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Introduction 

 i 

IInnttrroodduuccttiioonn 
 

Stochastic differential equations (SDE's for short) are differential 

equations in which one or more of its terms are stochastic processes, and 

therefore will give solutions which are itself stochastic process, [Arnold, 

1974]. SDE's are used in wide range of applications in environmental 

modeling, engineering and biological modeling, [Higham, 2001], and 

SDE's are a fundamental tool for mathematics and its applications, 

[Geiss, 2007].  

The type of SDE's incorporated into the systems are also very 

important; therefore, various authors have made extensive work on the 

analytic solution of SDE's, [Smith, 1999], [φksendal, 2000], [φksendal, 

2003], [Muszta, 2005], and the numerical solution of SDE's, [Han, 

2005], [Mahony, 2006]. Since sometimes SDE's rarely have explicit 

solutions and hence in some cases accurate numerical methods are vital 

in order to make their implementation viable. Due to features of the 

stochastic calculus, the numerical analysis for solving SDE's differs in 

some key areas from the already well-developed area of the numerical 

analysis of ordinary differential equations, [Mahony, 2006].  

There are two basic type of tasks connected with the simulation 

of solutions of SDE's. The first occurs in situation where a good path 

wise approximation is required, for instance in direct simulations, 

filtering or testing statistical estimators. The second interest focuses on 

approximating expectations of functional of the Itô  process, such as its 

probability distribution and its moments, [Han, 2005]. As more realistic 
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mathematical models become required to take into account random 

effects and influences in real world systems SDE's have become essential 

in the accurate description of such situations, [Mahony, 2006].  

In recent years, stochastic processes and stochastic calculus have 

been applied to a wide range of financial problems. ApplicationS of 

stochastic processes and stochastic calculus may be found in many 

disciplines, such as physics, engineering, and finance. Stochastic 

calculus concerns with a specific class of stochastic processes that are 

stochastically integrable and are often expressed as solutions to the 

stochastic differential equations, [Lin, 2006]. They are typically 

describing the time dynamics of the evolution of a state vector, based on 

the (approximate) physics of the real system, together with a deriving 

noise process. The noise process can be though of in several ways. It is 

often represent processes not included in the model, but presented in real 

system, [Archambeau et al., 2007]. In the physical and engineering 

sciences, on the other hand, SDE's arise in a quite natural manner in the 

description of systems on which so-called "white noise" acts, [Lin, 

2006], many physical systems are modeled by SDE's, where random 

effect are being modeled by a Wiener process (for more details, see for 

example [Soheili, 2008]). A natural extension is given by systems of 

SDE's, where system noise is modeled by including a diffusion on term 

of some suitable form in the driving equations, [Ditlevsen, 2006]. 

Statistical inference for diffusion type processes satisfying SDE's driven 

by Wiener process has been studied earlier and a comprehensive survey 

of various methods is given in, [Rao, 2003]. Recent years have witnessed 

that the most efficient and widely applicable approach in solving SDE's 
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seems to be the simulation of sample paths of time discrete 

approximations on digital computers. This is based on a finite 

discretization of time interval [0, T] under consideration and generates 

an approximate values of sample paths step by step at the discretization 

times, [Han, 2005].  

Starting from the well known Itô  formula (as stochastic counter 

part of deterministic chain rule and as the link between continuous and 

discrete time stochastic dynamical systems). As in deterministic analysis, 

the latter formulas are essential for the systematic construction of 

stochastic numerical methods and the investigation of local behavior of 

their approximating trajectories, [Schurz, 2002]. The history of 

stochastic integration and the modeling of risky asset prices both begin 

with Brownian motion, so let us begin there too, and arrived at the notion 

of a SDE governing the paths of a Markov process that may be 

formulated in terms of the differential of a single differential process, but 

in the late of 1960 and 1970 which leads to even greater interest of 

Markov processes as solutions of SDE's, [Jarrow, 2003]. If these random 

functions have certain regular properties, one can consider the above 

mentioned problems simply as a family of classical problems for the 

individual samples functions, and treat them with the classical methods 

of the theory of differential equations, [Arnold, 1974]. The theory of 

SDE's was originally developed by mathematicians as a tool for explicit 

construction of the trajectories of diffusion processes for given 

coefficient of drift and diffusion, as a result of this variety in the 

motivations, existing detailed studies of the subject, as a rule, either are 
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not written from a stand point applications or are inaccessible to the 

person intending to apply them, [Higham, 2001].  

Stochastic delay differential equations (SDDE's for short) are a 

generalization of both deterministic delay differential equations (DDE's 

for short) and stochastic ordinary differential equations (SODE's for 

short). In many areas of science, such as population problems and the 

study of materials or systems with memory, there has been an increasing 

interest in the investigation of functional differential equations 

incorporating memory or after-effect, [Baker, 2000]. In such cases, 

stochastic delay differential equations or stochastic functional 

differential equations (SFDE's for short) provide important tools to 

describe and analyze these systems. SDDE's and SFDE's arising in many 

applications cannot be solved explicitly. Hence, one needs to develop 

effective numerical techniques for such systems, [Hu, 2004]. In general, 

there is no analytical closed form solution of the problems considered 

here and we usually require numerical techniques to investigate the 

models quantitatively, [Baker, 2000]. The analysis of numerical methods 

for SDDE's is based on the numerical analysis of DDE's and the 

numerical analysis of ODE's. There are few articles on numerical 

analysis of SDDE's to date, see (Tudor, 1992), (Küchler, 1999), and for 

the theory of SDDE's, see (Mohammed, 1984), (Kolmanovskii, 1992), 

(Mao, 1997). 

This thesis consists of three chapters. In chapter one, some 

general concepts and definitions related to the subject of stochastic 

calculus and delay differential equations are given for completeness. In 

chapter two, the statement and the details of the proof of SDE's is given 
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as well as with some additional theoretical results which are needed in 

the proof of the existence and uniqueness theorem in which some of 

them are given in literatures either without details. In chapter three, some 

analytical methods for solving SDE's are studied and explained with 

examples then these methods are modified for solving SDDE's. In 

addition, numerical method, namely Euler's method, is considered for 

solving SDE's and SDDE's.  

Finally, the numerical results are obtained using computer 

programs written in Mathcad 2001i computer software and the results are 

given in a tabulated form. 
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CChhaapptteerr  OOnnee  
GGeenneerraall  CCoonncceeppttss 

 

Introduction 

This chapter is of introductory nature, which consists of some the 

most common concepts related to this thesis. Therefore, this chapter 

consists of seven sections. In section 1.1, the main aspect of delay-

differential equations are introduced, including its classification and 

basic properties. In section 1.2, we give the main concepts in probability 

theory including some definitions of fields (σ-fields) and probability 

space. In section 1.3, the concept of discrete random variables have been 

discussed in short while in section 1.4 we discuss in details the 

continuous random variables because of its strong relationship with the 

topics of this thesis. Section 1.5 presents an introduction to stochastic 

process which give the rise for stochastic differential equations. Also, as 

a second part in the introduction of stochastic differential equations is the 

Brownian motion which is introduced with some details in section 1.6, as 

well as, some results are given for completeness. Finally, section 1.7 

presents the definition of stochastic differential equations in terms of the 

Itô  process. 
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1.1 Delay Differential Equations 

Delay differential equations are a large and important class of 

dynamical systems. They often arise in either natural or technological 

control problems, [Roussel, 2004], DDE's are of sufficient importance in 

many applications, say in mixing of liquids, population growth and 

automatic control system, [Driver, 1977], and DDE's are used to describe 

many phenomena of physical interests, [Shampine, 2000], DDE's are in 

which their time lags are constant (Sometimes called scalar, or point 

delays), [Abdulkadir, 2008].  

The general form of the n-th order differential-difference 

equation with multiple delays is given by: 

F(t; x(t), x(t − τ01), x(t − τ02), …, x(t − τ0m), x′(t), x′(t − τ11),  

x′(t − τ12), …, x′(t − τ1m), …, x(n)(t), x(n)(t − τn1), x(n)(t − τn2), …, 

x(n)(t − τnm)) = g(t) ..................................................................(1.1) 

where F is a given function and τij (for i = 0, 1, …, n and j = 1, 2, …, m) 

are constants called delays, where i refers to the order of the derivative 

with respect to the dependent variable for each, j = 1, 2, …, m. 

The first order linear differential-difference equation may be 

classified into three types. The first type, which is the simplest type of 

differential-difference equations is that; in which the delay terms is 

through the state variable and not through the derivative of the state 

variable and is called retarded differential-difference equations 

(RDDE’s, for short). 

These types of equations occurred in a number of applications 

such as, in the physical applications, for example: 
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x′(t) = F(t; x(t), x(t − τ)), 

where x(t) ∈ n¡ , F : ¡ × n¡  → n¡ , and τ > 0 is a single constant 

fixed time delay, and in control problems, for example: 

x′(t) = K(x(t) − x(t − τ)), 

where K is the feedback gain function and τ is the time delay, and also in 

the study of distribution of primes, for example: 

x′(t) = −αx(t −1)[1 + x(t)]. 

The second type of differential-difference equations is that; in 

which the delay terms is through the derivative of the state variable and 

not through the state variable itself and is called neutral differential-

difference equations (NDDE's, for short), [Hale, 1993], for example: 

x′′(t) = −x′(t) − x′(t − 1) − 3sinx(t) + cos(t). 

Also variants of NDDE's have also been used as a model in the 

history of growth of single species, for example: 

x′(t) = −α
0

1

x (s ) ds (1 x(t))
−

  ′ − τ + 
  
∫ ; 

and in the describing the spread of disease taking into account age 

dependence, for example: 

x′(t) = −
t

t

a(t u)g(x (t u))du
−τ

′− −∫ . 

The third type is a combination between the two obvious types 

and is called the advanced differential-difference equations (ADDE’s, 
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for short), [Hale, 1993]. These types of equations occur in the theory of 

epidemics and models in the biomedical science, for example: 

x′′(t) = f(x(t − τ)) x′(t − τ) − αx′(t) − x(t). 

Many theoretical and numerical solution are presented in 

literatures for solving DDE's, and among the most common used 

methods; the method of steps (or the method of successive integrations) 

and the Laplace transformation method for linear delay ODE's with 

constant coefficients. The method of steps; is to reduce the problem 

directly into an ordinary differential equation using the initial condition. 

This method has been used for many years in solving delay differential 

equations, [Gllsinn, 2006]. Although, Laplace transformation method is 

extremely useful in obtaining the solution of linear DDE's with constant 

coefficients. As it is known, Laplace transformation method may be used 

to solve ODE's and we can also use the same approach to solve DDE's. 

For this approach, suppose that f is a function of t defined on [0, ∞) with 

|f(t)| < Me−βt then the Laplace transform of f(t) (denoted by F(s)) is 

defined by: 

F(s) = st

0

e f (t) dt
∞

−∫ , s > 0 

It is clear that this integral depends on f and on the number s, where f 

satisfies certain conditions. The function F(s) is called the Laplace 

transform of f(t), [Brauer, 1973]. Two approaches may be used in 

Laplace transformation method for solving DDE’s. The first approach is 

to solve the DDE’s by using Laplace transformation method directly 

without using the method of steps, [Bellman, 1963]. While the second 

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com


Chapter One                                                                                                          General Concepts 

 5 

approach depends on the method of steps firstly to transform the DDE, to 

an equivalent ODE and then apply the Laplace transformation method to 

solve the resulting equation, [Brauer, 1973]. 

Moreover, some numerical and approximate methods may be 

used to solve DDE's, such as the linear multistep methods [Al-Kubeisy, 

2004], the collocation method, [Al-Saady, 2000], variational approach, 

[Abdukadir, 2008]. 

 

1.2 Basic Concepts of Probability Theory 

Probability theory is that branch of mathematics which is 

concerned with random (or chance) phenomena. It has attracted people 

to its study both, because of its intrinsic interest and its successful 

applications to many areas within the physical, biological and social 

sciences, engineering, and in the business world, [Hoel, 1971], 

randomness and probability are not easy to define precisely, but we 

certainly recognize random events when we meet them. For example, 

randomness is in effect when we flip a coin a lottery ticket, run a horse 

race, [Krishnan, 1984]. The terminology given in the next remarks are 

necessary for the topics of this thesis: 
 

Remarks (1.1), [Krishnan, 1984]: 

1. Random experiment is an experiment satisfy the following conditions: 

(i) The outcome can be predicted with certainty. 

(ii) The outcome can be described prior to its performance. 

(iii) It can be repeated under the same conditions. 
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2. The collection of all possible outcomes of a random experiment is 

called sample space and is denoted by Ω. In set terminology, the 

sample space is termed as the universal set, thus, the sample space Ω 

is a set consisting of mutually exclusive, collectively exhaustive 

listing of all possible outcomes of a random experiment. That is,: 

Ω = {ω1, ω2, …, ωn} 

denotes the set of all finite outcomes, while  

Ω = {ω1, ω2, …} 

denotes the set of all countably infinite outcomes, and 

Ω = {ωt : 0 ≤ t ≤ T} 

denotes the set of uncountably outcomes. 
 

1.2.1 Fields, σ-Fields, [Krishnan, 1984]: 

Let R be the nonempty class of subsets drawn from the sample 

space Ω. We say that the class R is a field or an algebra of sets in Ω if it 

satisfies the following definition: 
 

Definition (1.2) (Filed or Algebra), [Krishnan, 1984]: 

A class of subsets Aj ⊂ Ω, ∀ j = 1, 2, …, n denoted by R is a 

field when the following conditions are satisfied: 

1. If Ai ∈ R, then c
iA  ∈ R. 

2. If {Ai, ∀ i = 1, 2, …, n} ∈ R, then 
n

i
i 1

A
=
U  ∈ R. 
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Example (1.1), [Krishnan, 1984]: 

Let Ω = ¡  and consider a class R of all intervals of the form (a, 

b], such that: 

(a, b] ∩ (c, d] = 

,    a b c d
(c,b],    a c b d
(a,d],    c a d b
(c,d],    a c d b
(a,b],    c a b d

∅ < < <
 < < < < < <
 < < <

< < <

 

Clearly the class R is closed under intersections. However: 

(a, b]c = (−∞, a] ∪ (b, ∞) ∉ R 

The class R is not a field. 

