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ADbstract

This thesis have three main objectives. The first objective is to
give a study of stochastic calculus, including the basic definitions and
fundamental concepts related to this topic including the proof of some
results, and among such results is the proof of Holder's inequality of
expectation, the existence and uniqueness theorem of stochastic
differential equations and the Euler's method for solving stochastic
differential equations. The second objectiveisto study the analytical and
numerical methods for solving stochastic differential equations. The
third objective is to modify the methods of solution to solve delay

stochastic differential equations
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1 ntroduction

Stochastic differential equations (SDE's for short) are differential
eguations in which one or more of its terms are stochastic processes, and
therefore will give solutions which are itself stochastic process, [Arnold,
1974]. SDE's are used in wide range of applications in environmental
modeling, engineering and biological modeling, [Higham, 2001], and
SDE's are a fundamental tool for mathematics and its applications,
[Geiss, 2007].

The type of SDE's incorporated into the systems are also very
important; therefore, various authors have made extensive work on the
analytic solution of SDE's, [Smith, 1999], [f ksendal, 2000], [f ksendal,
2003], [Muszta, 2005], and the numerical solution of SDE's, [Han,
2005], [Mahony, 2006]. Since sometimes SDE's rarely have explicit
solutions and hence in some cases accurate numerical methods are vital
in order to make their implementation viable. Due to features of the
stochastic calculus, the numerical analysis for solving SDE's differs in
some key areas from the already well-developed area of the numerical

analysis of ordinary differential equations, [Mahony, 2006].

There are two basic type of tasks connected with the simulation
of solutions of SDE's. The first occurs in situation where a good path
wise approximation is required, for instance in direct simulations,
filtering or testing statistical estimators. The second interest focuses on
approximating expectations of functional of the I1to process, such as its
probability distribution and its moments, [Han, 2005]. As more realistic
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mathematical models become required to take into account random
effects and influences in real world systems SDE's have become essential

In the accurate description of such situations, [Mahony, 2006].

In recent years, stochastic processes and stochastic calculus have
been applied to a wide range of financial problems. ApplicationS of
stochastic processes and stochastic calculus may be found in many
disciplines, such as physics, engineering, and finance. Stochastic
calculus concerns with a specific class of stochastic processes that are
stochastically integrable and are often expressed as solutions to the
stochastic differential equations, [Lin, 2006]. They are typicaly
describing the time dynamics of the evolution of a state vector, based on
the (approximate) physics of the real system, together with a deriving
noise process. The noise process can be though of in several ways. It is
often represent processes not included in the model, but presented in real
system, [Archambeau et a., 2007]. In the physica and engineering
sciences, on the other hand, SDE's arise in a quite natural manner in the
description of systems on which so-called "white noise" acts, [Lin,
2006], many physical systems are modeled by SDE's, where random
effect are being modeled by a Wiener process (for more details, see for
example [Soheili, 2008]). A natural extension is given by systems of
SDE's, where system noise is modeled by including a diffusion on term
of some suitable form in the driving equations, [Ditlevsen, 2006].
Statistical inference for diffusion type processes satisfying SDE's driven
by Wiener process has been studied earlier and a comprehensive survey
of various methodsis given in, [Rao, 2003]. Recent years have witnessed

that the most efficient and widely applicable approach in solving SDE's
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seems to be the simulation of sample paths of time discrete
approximations on digital computers. This is based on a finite
discretization of time interval [0, T] under consideration and generates
an approximate values of sample paths step by step at the discretization
times, [Han, 2005].

Starting from the well known 1t6 formula (as stochastic counter
part of deterministic chain rule and as the link between continuous and
discrete time stochastic dynamical systems). Asin deterministic analysis,
the latter formulas are essential for the systematic construction of
stochastic numerical methods and the investigation of local behavior of
their approximating trgectories, [Schurz, 2002]. The history of
stochastic integration and the modeling of risky asset prices both begin
with Brownian motion, so let us begin there too, and arrived at the notion
of a SDE governing the paths of a Markov process that may be
formulated in terms of the differential of asingle differential process, but
in the late of 1960 and 1970 which leads to even greater interest of
Markov processes as solutions of SDE's, [Jarrow, 2003]. If these random
functions have certain regular properties, one can consider the above
mentioned problems simply as a family of classical problems for the
individual samples functions, and treat them with the classical methods
of the theory of differential equations, [Arnold, 1974]. The theory of
SDE's was originally developed by mathematicians as a tool for explicit
construction of the trgectories of diffusion processes for given
coefficient of drift and diffusion, as a result of this variety in the

motivations, existing detailed studies of the subject, as arule, either are
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not written from a stand point applications or are inaccessible to the
person intending to apply them, [Higham, 2001].

Stochastic delay differential equations (SDDE's for short) are a
generalization of both deterministic delay differential equations (DDE's
for short) and stochastic ordinary differential equations (SODE's for
short). In many areas of science, such as population problems and the
study of materials or systems with memory, there has been an increasing
interest in the investigation of functional differential equations
incorporating memory or after-effect, [Baker, 2000]. In such cases,
stochastic delay differential equations or stochastic functional
differential equations (SFDE's for short) provide important tools to
describe and analyze these systems. SDDE's and SFDE's arising in many
applications cannot be solved explicitly. Hence, one needs to develop
effective numerical techniques for such systems, [Hu, 2004]. In general,
there is no analytical closed form solution of the problems considered
here and we usually require numerical techniques to investigate the
models quantitatively, [Baker, 2000]. The analysis of numerical methods
for SDDE's is based on the numerical analysis of DDE's and the
numerical analysis of ODE's. There are few articles on numerica
analysis of SDDE's to date, see (Tudor, 1992), (Kichler, 1999), and for
the theory of SDDE's, see (Mohammed, 1984), (Kolmanovskii, 1992),
(Mao, 1997).

This thesis consists of three chapters. In chapter one, some
general concepts and definitions related to the subject of stochastic
calculus and delay differential equations are given for completeness. In
chapter two, the statement and the details of the proof of SDE'sis given

iv
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as well as with some additional theoretical results which are needed in
the proof of the existence and uniqueness theorem in which some of
them are given in literatures either without details. In chapter three, some
analytical methods for solving SDE's are studied and explained with
examples then these methods are modified for solving SDDE's. In
addition, numerica method, namely Euler's method, is considered for
solving SDE's and SDDE's.

Finally, the numerical results are obtained using computer
programs written in Mathcad 2001i computer software and the resultsare
given in atabulated form.

Vv
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Chapter One
General Concepts

Introduction

This chapter is of introductory nature, which consists of some the
most common concepts related to this thesis. Therefore, this chapter
consists of seven sections. In section 1.1, the main aspect of delay-
differential equations are introduced, including its classification and
basic properties. In section 1.2, we give the main conceptsin probability
theory including some definitions of fields (s-fields) and probability
space. In section 1.3, the concept of discrete random variables have been
discussed in short while in section 1.4 we discuss in details the
continuous random variables because of its strong relationship with the
topics of this thesis. Section 1.5 presents an introduction to stochastic
process which give the rise for stochastic differential equations. Also, as
asecond part in theintroduction of stochastic differential equationsisthe
Brownian motion which isintroduced with some detailsin section 1.6, as
well as, some results are given for completeness. Finally, section 1.7
presents the definition of stochastic differential equations in terms of the
ItO process.

1
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Chapter One General Concepts

1.1 Delay Differential Equations

Delay differential equations are a large and important class of
dynamical systems. They often arise in either natural or technological
control problems, [Roussel, 2004], DDE's are of sufficient importancein
many applications, say in mixing of liquids, population growth and
automatic control system, [Driver, 1977], and DDE's are used to describe
many phenomena of physical interests, [Shampine, 2000], DDE's are in
which their time lags are constant (Sometimes called scalar, or point
delays), [Abdulkadir, 2008].

The general form of the n-th order differentia-difference

equation with multiple delaysis given by:

F(t; x(t), X(t - tor), X(t- to2), ..., X(t- tom), XEL), XKt - tqy),
XEt- t12), ..oy XEE- t1m), ..oy XV, XOt - o), XO(t - th), ...,
XV = Trm)) T 000) v, (1.1)

where F isagiven function and t; (fori =0, 1, ...,nandj =1, 2, ..., m)
are constants called delays, where i refers to the order of the derivative

with respect to the dependent variable for each,j =1, 2, ..., m.

The first order linear differential-difference equation may be
classified into three types. The first type, which is the simplest type of
differential-difference equations is that; in which the delay terms is
through the state variable and not through the derivative of the state
variable and is cdled retarded differentia-difference equations
(RDDE’s, for short).

These types of equations occurred in a number of applications

such as, in the physical applications, for example:

2
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Chapter One General Concepts

x&t) = F(t; x(t), x(t - 1)),

wherex® T i",F: i i"%® ", andt > 0isasingle constant

fixed time delay, and in control problems, for example:
X&t) = K(x(¥) - x(t- 1)),

where K isthe feedback gain function and t isthetimedelay, and asoin

the study of distribution of primes, for example:
X&t) =- ax(t- D[1 + x(t)].

The second type of differential-difference equations is that; in
which the delay terms is through the derivative of the state variable and
not through the state variable itself and is called neutral differential-
difference equations (NDDE's, for short), [Hale, 1993], for example:

XGt) = - X€t) - x&t - 1) - 3sinx(t) + cos(t).

Also variants of NDDE's have also been used as a model in the

history of growth of single species, for example:

1 0 ]
X() =-a] Os- 1) dsy(L+ x(1):
T-1 b

and in the describing the spread of disease taking into account age

dependence, for example:

t

X€t) =- a(t- u)g(x&t- u))du.

t-t

The third type is a combination between the two obvious types
and is called the advanced differential-difference equations (ADDE’s,

3
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for short), [Hale, 1993]. These types of equations occur in the theory of

epidemics and models in the biomedical science, for example:

X@t) = f(x(t - 1)) Xt - 1) - axd&t) - x(t).

Many theoretical and numerical solution are presented in
literatures for solving DDE's, and among the most common used
methods; the method of steps (or the method of successive integrations)
and the Laplace transformation method for linear delay ODE's with
constant coefficients. The method of steps; is to reduce the problem
directly into an ordinary differential equation using the initial condition.
This method has been used for many years in solving delay differential
equations, [Gllsinn, 2006]. Although, Laplace transformation method is
extremely useful in obtaining the solution of linear DDE's with constant
coefficients. Asit is known, Laplace transformation method may be used
to solve ODE's and we can aso use the same approach to solve DDE's.
For this approach, suppose that f is afunction of t defined on [0, ¥) with
[f(t)] < Me™ then the Laplace transform of f(t) (denoted by F(s)) is
defined by:

F(s) = i‘)e'gf(t) dt,s>0
0
It is clear that this integral depends on f and on the number s, where f
satisfies certain conditions. The function F(s) is called the Laplace
transform of f(t), [Brauer, 1973]. Two approaches may be used in
Laplace transformation method for solving DDE’s. The first approach is
to solve the DDE’s by using Laplace transformation method directly
without using the method of steps, [Bellman, 1963]. While the second

4
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Chapter One General Concepts

approach depends on the method of stepsfirstly to transform the DDE, to
an equivalent ODE and then apply the Laplace transformation method to

solve the resulting equation, [Brauer, 1973].

Moreover, some numerical and approximate methods may be
used to solve DDE's, such as the linear multistep methods [Al-Kubeisy,
2004], the collocation method, [Al-Saady, 2000], variational approach,
[Abdukadir, 2008].

1.2 Basic Concepts of Probability Theory

Probability theory is that branch of mathematics which is
concerned with random (or chance) phenomena. It has attracted people
to its study both, because of its intrinsic interest and its successful
applications to many areas within the physical, biological and social
sciences, engineering, and in the business world, [Hoel, 1971],
randomness and probability are not easy to define precisely, but we
certainly recognize random events when we meet them. For example,
randomness is in effect when we flip a coin a lottery ticket, run a horse
race, [Krishnan, 1984]. The terminology given in the next remarks are

necessary for the topics of thisthesis:

Remarks (1.1), [Krishnan, 1984]:

1. Randomexperimentisan experiment satisfy thefollowing conditions:
(i) The outcome can be predicted with certainty.
(i) The outcome can be described prior to its performance.

