Al-

Azawi S., 2007, p.23]. 

On the other hand, the simplest form of the non-linear integral 

inequality that contains only two integral operators is: 

h(x)y(x)≤a(x)+ 










)x(2

2

)x(1

1 dt))t(y,t,x(kdt))t(y,t,x(k      

where h, y, a, α, 1, 2 are defined similar to the previous and k1, k2 are 

known functions of x, t and y(t), in which they are non-linear with respect 

to y(t). 

Finally, similar to the linear case, one can recognize the one-

dimensional Fredholm and Volterra non-linear integral inequalities of the 

first and second kinds. 

 

1.2 Solutions of the One-Dimensional Volterra Linear Integral 

Inequalities:- 

This section consists of some theorems that determine explicit 

bounds for the unknown function in the one-dimensional linear integral 

inequalities of Volterra type. 

First, we give the following lemma which will be needed later. 
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Lemma (1.1), [Bainov D. and Simeonov P., 1992, p.2]:- 

Let a and c be continuous functions for x>α and let y be a 

differentiable function for x≥α, and suppose that  

y′(x)≤a(x)+c(x)y(x), x≥α 

and y(α)≤yo, 

then  

y(x)≤yoe



x

ds)s(c

+ 


x ds)s(c

dte)t(a

x

t

, x≥α. 

Proof:- 

        Suppose that y′(x)−c(x)y(x)≤a(x). 

By setting x=t in the above inequality and multiplying the resulting 

inequality by the integrating factor e

x

t

ds)s(c

, one can get: 

 







x

t

x

t

ds)s(cds)s(c

e)t(ae)t(y)t(c)t('y . 

Then the above inequality can be rewritten as: 





















x

t

x

t

ds)s(cds)s(c

e)t(ae)t(y
dt

d
. 
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By integrating both sides of the above inequality from α to x, one can 

have: 

y(x)−yo
dte)t(ae

x ds)s(cds)s(c

x

t

x










. 

Hence 

y(x)≤yo
dte)t(ae

x ds)s(cds)s(c

x

t

x










, x≥α. 

 

       Gronwall T. in 1919 gave explicit bounds for the unknown function 

that appeared in the integral inequality given in the following theorem. 

 

Theorem (1.1), [Gronwall T., 1919]:-  

Let y be a continuous function defined on the interval J=[α,α+h] and  

0≤y(x)≤ 




x

dt]a)t(cy[ , x J , 

where a and c are nonnegative constants. Then  

0≤y(x)≤ahe
ch

, x J . 

 

Proof:-  

           Suppose that y(x)≤a(x−α)+c 


x

dt)t(y  then y(x)≤ah+ c 


x

dt)t(y . 
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Let z(x)=ah+ c 


x

dt)t(y  then y(x)≤z(x) and z(α)=ah. But z(x)=cy(x)≤cz(x). 

From lemma (1.1), one can have: 

z(x)≤ahe



x

cdt

. 

Since α≤x≤α+h, a≥0 and c≥0 then 

z(x)≤ahe
c(x-α)

≤ahe
ch

, x[α,α+h].  

Hence  

y(x)≤ahe
ch

, x ]h,[  . 

 

Bellman R. in 1943 gave explicit bounds for the unknown function 

that appeared in the integral inequality given in the following theorem. 

 

Theorem (1.2), [Bellman R., 1943]:-  

Let y and c be continuous and nonnegative functions defined on 

J=[α,β], and let a be a nonnegative constant. Then the inequality:  

y(x)≤a+ 


x

dt)t(y)t(c , x J  

implies that  

y(x)≤ae




x

dt)t(c

, x J . 
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Proof:- 

Let z(x)=a+ 


x

dt)t(y)t(c , then z(α)=a and y(x)≤z(x). Also  

z′(x)=c(x)y(x) 

       ≤c(x)z(x), x J .  

From lemma (1.1), one can get:                                                          

z(x)≤ae



x

dt)t(c

, x J . 

Hence 

y(x)≤ae




x

dt)t(c

, x J . 

 

Bellman R. in 1958 gave the following generalization of theorem 

(1.2). 

 

Crollary (1.1), [Bellman R., 1958]:-  

   Let y and c be continuous and nonnegative functions defined on 

J=[α,β], and let a be a continuous, positive and nondecreasing function 

defined on J, then 

y(x)≤a(x)+ 


x

dt)t(y)t(c , x J , 
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implies that  

y(x)≤a(x)e




x

dt)t(c

, x J . 

 

Proof:-  

Let w(x)=
)x(a

)x(y
. Then w(x)≤1+ dt

)x(a

)t(y
)t(c

x




  

Thus 

w(x)≤1+ 


x

dt
)t(a)x(a

)t(y)t(a
)t(c  

       =1+ 


x

dt
)x(a

)t(w)t(a
)t(c  

       ≤1+ 


x

dt
)x(a

)t(w)x(a
)t(c  

       ≤1+ 


x

dt)t(w)t(c , xJ. 

Now an application of theorem (1.2) yields:  

w(x)≤e




x

dt)t(c

, xJ. 

Hence 

y(x)≤a(x)e



x

dt)t(c

, xJ. 
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      Next, the following theorem appeared in [Pachpatte B., 1975] without 

proof. Here we give its proof. 

 

Theorem (1.3):-  

Let y, a, b, c and g be nonnegative continuous functions defined on 

J=[α,β], and  

y(x)≤a(x)+b(x) 




x

dt)]t(g)t(y)t(c[ , x J . 

 Then  

y(x)≤a(x)+b(x) 





x ds)s(c)s(b

dte)]t(g)t(c)t(a[

x

t , x J . 

 

Proof:-  

Let z(x)= 




x

dt)]t(g)t(y)t(c[ , then z(α)=0 and y(x)≤a(x)+b(x)z(x). 

But z′(x)=c(x)y(x)+g(x) 

              ≤a(x)c(x)+b(x)c(x)z(x)+g(x). 

From lemma (1.1), one can have: 

z(x)≤  





x

x

t dt

ds)s(c)s(b

e)t(g)t(c)t(a , xJ. 
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Hence  

y(x)≤a(x)+b(x)  





x

x

t dt

ds)s(c)s(b

e)t(g)t(c)t(a , xJ. 

 

Pachpatte B. in 1998 gave the following generalization of theorem 

(1.3). 

 

Theorem (1.4), [Pachpatte B., 1998, p.20]:-  

Let y, a, b, c and g be nonnegative continuous functions defined on 

J=[α,β]. Let k and its partial derivative 
 k

 x
 be nonnegative continuous 

functions for α≤t≤x≤β. If 

 y(x)≤a(x)+b(x) 




x

dt)]t(g)t(y)t(c)[t,x(k , x J .  

Then  

 y(x)≤a(x)+b(x) 


x

x

t dt

ds)s(A

e)t(B , x J , 

where  

A(x)=k(x,x)b(x)c(x)+ 




x

dt)t(c)t(b)t,x(k
x

, x J                                       

and  

B(x)=k(x,x)[a(x)c(x)+g(x)]+ 






x

dt)]t(g)t(c)t(a)[t,x(k
x

, x J .            
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Proof:-  

Let z(x)= 




x

dt)]t(g)t(y)t(c)[t,x(k , then z(α)=0 and  

y(x)≤a(x)+b(x)z(x).  

By differentiating z and using the above inequality, one can get:  

z′(x)=k(x,x)[c(x)y(x)+g(x)]+ 






x

dt)]t(g)t(y)t(c)[t,x(k
x

. 

       ≤k(x,x){c(x)[a(x)+b(x)z(x)]+g(x)}+ 

                                                           






x

dt)]t(g)t(z)t(b)t(a)t(c)[t,x(k
x

. 

By using the fact that z is nondecreasing in x, one can have  

z′(x)≤z(x)[               




x

dt)t(c)t(b)t,x(k
x

]+  

                                        k(x,x)[a(x)c(x)+g(x)]+ 






x

dt)]t(g)t(c)t(a)[t,x(k
x

 

       =A(x)z(x)+B(x), xJ 

where A(x) and B(x) are defined previously. 

From lemma (1.1), one can obtain:  

z(x)≤ 


x

)t(B e

x

t

ds)s(A

dt, xJ. 
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Hence  

y(x)≤a(x)+b(x) 


x

)t(B e

x

t

ds)s(A

dt, xJ. 

 

Now, explicit bounds for the unknown functions that appeared in 

another type of integral inequalities is given in the following theorem. 

 

Theorem (1.5), [Pachpatte B., 1973a]:- 

       Let y, b and c be nonnegative continuous functions defined on 

J=[α,∞). If  

y(x)≤a+   
  











x x t

dtds)s(y)s(b)t(cdt)t(y)t(c , xJ, 

where a is a nonnegative constant.  

Then  

 y(x)≤ a















 


x

t

dtds)s(b1)t(c

e , xJ. 

 

Proof:- 

       Let z(x)=a+   
  











x x t

dtds)s(y)s(b)t(cdt)t(y)t(c  then z(α)=a and y(x)≤z(x).  
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On the other hand 

z′(x)=c(x)y(x)+c(x) 


x

dt)t(y)t(b  

Therefore 

z(x)≤c(x)[     


x

dt)t(z)t(b ], xJ. 

By using the fact that z is a nondecreasing function in x, one can get: 

z(x)≤c(x)[  


x

dt)t(b ]z(x), xJ. 

From lemma (1.1), one can have: 

z(x)≤a















 


x

t

dtds)s(b1)t(c

e , xJ. 

Hence  

y(x)≤ a















 


x

t

dtds)s(b1)t(c

e , xJ. 

 

Next, a modification of theorem (1.5) can be given in the following 

corollary. 

 

Corollary (1.2):- 

Let y, b and c be nonnegative continuous functions defined on 

J=[α,∞), a is a positive nondecreasing function defined on J. If 
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y(x)≤a(x)+   
  











x x t

dtds)s(y)s(b)t(cdt)t(y)t(c , xJ 

then 

y(x)≤a(x)















 


x

t

dtds)s(b1)t(c

e , xJ. 