 

Definition (1.3) (σ-Field or σ-Algebra), [Krishnan, 1984]: 

A class of countably infinite collection of subsets Aj ⊂ Ω,  

∀ j = 1, 2, … denoted by F is a σ-field when the following conditions are 

satisfied: 

1. If Ai ∈ F, then c
iA  ∈ F. 

2. If {Ai, i =1, 2, …} ∈ F, then i
i 1

A
∞

=
U  ∈ F. 

 

Remarks (1.2), [Krishnan, 1984]: 

1. In general a σ-field is a field, but a field may not be a σ-field. 
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2. The intersection of any nonempty but arbitrary collection of σ-fields 

in Ω is a σ-field in Ω. 

3. In general the arbitrary union of a collection of σ-fields may not be a 

σ-field. 

We can always construct the smallest σ-field over R in which R 

will contain R and will be denoted by σ(R) = F. 

This will always exist since σ(R) can be defined as the 

intersection of all σ-fields containing R. If σ1(R), σ2(R), … are all  

σ-fields containing R, then: 

σ(R) = i
i 1

( )
∞

=
σI R  

Further, the minimal σ-field thus generated is unique, we shall 

call σ(R) the σ-field generated by R. 

 

1.2.2 Probability Space: 

Definition (1.4) (Probability Measure), [Al-Bayaty, 2008]: 

A probability measure is a set function P defined on a σ-field F 

of subsets of a sample space Ω such that it satisfies the following axioms 

of Kolmogrov for any A ∈ F: 

1. p(A) ≥ 0. 

2. p(Ω) = 1. 
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3. p n
n 1

A
∞

=

 
 
 
U  = n

n 1
p(A )

∞

=
∑ . 

with An ∈ F and Ai and Aj, i ≠ j being pairwise disjoint. Any set function 

η defined on a measurable space (Ω, F) satisfying axioms (1) and (3) is 

called a measure. 
 

Definition (1.5) (Probability Space), [Stirzaker, 2005] 

The measure space (Ω, F, P) is called a probability space, which 

serves to describe any random experiment, where: 

1. Ω is a nonempty set called the sample space, whose elements are the 

elementary outcomes of a random experiment. 

2. F is a σ-field of subsets of Ω. 

3. P is a probability measure defined on the measurable space (Ω, F). 

 

Definition (1.6) (Measurable Function), [Krishnan, 1984]: 

Let (Ω1, F1) and (Ω2, F2) be two measurable spaces. Let g be a 

function with domain E1 ⊂ Ω1 and E2 ⊂ Ω2; g : E1 → E2. Then g is 

called a F1-measurable function or an F1-measurable mapping, if for 

every E2 ∈ F2: 

g−1(E2) = {ω ∈ Ω: g(ω) ∈ E2} = E1 

is in the σ-field F1. 
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Remarks (1.3), [Krishnan, 1984]: 

1. The set E1 given by g−1(E2) is called the inverse image or inverse 

mapping of E2, and it is measurable set. 

2. Let g be a measurable mapping from (Ω1, F1) → (Ω2, F2). If R 

is a nonempty class of subsets of Ω2, then: 

σ(g−1(R)) = g−1(σ(R)). 

 

Definition (1.7) (Random Variable), [Poularikas, 1999]: 

To every outcome η of any experiment we assign one and only 

one number X(η) = x. The function X, whose domain in the space Ω of 

all outcomes and its range is a set of numbers, is called a random 

variable. 
 

Definition (1.8) (Distribution Function), [Stirzaker, 2005]: 

The distribution function FX(x) of X is denoted by FX(x)=p(X≤x), 

and is defined by: 

FX(x) = p(Bx) 

where: 

Bx = {ω : X(ω) ≤ x} 

It follows that we have for all x, a, and b > a: 

P(X > x) =1 − FX(x) 

and 

P(a < X ≤ b) = F(b) − F(a). 
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All random variables have a distribution function. There are two 

principle types of random variables; namely the discrete and the 

continuous. 

 

1.3 Discrete Random Variables, [Strizaker, 2005] 

A discrete random variable takes values only in some countable 

subset D of ¡  (very commonly this subset D is a subset of the integers). 

Then the probability that X takes some given values x in D is denoted 

by: 

f(x) = p(X = x) = p(Vx) 

where Vx = {ω : X(ω) = x} is the event that X = x. 

The function f(x) may be called the probability function of x, or 

the probability mass function of x, or the probability distribution of x. It 

may also be denoted by fX(x) to avoid ambiguity. Here are some familiar 

and important examples of discrete random variables and their 

distributions: 

1. Binomial distribution. 

2. Poisson distribution. 

3. Geometric distribution. 

 

1.4 Continuous Random Variables, [Strirzaker, 2005] 

A random variable that is not discrete is said to be continuous if 

its distribution function F(x) is written in the form: 
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FX(x) = Xf (u) du
∞

−∞
∫  

for some nonnegative integrable function fX(x) defined for all x in (−∞, 

∞). Then fX(x) is called the density function (or simply, density) of x. We 

may denoted it by f(x) if there is no risk of ambiguity. It is analogous to 

the probability mass function f(x) of a discrete random variable. 

Here are some important examples of continuous distributions: 

1. Uniform distribution. 

2. Exponential distribution. 

3. Normal distribution. 

 

Definition (1.9) (Pointwise Convergence), [Krishnan, 1984]: 

A sequence {Xn} converges to a limit X if and only if for any  

ε > 0, however small, we can find positive integer n0, such that: 

|Xn − X| < ε, for every n > n0 

 

Remark (1.4), [Krishnan, 1984]: 

If we consider a sequence of random variables {X1,X2,…,Xn,…} 

and define a pointwise convergence to another random variable X as in 

definition (1.9), then we must have for every ω-point in Ω the sequence 

of numbers X1(ω), X2(ω), …, Xn(ω), converging to X(ω). This type of 

convergence is called everywhere convergence. 
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Definition (1.10) (Almost Sure Convergence), [Evans, 2006]: 

A sequence of random variables {Xn} converges almost surly 

(abbreviated by a.s.) or almost certainly or strongly to X if for every ω-

point not belonging to the null event A,  

n
lim
→∞

|Xn(ω) − X(ω)| = 0 

This type of convergence is known as convergence with 

probability 1 and is denoted by: 

Xn(ω) a.s.
n→∞

→  X(ω) = 
n
lim
→∞

Xn(ω) (a.s.) 

 

Remark (1.5), [Evans, 2006]: 

If the limit X is not known a priori, then we can define a mutual 

convergence almost surely. The sequence Xn converges mutually almost 

surely if: 

m n
sup

≥
|Xm − Xn| a.s.

n→∞
→  0 

In which both definitions are equivalent. 
 

Remark (1.6), [Evans, 2006]: 

Let A1, A2, …, An, …, be events in a probability space. Then the 

event: 

m
n 1m n

A
∞ ∞

= =
I U  = {ω ∈ Ω | ω belongs to infinitely many of the An} 

is called "An infinitely often" and abbreviated by i.o. 
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Definition (1.11) (Convergence in Probability), [Strizaker, 2005]: 

A sequence of random variables {Xn} converges in probability to 

X if and only if for every ε > 0, however small, 
n
lim
→∞

p(|Xn − X| ≥ ε) = 0, 

or equivalently 
n
lim
→∞

p(|Xn − X| < ε) = 1, and it is denoted by: 

Xn(ω) L.i.p.
n→∞

→  X(ω)  or  X(ω) = 
n
L.i.p.

→∞
Xn(ω) 

 

Remark (1.7), [Krishnan, 1984]: 

1. We can define mutual convergence in probability as: 

n
lim
→∞ m n

Sup
≥

p(|Xm − Xn| ≥ ε) → 0 

2. If a sequence of random variables {Xn} converges almost surely to X, 

then it converges in probability to the same limit. The converse is not 

true. 

3. If {Xn} converges in probability to X, then there exists a subsequence 

{
knX } of {Xn} which converges almost surely to the same limit. 

4. {Xn} converges in probability if and only if it is converges mutually 

in probability. 

 

1.5 Introduction to Stochastic Processes 

Differential equations for random functions (stochastic processes) 

arise in the investigation of numerous physical and engineering 

problems, [Arnold, 1974]. We have looked at single random variables 
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(X1, X2, …, Xn), which we termed random vectors. However, many 

practical application of probability are concerned with random processes 

evolving in time, or space, or both, without any limit on the time (or 

space), [Al-Bayaty, 2008]. 
 

Definition (1.12) (Stochastic Process), [Stirzaker, 2005]: 

A stochastic process is a collection of random variables {X(t) :  

t ∈ T}, where t is a parameter that runs over an index set T. In general, 

we call t the time-parameter (or simply the time), and T ⊆ ¡ . Each X(t) 

takes values in some set S ⊆ ¡  called the state space, then X(t) is the 

state of the process at time t. 
 

Example (1.2), [Stirzaker, 2005]: 

X(t) may be a number of a time t, or the number of heads shown 

by t flips of some coin. There is also of course, some underlying 

probability space Ω and probability set function P; since we are not 

concerned here with a general theory of random processes, we also not 

need to stress this part of the structure. 
 

Remark (1.8), [Stirzaker, 2005]: 

1. If the index set T is a countable set, we call X a discrete-time 

stochastic process, and if T is a continuum, we call it a continuous-

time stochastic process. 

2. A continuous-time stochastic process {X(t) : t ∈ T} is said to have an 

independent increment if for all t0 < t1 < t2 < … < tn, the random 
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variables X(t1)−X(t0), X(t2)−X(t1), …, X(tn)−X(tn−1) are independent. 

The process stationary increments if X(t + s) − X(t) has the same 

distribution for all t. That is, it posses independent increments if the 

changes in the processes values over nonoverlapping time intervals 

are independent, and it process stationary increments if the 

distribution of the change in the value between any two points 

depends only on the distance between those points. 
 

Definition (1.13) (Stationary), [Al-Bayaty, 2008]: 

A stochastic process X(t) is stationary if: 

p{X1(t) ≤ x1, X2(t) ≤ x2, …, Xm(t) ≤ xm} = p{X(t1 + θ) ≤ x1,  

X(t2 + θ) ≤ x2, …, X(tm + θ) ≤ xm} 

for all t1, t2, …, tm > 0 and real values x1, x2, …, xm. For every natural 

number m and for all θ. 

 

1.6 Introduction to Brownian Motion 

Brownian motion was introduced by Robert Brown in 1827, 

when he observed the motion of a pollen grain as it moved randomly in a 

glass of water. Because the water molecules collide with the pollen grain 

in a random fashion, the pollen grain moves about randomly. The motion 

of the pollen grain is stochastic, because its position from one point in 

time to the next can only be defined in terms of a probability density 

function, [Higham, 2001]. In 1900, L. Bachelier used the Brownian 

motion as a model for movement of stock prices in his mathematical 

theory of speculation. The mathematical foundation for Brownian 
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motion as stochastic process was introduced by N. Wiener in 1931, and 

this process is also called the Wiener process, [Klebaner, 2005]. 

 

Definition (1.14) (Brownian Motion), [Friedman, 1975]: 

A Brownian motion or a Wiener process is a stochastic process 

W(t), t ≥ 0, satisfying: 

1. W(0) = 0. 

2. For any 0 ≤ t0 < t1 < … < tn, the random variables: 

∆Wn = W(tn+1) − W(tn), 1 ≤ n ≤ k 

are independent. 

3. If 0 ≤ s < t, W(t) − W(s) is normally distributed with mean µt and 

variance 2
tσ , then: 

E[W(t) − W(s)] = (t − s)µt 

E[W(t) − W(s)]2 = (t − s) 2
tσ  

where µt and σt are real constants, σt > 0. 

 

Remark (1.9), [Stirzaker, 2005]: 

1. If σ2 = 1, then W(t) is said to be the standard Brownian motion, we 

always make this assumption unless stated otherwise. 

2. In fact, the assumption (2) is not strictly necessary, in that case one 

can construct (by a limiting procedure) a random process W(t) that 

obeys (1) and (3) and is almost surely continuous. 
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Definition (1.15) (Brownian Motion in n-Dimension), [Friedman, 1975]: 

An n-dimensional process W(t) = (W1(t), W2(t), …, Wn(t)) is 

called an n-dimensional Brownian motion if each process Wi(t) is a 

Brownian motion and if the σ-field F(Wi(t), t ≥ 0), 1 ≤ i ≤ n, are 

independent. 
 

The next theorem is given in literatures without details of the 

proof. Here, we give the details of the proof for completeness. 
 

Theorem (1.1), [Friedman, 1975]: 

If X is a Brownian motion with normal distribution N(0, 2
tσ ), 

then: 

E(X2n(t)) = 
2n

n
(2n)!

2 n!
σ  

where E refers to the mathematical expectation. 

Proof: 

From the definition of the moment generating function, defined 

by: 

M(t) = 
2t / 2e , −∞ < t < ∞ 

and recall the Maclurian series of 
2t / 2e  which is given by: 

M(t) = 
2t / 2e  = 1 + 

2t
2!

 + 3 1
4!
× t4 + … + (2k 1) ... 3 1

(2k)!
− × × × t2k + … 

 …(1.2) 
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Also, the Maclurian's series for M(t) is: 

M(t) = M(0) + M (0)
1!
′

t + M (0)
2!
′′

t2 +…+ 
(m)M (0)
m!

tm + … 

= 1+ E(X(t))
1!

t+
2E(X (t))

2!
t2+…+

mE(X (t))
m!

tm+… …(1.3) 

Comparing the coefficients of 
mt

m!
 in the Maclurian's series 

representation of M(t) given in eqs.(1.2) and (1.3), gives: 

E(X2n(t)) = (2n − 1)(2n − 3)×…×3×1 

= 2n(2n 1)(2n 2)...3 2 1
2n(2n 2)(2n 4)...4 2

− − × ×
− − ×

 

= (2n)!
2n 2(n 1) 2(n 2) ... 2(2 2)× − × − × × ×

 

= n
(2n)!

2 n(n 1)(n 2)...3 2 1− − × ×
 = n

(2n)!
2 n!

, n = 1, 2, … 

If X(t) ~ N(0, 1), then E(X2n(t)) = n
(2n)!
2 n!

 while if Y(t) ~ N(0, 2
tσ ), then 

we may consider the transformation X(t) = Y(t)
σ

 ~ N(0, 1), or 

equivalently Y(t) = X(t)σt ~ N(0, 2
tσ ). Hence: 

E(X2n(t)) = 
2n

2n
t

Y (t)E
 
  σ 

 

2n
t

1
σ

E(Y2n(t)) = n
(2n)!
2 n!
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Hence: 

E(Y2n(t)) = n
(2n)!
2 n!