(iii) 1t can be repeated under the same conditions.

5
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2. The collection of all possible outcomes of a random experiment is
called sample space and is denoted by W. In set terminology, the
sample space is termed as the universal set, thus, the sample space W
IS a set consisting of mutually exclusive, collectively exhaustive
listing of all possible outcomes of arandom experiment. That is,:

W={wy, Wy, ..., Wp}

denotes the set of al finite outcomes, while
W={wy, Wy, ...}

denotes the set of all countably infinite outcomes, and
W={w;:0£t£T}

denotes the set of uncountably outcomes.

1.2.1 Fields, s-Fields, [Krishnan, 1984]:

Let R be the nonempty class of subsets drawn from the sample
space W. We say that the class R isafield or an algebra of setsin Wif it
satisfies the following definition:

Definition (1.2) (Filed or Algebra), [Krishnan, 1984]:

A class of subsets Aj I W, " j=1,2, ..., ndenoted by R isa

field when the following conditions are satisfied:
1. fAT R, then AT R.
n
2. If{A," i=1,2,...,n1 R,then UA T R.

i=1

6
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Example (1.1), [Krishnan, 1984]:

Let W= j and consider aclass R of al intervals of the form (a,
b], such that:

| A, a<b<c<d
(cb], a<c<b<d
(@bl € (c,d =i(ad], c<a<d<b
Z:ﬁ (c,d, a<c<d<b
f(ab], c<a<b<d

Clearly the class R is closed under intersections. However:
(abl°=(-¥,aEMm¥)I R

Theclass R isnot afigld.

Definition (1.3) (s-Field or s-Algebra), [Krishnan, 1984]:

A class of countably infinite collection of subsets A; 1 W,

" ]=1,2,... denoted by F isas-field when the following conditions are
satisfied:

1.1f AT F,then A°T F.

¥
2.1f{A,i=1,2,..}1 F,then UA, T F.
i=1

Remarks (1.2), [Krishnan, 1984]:

1. Ingenera as-fieldisafield, but afield may not be as-field.

7
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2. The intersection of any nonempty but arbitrary collection of s-fields
inWisas-fieldin W.

3. In general the arbitrary union of a collection of s-fields may not be a
s-field.
We can always construct the smallest s-field over R inwhich R

will contain R and will be denoted by s(R) = F.

This will aways exist since s(R) can be defined as the
intersection of all s-fields containing R. If s;(R), s»(R), ... are dl

s-fields containing R, then:

¥
s(R)= Is;i(R)
i=1

Further, the minimal s-field thus generated is unique, we shall
cal s(R) the s-field generated by R.

1.2.2 Probability Space:
Definition (1.4) (Probability Measure), [Al-Bayaty, 2008]:

A probability measure is a set function P defined on a s-field F
of subsets of a sample space W such that it satisfies the following axioms

of Kolmogrov for any AT F:
1. p(A) 3 0.

2.p(W) = 1.

8
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v o) éé
3. p(?u An+ = a p(An)-
en=1 g n=1

with A,T F and A; and A;, 11 ] being pairwise digoint. Any set function
h defined on a measurable space (W, F) satisfying axioms (1) and (3) is

called ameasure.

Definition (1.5) (Probability Space), [Stirzaker, 2005]

The measure space (W, F, P) is called a probability space, which

serves to describe any random experiment, where:

1. Wisanonempty set called the sample space, whose elements are the

elementary outcomes of a random experiment.

2. Fisas-fied of subsets of W.

3. P isaprobability measure defined on the measurable space (W, F).

Definition (1.6) (Measurable Function), [Krishnan, 1984]:

Let (W, F1) and (W5, F,) be two measurable spaces. Let g be a
function with domain E; I Wy and E; 1 W, g: E; %® E, Thengis
called a Fi;-measurable function or an F;-measurable mapping, if for
every E,1 Fy:

g (B2 ={wl Wgw)T E} =E

iIsinthes-field F;.

9
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Remarks (1.3), [Krishnan, 1984]:

1. The set E; given by g (E,) is called the inverse image or inverse
mapping of E,, and it is measurable set.

2. Let g be ameasurable mapping from (W, Fy) %® (W, F). If R

IS a nonempty class of subsets of W, then:

s(g(R)) =g '(s(R)).

Definition (1.7) (Random Variable), [Poularikas, 1999]:

To every outcome h of any experiment we assign one and only
one number X(h) = x. The function X, whose domain in the space W of
all outcomes and its range is a set of numbers, is called a random

variable.

Definition (1.8) (Distribution Function), [Stirzaker, 2005]:

The distribution function Fx(x) of X is denoted by Fx(X)=p(X£Xx),
and is defined by:

Fx(x) = p(By)

where:
By ={w: X(w) £ x}

It follows that we have for @l x, a, and b > &
P(X >x) =1- Fx(x)

and

P(a< X £ b) = F(b) - F(a).

10
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All random variables have a distribution function. There are two
principle types of random variables, namely the discrete and the

continuous.

1.3 Discrete Random Variables, [Strizaker, 2005]

A discrete random variable takes values only in some countable
subset D of j (very commonly this subset D is a subset of the integers).
Then the probability that X takes some given values x in D is denoted

by:
f(x) = p(X =x) = p(Vy)
where V, ={w : X(w) = x} isthe event that X = x.

The function f(x) may be called the probability function of x, or
the probability mass function of x, or the probability distribution of x. It
may also be denoted by fx(x) to avoid ambiguity. Here are some familiar
and important examples of discrete random variables and their

distributions:
1. Binomiad distribution.
2. Poisson distribution.

3. Geometric distribution.

1.4 Continuous Random Variables, [Strirzaker, 2005]

A random variable that is not discrete is said to be continuous if

its distribution function F(x) is written in the form:

11
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¥
Fx(X) = Ofx (u) du
-¥

for some nonnegative integrable function fx(x) defined for all x in (- ¥,
¥). Then fx(x) is called the density function (or simply, density) of x. We
may denoted it by f(x) if thereis no risk of ambiguity. It is analogous to
the probability mass function f(x) of a discrete random variable.

Here are some important examples of continuous distributions:
1. Uniform distribution.
2. Exponential distribution.

3. Normal distribution.

Definition (1.9) (Pointwise Convergence), [Krishnan, 1984]:

A sequence { X} converges to a limit X if and only if for any

e> 0, however small, we can find positive integer no, such that:

Xn- X|<eg forevery n>ng

Remark (1.4), [Krishnan, 1984]:

If we consider a sequence of random variables { X1,X5,...,Xp,...}
and define a pointwise convergence to another random variable X asin
definition (1.9), then we must have for every w-point in Wthe sequence
of numbers X,(w), Xo(w), ..., Xn(w), converging to X(w). This type of

convergenceis called everywhere convergence.

12
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Definition (1.10) (Almost Sure Convergence), [Evans, 2006]:

A sequence of random variables {X,} converges almost surly
(abbreviated by a.s.) or amost certainly or strongly to X if for every w-

point not belonging to the null event A,

lim [Xa(W) - X(W)|=0
n® ¥

This type of convergence is known as convergence with
probability 1 and is denoted by:

Xn(W) YaT5Y® X (W) = r!é@”i Xn(w) (as)

Remark (1.5), [Evans, 2006]:

If the limit X is not known a priori, then we can define a mutual
convergence almost surely. The sequence X,, converges mutually almost

surely if:

Sup X - Xl %2 75Y® 0
m3n :
In which both definitions are equivalent.

Remark (1.6), [Evans, 2006]:

Let A, Ay, ..., Ay, ..., be eventsin aprobability space. Then the

event:

¥ ¥
1 UA, ={wl W]|w beongsto infinitely many of the A}

n=lm=n

iscalled "An infinitely often" and abbreviated by i.o.

13
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Definition (1.11) (Convergence in Probability), [Strizaker, 2005]:

A sequence of random variables { X} convergesin probability to

X if and only if for every e > 0, however small, Ig@n; p(Xn- X|2 €) =0,
n

or equivalently Ig@n; p(Xn- X|<e) =1, and it isdenoted by:
n

Xn(W) % 5% X(W) or X(w) = Lip.Xn(w)
n n® ¥

Remark (1.7), [Krishnan, 1984]:

1. We can define mutual convergence in probability as:

lim Supp(Xm - X423 € %® 0

n m3n

2. If asequence of random variables { X} converges amost surely to X,
then it convergesin probability to the same limit. The converseis not

true.
3. If{X,} convergesin probability to X, then there exists a subsequence

{ Xnk} of { X} which converges almost surely to the same limit.

4. {X,} convergesin probability if and only if it is converges mutually

in probability.

1.5 Introduction to Stochastic Processes

Differential equationsfor random functions (stochastic processes)
arise in the investigation of numerous physical and engineering
problems, [Arnold, 1974]. We have looked at single random variables

14
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(X1, Xz, ..., Xy), which we termed random vectors. However, many
practical application of probability are concerned with random processes
evolving in time, or space, or both, without any limit on the time (or
space), [Al-Bayaty, 2008].

Definition (1.12) (Stochastic Process), [Stirzaker, 2005]:

A stochastic process is a collection of random variables { X(t) :
t1 T}, wheret is aparameter that runs over an index set T. In generd,
we call t the time-parameter (or simply thetime), and T | j . Each X(t)
takes valuesin some set S| j called the state space, then X(t) is the

state of the process at timet.

Example (1.2), [Stirzaker, 2005]:

X(t) may be a number of atimet, or the number of heads shown
by t flips of some coin. There is also of course, some underlying
probability space W and probability set function P; since we are not
concerned here with a general theory of random processes, we also not

need to stress this part of the structure.

Remark (1.8), [Stirzaker, 2005]:

1. If the index set T is a countable set, we call X a discrete-time
stochastic process, and if T is a continuum, we call it a continuous-

time stochastic process.

2. A continuous-time stochastic process { X(t) : tT T} issaid to have an

independent increment if for al to <t; <t, < ... <t, the random

15
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variables X(ty)- X(to), X(t2)- X(ty), ..., X(tn)- X(tn.1) are independent.
The process stationary increments if X(t + s) - X(t) has the same
distribution for @l t. That is, it posses independent increments if the
changes in the processes values over nonoverlapping time intervals
are independent, and it process stationary increments if the
distribution of the change in the value between any two points

depends only on the distance between those points.

Definition (1.13) (Stationary), [Al-Bayaty, 2008]:

A stochastic process X(t) is stationary if:

p{ X1(t) £ X1, X2(t) £ X2, ..., Xm(t) £ Xm} = p{X(t1 + q) £ X4,
X(tz + C]) £X2, . X(tm'l' C]) £Xm}

for al ty, ty, ..., th, > 0 and real values xy, X», ..., Xm. FOr every natural

number m and for al g.

1.6 Introduction to Brownian Motion

Brownian motion was introduced by Robert Brown in 1827,
when he observed the motion of apollen grain asit moved randomly in a
glass of water. Because the water molecules collide with the pollen grain
In arandom fashion, the pollen grain moves about randomly. The motion
of the pollen grain is stochastic, because its position from one point in
time to the next can only be defined in terms of a probability density
function, [Higham, 2001]. In 1900, L. Bachelier used the Brownian
motion as a model for movement of stock prices in his mathematical

theory of speculation. The mathematical foundation for Brownian

16
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motion as stochastic process was introduced by N. Wiener in 1931, and
this process is also called the Wiener process, [Klebaner, 2005].