 

Proof:- 

         Let w(x)=
)x(a

)x(y
 .  

Then  

w(x)
 
≤1+ 



x

dt
)x(a

)t(w)t(a
)t(c + dtds

)x(a

)s(w)s(a
)s(b)t(c

x t

 
 









. 

By using the fact that a is a nondecreasing function in x, one can get: 

w(x)≤1+   
  











x x t

dtds)s(w)s(b)t(cdt)t(w)t(c , xJ. 

From theorem (1.5), one can have: 

w(x)≤















 


x

t

dtds)s(b1)t(c

e , xJ. 

Hence 

y(x)≤ a(x)















 


x

t

dtds)s(b1)t(c

e , xJ. 
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Next, another extension of the previous theorem can be seen 

below. 

 

Theorem (1.6):-  

          Let y and  b be nonnegative continuous functions defined on 

J=[α,∞). Let k and its partial derivative 
 k

 x
 be nonnegative continuous 

functions defined on J=[α,∞). If 

y(x)≤a+      
  



x x t

21 dtds)s(g)s(y)s,t(kdt)t(g)t(y)t,x(k , xJ. 

Then 

y(x)≤a 








x ds)s(Adt)t(A

dte)t(Be

x

t

x

, xJ, 

where  

A(x)=k1(x,x)+  
 





x x

21 dt)t,x(k)x(cdt)t,x(k
x

.                                    

and  

B(x)=k1(x,x)g(x)+  
 





x x

21 dt)t(g)t,x(kdt)t(g)t,x(k
x

.                            
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Proof:- 

         Let  

z(x)= a+      
  



x x t

21 dtds)s(g)s(y)s,t(kdt)t(g)t(y)t,x(k , 

then z(α)=a and y(x)≤z(x), xJ. 

But z′(x)=k1(x,x)    








x

1 dt)t(g)t(y)t,x(k
x

)x(g)x(y  

                                                         +  dt)t(g)t(y)t,x(k

x

2


 . 

              ≤k1(x,x)    








x

1 dt)t(g)t(z)t,x(k
x

)x(g)x(z  

                                                             




x

2 dt)t(g)t(z)t,x(k , xJ. 

By using the fact that z is a nondecreasing function in x, one can get: 

z′(x)≤A(x)z(x)+B(x), 

where A(x) and B(x) are defined previously. 

From lemma (1.1), one can have: 

z(x)≤ae



x

dt)t(A

+ 


x

e)t(B


x

t

ds)s(A

dt, xJ. 

Hence 

y(x)≤ ae



x

dt)t(A

+ 


x

e)t(B


x

t

ds)s(A

dt, xJ. 
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1.3 Solutions of the One-Dimensional Volterra Non-linear Integral 

Inequalities:- 

 As seen before in the previous section, all the inequalities that are 

discussed are of the linear type. On the other hand, the one-dimensional 

Volterra non-linear integral inequalities has many applications in the 

theory of integral, differential and integro-differential equations, 

[Pachpatte B., 1998].  

So this section concerns with finding solutions of special types of 

the one-dimensional Volterra non-linear integral inequalities. 

Bihari I. in 1956 gave the explicit bounds for the unknown function 

that appeared in the following non-linear integral inequality. 

 

Theorem (1.7), [Bihari I., 1956]:-  

Let y and c be nonnegative continuous functions defined on J=[α,∞). 

Let w be a positive continuous nondecreasing function defined on J. If 

y(x)≤a+ 


x

dt))t(y(w)t(c , xJ, 

where a is a nonnegative constant, then for α≤x≤x1, 

y(x)≤G
-1









 



x

dt)t(c)a(G , 

where  

G(u)= 
u

u0
)t(w

dt
,   u> u0>0                                                                      (1.3) 
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and G
-1
 is the inverse function of G and x1J is chosen such that G(a)+




x

dt)t(c  is in the domain of G
-1

 for all xJ lying in the interval [α,x1]. 

 

Proof:-  

Let z(x)=a+ 


x

dt))t(y(w)t(c , then z(α)=a, y(x)≤z(x) and  

z(x)≤c(x)w(y(x)) 

      ≤c(x)w(z(x)) 

Then from equation (1.3), the above inequality can be rewritten as: 

).x(c
))x(z(w

)x('z
))x(z(G

dx

d
  

By taking x=t in the above inequality and integrating the resulting 

inequality over t from α to u, one can obtain: 

G(z(u))≤G(a)+ 


x

dt)t(c , α≤x≤x1. 

Then 

z(x)≤G
-1









 



x

dt)t(c)a(G , α≤x≤x1. 

Hence 

y(x)≤G
-1









 



x

dt)t(c)a(G , α≤x≤x1.  
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Now, the following theorem is a generalization of the previous 

theorem. 

 

Theorem (1.8):- 

Let y, a, a and c be nonnegative continuous functions defined on 

J=[α,∞). Let w be a positive continuous nondecreasing function defined 

on J. If  

y(x)≤a(x)+ 


x

dt))t(y(w)t(c , xJ, 

then for α≤x≤x1 

y(x)≤G
-1   








 



x

dt)t(c)x('a))(a(G , 

where  

G and G
-1

 are defined previously and x1J is chosen such that 

 




x

dt)t(c)x('a))(a(G  is in the domain of G
-1

 for all xJ lying in the 

interval [α,x1]. 

 

Proof:- 

          Let z(x)=a(x)+ 


x

dt))t(y(w)t(c , then z(α)=a(α), y(x)≤z(x) and  

z(x)≤a(x)+c(x)w(y(x)) 
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Therefore 

z(x)≤ a(x)+c(x)w(z(x)). 

Let uR+ be any arbitrary number, then for α≤x≤u, one can get: 

z(x)≤a(u)+ c(x)w(z(x)) 

       ≤  ))x(z(w)x(c)u('a  . 

Then from equation (1.3) the above inequality can be rewritten as: 

 )x(c)x('a
))x(z(w

)x('z
))x(z(G

dx

d
 . 

By taking x=t in the above inequality and integrating the resulting 

inequality over t from α to u, one can obtain: 

G(z(u))≤G(a(α))+  dt)t(c)t('a

u




 , α≤u≤x1. 

Since u is an arbitrary number, then  

z(x)≤G
-1   








 



x

dt)t(c)t('a))(a(G , α≤x≤x1 

Hence  

y(x)≤G
-1   








 



x

dt)t(c)t('a))(a(G , α≤x≤x1. 

 

Next, we give explicit bounds for the unknown function that 

appeared in another type of  Volterra  nonlinear integral inequality. 
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Theorem (1.9), [Pachpatte B., 1975]:- 

Let y, b, c and g be nonnegative continuous functions defined on 

J=[α,∞). Let w be a positive continuous nondecreasing and 

submultiplicative function defined on J. If  

y(x)≤a+b(x)  
 



x x

dt))t(y(w)t(cdt)t(y)t(g , xJ,  

where a is a positive constant, then  

y(x)≤p(x)




















 




x

1 dt))t(p(w)t(c))x(A(GGa , α≤x≤x1 

where  

p(x)=1+b(x) 




x

x

t dt

ds)s(g)s(b

)t(g e , xJ   

and 

A(x)=w(a) 


x

dt))t(p(w)t(c ,                                 

G and G
-1

 are as defined in theorem (1.7) and x1J is chosen such that 






x

dt))t(p(w)t(c)a(G  is in the domain of G
-1

 for all xJ lying in the 

interval [α,x1].  

 

Proof:- 

Let v(x)=a+ 


x

dt))t(y(w)t(c  then y(x)≤v(x)+b(x) 


x

dt)t(y)t(g . 
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Suppose that z(x)= 


x

dt)t(y)t(g

 
then y(x)≤v(x)+b(x)z(x).  

But z(x)=g(x)y(x) 

              ≤g(x)v(x)+g(x)b(x)z(x). 

From lemma (1.1), one can have: 

z(x)≤ 


x

x

t dt

ds)s(b)s(g

e)t(v)t(g . 

By using the fact that v is a nondecreasing function in x, one can get: 

y(x)≤p(x)v(x), 

where p(x) is defined previously. 

Therefore 

v(x)=a+ 


x

dt))t(y(w)t(c  

       ≤a+ 


x

dt))t(v)t(p(w)t(c

 

       ≤a+ 


x

dt))t(v(w))t(p(w)t(c  

By applying theorem (1.7) to the above inequality, one can obtain: 

v(x)≤a+G
-1









 



x

dt))t(p(w)t(c))x(A(G , 

where A(x) is defined previously. 
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Hence 

y(x)≤p(x)




















 




x

1 dt))t(p(w)t(c))x(A(GGa , xJ.
  

 

Next, an extension of the previous theorem can be seen below. 

 

Theorem (1.10):- 

           Let y, b, c and g be nonnegative continuous functions defined on 

J=[α,∞). Let w be a positive continuous nondecreasing and 

submultiplicative function defined on J. Let a be a positive continuous 

and nondecreasing function defined on J. If  

y(x)≤a(x)+b(x)  
 



x x

dt))t(y(w)t(cdt)t(y)t(g , xJ. 

Then 

y(x)≤p(x)

























 





x

1 dt))t(p(w)t(c))x(A(GG)x(a , 

where G, G
-1

 and  p(x)  are  defined previously, x1J is chosen such that  





x

dt))t(p(w)t(c))x(A(G   is in the domain of G
-1 

for all xJ lying in the 

interval [α,x1] and  

A(x)= 


x

dt))t(a(w))t(p(w)t(c .                                                                     
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Proof:- 

Let v(x)=a(x)+ 


x

dt))t(y(w)t(c  then y(x)≤v(x)+b(x) 


x

dt)t(y)t(g . 

Suppose that z(x)= 


x

dt)t(y)t(g  then y(x)≤v(x)+b(x)z(x) and 

z(x)=g(x)y(x). 

       ≤g(x)v(x)+g(x)b(x)z(x). 