2n
tσ .    n 

 

Theorem (1.2): 

If W(t) is a Brownian motion, then: 

E|W(t) − W(s)|2n = Cn|t − s|n 

where Cn is a constant. 

Proof: 

If W(t) = 
t

Z(t)
σ

, then from theorem (1.1) 

E(Z2n(t)) = n
(2n)!
2 n!

2n
tσ  …(1.4) 

Then from condition (3) of the Brownian motion, we have: 

E(W(t) − W(s))2 = (t − s) 2
tσ  …(1.5) 

To prove E|W(t) − W(s)|2n = Cn|t − s|n, where Cn = n
(2n)!
2 n!

 

Let in eq.(1.4), Z = |W(t) − W(s)|, hence: 

E(Z2n(t)) = E|W(t) − W(s)|2n 

= E(|W(t) − W(s)|2)n 

= 2 2 2

multiplied n-times

E|W(t) W(s)| E|W(t) W(s)| ...E|W(t) W(s)|− − −144444444424444444443  
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= 2 2 2
t t t

n-times

| t s | | t s | ... | t s |− σ − σ − σ1444442444443  

= |t − s|n( 2
tσ )n 

= |t − s|n 2n
tσ  = Cn|t − s|n.    n 

 

Definition (1.16) (White Noise), [Klebaner, 2005]: 

The white noise process Y(t) is formally defined as the derivative 

of the Brownian motion: 

Y(t) = dW(t)
dt

 =W′(t) …(1.6) 

It does not exist as a function of t in the usual sense, since a Brownian 

motion is nowhere differentiable function. 
 

Remark (1.10), [Al-Bayaty, 2008]: 

A special case that is of considerable interest occurs when the 

processes X(t) from which the white noise derives is the Brownian 

motion. The white noise process then obtained is often referred to as 

Gaussian white noise. 

 

1.7 Stochastic Differential Equations 

Stochastic differential equations incorporate white noise which 

can be thought of as the derivative of Brownian motion. However, it 

should be mentioned that other types of random fluctuations are possible, 

[Arnold, 1974]. Solution of SDE's from every large class of stochastic 
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processes. This class include Brownian motion, and many other 

stochastic processes used in stochastic modeling, [Lin, 2006]. A system 

of SDE's which arise when a random noise is introduced into ordinary 

differential equations, [Klebaner, 2005]. 
 

Definition (1.17) (Stochastic Differential Equations), [Haugh, 2005]: 

An n-dimensional Itô  process, Xt, is a process that can be 

represented as: 

Xt = X0 + 
t

0
∫ A(s, Xs) ds + 

t

0
∫ B(s, Xs) dWs …(1.7) 

where W is an m-dimensional standard Brownian motion, and A  

and B are n-dimensional and n×m-dimensional Ft-adapted processes, 

respectively which is defined later in chapter two. We often use the 

notation: 

dXt = A(t, Xt) dt + B(t, Xt) dWt, X(t0) = X0 …(1.8) 
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CChhaapptteerr  TTwwoo  
TThhee  EExxiisstteennccee  aanndd  UUnniiqquueenneessss  TThheeoorreemm  

ooff  SSttoocchhaassttiicc  DDiiffffeerreennttiiaall  EEqquuaattiioonnss  
 

Introduction 
Solution of stochastic differential equations is of great difficulty 

in applications because of the existence of random processes, and hence 

the existence of a unique solution for such type of equations seems also 

to be very difficult, since such type of equations needs for some 

additional conditions on their solutions without explicitly evaluating the 

solution. Therefore, this chapter presents some basic and necessary and 

basic preliminaries in the theory of stochastic differential equations, and 

followed by the statement and the proof of the existence and uniqueness 

theorem of stochastic differential equations. 

 

2.1 Preliminaries 
Following are some fundamental and necessary concepts in the 

theory of stochastic differential equations, which are needed later on in 

the proof of the existence and uniqueness theorem. 
 

Definition (2.1), [Friedman, 1975]: 

A stochastic process f(t) defined on [α, β] is called a step 

function if there exists a partition α = t0<t1<…<tr=β of [α, β], such that: 

f(t) = f(ti)  if  ti < t ≤ ti+1, i = 0, 1, …, r − 1 
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Lemma (2.1), [Friedman, 1975]: 

Let f ∈ 2Lω[α, β], then: 

1. If 2Lω[α, β] is the space of all functions f such that 
β

α
∫ |f(t)|2 dt < ∞, 

and there exists a sequence of continuous functions gn in 2Lω[α, β], 

such that: 

n
lim
→∞

β

α
∫ |f(t) − gn(t)|2 dt = 0  a.s. …(2.1) 

2. There exists a sequence of step functions fn in 2Lω[α, β], such that: 

n
lim
→∞

β

α
∫ |f(t) − fn(t)|2 dt = 0  a.s. …(2.2) 

 

The next theorem is given in [Krishnan, 1984] without details of 

the proof, we give here the complete details of the proof for 

completeness. 
 

Theorem (2.1) (Hölder's Inequality of Expectation), [Krishnan, 1984]: 

If p and q are real numbers greater than 1, with 1 1 1
p q

+ =  and if 

the random variables X, Y and |X|p, |Y|p are integrable, then: 

E|XY| ≤ [E|X|p]1/p[E|Y|q]1/q 

Proof: 

Let X be a positive number and consider the function: 
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φ(X) = 
p qX X

p q

−
+  

This function has a minimum value at X = 1, since: 

φ′(X) = Xp−1 − X−1−q = 0 

and multiplying by X, yields: 

Xp − X−q = 0 …(2.3) 

Also, p = pq − q. Hence, substituting in eq.(2.3) give: 

Xpq−q − X−q = 0 

i.e., 

X−q(Xpq − 1) = 0 

Therefore Xpq − 1 = 0 which implies that Xpq = 1, i.e., X = 1 is the critical 

point which give a minimum value of φ which is φ(1) = 1. 

Let us now substitute X = b1/q/a1/p, with a, b > 0 in φ(X), then: 

φ(X) = 

p q1/ q 1/ q

1/ p 1/ p
b b
a a

p q

−
   
   
   +  

= 
p / q q / pb a
ap bq

+  

= 
1 p / q 1 q / pp b q a
a b

− −
+  ≥ 1 

Hence: 

bp−1bp/q + aq−1aq/p ≥ ab 
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i.e.,  

p 1
qb

+
p−1 + 

q 1
pa

+
q−1 ≥ ab 

Therefore: 

p q
qb
+

p−1 + 
q p

pa
+

q−1 ≥ ab 

since p q
pq
+  = 1, we have p q

q
+  = p and p q

p
+  = q, and therefore: 

ab ≤ 
p qb a

p q
+  …(2.4) 

Suppose that: 

b = 1/ pp

| X |

E | X | 
 

 and a = 1/ qq

| Y |

E | Y | 
 

 …(2.5) 

Substitute (2.4) in (2.5), yields: 

1/ qq

| Y |

E | Y | 
 

1/ pp

| X |

E | X | 
 

 ≤ 

p

1/ pp

| X |

E | X |

p

 
 
 

      + 

q

1/ qq

| Y |

E | Y |

q

 
 
 

      

and taking the expectation to the both sides of the last inequality, yields: 

1/ p 1/ qp q

E | XY |

E | X | E | Y |   
   

 ≤ 

p

p
E | X |
E | X |

p
 + 

q

q
E | Y |
E | Y |

q
 

= 1 1 1
p q

+ =  
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Hence: 

E|XY| ≤ [E|X|p]1/p [E|Y|q]1/q 

and Hölder's inequality of expectation follows.    n 
 

Remark (2.1), [Krishnan, 1984]: 

Cauchy-Schwarz's inequality of expectation follows directly from 

Hölder's inequality, if we substitute p = q = 2, then we obtain that: 

E|XY| ≤ 2 2E | X | E | Y |  

if X, Y and |X|2, |Y|2 are integrable. 
 

Definition (2.2) (Stochastic Integral), [Friedman, 1975]: 

Let f(t) be a step function 2Lω[α, β], say: 

f(t) = fi, if ti < t ≤ ti+1, 0 ≤ i ≤ r − 1 

where α = t0 < t1 < t2 < … < tr = β. The random variable: 

r 1

k 0

−

=
∑ f(tk)[W(tk+1) − W(tk)] 

is denoted by: 

β

α
∫ f(t) dW(t) 

and is called the stochastic integral of f with respect to Brownian motion 

W, it is also called the Itô  integral. 
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Theorem (2.2), [Friedman, 1975]: 

Let f, fn be in 2Lω[α, β] and suppose that: 

β

α
∫ |fn(t) − f(t)|2 dt p.→  0  as  n → ∞ …(2.6) 

Then: 

β

α
∫ fn(t) dW(t) p.→  

β

α
∫ f(t) dW(t)  as  n → ∞ …(2.7) 

where p.→  refers that the converge is in probability. 
 

Lemma (2.2), [Friedman, 1975]: 

If f ∈ 2Lω[α, β] and f is continuous, then for any sequence πn of 

partitions α = tn,0 < tn,1 < … < tn,mn = β of [α, β] with mesh |πn| → 0, 

nm 1

k 0

−

=
∑ f(tn,k)[W(tn,k+1) − W(tn,k)] p.→  

β

α
∫ f(t) dW(t)  as n → ∞ 

 …(2.8) 

Proof: 

Introduce the step function gn: 

gn(t) = f(tn,k)  if  tn,k ≤ t ≤ tn,k+1, 0 ≤ k ≤ mn − 1 

for gn(t) → f(t) uniformly in t ∈ [α, β) as n → ∞. Hence: 

β

α
∫ |gn(t) − f(t)|2 dt → 0  a.s. 

By theorem (2.2), we then have: 

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com


Chapter Two                                               The Existence and Uniqueness Theorem of Stochastic  
                                                                                     Differential Equations 

 29 

β

α
∫ gn(t) dW(t) p.→  

β

α
∫ f(t) dW(t) 

Since 
β

α
∫ gn(t) dW(t) = 

nm 1

k 0

−

=
∑ f(tn,k)[W(tn,k+1) − W(tn,k)], then assertion (2.8) 

follows.    n 

 

Example (2.1), [Friedman, 1975]: 

If 0 ≤ t1 < t2 and πn = {t1 = tn,1, tn,2, …, tn,n = tn} is a sequence of 

partitions of [t1, t2] with mesh |πn| → 0, then from lemma (2.2) 

2

1

t

t
∫ W(t) dW(t) = 

n
lim
→∞

n 1

k 1

−

=
∑ W(tn,k)[W(tn,k+1) − W(tn,k)] 

= 1
2 n

lim
→∞

n 1

k 1

−

=
∑ [(W(tn,k+1))2−(W(tn,k))2] − [W(tn,k+1)−W(tn,k)]2 

= 1
2

(W(t2))2 − 1
2

(W(t1))2 − 1
2 n

lim
→∞

n 1

k 1

−

=
∑ [W(tn,k+1)−W(tn,k)]2 

where 
n
lim
→∞

 is taken as the limit in probability. The last limit in 

probability is equal to t2 − t1. Hence: 

2

1

t

t
∫ W(t) dW(t) = 1

2
(W(t2))2 − 1

2
(W(t1))2 − 1

2
(t2 − t1) …(2.9) 

 

 

 

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com


Chapter Two                                               The Existence and Uniqueness Theorem of Stochastic  
                                                                                     Differential Equations 

 30 

Lemma (2.3), [Friedman, 1975]: 

Let f1, f2 be two step functions in 2Lω[α, β] and let λ1, λ2 be two 

real numbers. Then λ1f1 + λ2f2 is in 2Lω[α, β] and 

β

α
∫ [λ1f1(t) + λ2f2(t)] dW(t) = λ1

β

α
∫ f1(t) dW(t) + λ2

β

α
∫ f2(t) dW(t)

 …(2.10) 
 

 

Theorem (2.3), [Friedman, 1975]: 

If f is a step function in 2
ωµ [α, β] (where 2

ωµ [α, β] will be 

defined later in this chapter) and W(t) is Brownian motion, then: 

E f (t) dW(t)
β

α
∫  = 0 …(2.11) 

E
2

f (t) dW(t)
β

α
∫  = E 2f (t) dt

β

α
∫  …(2.12) 

Proof: 

Since: 

E 2f (t) dt
β

α
∫  = ( )

r 1
2

i i 1 i
i 0

Ef (t ) t t
−

+
=

−∑  …(2.13) 

is finite, by assumption, we deduce that Ef2(ti) < ∞. In particular,  

E|f(ti)| < ∞. Also, E|W(ti+1) − W(ti)| < ∞. But since f(ti) is 
itF  measurable, 

where as W(ti+1) − W(ti) is independent of 
itF . 

Since, from the properties of the mathematical expectation of 

independent events, then: 
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Ef(ti)(W(ti+1) − W(ti)) = Ef(ti)E(W(ti+1) − W(ti)) = 0 

Summing over i, (2.11) follows. 

Next, since f2(ti) and [W(ti+1) − W(ti)]2 are independent and have finite 

expectation, also f2(ti)[W(ti+1) − W(ti)]2 has finite expectation. 

By Schawrz's inequality it follows that: 

E|f(tk)f(ti)(W(ti+1)−W(ti))|≤ 2 2
k i i 1 iE | f (t )f (t ) | E | W(t ) W(t ) |+ − <∞ 

i.e., finite. 