Definition (1.14) (Brownian Motion), [Friedman, 1975]:

A Brownian motion or a Wiener process is a stochastic process

W(t), t 3 O, satisfying:
1. W(0) = 0.
2.ForanyO£ty<t;<... <ty therandom variables:
DW,, = W(tne) - W(t), LENn£k
are independent.
3.1f0 £ s<t, W() - W(s) is normally distributed with mean m and
variance sZ, then:
E[W(t) - W(g)] =(t- sm
E[W(t) - W(EI*=(t- 9sf

where mand s; are real constants, s > 0.

Remark (1.9), [Stirzaker, 2005]:

1. If s? =1, then W(t) is said to be the standard Brownian motion, we

always make this assumption unless stated otherwise.

2. In fact, the assumption (2) is not strictly necessary, in that case one
can construct (by a limiting procedure) a random process W(t) that

obeys (1) and (3) and is almost surely continuous.

17
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Definition (1.15) (Brownian Motion in n-Dimension), [Friedman, 1975]:

An n-dimensional process W(t) = (Wq(t), Wy(1), ..., W) is
called an n-dimensional Brownian motion if each process Wi(t) is a
Brownian motion and if the s-field F(W;i(), t 3 0), 1 £1i £ n, are
Independent.

The next theorem is given in literatures without details of the

proof. Here, we give the details of the proof for completeness.

Theorem (1.1), [Friedman, 1975]:

If X is a Brownian motion with normal distribution N(O, stz),
then:

(2n)!s?"

EOCT() ="

where E refers to the mathematical expectation.

Proof:
From the definition of the moment generating function, defined
by:

2
M(t) = e" /2, -¥ <t<¥

and recall the Maclurian series of e'"/2 which is given by:

2 ’ s -, -,
M(t):et2/2:1+t_ +£‘t4+ o+ (2k-1D°...” 3 lt2k

21 4 ' (2k)! T

. (L.2)
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Also, the Maclurian's series for M(t) is:

(m)
M(t) = M(0) + Mflo)t |\Mm)t +, +MTI(O)tm+
=1+ E(X(t)) E(X (t))t +, +—E(Xm(t)) t"+ ..(1.3)
1! 2! m!

Comparing the coefficients of L in the Maclurian's series

m!

representation of M(t) givenin egs.(1.2) and (1.3), gives:

EXX*"()=(2n- 1)(2n- 3) ...” 31

_2n(2n-1)(2n- 2)..3" 2" 1
2n(2n- 2)(2n- 4)...4" 2

(2n)!
2n 2(n-1D" 2(n-2)" ..." 2(2" 2)

(2n)! _ @y
2"'n(n- D(n-2)..3°2°1 2"n!’

=12, ...

If X(t) ~ N(O, 1), then E(X*'(t)) = 22—”) while if Y (t) ~ N(O, s2), then
n!

we may consider the transformation X(t) = %

equivalently Y (t) = X(t)s; ~ N(0, s%). Hence:

E(X(1) = anzr;ft)g
St g
(2n)!
st )= 2"n!
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Hence:

Eme—g%-t-n

Theorem (1.2):

If W(t) isaBrownian motion, then:
EMW(D) - W(S)I"=Cilt - of
where C, is a constant.

Proof:
If W(t) = s(t) then from theorem (1.1)
t

E(Z2(1)) = ;anu t (L4

Then from condition (3) of the Brownian motion, we have:
E(W(t) - W(S))*=(t- 9)s? ...(1.5)

2N n — (2”)'
Toprove EW(t) - W(S)[" =Cift - 5|, whereC, = o
n!

Letineq.(1.4), Z = |W(t) - W(s)|, hence:
E(Z*'(t)) = EW(t) - W(S)f"
= E(W(b) - W(9)P)"

= AN AU EWRIU N AENO AU

multiplied n-times
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= WAl alkisla

n-times
=It- si(s)"

=ft- s =Clt- §. n

Definition (1.16) (White Noise), [Klebaner, 2005]:

The white noise process Y (t) is formally defined as the derivative

of the Brownian motion:

Y(t) = % “Wt) .(1.6)

It does not exist as a function of t in the usual sense, since a Brownian

motion is nowhere differentiable function.

Remark (1.10), [Al-Bayaty, 2008]:

A special case that is of considerable interest occurs when the
processes X(t) from which the white noise derives is the Brownian
motion. The white noise process then obtained is often referred to as

Gaussian white noise.

1.7 Stochastic Differential Equations

Stochastic differential equations incorporate white noise which
can be thought of as the derivative of Brownian motion. However, it
should be mentioned that other types of random fluctuations are possible,
[Arnold, 1974]. Solution of SDE's from every large class of stochastic
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processes. This class include Brownian motion, and many other
stochastic processes used in stochastic modeling, [Lin, 2006]. A system
of SDE's which arise when a random noise is introduced into ordinary
differential equations, [Klebaner, 2005].

Definition (1.17) (Stochastic Differential Equations), [Haugh, 2005]:

An n-dimensional Ito process, X;, is a process that can be
represented as:

t t
X=X+ ¢ A(S, X9 ds+ § B(s, Xo) dW, (L7
0 0

where W is an m-dimensional standard Brownian motion, and A
and B are n-dimensional and n” m-dimensional F-adapted processes,
respectively which is defined later in chapter two. We often use the
notation:

dX; = A(t, X,) dt + B(t, Xo) dW,, X(to) = Xo ..(L8)

22
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Chapter Two

T he Existence and Uniqueness T heorem
of Stochastic Differential Equations

Introduction

Solution of stochastic differential equations is of great difficulty
in applications because of the existence of random processes, and hence
the existence of a unique solution for such type of equations seems also
to be very difficult, since such type of equations needs for some
additional conditions on their solutions without explicitly evaluating the
solution. Therefore, this chapter presents some basic and necessary and
basic preliminaries in the theory of stochastic differential equations, and
followed by the statement and the proof of the existence and uniqueness

theorem of stochastic differential equations.

2.1 Preliminaries
Following are some fundamental and necessary concepts in the
theory of stochastic differential equations, which are needed later on in

the proof of the existence and uniqueness theorem.

Definition (2.1), [Friedman, 1975]:

A stochastic process f(t) defined on [a, b] is called a step

function if there exists a partition a = to<t;<...<t,=b of [a, b], such that:

f(t):f(ti) if t<t£t,,1=0,1,....,r-1

23
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Lemma (2.1), [Friedman, 1975]:

Letfi L2[a, b], then:

b
1. If L?,\,[a, b] is the space of all functions f such that ¢ (P dt < ¥,

a
and there exists a sequence of continuous functions g, in L?,\,[a, b],
such that:

b
lim ¢ [f(t) - g(t)F dt=0 as. ..(2.1)
n® ¥

2. There exists a sequence of step functionsf, in L?,\,[a, b], such that:

b
lim ¢ [f(t) - fa()F dt=0 as. ...(2.2)
n® ¥

The next theorem is given in [Krishnan, 1984] without details of
the proof, we give here the complete details of the proof for
completeness.

Theorem (2.1) (Holder's Inequality of Expectation), [Krishnan, 1984]:

If p and g are real numbers greater than 1, with %+§ =1 and if

the random variables X, Y and |[XP, [Y are integrable, then:
EXY|£ [EXPIYPIE]Y [
Proof:

Let X be a positive number and consider the function:
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p q
fo = X0 X1
P q

This function hasaminimum value at X =1, since:
fgX)=X"1- X t9=0

and multiplying by X, yields:
XP- X9=0

Also, p =pg- g. Hence, substituting in eq.(2.3) give:

XPra_ x-9= 0

X"9YXM- 1)=0

Therefore X™ - 1 =0 whichimpliesthat X*=1,i.e., X = 1listhecritica

point which give aminimum value of f whichisf (1) = 1.
Let us now substitute X = b¥%a, with a, b > 0in f (X), then:

épt/at’  épvay”

= +
P q
pP/a  ga/p
= +
a bg
1, p/q 1.a/p
_pb +q a 31
a b
Hence:
bp 1P 4 aq 199P3 gh
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l.e.,
E+l g+l
b? pt+aP g’z ab
Therefore:
P+q a+p
bdpt+aP g'sab
sincep—wzl,wehavep—wzpandp—wzq, and therefore:
Pq q
P A
abg 2 2 (2.4
P q
Suppose that:
b= - prl\l/p and a= — Iqu\l/q ..(25)
EIXPY EIVFY
Substitute (2.4) in (2.5), yields:
& g e o'
¢ IXI = ¢ Y] =
G- oipT G gpa ™
M x - &&XTG 5 &ETH 5
¢V PY " gEIxPU P :
SEIYIH  EEIXTH

and taking the expectation to the both sides of the last inequality, yields:

EIXP EJYF

E|XY | ¢ EIXP , E[Y]
. d/p , d/q
p q P q
EIXPY EIVF]
:1+1:1
P q
26
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Hence:
EIXY| £ [EXP1*P [EY [TV

and Holder's inequality of expectation follows. n

Remark (2.1), [Krishnan, 1984]:

Cauchy-Schwarz's inequality of expectation follows directly from

Holder's inequality, if we substitute p = g = 2, then we obtain that:

EXY|£ JE|XPE|Y P

if X, Y and [XF, [YF areintegrable.

Definition (2.2) (Stochastic Integral), [Friedman, 1975]:

Let f(t) be astep function L2 [a, b], say:
f(t):fi,ifti<t£ti+1,0£i £r-1

wherea =tp<t;<t, <... <t,=b. Therandom variable:

r-1

a ) W(ta) - W(t)]
k=0
Is denoted by:
b
O f(t) dW(t)

and is called the stochastic integral of f with respect to Brownian motion
W, itisalso caled the Ito integral.

27

PDF created with pdfFactory Pro trial version www.pdffactory.com



http://www.pdffactory.com
http://www.pdffactory.com

Chapter Two The Existence and Uniqueness T heorem of Stochastic
Differential Equations

Theorem (2.2), [Friedman, 1975]:

Letf, f, bein L2 [a, b] and suppose that:

b
O [fn() - FOF dt %8%® 0 as n%® ¥ ...(2.6)
a

Then:
b b
O fa(t) dW(t) %28® ¢ f(t) dW(t) as n3%® ¥ ..(2.7)
a a

where ¥8® refers that the convergeisin probability.

Lemma (2.2), [Friedman, 1975]:

If f1 L?,\,[a, b] and f is continuous, then for any sequence p, of

partitionsa =ty <th1 < ... <tym =b of [a, b] with mesh [p,| % ® O,

mp-1 b
8 ftdlWthe) - W(t)] %8@ § 1)) dW(D) asn %@ ¥
k=0 a

..(2.8)

Proof:
Introduce the step function gx:
gn(t) = f(tn,k) if tn,k £tE tn,k+1, O£kE mg, - 1

for g,(t) % ® f(t) uniformly int1 [a, b) asn%® ¥.Hence:

b
O lout) - fH)F dt%® 0 as.

a

By theorem (2.2), we then have:
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b b

O On(t) dW(t) %.8® ¢ f(t) dw(t)
a a
b mg-l
Since ¢ gn(t) dW(t) = A f(tn ) [W(tak+1) - W(tak)], then assertion (2.8)
a k=0
follows. n

Example (2.1), [Friedman, 1975]:

If O£t <t,and p,={ty =tny, tho ..., thn =t} iS asequence of
partitions of [ty, to] with mesh |p,| 3% ® O, then from lemma (2.2)

t n
é) W(t) dW(t) = Ié@m al W(tn ) [W(thk+) - W(tnx)]
N k=1
n 1
% lim & [(W(t, 1)) (W(tn, ) - [W(tnk+)- W(t“vk)]z
n®¥ | 4

1
E(W(tZ)) - _(W(tl)) - E Ign kal [W(tnk+1) W(tnk)]

where I!@m IS taken as the limit in probability. The last limit in
n® ¥

probability isequal tot, - t;. Hence:
2

0 W() dW(Y) ——(W(tz)) - _(W(tl)) - —(tz- ty) ...(2.9)
1

29

PDF created with pdfFactory Pro trial version www.pdffactory.com



http://www.pdffactory.com
http://www.pdffactory.com

Chapter Two The Existence and Uniqueness T heorem of Stochastic
Differential Equations

Lemma (2.3), [Friedman, 1975]:

Let fy, f, be two step functionsin L?,\,[a, b] andlet| 1, | ; betwo

real numbers. Then| 1f; + 1 5f,isin L3,[a, b] and

b b b
O [ afa(®) + 1 2f2(6)] dW(t) =1 10 Fa(t) dW(T) +1 20 fa(t) dW(E)

...(2.10)

Theorem (2.3), [Friedman, 1975]:

If f is a step function in nf,[a, b] (where nf,[a, b] will be
defined later in this chapter) and W(t) is Brownian motion, then:

b

E ¢y (1) dW(t) =0 ..(2.12)
b 2 p

El¢f () dW(t) =E¢F2(t) dt ..(2.12)

Proof:

Since:
b r-1

E¢F2(t) dt = & EF () (L &) ...(2.13)
a i=0

is finite, by assumption, we deduce that Ef’(t) < ¥. In particular,

Eff(t)| < ¥. Also, EW(ti+1) - W(t)| < ¥. But sincef(t) is F measurable,
where as W(ti+1) - W(t) isindependent of R -
Since, from the properties of the mathematical expectation of

Independent events, then:
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Ef(t)(W(ti+) - W(t)) = Ef(L)E(W(tis1) - W(t)) =0

Summing over i, (2.11) follows.

