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Abstract 
The main aim of this thesis is focused on studying some non-linear 

uncertain stochastic dynamical system. 

The necessary background for stochastic process, stochastic integral for 

Brownian motion and fractional Brownian motion, stochastic dynamical 

system driven by Brownian motion and fractional Brownian motion are 

studied and discussed supported by useful comments and examples. 

Some class of non-linear  stochastic ordinary control system driven 

by Brownian motion as well as fractional Brownian motion have been 

considered and discussed. 

ˆIto

A necessary theorem of solvability and controllability of some class of 

non-linear  dynamical control system driven by Brownian motion are 

discussed and proved using Banach fixed point theorem and supported by 

useful concluding remark and illustration. 

ˆIto

A theorem of solvability and controllability of some class of non-linear 

 dynamical system driven by fractional Brownian motion are also stated 

and proved supported by illustration. 

ˆIto



Introduction………………………………………………………………………………… 

Controllability concepts plays a vital role in deterministic control 

theory. It is well known that controllability of deterministic equation are 

widely used in many fields science and technology, say, physics and 

engineering. However, in many cases, some kind of randomness can 

appear in the problem, so that the system should be modeled by a 

stochastic form. 

Controllability for linear and nonlinear deterministic systems has 

been well studied. For stochastic system the situation is less satisfactory. 

Only few papers deal with the stochastic control problem. Klamka and 

Socha [J. Klamka and L. Socha 1977] derived sufficient conditions for 

the stochastic controllability of linear and nonlinear systems using 

Lyapunov technique. 

In [Y. Liu and S. Peng 2002] Liu and Peng has studied the exact 

controllability and exact terminal controllability of stochastic linear 

equation with control acting on the noise term. 

Arapostathis in [Arapostathis 2001] established the controllability 

properties of the class  of stochastic differential systems characterized by 

a linear controlled diffusion perturbed by a smooth, bounded, uniformly 

Lipschitz nonlinearity. Sirbu and Tessitore [M. Sirbu and G. Tessitore 

2001] studied null controllability of an infinite dimensional stochastic 

differential equations with state and control dependent noise using Riccati 

approach.  

In [A.E. Bashirov and K.R. Kerimov 1997] Bashirov  and Kerimov 

proved that the approximate and complete controllability conditions for 

the partially observed linear control system to attain an arbitrarily small 

 I



Introduction………………………………………………………………………………… 

neighborhood of each point in the state space with probability arbitrarily 

close to one. 

Controllability of nonlinear infinite dimensional stochastic system 

is studied in [J.P. Dauer and N.I. Mahmudov 2003] and the controllability 

of finite dimensional stochastic systems is studied in [Mahmudov 2000]. 

Mahmudov in [Mahmudov 2003] derived a set of sufficient conditions for 

the controllability of stochastic nonlinear systems. 

In the past few years, fractional Brownian motion has been the 

subject of numerous investigations. Its potential applications to 

telecommunications and mathematical finance are the practical reasons 

for which this process is so much studied. On the theoretical point of 

view, it is an interesting process because it is neither a Markov process 

nor a semi-martingale so that stochastic calculus with respect to it is 

challenging. In particular, several attempts have been made to define a 

good stochastic integral with respect to fractional Brownian motion. 

Y. Hu and B. Oksendal in [Hu 2003] showed that real inputs 

exhibit long-range dependence : the behavior of a real process after a 

given time t does not only depend on the situation at t but also of the 

whole history of the process up to time t. Moreover, it turns out that this 

property is far from being negligible because of the effects it induces on 

the expected behavior of the global system [Sakthivel 2003]. 

In this thesis, from the above literatures, our aim have been focused 

on studying and developing some result on controllability and solvability 

of [Mahmudov 2004].  

The controllability of stochastic dynamic control system driven by 

Brownian motion and fractional Brownian motion have been considered. 

 II
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 III

The thesis is divided into three chapters. Chapter one  is divided 

into five sections. Section 1 presents some basic concepts of Probability 

theory. Section 2 deals with Random Variable. Section 3 deals with 

Stochastic Processes. Section 4 deals with classes of stochastic processes. 

In Section 5 Brownian motion was studied and discussed. 

Chapter two is divided into three sections. Section 1 presents some 

basic concepts of Brownian motion calculus. Section 2 deals with Control 

System Theory. In section 3 the complete controllability of a nonlinear 

stochastic dynamic  system (Standard Brownian motion) are discussed 

and proved by using the contraction mapping principle. 

Chapter three  is divided into three sections. Section 1 presents 

some basic concepts of Fractional Brownian motion. In section 2 the 

complete controllability of a nonlinear stochastic dynamic  system 

(fractional Brownian motion) are discussed and proved by using the 

contraction mapping principle. In section three we apply our results in 

example. 
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This chapter is divided into five sections. Section 1 presents some basic 

concepts of Probability theory. Section 2 deals with Random Variable. 

Section 3 deals with Stochastic Processes. Section 4 deals with classes of 

stochastic processes. In Section 5 Brownian motion was studied and 

discussed. 

 

1.1 BASIC CONCEPTS OF PROBABILITY THEORY 

The set of all possible outcomes of an experiment is called the 

sample space and denoted by Ω , that is 1 2 nΩ {ω ,ω ,...,ω } denotes the set 

of all finite outcomes,  denotes the set of all countably 

infinite outcomes and  denotes the set of uncountably 

infinite outcomes. 

1 2Ω = { ,...}

tΩ = {ω < t < T

ω ,ω

: 0 }

 

Definition(1.1.1) Set Operations [Krishnan 1984] 

Let A and B be two subsets of the sample space , we define the 

following operation: 

Ω

1. The Complement of  A, denoted by cA , represents the set of all 

ω -points not contained in A: 
cA {ω :ω A}.                                         (1.1.1) 

The complement of  is the empty set Ω  . 

 

2. We said that A and B are equal iff A contained B and B 

contained A: 

A B A B and B A                          (1.1.2) 

3. The Union of sets A and B, denoted by , 

represents the occurrence of ω

A B or A B 

points in either A or B: 

A B {ω :ω A or ω B}                       (1.1.3) 

The union of an arbitrary collection of sets is defined by: 

 1
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n N

1 2 n i i
i 1

A A ... A A {ω :ω A for some i},i 1,2,...n   



     

4. The intersection of sets A and B, denoted by A B  or AB, 

represents the occurrence of ω points in A and B: 

A B {ω :ω A and ω B}                     (1.1.4) 

Clearly, if there is no commonality of ω points in A and B, 

then  is the empty set A B  . 

The intersection of an arbitrary collection of sets is defined by: 
n N

1 2 n i i
i 1

A A ... A A {ω :ω A for all i},i 1,2,...n



        

5.  De Morgan's law 

  and c c(A B) A B  c cc c(A B) A B   

In general  
n n

c c

i i
i 1 i 1

( A ) A
 

   and                                    (1.1.5) 
n n

c

i
i 1 i 1

( A ) A
 

  c

i

 

Example (1.1.1) 

Let Ωbe the ω points on the real line R. 

Ω {ω : ω }      

Define  

A {ω : ω ( ,a)} {ω a}

B {ω : ω (b,c)} {b ω c}

    
    

 

Then the set operation yield  
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c

c

A {a ω }

B { ω b} {c ω }

{ω a} c a

A B {ω c} b a c

{ω a} {b ω c} a b

{b ω c} c a

A B {b ω a} b a c

a b

   

      

 
  
    

  




    
 









 

The union and intersection of an arbitrary collection of sets are 

defined by: 

n n
n N

n n
n N

A {ω : ω A for some n N}

A {ω : ω A for all n N}




  

  




 

 

Definition (1.1.2) Sequences 

A sequence of sets  nA , n N , is increasing if  and 

decreasing if  for every 

n 1 nA A 

n 1 nA A  n N . 

 

Remarks (1.1.1) [Krishnan 1984] 

 

1. A sequence which is either increasing or decreasing is called a 

monotone sequence. 

2. We can write the limits (N countably infinite) of monotone 

sequences as:  

n n n nn
n 1

limA lim A A A


 

    (increasing). 

n n n nn
n 1

limA lim A A A


 

    (decreasing). 
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3. The limit of monotone sequence n{A } is written as nA A  when it 

is increasing, and nA A  when it is decreasing. 

 

Example (1.1.2) 

Let n

1
A {ω : 0 ω 1 } n 1,2,...

n
      

Then:  

1

2

3

A {ω : 0 ω 2}

3
A {ω : 0 ω }

2
4

A {ω : 0 ω }
3

  

  

  



 

We see that  is decreasing, then n{A }

n nn
n 1

limA A {ω : 0 ω 1}


 

     

 

Example (1.1.3) 

 

Let n

1
A {ω : ω 2} n 1,2,...

k
     

then: 

1

2

3

A {ω :1 ω 2}

1
A {ω : ω 2}

2
1

A {ω : ω 2}
3

  

  

  



 

We see that  is increasing, then n{A }

 4
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n nn
n 1

limA A {ω : 0 ω 2}


 

    . 

 

Remarks (1.1.2) [Krishnan 1984] 

1. A superior limit for any sequence n{A } not necessarily monotone 

is a sequence n{B } derived from n{A } as follow: 

n k k
k n k 1

k 1 2

B SupA A

{ω :ω belongs to at least A except A ,A ,...,A }



 



 





n 1

n 1

 

2. nA  inferior limit for any sequence n{A } not necessarily monotone 

is a sequence n{C } derived as follow:  

n k kk n
k n

k 1 2

C inf A A

{ω :ω belong to all A except A ,A ,...,A }



 



 




 

3. The sequences n{B } and n{C } are monotone and decreasing and 

increasing respectively. 

4. We can define a limit for the sequences n{B } and n{C }: 

n n n n kn
n 1 n 1 k n

n n nn

n

n n n n kn
n 1 n 1 k n

n n nn

n

B limB lim B B ( A )

limSupA limSup A

{ω :ω belongs to inf initly manyA }

C limC lim C C ( A )

liminf A liminf A

{ω :ω belongs to all but a finite number of A }

  

   



  

   



   

 



   

 



  

  
 

5. If , then n{A }is convergent sequence and 

, say exists that is: 

 . 

n n n nlimSup A liminf A

n nm A A

n n n nmSup A liminf A l 

li

li n n Aim A
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Definition (1.1.3) Field (algebra) [Krishnan 1984] 

Define  as a nonempty class of subsets drawn from the sample 

space Ω, and let  be a subset of Ω (i=1,2,…), we say that the class C  is 

a field or an algebra of sets in Ω if it satisfies the following conditions 

C

iA

1. If iA C , then c

iA C . 

2. If i{A , i 1,2,3,...,n} C , then 
n

i
i 1

A


 C . 

 

Remarks (1.1.3) [Krishnan 1984] 

1. De Morgan's law ensures that finite intersections also belong to the 

field. 

2. A class of subsets is field if and only if it is closed under all finite 

set operations like union, intersection and complementation. 

3. Every Boolean algebra of sets is isomorphic to an algebra of sets of 

Ω, we can also call the field a Boolean field or Boolean algebra. 

4. Every field contains as elements the sample space Ω and the empty 

set  . 

5. The smallest field containing A Ω  is: 

C c{A,A ,Ω, }  .                                                               (1.1.6) 

6. If a class of subsets is closed under finite set operations, it does not 

necessarily mean that it is also closed under countably infinite set 

operations. 

 

Example (1.1.4)  

Let Ω = R and consider a class  of all intervals of the form 

(a,b], that is {

C

x R : a x b}:    
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,a b c d

(c,b] ,a c b d
(a,b] (c,d]

(a,d] ,c a d b

(a,b] ,c a b d

  
   
 




 
 
 

 

But  c(a,b] ( ,a] (b, )    C  

(a,b] (c,d] if a b c d   C   

The class  is not field. C

 

Definition (1.1.4) σ-Field (σ-Algebra): [Krishnan2006] 

A class of a countably infinite collection of subsets  

denoted by F is a σ-field when the following conditions are satisfied: 

jA Ω

1. If  iA F , then c

iA F . 

2. If i{A , i 1,2,3,...} F , then i
i 1

A




 F  

Clearly, a σ-field is a field, but a field may not be a σ-field. 

 

Example (1.1.5) [Krishnan1984] 

Let Ω = R and  be the class of all intervals of the form 

 

C

:( ,a], (a,c], and (d, ) 

c

c

c

(b,c] ( ,b] (c, )

(d, ) ( ,d]

( ,a] (a, )

   

   

   

 C

C

C

 

Clearly, the class  is closed under finite intersections. 

Similarly the example can be shown the C  is closed under finite unions. 

Hence the class  is a field. However, for infinite intersections of the 

form: 

C

C

n 1

1
(b ,c) [b,c)

n





   C . 
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The class  is not a σ-field. C

 

Remarks (1.1.4) [Krishnan 2006] 

1. The intersection of a non empty arbitrary collection of  σ-field in Ω 

is a σ-field in Ω. 

2. The arbitrary union of a collection of σ-fields may not be a σ-field. 

3. We can always construct the smallest σ-field over C  which will 

contain C  and will be denoted by σ(C )=F . This will always exist 

since σ(C ) can be defined as the intersections of all σ-fields 

containingC , that is if  are all σ-fields containing C , 

then: 

1 2σ ( ),σ ( ),.C C ..

i
i 1

σ( ) σ ( ).




C C                                                                    (1.1.7) 

 

Example (1.1.6) 

Let the sample space Ω contain ω point s  of the toss of a die. 

Ω is the set {1,2,3,4,5,6}. We shall now define a class of sets:  

{ ,Ω,{1,3,5},{2,4,6},{2,4}} C  

Clearly,  is not a field since {1,3,5}C {2,4} {1,2,3,4,5}

C

 is not 

in . However, we can generate the field containing  by: C

σ( ) { ,{1,3,5,6},{6},{1,2,3,4,5}} C F C  which is indeed a σ-

field, and we can show that it is the minimum σ-field generated by . C

 

Definition(1.1.5) Borel σ-field [Krishnan 2006] 

The minimum σ-field generated by the collection of open sets 

of a topological space Ω is called the Borel σ-field or Borel field. 

Members of this σ-field are called Borel sets. 
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Remarks (1.1.5) [Krishnan 2006] 

1. The Borel σ-field is a σ-field, and hence each closed set is also a 

Borel set. 

2. The important topological space with which we will be concerned 

is the real line R. The collection of Borel sets on the real line is 

denoted byR . Each open interval is a member of  R . 

3.  From the relationships: 

n 1

n 1

n 1

1
(a,b] (a,b )

n
1

[a,b) (a ,b)
n
1 1

[a,b] (a ,b )
n n













 

 

  







                                                      (1.1.8) 

we find that the intervals (a,b], [a,b) and [a,b] are Borel sets. 

Hence the Borel field R contains all subsets of the form given above and 

their complements, countable unions, and intersections. 

