Heat Exchanger Networks

A Thesis

Submitted to the College of Engineering Of Nahrain University in Partial Fulfillment of the Requirements for the degree of Master of Science in Chemical Engineering

by

Khetam Alwan Abbass (B.Sc. in Chemical engineering 2003)

Safer

March

1428 2007

CERTIFICATION

I certify that this thesis entitled **"Heat Exchanger Networks"** was prepared by **"Khetam Alwan Abbass"** under my supervision at Nahrain University/ College of Engineering in partial fulfillment of the requirements for the degree of Master of Science in Chemical Engineering.

Signature:

Date:

Mada

Name: Prof. Dr. Nada B. Nakkash

(Supervisor)

Signature:

Name: Prof. Dr Qasim J. Slaiman (Head of Department)

Date:

Certificate

We certify, as an examining committee that we read this thesis entitled "Heat Exchanger Networks" examined the student "Khetam Alwan Abbass" in its content and found it meets the standard of thesis for the degree of Master of Science in Chemical Engineering.

Signature:

Nada

Signature:

Mi

Name: Assist. Prof. Dr. Cecilia Kh. Haweel

Name: Prof. Dr. Nada B. Nakkash Date:

(Supervisor)

(Member)

Date: 4/4 here 7

Signature: Z

Name: Dr. Naseer Aboud Habobi Date: 41412007

Signature:

Name: Assist Prof. Dr. Shahrazad Rifat Rauof Date: 15-4-2007

(Member) Approval of the college of Engineering

(Chairman)

Signature: M. J. Jweeg2

Name: Prof. Dr. Muhsin .J. Jweeg (Acting Dean)

Date: 2 2 - 4 - 2007

Abstract

This study deals with the recovery of the energy available in hot and cold streams that exchanging heat. This can be done by heat exchanger network, to minimize the cost and the use of utilities. The transfer of energy from the hot stream to the cold stream depends on the rate of flow, area of the exchanger, the heat transfer coefficient and temperature gradient along each stream.

Heat exchanger networks were considered for three systems A, B and C. System A with four streams and systems B and C with six streams, all systems are in liquid phase only.

Heuristics, TI and pinch methods for heat exchanger networks were considered. Three heuristics which are Rudd, Kobayashi and Linnhoff were used, these heuristics are applied on system A first, which gives four possibilities when Rudd heuristic was used, the minimum configuration cost is the 2^{nd} possibility which have a cost 36.2×10^6 ID/y. Eight possibilities where obtained when Kobayashi heuristic was used, the configuration which have a minimum cost is of 4^{th} possibility where the cost was 36.2×10^6 ID/y, while Linnhoff heuristic gives one structure with cost = 113×10^6 ID/y. For system A, Rudd heuristic is the best, it gives the minimum cost structure in shortest way.

For system B, Rudd heuristic gives 5 possibilities, the minimum cost is for the 3^{rd} possibility which is 107×10^{6} ID/y. Kobayashi gives 25 possibility, the minimum possibility cost is the 1^{st} which is 58.1×10^{6} ID/y. Linnhoff possibility cost was 60.8×10^{6} ID/y and it is close to the minimum cost structure. These heuristics were applied on system C but it gives unreasonable results.

TI method was considered on system A and C; a single structure was obtained for each system. For System A the cost was 47.5×10^6 ID/y and for system C cost was $565*10^6$ ID/y. Pinch method is applied on systems A and C and it gives the same possibilities and same costs as for TI method.

The minimum approach temperature was selected to be 11° C (20 °F) for all above cases, because it is the most appropriate value for the shell and tube heat exchangers when the minimum approach temperature reduced to 5.5 °C (10 °F) for solving system C, the cost obtained by this value for the single structure of this system is equal to $1,015 \times 10^{6}$ ID/y and 565×10^{6} ID/y if $\Delta T_{min}=11$ °C.

The results obtained from this work was compared with the results of the previous works for the same systems, a difference about 46% in the value of the cost will be notice, as in the cost for the 2^{nd} possibility in system A (Kobayashi heuristic) which is 60.9×10^6 ID/YR in 1975 and 792×10^6 ID/YR in the present years after correcting the costs for the utilities (steam and cooling water) by the cost index to the last year and because of the change of the cost of materials for the heat exchangers.

CONTENTS

Abstract	Ι
Contents	Ш
Nomenclature	VI
Chapter One " Introduction"	1
Chapter Two "Literature Survey"	4
2.1 Introduction	4
2.2 Heat Exchangers	4
2.2.1 Equipment Types for Heat Exchange	6
2.2.2 Equipment Selection for Heat Exchange	6
In the Heat Exchanger Network	
2.3 Heat Exchanger Networks	7
2.3.1 Basic Definitions	10
a. Hot Streams	10
b. Cold Streams	10
c. Stream flow rates	10
d. Stream source temperature	10
e. Stream Target Temperature	11
f. Minimum approach temperature	11
g. Utilities	11
2.4 Heat Exchanger Networking Methods	12

2.4.1 Heuristics Method	12
2.4.2 Temperature Interval Method	15
2.4.3 Pinch Analysis Method	16
2.4.4 Graphical Displays Method	19
2.4.5 Linear Programming	21
2.5. Review on the previous Work	21
Chapter Three "Theoretical Aspect"	28
3.1 Introduction	28
3.2 Method of Analysis	28
3.3 Specifications of Variables	29
3.4 Assumptions of heat exchanger network	32
3.5 Heat Exchanger Networks Methods	33
3.5.1 Heuristics Method	33
a. Rudd Heuristic	33
b. Kobayashi Heuristic	33
c. Linnhoff Heuristic	34
3.5.2 Temperature Interval Method	34
3.5.3 Pinch Analysis Method	36
3.5.3.1 Reducing the number of Exchangers	38
3.6 Heat Exchanger Network Calculations	39
3.6.1 Cost Calculations	40

Chapter Four "Results and Discussion"	42
4.1 Introduction	42
4.2 The Results of the Networking Methods	42
4.2.1 The Results of the Heuristics Method	42
4.2.1.1 System A	42
a. Applying Rudd Heuristic	42
b. Applying Kobayashi Heuristic	44
c. Applying Linnhoff Heuristics	47
4.2.1.2 System B	47
a. Applying Rudd Heuristic	48
b. Applying Kobayashi Heuristic	48
c. Applying Linnhoff Heuristics	49
4.2.2 Results of temperature interval method	50
a. System A	50
b. System C	53
4.2.3 Results of Pinch Analysis	56
a. System C	56
b. System A	62
4.3 Solving system C by pinch method	64
With $\Delta T_{min} = 10^{\circ} F$	
4.4 General Discussion of the HEN	70
4.5 Discussion of Results	70

4.5.1 Discussion of Heuristics Results with	
Comparison of the previous works	
4.5.2 Discussion of Pinch Analysis	74
4.5.3. Discussion of TI Method	75
4.6. Selection of the Minimum Approach	76
Temperature	
4.6.1 The Effect of Changing ΔT_{min}	77
Chapter Five "Conclusions and Suggestions"	79
5.1 Conclusions	79
5.2 Suggestions and Future Work	80
References	81

Appendices

Appendix A

Calculation of Steam and Cooling Water

Appendix B1

System A Calculations

Appendix B2

System B Calculations

Appendix B3

System C Calculations

Nomenclature

Symbol	Definition D	imensions
A_E	area of heat exchangers	m^2
A_{H}	area of heaters	m^2
A _C	area of cooler	m^2
a, b	cost parameters	—
C_E	cost of heat exchangers	ID/y
C_{H}	cost of heaters	ID/y
C _C	cost of coolers	ID/y
C _S	cost of steam	ID/y
C_{W}	cost of cooler	ID/y
C _p	heat capacity	kJ/kg. °C
C_{pw}	heat capacity of cooling water	kJ/kg. °C
Ft	correction factor for heat balance e	eq. —
Н	Enthalpy	kJ/kg
i,j	number of streams	—
М	total number of hot streams	—
m	mass rate	kg/s
m _s	mass rate of steam	kg/s
m _w	mass rate of cooling water	kg/s

Ν	total number of cold streams	
N_s	number of streams	
N_u	number of utilities	—
N _I	number of independent variables	—
$N_{\rm H}$	number of heat exchangers	—
P _S	saturated pressure of steam	—
Q	heat load	kJ/hr
S _{hi} , S _{hj}	number of hot streams	—
S _{ci} , S _{cj}	number of cold streams	—
Т	Temperature	°C
U	Heat Transfer Coefficient	kJ/m ² .hr. °C
W	capacity flow rate	kJ/s. °C

Greek	Definition	
Δ	difference in quantity	
δ	annual rate of return	
λ	latent heat of evaporation	kJ/mole

Subscript

hi, hj number of hot streams

ci ,cj	number of cold streams
i	number of intervals
lm	logarithmic mean
min	minimum
Ε	exchanger
Н	heater
С	cooler
W	cooling water
S	steam
Ut	utilities

Chapter One INTRODUCTION

1.1. Introduction:-

While oil prices continue to climb, energy conservation remains the prime concern for many process industries. The challenge every process engineer is faced with, is to seek answers to questions related to their process energy patterns ⁽¹⁾.

Energy conservation is important in any chemical plant or process for a profitable operation. It can be done by using heat transfer equipment, where it is very vital in any process industry, especially the heat exchangers and their optimal design is of crucial importance in terms of performance and economy⁽²⁾.

Before the petroleum crises in the 1970, energy costs usually represented around 5% of the total plant cost. Subsequently, the energy cost component rose to around 20%, causing the industry to rethink its approach to process design in more parsimonious terms. Since then, the problem of the design of heat exchanger networks – on the main process synthesis problems – Has been receiving a great deal of attention ⁽³⁾.

The supply and removal of heat in a modern chemical process plant represents an important problem in the process design of the plant. The cost of facilities to accomplish the desired heat exchange between the hot and cold media may amount to one third of the total cost of the plant. Thus, a lot of research work has been done to find the minimum cost configuration of a Heat Exchanger Network (HEN) both in terms of total cost and operability. One of the most important insights that have been developed to overcome the combinatorial nature of this problem is the predication of the minimum utility target, which can be performed to develop the network structure ⁽⁴⁾.

Process streams at high pressure or temperature, and those containing combustible material, contain energy that can be usefully recovered. Whether it is economic to recover the energy content of a particular stream will depend on the value of the energy that can be usefully extracted and the cost of the recovery. The value of the energy will depend on the primary cost of the energy at the site. It may be worth while recovering energy from a process stream at a site where energy costs are high but not where the primary energy costs are low. The cost of recovery will be the capital and operating cost of any additional equipment required. If the savings exceed the operating cost, including capital charges, then the energy recovery will usually be worth while ⁽⁵⁾.

In industry there is a still of potential to make an energy system more efficient and thereby reduce the waste heat available. On the other hand there is an option to export the waste heat to another industry or to society. When the use of a heat exchanger network is considered for these tasks, the optimization framework developed in this work can be implemented to calculate the cost of optimal investments ⁽⁶⁾.

The most common energy recovery technique is to utilize the heat in a high temperature process stream to heat a colder stream: saving steam costs and also cooling water, if the hot stream requires cooling. Conventional shell and tube exchangers are normally used. More total heat transfer area will be needed, over that for steam heating and water cooling, as the overall driving forces will be smaller⁽⁷⁾.

The HEN synthesis task consists of finding a feasible sequence of exchangers in which pairs of streams are matched, such that the network have a minimum cost as judged from overall large of possible stream

2

combinations. Even for small problems all possible networks cannot normally enumerated ⁽⁸⁾.

The cost of a recovery will be reduced if the streams are located conventionally close. The amount of energy that can be recovered will depend on the temperature, flow rates, heat capacity, and temperature change possible, in each stream. A reasonable temperature driving force must be maintained to keep the exchanger area to a practical size. The most efficient exchanger will be the one in which the shell and tube flows are truly counter current. Multiple tube pass exchangers are usually used for practical reasons. With multiple tube passes the flow will be part counter current and part co –current and temperature a crosses can occur, which will reduce the efficiency of heat recovery ⁽⁹⁾.

1.2. Aim of This Work:-

This work presents a framework for generating flexible heat exchanger networks over specified range of variations in the flow rates and temperatures of the streams. So that the total annual cost (TAC) as result of utility charges, exchanger areas and selection of matches are minimized.

The aim of this work is to create a minimum investment cost with practically fixed and a minimum operating cost for the heat exchanger network, while achieving a maximum amount of heat exchange among hot and cold process streams. Three systems were considered and three different methods were applied, which are the heuristics method, temperature interval and pinch analysis method to give the best method which gives the minimum cost structure according to the area, cost and minimum number of heat exchangers.

3

Chapter Two LITERATURE SURVEY

2.1. Introduction

Heat exchanger network (HEN) synthesis was one of the most extensively studied problems in industrial process synthesis. This was attributed to the importance of the determining the energy costs for a process and improving the energy recovery in industrial sites ⁽⁶⁾.

It has got much attention during the last decades. All the early models assumed temperature independent heat capacity flow rates and heat transfer coefficients, and even today, most existing models are set under the same assumption. Removing this assumption, many standard rules are set aside and networks with heat exchange across pinch – points and even networks including external cooling of a heat source at its highest temperature may be found optimal ⁽⁹⁾.

Many problems in economy and engineering are not tractable by exact mathematical models due to complexity of the problem or uncertain and incomplete data based on which decisions have to be made. For such problems a large number of heuristics rules and strategies have been derived from experience and other sources ⁽¹⁰⁾.