Next, since f2(t;) and [W(t.1) - W(t;)]* are independent and have finite
expectation, also f2(t;)[W(ti.1) - W(t;)]* has finite expectation.

By Schawrz's inequality it follows that:

EF(tF(6) (W (ter)- WEDEVEF (1) (8) P E[W(t 1) - W(E ) [P <¥
i.e, finite.
If k> i, then W(tx+1) - W(ty) isindependent of f(t)f(t)(W(ti+1) - W(t))

In view of the last inequality and the finiteness of E\W(ti1) - W(t)|, we
deduce that:

E[f(t)(W(tis1) - W(E))] = Ef(t)E[W(tis1) - W(t)] =0
Replacei by k, yields:

E[f(t) (W(tier) - W())] = Ef(t) E[W(ter) - W(t)] = O
Hence:

EF(t)f(t) (W(tise) - W(G)) (W(tkea) - W(E))] E[F(t)(W(tira) -
W(t)) f(ti) (W(tkss) - W(t))] =0

Therefore:
b 2 r-1 2~
Elf () dw ()] = & EF*(t) (W) - W)
a i=0

= ré-‘lEf z(ti)E(W(tiﬂ) - W(ti))2
i=0

and from theorem (1.2) withn=1, C, = 1, we have:
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E(W(tise) - V\/(tl))2 = |ti+1 - t||
Hence:

2
r-1

= & EF2(t) | tig - t; |
i=0

E

b
o (1) dW(1)

b
=EgfA(t)dt. n
a

Theorem (2.4), [Friedman, 1975]:

Letf1 nf [0, T], then:

2 - 2
sup tc‘)‘(s) dW(s)| £4E|¢ (1) dW(t)
OEtET o 0

.
= 4Eg)f (1)] * ot
0

Definition (2.3), [Krishnan, 1984]:

Let (W, F, P) be a probability space, and let X be areal random
variable. The expectation of X is defined by:
E(X)= ¢ X(w)dp(w) or ¢ Xdp ...(2.14)

W W

We now have to define the integral, which we will do by stages.

First, we take a simple random variable of the form:
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n

X=a Xda, ...(2.15)
k=1
and define:
g\
EXX)=a x«p(Ax) ...(2.16)
k=1

Proposition (2.1) (Fatou's Lemma), [Krishnan, 1984]:

Let {X,} be a sequence of random variables and X be an
integrable random variable, such that X,(w) 3 X(w), for al nand w is
bounded below, then:

E(liminf X,) £ lim inf E(X,)
n® ¥ n® ¥

and if X(w) is such that X,(w) < X, for al n and w is bounded above,

then:

li E(X,) £ E( i Xn
fim s ECX0) £ E( i sup X

Definition (2.4) (The Itg Process], [Friedman, 1975]:

A stochastic process X(t), 0 £t £ T iscalled an I1t0 process with
respect to {W(t), P, F}, (where F; is adapted to W(t)) relative to B(t),

A(t) if:
X(t) = X(0) + to A(s) ds+ to B(s) dW(s), 0EtET ..(2.17)
0 0
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Definition (2.5) (Increasing s-Field or Filtration s-Field),[Krishnan,1984]:

Let (W, F) be acomplete measurable spaceand let {F, tT T,T=

i 7} be afamily of sub-s-fields of F, such that for S£ t, Fs1 F.. Then
{F} is caled an increasing family of sub-s-fields on (W, F) or the
filtration s-filed of (W, F).

F. is called the s-field of events prior to t. If {X, tT T} isa
stochastic process defined on (W, F, P), then clearly F; given by:

Fi=s {XsSELt] T} ...(2.18)

ISincreasing.

Remark (2.2), [Krishnan, 1984]:

Since the probability space (W, F, P) is complete, the s-field F
contains all subsets of W having probability measure zero. We shall
assume here that the filtration s-field {F, t T T} aso contains all the

sets from F having probability measure zero.

Definition (2.6), (Adaptation of {X}), [Krishnan, 1984]:

Let {X, tT T, T = i"} be a stochastic process defined on a

probability space (W, F, P) and let {F, t1 T, T = j }beafiltration s-
field. The process {Xi} is adapted to the family {F} if X; is F-

measurable for every t1 T, or:
Eft X =X, tT T
F-adapted random processes are also F-measurable.
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2.2 Martingles

Martingales play a central role in the modern theory of stochastic
processes and stochastic calculus. Martingales converge amost surely.
Stochastic integrals are martingales. These are most important properties
of martingales which hold under some condition, [Klebaner, 2005].

Definition (2.7), [Klebaner, 2005]:

Adapted to filtration F = (F,) is a martingales if for any t, n{t) is
integrable, that is, Ejn(t)|]<¥ and foranytand swithO£s<t£T

E(mt) [Fs) =nis) as.

where nqt) isamartingale on [0, ¥) if it isintegrable and the martingale
property holdsforany O£ s<t<¥.

Definition (2.8), [Klebaner, 2005]:

A stochastic process X(t), t 3 0 adapted to filtration F is a super
martingale (submartingale) if it is integrable, and for any t and s,
Of£s<tET

E(X() |Fs) £ X(s) as.
E(XX() |Fs) 3 X(s) as.

If X(t) isasupermartingale, then X(t) is submartingale.

Theorem (2.5) (Martingale Inequalities), [Evans, 2006]:

Let X(t) be astochastic process with continuous sample paths a.s.
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1. If X(.) isasubmartingale, then:

p(Max X(s) 3 I)£ E(X(t)) forall >0,t3 0
OfsEt

2. 1f X(.) isamartingaleand 1 < p < ¥, then:

E(MaxX(9F) £ gpp P,

Example (2.2), [Evans, 2006]:

Let W(.) be a 1-dimensional standard Wiener process, then W(.)

Isamartingale. To seethis, write:
W(t) =F(W(s) |OEsEt),andlett3 s, then:
E(W(t) [W(s)) = E(W() - W(s) [W(s)) + E(W(s) | W(s))
= E(W(t) - W(S)) + W(9)

=W(s) as.

Remark (2.3):

We may denote by nﬁ,[O, T] to be the set of dl finite square
integrable martingales over [0, T].
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2.3 The Existence and Uniqueness Theorem of Stochastic
Differential Equations, [Friedman, 1975]

Consider the stochastic differential equation:

dX(t) = A(X (1), t) dt + B(X(t), t) dW(t) ..(2.19)
with initial condition:

X(0) = Xo ...(2.20)
where A(X(t), t) and B(X(t), t) are measurable functions.

Hence, to find the equivalent stochastic integral equation,
Integrate both sides of eg.(2.19) and use the initial condition (2.20)

tc‘) dX(s) ds= to A(X(s), s) ds+ to B(X(s), s) dW(s)
0 0 0

therefore:

X(t) =Xo+ to A(X(s), s) ds+ to B(X(s), s) dW(s)
0 0

and hence an iterated sequence of solutions of the resulting integral
eguation may be evaluated as follows:

Xi(t) = X0+t(‘) A(Xo(9),9) ds+tc‘) B(Xo(s),s) dW(s)
0 0
t t

u
|
Xao(t) = Xo+ ) A(X1(9),9) ds+ ) B(X(S),s) dW(s) ':ﬁ
’ ’ ?’ (221
|
!

M
t t

Xmea(t) = Xo+ ) A(Xm(9),9) ds+¢) B(Xm(S),s) dW(s) |'o
0 0
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Theorem (2.6) (The Existence Theorem):

Suppose that A(X(t), t), B(X(t), t) are measurable functions in
(X(@), )T " [0, T] and A(x(t), t), B(X(t), t) satisfies:

IACX, 1) - A(X,DIE KX - X]| .

u
IB(X, t) - B(X, )| £ KX - X| :i:

y ..(2.22)
IACX, D] £ K(L + [X]) i

|
B(X, )] £ K(1 + [X]) b

Where K-, K are constants. Let xo be any n-dimensional random vector

independent of F(W(t)), 0 £t £ T, such that E|xof* < ¥. Then thereexist a
solution of (2.19) with condition (2.20) in nﬁ,[O, T].
Proof:

Since the iterated sequence of solutions of the integral equation
may be given as:

Xm+1(t) = Xo + tc‘) A(Xm(S), s) ds+ tc‘) B(Xm(9), s) dW(s) ...(2.23)
0 0

foralm=0,1, ... . Theproof will proceed by induction on the sequence
of solutions X(t) T n{,[0, T].

If m=0, then:
t t
Xa(t) - Xof’ = Xo+ ¢ A(Xo(S),9) ds+ ¢ B(Xo(S),8) dW(S) - Xof
0 0
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t t 2
= |0A(Xp(s),9) ds+ (B(X(S),5) dW(s)
0 0

2

2
2 tc‘)°~(><o(8),8)0% +
0

t
OB(X((s),5)dW(s)
0

Taking the expectation on both sides and using (2.22), give:

2

t 2 t
EX1(t) - Xof £ E|GA(X(S),9) d% +E|PB(X(S),5) dW(9)
0 0

Using the following inequality (a+ b)? £ 2a” + 2b? then:

2

2
E[X.(t) - Xof £ 2E tc‘)A(Xo(s),s) ds‘ +2E
0

t
B(X((s),5)dW(s)
0

Now, from theorem (2.3), we have:
! 2 ! 2
EXa(t) - Xof £ 2EtdA(X((9),9)| ds+2EB(X((9),9)| ds
0 0

£ (2K% + 2K?)(1 + EXo)t

£me=Mt
1!
If m=1, then:
t t
Xa(t) - Xa®OF = Xo+ & A(X1(9),9) ds+ ¢ B(Xa(s),9) dW(s) -
0 0
t t
Xo- O A(Xo(9).8) ds+ ¢ B(Xo(9),8) dW(s)
0 0
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i 2
£ |JAX1(9),9)- A(Xo(S),S))O% +

0

2

t
AB(X1(9),9) - B(Xq(s),5))dW(s)
0

Taking the expectation on both sides and using eq.(2.22), yields:

t 2
EX(t) - Xa(®)F = E|gAX4(5).9)- A(XO(S),S))C% +

0

2

t
AB(X1(9),5) - B(Xq(s),9))dW(s)
0

E

2
£ 2E tdA(Xl(s),s)- A(Xo(s),s))d% +

0

2

t
A B(X1(9),9) - B(X((9),9))dW(s)
0

2E

£ 2EtéjA(x1(s),s) - A(Xo(9),9) ds +
0

2Egs(xl(s),s) - B(Xo(s),9)| ds
0

X1(5)- Xo(9)| ds +

t

£ 2KZtoE
0
t

2KZ O

0

X1(9)- Xo(9) ds

(Mt)®
2!