 

Definition (1.1.6) Measurable space [Krishnan 1984] 

A suitable model of the random experiment is therefore a 

sample space Ω and a σ-field of subsets of Ω. The space (Ω,F ) thus 

created is called a measurable space. 

F

 

Remarks (1.1.7) [Krishnan 1984] 

1. Subsets of Ω which are elements in the σ-field are called events. 

2. Element of Ω are points. 

3. If is class of disjoint sets of Ω such that , 

then the {Ai} collectively exhaust Ω. The class is called a partition 

of Ω. 

i{A ,i 1,2,...,n}
n

i
i 1

A Ω




 

 9
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Definition(1.1.8) Probability measure [Krishnan2006] 

A probability measure is a set function P defined on a σ-field 

of subsets of a sample space Ω such that it satisfies the following 

axioms of Kolmogorov for any 

F

AF  

1.                            (non negativity). P(A) 0

2.                            (normalization). P(Ω) 1

3. n           (σ-additivity). n
n 1n 1

P( A ) P(A )
 



 

With , and Ai and Aj being pairwise disjoint. nA F

 

Remarks (1.1.8) [Krishnan 1984] 

1. Any set function μ defined on a measurable space (Ω,F ) satisfying 

axioms (1) and (3) is called a measure. 

2. A probability measure is normed or scaled measure because of 

axiom (2). 

3. Any bounded measure with suitable normalization can be convert- 

-ed into a probability measure. 

4. If μ(A) is finite for each AF , then μ is a finite measure. 

5. If μ(A) = but if there exist a seq. {An} of members of F such that 

n



 and μ(An) is a finite for each n, then μ is a σ-finite 

measure. 

n 1

A


A

6. The triplet (Ω,F ,μ) is a measure space. 

 

Definition (1.1.9) Probability space [Krishnan 2006] 

The measure space (Ω,F ,P) is called a probability space, which 

serves to describe any random experiment where: 

 10
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a. Ω is a nonempty set called the sample space, whose elements are 

the elementary outcomes of a random experiment. 

b. F is a σ-field of subsets of Ω. 

c. P is a probability measure defined on the measurable space (Ω,F ). 

 

Remark (1.1.9)  

A signed measure is a σ-additive set function μ defined on a 

measurable space (Ω, ) taking positive and negative values such that 

μ( )=0 and assuming at most one of two values, (

F

or  ) . 

 

1.2 RANDOM VARIABLE 

What is a random variable? An outlandish definition would be that 

it is neither random nor a variable! 

An important class of functions are measurable functions which 

are different from the measure function μ, Whereas measure functions are 

set functions, measurable functions are invariably point functions. 

 

Definition(1.2.1) Measurable function [Krishnan2006] 

Let (Ω1, ) and (Ω2, ) be two measurable spaces. Let g be a 

function with domain E  and range : 

1F 2F

11 Ω 2 2ΩE

2 1

1 2g :  E E  

g is called an -measurable function or an -measurable 

mapping if for every : 

1F

2 2F

1F

E 

1

2g (E ) {w : g(w) E } E                                               (1.2.1) 

is in the σ-field . 1F
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Definition (1.2.2) Random variable [Krishnan 2006] 

A random variable is that it is a function X that assigns a rule of 

correspondence for every point   in the sample space  called the 

domain, a unique value 



X( )  on the real line R called the range. Let F  

be the field associated with the sample space and  be the field 

associated with the real line. The random variable X induces a probability 

measure  in R and hence X is a mapping of the probability space 

(Ω, ,P) to the probability space (

XF

XP

F X , , )  as shown below: XF XP

   X X XX : , ,P , ,P  F F                                                       (1.2.2) 

 

Remarks (1.2.1) [Krishnan 2006] 

1. Consider an event . The random variable X maps every 

point ix  in the event A to points i

A F

  in the event XI , called the 

image of A under X, where XF . X may be a random 

variable only if the inverse image 1

XX (I )  belongs to the field F  of 

subsets of  , and hence it must be an event. The mapping and the 

inverse mapping are shown in Fig. 1.2.1. With this restriction we 

should be able to find the induced probability measure XP  in terms 

of the probability measure P as follows: 

X I

      1

X x X XP I P X (I ) P(A) P : X I     .                     (1.2.3) 

2. Since XI  belongs to the field XF , on the real line it may consist of 

sets of the form        1 2x , x , x x , x            . 

Out of these sets we define XI  by  

 XI x     

All the other sets      1 2x , x x , x       

XI

 can be 

expressed in terms of the defined  as follows: 
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2 1

X

X X 2 1 1 2

X X X
x 0

I x

I I x x x x

lim I I x




 


  

   

           

  

  

With the definition of , we can write equation (1.2.3) as follows: XI

       X x XP I P : X I P : X x                        (1.2.4) 

Define the quantity   P : X x    as the cumulative distribution 

function , and rewrite equation (1.2.4) in abbreviated 

notation as 

XF (x)

    XP : X I P X x F (x      X )                             (1.2.5) 

Equation (1.2.5) converts from a cumbersome set function 

 P X x  into a convenient point function . The value x 

scans the entire real line, that is, 

XF (x)

x    , and  must be 

defined for all x on the real line. Note that 

XF (x)

 X x  in equation 

(1.2.5) is meaningless unless it is defined carefully, because X is a 

function and a function without an argument cannot be less than a 

number! For example, we cannot have an exponential less than 2, 

unless we specify the argument of the exponential. The abbreviated 

notation in equation (1.2.5) is to be defined as the probability of the 

set of all points    such that the number  X   is less than or 

equal to the number x. The random variable X should not confused 

with the value x that the random variable takes. The random 

variable X can take any value, for example،    XF y P X y  . 

Having defined the cumulative distribution function, we now 

define the probability density function (pdf) as the derivative of the 

cumulative distribution function F  with respect to x: X (x)
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X x

P X x x
f x lim

x 

  



 

 X X
Xx

F x x F (x) d
lim F (x)

x dx 

  



                   (1.2.6) 

The cdf can be given in terms of the pdf XF (x)  Xf x  as 

follows: 

   
x

X XF x f d 


                                                         (1.2.7) 

Whereas the distribution function  XF x  is a probability 

measure, the density function  Xf x  is not a probability measure 

unless it is multiplied by the infinitesimal x  to yield 

   Xf x x P x X x x      . 

 

Figure (1.2.1) representation of random variable 

 

Example (1.2.1) 

A die is tossed, and the random variable X is defined by the 

amount won (+ ) or lost ( ) on the face of the die as shown in Table 1.2.1. 
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We have to find the cdf  XF x  and the pdf  Xf x . We will follow the 

steps to find the probability functions. 

Step 1. The mapping diagram (Fig. 1.2.2) is drawn with positive numbers 

indicating win and negative numbers indicating loss. 

Step 2. From the mapping diagram the regions of x are (a) x , 

(b) , (c)

9 

9 x 4    4 x 5   , (d)5 x 8  , and (e) x . The 

corresponding set  on the real line for all the 5 regions is 

8

XI

 XI x    . 

Step 3. We will find the all the points in the sample space that map into 

 for every region of x: XI

a. x 9 :   Since no points in   map into XI  (figure 1.2.2a), we have 

 XF x 0 . 

b. : In this region (Figure 1.2.2b), only one point {3} 

maps into XI . Since 

9 x 4   

X

1 1
P(3) , F

6 6
(3)  . 

c. Here the points {3,2,6} from 4 x 5:     into XI (Figure 1.2.2c). 

Hence X x
1 1 1

)
6 6 6

  
1

F (
2

 .  

d. :  In this region (Figure 1.2.2d) the points {3,2,6,5} in 5 x 8    

map in to XI . Hence X

1 1 2
F (x)

2 6 3
   . 

e. x 8: In this region (Figure 1.2.2e) all six points, that is, the entire 

sample space  , map into XI . Hence XF (x) 1 . 

In terms of unit step functions we can write the cdf  as follows: XF (x)

X

1 1 1
u(x 5)

6


1
F (x) u(x 9) u(x 4) u(x 8)

6 3 3
      . 

Step 4. The cdf  can be graphed as shown in Fig. 1.2.3. XF (x)

 



Chapter one                                         Introduction To Stochastic Process 

Table (1.2.1) 
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Figure (1.2.2) 
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Figure (1.2.3) 

 

 

Step 5. We can now find the density function  by differentiating the 

distribution function , bearing in mind that the 

differentiation of the unit step is the Dirac delta function. 

Performing the indicated differentiation, we obtain 

Xf (x)

XF (x)

X

1 1 1 1
f (x) (x 9) (x 4) (x 5) (x 8)

6 3 6 3
           

 

Definition(1.2.3) Indicator functions [Krishnan 1984]  

An indicator function is a real valued function defined on the 

sample space Ω taking either of the two values 0 or 1, depending upon 

whether or not the  is in the event A: ω point

A

1 ω A
I (ω)

0 ω A

 
   

                                                     (1.2.3) 

 

Remarks (1.2.2) [Krishnan 1984] 

1. The indicator function is a random variable since it is a measurable 

mapping of the sample space into the real line. 
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2. As the indicator function is the simplest nontrivial function, we 

shall enumerate some of the properties. We shall use the quantities 

cup( ) and cap( ) defined by: 

a b max(a,b), a b min(a,b)                                      (1.2.4) 

a) A B . A B I I  

b) A . 2 n

A AI I ... I  

c) ΩI 1 . 

d) I . A B A B A BI I I I   


e) B . A B A B A B A B A B AI I I I I I I I I I I         


f) . c AA
I 1 I 

 

Definition (1.2.4) Simple function [Krishnan 2006] 

Let  be a partition of the sample space Ω. A 

simple function g( ) can be written in the form: 

i{A , i 1,2,...,n}

ω

k

n

k A
k 1

g(ω) g I (ω)


                                                                (1.2.5) 

where the are distinct real numbers, and is the 

indicator function of the set  

kg
kAI (ω)

kA .

 

Definition(1.2.5) Distribution function [Krishnan2006] 

A function  is called a distribution function if it is 

increasing and right continuous. It is a probability distribution if in 

addition: 

F : R R

     
x x
lim F(x) 0 and limF(x) 1
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Remarks (1.2.3) [Krishnan 2006] 

1. Right continuous function are those functions for which: 

ε 0
F(x) lim F(x ε)


  . 

2. Left continuous function are those functions for which: 

ε 0
F(x) lim F(x ε)


  . 

 

Definition (1.2.6) Expectation [Krishnan 2006] 

Let be a probability space, and let X be a real random 

variable. The expectation of X is defined by: 

(Ω, ,P)F

Ω Ω

EX X(ω)dp(ω) or xdp   .                                  (1.2.6) 

 

Remark (1.2.4) Properties of expectation operator 

We take a simple random variable of the form   

and define : 

k

n

k A
k 1

X X I


 
n

k k
k 1

EX X P(A )


 

1. Linearity: a and b are constant. E(aX bY) aEX bEY,  

2. Homogeneity: E(cX) cEX  for constant c. 

3. Order preservation: . X Y EX EY  

 

Definition (1.2.7) Independence [Krishnan 2006] 

1. Let be a probability space and let subsets . 

The events A and B are independent if: 

(Ω, ,P)F A and BF

P(A B) P(A) P(B)                                                        (1.2.7) 

2. n events n  are independent if for any subset 

 where r=1,2,…,n, 

1 2A ,A ,...,A

r},1 2{k ,k ,...,k

 20
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i

r r

k
i 1i 1

P( A ) P(A )



ik                                                                (1.2.8) 

 

Definition (1.2.8) Independence of σ-fields 

Let be a probability space and let (Ω, ,P)F i{ ,i 1,2,...,n}F  be a 

sub σ-fields of F . These sub σ-fields are independent if for all 

 the events  are independent. 1 1 2 nA , A  2 , ...,AF F nF 1 2 nA ,A ,...,A

 

Definition (1.2.9) Independence of random variables 

Let be a probability space and let X and Y be two 

integrable random variables with values in ( . If the random variables 

X and Y are independent, then     EXY=EX EY.               (1.2.9) 

(Ω, ,P)F

R, )F

 

Definition(1.2.9) Conditional probability [Krishnan2006] 

Let be a probability space and let A and B be events in 

the probability space with 

(Ω, ,P)F

P(A) 0 . The conditional probability of the 

event B given that A has occurred is defined by: 

  P(B A)
P B A

P(A)



                                                         (1.2.10) 

 

Remarks (1.2.5) [Krishnan 2006] 

1. If Bi are disjoint, then: 
n n

n ni i
ii 1 i 1

i
i 1i 1

P[( B ) A] P[ (B A)] P(B A)
P( B A)

P(A) P(A) P(A)
 



   
 

 
  

2. If events A and B are independent, then: 

P(B A) P(B) . 
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Definition (1.2.10)  Conditional Expectation 

Let  be a probability space. Let be a sub – σ – field  

of , and let X be an integrable real – valued random variable. The 

conditional expectation of X relative to  is an integrable -measurable 

random variable 

(Ω, ,P)F 1F

F

1F 1F

1E(X )F  or , such that for every 1E XF 1AF ,  

1

1
A A

E(X )dP E XdP XdP   FF
A
 . 

 

1.3 STOCHASTIC PROCESS [Krishnan 2006] 

In the earlier sections a random variable X was defined as a 

function that maps every outcome i  of points in the sample space  to a 

number 



 iX t,  on the real line R. A random process X(t) is a mapping 

that assigns a time function  iX t,  to every outcome i  of points in the 

sample space . Alternate names for random processes are stochastic 

processes and time series. More formally, a random process is a time 

function assigned for every outcome 



   according to some 

rule  ,X t  , t T,   , where T is an index set of time. As in the case 

of a random variable, we suppress   and define a random process by 

X(t). If the index set T is countably infinite, the random process is called 

a discrete-time process and is denoted by Xn. 

Definition (1.3.1) Stochastic Process [Krishnan 2006] 

 Let  be a complete probability space and let T be any 

time set. Let ( be a measurable space, where R is the real line and R  

is the σ-field of Borel sets on the real line. A stochastic process 

is a family of random variables define on the probability space 

and taking values in the measurable space . 

(Ω, ,P)F

R, )R

t{X , t T}

(Ω, ,P)F (R, )R
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Some interpretations of Stochastic Processes 

[Klebaner 2005]  

Referring to Fig.1.3.1, a random process has the following 

interpretations: 

1. 1X( , t )  is random variable for fixed time t1. 

2. iX( , t)  is a sample realization for any point i  in the sample space 

 . 

3. i 1X( , t )  is a number. 

4. X( , t)  is a collection or ensemble of realizations and is called a 

random process. 

 

Remarks (1.3.1) [Klebaner 2005] 

1. The probability space (Ω, ,P)F is called the base space and the 

measurable space (R, )R  the state space. 

2. If the random variables (vectors) tX  are discrete, we say that the 

stochastic process has a discrete state space. 