2.2. Heat Exchangers:-

The transfer of heat to and from process fluids is an essential part of most chemical processes. The word "exchanger "really applies to all types of equipment in which heat is exchanged but is often used specifically to denote equipment in which heat is exchanged between two process streams. In a heat exchanger, the device most commonly used for thermal energy task combination, two fluids pass on opposite sides of a conducting surface. As a consequence of the second law of thermodynamics, heat energy transfers through this surface from warmer fluid to colder ⁽⁶⁾.

The design engineer should consider both process design and mechanical design when preparing the specifications for a heat exchanger. The following list presents the basic information that should be supplied to a fabricator in order to obtain a cost estimate on a proposed heat exchanger ⁽⁷⁾.

The process Design Information is:

1. Fluids to be used including fluid properties if they are not readily available to the fabricator.

- 2. Flow rates or amounts of fluids.
- 3. Entrance and exit temperatures.
- 4. Amount of vaporization or condensation.
- 5. Operating pressures and allowable pressure drops.
- 6. Fouling factors.
- 7. Rate of heat transfer.

The Mechanical Information is:

- 1. Sizes of tubes. (Diameter, Length, Wall thickness)
- 2. Tube layout and pitch. (Horizontal tubes, Vertical tubes)
- 3. Maximum and minimum temperatures and pressures.
- 4. Necessary corrosion allowances.
- 5. Special codes involved.
- 6. Recommended materials of construction.

Some of preceding information can be presented in the form of suggestions with an indication of the reasons for the particular choice. This would apply, in particular, to such items as fouling factors, tube layout, codes, and materials of construction ⁽¹¹⁾.

2.2.1. Equipment Types for Heat Exchange:

A wide Varity of equipment is available for conducting heat exchange. Commercial units range in size from very small , double pipe heat exchangers, with less than 9.29×10^{-2} m² (1 square foot) of heat transfer surface, to large air cooled units called fin-fan heat exchangers because they consist of tubes with external peripheral fins and fans to force air past the tube. It is usually the only type which can be considered for large surface areas having pressure greater than 30 bars and temperature greater than 260 °C. Finned areas in a single unit is as large as 1858 m² (20000 square feet). The most common unit is shell and tube heat exchanger, which comes in a variety of configurations in sizes from 4.645 to 1858 m² (50 to 20000 square feet). For specialized applications compact heat exchangers are challenging shell and tube units⁽¹²⁾.

2.2.2. Equipment Selection for Heat Exchange in the Heat Exchanger Network.

The shell and tube heat exchanger is the most common of various types of unfired heat transfer equipment used in industry. Although it is not especially compact, it is robust and its shape makes it well suited to pressure operation. It is also versatile and it can be designed to almost any application.

A shell and tube heat exchanger consists of a shell, invariably cylindrical containing a nest of tubes plain or finned, which run parallel to the longitudinal axis of the shell, and are attached to perforated flat plates, baffles at each end. The tubes pass through a number of baffles, along their

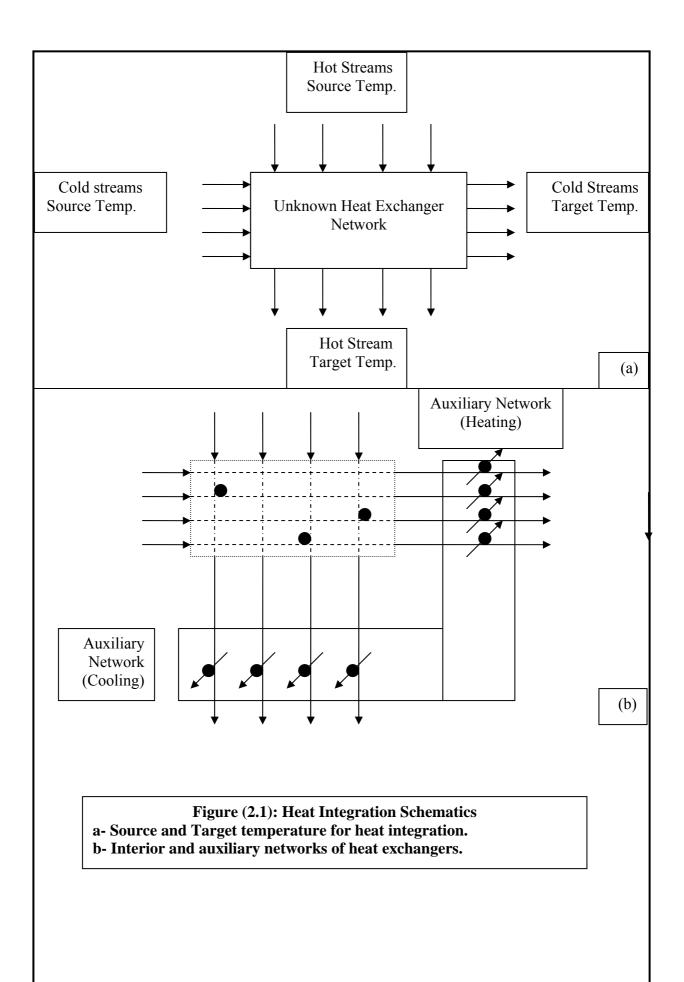
length which serve to support them and to direct the fluid flow in the shell. The assembly of tubes and baffles is a tube bundle held together by a system of tie rods and spacer tubes. The fluid which flows inside the tubes is directed by means of special ducts, known as stationary and near heads or channels ⁽¹²⁾.

One Fluid stream flows through the inside of several tubes in parallel on the tube side of heat exchanger, while the other fluid flows over the outside of the tubes on the shell side of the heat exchanger. Baffles are used on the shell side to make the fluid flow back and fourth across the tubes at the desired velocity ⁽¹³⁾.

The amount of heat exchanged depends on the flow rates, temperature difference, and thermal properties of the fluids, as well as the design of heat exchangers, in particular the heat exchange surface area.

In co-current operation the hot and cold streams pass through the exchanger in the same direction, and in counter current operation the streams flow in opposite directions. The direction of flow has a significant effect on the exchanger.

2.3. Heat Exchanger Networks:


Networks of heat exchangers are commonly used to recycle energy within a process, avoiding the escape of energy with effluent materials .If the process runs at high temperatures such as in the distillation of sea water, the hot effluents are used to heat the colder feed. On the other hand, if the process runs at low temperature, such as in desalination by freezing, the cold effluents are used to cool the warmer feed. The sequence of heat exchange operation is an aspect of task integration.

An important process design problem is the synthesis of minimum cost network of heat exchangers to transfer the excess energy for a set of hot streams to streams that require heating (cold streams). In most analysis of heat exchanger networks, at any stage in process creation, it is common initially to disregard power demands in favor of designing an effective network of heat exchangers by heat integration, without using the energy of the high streams to produce power.

To accomplish this Ni hot process streams, with specified source and target temperatures $T_{hi}(s)$ and $T_{ho}(s)$, $i=1,2,3,...,N_1$,and cooled by cold process streams, with specified source and target temperature $T_{ci}(s)$ and $T_{co}(t)$, $J=1,2,3,...,N_2$, figure(2.1a). Because the sum of the heating requirements does not equal to the sum of the cooling requirements, and because some source temperatures may not be sufficiently high or low to achieve some target temperatures through heat exchanger, or when other restrictions exist, it is always necessary to provide one or more auxiliary heat exchangers for heating or cooling through the use of utilities such as steam and cooling water. It is common to refer to the heat exchangers between the hot and cold process streams as comprising the auxiliary network, figure (2.1 b).

When carrying out the design, given the states of the source and target streams, flow rates of the specie, temperature, pressure and phase, it is desired to synthesize the most economical network of heat exchanger ⁽¹²⁾.

The amount of energy that can be recovered will depend on the temperature, flow heat capacity, and temperature change possible in each stream.

Shell and tube heat exchangers are normally used in HEN. Individual heat exchangers are more effective when internal flow of hot and cold fluids is counter current; this because the cold fluid temperature is driven toward the highest hot fluid temperature and the hot fluid temperature is driven toward the coldest cold fluid temperature. While in co-current, the hot and cold fluids are driven toward intermediate temperature⁽¹⁴⁾.

The problem is to create a minimum cost network of exchangers that will also meet the design specifications on the required outlet temperature of each Stream. If the strictly mathematical approach is taken for setting up all possible arrangements and searching for the optimum, the problem even for small number of exchangers would require an inordinate amount of computer time⁽¹⁵⁾.

With the design of the HEN, the objective is to recover heat from "hot" streams by matching with the "cold" streams .This matching process allows minimizing utilities (steam and cooling water) needed for heat duties ⁽¹⁰⁾.

2.3.1. Basic definitions.

To begin with the heat exchanger network synthesis approach, the basic definitions are:

a. Hot stream: Is a stream that needs to be cooled, $T_{out} < T_{in}$.

b. Cold stream: Is a stream that needs to be heated, $T_{out} > T_{in}$.

c. Stream flow rates: The flow rate of each stream must be given in the problem to compute the total heating and cooling duty.

d. Stream source temperature: It is the temperature at which the stream is available from the plant or process before it undergoes any heat exchange.

Typically, this is the battery limit temperature, or the temperature at which a stream originates from process equipment such as a reactor or distillation column.

e. Stream target temperature: It is the temperature at which the stream is desired, after all heat exchange has been completed, including heating by hot utilities such as steam, or cooling by cold utilities such as water. Typically, this is also a battery limit condition or the temperature at which a stream must enter appraises equipment such as an aerator or a distillation column.

f. Minimum approach temperature: It is the closest approach

temperature that is allowable between two streams exchanging heat. There is no fixed number that can be uniformly recommended. The minimum approach temperature selected affects both the capital costs and the operating costs. Selecting low value means that hot streams can approach the temperature of the cold streams more closely. The cold stream thus absorbs more heat from the hot stream, this reduces the utility heating required for the cold stream and also the utility cooling required for the hot stream, as the hot stream exits as a lower temperature after heat exchange with the cold stream. This reduces the operating costs by lowering the utility costs, but it also increases the capital costs .Similarly, a large value of the minimum approach temperature results in lower capital costs and higher utility (operating) costs.

Therefore the area and hence the cost of exchanger is inversely proportional to the temperature differences. If the temperatures of the two streams are getting close together, a point is reached where it is more economical to perform the remainder of energy tasks with other integrations or external utilities rather than increase the size of the exchanger. The economic trade – off point occurs at minimum temperature difference of 8.3-11.11 °C (15 – 20 F°)⁽¹⁶⁾.

g. Utilities: The heating and cooling duties not serviced by heat recovery must be provided by external utilities including steam and cooling water. The

cooling water is very suitable because of the abundance of water and of its high heat capacity. The use of recirculation water systems employed to reject waste heat to environment. It is used extensively as a heat exchange medium. The use of steam as a heat exchange medium is because the steam has a high latent heat of condensation per unit weight and therefore it is very effective as a heating medium $^{(11, 17)}$.

2.4. Heat Exchanger networking methods:

There are different methods for solving the problem of heat exchanger network, these methods are:

2.4.1. Heuristics Method:

The general techniques that have been developed previously for solving HEN problem included the heuristics approach based on the use of rules of thumb. The selection rules which favor the use of a given piece of equipment in certain phases of system synthesis evolve from experience and are thought to be part of the empirical skill of successful process designers. These rules may be wrong on occasion and will lead to non minimum cost systems, but the experienced designer requires only that the rules lead to efficient designs frequently enough to warrant their use. Heuristics rules are useful empirically but are unproved, or incapable of being proved ⁽¹²⁾.

The heuristics aims to optimize the objective function, the overall objective of the problem both the energy cost and the cost needed for the changes. Where the sequence of events is as follows: Suggestions is made up by the heuristics rules which gives a number of combinations for the system, after finding all the possibilities which can be obtained by this heuristic, followed by choosing the minimum cost network⁽¹⁸⁾.

Heuristics are employed to reduce the computational effort. Termination of a stream at its desired temperature, when possible in an exchanger was found to speed the search without impairing the accuracy ⁽¹⁹⁾.

Many heuristics have been proposed by several workers ^(10, 15, 16, 18, and 20) to solve the problem of the heat exchangers network.

The first heuristic rules were given by lee et.al, branch and bound technique with tree searching were developed which helped to reduce the number of combinational possibilities to be enumerated $^{(18)}(20)$.

The heuristic developed by Kobayashi and Ichikawa ⁽¹⁵⁾ gives a lot of combinations, which matches each hot stream with each cold stream once in each structure.

Rudd et. al. ⁽¹⁶⁾ developed many heuristics that accomplish the required heat exchange with the lowest total cost including the investment cost in the heat exchanger, the auxiliary coolers, and heaters, and the purchase of steam and cooling water, the first heuristic is:

-Do not specify heat exchanger between two streams such that the temperature difference at either end is below the minimum –approach temperature.

Steam may only be available for heating at several temperatures. Similarly, cooling water, brine, glycol, propane, or other refrigerants will be available only at characteristic temperatures. Therefore, propose exchangers that will allow auxiliary heating to be done at the lowest possible temperature and auxiliary cooling at the highest possibilities temperature, so that auxiliary heating and cooling are done as close to ambient temperature as possible. This is especially important when alternative heat exchanger integration would require an auxiliary utility from a less expensive source. That led to two more useful heuristics: A- Consistent with the minimum –approach temperature, propose heat exchange between the hottest stream to be cooled with the warmest stream to be heated.

Alternatively:

B- Consistent with the minimum approach temperature, propose the heat exchange between the coldest stream to be heated with the coldest stream to be cooled $^{(16)}$.

Ponton and Donaldson synthesis method was alternative to Rathore ⁽²⁰⁾ method. It is mainly based on the heuristics of always matching the hot stream of highest supply temperature with the cold stream of highest supply temperature.