£ (K2t + 2K2)EX1(3) - Xo(9)Ft £

If the inequality is satisfied for m = k and to proveitistrueform=k + 1
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t t
Xiea(®) - Xk®F = Xo + & A(Xk(9),8) ds+ ¢ B(X(s),5) AW(S) -
0 0

t t
Xo- O A(Xk-1(9),9) ds+ ) B(Xk-1(9),8) dW(9)F
0 0

t 2
£ |JAXk(3),9)- A(Xk-l(S)’S))dS{ +
0

2

t
AB(X(9),9) - B(Xy.1(5),5))dW(s)
0

Taking the expectation on both sides and using eq.(2.22), yields:

t 2
EXia(t) - X®OF = E|{A(Xk(9),9) - A(Xk-l(s)’s))d% +

0

2

t
E|{B(X(8),9) - B(X\.1(9),5))dW(9)

0

2
£ 2E tdA(Xk(s),s)- A(Xk_l(s),s))d% +

0

2

t
AB(Xk(9),5) - B(Xy.1(5),9))dW(s)
0

2E

..(2.24)

£ 2Ett(‘jA(Xk(s),s) - A(Xy1(9),9) ds +
0

.2EtdB(xk (9.9 - B(X.1(5),9) ds
0
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Xi(9)- Xp1(9) ds +

t
£ 2KZtoE
0

t
2K 2 3E X (9) - X.1(9)" ds

0

£ K2t + 2KAEXK(S) - Xi.1(9Ft

(Mt)k+l
(k +1)!

£ ...(2.25)

Since thisimplies that X1l nﬁ, [0, T], the proof of inductive assumption

for k + 1 is complete. From (2.24), we have also:

t 2
EXin(t) - Xk®F £ 2E|A(X,(9),9)- A(Xk_l(s),s))d% +
0

t 2
2E| B(X(9),5) - B(Xy.1(5),9))dW(s)
0
Hence:
)
sup [Xiea(t) - Xe®F £ 2TKZ X (9) - Xic.(9)f s +
OEtET 0
t 2
2 sup |{B(Xk(9),9) - B(Xy1(9),5)) dW(s)
OEtET |o

using theorem (2.4)
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n
sup EXisa(t) - Xe(®)F £ 2TKZ 3

2
Xi(9) - Xy.1(9)|"ds +
OEtET 0

t
8K? ¢

0

X(9)- Xy.1(9) ds

£ 2K2ZT +8KAT

(MT)
k!

EX1(t) - X ()P £ C

where C = (2K 2T + 8K 2)T.

Now, to prove the convergence of the sequence {Xm}fnzl
uniformly int1 [0, T].
It follows that the sequence of partial sums:

Xi(t) = Xo + kél Kmea(t) - Xm(®)," k=1,2, ...
m=0

= Xo + (X1(t) - Xo(t)) + ... + (Xm(t) - Xm-2(1))

Which must be converge uniformly. Now, {Xm(t)}fn:l is converge if,

the series:
k-1
Xk®) =Xo+ a (Kmea(t) - X)), " k=1,2, ...
m=0
IS converge.

From (2.22), we have:
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t t
EXmea()F = EXo + CAXm(9).5) ds+ B(Xm(s),5) dW(s)f
0 0

t t
£ EXof + KA SA+EX (D)) ds + K &(L+EXm(t)f) ds
0 0

t t
£ EXof + KA CEXm(t)F ds + K CEXm(t)f ds
0 0

t
£ EXof + (Kt + K?) cEXm(t)F ds
0

t
£ C(1 +EXof) + CCEXm(t) ds
0
Now, carrying the last inequality recursively

t
EXma()P £ C(1 + EXof) + CH{C(1 + EXof + CEEXm(t) dis]
0

£ C(1 + EXof + Ct{C(L + E[Xof + Ct[C(L + E[XoP) +
t
C CEXm 1(t)F ds]]
0
S0, carrying this inequality m-times will produce:
7 2 mt" 7
EXma(F £(L+C+Ct+...+C poor +...)(1 + E[Xof)
= e"(1 + EXof)
Therefore:

EXmea(D)f £ C(A + EXof)e™
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To prove X(t) is converge to X(t) ask %4® ¥, i.e, klgr; Xk() = X(1),

i.e, givenany e> 0, thereexist N1 ¥, such that:
Xe() - X(O)]<e" k3 N
k-1

Xo+ & Xmea()- Xmn(1)) - X(OF= Ko+ (Xa(t) - Xo(t)) + (Xa(t) -

m=0
X))+ ... + (Xn(t) - Xm-a(t)|<e
which implies
Ki-a(t) - X(O)|<e
Since:
k-1
Xe®) =Xo+ & Kmea(®) - Xm(t)

m=0

Converges on a compact interval [0, T], then the sequence is converge

uniformly.
Now, to prove that X(t) is continuous, i.e., to prove:

lim X(t + h) = X(t)
h® 0

Hence:
X(t+h) - X(1)] = [X(t+h) - Xi(t+h) + X (t+h) - Xi(t) + X (1) - X (D)

£ [X(t+h) - Xi(t+h)[+ X (t+h) - Xi(0)]+ Xk (t) - X ()]

I
wlom
Wl o
wlom

I
[0}

e, lim X(t+h) = X()
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Hence, X(t) is continuous.
To prove X(t) is a solution, i.e., to prove X(t) satisfy the
stochastic integral equation:

X(t) =Xo+ to A(X(s), s) ds+ to B(X(s), s) dW(s)
0 0

and since;

Xm1(t) = Xo + to A(Xn(s), s) ds+ to B(Xm(s), s) dW(s)
0 0

and, asm 3, ® ¥, then:

t t
X)) =Xo+ lim & A(Xi(s), s) ds+ lim ¢ B(Xw(s), s) dW(s)
m® ¥ 0 m® ¥ 0

Therefore, it is enough to prove that:

t t
lim & A(Xn(s), ) ds= ¢ A(X(s), s) ds
m® ¥ 0 0

and

lim tc‘) B(Xm(s), s) dW(s) = tc‘) B(X(s), s) dW(s)
m® ¥ 0 0

Now:

2

2
E tdA(X(s),s)- A(Xm(s),s))d% +E
0

t
dB(X(9),9) - B(Xn(9),))dW(s)
0

t t
£ 2KHEFX(9) - Xm(9)| ds+2KZEGX(S) - Xm(9)f ds
0 0
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and takingm 3% ® ¥ and using Fatou's lemma, we conclude that:
EIX(t)F £ C(1 + E[Xof)e”

Thus X(t) isasolution of (2.19) and (2.20). n

Theorem (2.7) (The Uniqueness Theorem):

Under the same conditions of theorem (2.6), there exists aunique
solution of (2.19) with condition (2.20).

Proof:

Suppose that X,(t) and X(t) are any two solutions belonging to
nt, [0, T] of egs.(2.19) and (2.20), hence:

Xi1(t) =Xo + to A(X4(s), s) ds+ to B(X4(s), s) dW(s) as.
0 0

Xo(t) = Xo + to A(Xy(s), s) ds+ to B(X4(s), s) dW(s) as.
0 0

Therefore:

t t
Xa(t)- Xa(t)= 0 [A(X1(8),9)- A(Xa(s),9)] dst g [B(Xu(s), 5)-
0 0

B(Xx(s), )] dW(s) as.
and hence

t t
Xa(t)- Xo()F=1¢) [A(X1(9).9)- A(X2(9),9)] ds*+| ¢y [B(Xa(9).9)-
0 0

B(Xx(9), 9)] dW(9)f

Taking the expectation and using (2.22), we get:
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t
EXa(t) - XaO)F £ E|Q) [AX1(9), 8) - A(X(S), 9)] dsf +
0

t
E|¢) [B(X1(9).8) - B(Xx(), 9] dW(s)f
0

Hence:

EXa(t) - Xo()F £ ZEItc‘) [A(X4(9), ) - A(Xx(9), 9)] dsf* +
0

t
2E| ¢ [B(X4(9).9) - B(Xx(s), 9] dW(9)°
0

X(5)- Xo(9) ds +

t
£ 2Kt oE
0

t
2KZ O

0

X1(9)- Xo(9) ds

By using Gronwall inequality, thus the function
f(t) = EXa(t) - Xo(t)f

Satisfies:

f(t) £ (2Kt + 2K3)t5(s) ds
0

fH)EOD tc‘j‘(s) ds
0

which impliesf(0) £0,i.e.,f(0) =0

Therefore, f (1) =0," t1 [0, T]
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Hence E[X4(t) - X4(t) = 0, which means that X,(t) - X(t) =0

This meansthat X,(t) = Xx(t)," tT [0, T]. n

Remark (2.4), [Friedman, 1975]:

The assertion of the unigueness theorem means that if X,(t) and
Xo(t) are two solutions of (2.19) with condition (2.20) and if they belong

to ng, [0, T], then:

P{X4(t) = Xo(t) foral OEtET} = 1
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Chapter T hree
Stochastic Differential Equations

Introduction

As it is defined previously, stochastic differential equations
SDE's are differential equations in which one or more of its terms are
stochastic processes, and therefore will give solutions which are itself
stochastic process, and because of the importance of its solution, we
discuss in this chapter some of its analytical methods of solution and its
numerical solution using Euler's method. Then an improvement of these
methods have been made to solve stochastic delay differential equations,
which have many applications in different branches of applied
mathematics. Therefore, this chapter consists of four sections. Ins section
3.1, the 1to formula have been discussed which has its importance in
defining stochastic integrals and SDE's. In section 3.2, we discuss the
anaytical method for solving SDE's, namely the reduction method and
total differentiation method, and explained with some illustrative
examples. Section 3.3 presents the numerical solution of SDE's using
explicit and implicit Euler's method, while section 3.4 presents an
Improvement to the SDE's to stochastic delay differential equations, as

well as, the methods of solution with some illustrative examples.
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3.1 1t6's Formula, [Han, 2005], [Stirzaker, 2005]

Ito formulais the analog of integration by parts in the stochastic
calculus. In stochastic calculus this is not possible, the useful range of
techniques is practically restricted to those that deal with integral
equations. Of these by far the most important is that known as Ito's
formula, where may be seen as a stochastic chain rule. Let usrecall some
elementary non-random chain rule; as usua primes may denote
differentiation.

1. One-variable chain rule: If y(t) = f(g(t)), then:
i) = . = fag0)g)

Assuming that the derivatives f¢and g¢exists. We may express thisin

differential notion as:
dy = f €g)g&t) dt = f&g) dg
2. Two-variables chain rule: If:
y(t) = f(x(t), w(t))
Then:

where differentiation may be denoted by suffices in an obvious way.

In particular, if x =t, we obtain, for y = f(t, w(t))
dy =f; dt + f,, dw

Ito formula are extremely useful in many topics, particularly in
evaluating stochastic integrals.
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Theorem (3.1) (It@ Formula), [Evans, 2006]:

Suppose that x(.) has a stochastic differential equation:
dx(t) = A(t, x(t)) dt + B(t, x(t)) dwW(t) ...(3.1)
for AT LYO, T), BT L*0, T). Assume u : R [0, T] %® j is

2
continuous and that E E M exist and are continuous. Set:

T Ix qx3
y(t) = ux(v), 1) ...(3.2)

Then Y has the stochastic differential:

dy = "11]—‘: dt + U dx+1MBZdt

X 2 x>

_ &, o, 1'”“52 ot + Mg gw .(33)

it Tx 2 x> P X

iscalled the Ito's formulaor I1to chain rule.