3.  the random variables (vectors) tX  are continuous, the process is 

said to have a continuous state space. 

4. For each t T , the measurableF  random variable tX  is called 

the state of the process at time t. 

5. For each ω Ω  the map t  defined on T and taking values 

in R is called a sample function. 

t X (ω)

6. If the time set T is N, then the stochastic process  

becomes  and is called a discrete stochastic process. 

t{X , t T}

n{X ,n N}

7. If the time set T is R or R  , then the stochastic process  

becomes  and is called a continuous stochastic process. 

t{X , t T}

n{X , n R}

 23



Chapter one                                         Introduction To Stochastic Process 

8. An important point to emphasize is that a random process is a finite 

or an infinite ensemble of time functions and is not a single time 

function. 

 

Example (1.3.1) [Klebaner 2005] 

A fair coin is tossed. If heads come up, a sine wave 

1x (t) sin(5 t)  is sent. If tails come up, then a ramp  is sent. 

The resulting random process X(t) is an ensemble of two realizations, a 

sine wave and a ramp, and is shown in Fig.1.3.2. The sample space S is 

discrete. 

2x (t) t

 

Example (1.3.2) [Klebaner 2005] 

In this example a sine wave is in the form X(t) Asin( t )  , 

where  is a random variable uniformly distributed in the interval 

0,2 . Here the sample space is continuous, and the sequence of sine 

functions is shown in Fig. 1.3.3. 

 

 24
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Figure (1.3.1) 

 

 

 

 

Figure (1.3.2) 
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Figure (1.3.3) 

 

 

 

Definition (1.3.2) Distribution and Density Functions 

Since a random process is a random variable for any fixed time t, 

we can define a probability distribution and density functions as 

  xF (x; t) P , t : X ; t t    for a fixed t                               (1.3.1) 

and 

   X X
x X x 0

F x x; t F x; t
f (x; t) F (x; t) lim

x x 

  
 
 

 

 
x 0

lim P x X(t) x x
 

                          (1.3.2) 

These are also called first-order distribution and density functions, 

and in general, they are functions of time. 

 

Definition (1.3.3) Means And Variances 

Analogous to random variables, we can define the mean of a 

random process as 
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   X (t) E X t xf x; t dx




     x                                             (1.3.3) 

and variance as 

       22 2

X X(t) E X t t E X t t          
2

X

dx

 

   2

X xx t f x; t




                                                (1.3.4) 

where  

   2 2

XE X t x f x; t dx




     

Since the density is a function of time, the means and variances of 

random processes are also functions of time. 

 

Example (1.3.2) [Krishnan 2006] 

We shall now find the distribution and density functions along with 

the mean and variance for the random process of Example 1.3.1  for times 

1 7
t 0, ,

2 10
 :



 

1 2t 0, x (0) 0, x (0) 0   

At  the mapping diagram from the sample space to the real 

line is shown in Fig.(1.3.4a) along with the corresponding distribution 

and density functions. 

t 0 

The mean value is given by X

1 1
(0) 0; 0 0 0

2 2
      . The 

variance is given by      2 22

X

1 1
0 0 0 0 0 0

2 2
     : 

1 2

1 1 1
t , x 1, x

2 2 2
       
   

1

2
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At 
1

t
2

  the mapping diagram from the sample space to the real 

line is shown in Fig.(1.3.4b) along with the corresponding distribution 

and density functions. 

The mean value is given by X

1 1 1 1
1

2 2 2 2
   3

4
     

 
. The variance 

is given by 
2 2

2

X

1 1 3 1 3 1 1
1

2 2 4 2 4 2 16
               

     
: 

1 2

7 7 7
t , x , x

10 10 10 10
       
   

7
 

At 
7

t
10

  the mapping diagram from the sample space to the real line is 

shown in Fig. 19.1.4c along with the corresponding distribution and 

density functions. 

The mean value is given by X

7 7 1 1 3
1

10 10 2 2 20
         

 
. 

The variance is given by 
2 2

2

X

7 7 3 1 3 1 289
1

10 10 20 2 20 2 400
                

     
. 

 

Figure (1.3.4) 
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Definition (1.3.4) Modes of convergence [Krishnan 

2006] 

In the mathematics of calculus, the convergence of a series in some 

measure is the basis for the concepts such as continuity, differentiation 

and integration of functions. When we study the calculus of random 

processes such as differentiation, integration and convergence of a series, 

we need to define the notions of convergence. 

1. Convergence with probability one, also known as almost sure 

convergence, is defined as follows. Let Xn be a sequence of 

random variables, and 

 nn
P limX X 1


  . 

 29
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We say that Xn converges to X with probability 1. Here, P(·) is the 

probability measure of the random event n nm X Xli  . 

2. Convergence in probability is defined as  

 nn
limP X X 0, 0 


     . 

3. Convergence in distribution is defined as  

nX Xn
limF (x) F (x)


  

4. Convergence in mean square is defined as 

2

nn
limE X X 0


    , or  nn
l.i.m.X X


 . 

The convergence in mean square is the strongest among the modes 

of convergence defined above. It implies the convergence in probability, 

which in turn implies the convergence in distribution. Convergence with 

probability 1 also implies the convergence in probability. The weakest 

mode of convergence is the convergence in distribution. This discussion 

is illustrated in Figure 1.3.5. 

 

Figure (1.3.5) 

 

 

 

Definition (1.3.5) Stochastic differentiation   

Consider a stochastic process X(t) defined on the sample space Ω. 

A derivative process  can be defined in terms of the following limit X(t)
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t 0

X t t X t
X(t) l.i.m.

t 

  



 . 

Definition (1.3.2) Separable Process [Krishnan 2006] 

Let  be a stochastic process defined on  with 

time set T and values in R. Let K be any closed subset in R, and let I be 

an open interval in T. Then the process 

t{X , t T} (Ω, ,P)F

t{X , t T}  is separable, relative 

to the class of all closed sets K in R, if there exist a countable subset 

 and an ωS T  set Λ  of probability 0 such that the two ω sets 

t t{ω : X (ω) K, t I T}, {ω : X (ω) K, t I S}     differ by . Λ

The countable set S is called separating set or separant. 

What the definition implies is that if 

T

t{X , t T}  is separable, then every 

set of the form t{ω : X (ω) K, t I T}  

 a

 differs from the event 

 by the null set Λ nd can be made an event by 

competing the underlying probability space. 

t{ω : X (ω) K, t  I S}

 

Definition (1.3.3) Increasing σ-field or Filtration σ-

field [Krishnan 2006] 

 Let  be a complete measurable space and let (Ω, )F

R }t{ , t T, T F

s ts t, F F

(Ω, )F



t{F

 be a family of sub-σ-fields of  such that for 

. Then  is called an increasing family of  sub-σ-fields on 

 or the filtration σ-field of ( . 

F

}

Ω, )F

tF  is called the σ-field of events prior to t. If  is a 

stochastic process defined on (  then clearly  given by 

t{X , t T}

Ω, ,P)F tF

t sσ{X , s t, t T}  F  

is increasing. 
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Remark (1.3.2) [Krishnan 2006] 

Since the probability space  is complete, the σ-field  

contains all subsets of  having probability measure zero. We shall 

assume here that the filtration σ-field 

(Ω, ,P)F

t{ , t T

F

Ω

}F  also contains all the sets 

from F  having probability measure zero. 

 

Definition (1.3.4) Continuity for the filtration σ-field 

The filtration σ-field t{ , t T, T R } F  is right continuous if  

t t τ
τ t




 F F F     for all t T  

And left continuous if 

 t t τ
τ tτ t

σ V


  F F F Fτ t T    for all  . 

Remark (1.3.3)  

If the time set T is a set of positive integer N, then  

are interpreted as  for all 

n nand F F

n 1 n 1and F F n N . 

 

Definition (1.3.5) Adaptation of {Xt} [Krishnan 1984] 

Let t{X , t T, T R } 

Ω, ,P)F

be a stochastic process defined on a 

probability space (  and let t{ , t T, T R } F  be a filtration σ-

field. The process  is adapted to the family  if  is 

measurable for every . 

t{X }

t T

t{ }F tX

t F

t -F adapted random process are also measurable and 

nonanticipative with respect to the σ-field F . 

t -F

t
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Remark (1.3.4) 

If  is the σ-field generated by tF s{X , s t} , then clearly the 

process  is adapted to the family t , t{X T} t{ , t T}F

t{X

, which is called 

the natural family or natural filtration of the process . }

 

Definition (1.3.6) Second – order process 

[Klebaner2005]  

A second – order stochastic process t{X , t T,}  is a process 

which satisfies 
2

tE X    for every t T . It is also called an 

process. 2L 

 

Remark (1.3.5) Klebaner 2005]  

The mean, autocovariance ant autocorrelation functions of a 

second – order process are defined by 

tμ(t) EX  

*

x t sC (t,s) E[X μ(t)][X μ(s)]                                          (1.3.1) 

*

x tR (t,s) EX X s  

where the asterisk denotes the complex conjugate. 

The matrix  formed by setting Γ ij x i jΓ C (t , t )  defined on the 

square T  is a nonnegative definite function. T

 

Definition (1.3.7) Continuous in Probability  

A stochastic process t{X , t T}  is continuous in probability at a 

point  if for every ε ,  t T 0

s ts t
limP{ X X ε 0


   . 
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If  is continuous in probability at every point , 

then we say, that it is continuous in probability on T or simply continuous 

in probability. 

t{X , t T} t T

 

Example (1.3.1) 

We assume that the stochastic process is both 

separable and continuous in probability. We have to determine 

.  

t{X , t T}

tP{X 0, t T, T [0,1]}  

Clearly this probability is given by the probability of the 

uncountable intersections . To calculate the probability, 

we assume that the countably dense set S is the partition of T given by:  

t
t T

{ω : X (ω) 0}




n

n

k
S , 0 k 2 , n 1,2,.

2
     
 

..



}

 

Then  

n

t t
t T

n

k/2
n 0

P{X 0, t T} P ω : X (ω) 0

P ω : X (ω) 0, 0 k 2







     
 
    
 




 

If we define n

n

n k/2
A {ω : X (ω) 0, 0 k 2    , then the 

sequence  is a decreasing sequence, and since the probability 

measure is sequentially continuous, the limit exists and we can write: 

n{A }

   n

n

t k /2n
P X 0, t T limP ω : X (ω) 0, 0 k 2


      . 

 

Definition (1.3.8) pth Mean Continuity 

A stochastic process t{X , t T}  defined on a probability space 

 is continuous in the pth mean at (Ω, ,P)F t T  if  

p

s ts t
limE X X 0


                                                              (1.3.2) 
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Remarks (1.3.6) 

1. If  t{X } is continuous in the pth mean at every t T , then it is a pth 

mean continuous process. 

2. If p=2, we have a quadratic mean continuous process define by  
2

s ts t
limE X X 0


                                                              (1.3.3) 

 

Definition (1.3.9) Almost Sure Continuity [Krishnan 

1984]  

Let  be a separable stochastic process defined on a 

complete probability space ( . The process is almost surely (a.s.) 

continuous at a point  if 

t{X , t T}

t

Ω, ,P)F

T

 s ts t
P ω : lim X (ω) X (ω) 0


  1                                        (1.3.4) 

 

Remarks (1.3.7) [Krishnan 1984] 

1. If the process is almost surely continuous at every point t T , then 

it is an almost surely continuous process. 

2. Almost sure continuity at a point t T  can be interpreted in a 

different way. If we now define an F measurable set 

 t t s t
Λ set of all trajectories of X discontinuous at t, X limX


 t s . 

then almost sure continuity at a point t implies that  is a 

null set, that is, 

tΛ

tP(Λ ) 0 . Almost sure continuity of a process 

implies only that the probability of countable union of  for  

is zero. By its very definition almost sure continuity implies 

continuity in probability. 

tΛ t T
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Even though almost sure continuity implies that the countable 

union of  is also a null set, it is not necessary that the 

uncountable union of  be a null set. 

tΛ

tΛ

Example (1.3.2) [Krishnan 1984] 

Let  be a probability space with Ω(Ω, ,P)F [0,1] . Let  be 

the stochastic process defined on T=[0,1] and Ω  by 

t{X }

i

i

t

i

0 t ω
X (ω)

1 t ω


  

 

Clearly all the trajectories of this process are continuous except 

at the point . Hence the set it ω
it iN {t }  is a null set, and the countable 

union  is also a null set. However, the uncountable union 

 is equal to  and is not a null set. 

i{t }
i 1





i}
it T

{t
 Ω

 

Definition (1.3.10) Almost surely  sample continuous  

[Krishnan 1984]  

Let  be a separable stochastic process defined on a 

complete probability space . The process is almost surely  

sample continuous if 

t{X , t T}

(Ω, ,P)F

 s tx
t T

P ω : limX (ω) X (ω) 0 0


    
                                   (1.3.5) 

 

Remarks (1.3.8) Krishnan 1984] 

1. If a stochastic process t{X , t T}  is almost surely sample 

continuous, then there is a representation of tX  whose sample 

function will be continuous at t with probability 1. 
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2. Almost sure continuity at every t T  does not imply almost sure 

sample continuity. 

3. Almost sure sample continuity implies almost sure continuity at 

every t T , which in turn implies continuity in probability. 

4. It is difficult to determine the sample continuity of a process from 

the definition. To this end the Kolmogorov condition is used to 

verify sample continuity. 

Definition (1.3.11) Kolmogorov Condition 

 [Krishnan 1984] 

Let  be a separable stochastic process defined on a 

complete probability space . Let T be a closed interval in R . If 

there exist three strictly positive constant , and C such that for all 

 

t{X , t T}

(Ω, ,P)F 

α,β

t T
α 1 β

t h tE X X Ch 
                                                              (1.3.6) 

Then 
a.s.

s th 0 s,t T
s t h

limSup X X 0
 

 

   

And almost every sample function is uniformly continuous on T. 

 

1.4 CLASSES OF STOCHASTIC PROCESSES 

In this section we shall consider several types of stochastic 

processes frequently encountered in this thesis and discuss their 

properties. 

 

Definition(1.4.1) Stationary process [Krishnan 1984] 

Let  be a stochastic process with time set T defined 

on a probability space (  taking values in the state space . 

t{X , t T}

Ω, ,P)F (R, )R

 37
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Let  be any finite set of values belonging to T. Then the 

process is strictly stationary or stationary if for any real  the joint 

distribution of the sequence  is the same as the 

joint distribution of  for any positive 

integer n. 

n 1 2 nT {t , t ,...t }

Δt

1 2 n{X(t ), X(t ),...,X(t )}

1 2t), X(t Δt),...,X(t Δ  n{X(t Δ t)}

 

 

Definition (1.4.2) Wide Sense Stationary [Krishnan 

2006] 

A real stochastic process , tX t T , is wide sense stationary or 

covariance stationary if 

1. 2 . EX  

x tμ EX

C (t s) E( 

2.  a constant.                                                                (1.4.1) 

3.  depends only on the time difference 

t s  and not on either t or s. 

x tX μ)(X s μ)

 

Remark (1.4.1) 

By the very nature of the definition (1.4.2), strict sense 

stationary implies wide sense stationary, but the converse is not true. 