Rathore and Powers ⁽²⁰⁾ pointed out that costs for steam and cooling water will normally be more important than the cost for plant to the extent where several quite dissimilar network topologies will all feature near optimal costs in so far as they feature near maximum energy recovery.

For more complex cases, Linnhoff and Flower⁽¹⁰⁾, proposed a systematic method required:-

a -Rank the hot and cold streams in deceasing order according to its heat capacity flow rates.

b -Specify matches between the first hot and first cold; second hot and second cold, etc., until the only original streams left is either all hot or all cold.

c -Match the largest remaining stream with the largest residual of the primary matches, the second largest remaining with the second largest residual, etc. at this stage, temperature constraints must be considered, whatever remains after these steps, that are original streams, primary residuals, secondary residuals. etc.

d -The final step is to match these against utility hot and cold.

This method will give a single design which may not be more convenient than other at a later stage in the synthesis but which will always produce a sub network structure in the heater and cooler loads are not greater than those obtained by different rules.

2.4.2. Temperature Interval Method (TI):

The temperature –interval method was developed by Linnhoff and Flower ⁽¹⁰⁾ following the pioneering work of Hohmann. Any network will solve the problem may be thought of as an array of sub networks. Each of these sub networks include all streams (or part of streams), which fall within a defined temperature interval. The temperatures $T_1, T_2, T_3... T_{n+1}$ are deduced from the problem data in the following way: Each stream supply and target temperatures are listed after the temperatures of the hot streams have been reduced by the minimum temperature difference ΔT_{min} . The highest temperature in the list is called T_1 , the second highest T_2 , and so on. Generally, the following expression holds:-

$$N = 2Z - 1$$
 (2.1)

Where N represents the number of sub networks can obtain for the system and Z: The number of streams.

Each sub network represents a separate synthesis task. However, since all streams in a sub network run through the same temperature interval, the synthesis task is very easy ⁽¹⁰⁾.

As will be seen, a systematic procedure unfolds for determining the minimum utility requirements over all possible HENs, given just the heating and cooling requirements for the process streams and the minimum approach temperature in the heat exchangers, $\Delta T_{min}^{(12)}$.

It is a synthesis method used of the fact that desirable network structures will normally feature high degrees of energy recovery. The method deals with the problem in two stages, in the first stage, these preliminary networks are generated which exhibit the highest possible degree of energy recovery. In the second stage, these preliminary networks are used as convenient starting points when the searching for the most satisfactory network from other points of view part from costs criteria like safety constraints, controllability, etc. ,are easily observed .

The TI method allows the user to identify the upper bound on energy recovery for given heat exchanger network synthesis problem. This method is based on enthalpy balance, and to systematically generate a variety of networks, which perform at this upper bound. TI method produces the network with very small computational effort ⁽¹⁰⁾.

2.4.3. Pinch technology:

The term "Pinch Technology" was introduced by Linnhoff and Verdeveld ⁽²¹⁾ to represent a new set of thermodynamically based methods that guarantee minimum energy levels in design of heat exchanger networks. Over the last two decades it has emerged as an unconventional development in process design and energy conservation .The term pinch analysis is often used to represent the application of the tools and algorithms of pinch technology for studying industrial process.

Pinch technology presents a simple methodology for systematically analyzing chemical processes and the surrounding utility systems with the help of the first and second laws of thermodynamics. The first law of thermodynamics provides the energy equation for calculating the enthalpy changes (Δ H) in the streams passing through a heat exchanger .The second law determines the direction of heat flow .That is heat energy may only flow in the direction of hot to cold. This prohibits temperature crossovers of the hot and cold stream profiles through the exchanger unit. In a heat exchanger unit neither a hot stream can be cooled below cold stream supply temperature nor can a cold stream be heated to a temperature more than the supply temperature of a hot stream. In practice, the hot stream can only be cold to a temperature defined by the "temperature approach" of the heat exchanger. The temperature is the minimum allowable temperature difference (ΔT_{min}) in the stream temperature profiles for the heat exchanger unit. The temperature level at which (ΔT_{min}) is observed in the process is referred to as "pinch point" or "pinch condition". The pinch defines the minimum driving force allowed in the exchanger unit process. Integration using pinch technology offers a novel approach to generate targets for minimum energy consumption before heat recovery network design. Heat recovery and utility system constraints are then considered. The pinch design can reveal opportunities to modify the core process to improve heat integration. The pinch approach is unique because it treats all processes with multiple streams as a single, integrated system. This method helps to optimize the heat transfer equipment during the design of the equipment (21) (22).

Objectives of Pinch Analysis:

Pinch analysis is used to identify energy cost and heat exchanger network (HEN) capital cost targets for a process and recognizing the pinch point .the procedure first predicts, a head of design, the minimum requirements of external energy, network area, and the number of units for a given at the pinch point. Next a heat exchanger network design that satisfies these targets is synthesized. Finally the network is optimized by comparing energy and the capital cost of the network so that the total annual cost is minimized. Thus, the prime objective of pinch analysis is to achieve financial savings by better

process heat integration (maximizing process to process heat recovery and reducing the external utility loads)⁽¹⁾.

Most industrial processes involve transfer of heat either from one process to another process stream (interchanging) or from utility stream to a process stream. In the present energy studies all over the world, the target in any industrial process design is to maximize the process to process heat recovery and to minimize the utility (energy) requirements. To meet the goal of maximum energy recovery or minimum energy requirement an appropriate heat exchanger network is required. The design of such a network is not an easy task considering the fact that most processes involve a large number of process and utility streams. The traditional design approach has resulted in networks with high capital and utility costs. With the advent of pinch analysis concepts, the network design has become very systematic and methodical.

Summary of the key concepts, their significance and the nomenclature used in pinch analysis is given below:

a -Combined (hot and cold) composite curves: used to predict targets for minimum energy (both hot and cold utility), minimum network area, and minimum number of exchanger units.

 $b -\Delta T_{min}$ and pinch point: the ΔT_{min} value determines how closely the hot and cold composite curves can be (pinched) or (squeezed) without violating the second law of thermodynamics (none of the heat exchangers can have temperature crossover). The pinch point is the temperature determined from the stream data and the approach temperature; it is used to separate the problem into two sub problems, called the problems above the pinch and below the pinch.

c –Grand composite curve: It is a plot of temperature on Y-axis versus the enthalpy flow on X-axis. If the curve touches the temperature axis at a value

of 0.0 for the enthalpy, it is a pinched process, and the temperature corresponding to that point is the pinch temperature. Also, the grand composite can be used to determine the minimum amount of hot and cold utilities needed by the process $^{(17)}$.

d –Energy and Capital Cost Targeting: Used to calculate the total annual cost of utilities and the capital cost of heat exchanger network.

e –Total cost targeting: Used to determine the optimum level of heat recovery or the optimum ΔT_{min} value, by balancing energy and capital costs .Using this method, it is possible to obtain an accurate estimate within 10-15 percent of the overall heat recovery system. The assent of the pinch approach is the speed of economic evaluation.

Three rules for pinch method were summarized ^(1, 3, 17, 18, 22, 23, 24, 25, and 26)

- 1 No external cooling above the pinch.
- 2 No external heating below the pinch.
- 3 No heat transfer across the pinch.

2.4.5. Graphical Displays:

The terminology "pinch" is understood more clearly in connection with a graphical display introduced by Umeda et al. (1978), in which composite heating and cooling curves are positioned no closer than ΔT_{min} . As $\Delta T_{min} \rightarrow 0$, the curves pinch together and the area for heat exchange approaches infinity. To display the results of TI method graphically, we must find the data needed to prepare the hot and cold composite curves by finding the enthalpy for each temperature. First the hot composite curve is graphed starting with an enthalpy datum of 0 at the lowest temperature for the hot stream. Then we find the enthalpies for the hot composite to form the hot composite curve as in figure (2.2b).

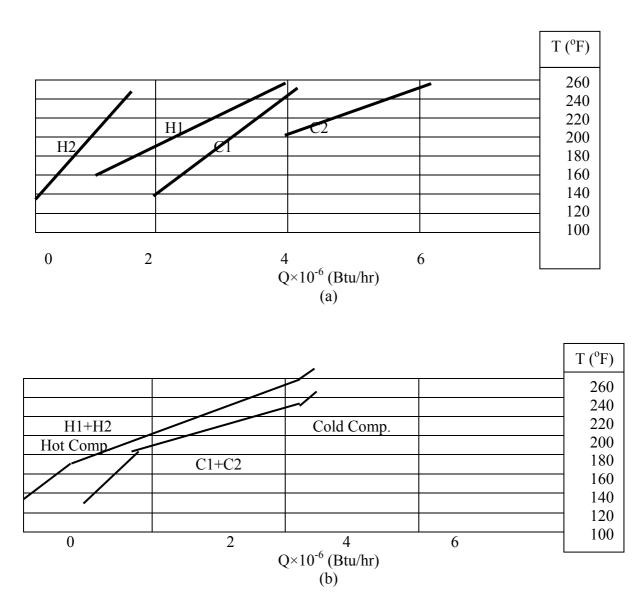


Figure (2.3) Graphical method to locate the minimum utilities
a. heating and cooling curves for the streams.
b. composite hot and cold curves⁽¹²⁾.

Next, the cold composite curve is graphed in the same way. For the specified ΔT_{min} , the TI method produces minimum cooling utilities, therefore, the graph begins with an enthalpy datum of that value, and then the cold composite enthalpies are found to form the cold composite curve as in figure (2.2b)⁽¹²⁾.

2.4.6. Linear Programming Method:

A closer examination of the temperature –interval method shows that the minimum hot and cold utilities can be calculated by creating and solving a linear program (LP). Where, it is desired to determine the minimum hot and hot and cold utilities for a HEN by creating and solving in a linear programming using the energy balance for each interval in the cascade ⁽¹²⁾.

2.6. Review of Previous Work

The development of a theoretical approach to system synthesis is drawing increasing attention in various fields of engineering including process engineering.

Process system synthesis involves determining the optimal interconnection of processing units as well as the optimal type and design of the processing units within a process system.

An important process design problems in the synthesis of minimum cost network of heat exchangers to transfer the excess energy from a set of hot streams to streams that require heating (cold streams).

The problem can be stated thus: -given (n) streams to be heated and (m) streams to be cooled to find the heat exchanger networks which will carry out the desired temperature changes with the minimum cost .The cost is made up of two factors: -

1- The cost of heat exchangers to carry out the energy transfer and

2- The cost of utilities.

The minimum cost solution to this problem usually involves an integration of the hot and cold streams in heat exchangers to reduce the need for outside energy sources and sinks (utilities). The networking of the heat exchanger networks has been studied by several workers, these workers names and their works listed in table below:-

Author	Study
Nishida <i>et. al.</i> ⁽¹⁵⁾	Basic theorem derived on the basis of several assumptions to synthesize the optimal heat exchange system by sequential approach which has involved the synthesis of the system uses the basic theorem and computational algorithm of the complex method.
Kesler and Parker ⁽²⁷⁾	Formulated the energy integration as a linear programming and an assignment algorithm, which maintains the feasibility of the linear programming solution.
Rudd et. al . ⁽¹⁶⁾	Used heuristics to determine the proper energy matches which would lead to efficient heat exchanger networks.
Lee et al ⁽¹⁸⁾	Solved the problem of optimal heat exchanger networks by branch and bound technique.
Kobayashi <i>et.al.</i> ⁽²⁸⁾	proposed a systematic way of synthesizing an optimal heat exchange system by formulating the problem as an optimal assignment problem in linear programming, and of carrying out the optimal design of the synthesized system by the complex

	mathed of a commutational al
	method of a computational algorithm, where, it
	plays an essential approach, both to eliminate some
	of the assumptions and to give practically
	meaningful results.
Pho and Lapidus ⁽²⁹⁾	Proposed a compact matrix representation of a
	cyclic exchanger network by tree search technique.
Ponton ,Donaldson	An alternative synthesis method based on the
	heuristics of always matching the hot stream of
	highest supply temperature with the cold stream of
	highest target temperature.
Rathore and Powers ⁽²⁰⁾	Pointed out that costs for steam and cooling water
	will normally be more important than the costs for
	plant to the extent where several, quite dissimilar
	network topologies will all feature near optimal
	costs in so far as they feature near maximum energy
	recovery.
Wright and Bacon ⁽³⁰⁾	Presented a statistical time series analysis methods
	in a paper. The objective is to demonstrate the
	application of these procedures to the modeling of a
	heat exchanger network.
Nishida and Lapiduse (31)	Gave the approach synthesis of minimum cost network of exchangers. The necessary conditions derived suggest a simple and practical algorithm called the minimum area algorithm for the synthesis of a minimum area and nearly minimum cost network of exchangers, heaters and coolers. The
	next step is to employ a set of simple evolutionary rules to systematically modify the resulting minimum area network so that the total cost of investments and utilities can be reduced.