If k > i, then W(tk+1) − W(tk) is independent of f(tk)f(ti)(W(ti+1) − W(ti)) 

In view of the last inequality and the finiteness of E|W(tk+1) − W(tk)|, we 

deduce that: 

E[f(ti)(W(ti+1) − W(ti))] = Ef(ti)E[W(ti+1) − W(ti)] = 0 

Replace i by k, yields: 

E[f(tk)(W(tk+1) − W(tk))] = Ef(tk)E[W(tk+1) − W(tk)] = 0 

Hence: 

E[f(ti)f(tk)(W(ti+1) − W(ti)) (W(tk+1) − W(tk))] E[f(ti)(W(ti+1) − 

W(ti)) f(tk)(W(tk+1) − W(tk))] = 0 

Therefore: 

E
2

f (t) dW(t)
β

α
∫  = ( )

r 1 22
i i 1 i

i 0
E f (t ) W(t ) W(t )

−

+
=

 −
 ∑  

= ( )
r 1 22

i i 1 i
i 0

Ef (t )E W(t ) W(t )
−

+
=

−∑  

and from theorem (1.2) with n = 1, Cn = 1, we have: 
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E(W(ti+1) − W(ti))2 = |ti+1 − ti| 

Hence: 

E
2

f (t) dW(t)
β

α
∫  = 

r 1
2

i i 1 i
i 0

Ef (t ) | t t |
−

+
=

−∑  

= E 2f (t) dt
β

α
∫ .    n 

 

Theorem (2.4), [Friedman, 1975]: 

Let f ∈ 2
ωµ [0, T], then: 

2t

0 t T 0
sup f (s) dW(s)
≤ ≤

∫  ≤ 4
2T

0
E f (t) dW(t)∫  

= 4
T

2

0
E f (t) dt∫  

 

Definition (2.3), [Krishnan, 1984]: 

Let (Ω, F, P) be a probability space, and let X be a real random 

variable. The expectation of X is defined by: 

E(X) = 
Ω
∫ X(ω) dp(ω)  or  

Ω
∫ X dp …(2.14) 

 

We now have to define the integral, which we will do by stages. 

First, we take a simple random variable of the form: 
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X = 
n

k 1=
∑ xk kAI  …(2.15) 

and define: 

E(X) = 
n

k 1=
∑ xkp(Ak) …(2.16) 

 

Proposition (2.1) (Fatou's Lemma), [Krishnan, 1984]:  

Let {Xn} be a sequence of random variables and X be an 

integrable random variable, such that Xn(ω) ≥ X(ω), for all n and ω is 

bounded below, then: 

E(
n
lim
→∞

inf Xn) ≤ 
n
lim
→∞

inf E(Xn) 

and if X(ω) is such that Xn(ω) < X, for all n and ω is bounded above, 

then: 

n
lim
→∞

sup E(Xn) ≤ E(
n
lim
→∞

sup Xn) 

 

Definition (2.4) (The Itô  Process], [Friedman, 1975]: 

A stochastic process X(t), 0 ≤ t ≤ T is called an Itô  process with 

respect to {W(t), P, Ft}, (where Ft is adapted to W(t)) relative to B(t), 

A(t) if: 

X(t) = X(0) + 
t

0
∫ A(s) ds + 

t

0
∫ B(s) dW(s), 0 ≤ t ≤ T …(2.17) 
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Definition (2.5) (Increasing σ-Field or Filtration σ-Field),[Krishnan,1984]: 

Let (Ω, F) be a complete measurable space and let {Ft, t ∈ T, T = 

+¡ } be a family of sub-σ-fields of F, such that for s ≤ t, Fs ⊂ Ft. Then 

{Ft} is called an increasing family of sub-σ-fields on (Ω, F) or the 

filtration σ-filed of (Ω, F). 

Ft is called the σ-field of events prior to t. If {Xt, t ∈ T} is a 

stochastic process defined on (Ω, F, P), then clearly Ft given by: 

Ft = σ {Xs, s ≤ t, t ∈ T} …(2.18) 

is increasing. 
 

Remark (2.2), [Krishnan, 1984]: 

Since the probability space (Ω, F, P) is complete, the σ-field F 

contains all subsets of Ω having probability measure zero. We shall 

assume here that the filtration σ-field {Ft, t ∈ T} also contains all the 

sets from F having probability measure zero. 

 

Definition (2.6), (Adaptation of {Xt}), [Krishnan, 1984]: 

Let {Xt, t ∈ T, T = +¡ } be a stochastic process defined on a 

probability space (Ω, F, P) and let {Ft, t ∈ T, T = +¡ }be a filtration σ-

field. The process {Xt} is adapted to the family {Ft} if Xt is Ft-

measurable for every t ∈ T, or: 

tEF Xt = Xt, t ∈ T 

Ft-adapted random processes are also Ft-measurable. 
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2.2 Martingles 

Martingales play a central role in the modern theory of stochastic 

processes and stochastic calculus. Martingales converge almost surely. 

Stochastic integrals are martingales. These are most important properties 

of martingales which hold under some condition, [Klebaner, 2005]. 

 

Definition (2.7), [Klebaner, 2005]: 

Adapted to filtration F = (Ft) is a martingales if for any t, µ(t) is 

integrable, that is, E|µ(t)| < ∞ and for any t and s with 0 ≤ s < t ≤ T 

E(µ(t) | Fs) = µ(s)    a.s. 

where µ(t) is a martingale on [0, ∞) if it is integrable and the martingale 

property holds for any 0 ≤ s < t < ∞. 

 

Definition (2.8), [Klebaner, 2005]: 

A stochastic process X(t), t ≥ 0 adapted to filtration F is a super 

martingale (submartingale) if it is integrable, and for any t and s,  

0 ≤ s < t ≤ T 

E(X(t) | Fs) ≤ X(s)  a.s. 

E(X(t) | Fs) ≥ X(s)  a.s. 

If X(t) is a supermartingale, then X(t) is submartingale. 
 

Theorem (2.5) (Martingale Inequalities), [Evans, 2006]: 

Let X(t) be a stochastic process with continuous sample paths a.s. 
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1. If X(.) is a submartingale, then: 

p(
0 s t
Max

≤ ≤
X(s) ≥ λ) ≤ 1

λ
E(X(t)+), for all λ > 0, t ≥ 0 

2. If X(.) is a martingale and 1 < p < ∞, then: 

E(
0 s t
Max

≤ ≤
|X(s)|p) ≤ 

p
p

p 1
 
 − 

E(|X(t)|p). 

 

Example (2.2), [Evans, 2006]: 

Let W(.) be a 1-dimensional standard Wiener process, then W(.) 

is a martingale. To see this, write: 

W(t) = Ft(W(s) | 0 ≤ s ≤ t), and let t ≥ s, then: 

E(W(t) | W(s)) = E(W(t) − W(s) | W(s)) + E(W(s) | W(s)) 

= E(W(t) − W(s)) + W(s) 

= W(s) a.s. 

 

Remark (2.3): 

We may denote by 2
ωµ [0, T] to be the set of all finite square 

integrable martingales over [0, T]. 
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2.3 The Existence and Uniqueness Theorem of Stochastic 
Differential Equations, [Friedman, 1975] 

Consider the stochastic differential equation: 

dX(t) = A(X(t), t) dt + B(X(t), t) dW(t) …(2.19) 

with initial condition: 

X(0) = X0 …(2.20) 

where A(X(t), t) and B(X(t), t) are measurable functions. 

Hence, to find the equivalent stochastic integral equation, 

integrate both sides of eq.(2.19) and use the initial condition (2.20) 

t

0
∫ dX(s) ds = 

t

0
∫ A(X(s), s) ds + 

t

0
∫ B(X(s), s) dW(s) 

therefore: 

X(t) = X0 + 
t

0
∫ A(X(s), s) ds + 

t

0
∫ B(X(s), s) dW(s) 

and hence an iterated sequence of solutions of the resulting integral 

equation may be evaluated as follows: 

X1(t) = X0+
t

0
∫ A(X0(s),s) ds+

t

0
∫ B(X0(s),s) dW(s) 

X2(t) = X0+
t

0
∫ A(X1(s),s) ds+

t

0
∫ B(X1(s),s) dW(s) 

 …(2.21) 
    M 

Xm+1(t) = X0+
t

0
∫ A(Xm(s),s) ds+

t

0
∫ B(Xm(s),s) dW(s) 
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Theorem (2.6) (The Existence Theorem): 

Suppose that A(X(t), t), B(X(t), t) are measurable functions in 

(X(t), t) ∈ n¡ ×[0, T] and A(x(t), t), B(X(t), t) satisfies: 

|A(X, t) − A( X , t)| ≤ K*|X − X | 

|B(X, t) − B( X , t)| ≤ K*|X − X | 
 …(2.22) 
|A(X, t)| ≤ K(1 + |X|) 

|B(X, t)| ≤ K(1 + |X|) 

Where K*, K are constants. Let x0 be any n-dimensional random vector 

independent of F(W(t)), 0 ≤ t ≤ T, such that E|x0|2 < ∞. Then there exist a 

solution of (2.19) with condition (2.20) in 2
ωµ [0, T]. 

Proof: 

Since the iterated sequence of solutions of the integral equation 

may be given as: 

Xm+1(t) = X0 + 
t

0
∫ A(Xm(s), s) ds + 

t

0
∫ B(Xm(s), s) dW(s) …(2.23) 

for all m = 0, 1, … . The proof will proceed by induction on the sequence 

of solutions Xm(t) ∈ 2
ωµ [0, T]. 

If m = 0, then: 

|X1(t) − X0|2 = |X0 + 
t

0
∫ A(X0(s),s) ds + 

t

0
∫ B(X0(s),s) dW(s) − X0|2 
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= 
2t t

0 0
0 0

A(X (s),s)ds B(X (s),s)dW(s)+∫ ∫  

≤ 
2 2t t

0 0
0 0

A(X (s),s)ds B(X (s),s)dW(s)+∫ ∫  

Taking the expectation on both sides and using (2.22), give: 

E|X1(t) − X0|2 ≤ 
2 2t t

0 0
0 0

E A(X (s),s)ds E B(X (s),s)dW(s)+∫ ∫  

Using the following inequality (a + b)2 ≤ 2a2 + 2b2, then: 

E|X1(t) − X0|2 ≤ 
2 2t t

0 0
0 0

2E A(X (s),s)ds 2E B(X (s),s)dW(s)+∫ ∫  

Now, from theorem (2.3), we have: 

E|X1(t) − X0|2 ≤ 
t t

2 2
0 0

0 0
2Et A(X (s),s) ds 2E B(X (s),s) ds+∫ ∫  

≤ (2K2t + 2K2)(1 + E|X0|2)t 

≤ Mt = Mt
1!

 

If m = 1, then: 

|X2(t) − X1(t)|2 = |X0 + 
t

0
∫ A(X1(s),s) ds + 

t

0
∫ B(X1(s),s) dW(s) − 

X0 − 
t

0
∫ A(X0(s),s) ds + 

t

0
∫ B(X0(s),s) dW(s)|2 
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≤ ( )
2t

1 0
0

A(X (s),s) A(X (s),s) ds−∫  + 

( )
2t

1 0
0

B(X (s),s) B(X (s),s) dW(s)−∫  

Taking the expectation on both sides and using eq.(2.22), yields: 

E|X2(t) − X1(t)|2 = ( )
2t

1 0
0

E A(X (s),s) A(X (s),s) ds−∫  + 

( )
2t

1 0
0

E B(X (s),s) B(X (s),s) dW(s)−∫  

≤ ( )
2t

1 0
0

2E A(X (s),s) A(X (s),s) ds−∫  + 

( )
2t

1 0
0

2E B(X (s),s) B(X (s),s) dW(s)−∫  

≤ 
t

2
1 0

0
2Et A(X (s),s) A(X (s),s) ds−∫  + 

t
2

1 0
0

2E B(X (s),s) B(X (s),s) ds−∫  

≤ 
t

22
* 1 0

0
2K t E X (s) X (s) ds−∫  + 

t
22

* 1 0
0

2K E X (s) X (s) ds−∫  

≤ (2 2
*K t + 2 2

*K )E|X1(s) − X0(s)|2t ≤ 
2(Mt)

2!
 

If the inequality is satisfied for m = k and to prove it is true for m = k + 1 
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|Xk+1(t) − Xk(t)|2 = |X0 + 
t

0
∫ A(Xk(s),s) ds + 

t

0
∫ B(Xk(s),s) dW(s) − 

X0 −
t

0
∫ A(Xk−1(s),s) ds+

t

0
∫ B(Xk−1(s),s) dW(s)|2 

≤ ( )
2t

k k 1
0

A(X (s),s) A(X (s),s) ds−−∫  + 

( )
2t

k k 1
0

B(X (s),s) B(X (s),s) dW(s)−−∫  

Taking the expectation on both sides and using eq.(2.22), yields: 

E|Xk+1(t) − Xk(t)|2 = ( )
2t

k k 1
0

E A(X (s),s) A(X (s),s) ds−−∫  + 

( )
2t

k k 1
0

E B(X (s),s) B(X (s),s) dW(s)−−∫  

≤ ( )
2t

k k 1
0

2E A(X (s),s) A(X (s),s) ds−−∫  + 

( )
2t

k k 1
0

2E B(X (s),s) B(X (s),s) dW(s)−−∫
 …(2.24) 

≤ 
t

2
k k 1

0
2Et A(X (s),s) A(X (s),s) ds−−∫  + 

t
2

k k 1
0

2E B(X (s),s) B(X (s),s) ds−−∫  
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≤ 
t

22
* k k 1

0
2K t E X (s) X (s) ds−−∫  + 

t
22

* k k 1
0

2K E X (s) X (s) ds−−∫  

≤ (2 2
*K t + 2 2

*K )E|Xk(s) − Xk−1(s)|2t 

≤ 
k 1(Mt)

(k 1)!

+

+
 …(2.25) 

Since this implies that Xk+1∈ 2
ωµ [0, T], the proof of inductive assumption 

for k + 1 is complete. From (2.24), we have also: 

E|Xk+1(t) − Xk(t)|2 ≤ ( )
2t

k k 1
0

2E A(X (s),s) A(X (s),s) ds−−∫  + 

( )
2t

k k 1
0

2E B(X (s),s) B(X (s),s) dW(s)−−∫  

Hence: 

0 t T
sup
≤ ≤

|Xk+1(t) − Xk(t)|2 ≤ 2T 2
*K

T
2

k k 1
0

X (s) X (s) ds−−∫  + 

2
0 t T
sup
≤ ≤

( )
2t

k k 1
0

B(X (s),s) B(X (s),s) dW(s)+−∫  

using theorem (2.4) 
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0 t T
sup
≤ ≤

E|Xk+1(t) − Xk(t)|2 ≤ 2T 2
*K

T
2

k k 1
0

E X (s) X (s) ds−−∫  + 

8 2
*K

t
2

k k 1
0

E X (s) X (s) ds−−∫  

≤ (2 2
*K T + 8 2

*K )T 

E|Xk+1(t) − Xk(t)|2 ≤ C
k(MT)

k!
 

where C = (2 2
*K T + 8 2

*K )T. 

Now, to prove the convergence of the sequence { }m m 1X ∞
=  

uniformly in t ∈ [0, T].  