 

Definition(1.4.3) Dirac Delta Function [Krishnan 

2006] 

The Dirac delta or Dirac's delta is a mathematical construct 

introduced by the British theoretical physicist Paul Dirac. Informally,  it 

is a function representing an infinitely sharp peak bounding unit area. a 

function δ(x) that has the value zero everywhere except at x = 0 where its 

value is infinitely large in such a way that its total integral is 1. 

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/United_Kingdom
http://en.wikipedia.org/wiki/Paul_Dirac
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/0_(number)
http://en.wikipedia.org/wiki/Infinity
http://en.wikipedia.org/wiki/Integral
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Definition (1.4.4) White Noise Process [Krishnan 

2006] 

A zero mean stationary random process  whose 

autocovariance or autocorrelation is given by 

tX

2

x x xC (τ) R (τ) σ δ(τ)   

where  is the Dirac delta function, is called a white-noise process. 

The energy of a white-noise process is infinite since 

. 

δ(τ)

x xR ( 2C (0) 0) E X (t)     

 

Definition (1.4.6) Gaussian Random Variable 

[Krishnan 1984] 

Let X be a random variable with 2EX   , and let  and 

. Then the random variable X is Gaussian if the probability 

distribution function  

μ EX

2σ E(X μ)  2

 
2a

x 22

1 (X μ)
F (a) P X a exp dx

2σ2πσ

      
                (1.4.3) 

 

Remarks (1.4.2) [Krishnan 2006] 

1. 2σ  can have a value 0, in which case the random variable X μ  

with probability 1 and we have a degenerate Gaussian random 

variable. 

2. The probability density function of X in the nondegenerate case is 

given by 

2
2

x 22

1 (X μ)
f (x) exp 0 σ

2σ2πσ

     
                   (1.4.4) 

3. The characteristic function of a Gaussian random variable is given 

by 
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juX 2 21
φ(u) Ee exp( juμ u σ )

2
                                           (1.4.5) 

 

Definition (1.4.7) Gaussian Process [Krishnan 1984] 

A second – order stochastic process t{X , t T}  is a Gaussian 

process if for every finite collection {  and every finite 

linear combination of random variables , the random 

variable X given by  

1 2t , t ,...,

X

nt } T

1 2t t,X ,...,X
nt

i

n

i t
i 1

X α X


  ,  constant                                                    (1.4.6) iα

is Gaussian for any n. 

 

Definition (1.4.8) Markov Process [Krishnan 2006] 

A stochastic process t{X , t T}  defined on a probability space 

 is a Markov process if for any increasing collection 

. 

(Ω, ,P)F

1 2{t , t ,...tn} T

   
n 1 n 1 n nt n t 1 2 2 t n 1 t n t 1 nP X x X x , X x , ..., X x P X x X x

         1

with probability 1. 

 

Remark (1.4.5) 

Let  be a probability space and let  be a 

stochastic process defined on it. Let  be the σ-field generated by 

. Let  be the σ-field generated by , and let  

and . The process 

(Ω, ,P)F

c

tF

t{X , t T}

} A

tF

s{X , s t}

tBF

t{X , s t tF

t{X , t T}  is a Markov process with respect to 

the family t{ , t T}F  if  

t tP(A B ) P(A )P(B ) F F tF                                              (1.4.7) 
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Definition (1.4.9) Independent Increment Process 

A stochastic process t{X , t T}  defined on the probability 

space  is an independent increment process if for any collection 

 satisfying 

(Ω, ,P)F

n..., t } T1 2{t , t , 1 2 n... tt t  

nt t, (X X )




 the increments of the process 

  are the sequence of 

independent random variables. 

1t
X ,

2 1 3 nt), (X X 
2t
), ...

1t t(X X

 

Remarks (1.4.6) 

1. If the time set is discrete, T N (0,1,...) 

i 1X

, then an independent 

increment process reduced to a sequence of independent random 

variables 0 0Y X , i iY X   , i=1,2… . 

2. The independent increment process is a special case of a Markov 

process. 

3. If the distribution of the increments t s(X X ), t s  , depends only 

on the difference time t – s, then the process is a stationary 

independent increment process. 

4. A stationary independent increment is not a stationary process. 

 

Definition (1.4.10) Poisson Process 

The stochastic process  tN , t T, T R    defined on 

probability space  is Poisson process if (Ω, ,P)F

1. 0N 0 . 

2. For almost all ω , the sample functions tN (ω)  are monotone 

functions increasing in isolated jumps of unit magnitude. 

3. For every pair s<t, the increment t s(N N )  is integral valued with 

distribution  
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k kλ ( t s)

λ ( t s)
k!

t sP N N k e


 
                                                 (1.4.8) 

Where  is a parameter associated with the Poisson process 

and is called the density parameter. 

λ 0

4. For every collection  1 2 nt t ... t T     and Borel sets 

n , 1 2A ,A ,..., A

 
    

1 2 2 n n 1

1 2 2 n n 1

t 1 t t 2 t t n

t 1 t t 2 t t n

P N A , N N A ,..., N N A

P N A P N N A ...P N N A





    

      

1

     (1.4.9) 

 

Remark (1.4.7)  

In the definition (1.4.9) we conclude that the increments  

 are independent random variables. 

If the density parameter , then we have a standard Poisson process. 

1t
N ,

2 1 3 2 n nt t t t t t(N N ), (N N ), ..., (N N )


  

λ 1

 

Example (2.1), [Krishnan, 1984]: 

If  is the -field by tX ,s t , then clearly the process tX , t T   is 

adapted to the family t{ , t T}F  which is called the natural family or 

natural filtration of the process  

Definition (1.4.12) Step Process, [Friedman, 75] 

 A stochastic process  f  defined on (t)  , 

...

 is called a step 

function if there exists a partition 0 1 kt t t    

1, 0 i 

 

k 1  

 of    such 

that  

     

  if  . 

, 

if (t) f (t ) i it  t t
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(1.5) BROWNIAN MOTION 

Robert Brown in 1826–27 observed the irregular motion of pollen 

particles suspended in water. He and others noted that  

 The path of a given particle is very irregular, having a tangent at no 

point. 

 The motions of two distinct particles appear to be independent. 

 

Definition (1.5.1) Brownian Motion [Krishnan 2006]  

The random motion of a particle in a fluid subject to collisions 

and influence of other particles is called Brownian motion. One of the 

mathematical models of this motion is the Wiener process. 

If the following conditions are satisfied, W(t) is a Wiener 

process with parameter σ : 2

1. . W(0) 0

2. W(t) is a Gaussian process with sample continuous function. 

3. E[W(t)] 0 . 

4. The autocovariance function 

. 2

w wC (t,s) R (t,s) E[W(t),W(s)] σ min(t,s)  

5. The variance of  W(t) from (4) is 2 2

wσ (t) σ t . 

 

Remarks (1.5.1) [Krishnan 2006]  

1. The probability density function of  the wiener process is given by  
2

2

1 w
( )

2 σ t
w

1
f (w, t) e

2πσt


                                                      (1.5.1). 

2. The covariance matrix of the random variable vector 

 for times n

T T

1 2 nW [W(t ),W(t ),...,W(t )] 1 20 t t ... t     can be 

given from condition 4 as. 

 43
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1 1 1 1

1 2 2 2

T 2

W 1 2 3 3

1 2 3 n

t t t ... t

t t t ... t

C E[WW ] σ t t t ... t

t t t ... t

 
 
 
 
 
 
  

   

                               (1.5.2) 

 

and this matrix is positive definite. Since W(t) is Gaussian, the 

finite-dimensional density function using Eq. (1.5.2) is given by 

 
  T 1

W
1 W C W2

1nW 1 1 2 2 n n
22

W

1
f ( , t ; , t ;...; , t ) e

2 C


   


 

3. The determinant    W 1 2 1 n 1 nC t t t ... t t    and equation (1.5.2) 

can be written as  

 
 
 

2
n

k k 1

W 1 1 2 2 n n 22
k 1 k k 1k k 1

1 1
f ( , t ; , t ;...; , t ) exp

2 t t2 t t


 

                   


(1.5.3) with . 0 0t 0  

4. The density function of equation (1.5.3) shows that the sequence 

    
1 2 1 n n 1t t t t tW , W W ,..., W W


   is a collection of independent 

random variables for increasing   1 2 n0 t t ... t    and the 

density depends only on the time difference, showing that the 

Wiener process is a process of stationary independent increments. 

5. From the properties of the random walk from which W(t) was 

constructed, we conclude that for (0 t s  ) the increments 

 and W(t) W(0) W(s) W(t)  are independent. 

6. from equation (1.5.1), for 2 1t t  the density function of the 

increment  is 2 1W(t ) W(t )

 
     

22 2
2 1 2 11 2 t t

W 1 1 2 2 2

2 1

1
f ( , t ; , t ) e

2 t t

         
  

                (1.5.4) 
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and since it depends only on the time difference  2 1t t , W s a 

stationary independent increment process. 

(t)  i
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This chapter is divided into three sections. Section 1 presents some 

basic concepts of Brownian motion calculus. Section 2 deals with 

Control System Theory. In section 3 the complete controllability of a 

nonlinear stochastic dynamic  system (Standard Brownian motion) are 

discussed and proved by using the contraction mapping principle. 

 

2.1 BROWNIAN MOTION CALCULUS  

In this Section stochastic integrals with respect to Brownian motion 

are introduced and their properties are given. They are also called  

integrals, and the corresponding calculus  calculus. 

ˆIto

ôIt

 

Definition (2.1.1) Stochastic Integral[Klebaner 2005] 

Let  be a step function in f (t)  2L ,   , say f (t) f  if i it t t 1  ,  

 where   the random variable  0 i 1k  0 1t t ..  k. t   

   
k 1

r r 1
r 0

f (t ) W t W t





   r  

is denoted by  

f (t)dW(t)



  

and is called the stochastic integral of f with respect to the Brownian 

motion W; it is also called the integral. ˆIto
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ˆItoIntegral 

Our goal is to define the stochastic integral , also denoted  

 or  This integral should have the property that if  

then . Similarly, if is a constant c, then the 

integral should be 

T

0

X(t)dB(t)

XdB
T

0


X B

(t) B

X(t) 1

dB (t) B(0) 



X(t)

c B(t)

1c 2c

B(0) . In this way we can integrate constant 

processes with respect to B. The integral over (0,T] should be the sum of 

integrals over two subintervals (0,a] and (a,T]. Thus if X(t) takes two 

values  on (0,a], and on (a,T], then the integral of X with respect to B 

is easily defined. In this way the integral is defined for simple processes, 

that is, processes which are constant on finitely many intervals. By the 

limiting procedure the integral is then defined for more general processes. 

 

ˆIto Integral of Simple Process 

Consider first integrals of a non-random simple process , 

which is a function of t and does not depend on B(t). By definition a 

simple non-random process X(t) is a process for which there exist times 

 and constants

X(t)

0 1 n0 t t ... t T     0 1 n 1c ,c ,...,c  , such that 

 i i 1

n 1

0 0 i t ,t
i 0

X(t) c I (t) c I (t)






   

The  integral  is defined as a sum ˆIto
T

0

X(t)dB(t)



Chapter two                                          Stochastic Differential Equation and             
Controllability  

 

 48


T n 1

i i 1 i
i 00

X(t)dB(t) c B(t ) B(t )





                                                 (2.1) 

It is easy to see by using the independence property of Brownian 

increments that the integral, which is the sum in (2.1) is a Gaussian 

random variable with mean zero and variance 

 

  

 

T n 1

i i 1 i
i 00

n 1

i i 1 i
i 0

n 1
2

i i 1 i
i 0

Var X(t)dB(t) Var c B(t ) B(t )

Var c B(t ) B(t )

c t t
















         

 

 







 

 

Example (2.1.1) [Klebaner 2005] 

Let , and  

for  . Then (note that 

X(t) 1 for 0 t 1, X(t) 1 for 1 t 2      

t 3  it 0,1,2,3,

X(t) 2

2   i i(t 1),c X   

) 

0c 1  ,



1c 1 , 2 c 2

    

   

3

0 2 3
0

X(t)dB(t) c B(1) B(0) c B(2) B(1) c B(3) B(2)

B(1) B(2) B(1) 2 B(3) B(2)

2B(3) B(2) 2B(1)

     

     

  


  

Its distribution is , either directly as a sum of independent 

 or by using the result above. 

N(0,6)

4)N(0,1) N(0,1) N(0, 
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Definition (2.1.3) Simple Adapted Process 

A process  X X(t),0 t T  

0 10 t t .  

0

X is called a simple adapted process 

if there exist times  and random variables 

, such that  is a constant, 

n.. t T 

i0 1 n 1, ,...,      is -measurable (depends on 

the values of B(t) for ), but not on values of B(t) for t > ), and 

it
F

it t it

 2

iE    i, ; such that 0,1,...,n 1 

 i i 1

n 1

0 0 i t ,t
i 0

X(t) I (t) I (t)






                                                           (2.2) 

 

Remark (2.1.1) 

For simple adapted processes  integral is defined as a sum ˆIto


T n 1

i i 1 i
i 00

X(t)dB(t) B(t ) B(t )





                                                 (2.3) 

Note that when 's are random, the integral need not have a 

Normal distribution. 

i

 

Theorem (2.1.1) Properties of the ˆIto Integral of 

simple Adapted processes [Klebaner 2005] 

The following properties carry over to the  integral of general 

processes 

ˆIto

1. Linearity. If X(t) and Y(t) are simple processes and   and   are 

constants then  



Chapter two                                          Stochastic Differential Equation and             
Controllability  

 

 50

 
T T

0 0

X(t) Y(t) dB(t) X(t)dB(t) Y(t)dB(t)     
T

0
 . 

2. For the indicator function of an interval 

      a ,b a ,b
I (t) I (t) 1 when t a,b ,and zero otherwise  . 

   

T T

a ,b a ,b
0 0

I (t)dB(t) B(b) B(a), I (t)X(t)dB(t) X(t)dB(t)   
b

a
 . 

3. Zero mean property. 
T

0

E X(t)dB(t) 0   
 
 . 