Kelahan and Gaddy ⁽¹⁹⁾	Presented a mixed integer optimization to solve
	the synthesis of heat exchange networks. Using the
	adaptive random search procedure, this can be used
	to search continuous and discrete independent
	variables simultaneously.
Linnhoff and Flower	Introduced a systematic generation of energy
(10)	optimal networks, where it is a thermodynamically
	oriented method for the heat exchanger network.
	With this method, the problem is solved in two
	stages, preliminary networks are generated which
	give maximum heat recovery, in the second stage,
	the most satisfactory final works are evolved using
	the preliminary networks as starting points.
Colbert ⁽³²⁾	Presented an industrial heat exchange network
	about a double temperature approach to synthesizing
	heat exchange systems, which provides the engineer
	with the strategy for balancing network complexity
	and costs. The DTA method requires the selection of
	two approach temperatures.
Annika Carlson ⁽³³⁾	Developed a user driven method for optimal
	retrofitting of heat exchanger network, with which
	all aspects relevant in a retrofit design situation can
(24)	be taken into account.
Brend <i>et al.</i> ⁽³⁴⁾	Its study a bout optimization of heat exchanger
	networks by describing the adaptation of evaluation
	strategies (ES) s for simulation based HEN
	synthesis.
Samarjit and Ghosh ⁽⁴⁾	Presents a new approach of HEN design making
	extensive use of randomization techniques. It is
	exceedingly simple to implement and gives new insight into the hardness and the cost space land
	insight into the hardness and the cost space land

	underlying a given problem. At the same time, the		
	results from their algorithm may be used as good		
	initial solutions required by most non linear		
	optimization problems.		
Vieria <i>et al.</i> ⁽³⁵⁾	Based on fluid dynamical considerations on		
	HENs, where it explores a new design algorithm		
	about the total annual cost (TAC) optimization for a		
	thermal equipment studying the tube side and shell		
	side flow velocities constraints and also the		
	influence of pumping cost in the networks final cost.		
Abbass <i>et al.</i> ^{(3) (36)}	Based on constraint logic programming for		
	chemical process synthesis. This method is novel in		
	that it uses combinations of mathematical		
	optimization techniques with backtracking heuristic		
	search to achieve its results.		
Jules Ricardo ⁽³⁷⁾	Presented a study for the pinch technology, it has		
	been claimed that pinch technology is a tool that can		
	be used for process design, however, based on the		
	results of a challenge problem solved in the early		
	1990 s, it would appear that exergy analysis applied		
	by an expert may be superior for that purpose.		
Babu and Mohhidin ⁽⁷⁾	Automated Design of Heat Exchangers by using		
	an artificial intelligence based optimization, Genetic		
	algorithm is applied to the optimal design of a shell		
	and tube heat exchanger, and it is found to converge		
	in very few (10) generations considering 6 as design		
	variables with a total of 4608 configurations.		
Nick Hallale ⁽²⁵⁾	Based on Burning Bright Trends in Process		
	Integration, where, the process integration is more		
	than just pinch technology and HENs on industries		
	are making more money from their raw materials		
L			

	and aquital agasta while becoming alconon and more		
	and capital assets while becoming cleaner and more		
	sustainable.		
Telang <i>et al.</i> $(17)(23)$	Introduced a user manual and tutorial of HEN,		
	where it integrates the networks of heat exchangers,		
	boilers, condensers and furnaces for best utilization		
	by using the pinch analysis for the optimum of heat		
	exchanger network		
Rakesh and Mehta ⁽³⁹⁾	Introduced a crude unit integrated energy analysis		
	with the use of pinch analysis. This method		
	produced a large increase in crude distillation		
	capacity.		
Hopper <i>et al.</i> ⁽²⁴⁾	Presented an advanced process synthesis system		
	that has been developed to perform comprehensive		
	evaluations on chemical plants and refineries for		
	process improvements.		
Juha Aaltola ⁽⁴⁰⁾	Presented a framework for generating flexible heat		
	exchangers networks over a specified range of		
	variations in the flow rates and temperatures of the		
	streams.		
Colin Howat ⁽⁴¹⁾	Considered synthesizing as much heat as		
	technically feasible using a cyclic network before		
	using utilities for heating and/or cooling.		
Yeap <i>et al.</i> ⁽⁴²⁾	Pointed out that the use of fouling factors in heat		
	exchanger design and the lack of appreciation of		
	fouling in traditional pinch approach has been		
	resulted badly designed crude preheat networks that		
	are expensive to maintain.		
Anita and Glavic ⁽⁴³⁾	Proposed an optimization by stage -wise model		
	for complex industrial heat exchanger network.		
1			

Chapter Three THEORETICAL ASPECT

3.1. Introduction

The synthesis of Heat Exchanger Network Strategy adopted is to create a network of a minimum investment cost with a practically fixed and minimum utility operating cost, while achieving a maximum amount of hot and cold process streams.

In this work, Heat Exchanger Networks is considered using single phase streams. Heat balance equation was used to give the heat duty, and the missing variables which are the temperatures of the network, area of heat exchangers, and the cost for each exchanger and for the whole network. All the calculations were carried out using a developed computer program written in EXCEL language.

The capital cost of a network depends on a number of factors including the number of heat exchangers, heat transfer areas, materials of construction, piping, and the cost of supporting foundations and structures.

3.2. Methods of Analysis:-

The analysis emphasizes on studying and comparing different methods to analyze the heat exchanger networks and to find the best method of analysis to gives a rapid solution with minimum heat exchangers, coolers and /or heaters, and minimum utilities required with less cost.

The networking was carried out on three systems with four and six streams using three methods, heuristics method which involves three heuristics {Rudd ⁽¹⁶⁾, Kobayashi ⁽²⁸⁾, and Linnhoff ⁽¹⁰⁾}, temperature interval

method ⁽¹⁰⁾, and pinch analysis method ⁽²²⁾. All the calculations are based on energy balance equation.

The source and target temperature, flow rate and heat capacity for each stream are available. The overall heat transfer coefficient and the cost of the utilities must be known to find the total cost for the network...

3.3. Specifications of Variables

The variables considered for the process systems are:

- 1. The flow rate for each stream.
- 2. Heat capacity for each stream.
- 3. The Input Temperature (T_i).
- 4. The output temperature (T_o) .
- 5. Overall heat transfer coefficient (U).
- 6. Number of Hot Streams.
- 7. Number of cold streams.
- 8. Input temperature of cooling water.
- 9. Maximum output temperature of cooling water.
- 10. The saturated pressure of steam.

The systems used are given in tables (3.1, 3.2, and 3.3). These systems have been chosen because their data are available in literature ^(15, 16, 18, 19, 20, 22, 30, 31, 32, 33 and 34) and to compare the results obtained by the present work with previous works on the similar systems.

The results obtained for systems A, B and C are give in appendix B.

Where, system A and C were chosen to be solved by all the three methods in order to compare them according to the structures obtained. System C was solved by the TI method and pinch analysis method. While, system A was solved by all the three methods. And system B was chosen to be solved by just the heuristics method.

The Properties of the Three Systems

Stream no.	Cap. Flow rate	T_{in} (°C)	T_{out} (°C)
	(J/s. °C)		
1	7.621	60.0	160.0
2	6.081	116	260.0
3	8.792	160.0	93.3
4	10.548	249	138

Table 3.1 {system A- Liquid} (15, 16, 18, 20, 28, 29)

Table (3.2) {system B- Liquid} (15, 16, 18, 20, 28, 29)

Stream no.	Cap. Flow rate	$T_{in}(^{\circ}C)$	T _{out} (°C)
	(J/s. °C)		
1	8438	37	221
2	17278	83	177
3	13897	93	204
4	14767	227	66
5	12552	271	149
6	17721	199	66

Ta	Cable (3.3) {system C- Liquid} (44)			
	Stream no.	Cap. Flow rate	Tin(°C)	Tout (°C)
		(J/s.°C)		
	1	2.86×10^{6}	25	56
	2	1.27×10^{6}	25	54
	3	2.92×10^{8}	69	91

4	7.2×10^{6}	118	25
5	1.6×10 ⁸	80	53
6	6.12×10 ⁵	118	54

Design Data for the three systems ^(15, 16, 18, 20, 28, 29, and 44)

Table (3.4)

Steam (saturated) Pressure 6636 kN/m² (962.5 Ib/in².abs) for system A 282.2 °C (540 °F), λ=1527 KJ/Kg (656 Btu/Ib) Steam (saturated) Pressure 3103 kN/m² (450.0 Ib/in².abs) for System B 235.7 °C (456 °F), λ=1785 kJ/kg (767.4 Btu/Ib) Cooling Water Input Temperature T_{win} = 37.7 °C (100°F) Maximum Water Output Temperature T_{wout}= 82.2 °C (180 °F) Minimum Allowable Temperature (ΔT_{lm}) :--Heat Exchangers=11.1 °C (20 °F) -Steam Heater = $13.88 \,^{\circ}\text{C} (25 \,^{\circ}\text{F})$ -Water Cooler = $11.1 \,^{\circ}\text{C} (20 \,^{\circ}\text{F})$ **Overall Heat Transfer Coefficients** -Heat Exchangers=851.5 J/m².s.K (150 Btu/hr.ft². °F) -Steam Heater =1135.4 J/m².s.K (200 Btu/hr.ft². $^{\circ}$ F) -Water Cooler = 851.5 J/m^2 .s.K (150 Btu/hr.ft². °F) Heat Transfer Cost Parameters a=350 , b=0.6 Annual rate of return: $\delta = 0.1$ Cooling Water Cost $C_{C}=2.267\times10^{-5}$ (5*10^-5 //b). $C_s=1.2247\times10$ \$/kg (2.7*10^-3 \$/lb). Steam Cost

3.4. Assumptions of the heat exchanger networks:

The assumptions used in this work are:

1. For the shell and tube heat exchanger, counter current flow is assumed and single pass flow when the multiple passes are used to achieve the desired velocity on the tube side. In a single pass heat exchanger, the fluid on the tube side flows through half of the tubes in one direction and then flows back through the other half of the tubes in the other direction ⁽¹²⁾.

In this work a single –pass flow was chosen for the heat exchanger, which is most commonly used ^(8, 10, 18, and 19).

2. There are two cases about the phase of the fluid in the exchanger; first if there is no change in phase of process streams which leads to constant heat capacity, and the second case, the phase is changed in process streams, that means the heat capacity is also changed .In this work the first case is considered ^(20, 22, 23).

3. Equal values for the effective heat transfer coefficients for all the exchangers are assumed ^(15, 28).

4. Each stream is required to exchange heat once and only once (15, 28).

5. Stream splitting; the idea of stream splitting is dividing an existing stream between two exchangers, and thus perhaps using it more efficiently. Splitting can improve the performance of an energy recovery system. Most systems do not consider this aspect explicitly although the initial statement of the problem can be changed by manually splitting streams prior to energy recovery. Stream splitting may be employed to reduce the number of exchangers. No stream splitting considered in this work as in most references (5, 22, 24, 25, and 27).

6. The Log Mean Temperature Difference (LMTD) is assumed to be 11.1°C (20 °F) in this work, as it is taken in most references ^(1, 8, 14, 26, 27 and 44).

3.5. Heat Exchanger Networks Methods: -

In the present work, the heuristics method which is considered first was that given by Rudd ⁽¹⁶⁾, Lee et al. ⁽¹⁸⁾,Nishida et al. ^(15,28) and Linnhoff ⁽¹⁰⁾, the second was the temperature interval method and the third was the pinch analysis method, that was studied by different workers to formulate the heat exchanger networks.

3.5.1. Heuristics Method:-

3.5.1.1. Lee, Rudd, and Masso Heuristic ⁽¹⁸⁾:-

This heuristic depends on matching the first hottest hot with the first hottest cold and the second hottest hot with the second hottest cold and so on, until all the streams were matched, or the first coldest hot with the first coldest cold and the second coldest hot with the second coldest cold, etc. Because of its matching the number of combinations obtained was so limited, and certainly include the optimum.

3.5.1.2. Nishida, Kobayashi, and Ichikawa Heuristic^(15, 28): -

This heuristic gave a lot of combinations, these combinations came from the matching of i, j hot streams and i, j cold streams, then consider a permutation of (S_{hi}, S_{ci}) , (S_{hj}, S_{ci}) , (S_{hi}, S_{cj}) , (S_{hj}, S_{cj}) , where this matching enable each hot stream to connect with each cold stream once in every possibility .The number of combinations obtained from this heuristic is larger than that obtained by another heuristic.

3.5.1.3. Linnhoff, Flower Heuristic ⁽¹⁰⁾:-

It is a systematic method with four steps for the networking. In this heuristic the streams must be ranked in decreasing order according to its capacity flow rate. And then the first hot can be matched with first cold, second hot with second cold, and so on. The largest remaining stream can be matched with the largest residual of the primary matches, the second largest remaining with the second largest residual, etc., whatever remains after these steps, that is, original streams, primary residual or secondary residuals, etc., the final step is to match these against utilities. This heuristic gives a single design, which may be quite far from the minimum structure cost or it may be near the minimum structure cost, or exactly represent it.

The details for these heuristics are given in appendices B1, B2.

3.5.2. Temperature Interval Method:-

The first step in the TI method is to adjust the source and target temperatures using ΔT_{min} . Somewhat arbitrarily, this is accomplished by reducing the temperatures of the hot streams by a ΔT_{min} while leaving the temperatures of the cold streams untouched. Then the adjusted temperatures are rank ordered beginning with T_o. The highest temperature and T₁, T₂ and so on, these temperatures where used to create a cascade of temperature intervals within which energy balances are carried out. Each interval (I) displays the difference ΔH_i between the energy to be removed from the hot streams and the energy to be taken up by the cold streams in that interval, that ΔH_i can be found by:

$$\Delta Hi = m \cdot Cp \cdot \Delta T \qquad \dots \qquad (3.1)$$

When the values of enthalpy change for each interval was found, the pinch temperature must be found, which is the temperature at which no heat transfer across through it, in other meaning when the sign of ΔH was changed from a negative sign to a positive sign. This temperature represents the pinch for the cold streams, while the pinch for the hot represent the pinch for the cold plus the log mean temperature difference.