From lemma (1.1), one can have: 

z(x)≤ 


x

x

t dt

ds)s(b)s(g

e)t(v)t(g  . 

Then 

y(x)≤p(x)v(x), 

where  

p(x) is defined previously. 

Therefore 

v(x)=a(x)+ 


x

dt))t(y(w)t(c . 

       ≤a(x)+ 


x

dt))t(v)t(p(w)t(c . 

       ≤ a(x)+ 


x

dt))t(v(w))t(p(w)t(c . 

By applying theorem (1.8) to the above inequality, one can obtain: 

v(x)≤a(x)+ 













 





x

1 dt))t(p(w)t(c))x(A(GG . 

where A(x) is defined previously. 
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Then 

y(x)≤p(x) .dt))t(p(w)t(c))x(A(GG)x(a

x

1
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Introduction 

The integro-differential inequalities are inequalities involving one (or 

more) unknown function, together with both differential and integral 

operations on the unknown functions which provide explicit bounds. 

The one-dimensional integro-differential inequalities are integro-

differential inequalities in which the unknown function depends only on one-

independent variable. On the other hand the m-dimensional integro-

differential inequalities in which the unknown function depends only on m-

independent variables. We restrict the discussion here to the simplest types of 

one-dimensional integro-differential inequalities, which form a natural 

generalization of Volterra and Fredholm integral inequalities, [Pachpatte B., 

1998]. 

      The main purpose of this chapter is to classify the one-dimensional 

integro-differential inequalities. Moreover explicit bounds for the unknown 

function that appeared in some types of the one-dimensional Volterra integro-

differential inequalities, like Gronwall-Bellman integro-differential inequality 

and their generalizations are obtained. 

      This chapter consists of three sections. 

       In section one, a simple classification of special types of the one-

dimensional integro-differential inequalities is given. To the best of our 

knowledge, this classification seems to be new. 

      In section two, we give some theorems for finding solutions of special 

types of the one-dimensional Volterra linear integro-differential inequalities of 

the first and second order. 

      In section three, we give some theorems for finding solutions of special 

types of the one-dimensional Volterra non-linear integro-differential 

inequalities of the first and second order. 
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2.1 Classification of the One-Dimensional Integro-Differential 

Inequalities:- 

The integro-differential inequalities are inequalities involving functions 

of one or more than one independent variable appeared under an integral sign 

and derivatives sign which provide explicit bounds. 

The one-dimensional integro-differential inequalities are integro-

differential inequalities in which the unknown function depends only on one-

independent variable, [Pachpatte B., 1998]. 

In this section we classify special types of the one-dimensional Volterra 

linear and non-linear integro-differential inequalities of the first and second 

order. 

The simplest form of the one-dimensional first order linear integro-

differential inequality that contains only one integral operator is: 

h1(x)y(x)+h2(x)y(x)≤a(x)+  






)x(

21 dt)t(y)t,x(k)t('y)t,x(k                               (2.1) 

where h1, h2, a,  are known functions of x, k1 and k2 are known functions of x 

and t, α is a given constant and y is the unknown function that must determine 

its explicit bounds. 

The integro-differential inequality (2.1) is called Fredholm if (x)= 

where  is a given constant and is called Volterra if (x)=x. 

If h1(x)=h2(x)=0 then the integro-differential inequality (2.1) is said to 

be of the first kind and if h1(x)=1 then the integro-differential (2.1) is said to 

be of the second kind. 

Also, if a(x)=0 then the integro-differential inequality (2.1) is 

homogeneous, otherwise it is nonhomogeneous. 

On the other hand, the simplest form of the one-dimensional first order 

linear integro-differential inequality that contains more than one integral 

operator is: 
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h1(x)y(x)+h2(x)y(x)≤a(x)+

  






 












)x(1 )t(2

4321 dtds)s(y)s,t(k)s('y)s,t(k)t(y)t,x(k)t('y)t,x(k                         (2.2) 

where h1, h2, a, α, k1, k2, y are defined similar to the previous, k3, k4 are known 

functions of t, s, 1 is a known function of x and 2 is a known function of t. 

The integro-differential inequality is said to be of Fredholm type if 

1(x)=1 and 2(t)=2 where 1 and 2 are known constants and it is said to be 

of Volterra type if 1(x)=x and 2(t)=t. 

Next, the simplest form of the one-dimensional second order linear 

integro-differential inequality that contains only one integral operator is: 

h1(x)y(x)+h2(x)y(x)+h3(x)y(x)≤a(x)+ 

                                                       






)x(

321 dt)t(y)t,x(k)t('y)t,x(k)t(''y)t,x(k  

where h1, h2, α, , k1, k2, y are defined similar to the previous, h3 is a known 

function of x, k3 is a known function of x and t. 

In a similar manner one can easily define the one-dimensional second 

order linear Volterra and Fredholm integro-differential inequalities of the first 

and second kinds. 

Moreover, the simplest form of the one-dimensional first order non-

linear integro-differential inequality that contains only one integral operator 

is: 

h1(x)y(x)+h2(x)y(x)≤a(x)+ 




)x(

dt))t('y),t(y,t,x(k     

where h1, h2, a, α, y are defined similar to the previous and k is a known 

function of x, t, y(t), in which it is non-linear with respect to y(t). 

In a similar manner one can easily define the one-dimensional second 

order non-linear integro-differential inequalities. Also, it is easy to recognize 

the one-dimensional first and second order non-linear Volterra and Fredholm 

integro-differential inequalities of the first and second kinds.  
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2.2 Solutions of the One-Dimensional Volterra Linear Integro-

Differential Inequalities:- 

         In this section, we present some theorems about the one-dimensional 

linear integro-differential inequalities of  Volterra type which provide explicit 

bounds for the unknown function that appeared in them. 

 

Theorem (2.1), [Pachpatte B., 1977]:- 

         Let y, y′, a, b and c be nonnegative continuous functions defined on 

J=[α,∞). 

(i) If b(x)≥1 for each xJ and  

y′(x)≤a(x)+b(x)  




x

dt)t('y)t(y)t(c , xJ 

then  

y(x)≤y(α)+      
   






















x t s

dtdsd)(B)(A)(c)s('b)s(B)s(A)s(c)s(b)t(a , xJ. 

where  

A(x)=y(α)+a(x)+ 


x

dt)t(a , xJ 

and  

B(x)= 

































x

x

t

s

t

dt

dsd)(c)s('b)s(c)s(b1

eds)s(A)s(c)t('b)t(A)t(c)t(b , xJ. 

 

(ii) If  

y′(x)≤a(x)+b(x)   







 



x

dt)t('y)t(y)t(c)x(y , xJ, 
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then  

y(x)≤y(α)+

 

 
 

dtdse)s(c1)s(ae)(y)t(b)t(a

x d)(c)(b)(c)(btds)s(c)s(b)s(c)s(b

s

t

t

 












































 

. 

 

Proof:- 

         (i) Let z(x)=b(x)∫     [          ]  
 

 
 then z(α)=0, 

z′(x)=b(x)c(x)[          ]+b(x)  




x

dt)t('y)t(y)t(c  and 

y′(x)≤a(x)+z(x), xJ.                                                                              

By setting x=t in the above inequality and integrating the resulting inequality 

over t from α to x, one can get:  

y(x)≤y(α)+ 


x

dt)t(a + 


x

dt)t(z , xJ. 

Therefore 

z′(x)≤b(x)c(x)[     




xx

dt)t(z)x(zdt)t(a)x(a ]+  

                    b(x)   
  











x t t

dtds)s(z)t(zds)s(a)t(a)(y)t(c , xJ. 

      =b(x)c(x)  
 




















x tx

dtds)s(z)t(z)t(A)t(c)x('bdt)t(z)x(z)x(A , xJ. 

where A(x) is defined previously. 

Let v(x)=z(x)+ 


x

dt)t(z , xJ, then v(α)=0,  

z(x)≤b(x)c(x)    dt)t(v)t(A)t(c)x('b)x(v)x(A

x




 , 

and  

v′(x)=z′(x)+z(x), xJ. 
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By using the fact that v is a nondecreasing function in x, one can have: 

v(x)≤b(x)c(x)A(x)+b(x) 


x

dt)t(A)t(c + 







 



x

dt)t(c)x('b)x(c)x(b1 v(x). 

From lemma (1.1), one can have: 

v(x)≤B(x), xJ 

where B(x) is defined previously. 

Then  

z′(x)≤b(x)c(x)[A(x)+B(x)]+b(x)  




x

dt)t(B)t(A)t(c . 

By taking x=t in the above inequality and integrating the resulting inequality 

over t from α to x, one can have:  

z(x)≤     
  










x t

dtds)s(B)s(A)s(c)t('b)t(B)t(A)t(c)t(b , xJ. 

Hence  

y(x)≤y(α)+      
   






















x t s

dtdsd)(B)(A)(c)s('b)s(B)s(A)s(c)s(b)t(a , xJ. 

 

(ii) Let z(x)=y(x)+ dt)]t('y)t(y)[t(c

x




 , xJ, then z(α)=y(α) and 

y′(x)≤a(x)+b(x)z(x), xJ.  

By using the above inequality and the fact that y(x)≤z(x), one can have: 

z′(x)=y′(x)+c(x)[y(x)+y′(x)]  

      =[      ]y′(x)+c(x)y(x)  

      ≤[      ][             ]+c(x)z(x) 

      =a(x)[      ]+[b(x)+c(x)+b(x)c(x)]z(x), xJ. 

From lemma (1.1), one can get:  

z(x)≤y(α)e






x

dt)]t(c)t(b)t(c)t(b[

+   dte)t(c1)t(a

x

x

t

ds)]s(c)s(b)s(c)s(b[





 , xJ.  
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Hence 

y(x)≤y(α)+

 

 
 

dtdse)s(c1)s(ae)(y)t(b)t(a

x d)(c)(b)(c)(btds)s(c)s(b)s(c)s(b

s

t

t

 












































 

. 

 

Next, the following theorem is a modification of the first part of the 

previous theorem. 