4. Isometry property .    
2T T

2

0 0

E X(t)dB(t) E X (t) dt   
 
 

 

Definition (2.1.4) ˆIto Integral of adapted processes  

Let  be a sequence of simple processes convergent in 

probability to the process X(t). Then, under some conditions, the 

sequence of their integrals  also converges in probability to a 

limit J. the random variable J is taken to be the integral . 

nX (t)

T
n

0

X (t)dB(t)
T

0




X(t)dB(t)

 

Definition (2.1.5) Quadratic Variation [Klebaner2005] 

If g is the function of real variable, define its quadratic variation 

over the interval [0,t] as the limit (when it exists) 


n

n 2n n

i i 10
i 0

[g,g](t) lim g(t ) g(t )  

  ,                                        (2.4) 
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where the limit is taken over partitions: n n n n

0 1 2 n0 t t t ... t t      , with  

 n n

n 1 i n imax t t     i 1 . 

 

Remark (2.1.2) [Klebaner 2005] 

The stochastic calculus definition of quadratic variation is different 

to the classical one with p=2 (unlike for the first variation p=1, when they 

are the same). In stochastic calculus the limit in (2.4) is taken over 

shrinking partitions with  n n

n 1 i n i i 1max t t 0      , and not over all 

possible partitions. We shall use only the stochastic definition. 

 

Definition (2.1.6) Quadratic Variation of Brownian 

motion 

The quadratic variation of Brownian motion [B,B](t) is defined as 

    
n 2

n n

i i
i 1

[B,B](t) [B,B] 0, t lim B t B(t )


   1 , 

Where the limit taken over all shrinking partition of [0,t], with 

 n n

n 1 i n i i 1max t t 0       as . n 

 

Theorem (2.1.2) [C Klebaner 2005]  

Quadratic variation of a Brownian motion over [0,t] is t. 
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Example (2.1.2) 

We find . 
T

0

X(t)dB(t)

Let  be a partition of [0,T], and let  n n n n

0 1 2 n0 t t t ... t T     

 n n
i i 1

n 1
n n

i t ,t
i 0

X (t) B(t )I (t)







  . 

Then for any n,  is a simple adapted process. nX (t)

 n n

i iHere B(t )  . By the continuity of B(t),  almost 

surly as 

n

n
limX (t) B(t)




 n n

1 it 0 i imax t 

nX (t)

. The  integral of the simple function 

 is given by 

ˆIto

 
T n 1

n n n

i i 1 i
i 10

X (t)dB(t) B(t ) B(t ) B(t )





  n  

We show that this sequence of integrals converges in probability to 

21 1
J B (t)

2 2
  T . 

Adding and subtracting , we obtain 2 n

i 1B (t )

          2
n n n 2 n 2 n n n

i i 1 i i 1 i i 1 i

1
B(t ) B(t ) B(t ) B t B t B t B t

2  
       

,  

and 

         

    

T n 1 n 1 2
n 2 n 2 n n

i 1 i i 1 i
i 0 i 00

n 1 2
2 2 n n

i 1 i
i 0

1 1
X (t)dB(t) B t B t B t B t

2 2

1 1 1
B (T) B (0) B t B t

2 2 2

 

 
 






   

   

 



n
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By the definition of the quadratic variation of Brownian motion the 

second sum converges in probability to T. Therefore  

converges in probability to the limit J 

T

0

B(t)dB(t)

T T
n 2

n
0 0

1 1
B(t)dB(t) J lim X (t)dB(t) B (t) T

2 2
     . 

 

Remarks (2.1.3) 

1. If X(t) is a differentiable function (more generally, a function of 

finite variation), then the stochastic integral  can be 

defined by formally using the integration by part: 

T

0

X(t)dB(t)

T T

0 0

X(t)dB(t) X(T)B(T) X(0)B(0) B(t)dX(t)    ,                   (2.5) 

But this approach fails when X(t) depends on B(t). 

2. Brownian motion has no derivative, but it has a generalize 

derivative as a Schwartz distribution. It is defined by the following 

relation. For a smooth function g with a compact support (zero 

outside a finite interval) 

g(t)B (t)dt B(t)g (t)dt    . 

But the approach fails when g(t) depends on B(t). 

3. For simple processes the ˆIto  integral is defined for each  , path by 

path, but in general, this is not possible. For example, 

 53
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1

0

B( , t)dB( , t) 

t)dt   I

 is not defined, whereas  is 

defined as a limit in probability of integrals (sums) of simple 

processes. 

1

0

B(t)dB(t) ( ) J( )     
 


 

Theorem (2.1.3) [C Klebaner 2005] 

Let X(t) be a regular adapted process such that with probability one 

. Then  integral  is defined and has the 

following properties: 

T
2

0

X ( ˆto
T

0

X(t)dB(t)

1. Linearity. If ˆIto  integrals of X(t) and Y(t) are defined and   and   

are some constants then 

 X(t) Y(t) 

 a ,b
X(t)I (t)dB(t

 
T

2

0

E X (t) dt  

T

E X(t)dB(t)   

T T

0 0

dB(t) X(t)dB(t) 
T

0

Y(t)dB(t)  . 

2. . 
T b

0 a

) X(t)dB(t) 

The following two properties hold when the process satisfies an 

additional assumption 

.                                (2.6) 

3. Zero mean property. If condition (2.5) holds then  

0

0
 

. 

4. Isometry property. If condition (2.6) holds then 
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2T T

2

0 0

E X(t)dB(t) E X t d   
 
  t  

 

Remark (2.1.4) 

Note that the  integral does not have the monotonicity property: 

 does not imply . A simple counter – 

example is  with probability half this is smaller than 

zero, the  integral of zero. 

ˆIto

t)

X(t) Y(t)

ˆIto

T T

0 0

X(t)dB(t) Y(t)dB(t) 

)
1

0

1 dB( B(1 

 

Example (2.1.3) 

Take tf (t) e .  is well defined as  is continuous on R. 

Since 

1
B(t )

0

e dB(t)

 

xe

1 1
2B( t )

0 0

dt 
 
 
 

1
2t 2

0

1
E e e dt e 1

2
   2B( t )E e dt   ,  

21 1
B( t ) B( t ) 2

0 0

1
E e dB(t) 0, and E e dB(t) e 1

2
              
  . 
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Example (2.1.4) 

Take , that is, consider . Since f (t) t
1

0

B(t)dB(t)

 
1 1

0 0

1
tdt

2
 2E B (t) dt   . Thus  has mean zero and 

variance 

1

0

B(t)dB(t)

1
2 . 

 

Example (2.1.5) 

Take . That is, consider . Although this integral is 

well defined, the condition (2.15) fails, as 

2

)tf (t) e
2

1
B ( t )

0

e dB(t

 22B ( t )E e dt
T

0

  , due to the 

fact that  
2

2t
1

for t 
2 2

x
( t ) 2x 1

e e
42 t


 

2BE e

ô

. Therefore we can not 

claim that this  integral has finite moments. Then the Expectation of  

the  integral does not exist. 

ˆIto

It

 

Theorem (2.1.4) [C Klebaner 2005]. 

Let X(t) and Y(t) be regular adapted processes, such that 

 and 
T

2

0

E X (t)dt    
 


T
2

0

E Y (t)dt    
 
 . Then  


T T T

0 0 0

E X(t)dB(t) Y(t)dB(t) E X(t)Y(t) dt   
 
    .                         (2.7) 
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Proof 

Denote the Itˆo integrals , .  
T

1
0

I X(t)dB(t) 
T

2
0

I Y(t)dB(t) 

Write their product by using the identity  2 2 2
1 2 1 2

1 2

I I I II I 2 2
   2 . 

Then use the isometry property. 

 

ˆIto's  Formula for Brownian motion 

ˆIto  formula, also known as the change of variable and the chain 

rule, is one of the main tools of stochastic calculus. It gives rise to many 

others, such as Dynkin, Feynman-Kac, and integration by parts formulae. 

 

Theorem (2.1.5) 

If B(t) is a Brownian motion on [0,T] and f(x) is a twice 

continuously differentiable function on R, then for any t T  

   
t t

0 0

1
f (B(t) f (0) f B(s) dB(s) f B(s) ds

2
                             (2.8) 

Proof in  [C Klebaner 2005]. 

 

Theorem (2.1.6) [C Klebaner 2005] 

If g is a bounded continuous function and  n

it  represents partitions 

of [0,t], then for any  n n n

i i 1 iB(t ) B(t )   , the limit in probability  

   
n

tn 1
2n n n

i i 1 i
i 0 0

lim g( ) B(t ) B(t ) g B(s) ds


 


                                   (2.9) 



Chapter two                                          Stochastic Differential Equation and             
Controllability  

 

 58

Example (2.1.6)  

Taking , we have  mf (x) x ,m 2 

t t
m m 1 m 2

0 0

m(m 1)
B (t) m B (s)dB(s) B (s)ds

2
 

    

With m=2, 
t

2

0

B (t) 2 B(s)dB(s) t   

Rearranging, we recover the result on the stochastic integral 
t

2

0

1 1
B(s)dB(s) B (t) t

2 2
  . 

 
 
Definition (2.1.7) ˆIto Process [C Klebaner 2005]. 
 
An  process has the form ˆIto

t t

0 0

Y(t) Y(0) (s)ds (s)dB(s), 0 t T        .                        (2.10) 

where Y(0) is measurable, processes 0 F (t) and (t)   are adapted, 

such that 

t F

T

0

(t   ) dt  and 
T

2

0

(t)dt   . 

It is said that the process Y(t) has the stochastic differential on [0,T] 

dY(t) (t)dt (t)dB(t), 0 t T                                            (2.11) 

 

Example (2.1.7)  

Example (2.3.6) shows that  



Chapter two                                          Stochastic Differential Equation and             
Controllability  

 

t
2

0

B (t) t 2 B(s)dB(s)    

In other words, with 2Y(t) B (t)  we can write 

. Thus 
t t

0 0

Y(t) ds 2B(s)dB(s)   (s) 1 and (s) 2B(s)    . The 

stochastic differential of  2B (t)

 2d B (t) 2B(t)dB(t) dt   

 

Example (2.1.8)  

Taking  , we have  xf (x) e

t t
B( t ) B(s) B(s)

0 0

1
e 1 e dB(s) e ds

2
     

B( t )Y(t) e    has stochastic differential  

B( t ) B( t ) B( t )1
de e dB(t) e dt

2
  , 

or 

1
dY(t) Y(t)dB(t) Y(t)dt

2
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Remark (2.1.5) 

ˆIto 's  formula in theorem (2.3.5) in differential notation becomes: 

for  function f 2C

     1
d f (B(t)) f B(t) dB(t) f B(t) dt

2
   .                             (2.12) 

 

Example (2.1.9) 

We find    d sin B t . 

     f (x) sin x , f (x) cos x , f (x) sin x     . Thus  

        1
d sin B t cos B t dB(t) sin B(t) dt

2
  . 

Similarly,  

        1
d cos B t sin B t dB(t) cos B(t) dt

2
   . 

 

Example (2.1.10) 

We find  iB( t )d e  with . 2i 1 

The application of  formula to a complex-valued function 

means its application to the real and complex parts of the function. A 

formal application by treating i as another constant gives the same result. 

Using example (2.3.9) , we can calculate 

ˆIto 's

      iB( t )d e dcos B(t) idsin B(t)  ,  

or directly by using  formula with  ˆIto 's
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ixf (x) e , we have  and  ix ixf (x) ie , f (x) e   

 iB( t ) iB( t ) iB( t )1
d e ie dB(t) e dt

2
  . 

Thus  has stochastic differential  iB( t )X(t) e

1
dX(t) iX(t)dB(t) X(t)dt

2
  . 

 

Remark (2.1.6) 

If  and X(t) have stochastic differentials with respect to the 

same Brownian motion B(t), then clearly process Y(t)+X(t) also has a 

stochastic differential with respect to the same Brownian motion. It 

follows that covariation of X and Y on [0, t] exists and is given by 

Y(t)

        1
X,Y (t) X Y,X Y (t) X,X (t) Y,Y (t)

2
     .        (2.13) 

 
Theorem (2.1.7) [C Klebaner 2005]. 

If X and Y are processes and X is of finite variation, then 

covariation [X,Y] (t) = 0. 

ˆIto

 

Example (2.1.11) 

Let X , then (t) exp(t), Y(t) B(t)     X,Y (t) exp,B (t) 0  . 

Introduce a convention that allows a formal manipulation with 

stochastic differentials. 

 dY(t)dX(t) d X,Y (t) , 
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And in particular  

   2
dY(t) d Y,Y (t) . 

Since  is a continuous function of finite variation and 

 is continuous with quadratic variation t, the following rules 

follow  

X(t) t

Y(t) B(t)

 2
dB(t) 0, dt 0   

but  

    2

dB t d B,B (t) dt   

 

Integrals with respect to ˆIto processes 

It is necessary to extend integration with respect to processes 

obtained from Brownian motion. Let the  integral process 

 be defined for all t

ˆIto
t

0

Y(t) X(s)dB(s)  T , where X(t) is an adapted 

process, such that 
T

2

0

X (s)ds  
T

2 2

0

H (s)X (s)d

 with probability one. Let an adapted 

process H(t) satisfy (s)  

B(s)


t

0

Z(t) H(s) 

 with probability one. Then the 

 integral process  is also defined for all t . 

In this case one can formally write by identifying dY(t) and X(t)dB(t) 

ˆIto X(s)d T

t t

0 0

Z(t) H(s)dY(s) : H(s)X(s)dB(s)                                         (2.14) 
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Theorem (2.1.8) ˆIto's  formula for ˆIto process 

Let X(t) have a stochastic differential for 0 t T   

dX(t) (t)dt (t)dB(t)     

If f(x) is twice continuously differentiable (  function), then the 

stochastic differential of the process 

2C

  Y(  exists and is given 

by 

t) f X t

          

       

            

2

2

1
df X t f X t dX(t) f X t d X,X (t)

2
1

f X t f X t t dt
2

1
f X t t f X t t dt f X t (t)dB(t)

2

  

   

         
 

 

The meaning of the above is 

               
t t

2

0 0

1
f X t f X 0 f X s dX s f X s s ds

2
       

where the first integral is an Itˆo integral with respect to the 

stochastic differential. 

 

Definition (2.1.8) Integration By Part 

We give a representation of the quadratic covariation [X,Y](t) of 

two  processes X(t) and Y(t) in terms of  integrals. This 

representation gives rise to the integration by parts formula. 

ˆIto ˆIto

Quadratic covariation is a limit over decreasing partitions of [0, t], 
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n

n 1
n n n

i 1 i i 1 i0
i 0

X,Y (t) lim X t X t Y t Y t


  


   n



.             (2.16) 

The sum on the right above can be written as  

               

      

n 1 n 1
n n n n n n n

i 1 i 1 i i i i 1 i
i 0 i 0

n 1
n n n

i i 1 i
i 0

X t Y t X t Y t X t Y t Y t

Y t X t X t

 

  
 






  

 

 


 

              

      

n 1
n n n

i i 1 i
i 0

n 1
n n n

i i 1 i
i 0

X t Y t X 0 Y 0 X t Y t Y t

Y t X t X t











   

 




 

The last two sums converge in probability to  integrals 

 and . Thus the following expression is obtained 

ˆIto
t

0

X(s)dY(s)
t

0

Y(s)dX(s)

 
t t

0 0

X,Y (t) X(t)Y(t) X(0)Y(0) X(s)dY(s) Y(s)dX(s)     . 