The hot streams are denoted by arrows from left to right; cold streams denoted by arrows moving from right to left. The arrows for the hot and the cold streams either pass through or begin at the pinch temperatures. To maintain minimum utilities, two separate HENs must be designed, one above and one below the pinch temperatures. Energy is not permitted to flow across the pinch .Energy is added from hot utilities above the pinch, and energy is removed using cold utilities below the pinch. If energy were exchanged between a hot stream above the pinch and a cold streams above the pinch, this energy would not be available to heat the cold streams above the pinch and additional energy from the hot utilities would be required .Similarly, the cold stream below the pinch would not have the ability to remove this energy from the hot streams below the pinch and the same amount additional energy would have to be removed from the cold streams below the pinch using cold utilities. In other words, where energy flows across the pinch, the energy transferred from or to the hot and cold utilities must be increased by this amount.

To match the streams while maintaining the minimum utilities the streams above and below the pinch are examined. When the matching between these streams is done depending on the value of the capacity flow rate, the highest capacity flow rate hot stream can be matched with the highest capacity flow rate cold stream, and so on, until all the streams are matched. The network below the pinch contains no coolers, just steam heaters, while the network above the pinch contains coolers. System C, table (3.3) was taken to be solved by this method ⁽¹²⁾.

3.5.3. Pinch Analysis:-

The first step in the energy integration analysis is the calculation of the minimum heating and cooling requirements for a heat exchanger network. In any process flow sheet, there are several streams that need to be heated and other to be cooled; there are two laws for each heat integration analysis. The first law states that the difference between the heat available in the hot streams and the heat required for the cold streams is the net amount of heat which must be removed or supplied .The heat associated with each stream can be calculated by using the following equation :-

$Q = m \cdot Cp \cdot \Delta T \min \qquad \dots (3.2)$

In this work, system C {table (3.3)} was considered; there are three streams to be cooled and three to be heated up. The first calculations are to find the available heat, then calculate the net heat that must be supplied from utilities if no restrictions on temperature -driving forces are present. However, the calculations for the first law do not consider the fact that heat can only be transferred from a hot stream to a cold stream, if the temperature of the hot streams surpasses that of the cold stream. Therefore, the second law states that a positive temperature driving force must exist between the hot and cold streams. For any heat exchanger networks, the second law must be satisfied as well as the first law. The minimum driving force temperature was taken to be 11.1°C {20 °F} between the hot and cold streams; this value is the suitable for such process as it was taken by most references. A graph can be established showing two temperature scales that are shifted by a ΔT_{min} , one for the hot streams and the other for the cold streams. Then, stream data is plotted on this graph. Next a series of temperature intervals are generated corresponding to the heads and the tails of the arrows on the graph.

In each interval, heat from any hot streams in the high –temperature can be transferred to any of the cold streams at lower –temperature intervals. For a starting point, heat transfer in each interval would be considered separately. The necessary equation is shown below:-

$$Q = \left[\sum (FCp)hot, i - \sum (FCp)cold, i\right] \cdot \Delta Ti \qquad \dots (3.3)$$

The summation of the heat available in all the intervals is the same as the net difference between the heat available in the hot streams and that in the cold streams obtained using the first law. After finding the heat for each interval represent in a diagram, which is called cascade diagram (shows the heat cascades through the temperature intervals). From this diagram the total minimum heating and cooling loads were calculated which have now been fixed to satisfy the second law. It is observed from the cascade diagram that there is no transfer of energy in some point in the diagram .This point is called a pinch point ⁽⁴⁴⁾.

The temperature –enthalpy diagram must be constructed, the minimum heating and cooling loads were calculated by the above procedure. Then the enthalpy corresponding to the coldest temperature of any hot stream will be defined as the base condition: i.e. H=0 at the coldest temperature of any hot stream .The next step is to calculate the cumulative heat available in the sum of all the hot streams moving from lower to higher temperature intervals. Then we plot the hot streams temperature versus the cumulative H. To give the hot composite curve, this includes the effect of all the hot streams. Similarly for cold composite curve for the cold streams can be created by calculating the cumulative enthalpy of each cold stream.

Another useful diagram is the grand composite curve. To prepare this curve, begin with the pinch temperature assigning zero value to it. The calculation procedure for this curve is by finding the mean temperature and then the total heat flow. The figures contain these curves and the calculations of total heat flow were given in chapter four and in appendices B1, B3. If the minimum heating and cooling energy requirements and the number of heat exchangers were known, the appropriate procedure is to design two sub networks of exchangers -one above the pinch and one below it. The design above the pinch can be done by determining the inlet and outlet temperatures for each stream. Then calculate the heat load for each stream at the pinch temperature and match a hot stream of highest capacity flow rate with the cold stream of highest capacity flow rate. The heat load remaining from the hot stream is determined by subtracting heat load of each of the cold stream from the hot stream. The temperature can also be determined after each matching. The design procedure below the pinch consists of determining the minimum number of exchangers below the pinch temperature is analogous to that of above the pinch. The difference is that we can only allow rejecting heat to a cold utility. Therefore; coolers are used instead of heat exchangers, where the amounts of heat remaining from each stream are cooled using utilities ⁽²²⁾. Table (3.3) shows system C, which is chosen to be solved by this method, the details is given in appendix B3.

3.5.3.1. Reducing the number of exchangers:-

Reducing the number of exchangers will definitely lower the cost for equipment (capital cost). However it will increase the cost of utilities (operating cost) .Therefore; the main objective of this stage is to search for the lowest annual cost for our exchanger network. The number of heat exchangers required for the overall process is always less than or equal to that for a minimum energy network. This can be done by equation below ⁽⁴⁴⁾:

(Number of Heat Exchangers)= (Number of Streams) + (Number of Utilities)-(Number of Independent problems)(3.4)

This will be clear in the results. Appendices B1, B3.

3.6. Heat Exchangers Network Calculations:-

In most analysis, at any stage in process creation, it is common initially to disregard power demands in favor of designing an effective network of heat exchangers by heat integration, without using the energy of the high – temperature streams to produce power. To accomplish this, M hot streams with specified source and target temperatures. T_{hi} and T_{ho} , $i=1,\ldots,M$, are to be cooled by N cold process streams ,with specified source and target temperatures T_{ci} and T_{co} , $J=1,\ldots,N$. Because the sum of heating requirements does not equal the sum of the cooling requirements and some source temperatures may not be sufficiently high or low to achieve some target temperatures, it is always necessary to provide one or more auxiliary heat exchangers for heating and cooling through the use of utilities such as steam and cooling water. It is common to refer to the heat exchangers between the hot and cold streams and the utilities as comprising the auxiliary network.

When carrying out the design, the states of the source and target streams such as (flow rates of the species, temperature, pressure, and phase) must be given.

The calculation for the network is represented by evaluating the specific parameters for each exchanger; these parameters are the heat duty (Q) which can be found by:

Q=U.A.
$$\Delta$$
T_{*lm*} (3.5)

The area is estimated by

$$A = \frac{Q}{U \cdot Ft \cdot \Delta Tlm} \qquad \dots (3.6)$$

Where F_t is the correction factor for a multiple –pass exchangers, and ΔT_{lm} is the logs mean temperature difference at the two ends. Equation 3.2 must be used with care because of its restrictions. If both phase change and significant temperature change occur for one or both streams U is not constant and ΔT_{lm} is not appropriate. In many cases, multiple – pass exchangers are necessary for which F_t in the range 0.75-0.9. Nevertheless, for the purpose of developing a reasonably optimal heat exchanger network, it is common to apply equation (3.2) With F_t =1.0.

 ΔT_{lm} is estimated by:

$$\Delta Tlm = \frac{\left[(Thi - Tco) - (Tho - Tci) \right]}{\ln \left[\frac{(Thi - Tco)}{(Tho - Tci)} \right]} \qquad \dots (3.7)$$

3.6.1. Cost Calculations:-

The cost of heat exchanger, heater, cooler, can be calculated as a function of its area of exchange by a cost correlation such as:

$$Cost = a \cdot (A)^{h} b \qquad \dots (3.8)$$

Where a and b, the cost parameters given in the design data table (3.4). These Correlations usually yield good estimates of heat exchanger costs (16,18,19,20, 28, and 31)

The individuals' costs for each exchanger must be calculated.

Total Cost for the heat exchangers:-

$$CEi = \sum a \cdot AEi^{h}b \qquad \dots (3.9)$$

Total cost for the coolers:-

$$Cci = \sum a \cdot Aci^{b} \qquad \dots \qquad (3.10)$$

Total cost for the heaters:-

$$Chi = \sum a \cdot Ahi^{h}b \qquad \dots \dots (3.11)$$

The utilities cost:-

 $U = \left[\sum Cs + \sum Cw\right]$

The details of the utilities cost are given in appendix A.

The total heat exchanger network cost is:-

$$J = \delta [CEi + Cci + Chi] + U \qquad \dots (3.12)$$

Where $\delta = 0.1$ (table 3.4)

The details for cost estimation are given in appendix A, and samples of calculations are given in the results chapter.

Chapter Four RESULTS AND DISCUSSION

4.1. Introduction

The analysis of heat exchanger network was considered, in this chapter the final results of networking using heuristics, temperature interval method and pinch analysis methods were obtained using a developed computer program.

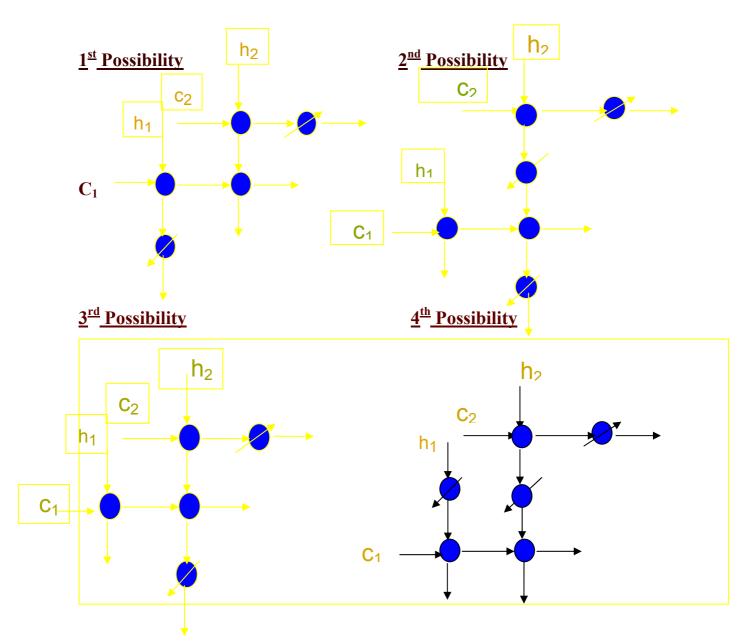
The discussion of the results and a comparison between the networking methods used were considered, to give the difference and similarity between these methods.

A comparison between this work and the other previous works were considered. The effect of changing the minimum allowable temperature (ΔT_{min}) was studied to see the influence of this parameter on the network design.

4.2. The Results of the Networking Methods:

The three systems chosen were solved by the three methods and the results were given below:

4.2.1. The Results of the Heuristics Method


4.2.1.1. System A

System A with four streams consists of two cold and two hot streams which can be matched in different ways depending on the heuristic law, in order to find the minimum cost structure.

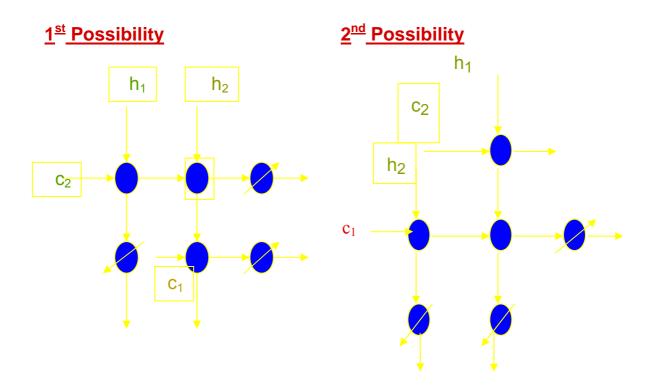
a. Applying Lee, Masso and Rudd ^(16, 18) heuristic on system A

The matching by this heuristic is done by connecting the 1^{st} hottest hot (249 °C) with the 1^{st} hottest cold (116 °C) and the 2^{nd} hottest hot (160 °C) with the 2^{nd} hottest cold (60.0 °C). Four networks were obtained by this matching with different utilities number and location.

These networks with their costs and areas are given in table (4.1):

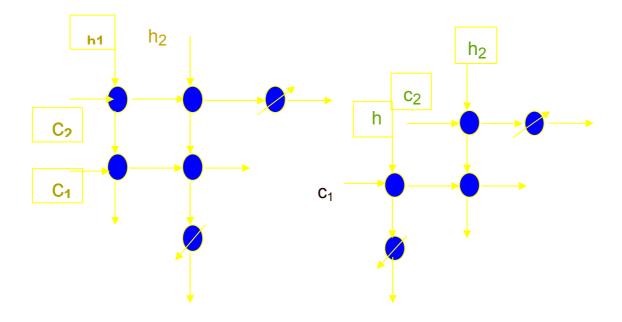
Table (4.1): System A by Rudd heuristic

Cost (ID/y)	Area (m ²)
36.60×10 ⁶	112.04
36.25×10 ⁶	112.03
38.08×10 ⁶	117.22
366.0×10 ⁶	112.56

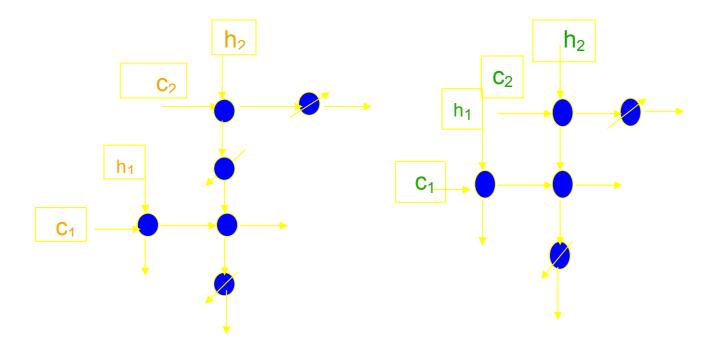

*Where represent heater represent cooler heat exchanger

*the hot streams enter the exchanger at the top (shell) and the cold one enter at the left side(tube). The details of the calculations for these networks are given in appendix B1.

b. Applying Nishida, Kobayashi, and Ichikawa heuristic ^(15, 31):


This heuristic gives a number of combinations which is more than that obtained by first heuristic. The matching is done by connecting the 1^{st} hot stream (249 °C) with the 1^{st} cold stream (116 °C), and connecting the 2^{nd} hot (160 °C) with the 2^{nd} cold (60.0 °C) in the first possibility. In the other possibility connect (249 °C) with (60.0 °C) and (116 °C) with (160 °C). This gives many networks that have the same matching, but differ in utilities number and location.