It follows that the sequence of partial sums: 

Xk(t) = X0 + 
k 1

m 0

−

=
∑ (Xm+1(t) − Xm(t)), ∀ k = 1, 2, … 

= X0 + (X1(t) − X0(t)) + … + (Xm(t) − Xm−1(t)) 

Which must be converge uniformly. Now, { }m m 1X (t) ∞
=  is converge if, 

the series: 

Xk(t) = X0 + 
k 1

m 0

−

=
∑ (Xm+1(t) − Xm(t)), ∀ k = 1, 2, … 

is converge. 

From (2.22), we have: 
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E|Xm+1(t)|2 = E|X0 + 
t

0
∫ A(Xm(s),s) ds + 

t

0
∫ B(Xm(s),s) dW(s)|2 

≤ E|X0|2 + K2t
t

0
∫ (1+E|Xm(t)|2) ds + K2

t

0
∫ (1+E|Xm(t)|2) ds 

≤ E|X0|2 + K2t
t

0
∫ E|Xm(t)|2 ds + K2

t

0
∫ E|Xm(t)|2 ds 

≤ E|X0|2 + (K2t + K2)
t

0
∫ E|Xm(t)|2 ds 

≤ C(1 + E|X0|2) + C
t

0
∫ E|Xm(t)|2 ds 

Now, carrying the last inequality recursively 

E|Xm+1(t)|2 ≤ C(1 + E|X0|2) + Ct[C(1 + E|X0|2 + C
t

0
∫ E|Xm(t)|2 ds] 

≤ C(1 + E|X0|2 + Ct[C(1 + E|X0|2 + Ct[C(1 + E|X0|2) + 

C
t

0
∫ E|Xm−1(t)|2 ds]] 

So, carrying this inequality m-times will produce: 

E|Xm+1(t)|2 ≤ (1 + C + C2t + … + Cm
mt

m!
 + …)(1 + E|X0|2) 

= eCt(1 + E|X0|2) 

Therefore: 

E|Xm+1(t)|2 ≤ C(1 + E|X0|2)eCt 
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To prove Xk(t) is converge to X(t) as k → ∞, i.e., 
k
lim
→∞

Xk(t) = X(t), 

i.e., given any ε > 0, there exist N ∈ ¥ , such that: 

|Xk(t) − X(t)| < ε, ∀ k ≥ N 

|X0 + 

k 1

m 0

−

=
∑ (Xm+1(t) − Xm(t)) − X(t)| = |X0 + (X1(t) − X0(t)) + (X2(t) − 

X1(t))+ … + (Xm(t) − Xm−1(t))| < ε 

which implies 

|Xk−1(t) − X(t)| < ε 

Since: 

Xk(t) = X0 + 
k 1

m 0

−

=
∑ (Xm+1(t) − Xm(t)) 

Converges on a compact interval [0, T], then the sequence is converge 

uniformly. 

Now, to prove that X(t) is continuous, i.e., to prove: 

h 0
lim
→

X(t + h) = X(t) 

Hence: 

|X(t+h) − X(t)| = |X(t+h) − Xk(t+h) + Xk(t+h) − Xk(t) + Xk(t) − X(t)| 

≤ |X(t+h) − Xk(t+h)| + |Xk(t+h) − Xk(t)| + |Xk(t) − X(t)| 

= 
3
ε  + 

3
ε  + 

3
ε  = ε 

i.e., 
h 0
lim
→

X(t + h) = X(t) 
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Hence, X(t) is continuous. 

To prove X(t) is a solution, i.e., to prove X(t) satisfy the 

stochastic integral equation: 

X(t) = X0 + 
t

0
∫ A(X(s), s) ds + 

t

0
∫ B(X(s), s) dW(s) 

and since: 

Xm+1(t) = X0 + 
t

0
∫ A(Xm(s), s) ds + 

t

0
∫ B(Xm(s), s) dW(s) 

and, as m → ∞, then: 

X(t) = X0 + 
m
lim
→∞

t

0
∫ A(Xm(s), s) ds + 

m
lim
→∞

t

0
∫ B(Xm(s), s) dW(s) 

Therefore, it is enough to prove that: 

m
lim
→∞

t

0
∫ A(Xm(s), s) ds = 

t

0
∫ A(X(s), s) ds 

and 

m
lim
→∞

t

0
∫ B(Xm(s), s) dW(s) = 

t

0
∫ B(X(s), s) dW(s) 

Now: 

( ) ( )
2 2t t

m m
0 0

E A(X(s),s) A(X (s),s) ds E B(X(s),s) B(X (s),s) dW(s)− + −∫ ∫  

≤ 
t t

2 22 2
* m * m

0 0
2K tE X(s) X (s) ds 2K E X(s) X (s) ds− + −∫ ∫  
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and taking m → ∞ and using Fatou's lemma, we conclude that: 

E|X(t)|2 ≤ C(1 + E|X0|2)eCt 

Thus X(t) is a solution of (2.19) and (2.20).    n 
 

Theorem (2.7) (The Uniqueness Theorem): 

Under the same conditions of theorem (2.6), there exists a unique 

solution of (2.19) with condition (2.20). 

Proof: 

Suppose that X1(t) and X2(t) are any two solutions belonging to 
2
ωµ [0, T] of eqs.(2.19) and (2.20), hence: 

X1(t) = X0 + 
t

0
∫ A(X1(s), s) ds + 

t

0
∫ B(X1(s), s) dW(s)   a.s. 

X2(t) = X0 + 
t

0
∫ A(X2(s), s) ds + 

t

0
∫ B(X2(s), s) dW(s)   a.s. 

Therefore: 

X1(t) − X2(t) = 

t

0
∫ [A(X1(s), s) − A(X2(s), s)] ds + 

t

0
∫ [B(X1(s), s) − 

B(X2(s), s)] dW(s)   a.s. 

and hence 

|X1(t) − X2(t)|2 = |
t

0
∫ [A(X1(s),s)−A(X2(s),s)] ds|2 + |

t

0
∫ [B(X1(s),s) − 

B(X2(s), s)] dW(s)|2 

Taking the expectation and using (2.22), we get: 
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E|X1(t) − X2(t)|2 ≤ E|
t

0
∫ [A(X1(s), s) − A(X2(s), s)] ds|2 + 

E|
t

0
∫ [B(X1(s),s) − B(X2(s), s)] dW(s)|2 

Hence: 

E|X1(t) − X2(t)|2 ≤ 2E|
t

0
∫ [A(X1(s), s) − A(X2(s), s)] ds|2 + 

2E|
t

0
∫ [B(X1(s),s) − B(X2(s), s)] dW(s)|2 

≤ 
t

22
* 1 2

0
2K t E X (s) X (s) ds−∫  + 

t
22

* 1 2
0

2K E X (s) X (s) ds−∫  

By using Gronwall inequality, thus the function 

φ(t) = E|X1(t) − X2(t)|2 

Satisfies: 

φ(t) ≤ (2 2
*K t + 2 2

*K )
t

0
(s) dsφ∫  

i.e., 

φ(t) ≤ 0×
t

0
(s) dsφ∫  

which implies φ(0) ≤ 0, i.e., φ(0) = 0 

Therefore, φ(t) = 0, ∀ t ∈ [0, T] 
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Hence E|X1(t) − X2(t)|2 = 0, which means that X1(t) − X2(t) = 0 

This means that X1(t) = X2(t), ∀ t ∈ [0, T].    n 

 

Remark (2.4), [Friedman, 1975]: 

The assertion of the uniqueness theorem means that if X1(t) and 

X2(t) are two solutions of (2.19) with condition (2.20) and if they belong 

to 2
ωµ [0, T], then: 

P{X1(t) = X2(t) for all 0 ≤ t ≤ T} = 1 
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CChhaapptteerr  TThhrreeee  
SSttoocchhaassttiicc  DDiiffffeerreennttiiaall  EEqquuaattiioonnss 
 

Introduction 

As it is defined previously, stochastic differential equations 

SDE's are differential equations in which one or more of its terms are 

stochastic processes, and therefore will give solutions which are itself 

stochastic process, and because of the importance of its solution, we 

discuss in this chapter some of its analytical methods of solution and its 

numerical solution using Euler's method. Then an improvement of these 

methods have been made to solve stochastic delay differential equations, 

which have many applications in different branches of applied 

mathematics. Therefore, this chapter consists of four sections. Ins section 

3.1, the Itô  formula have been discussed which has its importance in 

defining stochastic integrals and SDE's. In section 3.2, we discuss the 

analytical method for solving SDE's, namely the reduction method and 

total differentiation method, and explained with some illustrative 

examples. Section 3.3 presents the numerical solution of SDE's using 

explicit and implicit Euler's method, while section 3.4 presents an 

improvement to the SDE's to stochastic delay differential equations, as 

well as, the methods of solution with some illustrative examples. 
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3.1 Itô 's Formula, [Han, 2005], [Stirzaker, 2005] 

Itô  formula is the analog of integration by parts in the stochastic 

calculus. In stochastic calculus this is not possible, the useful range of 

techniques is practically restricted to those that deal with integral 

equations. Of these by far the most important is that known as Itô 's 

formula, where may be seen as a stochastic chain rule. Let us recall some 

elementary non-random chain rule; as usual primes may denote 

differentiation. 

1. One-variable chain rule: If y(t) = f(g(t)), then: 

y′(t) = dy
dt

 = f ′(g(t))g′(t) 

Assuming that the derivatives f′ and g′ exists. We may express this in 

differential notion as: 

dy = f ′(g)g′(t) dt = f ′(g) dg 

2. Two-variables chain rule: If: 

y(t) = f(x(t), w(t)) 

Then: 

dy
dt

 = f
x

∂
∂

dx
dt

 + f
w

∂
∂

dw
dt

 

where differentiation may be denoted by suffices in an obvious way. 

In particular, if x = t, we obtain, for y = f(t, w(t)) 

dy = ft dt + fw dw 

Itô  formula are extremely useful in many topics, particularly in 

evaluating stochastic integrals. 

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com


Chapter Three                                                                               Stochastic Differential Equations 

 52 

Theorem (3.1) (Itô  Formula), [Evans, 2006]: 

Suppose that x(.) has a stochastic differential equation: 

dx(t) = A(t, x(t)) dt + B(t, x(t)) dW(t) …(3.1) 

for A ∈ L1(0, T), B ∈ L2(0, T). Assume u : R×[0, T] → ¡  is 

continuous and that u
t

∂
∂

, u
x

∂
∂

, 
2

2
u

x
∂

∂
 exist and are continuous. Set: 

y(t) = u(x(t), t) …(3.2) 

Then Y has the stochastic differential: 

dy = u
t

∂
∂

 dt + u
x

∂
∂

 dx + 1
2

2

2
u

x
∂

∂
B2dt  

= 
2

2
2

u u 1 uA B
t x 2 x

 ∂ ∂ ∂
+ +  ∂ ∂ ∂ 

 dt + u
x

∂
∂

B dW …(3.3) 

is called the Itô 's formula or Itô  chain rule. 
 

Remark (3.1), [Evans, 2006]: 

i. In view of our definitions, the expression (3.3) means that for all  

0 ≤ s ≤ r ≤ T 

y(r) − y(s) = u(x(r), r) − u(x(s), r) 

= 
r 2

2
2

s

u u 1 u(x, t) (x, t)A (x, t)B
t x 2 x

 ∂ ∂ ∂
+ +  ∂ ∂ ∂ 

∫  dt + 

r

s

u (x, t)B
x

∂ 
 ∂ ∫  dW   a.s. …(3.4) 

 

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com


Chapter Three                                                                               Stochastic Differential Equations 

 53 

ii. Since: 

x(t) = x(0) + 
t

0
A(s, x(s)) ds∫  + 

t

0
B(s, x(s)) dW(s)∫  

where x(.) has continuous sample paths almost surely. Thus for 

almost every W, the functions t a u
t

∂
∂

(x(t),t), u
x

∂
∂

(x(t),t), 
2

2
u

x
∂

∂
(x(t),t) 

are continuous and so the integrals in (3.4) are defined. 
 

Theorem (3.2) (The General Itô  Formula), [φKsendal, 2003]: 

Consider the SDE: 

dx(t) = A(t, x(t)) dt + B(t, x(t)) dW(t) 

let: 

g(t, x) = (g1(t, x), g2(t, x), …, gp(t, x)) 

be a C2 map from [0, ∞)× n¡ . Then the process: 

y(t) = g(t, x(t)) 

is again a process, whose component number k, yk, is given by: 

dyk = kg
t

∂
∂

(t, x) dt + 
n

i 1=
∑ k

i

g
x

∂
∂

(t, x) dxi + 1
2

n

i, j 1=
∑

2
k

i j

g
x x
∂

∂ ∂
(t, x) dxidxj 

where dWidWj = σij dt, dWidt = dtdWi = 0. 

 

Example (3.1), [φKsendal, 2000]: 

Using the Itô  formula to solve the SDE: 
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dx(t) x(t)dW(t), t [0,1]
x(0) 1

= ∈ 
= 

 …(3.5) 

Hence from the stochastic differential equation, we have: 

dx(t)
x(t)

 = dW(t) 

and therefore: 

t

0

dx(s)
x(s)∫  = 

t

0
∫ dW(s) 

i.e., 

t

0

dx(s)
x(s)∫  = W(t) …(3.6) 

Using the Itô  formula for the function: 

g(t, x) = ln x, x > 0 

and obtain that from eq.(3.5) 

d(lnx(t)) = 1
x(t)

dx(t) + 1
2 2

1
x (t)

 
− 

 
(dx(t))2 

= dx(t)
x(t)

 + 1
2 2

1
x (t)

 
− 

 
(x(t) dW(t))2 

and since dW(t) ;  (dt)1/2. Hence: 

d(lnx(t)) = dx(t)
x(t)

 + 1
2 2

1
x (t)

 
− 

 
x2(t) dt 

= dx(t)
x(t)

 − 1
2

 dt 
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or equivalently: 

dx(t)
x(t)

 = d(lnx(t)) + 1
2

 dt 

So, from eq.(3.6), one can conclude that: 

t

0

dx(s)
x(s)∫  = 

t

0
∫ d(lnx(s)) ds + 

t

0
∫

1
2

 ds 

W(t) = ln x(t)
x(0)

 + 1
2

t 

Therefore, the solution is given by: 

x(t) = exp(W(t) − 1
2

t) 

 

Example (3.2), [Evans, 2006]: 

Consider the linear stochastic differential equation: 

dx(t) = ηx(t) dt + σx(t) dW(t), t ∈ [0, 1] …(3.7) 

where η and σ are constants. 