The formula for integration by parts (stochastic product rule) is given by 

 
t t

0 0

X(t)Y(t) X(0)Y(0) X(s)dY(s) Y(s)dX(s) X,Y (t)      

In differential notations this reads  

   d X(t)Y(t) X(t)dY(t) Y(t)dX(t) d X,Y (t)                   (2.17) 

If 

X X

Y Y

dX(t) (t)dt (t)dB(t),

dY(t) (t)dt (t)dB(t),

   
   

 

then, their quadratic covariation can be obtained formally by 

multiplication of dX and dY, namely 
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 2

X Y

X Y

d[X,Y](t) dX(t)dY(t)

(t) (t) dB(t)

(t) (t)dt,



  

  

 

Leading to the formula  

  X Yd X(t)Y(t) X(t)dY(t) Y(t)dX(t) (t) (t)dt                 (2.18) 

Note that if one of the processes is continuous and is of finite 

variation, then the covariation term is zero. Thus for such processes the 

stochastic product rule is the same as usual. 

 

Example (2.1.12) 

X(t) has stochastic differential 

dX(t) B(t)dt tdB(t), X(0) 0    

We find X(t), give its distribution, its mean and covariance. X(t) = tB(t) 

satisfies the above equation, since the product rule for stochastic 

differentials is the same as usual, when one of the processes is continuous 

and of finite variation. Thus X(t) = tB(t) is Gaussian, with mean zero, and 

covariance function 

   
 
 

(t,s) Cov X(t),X(s) E X(t)X(s)

E B(t)B(s)

Cov B(t)B(s)

min(t,s).

  







 

 

Example (2.1.13) 

Let Y(t) have stochastic differential  
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1
dY(t) Y(t)dt Y(t)dB(t), Y(0) 1.

2
    

Let X . We find (t) tB(t)  d X(t)Y(t) .  

Y(t) is a Geometric Brownian motion . For B( t )e  d X(t)Y(t)  use 

the product rule. We need the expression for d[X,Y](t). 

 

 

   2 2

d X,Y (t) dX(t)dY(t)

1
B(t)dt tdB(t) Y(t)dt Y(t)dB(t)

2

1 1
B(t)Y(t) dt B(t)Y(t) tY(t) dB(t)dt tY(t) dB(t)

2 2

tY(t)dt,



    
 
     
 



as  2
dB(t) dt  and all the other terms are zero. Thus  

 d X(t)Y(t) X(t)dY(t) Y(t)dX(t) d[X,Y](t)    

X(t)dY(t) Y(t)dX(t) tY(t)dt,    

and substitution the expression for X and Y the answer is obtained. 

 

ˆIto's  formula for Functions of Two Variables 

If two processes X and Y both possess a stochastic differential with 

respect to B(t) and f(x, y) has continuous partial derivatives up to order 

two, then    f X t ,Y t   also possesses a stochastic differential. To find 

its form consider formally the Taylor expansion of order two, 
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2 2 2

2 2

2 2

f (x, y) f (x, y)
df (x, y) dx dy

x y

1 f (x, y) f (x, y) f (x, y)
dx dy dxdy .

2 x y x y

 
 

 

   
       

(2.19) 

Now,      2 2

XdX(t) dX(t)dX(t) d X,X (t) X(t) dt,     

     2 2

YdY(t) d Y,Y (t) Y(t) dt,     

and         X YdX(t)dY(t) d X,Y (t) X(t) Y(t) dt,     where  X t , and 

 Y t  are the diffusion coefficients of X and Y respectively. 

 

Theorem (2.1.9) [C Klebaner 2005] 

Let f(x,y) have continuous partial derivatives up to order two (a 

function) and X, Y be  processes, then 2C ˆIto

     

   

   

     

2
2

X2

2
2

Y2

2

X Y

f f
df X(t),Y(t) X(t),Y(t) dX(t) X(t),Y(t) dY(t)

x y

1 f
X(t),Y(t) X(t) dt

2 x
1 f

X(t),Y(t) Y(t) dt
2 y

f
X(t),Y(t) X(t) Y(t) dt

x y
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Example (2.1.14) 

If , then we obtain a differential of a product (or 

product rule) which gives the integration by parts formula. 

f (x, y) xy

  X Yd X(t)Y(t) X(t)dY(t) Y(t)dX(t) (t) (t)dt                 (2.20) 

 

Remark (2.1.7) 

An important case of  formula is for functions of the form ˆIto 's

 f X(t), t . 

 

Theorem (2.1.10) [C Klebaner 2005] 

Let f(x,t) be twice continuously differentiable in x, and 

continuously differentiable in t (a  function) and X be an  process, 

then 

2,1C ˆIto

         
2

2

x 2

f f 1 f
df X(t), t X(t), t dX(t) X(t), t d(t) X(t), t X(t), t dt

x t 2 x

  
   
  

(2.21) 

This formula can be obtained from Theorem 2.3.9  by taking Y(t) = t  

and observing that d[Y,Y] = 0 and d[X,Y] = 0. 

 

Example (2.1.15) 

We find the stochastic differential of B( t ) t /2X(t) e .  

Use  formula with ˆIto 's  x t /2f (x, t) e . X(t) f B(t), t   satisfies  
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2

2

f f 1 f
dX(t) df B(t), t dB(t) dt dt

x t 2 x
1 1

f B(t), t dB(t) f B(t), t dt f B(t), t dt
2 2

f B(t), t dB(t) X(t)dB(t).

  
   

  

  

 

 

So that 

dX(t) X(t)dB(t).  

 

STOCHASTIC DIFFERENTIAL EQUATIONS 

Differential equations are used to describe the evolution of a 

system. Stochastic Differential Equations (SDEs) arise when a random 

noise is introduced into ordinary differential equations (ODEs). 

 

Definition (2.1.9) Stochastic Differential Equation 

Let B(t), t ≥ 0, be Brownian motion process. An equation of the form 

   dX(t) X(t), t dt X(t), t dB(t)    ,                                   (2.22) 

where functions μ(x,t) and σ(x,t) are given and X(t) is the unknown 

process, is called a stochastic differential equation (SDE) driven by 

Brownian motion. The functions μ(x,t) and σ(x,t) are called the 

coefficients. 
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Definition (2.1.10) Strong Solution of the Stochastic 

Differential Equation [C Klebaner 2005] 

A process X(t) is called a strong solution of the SDE (2.22) if for 

all  the integrals  and exist, with the 

second being an integral, and 

t 0  
t

0

X(t), t ds  
t

0

X(s),s dB(s)

ˆIto

   
t t

0 0

dX(t) X(0) X(s),s ds X(s),s dB(s)      .                   (2.23) 

 

Remarks (2.1.8) [C Klebaner 2005] 

1. A strong solution is some function (functional)   F t, B(s),s t  of 

the given Brownian motion B(t). 

2. When σ = 0, the SDE becomes an ordinary differential equation 

(ODE). 

3. Equations of the form (2.22) are called diffusion-type SDEs. More 

general SDEs have the form 

dX(t) (t)dt (t)dB(t),     

where can depend on t and the whole past of the 

processes X(t) and B(t) 

(t) and (t) 

X(s), B(s), s t , that is,  (t) X(s),s t, t    , 

 (t) X(s   ),s t, t . The only restriction on μ(t) and σ(t) is that they 

must be adapted processes, with respective integrals defined. 
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2.2 BASIC CONCEPTS OF CONTROL THEORY 

[Ogata, 1997] 

 The following definitions are needed for complete understanding 

of the subject:  

 
  

Definition (2.2.1) Control 

         Control is a general term for the theory and techniques to change 

the dynamic performance of a system by imposed control action on the 

systems, so as to satisfy certain requirement to their best. 

 
 

Definition (2.2.2) Plant and Control System 

 A physical object to be controlled is called plant. It may be a 

heating furnace, a chemical reactor, a spacecraft, etc. A combination of 

components that acts together and performs a certain objective is called a 

system. A control system is a system which consists of such components 

as a sensor, controller, actuator, plant, etc. A plant is usually a given 

fixed component of a control system. 

 Definition (2.2.3) Disturbance 

 A disturbance is signal that tends to a diversely affect the value of 

the output of system. If the disturbance is generated within the system, it 

is called internal while an external disturbance is generated outside the 

system and is an input. 
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Definition (2.2.4) Feedback Control 

 Feedback control refers to an operation that, in the presence of 

disturbances, tends to reduce the difference between the output of a 

system and some reference input and that does so on the basis of this 

difference. Here only unpredictable disturbances are so specified, since 

predictable or known disturbance can always be compensated for within 

the system. 

 
 

Definition (2.2.5) Feedback Control System 

 A system that maintains a prescribed relationship between the 

output and some reference input by comparing them and using the 

difference as means of control is called a feedback control system. 

 
 

Definition (2.2.6) Closed- Loop Control System 

 Feedback control systems are often referred to as closed loop 

control systems. In closed-loop control system the actuating error, which 

is the difference between the input signal and the feed back signal, which 

may be the output signal itself or a function of the output signal and its 

derivatives and/or (integrals), is fed to the controller so as to reduce the 

error and bring the output of the systems to a desired value. 

 
 

 72



Chapter two                                          Stochastic Differential Equation and             
Controllability  

 

Definition (2.2.7) Open- Loop Control System 

 Those systems in which the output has no effect on the control 

action are called open-loop control systems. In other words, in an open-

loop control system the output is neither measured nor fed back for 

comparison with the input. Thus, to each reference input there 

corresponds a fixed operating condition; as a result, the accuracy of the 

system depends on calibration. 

 

Definition (2.2.8) State 

 The state of dynamical control system is the smallest set of 

variables (called state variables) such that the knowledge of these 

variables at , together with the knowledge of the input for , 

completely determines the behavior of the system for any time . 

Thus, the state of dynamic system at time 

0tt  0tt 

0tt 

t is uniquely determined by 

the state at time  and the input for , which is independent to the 

state and input before . In this work, the state variables are symbolized 

by , , …, .  

0t

nx

0tt 

0t

1x 2x

  
 

Definition (2.2.9) State Space 

 The n-dimensional space whose coordinate axes consist of the -

axis, -axis, , - axis is called state space. Any state can be 

represented by a point in the state space. 

1x

2x ... nx
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Definition (2.2.10) Controllability [Ogata, 1997] 

 Consider the system (1.6) 

)()()( tutxtx                                                                             

This linear system is said to be controllable at time  if it is possible by 

means of an  unconstrained control vector 

0t

)(tu  to transfer the system from any 

initial state  to any other state in a finite interval of time. )( 0tx

 

Definition (2.2.11) (Completely State Controllable)        

[C Klebaner 2005] 

 The system (1.6) is said to be completely state controllable if there 

exists some input )(tu  defining on , which gives , for all initial 

time  and all initial state .  

],[ 10 tt 0)( 1 tx

0t )( 0tx

 

Theorem 2.2.1  [Arapostathis  2001] 

 The system described by equation (1.6) 

)()()( tutxtx   

is completely state controllable if and only if the composite nrn  matrix   

where 

][ 12  n  

is of rank n.                                                                               

 

 Theorem 2.2.2 [C Klebaner 2005] 

 The system 
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)()()( tutxtx   

is controllable if and only if one of the following conditions is satisfied    

1- All rows of  te  (and consequently of te ) are linearly 

independent on ),0[   over ¢, the filed of complex numbers;  

2- For every eigenvalue   of   (and consequently for every   in ¢), 

the nrn  complex matrix ][    has rank n; 

3- If the rank of ][ 12  n  is n, which n is the 

dimension of the system. 

 

(2.3) PROBLEM FORMULATION  

Consider the nonlinear stochastic control system 

    
 

1 2

n

0

dx(t) [Ax(t) Bu(t) f t,x(t) N t,x(t), N t,x(t)

t,x(t) dW(t)

x(0) x R , t [0,b]

   

 

  

               (*) 

 

Where A and B are matrices of dimension n n  and  

respectively, 

n m
n n

2N :[0,b] R R  , n n

1N :[0 R n,b] R R   , 

, n nf :[0,b] R R   n n:[0,b] R Rn n   , u(t) is a feedback control and 

W is a n – dimensional standard Brownian motion. 

Let  be a probability space with probability measure P on ( , ,P)    

and t{ t [0,b] 

n

2 b, ,R ) 

} be the filtration generated by { . Let 

 be the Hilbert space of all 

w(s), 0 s t} 

L ( b measurable square integrable 
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variables with values in . Let  be the Banach space of all 

integrable and measurable processes with values in  for p . 

Further  is the Banach space of all square integrable and adapted 

processes  with norm 

nR n

pL ([0,b],R )

p  t  nR

t

2

2H





(t)
2 2

)  t [0,b]sup E (t  . Denote (t) exp(At)   

and by a control set . m

2U L ([0,b],R )

2 ([0,b],R ),L (



(L

Now let us introduce the following operators and sets. 

The operator  b

0L  m

2 , ,R ))n

b L

(s)ds

: u(.)

 is defined by 

b

0

Bu b

0L u

(R

(b

{x(

x(t;x

s)

t;x

0,u)

 

and set of all states attainable from  in time  is  0x

m

2L ([0,b],R )

t 0

t 0 0x ) ,u) } , 

where  is the solution of (*) corresponding to n

0x R , 

. m 2 ([0,u(.) L R b], )

Clearly the adjoint *b n

2L ([0,b],R ) m

0 2: L ([0,b],R )L  is defined by 

   * *L z bb *B 0 tz ( t)E . 

The controllability operator  is  
b

0
(.)

 
b

0

 
b

0 * *)BB 

(L (L

t(.) (b t)E . dt 

n

(b t  

which belongs to  and the controllability 

matrix 

n

2 b 2 b, ,R ),L ( , ,R ))   

b n n,R )

b * (b

s

(b

(R   is L

t) . 
b

*

s

BB t)dts 
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Definition (2.3.1) Complete controllability 

The system (*) is said to be completely controllable on [a,b] if  

 n

b 0 2 b(x ) L , ,R  R , that is, all the points in  n

2 bL , ,R   can be 

reached from the point  in time b. 0x

 

Remark (2.3.1)  

By the solution of the system (*)  

t

0
0

t t

1 2
0 0

x(t) (t)x (t s)[Bu(s) f (s,x(s))ds

(t s)N (s,x(s), N (s,x(s)))ds (t s) (s,x(s))dW(s)

     

      



 
     (**) 

To prove the complete controllability of the equation (*), it is enough to 

prove the complete controllability of (**). 

 

Lemma (2.3.1) 

1.  2

1 max (t) : t [0,b]  l . 