For system A using this heuristic $\{8\}$ possibilities were obtained. These possibilities with their cost and area are given in table (4.2), while the details for the design calculations are given in appendix B1.



<u>3rd Possibility</u>

4th Possibility

<u>7th Possibility</mark></u>

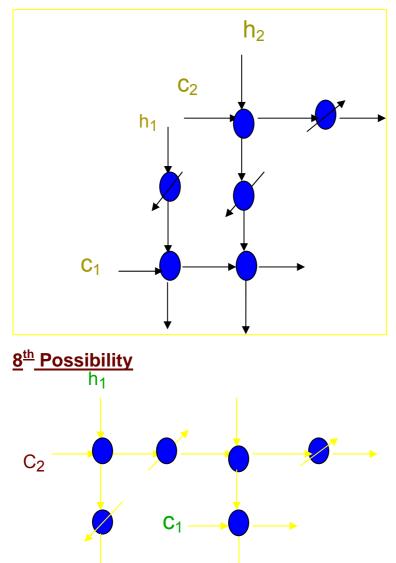
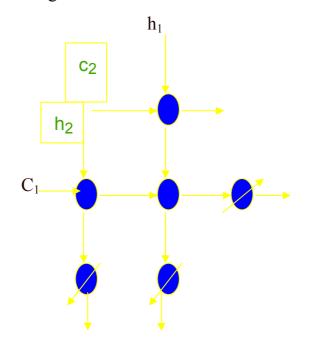



Table (4.2): The costs and areas values for system A obtained by Nishida

Possibility number	cost (ID/y)	Areas (m²)
J1=	65.58×10 ⁶	290.0
J2=	113×10 ⁶	721.0
J3=	371.7×10 ⁶	112.6
J4=	36.2×10 ⁶	112.03
J5=	36.64×10 ⁶	112.06
J6=	38.08×10 ⁶	117.2
J7=	36.6×10 ⁶	112.5
J8=	64.3×10 ⁶	280.74

c. Applying Linnhoff and Flower Heuristic ⁽¹⁰⁾:

This heuristic gives one structure, this structure is made by connecting the first hot (249 $^{\circ}$ C) with the first cold (60.0 $^{\circ}$ C), after ranking the streams in descending order according to its capacity flow rate. Connect the second hot (160 $^{\circ}$ C) with the second cold (116 $^{\circ}$ C). In system A, the structure with its cost and area are given below.

J=	113.2×10 ⁶	ID/y
A=	721	m²
A man an ali		

Appendix B_1 gives the calculations details.

4.2.1.2. System B

A six streams system consists of three hot and three cold streams, which can be matched in different ways, depending on the heuristic, in order to find the minimum cost network structure.

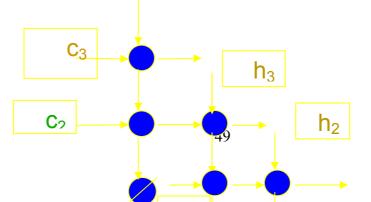
a. Applying Lee, Masso and Rudd ^(16, 18) heuristic:

In this heuristic we Connect the 1st hottest hot stream (271°C) with the 1st hottest cold stream (93 °C), and the 2nd hottest hot stream (227 °C) with the 2nd hottest cold stream (83°C) and the 3rd hottest hot (199°C) with the 3rd hottest cold stream (37 °C), which gives five possibilities similar in stream matching, and differs in the number of utilities and in utilities location.

The possibilities obtained by this method with their details of calculations are given in appendix B_2 , their costs and areas are given in table (4.3).

Table (4.3	b): The costs and	areas values obtained	by Rudd for system B.
------------	-------------------	-----------------------	-----------------------

Possibility Number	Cost (ID/y)	Area (m²)
1	108.0×10 ⁶	672.9
2	119.7×10 ⁶	790.8
3	107.6×10 ⁶	662.06
4	109.0×10 ⁶	706.26
5	115.7×10 ⁶	679.44


b. Applying Nishida, Ichikawa, and Kobayashi (15, 28) heuristic:

The number of combinations obtained by this heuristic is 25 possibilities; these properties obtained by connecting the 1st hot with 1st cold, 2nd hot with 2^{nd} cold, and 3^{rd} hot with the 3^{rd} cold. This matching will give a number of possibilities; another matching is done by connecting the 1st hot with the 2^{nd} cold instead of the 1st cold, and so on until all possible ways of matching were taken. Table (4.4) shows the costs and areas for each possibility and the details of calculations are given in appendix B₂.

Possibility number	Cost (ID/y)	Area (m²)
1	58.17×10 ⁶	237.5
2	171.3×10 ⁶	1437.4
3	241×10 ⁶	2545.4
4	106.2×10 ⁶	648.4
5	88.0×10 ⁶	473.5
6	100.0×10 ⁶	586.6
7	101.2×10 ⁶	597.7
8	87.0×10 ⁶	464.7
9	108.6×10 ⁶	672.9
10	110.0×10 ⁶	692.2
11	82.1×10 ⁶	312.9
12	119.7×10 ⁶	790.8
13	142×10 ⁶	1060.2
14	156.2×10 ⁶	1232.2
15	58.72×10 ⁶	241.2
16	92.3×10 ⁶	513.0
17	58.6×10 ⁶	240.51
18	108.9×10 ⁶	675.41
19	113.2×10 ⁶	726.17
20	107×10 ⁶	662.0
21	608.3×10 ⁶	255.8
22	106.0×10 ⁶	591.66
23	109×10 ⁶	706.26
24	124.5×10 ⁶	918.46
25	115.7×10 ⁶	679.44

Table (4.4): The costs and areas values for system B obtained by Nishida.

c. Applying Linnhoff Heuristic ⁽¹⁰⁾: This heuristic was applied on system B, one structure will obtained which is given below; its cost and area are also given.

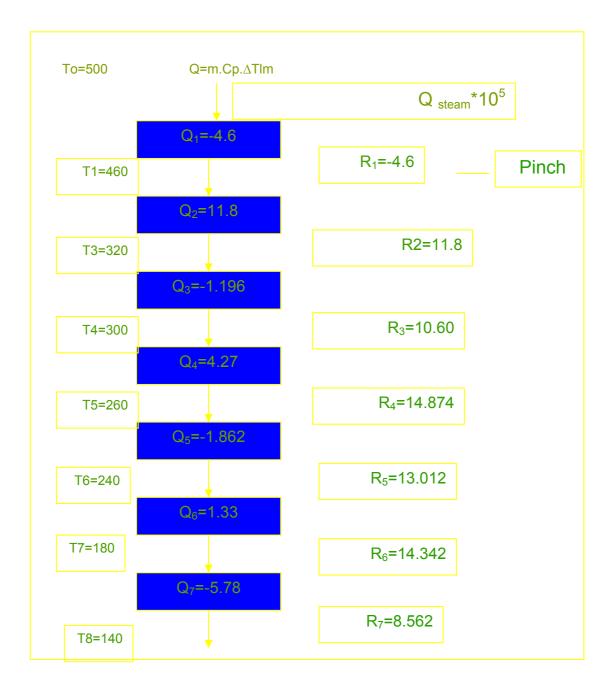
J=60.8×10⁶ ID/y

A=255.8 m²

The details of calculations are given in appendix B2.

4.2.1.3. Results of Temperature Interval Method:-

This method was applied on system A and system C (table 3.3) with three hot and three cold streams. It gives one structure which can be calculated by adjusting the temperature of hot streams by $\Delta T_{min}=11^{\circ}$ C, then ranked the temperature in descending order.


a. System A

The adjusted temperatures for system A are calculated and given in table (4.6).

C1	140	320			
			140		T7
				320	T2
C2	240	500			
			240		Т5
				500	Т0
H1	320	200			
			300		Т3
				180	Т6
H2	480	280			
			460		T1
				260	T4

Table (4.6): The adjusted	temperatures for system A
---------------------------	---------------------------

The cascade diagram was constructed by these adjusted temperatures and the pinch temperature was calculated which are equal to 460° F for cold streams and 480° F for hot streams. Figure (4.3)

Figure (4.3): Cascade diagram for system A

The complete structure was found after finding the pinch temperature as in figure (4.4).

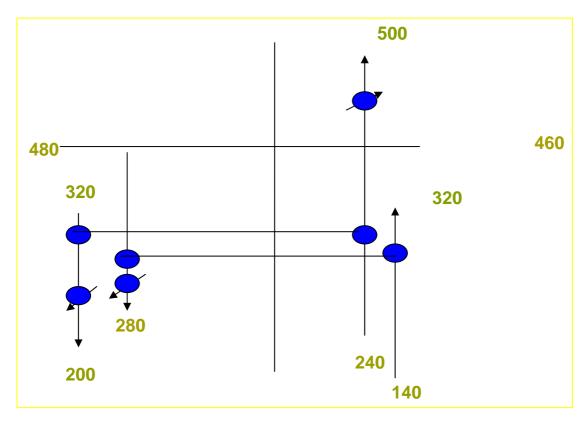
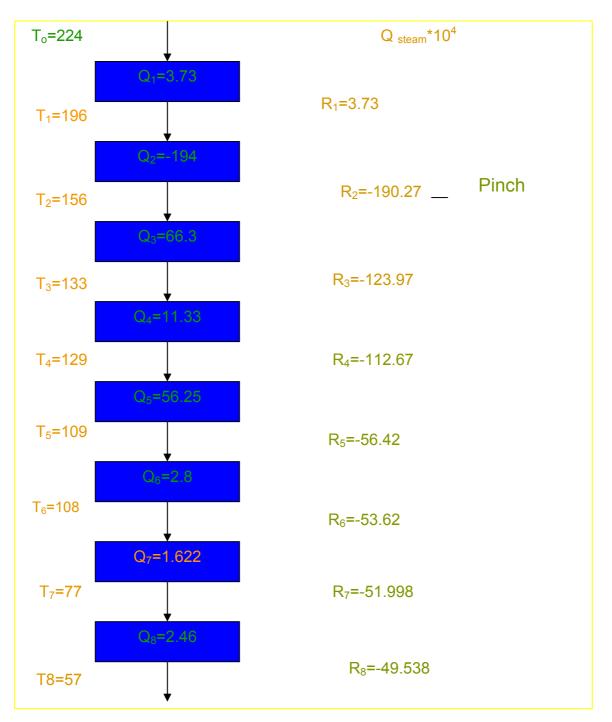


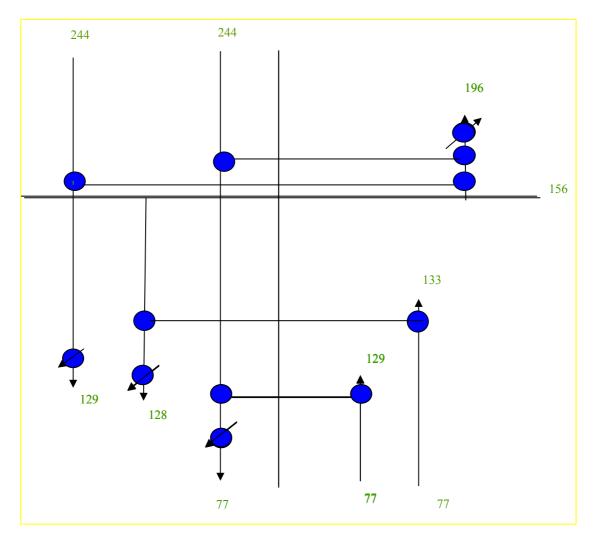
Figure (4.4): TI Structure for system A


J=	4.75×10 ⁶	ID/y
A=	169.42	m²

b. System C

C1	77	133			
			77		T7
				133	Т3
C2	77	129			
			77		T7
				129	T4
C3	156	196			
			156		T2
				196	T1
H1	244	77			
			224		То
				57	Т8
H2	176	128			
			156		T2
				108	Т6
H3	244	129			
			224		То
				109	Т5

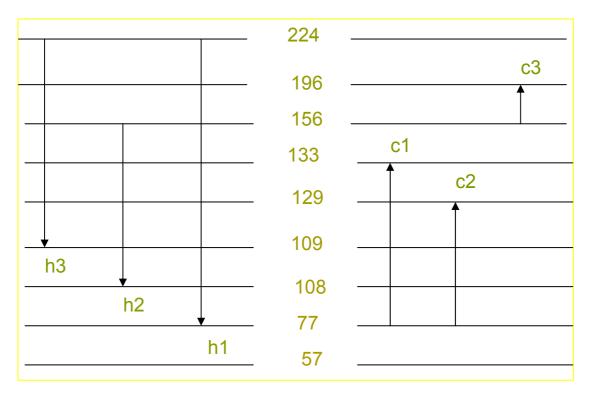
Table (4.5): The adjusted temperatures for system C:-


Then according to this adjusted temperatures, the heat load for each interval was calculated as in cascade diagram figure (4.1). From this diagram the pinch temperature is 156 $^{\circ}$ F for cold streams and 176 $^{\circ}$ F for hot streams.