 

Theorem (2.2):- 

         Let y, y′, a, b and c be nonnegative continuous functions defined on 

J=[α,∞). Let k:J×J→J, α≤t≤x be a nonnegative continuous function. If 

y′(x)≤a(x)+∫       [          ]  
 

 
, xJ. 

then  

y(x)≤y(α)+∫ *     ∫ ,      *     ∫      ∫       
 

   
 

 
+ 

 

 

 

 

                          ∫
 

  
      *     ∫      ∫       

 

   
 

 
+  

 

 
-   +  , xJ. 

where  

A(x)=y(α)+a(x)+∫       
 

 
, xJ, 

B(x)=k(x,x)A(x)+∫
 

  

 

 
            , xJ, 

and  

D(x)=1+k(x,x)+ ∫
 

  

 

 
        , xJ. 

 

Proof:- 

          Let z(x)=∫       [          ]  
 

 
 then z(α)=0 and  

y′(x)≤a(x)+z(x), xJ.                                                                                          

By setting x=t in the above inequality and integrating the resulting inequality 

over t from α to x, one can obtain: 
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y(x)≤y(α)+∫        ∫       
 

 

 

 
, xJ. 

Therefore 

z′(x)=k(x,x)[          ] ∫
 

  

 

 
      [          ]  ,  

       ≤k(x,x)[          ∫             ∫       
 

 

 

 
]+ 

                ∫
 

  
      [          ∫             ∫       

 

 

 

 
]  

 

 
 

       =k(x,x)[          ∫       
 

 
] ∫

 

  
      [          ∫       

 

 
]  

 

 
. 

where A(x) is defined previously. 

Let v(x)=z(x)+∫       
 

 
 then v(α)=0, v(x)=z(x)+z(x) and 

z′(x)≤k(x,x)[         ] ∫
 

  
      [         ]  

 

 
, xJ. 

By using the above inequality and the fact that z(x)≤v(x), one can get: 

v′(x)≤k(x,x)[         ] ∫
 

  
      [         ]       

 

 
, xJ. 

By using the fact that v is a nondecreasing function in x, one can have: 

v′(x)≤k(x,x)A(x)+∫
 

  
             *         ∫

 

  
        

 

 
+    

 

 
.  

       ≤B(x)+D(x)v(x), xJ. 

where B(x) and D(x) are defined previously.  

From lemma (1.1), one can obtain: 

v(x)≤∫      ∫       
 

 
 

 
  , xJ. 

Then  

z′(x)≤k(x,x)*     ∫      ∫       
 

   
 

 
++ 

                     ∫
 

  
      *     ∫      ∫       

 

   
 

 
+   

 

 
, xJ. 
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By setting x=t in the above inequality and integrating the resulting inequality  

over t from α to x, one can have: 

z(x)≤∫ ,      *     ∫      ∫       
 

   
 

 
+ ∫

 

  
      *     

 

 

 

 

                                                                               ∫      ∫       
 

   
 

 
+  -   , xJ. 

Hence 

y(x)≤y(α)+∫ *     ∫ ,      *     ∫      ∫       
 

   
 

 
+ 

 

 

 

 

                                      ∫
 

  
      *     ∫      ∫       

 

   
 

 
+  

 

 
-  +  , xJ. 

 

           The following theorem appeared in [Pachpatte B., 1978] without proof. 

Here we give its proof. 

 

Theorem (2.3):- 

         Let y, y′, b and c be nonnegative continuous functions defined on 

J=[α,∞). If  

y′(x)≤a+∫     [           ∫     {          }  
 

 
]  

 

 
, xJ. 

Then  

y(x)≤y(α)+a(x−α)+ dsdtd)(B)(c)s(b)s(B)s(b)s(A

x t s

  
  









 , xJ. 

where 

A(x)=b(x)   







 



x

dt)t1(a)(y)t(c)x1(a)(y . 

and 

B(x)= 




















x

x

t

s

dt

dsd)(c)s(b)s(b1

e)t(A , xJ. 
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Proof: 

         Let z(x)=∫     *           ∫     {          }  
 

 
+  

 

 
, 

Then z(α)=0 and y′(x)≤a+z(x), xJ.                                                                                             

 

By setting x=t in the above inequality and integrating the resulting inequality 

over t from α to x, one can get:  

y(x)≤y(α)+a(x−α)+ 


x

dt)t(z , xJ.                                                                                      

Therefore 

z′(x)≤b(x)*                   ∫        ∫     ,     
 

 

 

 

                         ∫       
 

 
-  +.  

Let v(x)=     ∫       
 

 
, then v(α)=0, z(x)≤v(x) and  

z′(x)≤A(x)+b(x)v(x)+b(x) 


x

dt)t(v)t(c  

where A(x) is defined previously. 

Thus 

v′(x)=z′(x)+z(x) 

       ≤A(x)+[      ]v(x)+b(x) 


x

dt)t(v)t(c   

By using the fact that v is a nondecreasing function in x, one can get: 

v(x)≤A(x)+ )x(vdt)t(c)x(b)x(b1

x









 



. 

From lemma (1.1), one can have: 

v(x)≤B(x), 

where B(x) is defined previously. 

Then  

z(x)≤ dtds)s(B)s(c)t(b)t(B)t(b)t(A

x t

 
 









 , xJ. 



Chapter Two                 The One Dimensional Integro-Differential Inequalities 

                                                                    37                                                                   

Hence 

y(x)≤y(α)+a(x−α)+ dsdtd)(B)(c)s(b)s(B)s(b)s(A

x t s

  
  









 , xJ. 

 

Next, a modification of theorem (2.3) can be given in the second part of 

the following theorem. 

 

Theorem (2.4):- 

           Let y, y, a, b and c be nonnegative continuous functions defined on 

J=[α,∞).  

(i) If 

y(x)≤a(x)+∫     *           ∫            
 

 
+  

 

 
, xJ. 

Then 

y(x)≤y(α)+

  





  












 























 















x x t

t

s
s

s

dsdt

dd)(c)(b

ed

ddq)q(c)(b)(b1

e)(A)s(b)s(Adt)t(a , 

where  

A(x)=b(x)[          ∫        ∫           
 

 

 

 
]. 

 

(ii) If 

y(x)≤a(x)+∫     *           ∫     {          }  
 

 
+  

 

 
, xJ, 

then 

y(x)≤y(α)+ 


x

dt)t(a +   
  











x t s

dsdtd)(B)(c)s(b)s(B)s(b)s(A , xJ 

where  

A(x)=b(x)*          ∫       
 

 
 ∫     ,          ∫       

 

 
-  

 

 
+, 
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and  

B(x)= dt

dsd)(c)s(b)s(b1

e)t(A

x

x

t

s






















, xJ. 

 

Proof:- 

(i) Let z(x)=∫     *           ∫            
 

 
+  

 

 
  

then z(α)=0 and y(x)≤a(x)+z(x).                                                                                     

By setting x=t in the above inequality and integrating the resulting inequality 

over t from α to x, one can get: 

y(x)≤y(α)+∫ [         ]  
 

 
. 

Therefore 

z(x)≤b(x)[               ∫ {                           }  
 

 
]  

Let v(x)=z(x)+∫       
 

 
 then  

v(x)≤A(x)+[      ]    +b(x) 


x

dt)t(v)t(c , xJ. 

where A(x) is defined previously. 

By using the fact that v is a nondecreasing function in x, one can get: 

v(x)≤A(x)+[           


x

dt)t(c ]v(x), xJ. 

From lemma (1.1), one can obtain: 

v(x)≤ 




















x

x

t

s

dt

dsd)(c)s(b)s(b1

e)t(A , xJ. 

Then  

z(x)≤A(x)+b(x)  


 


















x x

x

t

s

dt)t(z)t(c)x(bdt

dsd)(c)s(b)s(b1

e)t(A , xJ. 
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By using the fact that z is a nondecreasing function in x, one can have: 

z(x)≤A(x)+b(x)  


 


















x x

x

t

s

dt)t(c)x(z)x(bdt

dsd)(c)s(b)s(b1

e)t(A , xJ. 

 

From lemma (1.1), one can get: 

z(x) )≤ 














 




















 
















x

x

t

s

t

t

s

dt

dsd)(c)s(b

e

dd)(c)(b)(b1

e)s(A)t(b)t(A , xJ. 

Hence 

y(x)≤y(α)+

  





  












 























 















x x t

t

s
s

s

dsdt

dd)(c)(b

ed

ddq)q(c)(b)(b1

e)(A)s(b)s(Adt)t(a . 

 

(ii) Let z(x)=∫     [           ∫     {          }  
 

 
]  

 

 
,  

then  

y(x)≤y(α)+∫        ∫       
 

 

 

 
, xJ.  

Therefore 

z(x)≤b(x)*               ∫ [         ]   ∫     ,          
 

 

 

 

                                                                                   ∫ [         ]  
 

 
-  +, xJ. 

Let v(x)=      ∫       
 

 
, then z(x)≤v(x) and  

z(x)≤A(x)+b(x)v(x)+b(x) 


x

dt)t(v)t(c , 

where A(x) is defined previously. 
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Thus 

v(x)≤A(x)+[      ]    +b(x) 


x

dt)t(v)t(c , xJ. 

By using the fact that v is a nondecreasing function in x, one can get: 

v(x)≤A(x)+ )x(vdt)t(c)x(b)x(b1

x









 



. 

From lemma (1.1), one can have: 

v(x)≤B(x) 

where B(x) is defined previously. 

Then  

z(x)≤  
 











x t

dtds)s(B)s(c)t(b)t(B)t(b)t(A . 

Hence 

y(x)≤y(α)+ 


x

dt)t(a +   
  











x t s

dsdtd)(B)(c)s(b)s(B)s(b)s(A , xJ. 

 

Now, another modification of theorem (2.3) can be given in the second 

part of the following theorem. 

 

Theorem (2.5):- 

           Let y, y, b and c be nonnegative continuous functions defined on 

J=[α,∞). Let k1, k2 and their partial derivatives 
   

  
, 

   

  
 be nonnegative 

continuous functions for α≤t≤x. 