2. For some v 0   
2b

0
E z,z vE z , for all n )2 bz L ( , ,R   , and 

consequently   
21b

0 2

1

v
 l  [Mahmudov 2003]. E





3. 
2

3 bE xl . 

4.  2b

sM max :s [0,b]   . 

5. 
2 2t n

2 t0
E z M E z z L ( , ,R )  [Mahmudov 2003].    
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Definition (2.3.2) Lipchitz Condition  

A function f is said to satisfy Lipchitz condition in a region D if it 

is satisfy the following inequality  

2 1 2f (t, y ) f (t, y ) K y y   1  

 

Definition (2.3.3) Growth Condition 

Linear growth condition also appears in the results on existence 

and uniqueness of solutions of differential equations. f(x) satisfies the 

linear growth condition if   

   f x K 1 x   

This condition describes the growth of a function for large values 

of x, and states that f is bounded for small values of x. 

 

Example (3.3.1) 

It can be shown that if f(0, t) is a bounded function of t, 

 f 0, t C  for all t, and f(x, t) satisfies the Lipschitz condition in x 

uniformly in t,    f x, t f y, t K x y   , then f(x, t) satisfies the linear 

growth condition in x,  1f (x, t) K 1 x  . 

 

Remark (2.3.2) 

The polynomial growth condition on f is the condition of the form 

   m
f x K 1 x ,   for some   . K,m 0
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Lemma (2.3.2) [Mahmudov 2003] 

Assume that the operator 
t

0  is invertible. Then for arbitrary 

, n

T 2 tx L ( , ,R  F )    n n

2f (.) L [0,b], (.) L [0,b],R   F n

2 R ,F , the control  

 

 

 

b1b* *

b 00
0

b

1 2
0

b

t
0

u(t) B (t s)E[ {x (b)x (b s)f (s,x(s))ds

(b s)N s,X(s), N (s,x) ds

(b s) s,x(s) dW(t)} ]



      

  

    

 





 

transfers the system  

 

   

t

0
0

t

1 2
0

x(t) (t)x (t s)[Bu(s) f s,x(s)

N s,X(s), N (s,x) ]ds (t s) s,x(s) dW(s)

     

    




 

From  to n

0x R bx  at time b and  

 

 

 

   

 

1t b*

x 0 b 00 0

b b

1 2
0 0

b

0

t

1 2
0

t

0

T (t) (t)x (t s) {x (b)x

(b s)f (s,x(s))ds (b s)N s,X(s), N (s,x) ds

(b s) s,x(s) dW(s)}

t s)[f s,x(s) N s,X(s), N (s,x) ]ds

t s) s,x(s) dW(s)
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Some Lipchitz and linear growth conditions  

i. f, N1, N2 and   satisfies the Lipchitz condition and there exist L1, L2, 

L3, L4 and k for every , nt [0,b] i ix , y R ,i 1,2   such that  

2 2

1 1 1 1 2 2 1 1 2 1 2N (t,x , y ) N (t,x , y ) L x x y y
2       , 

2 2

2 2 2N (t,x) N (t, y) L x y   , 

2 2

3f (t,x) f (t, y) L x y   , 

2 2

4(t,x) (t, y) L x y      

and 
2 2

2N (t,x) k x  

ii. f, N1 and   are continuous and satisfies 

 2 2 2 2

1f (t,x) N (t,x, y) (t,x) L x y 1    
2
 , 

where L is a positive constant.  

iii. 
2 2t

0
E z M E z         [Mahmudov 2003]. 

iv. Let    2 2
1 2 1 2 1 2 3 1 1 2 1 3p 4M bL bL 1 4M L 4 bL bL 1 4 L       l l l l l l

0 p 1 

b  be 

such that . 

 

Theorem(2.4.1)  

If the hypotheses (i) - (iv) are satisfied, then the system (**) is completely 

controllable on [a,b]. 
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Proof 

Define the nonlinear operator  by 2 2T : H H

 

   

t

x 0
0

t

1 2
0

T (t) (t)x (t s)[Bu(s) f s,x(s)

N s,X(s), N (s,x) ]ds (t s) s,x(s) dW(s)

     

    




                  (2.1) 

 

Choose a feed back control function 

 

 

 

b1b* *

b 00
0

b

1 2
0

b

t
0

u(t) B (t s)E[ {x (b)x (b s)f (s,x(s))ds

(b s)N s,X(s), N (s,x) ds

(b s) s,x(s) dW(t)} ]



      

  

    

 





       (2.2) 

 

Put (2.2)  in (2.1) to obtain 

 

 

 

   

 

t 1b* *

x 0 b0
0

b b

1 2
0 0

b

t
0

t

1 2
0

t

0

T (t) (t)x (t s)[BB (t s)E[ {x (b)x

(b s)f (s,x(s))ds (b s)N s,X(s), N (s,x) ds

(b s) s,x(s) dW(s)} ]]ds

t s)[f s,x(s) N s,X(s), N (s,x) ]ds

t s) s,x(s) dW(s)



       

     

    

   

   



 







0

          (2.3) 
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b

b * *

t0
0

(.) (b t)BB (b t)E . dt        

 

 

 

   

 

1t b*

x 0 b 00 0

b b

1 2
0 0

b

0

t

1 2
0

t

0

T (t) (t)x (t s) {x (b)x

(b s)f (s,x(s))ds (b s)N s,X(s), N (s,x) ds

(b s) s,x(s) dW(s)}

t s)[f s,x(s) N s,X(s), N (s,x) ]ds

t s) s,x(s) dW(s)

      


     

    


   

   

 

 







 

 

Note that the control (2.2) transfers the system (*) from the initial state 

to the final state 0x bx

2H

 provided that the operator T has a fixed point then 

the system (*) is completely controllable. To prove the complete 

controllability it is enough to show that the operator T has a fixed point in 

. To prove this result, we use the contraction mapping principle, first we 

show that T maps  into itself. 

2H

Now we have: 

 82
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12 t b*

x 0 b 00 0

b b

1 2
0 0

b

0

t

1 2
0

2t

0

E T (t) (t)x (t s) {x (b)x

(b s)f (s,x(s))ds (b s)N s,X(s), N (s,x) ds

(b s) s,x(s) dW(s)}

t s)[f s,x(s) N s,X(s), N (s,x) ]ds

t s) s,x(s) dW(s)

     


     

    


   

   

 

 







 

 

 

 

   

 

12 t b*

0 b 00 0

b b

1 2
0 0

2
b

0

t t
2 22 2

1 2
0 0

t
22

0

4 (t)x 4E (t s) {x (b)x

(b s)f (s,x(s))ds (b s)N s,X(s), N (s,x) ds

(b s) s,x(s) dW(s)}

4b t s) E f s,x(s) ds 4b t s) E N s,X(s), N (s,x) ds

4 t s) E s,x(s) dW(s)

     


     

    


     

   

 

 



 


                                                                                                                 (2.4) 

2 2t

0
E z M E z  
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12 2 2 b*

x 0 b 00

b b

1 2
0 0

2b

0

t t
2 22 2

1 2
0 0

t
22

0

E T (t) 4 (t) x 4M E (t s) {x (b)x

(b s)f (s,x(s))ds (b s)N s,X(s), N (s,x) ds

(b s) s,x(s) dW(s)}

4 t s) E f s,x(s) ds 4 t s) E N s,X(s), N (s,x) ds

4 t s) E s,x(s) dW(s)



     

     

   

     

   



 



 



   

     

t
2 2 2 2

1 0 1 2 3 1 0
0

t t
2 22 2

1 2
0 0

t t t
2 22

1 1 2
0 0 0

4 x 16M x (t s) E f (s,x) ds

(t s) E N s,X(s), N (s,x) ds t s) E s,x(s) dW(s)

4 E f (s,x) ds E N s,x(s), N (s,x) ds E s,x(s) dW(s)

     
       

     
 



 

  

l l l l l

l

 

 

      

t
2 2 2 2

1 0 1 2 3 1 0 1 2

0

t
2 2

1 2

0

t
2 22 2

1 2 1 0 1 2 3 1 2 1

0

4 x 16M x LE x(s) N (s,x(s)) 1 ds

4 LE x(s) N (s,x(s)) 1 ds

16M 4 x 16M 16M 4 L k 1 E x(s) 1 ds

 
      

 
 

   
 

       
 







l l l l l l

l

l l l l l l l l l

  22
1 2 1 0 1 2 316M 4 x 16M 0   l l l l l l  

    
t

2 22

x 1 2 1
0

E T (t) 16M 4 L k 1 E x(s) 1 ds      l l l  

There exist a constant  such that 1K

 84



Chapter two                                          Stochastic Differential Equation and             
Controllability  

 

 

    

t
2 2

x 1
0

2

1
0 s 1

E T (t) K 1 k 1 E x(s) ds

K 1 k 1 supE x(s) for all t 0,b
 

    
 

   


  

 

Thus T maps  into itself. 2H

Secondly, we prove that T is a contraction mapping  

   

    

    

 

b12 t b*

x y 0 0
0

b

1 2 1 2
0

b

0

t

0

1 2

E T (t) T (t) E (t s) (b s) f (s,x(s)) f (s, y(s)) ds

(b s) N s,x(s), N (s,x) N s, y(s), N (s,x) ds

(b s) s,x(s) s, y(s) dW(s)

(b s) f (s,x(s)) f (s, y(s)) ds

(b s) N s,x(s), N (s,

         

   

       

   

  

  







    

    

t

1 2
0

2t

0

x) N s, y(s), N (s,x) ds

(b s) s,x(s) s, y(s) dW(s)
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t
2

1 2 1 3
0

t t
22

1 1 2 2
0 0

t
2

1 4
0

t
2

1 3
0

t t
22

1 1 2 2
0 0

2

1 4

4M b L E x(s) y(s) ds

b L E x(s) y(s) ds E N s,x(s) N s, y(s) ds

L E x(s) y(s) ds

b L E x(s) y(s) ds

b L E x(s) y(s) ds E N s,x(s) N s, y(s) ds

L E x(s) y(s) d

 


      
  


 

      

 



 





 

l l l

l

l

l

l

l
t

0

s
 

t
2

1 2 1 3
0

t t
2 2

1 1 2
0 0

t
2

1 4
0

t
2

1 3
0

t t
2 2

1 1 2
0 0

t
2

1 4
0

4M b L E x(s) y(s) ds

b L E x(s) y(s) ds L E x(s) y(s) ds

L E x(s) y(s) ds

b L E x(s) y(s) ds

b L E x(s) y(s) ds L E x(s) y(s) ds

L E x(s) y(s) ds

 


      
  


 

      

 



 





 



l l l

l

l

l

l

l
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t
2

1 2 1 3
0

t t
2 2

1 1 2 1 4
0 0

t
2

1 3
0

t t
2 2

1 1 2 1 4
0 0

4M b L E x(s) y(s) ds

b L 1 L E x(s) y(s) ds L E x(s) y(s) ds

b L E x(s) y(s) ds

b L 1 L E x(s) y(s) ds L E x(s) y(s) ds

 


     


 

    



 



 

l l l

l l

l

l l

 

 

  

2 2 2

1 2 3 1 1 2 1 4

t
2

1 3 1 1 2 1 4
0

4M bL 4M bL 1 L 4M L

b L b L 1 L L E x(s) y(s) d

   

    

l l l l

l l l s
 

 

 
  

 

2 2 2

1 2 3 1 1 2 1 4

2

1 3 1 1 2 1 4
s 0,b

4M bL 4M bL 1 L 4M L

b L b L 1 L L sup E x(s) y(s)


   

    

l l l l

l l l
 

 

Therefore, T is a contraction mapping and hence there exists a 

unique fixed point  in  which is the solution of the equation (**). 

Thus the system (**) is completely controllable on [0,b]. 

x(.) 2H

 



Chapter Three                           Controllability and Fractional Brownian Motion 

This chapter is divided into two sections. Section 1 presents some basic 

concepts of Fractional Brownian motion. In section 2 the complete 

controllability of a nonlinear stochastic dynamic  system (fractional Brownian 

motion) are discussed and proved by using the contraction mapping principle 

 

3.1 FRACTIONAL BROWNIAN MOTION [Biagini and 

Others 2008] 

The fractional Brownian motion was first introduced within a Hilbert space 

framework by Kolmogorov in 1940, where it was called Wiener Helix. It was 

further studied by Yaglom in [25]. The name fractional Brownian motion is due 

to Mandelbrot and Van Ness, who in 1968 provided a stochastic integral 

representation of this process in terms of a standard Brownian motion. 

 

Definition (3.1.1) Fractional Brownian Motion [Biagini 

and Others 2008]  

Let H be a constant belonging to (0,1). A fractional Brownian motion 

(fBm) (B(H)(t))t≥0 of Hurst index H is a continuous and centered Gaussian process 

with covariance function 

               E [B(H)(t)B(H)(s)] = 1/2(t2H + s2H − |t − s|2H). 

 

  88



Chapter Three                           Controllability and Fractional Brownian Motion 

  89

Remark (3.1.1) Properties of Fractional Brownian Motion 

 For H = 1/2, the fBm is then a standard Brownian motion. By Definition 

1.1.1 we obtain that a standard fBm B(H) has the following properties: 

1. B(H)(0) = 0 and E [B(H)(t)] = 0 for all t ≥ 0. 

2. B(H) has homogeneous increments, i.e., B(H)(t + s) − B(H)(s) has the same 

law of B(H)(t) for s, t ≥ 0. 

3. (H)B  is a Gaussian process and  (H) 2 2HE B (t) t , t 0,for all H 0,1 .      

4. B(H) has continuous trajectories. 

 

Remark (3.1.2) Stochastic integral representation 

[Biagini and Others 2008] 

Here we discuss some of the integral representations for the fBm. In [25], it 

is proved that the process 

   1 1
2 2

1
( ) ( ) (

(   1 / 2)
H H

R

)Z t t s s
H

 
    

   dB s  

 1 1 1
2 2 2

0

0

1
( ) ( ) ( ) ( ) ( )

(   1 / 2)

t
H H Ht s s dB s t s dB s

H
  



 
      
  
 
 

                …(3.1) 

where B(t) is a standard Brownian motion and Γ represents the gamma  

function , is a fBm with Hurst index H (0,1) .  
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If B(t) is replaced by a complex-valued Brownian motion, the integral (1.1) 

gives the complex fBm. First we notice that Z(t) is a continuous centered 

Gaussian process. Hence, we need only to compute the covariance functions. In 

the following computations we drop the constant 1/Γ (H+1/2) for the sake of 

simplicity. We obtain 

1 1
2 2

1 1
2 2

2
2

2
2

2

( ) ( ) ( )

(1 ) ( )

( ) ,

H H

R

H HH

R

H

E Z t t s s ds

t u u

C H t

 
 

 
 

          

      





 du  

where we have used the change of variable s = tu. Analogously, we have that 

1 1
2 2

1 1
2 2

22

2
2

2

( ) ( ) ( ) ( )

( ) ( )

( )

H H

R

H HH

R

H

E Z t Z s t u s u ds

t t s u u

C H t s

 
 

 
 

          

       

 



 du  

Now 

   
 

2 2 2

22 2

1
( ) ( ) ( ) ( ) ( ) ( )

2
1

.
2

HH H

E Z t Z s E Z t Z s E Z t E Z s

t s t s

             

   
 

Hence we can conclude that Z(t) is a fBm of Hurst index H. 
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Definition (3.1.2) Correlation between two increments 

[Biagini and Others 2008] 

For H = 1/2, B(H) is a standard Brownian motion; hence, in this case the 

increments of the process are independent. On the contrary, for H ≠ 1/2 the 

increments are not independent. More precisely, by Definition 1.1.1 we know 

that the covariance between B(H)(t+h)�B(H)(t) and B(H)(s+h)�B(H)(s) with s + h � t 

and t � s = nh is 

2 2 2 21
( ) ( 1) ( 1) 2 .