The network was structured after knowing the pinch temperature, and matching was done by connecting the streams according to its capacity flow rate as in Linnhoff heuristic ⁽¹⁰⁾. The network will be divided into two sub networks, one above and one below the pinch. The network above contains heating utilities and the one below contains cooling utilities. Then the

calculation was done for each exchanger as in heuristics method. Figure (4.2) shows the structure obtained by this method after matching streams with its cost and area. The details of calculations are given in appendix B3.

 $COST=565 \times 10^{6} ID/y$ Area=10,520.6 m²


4.2.3. Results of Pinch Analysis Method:-

System A and C were solved by pinch analysis, first the temperature intervals was drawn. After ranking the temperatures of streams, the energy for each interval can be calculated by summing the hot streams heat capacity flow rate available in this interval and subtract the summation of cold stream heat capacity flow rate and then multiply by the temperature difference for this interval.

4.2.3.1. System C

The temperature interval diagram for system C is shown in figure (4.6), then the cascade diagram was drawn, figure (4.1).

The enthalpy values and cumulative enthalpy for hot streams are then found starting with base condition $H_0=0$ at 77 °F. Table (4.7) shows the results of calculating the cumulative enthalpy for the hot composite curve and figure (4.6) shows the hot composite curve.

The cold composite curve was created by calculating the accumulative enthalpy of each cold stream. Table (4.8) gives the result for the cold composite curve and figure (4.7) gives the cold composite curve. The grand composite curve was drawn, which prepared by starting with the Pinch temperature and assigning zero value to it. In the present work, the

Pinch temperature and assigning zero value to it. In the present work, the pinch temperature is 166 °F which comes $\operatorname{from}\left(\frac{156+176}{2}\right)$. The average temperature is used to calculate the total heat flow. This curve data is given in table (4.9). Figure (4.8) gives the grand composite curve.

Temp.	Н	H _{acc.}
77	0	0
97	2.460×10 ⁵	2.460×10 ⁵
128	8.906×10 ⁶	9.152×10 ⁶
129	2.870×10 ⁵	9.430×10 ⁶
149	5.766×10 ⁶	1.52×10 ⁷
153	1.153×10 ⁶	1.635×10 ⁷
176	6.630×10 ⁶	2.29×10 ⁷
216	5.330×10 ⁵	2.35×10 ⁷
244	3.730×10⁵	2.38×10 ⁷

Table (4.7): Data for hot composite curve

Table (4.8): Data for cold composite curve

Temp.	Н	H acc.
77	162.87×10 ⁵	162.87×10 ⁵
108	2.19×10⁵	1.65×10 ⁷
109	7.06×10 ³	1.651×10 ⁷
129	1.41×10⁵	1.66×10 ⁷
133	1.95×10 ⁴	1.665×10 ⁷
156	0	1.667×10 ⁷
196	2.00×10 ⁷	3.667×10 ⁷
224	0	3.66×10 ⁷

Table (4.9): Data for Grand Composite Curve

Avg. tem.	H acc.
67	162.87
87	138.27
118	136.65
119	133.85
139	77.6
143	66.3
166	0
206	194
234	197.73

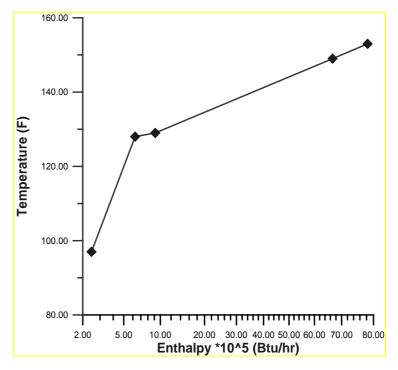


Figure (4.6): Hot Composite Curve for system C

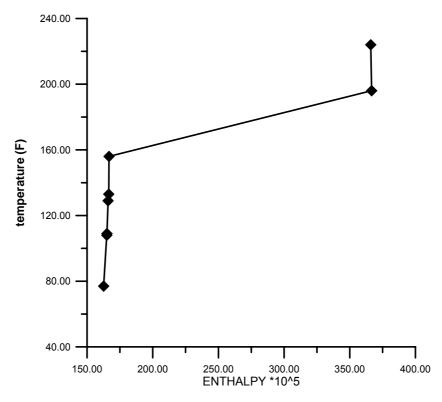
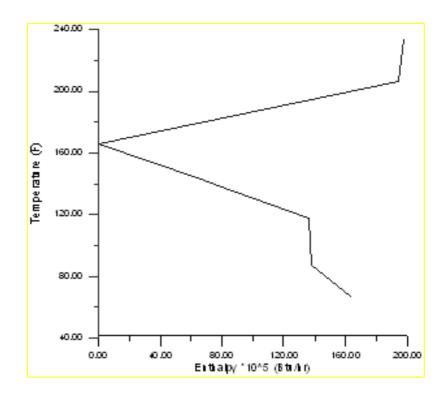



Figure (4.7): Cold Composite Curve for system C

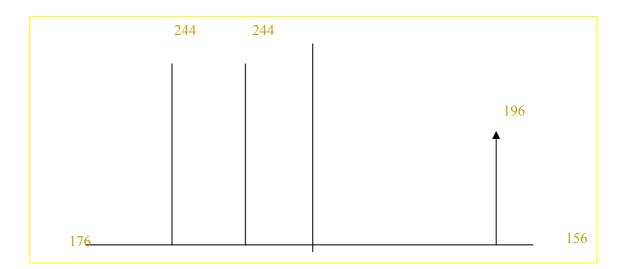
Figure (4.8): Grand Composite Curve For system C

Knowing the minimum heating and cooling energy requirements and the number of heat exchangers, the design of the heat exchanger network was done, the appropriate procedure is to design two sub networks of exchangers, above and below the pinch. The design above the pinch is done by determining the inlet and outlet temperatures of each stream and calculates the heat loads for each stream using the capacity flow rate value.

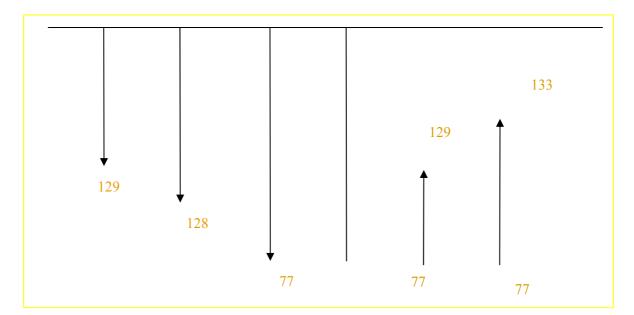
Then match the hot stream of the highest capacity flow rate value with the cold stream of the highest capacity flow rate value, the temperature of each matching was also determined. The design above the pinch is shown in figure (4.9) and the design below is analogous to that above with little difference

that is there are heaters instead of coolers. Figure (4.10) shows the design and the details of these designs are given in appendix B3. Figure (4.2) gives the design obtained by the pinch method with area= $10529m^2$ and cost = 565×10^6 ID/y.

Number of Heat Exchangers is calculated using Equation (3.4), if these parameters were known:


-Original Number of Heat Exchangers=8

-Number of Streams=6


-Number of Utilities=4

-Number of Independent Variables=3

Then the reduced number of heat exchangers=6+4-3=7

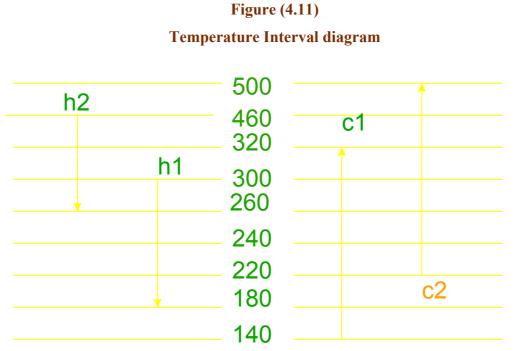

Figure (4.9): Design above the Pinch

Figure (4.10): Design below the Pinch

4.2.3.2. System A:-

The heat intervals diagram was drawn in figure (4.11) and the cascade diagram is the same cascade diagram obtained by pinch analysis, figure (4.3). The hot and cold composite curves and the grand composite curves are given in figures (4.12), (4.13), (4.14).

62

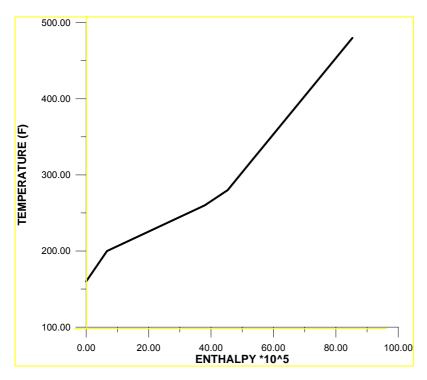


Figure (4.12): Hot Composite Curve for system A

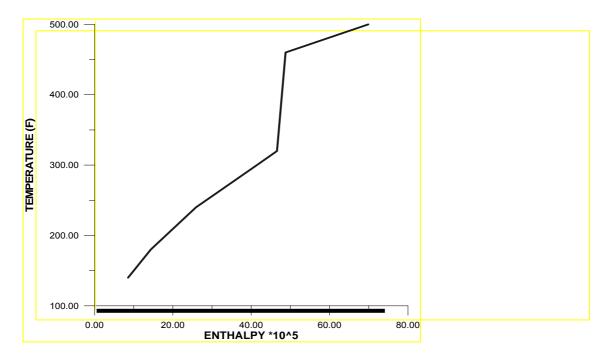


Figure (4.13): Cold Composite Curve for system A

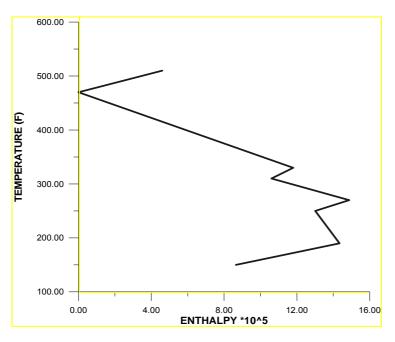


Figure (4.14): Grand Composite Curve for system A

The complete structure is the same as that obtained by TI method, which is given in figure (4.4), with the same area and cost.

4.3. Solving System C by pinch method with $\Delta T_{min}=10^{\circ}$ F:-

With this value of ΔT_{min} (5.5 °C), the temperature interval for system C which is given in table (3.3) was drawn, figure (4.5) and the cascade diagram figure (4.1). The calculations for this system are given in the tables and graphs below:

Temperature (°F)	Η	H _{acc.}
77	0	0
87	1.23×10^{5}	1.23×10 ⁵
128	5.04×10^{5}	6.27×10 ⁵
129	2.87×10^5	9.14×10 ⁵
139	2.28×10^{6}	3.194×10 ⁶
143	1.15×10^{6}	4.344×10 ⁶
166	6.63×10 ⁶	1.09×10 ⁷
176	2.88×10^{6}	1.38×10 ⁷
206	4.00×10 ⁵	1.42×10 ⁷
244	5.07×10 ⁵	1.47×10^{7}

 Table (4.10): The enthalpy values and cumulative H for hot streams

 Table (4.11): the enthalpy values and cumulative H for cold streams

Temperature	Н	H _{Acc.}
77	1.118×10^7	1.118×10 ⁷
118	2.90×10 ⁵	1.147×10^{7}
119	7.006×10^{3}	1.1485×10^{7}
129	7.006×10^4	1.1555×10^{7}
133	1.96×10^4	1.1575×10^{7}
156	0	1.1575×10^{7}
166	5.0×10^{6}	1.6575×10^{7}
196	1.5×10^{7}	3.1575×10 ⁷
244	0	3.1575×10 ⁷

Now, we can plot the hot composite curve figure (4.14) and the cold composite curve figure (4.15).

From these graphs we found that the pinch temperature is 156 $^{\circ}$ F for cold streams and 176 $^{\circ}$ F for hot streams.