(i) If 

y(x)≤a+∫        [          ]   ∫ ∫         
      

 

 
  

 

 

 

 
, xJ. 

Then  

y(x)≤y(α)+a(x−α)+   
 







  
















x t

t

s

2s

11 dsdt

dd),(k

ed)(B),s(k
s

)s(B)s,s(k)s(A , 
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where  

A(x)=k1(x,x)     








x

2

x

1 dt)t,x(kadt)1x(a)(y)t,x(k
x

)1x(a)(y  

and 

B(x)= 
 



 




















x

x

t

s s

211

dt

dsd),s(kd),s(k
s

)s,s(k1

e)t(A . 

 

(ii) If 

y(x)≤a+∫        [          ]   ∫ ∫        [          ]  
 

 

 

 
  

 

 
, xJ. 

Then 

y(x)≤y(α)+a(x−α)+    
   
















x t s s

211 dsdtd)(B),s(kd)(B),s(k
s

)s(B)s,s(k)s(A , 

where  

A(x)=k1(x,x)     dt)t,x(k)t,x(k
x

)1t(a)(y)1x(a)(y

x

21















  

and                                     

B(x)= dt

dsd),s(kd),s(k
s

)s,s(k1

e)t(A

x

x

t

s s

211


 



 




















. 

 

Proof:- 

           (i) Let  

z(x)=∫        [          ]   ∫ ∫         
      

 

 
  

 

 

 

 
, 

then z(α)=0, y(x)≤a+z(x) and y(x)≤y(α)+a(x− )+∫       
 

 
. 

Therefore 

z(x)=k1(x,x)[          ] ∫
 

  
       [          ]   ∫         

      
 

 

 

 
,  
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and   

z(x)≤k1(x,x) 







 



x

dt)t(z)x(z)1x(a)(y  

                 dtds)s(z)t(z)1x(a)(y)t,x(k
x

x t

1 
 














  

                                 




x

2 dt)t(za)t,x(k , xJ. 

Thus 

z(x)=A(x)+ k1(x,x) 







 



x

dt)t(z)x(z dtds)s(z)t(z)t,x(k
x

x t

1 
 














  

                                                  + 


x

2 dt)t(z)t,x(k , 

where A(x) is defined previously. 

 Let v(x)=z(x)+ 


x

dt)t(z , then v(α)=0, v(x)=z(x)+z(x) and  

z(x)≤A(x)+k1(x,x)v(x)+  
 





x x

21 dt)t(z)t,x(kdt)t(v)t,x(k
x

, xJ. 

Therefore 

v(x)≤A(x)+  )x,x(k1 1 v(x)+  
 





x x

21 dt)t(v)t,x(k)x(bdt)t(v)t,x(k
x

. 

By using the fact that v is a nondecreasing function in x, one can get: 

v(x)≤A(x)+*          ∫
 

  
          ∫          

 

 

 

 
+    . 

From lemma (1.1), one can have: 

v(x)≤B(x), xJ, 

where B(x) is defined previously. 

Then  

z(x)≤A(x)+*            ∫
 

  

 

 
                  ∫          

 

 
+. 
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From lemma (1.1), one can obtain: 

z(x)≤  






  















x

x

t

s

2t

11 dt

dsd),s(k

eds)s(B)s,t(k
t

)t(B)t,t(k)t(A . 

Hence 

y(x)≤y(α)+a(x−α)+   
 







  
















x t

t

s

2s

11 dsdt

dd),(k

ed)(B),s(k
s

)s(B)s,s(k)s(A . 

 

(ii) Let z(x)=∫        [          ]   ∫ ∫        [          ]  
 

 

 

 
  

 

 
  

then z(α)=0 and y(x)≤a+z(x). 

By setting x=t in the above inequality and integrating the resulting inequality 

over t from α to x, one can get: 

y(x)≤y(α)+a(x−α)+ 


x

dt)t(z . 

Therefore 

z(x)≤k1(x,x) 







 



x

dt)t(z)x(z)1x(a)(y + 

                       
 














x t

1 dtds)s(z)t(z)1t(a)(y)t,x(k
x

+ 

                               
 











x t

2 dtds)s(z)t(z)1t(a)(y)t,x(k . 

Let v(x)=z(x)+ 


x

dt)t(z  then v(α)=0, z(x)≤v(x) and  

z(x)≤A(x)+k1(x,x)v(x)+  
 





x x

21 dt)t(v)t,x(kdt)t(v)t,x(k
x

, 

where A(x) is defined previously. 

Therefore 

v(x)=z(x)+z(x) 
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v(x)≤A(x)+    
 







x x

211 dt)t(v)t,x(kdt)t(v)t,x(k
x

)x(v)x,x(k1 . 

By using the fact that v is a nondecreasing function in x, one can get: 

v(x)≤A(x)+ )x(vdt)t,x(kdt)t,x(k
x

)x,x(k1

x x

211 












  

 

. 

From lemma (1.1), one can have: 

v(x)≤B(x). 

where B(x) is defined previously. 

Then  

z(x)≤A(x)+k1(x,x)B(x)+  
 





x x

21 dt)t(B)t,x(kdt)t(B)t,x(k
x

. 

and 

z(x)≤   
  
















x t t

211 dtds)s(B)s,t(kds)s(B)s,t(k
t

)t(B)t,t(k)t(A . 

Hence 

y(x)≤y(α)+a(x−α)+    
   
















x t s s

211 dsdtd)(B),s(kd)(B),s(k
s

)s(B)s,s(k)s(A . 

       

Now, explicit bounds for the unknown function that appeared in the 

one-dimensional second order Volterra linear integro-differential inequality 

can be seen below. 

 

Theorem (2.6), [Pachpatte B., 1980]: 

          Let y, y′, y′′ and c be nonnegative continuous functions defined on 

J=[α,∞). If 

y′′(x)≤a+  




x

dt)t(''y)t('y)t(y)t(c , xJ, 

where a is a nonnegative constant. 
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Then  

y(x)≤y(α)+y(α)[x−α]+
2

)x(a 2
+ 

            
 

    
  























































 



x t s

q dsdtdd

dq)q(c

edq

d)(c2

e)q(A)(A)(c)(A , xJ 

where 

A(x)=c(x) 






 


2

]2)x(2)x[(a
}1x){('y)(y

2

. 

 

Proof: 

        Let z(x)=  




x

dt)t(''y)t('y)t(y)t(c , then y′′(x)≤a+z(x),                                                                                            

y′(x)≤y′(α)+a(x−α)+ 


x

dt)t(z  and  

y(x)≤y(α)+y( )[x− ]+
2

)x(a 2
∫ ∫       

 

 
  

 

 
.                                                                                   

Therefore 

z′(x)≤c(x)[          {    

                     } 
2

]2)x(2)x[(a 2 
      



x

dt)t(z  ∫ ∫       
 

 
  

 

 
]. 

        =A(x)+c(x) 







   

  

x x t

dsdt)s(zdt)t(z)x(z . 

where A(x) is defined previously. 

Let u(x)=z(x)+ 


x

dt)t(z +∫ ∫       
 

 

 

 
  , 

then it is easy to check that                                                  

u′(x)≤ A(x)+u(x)+c(x)u(x)+ ,dt)t(u

x




 xJ. 
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By setting v(x)=u(x)+ 


x

dt)t(u , then u(x)≤v(x) and u′(x)≤A(x)+c(x)u(x)+v(x). 

Therefore 

v′(x)≤A(x)+[      ]v(x), xJ. 

From lemma (1.1), one can obtain: 

v(x)≤
 

dt

ds)s(c2

e)t(A

x

x

t


 

, xJ. 

and this implies that 

u′(x)≤A(x)+
 

dt

ds)s(c2

e)t(A

x

x

t


 

+c(x)u(x). 

From lemma (1.1), one can have: 

u(x)≤
 

 
 


















 



x

x

t

t

t

s dt

ds)s(c

eds

d)(c2

e)s(A)t(A .  

Then 

z′(x)≤A(x)+c(x)
 

 
 

















  



x

x

t

t

t

s dt

ds)s(c

eds

d)(c2

e)s(A)t(A , 

and this implies that 

z(x)≤
 

  
  


















 


















 



x t

t

s

s

s

dtds

d)(c

ed

d)(c2

e)(A)s(A)t(c)t(A . 

Hence 

y(x)≤y(α)+y(α)[x−α]+
2

)x(a 2
+ 

            
 

    
  























































 



x t s

q dsdtdd

dq)q(c

edq

d)(c2

e)q(A)(A)(c)(A , xJ. 
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Next, the following theorem is a generalization of the previous theorem.  

 

Theorem (2.7):- 

          Let y, y, y, a and c be nonnegative continuous functions defined on 

J=[α,∞). If 

y(x)≤a(x)+∫     [                 ]  
 

 
, xJ. 

Then 

y(x)≤y(α)+y(α)[x−α]+  
 

x t

ds)s(a + 

         
 

    
  























































 



x t s

q dsdtdd

dq)q(c

edq

d)(c2

e)q(A)(A)(c)(A , xJ. 

where  

A(x)=c(x) 







   

  

x x t

dsdt)s(adt)t(a)x(a}1x){('y)(y .  

 

Proof:- 

         Let z(x)= ∫     [                 ]  
 

 
 then z(α)=0 and 

y(x)≤a(x)+z(x), y(x)≤y(α)+∫ [         ]  
 

 
   and 

y(x)≤y(α)+y( )[x− ]+∫ ∫       
 

 
  

 

 
+∫ ∫         

 

 

 

 
, xJ. 

Thus 

z(x)≤c(x)*          {     }       ∫        ∫ ∫       
 

 
   

 

 

 

 

                     ∫       
 

 
 ∫ ∫       

 

 
  

 

 
+. 

        ≤A(x)+c(x)*     ∫        
 

 
∫ ∫       

 

 
  

 

 
+, 

where A(x) is defined previously. 