2
H H H

H n h n n n       
H  

 

Remark (3.1.3)  

In particular, we obtain that two increments of the form B(H)(t+h)�B(H)(t) 

and B(H)(t + 2h) � B(H)(t + h) are positively correlated for H>1/2, while they are 

negatively correlated for H < 1/2. In the first case the process presents an 

aggregation behavior and this property can be used in order to describe “cluster” 

phenomena (systems with memory and persistence). In the second case it can be 

used to model sequences with intermittency and anti-persistence. 
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Definition (3.1.3) Long-range dependence [Biagini and 

Others 2008]  

A stationary sequence  n n N
X


 exhibits long-range dependence if the 

autocovariance functions ρ(n) := cov(Xk,Xk+n) satisfy 

( )
lim 1
n

n

cn 



  

for some constants c and α � (0, 1).  

 

 Remark (3.1.4) 

 the dependence between Xk and Xk+n decays slowly as n tends to infinity and 

1

( ) .
n

n




   

Hence, we obtain immediately that the increments Xk := B(H)(k)�B(H)(k� 1) of B(H) 

and Xk+n := B(H)(k + n) � B(H)(k + n � 1) of B(H) have the long-range dependence 

property for H >1/2 since  

H (n) =
1

2
 [(n + 1)2H + (n � 1)2H � 2n2H] � H(2H � 1)n2H−2 

as n goes to infinity. In particular, 

H
2H 2n

(n)
lim 1

H(2H 1)n 
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Summarizing, we obtain 

1. For H >1/2,  
1n




 H (n)  

(n)2. For H <1/2, | | <
1n




 H  . 

There are alternative definitions of long-range dependence. We recall that a 

function L is slowly varying at zero (respectively, at infinity) if it is bounded on 

a finite interval and if, for all a > 0, L(ax)/L(x) tends to 1 as x tends to zero 

(respectively, to infinity). 

We introduce now the spectral density of the autocovariance functions ρ(k) 

f(λ) :=
1

2
k






 e−iλkρ(k) 

for λ � [�π, π]. 

 

Definition (3.1.4) [Biagini and Others 2008] 

For stationary sequences  n n N
X


with finite variance, we say that  n n N

X


 

exhibits long-range dependence if one of the following holds: 

1. ( ρ(k))/(cnlim
n

n

k n
 βL1(n)) = 1 for some constant c and β (0, 1). 

2. ρ(k)/cklim
k

−γL2(k) = 1 for some constant c and γ (0, 1). 
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3. f(λ)/c|λ|
0

lim


−δL3(|λ|) = 1 for some constant c and δ  (0, 1). 

Here L1, L2 are slowly varying functions at infinity, while L3 is slowly 

varying at zero. 

 

Lemma (1.1.1) 

For fBm B(H) of Hurst index H (1/2, 1), the three conditions s of long-

range dependence of Definition (3.1.3) are equivalent. They hold with the 

following choice of parameters and slowly varying functions: 

1. β = 2H � 1, L1(x) = 2H. 

2. γ = 2� 2H, L2(x) = H(2H � 1). 

3. δ = 2H � 1, L3(x) = π−1HΓ(2H) sin πH. 

 

Definition (3.1.5) Self – similarity [Biagini and Others 

2008]  

We say that an valued random process nR   t t 0
X X


  is self – similar or 

satisfies the property of self – similarity if for every a  there exists 0 b 0  such 

that   

   at tLaw X , t 0 Law bX , t 0                                                            (3.2)                  



Chapter Three                           Controllability and Fractional Brownian Motion 

  95

Note that (3.2) means that the two processes  have the same 

finite dimensional distribution functions, i. e., for every choice ,  

at tX and bX

t , t0 1 n,..., t in R

   
0 n 0 nat 0 at n t 0 t nP X x ,...,X x P bX x ,...,bX x      

for every  in R. 0x ,..., xn

 

Remark (3.1.5) [Biagini and Others 2008] 

If Hb a   in definition (3.1.5), then we say that  t t 0
X X


  is a self 

similar process with Hurst index H. the quantity D=1/H is called the statistical 

fractal dimension of X. 

 

3.2  PROBLEM FORMULATION 

Consider the nonlinear stochastic control system 

    
 

1 2

H

n

0

dx(t) [Ax(t) Bu(t) f t,x(t) N t,x(t), N t,x(t)

t,x(t) dW (t)

x(0) x R , t [0,b]

   

 

  

               (*) 

where  is the fractional Brownian motion with  HW 0 H 1  . 

and 
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t

0
0

t t
H

1 2
0 0

x(t) (t)x (t s)[Bu(s) f (s,x(s))ds

(t s)N (s,x(s), N (s,x(s)))ds (t s) (s,x(s))dW (s)

     

      



 
    (**) 

 

 

Remarks (3.2.1) 

1. As well known, the fractional Brownian motion is an extension of the 

Brownian motion and provides the useful mathematical model when the 

long range dependence is accounted importantly. In general the steps in 

the fractional Brownian motion are strongly correlated and have long 

memory. 

2. Hence fractional Brownian motion has become a powerful mathematical 

model for studying correlated random motion with wide application in 

Physics and it has been ubiquitous model in Physics. 

We show in this section the stochastic control system (*) is completely 

controllable on [0,b].  

 

Theorem (3.2.1) 

If the conditions  
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i. f, N1, N2 and   satisfies the Lipchitz condition and there exist L1, L2, L3, L4 

and k for ev t [0, 1,2ery  b] ,  n

i ix , y R ,i   such that  

2 2

1 1 1 1 2 2 1 1 2 1 2N (t,x , y ) N (t,x , y ) L x x y y
2       , 

2 2

2 2 2N (t,x) N (t, y) L x y   , 

2 2

3f (t,x) f (t, y) L x y   , 

2 2

4(t,x) (t, y) L x y      

and 

2 2

2N (t,x) k x  

ii. f, N1 and   are continuous and satisfies 

 2 2 2 2

1f (t,x) N (t,x, y) (t,x) L x y 1    
2
 , 

where L is a positive constant.  

iii. 
2 2t

0
E z M E z         [Mahmudov 2003]. 

iv. Let     2 2
1 2 1 2 1 2 3 1 1 2 1 3p 4M bL bL 1 4M L 4 bL bL 1 4 L b       l l l l l l

0 p 1 

 be such 

that  . 

v. 
2 2

sD f q f  . 
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are satisfying, then the system (**) is completely controllable  

 

The difference is in the estimate (2.4) since the  that used in the 

Brownian motion case is not valid anymore in the fractional Brownian motion 

case. 

ˆIto

Let  denote the completion of the set of all 1,2 (R)L  H

t  adapted 

processes f  such that (t) f (t, )

1,2

2

2

s(R )
R R R

f E f (s)f (t) (s, t)dsdt E D f (s)ds
 


 

   
      

    
  L


 


, 

where sD  is the  derivative defined in [Imbrie 1988]. Let F  2L  here  , w   

the probability law of W Let D denotes the usual Malliavin derivative 

then . Then we have the following fractional  isometry 

(see [Y. Hu 2003]) 

is  H .

t

sF  

s R
)D Fdt D F (s, t ˆIto

  1,2

2 2H

(R )R
E f (t, )dW (t) f



     L
                                                           (3.5) 

Here the function   is chosen as 

2(H 1) 1
(s, t) H(2H 1) s t , H

2


     . 

Instead of using the  isometry we use the above fractional  isometry  

to prove the required result, Now then we have 

ˆIto ˆIto
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E T (t) E (t)x (t s) {x (b)x

(b s)f (s,x(s))ds (b s)N s,X(s), N (s,x) ds

(b s) s,x(s) dW (s)}

t s)[f s,x(s) N s,X(s), N (s,x) ]ds

t s) s,x(s) dW (s)
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H
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t t
2 22 2

1 2
0 0

t
22 H

0

4 (t)x 4E (t s) {x (b)x

(b s)f (s,x(s))ds (b s)N s,X(s), N (s,x) ds

(b s) s,x(s) dW (s)}

4b t s) E f s,x(s) ds 4b t s) E N s,X(s), N (s,x) ds

4 t s) E s,x(s) dW (s)

     


     

    


     

   

 

 



 


 

From the conditions (i), (ii) an fractional  isometry (3.5) with the 

assumption 

ˆIto
2 2

sD f q f  , q is constant, we have 
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(b s)f (s,x(s))ds (b s)N s,X(s), N (s,x) ds

(b s) s,x(s) dW (s)}

4 t s) E f s,x(s) ds 4 t s) E N s,X(s), N (s,x) ds

4 t s) E s,x(s) dW (s)
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1 0 1 2 3 1 0
0

t t
2 22 2 H
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0 0

t t t
2 22 H

1 1 2 1
0 0 0

4 x 16M x b (t s) E f (s,x) ds

b (t s) E N s,X(s), N (s,x) ds t s) E s,x(s) dW (s)

4 b E f (s,x) ds E N s,x(s), N (s,x) ds 4 E s,x(s) dW (s)

     
       

     
 



 

  

l l l l l

l l

 

   

     

t
2 2 2 2
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0

t t
2 22 2

1 2
0 0

t t t
2 22

1 1 2 1
0 0 0

4 x 16M x b (t s) E f (s,x) ds

b (t s) E N s,X(s), N (s,x) ds q t s) E s,x(s) d(s)

4 b E f (s,x) ds E N s,x(s), N (s,x) ds 4 q E s,x(s) d(s)
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22
1 2 1 0 1 2 3

t
22

1 2 1

0

16M 4 x 16M

16M 4 L q k 1 E x(s) 1 ds

  

     
 

l l l l l l

l l l
 

    
t

2 22

x 1 2 1
0

E T (t) 16M 4 L q k 1 E x(s) 1 ds      l l l  

There exist a constant  such that 2K

 

    

t
2 2

x 2
0

2

2
0 s 1

E T (t) K 1 q k 1 E x(s) ds

K 1 q k 1 bsupE x(s) for all t 0,b
 

     
 

    


  

Thus T maps  into itself. 2H

Secondly, we prove that T is a contraction mapping 
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2 2 2

1 2 3 1 1 2 1 4

2

1 3 1 1 2 1 4
s 0,b

4M bL 4M bL q L 4M L

b L b L q L L sup E x(s) y(s)


   

    

l l l l

l l l
 

Therefore, T is a contraction mapping and hence there exists a unique 

fixed point x in 2H hich is the solution of the equation (**). Thus the system 

(**) is completely controllable on [0,b]. 

(.)   w
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ILLUSTRATION 3.2.1   

Consider a two dimensional nonlinear stochastic control equation 

    
 

1 2

2

0

dx(t) [Ax(t) Bu(t) f t,x(t) N t,x(t), N t,x(t)

t,x(t) dW(t)

x(0) x R , t [0,b]

   

 

  

                  (3.6) 

where W(t) is a one-dimensional Brownian motion and 

1 1 1 0
A , B

1 1 0 1

  
      





 

  1

2

2x
f t,x(t)

2x

 
  
 

  

          
      

2 1

1 2

1 2 1

3 sin x t x t
N t,x t , N t,x t ,

3 cos x t x t 2x t

  
      

 

 2 2t

t

2t 1 e
(t)

sin t cos t e






 
  

  
 

for        2

1 2x t x t ,x t R  . Take the final point . For this 

system, the controllability matrix 

2x(b) R



Chapter Three                           Controllability and Fractional Brownian Motion 

   

 

b
b * *

0
0

2b

X 0, t BB X 0, t dt

1 01
e 1

0 12

 

 
   

 


 

is nonsingular if b>0. 

We need some remarks to prove the Lipschitz condition 

 

Remarks(3.3.1) [C Klebaner 2005] 

1. If f is continuously differentiable on a finite interval [a, b], then it is 

Lipschitz. 

2. A Lipschitz function does not have to be differentiable, for example 

f(x)=|x| is Lipschitz but it is not differentiable at zero. 

3. A Lipschitz function multiplied by a constant, and a sum of two Lipschitz 

functions are Lipschitz functions. The product of two bounded Lipschitz 

functions is again a Lipschitz function. 

4. If f is Lipschitz on [0,N] for any N >0 but with the constant K depending 

on N, then it is called locally Lipschitz. For example, x2 is Lipschitz on 

[0,N] for any finite N, but it is not Lipschitz on [0,+∞), since its derivative 

is unbounded. 
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5. If f is a function of two variables f(t,x) and it satisfies Lipschitz condition 

in x for all t, 0 ≤ t ≤ T , with same constant K independent of t, it is said 

that f satisfies Lipschitz condition in x uniformly in t, 0≤t≤T. 

From above remarks and the definition of Lipschitz condition and the 

definition of Growth condition, we see that (f, N1, N2, and  ) are differentiable 

and satisfying Lipschitz and Growth conditions. 

Then the System (3.6) is completely controllable. 



Conclusions 
 
 

1. The controllability study of a nonlinear stochastic control system in 

the presence of system uncertainty driven by some Brownian 

motion or/and fractional Brownian motion is not an easy task as 

one can see, but due to its important applications, the present work 

have been adaptive. 

 

2. the necessary and sufficient condition of controllability of this 

work are applicable, as one can see this fact from the illustration. 

This part makes the present work suitable for many real life 

applications. 

 

 

3. the difficult of this work comes from the hard background of 

nonlinear stochastic dynamic system using Ito formula and some 

conditional expectations operator in the presence of adapted 

filtration . 



Future work 
 
 

1. study the feedback of nonlinear stochastic dynamic control system 

using the concept of controllability that discussed in this work and 

then go for the real life application. 

 

2. one can try to develop the result of this work for delay stochastic 

control system in the presence of system uncertainty driven by 

Brownian motion or fractional Brownian motion. 

 

 

3. Another case of Fractional Brownian motion where {0<H<0.5} 

may also be considered and try to develop this case for the work of 

chapter 
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