Remark (3.1), [Evans, 2006]:

I. In view of our definitions, the expression (3.3) means that for all
OEL£SErET

y(r) - y(8) = u(x(r), 1) - u(x(s), r)

a[u ﬂ u 2
—(X,t +— '[A+—— .1)B d'[+
E gt (X,1) (X,1) 202 (x,1) :
U B0 aw as (34
ceTx 2
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1. Since:
X(t) =x(0) + tc‘>A(S,><(S)) ds + tc‘)'3(s,><(S)) dW(s)
0 0

where x(.) has continuous sample paths amost surely. Thus for

2
almost every W, the functionst & = (x(t)1), 1o (x(t),1), ~— (x(t).1
qt X X

are continuous and so the integralsin (3.4) are defined.

Theorem (3.2) (The General It@ Formula), [f Ksendal, 2003]:

Consider the SDE:

dx(t) = A(t, x(t)) dt + B(t, x(t)) dW()

g(t, X) = (Gu(t, X), Ga(t, X), ..., Gp(t, X))
beaC?map from [0, ¥) i". Then the process:

y(t) = g(t, x(t))

IS again a process, whose component number K, yy, is given by:

_ ok g o 18 T
dyx=—(,x)dt+ q —(t,X)dxi+ = g t, X) dxidx;
W= 4 (t, X) 21 . (t, X) 2i,j:1ﬂxiﬂ><j( ) j

where dWide = Sijj dt, dWidt = dtdWi =0.

Example (3.1), [f Ksendal, 2000]:

Using the I1to formulato solve the SDE:
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dx(t) =x(t)dw(t), tT [0,

...(3.5
x(0)=1 (33)
Hence from the stochastic differential equation, we have:
dx(t) _ dW(t)
X(t)
and therefore:
t t
OX(s) _ |
O—— = 0 dw(s
o X8 o
l.e.,
t
ax(s)
= WI(t ...(3.6
% () (3.6)

Using the I1to formulafor the function:
g(t,x) =Inx, x>0

and obtain that from eq.(3.5)

d(Inx () = ?d )+ 2o

—(OI 1)*

)z

k() | 1@
x(1) 23 X ()

( (t) dW(1))*

and since dW(t) ; (dt)Y2 Hence:

_dx(t) 1ee 1
d(Inx(t)) = x(© +§g . (t); 2(t) dt
_dx() 1 dt
x(t) 2
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or equivalently:
dx(t) 1
=d(Inx(t)) + = dt
(1) (Inx(t)) >
So, from eg.(3.6), one can conclude that:
t t t
L adx(s) _ . 1
=0 d(Inx(s)) ds+ ¢y = ds
O%e9 ~ 9 97

wio = In X0 1
x(0) 2

Therefore, the solution is given by:

X() = exp(W() -

Example (3.2), [Evans, 2006]:

Consider the linear stochastic differential equation:
dx(t) = hx(t) dt + sx(t) dw(t), tT [0, 1] ...(3.7)
where h and s are constants.

To solve this stochastic differential equation, divide eq.(3.7) on
X(t) yields:

dx(t)
X(t)

=hdt+s dW(t)

and hence:

—

t t
SO = §hds+ g s aw(y)
X(S) 0 0

@)

0
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' dx(9)

=ht + sW(t) ...(3.8)
X(s)

0

to evaluate the integral on the left hand side use the 1to formula (3.1) for

the function:

g(x,t) =Inx; x>0

and obtain:
1 1ee
d(Inx(t)) = ——dx(t) + = (dx(t
(Inx(t)) (0 X(t) + ()z( X(t))?
—(hx(t) dt + sx(t) dW(t))+—ge 1 (o ot +
x(t) 24 x°(t) g
s dW(t))?
= d:((tt)) - in(t) [h3A(t) d’t + 2shx?(t) dtdW(t) +
s (1) dPW(D)]

and since dW/(t) ; (dt)*% Hence:

d(Inx(1)) = d:((tt)) : ZX;(t)s2x2(t) dt
Hence:

d(Inx(1)) = dX(t) ; s2dt
and therefore:

ax(t)

= d(Inx(t)) + %52 dt
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so from (3.8), we get:

t t t
L adx(s) _ . L1
=0 d(Inx(s)) ds+ ¢ =s“ds
O%e9 ~ 9 97
l.e.,
ht+sw(t) = I + Lg
x(0) 2

X(t) = exp[(h - %sz)t + SW(D)]

3.2 Analytical Methods for Solving Stochastic Differential
Equations, [Goldys, 2008]

After the publication in 1973 of the groundbreaking paper of
Blackan schools on the arbitrary pricing of European call options, it
became clear that stochastic analysis is an indispensable tool for the
theory of financial markets, derivation of prices of standard and exotic
options and other derivative securities, hedging related to financia risk,
as well as managing the interestrate risk. Because of the difficulties
encountered in solving SDE's, several approaches for solving such type
of equations are proposed by severa authors, but still with so many
difficulties. Therefore, in this section, these methods of solution are
discussed in details and more calculations, and give the proposed method
which is termed as (in this work) as total differences method for solving
SDE's, namely:
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1. Reduction method.
2. Total differentiation method.

Each of such methods will be discussed in details with some

Illustrative examples.

3.2.1 The Reduction Method, [Smith, 1999].

This method was proposed by Smith in 1999 as a method for
evaluating the analytic solution of certain SDE's which is based on
transformation method of the solution and then evaluating the inverse
transformation after the reduction of the solution. First, start with the
following fundamental example in this method which is given without

detailsin literature and we give the details of the solution.

Example (3.3):

Consider the SDE:
dx(t) = ge 1+ X2 +§9dt 1+ x2 dw(), tT [0, 1]
(%)

subject to theinitial condition xo = 0.

In order to solve this SDE, consider the transformation y = g(x)

with a monotonic function g to set by using the I1to formula
1 2
dy ; g«dx + ngx(dx) + ...

and since dW(t) ; (dt)¥?, then consequently if we compute dy and keep
all terms of order dt or (dt)? we obtain that:
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dy ; QX§e 1+x2 +%§dt+ 1+ x2 dWH+
u

2
1 % 2 XO 2 u
— Ok acV1+ XS +—=dt+y1+x“dW
2 V"L 25 u

=gxae 1+x? +£2dt + g1+ X2 dW +
& 20

A .2 ..
1gxxga\ll'kx2 +£9 dt2+ 2 &\/14' X2 +£9 1'|‘X2 dtdw +
2 % 29 & 2g

(1 + x?) dW?

(e el g

= g R+ x2 + 204t + g1+ x2 dW +
& 2g

"2 s
L0oaBhex? + 20 a2+ g0 Bhex? + 2014 %2
dtdw + %gxx(l + x%) dW?
and since dW(t) ; (dt)*? then:

dy ;

(DAD> (D~

gxge\/1+ X2 +§2 + %gxx(l + x2) ( dt + gyv1+ X2 dW
[} u

so look for a function g with constant factor of the form g,v1+x? =1,

which mean's that this process occurs with probability 1, (for more
details see [Arnold, 1974]).
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Now, g(xo) = g(0) = 0, and g = % and integrate both sides,
1+x

yields:

00 = ¢ Stlts
\/1+s s+ \/1+s

s +\/1+s2
\/1+s \/1+s ds

c? s+\/1+s

x

N 1
=0 udS
0 s+x/1+s2 \/1+s
Ve \X Ve A
= Ings+\/1+sza = Ingx+\/1+x2

0
Hence g(x) = Ingx+\/1+x2 .
But, we may find that the factor of dt is also:
e 2 X6, 1 2

a1+t X2+ 2D + Sgu(1+x9) =1

98 25 29 ( )
then:

dy(t) = dt + dW(t)
and since y(0) = g(xo) = 0 and y = g(x), hencey = Ingx+\/1+ X2 , ie,

& = X +1+ X2

and sgquaring both sides, yields to:

60

PDF created with pdfFactory Pro trial version www.pdffactory.com



http://www.pdffactory.com
http://www.pdffactory.com

Chapter Three Stochastic Differential Equations

¥ - 1=2xe

Hence:
X0 =2 - )
= sinh(y(v)

3.2.2 The Total Differentiation Method,[Rainville,1989],[Muszta,2005]:

Suppose that a function x(t) can be found such that has for its

total differential given by the form:
dx(t) = a(t, x(t)) dt + b(t, x(t)) dW(t) ...(3.9)

where a(t, x(t)) and b(t, x(t)) are constant functions. Then certainly:

X(t) = f(t, W(t)) ...(3.10)
and define implicitly aset of solutions of (3.9). For this, from eq.(3.10) it
follows that:

dx(t) =0

or, in view of eq.(3.9)

a(t, x(t)) dt + b(t, x(t)) dw(t) =0
as desired. Two things, then, are needed; the first oneisto find out under
what conditions on a(t, x(t)) and b(t, x(t)) afunction x(t) exists such that
its total differential is exactly the same of a(t, x(t))dt + b(t, x(t))dW(t);
and second, if those conditions are satisfied actually to determine the

function x(t). If afunction x(t) exists, such that:

a(t, x(t)) dt + b(t, x(t)) dW(t)
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Is exactly the total differential of x(t). Equation (3.9) is called an exact
equation. If the equation

a(t, x(t)) dt + b(t, x(t)) dW(t) ...(3.11)
Is exact, then by definition x(t) exists, such that:
dx(t) = a(t, x(t)) dt + b(t, x(t)) dW(t)

is obtained by applying the I1to formulato f(t, W(t)). This gives:

2
f(t, W(t)) =f(0, 0) + to elﬂ(s W(9)) +—(s W(s))uds +
o 621x° 0
t\ ﬂf
0 - (sW(s)) dW(s) ...(312)
o 1

compare eqg.(3.12) with x(t), gives:

x(t) = Xo + t@, a(s, x(9)) ds + t@, b(s, x(s)) dW(9) (3.13)
0 0

choosing a function f so that it satisfies the following system of partial

differential equations, then will have a candidate for the solution of the

SDE (3.9):
1 9%
> ﬂ — (S, X(9)) +—(S X(s)) =a(s,f(s,x)); v
L
ﬂ—x(s,X(s)) =b(s,f (s,X)); i’ ...(3.14)
f(0,0) =x, L

This technique is useful mostly for SDE's with linear coefficients
a(s, x) and b(s, x).

The next examplesillustrate the above method of solution:

62

PDF created with pdfFactory Pro trial version www.pdffactory.com



http://www.pdffactory.com
http://www.pdffactory.com

Chapter Three Stochastic Differential Equations

Example (3.4), [Muszta, 2005]:

Consider the SDE:
dx(t) = dt + dw(t), tT [0, 1]
X(to) = Xo
It is known that the solution to this equation is:
X(t) =xo +t+W(t)

Let us see what the coefficient matching technique gives. The
system need to solve in this case is by using the I1td6 formulato f(t, W(t))

2
f(t, W() = £(0,0) + & LT (s w(9) +—<s W(S)uds +
o 82 1x* g
:? %(S'W(S” daw(9

lﬁ(s x)+—(S x) =as, f(s, X))

E(s, X) =Db(s, f(s, X))
Ix

f(O, O) = Xo
such that:
lﬁ(sx)+‘"—(s x) =1
2 ‘Hx Ts :J
!
—(s,x) =1 Y ...(3.15
."X( ) ?/ (3.15)
f(0,0) =X, b

The solution is computed as follows:

63

PDF created with pdfFactory Pro trial version www.pdffactory.com



http://www.pdffactory.com
http://www.pdffactory.com

Chapter Three Stochastic Differential Equations

%(S,X) =1

Hence integrating with respect to x, yields:

f(s,X) =x+g(9)

1 9§ qf
———=(5x)+—(s,x) =1
2‘"X( )ﬂ( )
1 92

l
E?(X +9(9)) +E(X +9(9) =1

which implies g§s) = 1, and hence g(s) = s+ c¢; and from the initia
condition f(0, 0) = Xo, implies that ¢ =xq

Thus, we have obtained f(s, X) = Xo + s + X and the candidate
solution to the SDE is f(t, W(t)) = xo + t + W(t), which in this case
actually is the solution to eq.(3.15).