Let u(x)=z(x)+ ∫        
 

 
∫ ∫       

 

 
  

 

 
.  
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Then it is easy to check that 

u(x)≤A(x)+     +c(x)u(x)+∫       
 

 
, xJ. 

Let v(x)=u(x)+∫       
 

 
 then v(α)=0, u(x)≤v(x)  and  

u(x)≤A(x)+c(x)         . 

Therefore 

v(x)≤A(x)+[      ]    . 

From lemma (1.1), one can have: 

v(x)≤∫      ∫ [      ]  
 

   
 

 
, xJ. 

and this implies that: 

u(x)≤A(x)+∫      ∫ [      ]  
 

 
 

 
           , xJ. 

From lemma (1.1), one can get: 

u(x)≤∫ *     ∫      ∫ [      ]  
 

   
 

 
+ ∫       

 

   
 

 
, xJ. 

Then  

z(x)≤A(x)+c(x)∫ ,     ∫      ∫ [      ]  
 

   
 

 
-  ∫       

 

   
 

 
 

and this implies that 

z(x)≤
 

  
  


















 


















 



x t

t

s

s

s

dtds

d)(c

ed

d)(c2

e)(A)s(A)t(c)t(A . 

Hence 

y(x)≤y(α)+y(α)[x−α]+  
 

x t

ds)s(a + 

         
 

    
  























































 



x t s

q dsdtdd

dq)q(c

edq

d)(c2

e)q(A)(A)(c)(A , xJ. 

 

Now, another extension of theorem (2.6) can be given below. 
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Theorem (2.8):- 

         Let y, y and y be nonnegative continuous functions defined on 

J=[α,∞). Let k and its partial derivative 
  

  
 be nonnegative continuous 

functions for α≤t≤x. If  

y(x)≤a+∫       [                 ]
 

 
  , xJ, 

where a is a nonnegative constant. 

Then  

y(x)≤y(α)+y(α)[x−α]+
 

2

xa
2


     

                 
  




















x t s

dsdtdd)(B),(k)(B),(k)(A , xJ, 

where  

A(x)=k(x,x) 






 


2

]2)x(2)x[(a
}1x){('y)(y

2

+ 

                      dt
2

]2)t(2)t[(a
}1t){('y)(y)t,x(k

x

x 2











 





 

and 

B(x)= 





















































 





















x

x

t

s

t

t

s

dt

dsd),s(k
s

)s,s(k

eds

dd),(k),(k2

e)s(A)t(A . 

 

Proof:- 

         Let z(x)=∫       [                 ]  
 

 
 then z(α)=0, y(x)≤a+z(x), 

y(x)≤y(α)+a(x−α)+∫       
 

 
 and  

y(x)≤y(α)+y( )[x− ]+
2

)x(a 2
 ∫ ∫       

 

 
  

 

 
.                                                                        
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Therefore 

z(x)≤k(x,x)[          {     }  
2

]2)x(2)x[(a 2 
      

                                          ∫        ∫ ∫       
 

 
  

 

 

 

 
] 

        +∫
 

  
      [          {     }  

2

]2)t(2)t[(a 2 
 

 

 

                       ∫        ∫ ∫       
 

 
  

 

 

 

 
]  . 

z(x)≤A(x)+k(x,x) 







   

  

x x t

dsdt)s(zdt)t(z)x(z  

                                   dtdsd)(zdt)s(z)t(z)t,x(k
x

x t t s

   
   














, xJ. 

Let u(x)=z(x)+∫        ∫ ∫       
 

 
  

 

 

 

 
. 

Then it is easy to check that  

u(x)≤A(x)+     k(x,x)u(x)+∫
 

  
             ∫       

 

 

 

 
. 

By setting v(x)=u(x)+∫       
 

 
, one can have: 

v(α)=0, u(x)≤v(x) and  

u(x)≤A(x)+k(x,x)u(x)+∫
 

  
                 

 

 
. 

Therefore 

v(x)=u(x)+u(x),  

       ≤A(x)+[        ]     ∫
 

  
            

 

 
, xJ. 

By using the fact that v is a nondecreasing function in x, then one can obtain: 

v(x)≤A(x)+*         ∫
 

  
        

 

 
+     , xJ. 

From lemma (1.1), one can get: 
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v(x)≤ 

























x

x

t

s

dt

dsd),s(k
s

)s,s(k2

e)t(A , xJ. 

Thus  

u(x)≤A(x)+k(x,x)u(x)+  


 


























x x

x

t

s

dt

dsd),s(k
s

)s,s(k2

e)t(Adt)t(u)t,x(k
x

. 

 

By using the fact that u is a nondecreasing function in x, one can have: 

u(x)≤ A(x)+ 

























x

x

t

s

dt

dsd),s(k
s

)s,s(k2

e)t(A + )x(udt)t,x(k
x

)x,x(k

x













 



  

From lemma (1.1), one can obtain: 

u(x)≤B(x), xJ 

where B(x) is defined previously. 

Then 

z(x)≤A(x)+k(x,x)B(x)+∫
 

  
            

 

 
, xJ. 

and 

z(x)≤  
 















x t

dtds)s(B)s,t(k
t

)t(B)t,t(k)t(A . 

Hence 

y(x)≤y(α)+y(α)[x−α]+
 

2

xa
2


     

                 
  




















x t s

dsdtdd)(B),(k)(B),(k)(A , xJ, 

 

Next, explicit bounds for the function that appeared in another type of 

the one-dimensional second order Volterra linear integro-differential 

inequality can be given below. 
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Theorem (2.9):- 

        Let y, y, y and a be nonnegative continuous functions defined on 

J=[α,∞). Let k and its partial derivative 
x

k




 be nonnegative continuous 

functions for α≤t≤x. If 

y(x)≤a(x)+∫       [          ]  
 

 
, xJ. 

Then 

y(x)≤y(α)+y(α)[x−α]+∫ ∫ *     ∫ ,           ∫        
 

 

 

 

 

 

 

 

         ∫
 

  
      [∫       

 

 
]  

 

 
-  +    , 

where 

A(x)=k(x,x)*          {     }  ∫        ∫ ∫         
 

 

 

 

 

 
+  

        ∫
 

  
      *          {     } ∫        ∫ ∫         

 

 

 

 

 

 
+  

 

 
 

and 

B(x)= dt

dsd))(,s(k
s

)s,s(k)s(1

e)t(A

x

x

t

s



























. 

 

Proof:- 

        Let z(x)=∫       [          ]  
 

 
, then z(α)=0, y(x)≤a(x)+z(x). 

Therefore 

y(x)≤y(α)+∫        ∫       
 

 

 

 
 

and                                                  

y(x)≤y(α)+y( ){x− }+∫ ∫ [         ]  
 

 
  

 

 
, xJ. 

Since z is a nondecreasing function in x for xJ then  
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z(x)≤A(x)+ 

                  *∫ [     ∫       
 

 
]   ∫

 

  

 

 
      [∫ {     ∫       

 

 
}  

 

 
]  

 

 
+, 

where A(x) is defined previously. 

Let v(x)=z(x)+∫       
 

 
 , 

then  

z(x)≤A(x)+k(x,x)∫       
 

 
 ∫

 

  
      *∫       

 

 
+  

 

 
, z(x)≤v(x) 

and 

v(x)=z(x)+z(x),  

Therefore  

v(x)≤A(x)+k(x,x)∫        ∫
 

  
      *∫       

 

 
+       

 

 

 

 
. 

By using the fact that v is a nondecreasing function in x, one can have: 

v(x)≤A(x)+*              ∫
 

  
             

 

 
+    . 

From lemma (1.1), one can obtain: 

v(x)≤B(x), 

where  

B(x)= dt

dsd))(,s(k
s

)s,s(k)s(1

e)t(A

x

x

t

s



























. 

Then 

z(x)≤    
    


























x t t s

dtdsd)(B)s,t(k
t

ds)s(B)t,t(k)t(A , xJ. 

 

Therefore by substituting this result in the estimate of y(x) one can get the 

desired result. 

 

2.3 Solutions of the One-Dimensional Volterra Non-linear Integro-

Differential Inequalities: 
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          As seen before in the previous section, all the previous integro-

differential inequalities are of the linear type. Here we give some theorems 

which determine explicit bounds for the unknown function in special types of 

the one-dimensional Volterra non-linear integro-differential inequalities of the 

first and second order. 

 

        First we give the following lemma which will be needed later. 

 

Lemma (2.1), [Bainov D. and Simeonov P., 1992, p.38]:- 

         Let y be a positive differentiable function satisfying the inequality 

y′(x)≤a(x)y(x)+b(x)y
p
(x), xJ=[α,β] 

and  

y(α)≤yo,  

where a and b are continuous functions defined on J and p≠1 is a nonnegative 

integer. 

Then 

y(x)≤

q

1

ds)s(aqdt)t(a x

t

q

o

x

dte)t(bqye























 , x[α,β1), 

where q=1−p and β1 is chosen such that the expression between […] is 

positive in the subinterval [α,β1). 

 

         Now the following theorem determined  explicit bounds for the 

unknown function for  special types  of  the one-dimensional Volterra 

nonlinear integro-differential inequalities of the first order.  

  

Theorem (2.10), [Pachpatte B., 1977b]:- 

        Let y, y′ and b be nonnegative continuous functions defined on J=[α,∞).  
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If  

y′(x)≤a+  




x

dt)t('y)t(y)t('y)t(b , for xJ,  

where a is a positive constant. 

Then  

y(x)≤y(α)+ ∫  
[      ] ∫     [    ]    

 

     
 

 
, x[α,∞),  

where 

E(x)=e
α
–[a+y(α)] dte)t(b

x

t




, 

 

Proof:- 

        Let z(x)=a+  




x

dt)t('y)t(y)t('y)t(b  then z(α)=a and y′(x)≤z(x).                                                                                             

By setting  x=t in the above inequality and integrating the resulting inequality 

over t from α to x, one can get:  

y(x)≤y(α)+ 


x

dt)t(z .                                                                                 

Therefore 

z′(x)=b(x)y′(x)[          ],  

       ≤b(x)z(x)[           


x

dt)t(z ]. 