To solve this stochastic differential equation, divide eq.(3.7) on 

x(t) yields: 

dx(t)
x(t)

 = η dt + σ dW(t) 

and hence: 

t

0

dx(s)
x(s)∫  = 

t

0
∫ η ds + 

t

0
∫ σ dW(s) 
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t

0

dx(s)
x(s)∫  = ηt + σW(t) …(3.8) 

to evaluate the integral on the left hand side use the Itô  formula (3.1) for 

the function: 

g(x, t) = lnx; x > 0 

and obtain: 

d(lnx(t)) = 1
x(t)

dx(t) + 1
2 2

1
x (t)

 
− 

 
(dx(t))2 

= 1
x(t)

(ηx(t) dt + σx(t) dW(t)) + 1
2 2

1
x (t)

 
− 

 
(ηx(t) dt + 

σ dW(t))2 

= dx(t)
x(t)

 − 2
1

2x (t)
[η2x2(t) d2t + 2σηx2(t) dtdW(t) + 

σ2x2(t)d2W(t)] 

and since dW(t) ;  (dt)1/2. Hence: 

d(lnx(t)) = dx(t)
x(t)

 − 2
1

2x (t)
σ2x2(t) dt 

Hence: 

d(lnx(t)) = dx(t)
x(t)

 − 1
2

σ2 dt 

and therefore: 

dx(t)
x(t)

 = d(lnx(t)) + 1
2

σ2 dt 
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so from (3.8), we get: 

t

0

dx(s)
x(s)∫  = 

t

0
∫ d(lnx(s)) ds + 

t

0
∫

1
2

σ2 ds 

i.e.,  

ηt + σW(t) = ln x(s)
x(0)

 + 1
2

σ2t 

x(t) = exp[(η − 1
2

σ2)t + σW(t)] 

 

3.2 Analytical Methods for Solving Stochastic Differential 

Equations, [Goldys, 2008] 

After the publication in 1973 of the groundbreaking paper of 

Blackan schools on the arbitrary pricing of European call options, it 

became clear that stochastic analysis is an indispensable tool for the 

theory of financial markets, derivation of prices of standard and exotic 

options and other derivative securities, hedging related to financial risk, 

as well as managing the interestrate risk. Because of the difficulties 

encountered in solving SDE's, several approaches for solving such type 

of equations are proposed by several authors, but still with so many 

difficulties. Therefore, in this section, these methods of solution are 

discussed in details and more calculations, and give the proposed method 

which is termed as (in this work) as total differences method for solving 

SDE's, namely: 
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1. Reduction method. 

2. Total differentiation method. 

Each of such methods will be discussed in details with some 

illustrative examples. 
 

3.2.1 The Reduction Method, [Smith, 1999]: 

This method was proposed by Smith in 1999 as a method for 

evaluating the analytic solution of certain SDE's which is based on 

transformation method of the solution and then evaluating the inverse 

transformation after the reduction of the solution. First, start with the 

following fundamental example in this method which is given without 

details in literature and we give the details of the solution. 
 

Example (3.3): 

Consider the SDE: 

dx(t) = 2 x1 x dt
2

 + + 
 

 + 21 x+  dW(t), t ∈ [0, 1] 

subject to the initial condition x0 = 0. 

In order to solve this SDE, consider the transformation y = g(x) 

with a monotonic function g to set by using the Itô  formula: 

dy ;  gxdx + 1
2

gxx(dx)2 + … 

and since dW(t) ;  (dt)1/2, then consequently if we compute dy and keep 

all terms of order dt or (dt)1/2 we obtain that: 
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dy ;  gx
2 2x1 x dt 1 x dW

2
  + + + +    

 + 

1
2

gxx

2
2 2x1 x dt 1 x dW

2
  + + + +    

 

= gx
2 x1 x dt

2
 + + 
 

 + gx
21 x dW+  + 

1
2

gxx

2
2 x1 x

2

 + + 
 

dt2 + 2 2 2x1 x 1 x
2

 + + + 
 

 dtdW + 

(1 + x2) dW2




 

= gx
2 x1 x dt

2
 + + 
 

 + gx
21 x dW+  + 

1
2

gxx

2
2 x1 x

2
 + + 
 

dt2 + 1
2

gxx2 2 2x1 x 1 x
2

 + + + 
 

 

dtdW + 1
2

gxx(1 + x2) dW2 

and since dW(t) ;  (dt)1/2, then: 

dy ;  




gx
2 x1 x

2
 + + 
 

 + 1
2

gxx(1 + x2)




 dt + gx
21 x+  dW 

so look for a function g with constant factor of the form gx
21 x+  = 1, 

which mean's that this process occurs with probability 1, (for more 

details see [Arnold, 1974]). 
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Now, g(x0) = g(0) = 0, and gx = 
2

1

1 x+
 and integrate both sides, 

yields: 

g(x) = 
x

0
∫ 2

1

1 s+

2

2

s 1 s

s 1 s

+ +

+ +
 ds 

= 
x

0
∫

2

2 2

2

s 1 s

1 s 1 s
s 1 s

+
+

+ +

+ +
 ds 

= 
x

0
∫ 2 2

1 2s1
s 1 s 2 1 s

 
+ 

 + + + 
 ds 

= 
x

2

0
ln s 1 s + +  

 = 2ln x 1 x + +  
 

Hence g(x) = 2ln x 1 x + +  
. 

But, we may find that the factor of dt is also: 

gx
2 x1 x

2
 + + 
 

 + 1
2

gxx(1 + x2) = 1 

then: 

dy(t) = dt + dW(t) 

and since y(0) = g(x0) = 0 and y = g(x), hence y = 2ln x 1 x + +  
, i.e., 

ey = 2x 1 x+ +  

and squaring both sides, yields to: 
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e2y − 1 = 2xey 

Hence: 

x(t) = 1
2

(ey − e−y) 

= sinh(y(t)) 

 

3.2.2 The Total Differentiation Method,[Rainville,1989],[Muszta,2005]: 

Suppose that a function x(t) can be found such that has for its 

total differential given by the form: 

dx(t) = a(t, x(t)) dt + b(t, x(t)) dW(t) …(3.9) 

where a(t, x(t)) and b(t, x(t)) are constant functions. Then certainly: 

x(t) = f(t, W(t)) …(3.10) 

and define implicitly a set of solutions of (3.9). For this, from eq.(3.10) it 

follows that: 

dx(t) = 0 

or, in view of eq.(3.9) 

a(t, x(t)) dt + b(t, x(t)) dW(t) = 0 

as desired. Two things, then, are needed; the first one is to find out under 

what conditions on a(t, x(t)) and b(t, x(t)) a function x(t) exists such that 

its total differential is exactly the same of a(t, x(t))dt + b(t, x(t))dW(t); 

and second, if those conditions are satisfied actually to determine the 

function x(t). If a function x(t) exists, such that: 

a(t, x(t)) dt + b(t, x(t)) dW(t) 
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is exactly the total differential of x(t). Equation (3.9) is called an exact 

equation. If the equation 

a(t, x(t)) dt + b(t, x(t)) dW(t) …(3.11) 

is exact, then by definition x(t) exists, such that: 

dx(t) = a(t, x(t)) dt + b(t, x(t)) dW(t) 

is obtained by applying the Itô  formula to f(t, W(t)). This gives: 

f(t, W(t)) = f(0, 0) + 
t

0
∫

2

2
1 f f(s, W(s)) (s, W(s)) ds
2 sx

 ∂ ∂
+ 

∂∂  
 + 

t

0
∫

f (s, W(s))
x

∂
∂

 dW(s) …(3.12) 

compare eq.(3.12) with x(t), gives: 

x(t) = x0 + 
t

0
∫ a(s, x(s)) ds + 

t

0
∫ b(s, x(s)) dW(s) (3.13) 

choosing a function f so that it satisfies the following system of partial 

differential equations, then will have a candidate for the solution of the 

SDE (3.9): 

2

2

0

1 f f(s,X(s)) (s,X(s)) a(s,f (s,x));
2 sx

f (s,X(s)) b(s, f (s, x));
x

f (0,0) x

∂ ∂
+ =

∂∂
∂

=
∂

=








 …(3.14) 

This technique is useful mostly for SDE's with linear coefficients 

a(s, x) and b(s, x). 

The next examples illustrate the above method of solution: 
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Example (3.4), [Muszta, 2005]: 

Consider the SDE: 

dx(t) = dt + dW(t), t ∈ [0, 1] 

x(t0) = x0 

It is known that the solution to this equation is: 

x(t) = x0 + t + W(t) 

Let us see what the coefficient matching technique gives. The 

system need to solve in this case is by using the Itô  formula to f(t, W(t))  

f(t, W(t)) = f(0, 0) + 
t

0
∫

2

2
1 f f(s, W(s)) (s, W(s)) ds
2 sx

 ∂ ∂
+ 

∂∂  
 + 

t

0
∫

f (s, W(s))
x

∂
∂

 dW(s) 

2

2
1 f f(s, x) (s, x)
2 sx

∂ ∂
+

∂∂
 = a(s, f(s, x)) 

f (s, x)
x

∂
∂

 = b(s, f(s, x)) 

f(0, 0) = x0 

such that: 

2

2

0

1 f f(s, x) (s, x) 1
2 sx

f (s, x) 1
x

f (0,0) x

∂ ∂
+ =

∂∂
∂

=
∂

=








 ….(3.15) 

The solution is computed as follows: 
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f (s, x)
x

∂
∂

 = 1 

Hence integrating with respect to x, yields: 

f(s, x) = x + g(s) 

2

2
1 f f(s, x) (s, x)
2 sx

∂ ∂
+

∂∂
 = 1 

2

2
1 (x g(s)) (x g(s))
2 sx

∂ ∂
+ + +

∂∂
 = 1 

which implies g′(s) = 1, and hence g(s) = s+ c; and from the initial 

condition f(0, 0) = x0, implies that c =x0 

Thus, we have obtained f(s, x) = x0 + s + x and the candidate 

solution to the SDE is f(t, W(t)) = x0 + t + W(t), which in this case 

actually is the solution to eq.(3.15). 
 

Example (3.5), [Muszta, 2005]: 

Consider the SDE: 

dx(t) = −rx(t) dt + σ dW(t); 

where r, σ ∈ ¡ . If we apply the coefficient, we get the system: 

2

2

0

1 f f(s, x) (s, x) rx(s)
2 sx

f (s,x)
x

f (0,0) x

∂ ∂
+ = −

∂∂
∂

= σ
∂

=








 …(3.16) 
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Since f (s, x)
x

∂
= σ

∂
, then f(s, x) = σx + g(s) 

and 
2

2
1 f f(s, x) (s, x) rx(s)
2 sx

∂ ∂
+ = −

∂∂
, then: 

2

2
1 ( x g(s)) ( x g(s)) rf (s, x)
2 sx

∂ ∂
σ + + σ + = −

∂∂
 

Therefore: 

g′(s) = −rf(s, x) 

= −rσx − rg(s) 

dg
ds

 + rg = −rσx 

Solving this linear equation, yields: 

g(s) = −σx + ce−rs 

and since f(s, x) = σx − σx + ce−rs, then 

f(s, x) = x0e−rs 

The candidate solution to the SDE is f(t, W(t)) = x0e−rt, which is 

in this case the solution of eq.(3.16). 

 

3.3 Numerical Methods for Solving Stochastic Differential 
Equations 

Unfortunately explicitly solvable SDE's are rare in practical 

applications. However, there are an increasing number of numerical 

methods for the solution of SDE's. In SDE's, Euler's method is one of the 

simplest time discrete approximation of SDE's, [Han, 2005]. 
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In the next theorem, we will derive the general for of Euler's 

method for solving numerically SDE's which is given in [Han, 2005] 

without derivation, we give the proof for completeness. 
 

Theorem (3.3) (Explicit Euler's Method): 

Consider the stochastic differential equation: 

dx(t) = A(t, x(t)) dt + B(t, x(t)) dW(t) …(3.17) 

where t ∈ [a, b] with initial condition x(t0) = x0. Descritize the interval 

[a, b] as, a =  t0 < t1 < … < tN = b, or tn = a + nh, for fixed N ∈ ¥  and n ∈ ¥ ,  

h = b a
N
− , ∆Wn = W(tn+1) − W(tn) is a random increment, n = 0, 1, …,  

N − 1; then the sequence of numerical solutions are given by: 

xn+1 = xn + A(tn, xn)h + B(tn, xn)∆Wn, n = 0, 1, …, N − 1 

which is called the explicit Euler's method. 

Proof: 

Consider the stochastic differential equation given by eq.(3.17), 

then the method is based on the formal integration of eq.(3.17) over a 

time step [tn, tn+1], which gives:  

x(tn+1) = x(tn)+
n 1

n

t

t

+

∫ A(s, x(s)) ds+
n 1

n

t

t

+

∫ B(s, x(s)) dW(s) …(3.18) 

Letting h = tn+1 − tn and replacing the integration time s in the functions 

A(s, x(s)) and B(s, x(s)) by the lower limit of integration, tn, give: 

x(tn+1) ;  x(tn) + A(tn, x(tn))h + B(tn, x(tn))∆Wn …(3.19) 

where the random increment ∆Wn is defined as: 
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∆Wn = 
n 1

n

t

t

+

∫ W(s) dW(s) = W(tn+1) − W(tn) …(3.20) 

Hence we obtain the following time discrete approximation: 

xn+1 = xn + A(tn, xn)h + B(tn, xn)∆Wn …(3.21) 

where x0 = x(t0). 

From the definition of a Brownian motion, it follows that these 

increments are independent Gaussain random variables with mean 0 and 

Variance h, if 0 < tn < tn+1 < T, then the random increment t, ∆Wn = 

W(tn+1) − W(tn) and h = tn+1 − tn. Hence: 

∆Wn = Wn+1 − Wn ~ N(0, tn+1 − tn) 

or, n

n 1 n

W
t t+

∆
−

 ~ N(0, 1)  

and hence ∆Wn ~ n 1 nt t+ − N(0, 1).    n 

 

Remark (3.2): 

In applications, the Euler's method (3.21) requires a generation of 

independent Gaussian random variables with mean 0 and variance h = 

tn+1 − tn, which are generated using the following algorithm: 

 

Algorithm (3.1): 

1. Input: n, a, b. 

2. h = (b − a)/n. 