Example (3.5), [Muszta, 2005]:

Consider the SDE:
dx(t) = - rx(t) dt + s dW/(t);
wherer,s 1 j . If we apply the coefficient, we get the system:

1 9%
2 ﬂx

i _
ﬂ—x(s,x)—s

(s x)+?1—(s X) =-1X(9)

...(3.16)

T i

f(0,0) =X
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T (s.x)=s . thenf(s, x) = sx + g(s)

Since —
fIx

2
and lﬂ—fz(s, X) +E(s, X) = - rx(s), then:
2 qx s

192 1
———(sx+9g(s)) +—(sx+9(s)) =-rf(s,x)
2 qx Iis
Therefore:
g&s) = - rf(s, x)
=-rsXx - rg(s)
a9 | =
s +rg=-rsx

Solving this linear equation, yields:
g(s) =-sx+ce™

and sincef(s, x) =sx - sx +ce ", then
f(s, X) =Xo€"®

The candidate solution to the SDE is f(t, W(t)) = xoe ", which is
in this case the solution of eq.(3.16).

3.3 Numerical Methods for Solving Stochastic Differential
Equations

Unfortunately explicitly solvable SDE's are rare in practical
applications. However, there are an increasing number of numerical
methods for the solution of SDE's. In SDE's, Euler's method is one of the

simplest time discrete approximation of SDE's, [Han, 2005].
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In the next theorem, we will derive the genera for of Euler's
method for solving numerically SDE's which is given in [Han, 2005]

without derivation, we give the proof for completeness.

Theorem (3.3) (Explicit Euler's Method):

Consider the stochastic differential equation:

dx(t) = A(t, x(t)) dt + B(t, x(t)) dW/(t) ..(3.17)
wheret 1 [a, b] with initial condition x(tg) = Xo. Descritize the interval
[a,b] as, a=to<t;<...<ty=b, or ty;=a+ nh, for fixed NT ¥ andni ¥,

h= %, DW, = W(tw1) - W(t,) is arandom increment, n =0, 1, ...,

N - 1; then the sequence of numerical solutions are given by:
Xn+1 = Xn + A(th, Xp)h + B(tn, X)) DW,, n=0,1, ..., N- 1

which is called the explicit Euler's method.

Proof:

Consider the stochastic differential equation given by eq.(3.17),
then the method is based on the formal integration of eq.(3.17) over a
time step [tn, the1], Which gives:

th+ th+
X(tns1) = X(t)+ @1 A(s, x(9)) ds+ @1 B(s, X(S)) dW(S) ...(3.18)
th th

Letting h = tn.1 - t, and replacing the integration time s in the functions

A(s, x(s)) and B(s, x(s)) by the lower limit of integration, t,, give:
X(the) 3 X(tn) + A(tn, X(tn))h + B(tn, X(t,))DW, ...(3.19)

where the random increment DW,, is defined as:
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th+1

DWhn= ¢ W(s) dW(s) = W(tn1) - W(tn) ...(3.20)
th
Hence we obtain the following time discrete approximation:
Xn+1 = Xn + A(th, Xp)h + B(t,, Xn)DW, ...(3.21)
where Xo = X(to).

From the definition of a Brownian motion, it follows that these
Increments are independent Gaussain random variables with mean 0 and
Variance h, if 0 < t, < ty+1 < T, then the random increment t, DW,, =

W(tn+1) = W(tn) and h = tn+1 = tn. Hence
DWn = Wn+1 - Wn - N(O, ther - tn)

DWa N0, 1)

\/tn+1' Ly
and hence DW,, ~ \/t, ;1 - 1, N(0,1). n

or,

Remark (3.2):

In applications, the Euler's method (3.21) requires a generation of
Independent Gaussian random variables with mean 0 and variance h =

t1 - th, Which are generated using the following algorithm:

Algorithm (3.1):

1. Input: n, a, b.
2. h=(b- a)/n.

3. Fori=1ton/2.
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4. Generate U; and U, from U(0, 1) (uniform distribution over [0, 1]).
5. Set x; = (- InU;)"2cos(2pU,) and x, = (- InU;)*?sin(2pU,).

6. W, = (h)"*; and W, = (h)¥*x,.

7. z,=W; and z;1 = W,.

8. Output: deliver z as a vector of independent r.v®. from N(O, 1).

Proposition (3.1) (Implicit Euler's Method):

Consider the stochastic differential equation:

dx(t) = A(t, x(t)) dt + B(t, x(t)) dW/(t) ...(3.22)
wheret 1 [a, b] with initial condition x(tg) = Xo. Descritize the interval
[a,b] as, a=to<t;<...<ty=b, or ty;=a+ nh, for fixed NT ¥ andni ¥,

h= %, DW, = W(tw1) - W(t,) is arandom increment, n =0, 1, ...,

N - 1; then the sequence of numerical solutions are given by:

Xn+1 = Xn + A(tne1, Xn+)N + B(thss, Xn+1)DWR, n=0,1, ..., N- 1
which is called the implicit Euler's method.
Proof:

Consider the stochastic differential equation given by eq.(3.22),
then the formal integration of eg.(3.22) over a time step [t,, t.1], which

gives.
th+1 th+1
X(tws) =X(t)+ O A(S X(8) dst ¢ B(s x(s)) dW(s) ...(3.23)
th th

Letting h = tn.1 - t, and replacing the integration time s in the functions

A(s, X(s)) and B(s, x(s)) by the upper limit of integration, t,.1, give:

68

PDF created with pdfFactory Pro trial version www.pdffactory.com



http://www.pdffactory.com
http://www.pdffactory.com

Chapter Three Stochastic Differential Equations

X(tne) 3 X(tn) + A(tner, X(ther))h + B(the, X(the1)) DW,, ...(3.24)
where the random increment DW,, is defined as:
th+1
DW= ¢ WI(s) dW(s) = W(tn1) - W(tn) ...(3.25)
tn
Thus, the implicit Euler's method is given by:
Xn+1 = Xn + A(tn+1, Xn+1)h + B(tn+1, Xn+1)DVVn s (326)

where Xo = X(tp). N

Now, consider some illustrative examples for solving SDE's
numerically using the explicit method:

Example (3.6):

Consider the stochastic differential equation:
dx(t) = ge 1+ X2 +§9dt 1+ x2 dw(), tT [0, 1]
a

with initial condition x(0) = 0 and suppose that we want to find the
numerical solution by using Euler method (3.21) with step lengths
h = 0.1 and h = 0.01. The results obtained upon using the explicit Euler's
method and its comparison with the exact solution given in example
(3.3) are presented in table (3.1) in which the results are obtained by
using the computer programs written in Mathcad 2001i. In addition the
Gaussian random numbers with mean 0 and variances 0.1 and 0.01,
respectively, are presented in this table for completeness (which will be
used in evaluating the exact solution also).
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Table (3.1)
Numerical and exact results of example (3.6).

h=01 h =0.01
Numerical Numerical

solution solution

-0.068 9.851" 10°°

-0.047 -7.231"10°®

-0.095 -0.029

-0.169 : -4.091" 10°®

4.353 10°® 4.285 10°®

-0.012 -1.932°10°*

0.056 1.437 103

0.219 : 5.391 10°°

0.081 7.911 10°®

0.099 4377 10°®

Example (3.7):
Consider the SDE:

dx(t) = dt + dw(t), tT [0, 1]
with initial condition x(0) = 0 and suppose that we want to find the
numerical solution by using Euler's method (3.21) with step lengths
h=0.1and h= 0.01. Theresults obtained upon using the explicit Euler's
method and its comparison with the exact solution given in example
(3.4) are presented in table (3.2) in which the results are obtained by
using computer programs written in Mathcad 2001i. In addition the
Gaussian random numbers with mean 0 and variances 0.1 and 0.01,
respectively, are presented in this table for completeness (which will be

used in evaluating the exact solution also).
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Table (3.2)
Numerical and exact results of example (3.7).

h=01 h =0.01
Numerical Numerical

solution solution

-0.068 9.851" 10°°

-0.047 -7.231°10°®

-0.095 -0.029

-0.169 -4.091" 10°®

4.353 10°® 4.285 10°®

-0.012 -1.932°10°*

0.056 : 1.437 10°®

0.219 5.391 10°°

0.081 7.911 10°®

0.099 4377 10°®

Example (3.8):
Consider the SDE:

dx(t) = y x(t) dt + sx(t) dw(t)
with initial condition x(0) = 0.1 and suppose that we want to find the
numerical solution by using Euler's method (3.21) with step lengths
h =0.1 and h = 0.01. The obtained results upon using the explicit Euler
method and its comparison with the exact solution given in example
(3.5) are presented in table (3.3) in which the results are obtained by
using computer programs written in Mathcad 2001i. In addition the
Gaussian random numbers with mean 0 and variances 0.1 and 0.01,
respectively, are presented in this table for completeness (which will be

used in evaluating the exact solution also).
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Table (3.3)
Numerical and exact results of example (3.8).

h=0.1 h =0.01

Numerical Numerical
solution solution

-0.068 9.851" 10°®
-0.047 -7.231"10°®
-0.095 -0.029

-0.169 -4.091" 10°®

4.353 10°® 4.285 10°®
-0.012 -1.932°10°*
0.056 1.437 103
0.219 5.391 10°°
0.081 7.911 10°®
0.099 4377 10°®

3.4 Stochastic Delay Differential Equations

Stochastic delay differential equations appears in the description
of many random time varying processes in applications. Moreover, for
an overview, they extend naturally the classical time series models to
continuous time. Among the huge variety of equations affine SDDE's
form a fundamental class, [Reiss, 2000]. In the last few decades,
statistical inference for SDDE's has been studied from various view
points, [Sfrensen, 2007], when modeling a system which do not
noticeably affect their environment, stochastic variables are often used to
model the environmental fluctuations, thus leading to a SDDE's,
[Guillouzic, 1999], which evolves according to the following SDDE:
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dx(t) = A, x(0), X(t - 1)) dt + B(t, x(t), x(t - 1)) dW() ...(3.27)

where A(Xo, X;) and B(Xo, X;) are known function, t isthe delay whichis
considered to be constant, and B is a parameter which scales the noise
amplitude. Also, Xo and x; are used as dummy variables, and do not
necessarily refer to x(t) and x(t - t), not to theinitial conditions.

The quantity W(t) in eq.(3.27) isaBrownian motion whoseinitial
condition is 0 at time t = O, [Guillouzic, 1999]. The related integral
equation of stochastic delay is:

X(t) =Xo + t(‘)A(s, X(9), X(s- t)) ds+ t(‘JB(s, X(9), X(s- t)) dW(s)
0 0

...(3.28)

All those generalizations and modifications have certain common
features, but need to be scrutinized in details in order to build an

analogous theory as we do for SDDE's in the sequel, [Reib, 2003].

3.4.1 Analytical Method for Solving Stochastic Delay Differential

Equations:

In this section, the solution of SDDE's is studied using the total
differential method that is discussed previously in solving SDE's with the
corporation of the method of successive integrations for solving ordinary
differential equations. The method of solution will be explained more

accurately in the next examples which are solved with details.
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Example (3.9):

Consider the following SDDE:

dx(t) = x(t - 1) dt + dW(t), tT [0, 1]
with initial condition:

X({t) =fot) =t,for-1£t<0

Therefore, in order to find the solution, we consider thefirst time

step interval [0, 1], i.e., consider:
dx(t) =fo(t - 1) dt + dW(t)
= (t- 1) dt +dwW(t)
which isa SDE with initial condition x(0) =X, = 0.