Let v(x)=y(α)+z(x)+ 


x

dt)t(z  then z(x)≤v(x) and z′(x)≤b(x)z(x)v(x). 

Therefore 

v′(x)=z′(x)+z(x),  

       ≤b(x)v
2
(x)+v(x). 

From lemma (2.1) one can have:  
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v(x)≤  [      ][    ]  , x[α,∞), 

where E(x) is defined previously. 

Then  

z′(x)≤b(x)  [      ][    ]   z(x), x[α,∞). 

From lemma (1.1), one can obtain: 

z(x)≤a 
[      ] ∫       [    ]    

 

 , x[α,∞) 

Hence  

y(x)≤y(α)+ ∫  
[      ] ∫       [    ]   

     
 

 
, x[α,∞). 

 

Next, the following theorem is a generalization of the previous theorem. 

 

Theorem (2.11):- 

Let y and y be nonnegative continuous functions defined on J=[α,∞) 

and a>0 is a constant. Let k and its partial derivative 
  

  
 be nonnegative 

continuous functions for α≤t≤x. If  

y(x)≤a+∫            [          ]  
 

 
, xJ, 

Then 

y(x)≤y(α)+ ∫  
[      ] ∫ *        [    ]   ∫

 

  
        [    ]   

   +  
 
   

 

 
, x[α,∞), 

where 

E(x)=   [      ]∫   *       ∫
 

  

 

 
        +  

 

 
. 

 

Proof:- 

Let z(x)=a+∫            [          ]
 

 
   then z(α)=a and 

y(x)≤y(α)+∫       
 

 
. 

Therefore 

z(x)=k(x,x)y(x)[          ]  ∫
 

  
           [          ]  

 

 
,  
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z(x)≤k(x,x)z(x)[          ∫       
 

 
]  ∫

 

  
          *     

 

 

                  ∫       
 

 
+  . 

Let v(x)=y(α)+z(x)+∫       
 

 
 then v(α)=a+y(α), z(x)≤v(x)  and  

z(x)≤k(x,x)z(x)v(x)+∫
 

  
                

 

 
. 

Thus 

v(x)=z(x)+z(x),  

        ≤k(x,x)v
2
(x)+∫

 

  
                  

 

 
. 

By using the fact that v is a nondecreasing function in x, one can get: 

v(x)≤v(x)+*       ∫
 

  
        

 

 
+      . 

From lemma (2.1) one can have: 

v(x)≤[      ]  [    ]  , x[α,β), 

then  

z(x)≤k(x,x)[      ]  [    ]       ∫
 

  
        [    ]   

 
      . 

By using the fact that z is a nondecreasing function in x, one can have: 

z(x)≤*      {      }  [    ]   ∫
 

  
        [    ]   

 
  +z(x). 

From lemma (1.1), one can obtain: 

z(x)≤a 
∫ *      [      ]  [    ]   ∫

 

  
        [    ]    

 
 +  

 
 , x[α,∞), 

Hence 

y(x)≤y(α)+∫  
 

 
 
∫ *      [      ]  [    ]   ∫

 

  
        [    ]    

 
 +  

 
   , x[α,∞). 

 

Now, solutions of another type of the one-dimensional first order linear 

Volterra non-linear integro-differential inequality are given below. 
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Theorem (2.12), [Pachpatte B., 1977]:- 

         Let y, y′ and b be nonnegative continuous functions defined on J=[α,∞) 

and b(x)≥1 for each xJ. Let w be a positive continuous nondecreasing 

function defined on J and a≥0 be a constant. If  

y′(x)≤a+  




x

dt)t('y)t(yw)t(b , xJ. 

Then for α≤x≤x1 

y(x)≤y(α)+a[   ]+∫ ∫      {   [ (    ) ∫       
 

 
]}    

 

 

 

 
, 

where  

A(x)=      [     ] 

and 

G(u)=  

u

u0
)t(wt

dt
, u>0, u0>0                                                                         (2.3) 

and G
-1

 is the inverse of G, and x1J is chosen such that G(A(x))+ 


x

dt)t(b  is in 

the domain of G
-1

 for xJ lying in the interval [α,x1]. 

 

Proof:- 

Let z(x)=∫      [          ]  
 

 
 then z(α)=0, y(x)≤a+z(x) and  

y(x)≤y(α)+a[x− ]+ ∫       
 

 
. 

Therefore  

z(x)=b(x)w[          ] 

       ≤b(x)w[      [     ]      ∫       
 

 
] 

       =b(x)w[          ∫       
 

 
], 

where A(x) is defined previously. 

Let uR+ be any arbitrary number then for α≤x≤u, one can obtain: 

z(x)≤b(x)w[          ∫       
 

 
]. 
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Let v(x)=A(u)+z(x)+∫       
 

 
 then v(α)=A(u) and  

z(x)≤b(x)w(v(x)). 

By using the above inequality and the fact that z(x)≤v(x) in the equation 

v(x)=z(x)+z(x), 

       ≤b(x)w(v(x))+v(x), 

       ≤b(x)[            ] 

By dividing the above inequality by [            ] and integrating the 

resulting inequality from α to x and using equation (2.3), one can get: 

G(v(x))≤G(A(u))+∫       
 

 
. 

Then 

z(x)≤b(x)w{   [ (    )  ∫       
 

 
]}. 

By integrating the above inequality from α to x, one can have: 

z(x)≤∫      ,   * (    )  ∫       
 

 
+-  

 

 
. 

Since u is an arbitrary number then  

z(x)≤∫      ,   * (    ) ∫       
 

 
+-  

 

 
. 

Hence  

y(x)≤y(α)+a[   ]+∫ ∫      {   [ (    ) ∫       
 

 
]}    

 

 

 

 
. 

 

Now, an extension of theorem (2.12) can be seen below. 

 

Theorem (2.13):- 

Let y, y, a and b be nonnegative continuous functions defined on 

J=[α,∞) and b(x)≥1. Let w be a positive continuous nondecreasing function 

defined on J. If 

y(x)≤a(x)+∫      [          ]  
 

 
, xJ. 
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Then 

y(x)≤y(α)+∫ ,     ∫      [   { (    )  ∫       
 

 
}]  

 

 
-  

 

 
, 

where  

A(x)=y(α)+a(x)+∫       
 

 
, 

G and G
-1

 are defined previously and x1J is chosen such that 

G(A(x))+∫       
 

 
 is in the domain of G

-1
 for all xJ lying in the interval 

[α,x1]. 

 

Proof:- 

Let z(x)=∫      [          ]  
 

 
 then z(α)=0 and  

y(x)≤y(α)+∫        ∫       
 

 

 

 
. 

Therefore  

z(x)=b(x)w[          ],  

and  

z(x)≤b(x)w[          ∫             ∫       
 

 

 

 
]. 

       ≤b(x)w[          ∫       
 

 
]. 

where A(x) is defined previously. 

Let uR+ be any arbitrary number then for α≤x≤u, one can obtain: 

z(x)≤b(x)w[          ∫       
 

 
]. 

Let v(x)=A(u)+z(x)+∫       
 

 
 then v(α)=A(u) and  

z(x)≤b(x)w(v(x)). 

By using the above inequality and the fact that z(x)≤v(x) one can have: 

v(x)=z(x)+z(x), 

       ≤b(x)w(v(x))+v(x), 

       ≤b(x)[            ] 
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By dividing the above inequality by [            ] then integrating the 

resulting inequality from α to x and using equation (2.3), one can get: 

G(v(x))≤G(A(u))+∫       
 

 
. 

Then 

z(x)≤b(x)w{   [ (    )  ∫       
 

 
]}. 

By integrating the above inequality from α to x, one can have: 

z(x)≤∫      ,   * (    )  ∫       
 

 
+-  

 

 
. 

Since u is an arbitrary number then  

z(x)≤∫      ,   * (    ) ∫       
 

 
+-  

 

 
. 

Hence  

y(x)≤y(α)+∫ ,     ∫      [   (       ∫       
 

 
)]  

 

 
-  

 

 
. 

 

Now, the following theorem appeared in [Pachpatte B.,1998, p.176] 

without proof. Here we give its proof. 

 

Theorem (2.14):- 

Let y, y and c be nonnegative continuous functions on J=[α,∞). Let w 

be a positive continuous nondecreasing function defined on J. Let a≥0 and 

b≥0 be constants. If  

y(x)≤a+b[     ∫      [          ]  
 

 
], xJ. 

then  

y(x)≤y(α)+a[x− ]+∫ *      ∫    
 

  ∫ (           [   { (     )  
 

 

 

 

          ∫ [              ]  
 

 
}]) ∫    

 

   +  , α≤x≤x1 

where  

A(x)= b[       {             }], 
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G and G
–1

 are defined previously and x1J is chosen such that  [  

         ]       ∫       
 

 
 is in the domain of G

–1
 for all xJ lying in 

the interval [α,x1]. 

 

Proof:- 

Let z(x)=b[     ∫      [          ]  
 

 
] then z(α)=by(α) and  

y(x)≤y(α)+a[x− ]+ ∫       
 

 
. 

Therefore  

z(x)=b[           [          ]]. 

       ≤b[            {      {     }       ∫       
 

 
}]  

       ≤b[       {      [     ]}]+b[          {     

                                                                                                   ∫       
 

 
}]. 

       =A(x)+b[          {     ∫       
 

 
}], 

where A(x) is defined previously. 

Let v(x)=z(x)+∫       
 

 
 then v(α)=by(α), z(x)≤v(x) and 

z(x)≤A(x)+b[                ]. 

Thus  

v(x)=z(x)+z(x),  

       ≤A(x)+(1+b)v(x)+bc(x)w(v(x)). 

       ≤A(x)+(1+b)c(x)[            ]. 

By dividing the above inequality by [            ], one can have: 

     

[            ]
 

    

[            ]
          , 

                    ≤A(x)+(1+b)c(x). 