3. For i = 1 to n/2. 
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4. Generate U1 and U2 from U(0, 1) (uniform distribution over [0, 1]). 

5. Set x1 = (−lnU1)1/2cos(2πU2) and x2 = (−lnU1)1/2sin(2πU2). 

6. W1 = (h)1/2x1 and W2 = (h)1/2x2. 

7. zi = W1 and zi+1 = W2. 

8. Output: deliver z as a vector of independent r.v's. from N(0, 1). 

 

Proposition (3.1) (Implicit Euler's Method): 

Consider the stochastic differential equation: 

dx(t) = A(t, x(t)) dt + B(t, x(t)) dW(t) …(3.22) 

where t ∈ [a, b] with initial condition x(t0) = x0. Descritize the interval 

[a, b] as, a =  t0 < t1 < … < tN = b, or tn = a + nh, for fixed N ∈ ¥  and n ∈ ¥ ,  

h = b a
N
− , ∆Wn = W(tn+1) − W(tn) is a random increment, n = 0, 1, …,  

N − 1; then the sequence of numerical solutions are given by: 

xn+1 = xn + A(tn+1, xn+1)h + B(tn+1, xn+1)∆Wn, n = 0, 1, …, N − 1 

which is called the implicit Euler's method. 

Proof: 

Consider the stochastic differential equation given by eq.(3.22), 

then the formal integration of eq.(3.22) over a time step [tn, tn+1], which 

gives:  

x(tn+1) = x(tn)+
n 1

n

t

t

+

∫ A(s, x(s)) ds+
n 1

n

t

t

+

∫ B(s, x(s)) dW(s) …(3.23) 

Letting h = tn+1 − tn and replacing the integration time s in the functions 

A(s, x(s)) and B(s, x(s)) by the upper limit of integration, tn+1, give: 

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com


Chapter Three                                                                               Stochastic Differential Equations 

 69 

x(tn+1) ;  x(tn) + A(tn+1, x(tn+1))h + B(tn+1, x(tn+1))∆Wn …(3.24) 

where the random increment ∆Wn is defined as: 

∆Wn = 
n 1

n

t

t

+

∫ W(s) dW(s) = W(tn+1) − W(tn) …(3.25) 

Thus, the implicit Euler's method is given by: 

xn+1 = xn + A(tn+1, xn+1)h + B(tn+1, xn+1)∆Wn …(3.26) 

where x0 = x(t0).    n 

 

Now, consider some illustrative examples for solving SDE's 

numerically using the explicit method: 
 

Example (3.6): 

Consider the stochastic differential equation: 

dx(t) = 2 x1 x dt
2

 + + 
 

 + 21 x+  dW(t), t ∈ [0, 1] 

with initial condition x(0) = 0 and suppose that we want to find the 

numerical solution by using Euler method (3.21) with step lengths  

h = 0.1 and h = 0.01. The results obtained upon using the explicit Euler's 

method and its comparison with the exact solution given in example 

(3.3) are presented in table (3.1) in which the results are obtained by 

using the computer programs written in Mathcad 2001i. In addition the 

Gaussian random numbers with mean 0 and variances 0.1 and 0.01, 

respectively, are presented in this table for completeness (which will be 

used in evaluating the exact solution also). 
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Table (3.1) 
Numerical and exact results of example (3.6). 

h = 0.1 h = 0.01 
t 

∆Wn Numerical 
solution 

Absolute 
error ∆Wn Numerical 

solution 
Absolute 

error 

0.1 −0.068 0.076 0.12 9.851×10−3 0.117 0.016 

0.2 −0.047 0.201 0.162 −7.231×10−3 0.209 0.029 

0.3 −0.095 0.264 0.111 −0.029 0.302 0.051 

0.4 −0.169 0.305 0.1 −4.091×10−3 0.455 0.069 

0.5 4.353×10−3 0.605 0.374 4.285×10−3 0.603 0.103 

0.6 −0.012 0.733 0.229 −1.932×10−4 0.75 0.167 

0.7 0.056 0.978 0.39 1.437×10−3 0.922 0.26 

0.8 0.219 1.395 0.64 5.391×10−3 1.12 0.33 

0.9 0.081 1.399 0.38 7.911×10−3 1.34 0.445 

1.0 0.099 1.672 0.691 4.377×10−3 1.581 0.587 
 

Example (3.7): 

Consider the SDE: 

dx(t) = dt + dW(t), t ∈ [0, 1] 

with initial condition x(0) = 0 and suppose that we want to find the 

numerical solution by using Euler's method (3.21) with step lengths  

h = 0.1 and h =  0.01. The results obtained upon using the explicit Euler's 

method and its comparison with the exact solution given in example 

(3.4) are presented in table (3.2) in which the results are obtained by 

using computer programs written in Mathcad 2001i. In addition the 

Gaussian random numbers with mean 0 and variances 0.1 and 0.01, 

respectively, are presented in this table for completeness (which will be 

used in evaluating the exact solution also). 
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Table (3.2) 
Numerical and exact results of example (3.7). 

h = 0.1 h = 0.01 
t 

∆Wn Numerical 
solution 

Absolute 
error ∆Wn Numerical 

solution 
Absolute 

error 

0.1 −0.068 0.076 0.12 9.851×10−3 0.114 0.013 

0.2 −0.047 0.196 0.165 −7.231×10−3 0.197 0.016 

0.3 −0.095 0.249 0.096 −0.029 0.275 0.022 

0.4 −0.169 0.275 0.07 −4.091×10−3 0.4 0.012 

0.5 4.353×10−3 0.548 0.317 4.285×10−3 0.509 5.353×10−3 

0.6 −0.012 0.632 0.127 −1.932×10−4 0.604 0.015 

0.7 0.056 0.8 0.212 1.437×10−3 0.706 0.03 

0.8 0.219 1.063 0.307 5.391×10−3 0.81 0.011 

0.9 0.081 1.025 5.52×10−3 7.911×10−3 0.912 7.908×10−3 

1.0 0.099 1.142 0.162 4.377×10−3 1.009 0.015 
 

Example (3.8): 

Consider the SDE: 

dx(t) = ψx(t) dt + σx(t) dW(t) 

with initial condition x(0) = 0.1 and suppose that we want to find the 

numerical solution by using Euler's method (3.21) with step lengths  

h = 0.1 and h = 0.01. The obtained results upon using the explicit Euler 

method and its comparison with the exact solution given in example 

(3.5) are presented in table (3.3) in which the results are obtained by 

using computer programs written in Mathcad 2001i. In addition the 

Gaussian random numbers with mean 0 and variances 0.1 and 0.01, 

respectively, are presented in this table for completeness (which will be 

used in evaluating the exact solution also). 

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com


Chapter Three                                                                               Stochastic Differential Equations 

 72 

Table (3.3) 
Numerical and exact results of example (3.8). 

h = 0.1 h = 0.01 
t 

∆Wn Numerical 
solution 

Absolute 
error ∆Wn Numerical 

solution 
Absolute 

error 

0.1 −0.068 0.115 0.015 9.851×10−3 0.116 1.616×10−3 

0.2 −0.047 0.132 0.016 −7.231×10−3 0.135 1.73×10−3 

0.3 −0.095 0.152 0.017 −0.029 0.156 1.842×10−3 

0.4 −0.169 0.175 0.018 −4.091×10−3 0.181 1.918×10−3 

0.5 4.353×10−3 0.201 0.019 4.285×10−3 0.211 1.978×10−3 

0.6 −0.012 0.231 0.02 −1.932×10−4 0.244 2.046×10−3 

0.7 0.056 0.266 0.02 1.437×10−3 0.284 2.1×10−3 

0.8 0.219 0.307 0.021 5.391×10−3 0.329 2.007×10−3 

0.9 0.081 0.352 0.019 7.911×10−3 0.382 1.89×10−3 

1.0 0.099 0.405 0.019 4.377×10−3 0.443 1.751×10−3 

 

3.4 Stochastic Delay Differential Equations 

Stochastic delay differential equations appears in the description 

of many random time varying processes in applications. Moreover, for 

an overview, they extend naturally the classical time series models to 

continuous time. Among the huge variety of equations affine SDDE's 

form a fundamental class, [Reiss, 2000]. In the last few decades, 

statistical inference for SDDE's has been studied from various view 

points, [Sφrensen, 2007], when modeling a system which do not 

noticeably affect their environment, stochastic variables are often used to 

model the environmental fluctuations, thus leading to a SDDE's, 

[Guillouzic, 1999], which evolves according to the following SDDE: 
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dx(t) = A(t, x(t), x(t − τ)) dt + B(t, x(t), x(t − τ)) dW(t) …(3.27) 

where A(x0, xτ) and B(x0, xτ) are known function, τ is the delay which is 

considered to be constant, and B is a parameter which scales the noise 

amplitude. Also, x0 and xτ are used as dummy variables, and do not 

necessarily refer to x(t) and x(t − τ), not to the initial conditions. 

The quantity W(t) in eq.(3.27) is a Brownian motion whose initial 

condition is 0 at time t = 0, [Guillouzic, 1999]. The related integral 

equation of stochastic delay is: 

x(t) = x0 + 
t

0
∫ A(s, x(s), x(s − τ)) ds + 

t

0
∫ B(s, x(s), x(s − τ)) dW(s) 

 …(3.28) 

All those generalizations and modifications have certain common 

features, but need to be scrutinized in details in order to build an 

analogous theory as we do for SDDE's in the sequel, [Reib, 2003]. 
 

3.4.1 Analytical Method for Solving Stochastic Delay Differential 

Equations: 

In this section, the solution of SDDE's is studied using the total 

differential method that is discussed previously in solving SDE's with the 

corporation of the method of successive integrations for solving ordinary 

differential equations. The method of solution will be explained more 

accurately in the next examples which are solved with details. 
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Example (3.9): 

Consider the following SDDE: 

dx(t) = x(t − 1) dt + dW(t), t ∈ [0, 1] 

with initial condition: 

x(t) = φ0(t) = t, for −1 ≤ t < 0 

Therefore, in order to find the solution, we consider the first time 

step interval [0, 1], i.e., consider: 

dx(t) = φ0(t − 1) dt + dW(t) 

= (t − 1) dt + dW(t) 

which is a SDE with initial condition x(0) = x0 = 0. 

In order to solve this SDE by using the total differential method, 

the solution to this equation is: 

x(t) = x0 + 
2t
2

 − t + W(t) 

we let x(t) = f(t, W(t)), and by using the Itô  formula to f(t, W(t)), we get: 

f(t, W(t)) = f(0, 0) + 
t

0
∫

2

2
1 f f(s, W(s)) (s, W(s)) ds
2 sx

 ∂ ∂
+ 

∂∂  
 + 

t

0
∫

f (s, W(s))
x

∂
∂

 dW(s) 

such that: 

2

2
1 f f(s, x) (s, x)
2 sx

∂ ∂
+

∂∂
 = s − 1 
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f (s, x)
x

∂
∂

 = 1 

f(0, 0) = x0 = c 

Therefore, f (s, x)
x

∂
∂

 = 1, will implies that: 

f(s, x) = x + g(s) 

Hence, from:  

2

2
1 f f(s, x) (s, x)
2 sx

∂ ∂
+

∂∂
 = s − 1 

we get g′(s) = s − 1, and therefore g(s) = 
2s
2

 − s + c.  

Now, since f(0, 0) = x0 = c, therefore we obtain that f(s, x) = x + 
2s
2

 − s + x0, and the candidate solution to the SDDE is: 

x(t) = f(t, W(t)) = x0 + 
2t
2

 − t + W(t) 

x(t) is a solution of all t ≥ t0. 

 

Example (3.10): 

Consider the following SDDE: 

dx(t) = t dt + x(t − 1) dW(t), t ∈ [0, 1] 

with initial condition: 

x(t) = φ0(t) = t + 1, for −1 ≤ t < 0 
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Hence to find the solution, consider the first time step interval  

[0, 1], i.e., consider: 

dx(t) = t dt + φ0(t − 1) dW(t) 

which is reduced to: 

dx(t) = t dt + t dW(t) 

which is a SDE with initial condition x(0) = x0 = 0. 

and to solve this SDE by using the total differential method, let x(t) =  

f(t, W(t)), then by using the Itô  formula to f(t, W(t)), we get: 

f(t, W(t)) = f(0, 0) + 
t

0
∫

2

2
1 f f(s, W(s)) (s, W(s)) ds
2 sx

 ∂ ∂
+ 

∂∂  
 + 

t

0
∫

f (s, W(s))
x

∂
∂

 dW(s) 

such that: 
2

2
1 f f(s, x) (s, x)
2 sx

∂ ∂
+

∂∂
 = s 

f (s, x)
x

∂
∂

 = s 

f(0, 0) = x0 

Hence f (s, x)
x

∂
∂

 = s, will implies that: 

f(s, x) = sx + g(s) …(3.29) 

Therefore: 
2

2
1 f f(s, x) (s, x)
2 sx

∂ ∂
+

∂∂
 = s 
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Which implies g′(s) = s − x, and therefore g(s) = 
2s
2

 − sx + c.  