In order to solve this SDE by using the total differential method,
the solution to this equation is:
{2
X(t) =Xo + 5 t+W(t)

we let x(t) = f(t, W(t)), and by using the I1to formulato f(t, W(t)), we get:

2
f(t, W(t)) =1(0, 0) + to elﬂ(S W(s)) +—(S W(S))udS +
o 82T 0
:? %(S'W(S” dW(s)
such that:
1 9% it _
EﬂT(S x)+ﬂ—(s ,X) =s- 1
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i
— (s, =1
i (s,x)
f(0,0) =xp,=cC
i s _
Therefore, ﬂ—(s, x) =1, will implies that:
X

f(s,X) =x+g(9)

Hence, from:

2
we get g€s) =s- 1, and therefore g(s) = SE - S+cC.

Now, since f(0, 0) = X, = ¢, therefore we obtain that f(s, X) =x +

S2

> - S+ Xq, and the candidate solution to the SDDE is:

2
x(t) = f(t, W(D)) = Xo + % -t W)

X(t) isasolution of al t 3 t,.

Example (3.10):

Consider the following SDDE:
dx(t) =t dt + x(t - 1) dw(t), t1 [0, 1]
with initial condition:

X(t) =folt) =t+1,for-1£t<0
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Hence to find the solution, consider the first time step interval
[0, 1], i.e., consider:

dx(t) =tdt+fo(t- 1) dW(t)
which is reduced to:

dx(t) =t dt + t dW(t)
which isa SDE with initial condition x(0) =X, = 0.

and to solve this SDE by using the total differential method, let x(t) =
f(t, W(t)), then by using the Ito formulato f(t, W(t)), we get:

2
f(t, W(t)) =1(0,0) + o : elﬂ( W(S))+—(S W(S))udS +
o 62 Tx° Ts 0
o I sw(s) awe
o X
such that:
1 9% f
5117(8 , X) +'|]_(S ,X) =S
1f _
ﬂ—x(s, X) =S
f(O, O) = Xo

Hence %T—f(s,x) = s, will implies that:
X
f(s, X) =sx + g(9)

...(3.29)
Therefore:

76

PDF created with pdfFactory Pro trial version www.pdffactory.com



http://www.pdffactory.com
http://www.pdffactory.com

Chapter Three Stochastic Differential Equations

2
Which implies g&s) = s- X, and therefore g(s) = SE - X +C.
Now, substituting in eg.(3.29), yields to:
2

f(s,x):%+c

where;
f(0,0) =xo=cC
Hence:

{2
f(t, x) = ) + Xo

and the candidate solution is:

{2
X(t) = 5 + Xo

Similarly, to find the solution for the second time step interval
[1, 2], let:

t2
X() =fa(t) = =

Therefore:

2
dx(t) = t d +f(tE - 1) dW(t)

t2
=tdt+E - 1dW(t)

and by using the total differential method in SDE's and the 1to formula
for f(t, W(t)), yields to:
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t &1 g

f(t, W(t)) =1(0,0) + 0 éz— (s W(9)) +—(S W(S))udS +
1 @2 fix Ts 0
io T-EW(S) oW

such that:

1 9% T

EﬂT(S ,X) +‘|]_(S ,X) =S

i _ s

‘H_x(s' X) = > 1
Therefore:

S2
f(s, X) = Ex - X+ g(9) ...(3.30)

therefore g&s) = s - sx, and so:
2

_S X
99 == 252+C

and substituting g(s) in equation (3.30), yields:
2
S
f(s,X)=— - X+c¢C
(S, X) 5
thus, we have obtained
2
S
f(s, X) =Xo + 5 X
and the candidate solution to the SDE is:

2
f(t, W(D) = xo + % - W)
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Example (3.11):

Consider the following SDDE:

dx(t) = x(t- 1) dt + x(t- 2) dW(t), tT [0, 1]

with initial condition:
X(t) =fo(t) =t,for-2£t£0

Hence to find the solution, consider the first time step interval
[0, 1], i.e., consider:
dx(t) =fo(t- 1) dt +fo(t- 2) dW(t)

and hence:
dx(t) =(t- 1) dt+ (t- 2) dW(t)

and to solve this SDE by using the total differential method, let x(t) =
f(t, W(t)), then by using the Ito formulato f(t, W(t)), we get:

t &1 g
0 &-——(s W(S))+—(s W(S))uds +
0 @2'" o]

f(t, W(D) = (0, 0) +

; E(S W(s)) dW(s)
) 0%
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Hence :g—f(s, X) =s- 2, which implies that:
X
f(s, X) =sx - 2x + () ...(3.31)

Therefore, substituting in the partial differential equation:

2
Which will implies to g&s)=s- 1- x, and therefore g(s):% - s- sx+C.
Now, substituting g(s) in eq.(3.31), yields:

S2

f(s,x):E- S- 2Xx+cC

and since f(0, 0) = X = ¢, then we have:
{2
f(t,X) =Xo+ — - t- 2X
2
and the candidate solution to the SDE is:
2

x(t) = f(t, W(t)) = Xo + % - t- 2W(t)

In this example, it is so difficult to find the solution for the next
time interval, unless when a new method is proposed or numerical

methods are used to solve for further time intervals.
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3.4.2 Euler's Method for Solving Stochastic Delay Differential
Equations:

The present section consists of using Euler's method for solving
SDDE's. For this purpose, we consider, for simplicity and without loose
of generality, the first order retarded SDDE's, which has the form as:

dx(t) = A(t, x(t), x(t - t)) dt + B(t, x(t)), x(t- t)) dW() ...(3.32)
with initial condition:
X(t) =fot), forto- t EtE 1ty

wheret isafixed number. The next theorem introduces the derivation of

Euler's method for solving SDDE's.

Theorem (3.4):

Consider the SDDE:
dx(t) = A(t, x(t), x(t - t)) dt + B(t, x(t), x(t - t)) dW/(t)
where t T [a, b] with initial condition Xx(to)) = fo(t), to - t £t £ to.

Descritizetheinterval [a, b] as,a=tyo<t; <...<ty=b,ort,=a+ nh, for

fixed NT ¥ andnl ¥,h= %, DW, = W(tn1) - W(t,) isarandom

increment, n=0, 1, ..., N - 1; then the sequence of numerical solutions
are given by:

Xn+1 = Xn + A(tn, an fn-t)h + B(tn; an fn-t)DWn, n= Ol 11 RS | N - 1
Proof:

Consider the SDDE:

dx(t) = A, x(0), X(t - 1)) dt + B(t, x(t), x(t - 1)) dW() ...(3.33)
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The method is based on the formal integration of eq(3.33) over atime
step which gives:

th+ th+
X(th+1) = X(ty)+ c‘)lA(s,x(s),x(s- t)) dst c‘)l B(sx(s),x(s-t)) dW(s)
th th

...(334)

where h = t.; - t,. Replacing the integration time s in the functions
A(s, x(s), x(s - t)) and B(s, x(s), x(s - t)) by the lower limit of

Integration t,, we have:

X(tne1) 5 X(tn) + A(tn, X(tn), X(t, - t))h + B(tn, X(tn), X(t, - t))DW,

...(3.35)
where the random increment DW,, is defined as:
th+1
DWh= ¢ W(s) dW(s) = W(tm1) - W(tn)
th
Hence, w e obtain the following time discrete approximation:
Xn+1 = Xn + A(th, Xn, fr-0)N + B(tn, Xn, frot))DW, ...(3.36)

where x(t) =fo(t), to- tEtE£t,. N

Example (3.12):

Consider the SDDE:
dx(t) = x(t- 1) dt + dW(t)

with initial condition x(t)=fo(t) =t, - 1 £ t £ 0, and suppose we want to
find the numerical solution by using Euler's method (3.36) with step
lengths h = 0.1 and h = 0.01. The obtained results upon using the Euler
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method and its comparison with the exact solution given in example
(3.8) are presented in table (3.4) in which the results are obtained by
using computer programs written in Mathcad 2001i. In addition the
Gaussian random numbers with mean 0 and variances 0.1 and 0.01,
respectively, are presented in this table for completeness (which will be

used in evaluating the exact solution also).

Table (3.4)
Numerical and exact results of example (3.11).

h=0.1 h =0.01

Numerical | Absolute Numerical| Absolute
solution error solution error

- 0.068 9.851" 103

- 0.047 -7.231 103

- 0.095 - 0.029

-0.169 -4.091 10°®

4.353 1073 4.285 1073

-0.012 . -1.932" 10°*

0.056 1.437 103

0.219 5.391 1073

0.081 7.911° 103

0.099 4.377 1073
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Example (3.13):

Consider the SDDE:
dx(t) =t dt +x(t- 1) dW(t)

with initial condition x(t)=fo(t) =t + 1,- 1 £t £ 0, and suppose we want
to find the numerical solution by using Euler's method (3.36) with step
lengths h = 0.1 and h = 0.01. The obtained results upon using the Euler
method and its comparison with the exact solution given in example
(3.9) are presented in table (3.5) for two time step intervals [0, 1] and
[1, 2], in which the results are obtained by using computer programs
written in Mathcad 2001i. In addition the Gaussian random numbers
with mean O and variances 0.1 and 0.01, respectively, are presented in
this table for completeness (which will be used in evaluating the exact

solution also).
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Table (3.5)
Numerical and exact results of example (3.11).

h=0.1 h =0.01

Numerical Numerical
solution solution

-0.068 0 9.851" 10°° | 5.418 10°®
-0.047 0.007061|-7.231"10°°| 0.017
-0.095 0.002498| -0.029 0.035
-0.169 0.015 |-4.09110°%  0077.
4.353 10°® 0.06 | 4285 10°| 0.125
-0.012 0.056 |-1.932°10°% 0.177
0.056 0.102 | 1.437°10°| 0.243
0.219 0.222 | 5391°10°| 0.321
0.081 0116 | 7.911°10°| 0.109
0.099 0137 | 4377 10°| 0.501

-0.068 9.851" 10°®
-0.047 -7.231°10°®
-0.095 -0.029
-0.169 4,091 10°®
4.353 10°® 4.285 10°°
-0.012 1.932" 10°*
0.056 1.437 103
0.219 5.391 10°°
0.081 7.911 10°®
0.099 4377 10°®
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Example (3.14):

Consider the SDDE:

dx(t) = x(t - 1) dt + x(t - 2) dW(t)
with initial condition:

X()=fot)=t,-1LEtE£O0

carrying out the computer program written in Mathcad 2001i to find the
numerical solution in the first time step interval [0, 1] by using Euler's
method with step length h = 0.1 and h = 0.01. The results of table (3.6)

are obtal ned:

Table (3.6)
Numerical and exact results of example (3.11).

h=0.1 h=0.01

Numerical | Absolute Numerical| Absolute
solution error solution error

-0.068 9.851" 10°®
-0.047 -7.231°10°®
-0.095 -0.029

-0.169 -4.091" 10°®

4.353 10°® 4.285 10°°
-0.012 -1.932°10°*
0.056 1.437 103
0.219 5.391 10°°
0.081 7.911 10°®
0.099 4377 10°®
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Conclusions and Recommendations

From the present and study, we may conclude the following:

1. The solution of SDDE's either analytically or numerically may be
carried in a similar manner that followed in solving SDE's without
delay or may be solved directly without transforming to an ODE
which is by using the Laplace transformation method.

2. In comparison of the numerical results, the residue error in some
examples may be used, to check the accuracy of the results when the

analytic solution is not available.

3. Implicit Euler's method have more accurate results than explicit
Euler's method, which is due to the bounds of local truncation error

for each method.

Also, from the present study, we may recommend the following

problems for future work:

1. Numerical solution of SDE's using the Ito-Taylor's expansion

method, linear multistep method and Runge-Kutta methods.

2. Studying the theory of stochastic partial differential equations and
delay stochastic partial differential equations, as well as, the
analytical and numerical methods of solution.

3. Studying the theory of stochastic integral equations and its

analytical and numerical methods of solution.
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Conclusions and Recommendations

4. Introducing fractional derivatives and fractional integrals in
stochastic calculus and then study the resulting stochastic
fractional differential equations and stochastic fractional integral
eguations.
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