Then 

v(x)≤   {        ∫ [              ]  
 

 
}, 
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and 

z(x)≤A(x)+bc(x)w[   { (     ) ∫ [              ]  
 

 
}]       . 

From lemma (1.1), one can get: 

z(x)≤by(α) ∫    
 

  ∫ (           *   , (     ) ∫ [     
 

 

 

 

                   ]  -+) ∫    
 

   . 

Hence 

y(x)≤y(α)+a[x− ]+∫ *      ∫    
 

  ∫ (           [   { (     )  
 

 

 

 

          ∫ [              ]  
 

 
}]) ∫    

 

   +  . 

 

Next, the following two theorems are generalizations of the previous 

theorem. 

 

Theorem (2.15):- 

Let y, y, a and c be nonnegative continuous functions defined on 

J=[α,∞). Let w be a positive continuous nondecreasing function defined on J 

and b≥0 be a constant. If 

y(x)≤a(x)+b[     ∫      [          ]  
 

 
], xJ. 

Then 

y(x)≤y(α)+∫ *           ∫    
 

  ∫ (           [   { (     ) 
 

 

 

 

∫ [              ]  
 

 
}]) ∫    

 

   +  , α≤x≤x1 

where  

A(x)=b[          (          ∫       
 

 
)], 

where G and G
–1

 are as defined in theorem (2.12) and x1J is chosen such that 

 (     ) ∫ [              ]  
 

 
 is in the domain of G

–1
 for all xJ 

lying in the interval α≤x≤x1. 
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Proof:- 

Let z(x)=b[     ∫      [          ]  
 

 
] then z(α)=by(α)  

and  

y(x)≤y(α)+∫        ∫       
 

 

 

 
. 

Therefore  

z(x)=b[           [          ]]. 

       ≤b[               (          ∫             ∫       
 

 

 

 
)]  

       ≤b[          {          ∫       
 

 
}]+b[          {     

               ∫       
 

 
}]. 

Thus 

z(x)≤A(x)+b[          {     ∫       
 

 
}]. 

where A(x) is defined previously. 

Let v(x)=z(x)+∫       
 

 
 then v(α)=by(α), z(x)≤v(x) and 

z(x)≤A(x)+b[                ]. 

Thus  

v(x)=z(x)+z(x),  

       ≤A(x)+(1+b)v(x)+bc(x)w(v(x)). 

       ≤A(x)+(1+b)c(x)[            ]. 

By dividing the above inequality by [            ], one can have: 

     

[            ]
 

    

[            ]
          , 

                    ≤A(x)+(1+b)c(x). 

Then 

v(x)≤   {        ∫ [              ]  
 

 
}, 

and 

z(x)≤A(x)+bc(x)w[   { (     ) ∫ [              ]  
 

 
}]       . 

From lemma (1.1), one can get: 
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z(x)≤by(α) ∫    
 

  ∫ (           *   , (     ) ∫ [     
 

 

 

 

                   ]  -+) ∫    
 

   . 

Hence 

y(x)≤y(α)+∫ *           ∫    
 

  ∫ (           [   { (     ) 
 

 

 

 

          ∫ [              ]  
 

 
}]) ∫    

 

   +  . 

 

Theorem (2.16):- 

Let y and y be nonnegative continuous functions defined on J=[α,∞). 

Let w be a positive continuous nondecreasing function defined on J. Let k and 

its partial derivative  
  

  
  be nonnegative continuous functions defined on J.  

If  

y(x)≤a+b[     ∫        [          ]  
 

 
], xJ. 

Then  

y(x)≤y(α)+a[x−α]+ 

                  
  


















 






























x t

t

s

s

t

dtds

bd

e))s(B(wd),s(k
s

)s,s(kb)s(A

bds

)eby( , 

where  

A(x)=b     












 



x

dt)1x(a)(yw)t,x(k
x

)1x(a)(yw)x,x(ka , 

B(x)=G
−1







































  

 

x t

dtds)s,t(k
t

)t,t(k)1b()x(A))(by(G , 

G and G
–1

 are defined previously and x1J is chosen such that  (     

     ) ∫      *         ∫
 

  
        

 

 
+

 

 
 is in the domain of G

–1 
for 

all xJ lying in the interval [α,x1]. 

Proof:- 
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Let z(x)=b[     ∫        [          ]  
 

 
] then z(α)=by(α)  

and  

y(x)≤y(α)+a[x− ]+∫       
 

 
. 

Therefore 

z(x)=b*             [          ]  ∫
 

  
       [          ]  

 

 
+,  

       ≤b*              {      [     ]      ∫       
 

 
} 

                ∫
 

  
       *       [     ]       ∫       

 

 
+

 

 
+ 

     =A(x)+b


































  
 

x tx

dtds)s(z)t(zw)t,x(k
x

dt)t(z)x(zw)x,x(k)x(z  

where A(x) is defined previously. 

Let v(x)=z(x)+∫       
 

 
 then v(α)=by(α), z(x)≤v(x)  and  

z(x)≤A(x)+b[                  ]  ∫
 

  
       (    )  

 

 
. 

By using the fact that w is a nondecreasing function, one can get: 

z(x)≤A(x)+bz(x)+b*       ∫
 

  
        

 

 
+w(v(x)). 

Thus 

v(x)=z(x)+z(x),  

Therefore   

v(x)≤A(x)+(b+1)v(x)+b*       ∫
 

  
        

 

 
+ (    ). 

        ≤A(x)+(b+1)*       ∫
 

  

 

 
        +[            ]. 

Let uR+ be any arbitrary number then for α≤x≤u, one can obtain: 

v(x)≤A(u)+(b+1)*       ∫
 

  

 

 
        + [            ]. 

By dividing the above inequality by [            ] and then integrating the 

resulting inequality from α to x and using equation (2.3), one can obtain: 

v(x)≤G
−1




































  

 

x t

dtds)s,t(k
t

)t,t(k)1b()u(A))(by(G , α≤x≤u. 
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Then for x=u, one can get: 

v(x)≤B(x) 

where B(x) is defined previously. 

then  

z(x)≤A(x)+ b*       ∫
 

  

 

 
        +       +bz(x). 

From lemma (1.1), one can obtain: 

z(x)≤by(α)



x

bdt

e + dt

bds

e))t(B(wds)s,t(k
t

)t,t(kb)t(A

x

t

x t 

























 

 

. 

Hence 

y(x)≤y(α)+a[x−α]+ 

                  
  


















 






























x t
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s
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t

dtds

bd

e))s(B(wd),s(k
s

)s,s(kb)s(A

bds

)eby( . 
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From the present study, we can conclude the following : 
 

(1) The classification of the one-dimensional integral and integro-

differential inequalities can be extended to include the multi-

dimensional integral and integro-differential inequalities. 

(2) Defining the one-dimensional n-th order integro-differential 

inequalities is similar to the definition of the one dimensional first 

order integro-differential inequalities. 

(3) The upper bound for the unknown function in the previous integral 

and integro-differential inequalities may not be unique. 

(4) The existence of the upper bound for the unknown function in all 

of the integral and integro-differential inequalities is based on the 

existence of the lower bound of it. 

(5) Finding explicit bounds for the unknown function of the integral 

and integro-differential inequalities that contains the sign ≥ instead 

of the sign ≤ can be easily discussed. 

(6) Discussing the existence of the solutions of integral and integro-

differential inequalities depends on the existence of the solutions 

of special types of differential inequalities.    

 

Also, for further work, we can recommend the introduction of the 

following open problems: 

(1) Use the integro-differential inequalities to ensure the existence and 

uniqueness of the solutions for the integro-differential equations.  

(2) Find explicit bounds for the unknown functions in the integro-

differential inequalities of Fredholm type. 

(3) Determine explicit bounds for the unknown function in the multi-

dimensional integro-differential inequalities. 
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 انمستخهص

 

محاًس. ىزه انمحاًس يمكن تهخيصيا  أسبعتنعمم يمكن تصنيفو انى انيذف انشئيسي من ىزا ا

 كالاتي:

 

 .ىٌ اعطاء تصنيف نهمتشاجحاث انتكامهيت راث انبعذ انٌاحذ الهدف الاول:   

 

                                                                   انٌاع خاصت من في انمٌجٌدة ىٌ ايجاد قيٌد صشيحت نهذًال انمجيٌنت الهدف الثاني:   

 فٌنتيشا راث انبعذ انٌاحذ. من نٌعانخطيت ً انلاخطيت انتكامهيت  انمتشاجحاث

 

  راث انبعذ انٌاحذ.انتفاضهيت -ىٌ تصنيف انمتشاجحاث انتكامهيت الهدف الثالث:   

 

    انٌاع خاصت من في انمٌجٌدة ىٌ اعطاء قيٌد صشيحت نهذًال انمجيٌنت الهدف الرابع:   

من نٌع فٌنتيشا راث انبعذ  انتفاضهيت انخطيت ًانلاخطيت-انتكامهيت انمتشاجحاث

 انشتبت الاًنى ًانثانيت. منانٌاحذ 

 

                            

 



                                                                                                                            
 وهىريت العراقج

                                                                                                                                               وزارة التعلين العالي والبحث العلوي 
                                                                             جاهعــت النهرين

 كليت العلىم
 قسن الرياضياث وتطبيقاث الحاسىب

                                                                                 

 
 

ة ي ل كام ت تراجحات ال م ة  -ال ي ل تف اض  ال
     

ة ال  رس
ه إل م د سوبى  مق ا ح ت ال ا يق  ب ت وتط ا ي ض ا ري م ال س لوم   ،ق ع ة ال ي ل ك  

ة  ع م ا ريج نه ر  نال ي ت س اج ة م رج ل د ي ت ن ا ب ل تط زء من م ي ج تعوه ا ي ض ا ري ي ال لوم ف  
 

ل  ب من ق  

ون أسماء لد يفع  خ لط ال    بد
الوريوس   ك ب رين) نه ة ال ع م ا 2٠ ،ج ٠4) 

 

 

 

ف شرا إ  ب
يل أحلامد.    يل جم  خل
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