Now, substituting in eq.(3.29), yields to: 

f(s, x) = 
2s
2

 + c 

where: 

f(0, 0) = x0 = c 

Hence: 

f(t, x) = 
2t
2

 + x0 

and the candidate solution is: 

x(t) = 
2t
2

 + x0 

Similarly, to find the solution for the second time step interval  

[1, 2], let: 

x(t) = φ1(t) = 
2t
2

 

Therefore: 

dx(t) = t dt + φ(
2t
2

 − 1) dW(t) 

= t dt + 
2t
2

 − 1 dW(t) 

and by using the total differential method in SDE's and the Itô  formula 

for f(t, W(t)), yields to: 
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f(t, W(t)) = f(0, 0) + 
t

1
∫

2

2
1 f f(s, W(s)) (s, W(s)) ds
2 sx

 ∂ ∂
+ 

∂∂  
 + 

t

1
∫

f (s, W(s))
x

∂
∂

 dW(s) 

such that: 

2

2
1 f f(s, x) (s, x)
2 sx

∂ ∂
+

∂∂
 = s 

f (s, x)
x

∂
∂

 = 
2s
2

 − 1 

Therefore: 

f(s, x) = 
2s
2

x − x + g(s) …(3.30) 

therefore g′(s) = s −sx, and so: 

g(s) = 
2s
2

 − x
2

s2 + c 

and substituting g(s) in equation (3.30), yields: 

f(s, x) = 
2s
2

 − x + c 

thus, we have obtained  

f(s, x) = x0 + 
2s
2

 − x 

and the candidate solution to the SDE is: 

f(t, W(t)) = x0 + 
2t
2

 − W(t) 
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Example (3.11): 

Consider the following SDDE: 

dx(t) = x(t − 1) dt + x(t − 2) dW(t), t ∈ [0, 1] 

with initial condition: 

x(t) = φ0(t) = t, for −2 ≤ t ≤ 0 

Hence to find the solution, consider the first time step interval  

[0, 1], i.e., consider: 

dx(t) = φ0(t − 1) dt + φ0(t − 2) dW(t) 

and hence: 

dx(t) = (t − 1) dt + (t − 2) dW(t) 

and to solve this SDE by using the total differential method, let x(t) =  

f(t, W(t)), then by using the Itô  formula to f(t, W(t)), we get: 

f(t, W(t)) = f(0, 0) + 
t

0
∫

2

2
1 f f(s, W(s)) (s, W(s)) ds
2 sx

 ∂ ∂
+ 

∂∂  
 + 

t

0
∫

f (s, W(s))
x

∂
∂

 dW(s) 

such that: 

2

2
1 f f(s, x) (s, x)
2 sx

∂ ∂
+

∂∂
 = s − 1 

f (s, x)
x

∂
∂

 = s − 2 

f(0, 0) = x0 
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Hence f (s, x)
x

∂
∂

 = s − 2, which implies that: 

f(s, x) = sx − 2x + g(s) …(3.31) 

Therefore, substituting in the partial differential equation: 

2

2
1 f f(s, x) (s, x)
2 sx

∂ ∂
+

∂∂
 = s − 1 

Which will implies to g′(s) = s − 1 − x, and therefore g(s) = 

2s
2

 − s − sx + c.  

Now, substituting g(s) in eq.(3.31), yields: 

f(s, x) = 
2s
2

 − s − 2x + c 

and since f(0, 0) = x0 = c, then we have: 

f(t, x) = x0 + 
2t
2

 − t − 2x 

and the candidate solution to the SDE is: 

x(t) = f(t, W(t)) = x0 + 
2t
2

 − t − 2W(t) 

In this example, it is so difficult to find the solution for the next 

time interval, unless when a new method is proposed or numerical 

methods are used to solve for further time intervals. 
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3.4.2 Euler's Method for Solving Stochastic Delay Differential 

Equations: 

The present section consists of using Euler's method for solving 

SDDE's. For this purpose, we consider, for simplicity and without loose 

of generality, the first order retarded SDDE's, which has the form as: 

dx(t) = A(t, x(t), x(t − τ)) dt + B(t, x(t)), x(t − τ)) dW(t) …(3.32) 

with initial condition: 

x(t) = φ0(t), for t0 − τ ≤ t ≤ t0 

where τ is a fixed number. The next theorem introduces the derivation of 

Euler's method for solving SDDE's. 
 

Theorem (3.4): 

Consider the SDDE: 

dx(t) = A(t, x(t), x(t − τ)) dt + B(t, x(t), x(t − τ)) dW(t) 

where t ∈ [a, b] with initial condition x(t0) = φ0(t), t0 − τ ≤ t ≤ t0. 

Descritize the interval [a, b] as, a = t0 < t1 < … < tN = b, or tn = a + nh, for 

fixed N ∈ ¥  and n ∈ ¥ , h = b a
N
− , ∆Wn = W(tn+1) − W(tn) is a random 

increment, n = 0, 1, …, N − 1; then the sequence of numerical solutions 

are given by: 

xn+1 = xn + A(tn, xn, φn−τ)h + B(tn, xn, φn−τ)∆Wn, n = 0, 1, …, N − 1 

Proof: 

Consider the SDDE: 

dx(t) = A(t, x(t), x(t − τ)) dt + B(t, x(t), x(t − τ)) dW(t) …(3.33) 
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The method is based on the formal integration of eq(3.33) over a time 

step which gives: 

x(tn+1) = x(tn)+
n 1

n

t

t

+

∫ A(s,x(s),x(s−τ)) ds+
n 1

n

t

t

+

∫ B(s,x(s),x(s−τ)) dW(s) 

 …(3.34) 

where h = tn+1 − tn. Replacing the integration time s in the functions  

A(s, x(s), x(s − τ)) and B(s, x(s), x(s − τ)) by the lower limit of 

integration tn, we have: 

x(tn+1) ;  x(tn) + A(tn, x(tn), x(tn − τ))h + B(tn, x(tn), x(tn − τ))∆Wn

 …(3.35) 

where the random increment ∆Wn is defined as: 

∆Wn = 
n 1

n

t

t

+

∫ W(s) dW(s) = W(tn+1) − W(tn) 

Hence, w e obtain the following time discrete approximation: 

xn+1 = xn + A(tn, xn, φn−τ)h + B(tn, xn, φn−τ))∆Wn …(3.36) 

where x(t) = φ0(t), t0 − τ ≤ t ≤ t0.    n 

 

Example (3.12): 

Consider the SDDE: 

dx(t) = x(t − 1) dt + dW(t) 

with initial condition x(t)= φ0(t) = t, −1 ≤ t ≤ 0, and suppose we want to 

find the numerical solution by using Euler's method (3.36) with step 

lengths h = 0.1 and h = 0.01. The obtained results upon using the Euler 
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method and its comparison with the exact solution given in example 

(3.8) are presented in table (3.4) in which the results are obtained by 

using computer programs written in Mathcad 2001i. In addition the 

Gaussian random numbers with mean 0 and variances 0.1 and 0.01, 

respectively, are presented in this table for completeness (which will be 

used in evaluating the exact solution also). 

Table (3.4) 
Numerical and exact results of example (3.11). 

h = 0.1 h = 0.01 
t 

∆Wn Numerical 
solution 

Absolute 
error ∆Wn Numerical 

solution 
Absolute 

error 

0.1 −0.068 −0.124 0.124 9.851×10−3 −0.081 0.096 

0.2 −0.047 −0.193 0.198 −7.231×10−3 −0.184 0.21 

0.3 −0.095 −0.321 0.341 −0.029 −0.281 0.326 

0.4 −0.169 −0.465 0.510 −4.091×10−3 −0.322 0.41 

0.5 4.353×10−3 −0.352 0.432 4.285×10−3 −0.369 0.508 

0.6 −0.012 −0.418 0.543 −1.932×10−4 −0.419 0.602 

0.7 0.056 −0.390 0.570 1.437×10−3 −0.453 0.685 

0.8 0.219 −0.257 0.502 5.391×10−3 −0.474 0.799 

0.9 0.081 −0.415 0.735 7.911×10−3 −0.487 0.9 

1.0 0.099 −0.408 0.813 4.377×10−3 −0496. 0.986 
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Example (3.13): 

Consider the SDDE: 

dx(t) = t dt + x(t − 1) dW(t) 

with initial condition x(t)= φ0(t) = t + 1, −1 ≤ t ≤ 0, and suppose we want 

to find the numerical solution by using Euler's method (3.36) with step 

lengths h = 0.1 and h = 0.01. The obtained results upon using the Euler 

method and its comparison with the exact solution given in example 

(3.9) are presented in table (3.5) for two time step intervals [0, 1] and  

[1, 2], in which the results are obtained by using computer programs 

written in Mathcad 2001i. In addition the Gaussian random numbers 

with mean 0 and variances 0.1 and 0.01, respectively, are presented in 

this table for completeness (which will be used in evaluating the exact 

solution also). 
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Table (3.5) 
Numerical and exact results of example (3.11). 

h = 0.1 h = 0.01 
t 

∆Wn Numerical 
solution 

Absolute 
error ∆Wn Numerical 

solution 
Absolute 

error 

0.1 −0.068 0 0 9.851×10−3 5.418×10−3 1.295×10−3 

0.2 −0.047 0.012 0.007061 −7.231×10−3 0.017 8.735×10−5 

0.3 −0.095 0.022 0.002498 −0.029 0.035 4.98×10−3 

0.4 −0.169 0.03 0.015 −4.091×10−3 0077. 3.288×10−4 

0.5 4.353×10−3 0.14 0.06 4.285×10−3 0.125 2.406×10−4 

0.6 −0.012 0.181 0.056 −1.932×10−4 0.177 3.467×10−3 

0.7 0.056 0.282 0.102 1.437×10−3 0.243 0.016 

0.8 0.219 0.467 0.222 5.391×10−3 0.321 6.437×10−3 

0.9 0.081 0.436 0.116 7.911×10−3 0.109 6.998×10−3 

1.0 0.099 0.542 0.137 4.377×10−3 0.501 0.011 

1.1 −0.068 0.076 0.424 9.851×10−3 0.12 0.479 

1.2 −0.047 0.209 0.396 −7.231×10−3 0.215 0.491 

1.3 −0.095 0.271 0.449 −0.029 0.31 0.512 

1.4 −0.169 0.306 0.539 −4.091×10−3 0.477 0.493 

1.5 4.353×10−3 0.688 0.292 4.285×10−3 0.633 0.49 

1.6 −0.012 0.813 0.312 −1.932×10−4 0.781 0.482 

1.7 0.056 1.082 0.198 1.437×10−3 0.949 0.453 

1.8 0.219 1.53 0.085 5.391×10−3 1.131 0.477 

1.9 0.081 1.461 0.159 7.911×10−3 1.321 0.477 

2.0 0.099 1.648 0.121 4.377×10−3 1.51 0.47 
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Example (3.14): 

Consider the SDDE: 

dx(t) = x(t − 1) dt + x(t − 2) dW(t) 

with initial condition: 

x(t)= φ0(t) = t, −1 ≤ t ≤ 0 

carrying out the computer program written in Mathcad 2001i to find the 

numerical solution in the first time step interval [0, 1] by using Euler's 

method with step length h = 0.1 and h = 0.01. The results of table (3.6) 

are obtained: 

 

Table (3.6) 
Numerical and exact results of example (3.11). 

h = 0.1 h = 0.01 
t 

∆Wn Numerical 
solution 

Absolute 
error ∆Wn Numerical 

solution 
Absolute 

error 

0.1 −0.068 −0.052 0.052 9.851×10−3 −0.123 0.135 

0.2 −0.047 −0.181 0.186 −7.231×10−3 −0.177 0.209 

0.3 −0.095 −0.175 0.195 −0.029 −0.216 0.281 

0.4 −0.169 −0.12 0.165 −4.091×10−3 −0.324 0.406 

0.5 4.353×10−3 −0.457 0.537 4.285×10−3 −0.393 0.509 

0.6 −0.012 −0.482 0.607 −1.932×10−4 −0.431 0.616 

0.7 0.056 −0.617 0.797 1.437×10−3 −0.469 0.737 

0.8 0.219 −0.86 1.105 5.391×10−3 −0.499 0.817 

0.9 0.081 −0.714 1.034 7.911×10−3 −0.516 0.915 

1.0 0.099 −0.743 1.148 4.377×10−3 −0.517 1.007 
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CCoonncclluussiioonnss  aanndd  RReeccoommmmeennddaattiioonnss 
 

From the present and study, we may conclude the following: 

1. The solution of SDDE's either analytically or numerically may be 

carried in a similar manner that followed in solving SDE's without 

delay or may be solved directly without transforming to an ODE 

which is by using the Laplace transformation method. 

2. In comparison of the numerical results, the residue error in some 

examples may be used, to check the accuracy of the results when the 

analytic solution is not available. 

3. Implicit Euler's method have more accurate results than explicit 

Euler's method, which is due to the bounds of local truncation error 

for each method. 

 

Also, from the present study, we may recommend the following 

problems for future work: 

1. Numerical solution of SDE's using the Itô -Taylor's expansion 

method, linear multistep method and Runge-Kutta methods. 

2. Studying the theory of stochastic partial differential equations and 

delay stochastic partial differential equations, as well as, the 

analytical and numerical methods of solution. 

3. Studying the theory of stochastic integral equations and its 

analytical and numerical methods of solution. 
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4. Introducing fractional derivatives and fractional integrals in 

stochastic calculus and then study the resulting stochastic 

fractional differential equations and stochastic fractional integral 

equations. 
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 المستخلصالمستخلص
 

دراسـة شـاملة    هـو إعطـاء      الهدف الأول . ثلاثة أهداف رئيسية    الإطروحة ذههل

التعـاريف الأساسـية   حيث تتضمن الدراسـة    ،  متغير العشوائية  التفاضل والتكامل  لموضوع

بـين هـذه   مـن   ، و ج بعض النتائ   برهان متضمنة  بهذا الموضوع  المتعلقة والمفاهيم الأساسية 

ومبرهنة وجـود ووحدانيـة حلـول المعـدلات         ، نظرية   ولدر للتوقع برهان متباينة ه  النتائج  

. متغيرة العشوائيةدلات التفاضلية االمع  لحل العدديةلريوأوطريقة  متغيرة العشوائيةالتفاضلية 

متغيـرة  المعـادلات التفاضـلية    الطرق التحليلية والعدديـة لحـل   هو لدراسةالهدف الثاني  

متغيرة طرق الحل المتبعة للمعادلات التفاضلية    هو تطوير  الهدف الثالث    بينما كان . العشوائية

  .التباطؤيةمتغيرة العشوائية وذلك لحل المعادلات التفاضلية العشوائية 
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  راقــوریة العــجمھ
  وزارة التعلیم العالي والبحث العلمي

  نــریــــــة النھـامعــــج
 ة العلومــكلی

  وتطبیقات الحاسوباضیات ـقسم الری
 

 

متغیرة حلول المعادلات التفاضلیة 
  التباطؤیة الاعتیادیةالخطیة العشوائیة 

 
 

  رسالة
  النهرين جامعة − العلوممقدمة إلى كلية 

  وهي جزء من متطلبات نيل درجة ماجستير علوم
   في الرياضيات

 
 

  من قبل

  حسنى أحمد جاسم
 )٢٠٠٦بكالوریوس علوم، جامعة النھرین، (

  
  

  
  إشراف

  فاضل صبحي فاضل. د.م.أ
 
 

 

 
  ١٤٣٠                              جمادي الاول ٢٠٠٩آيار 
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