Mean	Н	Acc.H $\times 10^5$
Temperature		
72	66.3+11.3+28.1+2.8+2.15+1.23	111.88
82	66.3+11.3+28.1+2.8+2.15	110.65
123	66.3+11.3+28.1+2.8	108.5
128.5	66.3+11.3+28.1	105.7
134	66.3+11.3	77.6
138	66.3	66.3
161	0	0
171	-21.2	21.2
201	21.2+146	167.2
239	21.2+146+5.07	172.24

 Table (4.12): The enthalpy values for Grand Composite Curve

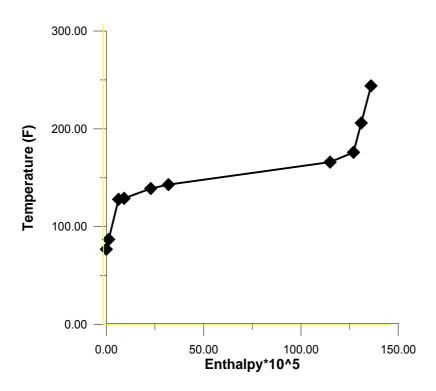


Figure (4.15): Hot Composite Curve of system C

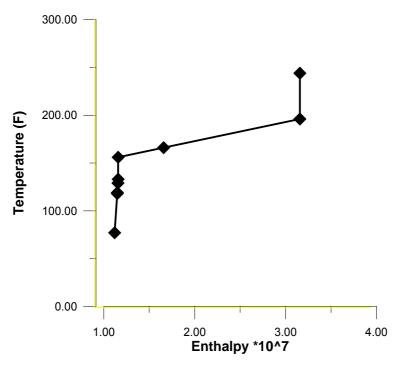


Figure (4.16): Cold Composite Curve of system C

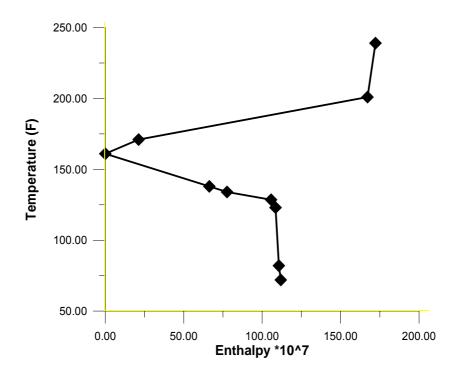


Figure (4.17): Grand Composite Curve for system C

After finding the curves concerned with system C, the networks above and below pinch must be found, then the complete structure will be found.

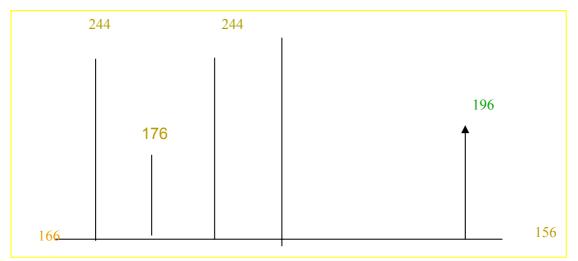


Figure (4.18): Design above the Pinch

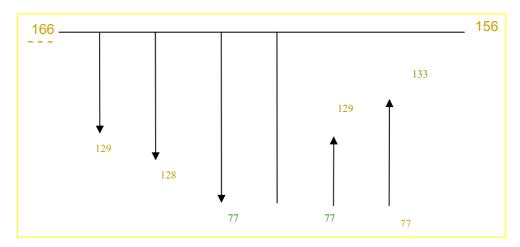
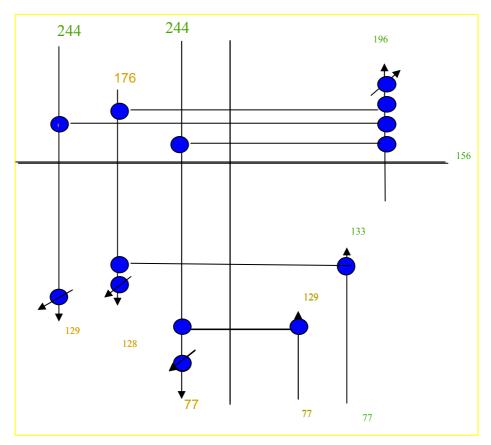



Figure (4.19): Design below the Pinch

After we have done the calculations, we found that the area= $8763.2m^2$ and its cost=1,015×10⁶ ID/y.

Original number of heat exchangers=9

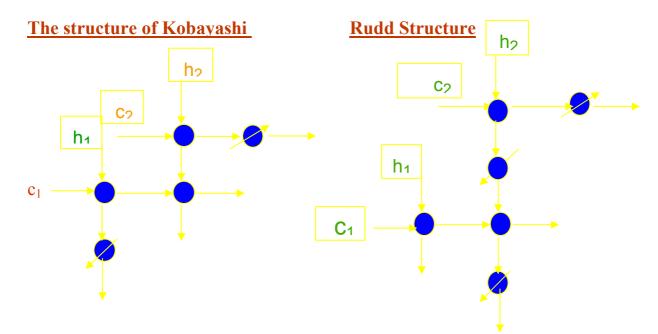
Reduced number of heat exchangers=7

4.4. General Discussion of the Heat Exchanger Network

The HEN synthesis problem is solved in different methods, some of these methods gives a single structure like Linnhoff Systematic method, TI method and pinch analysis. This structure may represent the optimum or nearly optimum and sometimes it's so far from the minimum structure cost. While the other methods which gives more than one structure, like Rudd and Ichikawa heuristics, gives a choice to select the minimum cost structure among many structures.

The HEN becomes very important in industry because it minimizes the energy conservation, maximize the heat recovery by using the heat available in any hot streams to heat the colder streams that reduce the using of external heating sources and cooling sinks. This leads to reduce the cost for these systems by recycling the same energy available in the same system.

4.5. Discussion of Results


4.5.1. Discussion of Heuristics Results with Comparison of Previous Works:-

Many workers were studied the HEN synthesis and introduced a different methods for networking, some of them take just one system and apply one heuristic on this system to find the minimum structure cost among the configurations that obtained by this heuristic. And some of them take more than one system and also apply one special heuristic or any method from the methods of networking.

In this work, three systems were taken with four streams and six streams. These systems were chosen from literature because the design data for these systems are available, and to compare the results that obtained for these systems with the results obtained by these references. Rathore and Powers⁽²⁰⁾ took system A and they applied Kobayashi heuristic to find 8 possibilities with its cost, and then chose the minimum cost to be the optimum. Kelahan and Gaddy⁽¹⁹⁾ took three systems A, B and another system with five streams, and solved these systems by Kobayashi heuristic. Eight possibilities were obtained for system A and they gave just the minimum cost structure for system B and the five streams system without giving the all structures may obtained.

Linnhoff ⁽¹⁰⁾ chose four streams system to solve it by TI method and Linnhoff systematic method, where they both gave single structure.

In this work system A, B and C were chosen, solved first by heuristics method, Kobayashi used in the beginning for the networking of system A and B. System A gave the same 8 possibilities obtained by the first two workers, system B gave 25 possibilities, The Kobayashi heuristic covered all the possible networks because of its large possible matching. Therefore the minimum structure cost is certainly one of these structures in all cases. Then Rudd heuristic applied, for two systems to give 4 possibilities in system A and 5 possibilities for B. This heuristic gives a limited number of combinations in comparison with Kobayashi because these matching minimize the possibilities of networking matching. Sometimes Rudd and Kobayashi gives the same minimum structure cost as in system A (Appendix B1), where the minimum structure cost obtained by Kobayashi = 36.25×10^6 ID/y (A=112.03 m²).

And sometimes they do not give the same minimum structure cost as in system B (Appendix B2), where the minimum structure cost obtained by Kobayashi= 58.17×10^6 ID/y (A=237.50 m²) and the minimum structure cost obtained by Rudd= 107.61×10^6 ID/y (A=662.06 m²).

From these results, Rudd heuristic is the best for system A, because it gives the same minimum structure cost obtained by Kobayashi with little number of possibilities. While system B shows that, Kobayashi is the best heuristic, where its minimum structure cost has a cost less than that for that obtained by Rudd.

To compare the results of system A and B with the previous works, the costs of the minimum cost structures are given in table (4.13):-

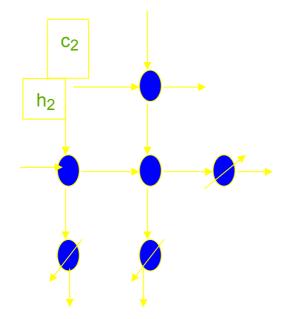
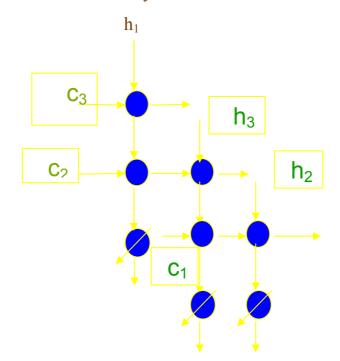

System	This study	Rathore and powers	Pho and Lapiduse, Lee et al.
А	36.2×10^{6}	15.9×10 ⁶	20.0×10^{6}
В	58.1×10 ⁶	25.0×10^{6}	34.5×10^{6}

Table (4.13): comparison of costs in (ID/y) with previous works


The big difference (40-50%) between the cost of these systems in this work and that of the past works is because of the correction to the cost of utilities (steam and cooling water).

Linnhoff systematic method is different from the previous two heuristics, which gives just one structure. If this structure cost have been compared with the minimum structure cost obtained by the previous heuristics, it is some times quite far from this minimum structure cost as in system A results (Appendix B1), where the single structure cost obtained by Linnhoff heuristic=113.6×10⁶ ID/y (A=721.0 m²) compared with the cost of the minimum structure cost obtained by the two heuristics is 36.25×10^6 ID /y (A=112.03 m²), it's far enough to be the minimum. And in the second system (B), linnhoff structure cost is 60.8×10^6 ID/y (A=255.8 m²) it's so close to that obtained by Kobayashi with cost= 58.17×10^6 ID/y and so far from that obtained by Rudd which have a cost= 107×10^6 ID/y. Appendix B2.

Linnhoff structure cost of system A

Linnhoff structure of system B

4.5.2. Discussion of Pinch Analysis Results:-

Two systems were chosen to be solved by pinch analysis "system A and C". System A when solved by this method it gives no sub network above the pinch, there is just a sub network below the pinch. Because of the pinch temperature is very high (480 °F for the hot streams and 460 °F for cold streams) compared with the temperatures of the streams that prevent the streams of lower temperature to pass through the pinch. For example the cold stream of 140 to 320 °F can not reach the pinch, also the hot stream of 320 to 200 °F. While the second hot stream is passed through one side of pinch 480 to 280 °F that lead to form just one sub network (below), because there is just one stream pass above the pinch. The three streams below can be matched to give the final structure.

System C, was also solved by pinch method, this system consists of six streams two of these streams never reached the pinch but the other streams will pass through it, that means two sub networks will be formed one above the pinch and one below the pinch. The pinch in this system would found to be (176 °F for hot streams and 156 °F for cold streams), which represented an intermediate temperature between the temperatures of streams that lead to form a complete structure of two sub networks, figure (4.2).

The number of exchangers required for the overall process is always less than or equal to that for minimum energy network. Using equation (3.4), the number of exchangers will be reduced. Reducing the number of exchangers will definitely lower the cost for equipment (Capital cost); however it will increase the cost of utilities (Operating cost). Therefore the main objective of this stage is to search for the lowest annual cost for the exchanger network. Where, in system A the original number of exchangers is 5. And after using equation (3.4) the number of exchangers will be 4. And in system C the number is reduced from 9 heat exchangers to 7.

4.5.3. Discussion of TI Method Results:-

TI method was applied on system A and C. In system A after finding the adjusted temperatures, and construct the cascade diagram the pinch temperature was found to be 460 °F for cold streams and 480 °F for hot streams. Which means it also gives one sub network because of the stream temperature is less than the pinch temperature. Therefore, there is only a sub network above the pinch, figure (4.9).

While, in system C the pinch temperature is 176 °F for hot streams and 156 °F for cold streams, most of the streams will pass through the pinch; it gives a complete structure with two sub networks, one above and another below the pinch, figure (4.2)

After the stage of finding the pinch temperature, the TI method and pinch analysis have the same procedure, where they have the same way of matching, according to its capacity flow rate. The two methods aim to find the heat exchanger network for specified systems. Certainly, there is a similarity and difference between the two methods, where both of them give a single structure which may represent the minimum cost structure or not. The procedure is the same approximately, where both methods depending on finding the temperature interval diagram in order to find the heat duty for each interval to determine the pinch temperature. But the difference here is in TI method, where the temperature interval diagram will be found by adjusting the temperatures of hot streams by a ΔT_{min} which is equal to 20 °F in this work and then the temperatures will ranked in descending order to construct the temperature interval diagram. While in pinch analysis method there is no adjusted temperatures, the temperature interval diagram was constructed by applying the temperatures of

streams on the diagram.

In the pinch analysis there are graphs for the cold and hot curves and a graph for the grand composite curve to show the pinch temperature before find the final structure. In TI method there is no such graphs; the pinch temperature was found and then used it to find the final structure after matching the streams around the pinch.

4.6. Selection the Minimum Approach Temperature ΔT_{min} :-

The design of heat transfer equipment must always adhere to the second law of thermodynamics that prohibits any temperature cross over between the hot and the cold streams i.e. a minimum heat transfer driving force must always be allowed for a feasible heat transfer design. Thus the temperature of the hot and cold streams at any point in the exchanger must always have a minimum temperature driving force (ΔT_{min}). This ΔT_{min} value is very important in the heat recovery. The value of ΔT_{min} is depending on the overall heat transfer coefficients (U) and the geometry of the heat exchanger. In a network design, the type of the exchanger to be used will determine the practical value of ΔT_{min} for the network. For the case of a shell and tube heat exchanger, the value of ΔT_{min} value is 10 °C (at best) in this work (15-20) °F will be taken, which is equal to (8.3-11.1) °C. If smaller value for ΔT_{min} is chosen, the area requirements rise. If a higher value of a ΔT_{min} is selected the heat recovery in the exchanger decreases and demand for external utilities increases. Thus the selection of ΔT_{min} value has implications for both capital and energy costs and lower capital costs. And a decrease in ΔT_{min} values result in higher total annual cost of energy and capital costs is minimized.

The heat designed on the basis of the estimated optimum ΔT_{min} value is not always the most appropriate design. Avery small value, perhaps 8 °C can lead to very complicated network design with a large total area due to low driving forces. The designer, in practice, selects a higher value (15 °C) and calculates the marginal increases in utility duties and area requirements. If the marginal cost increase is small, the higher value of ΔT_{min} is selected as the practical pinch point for the heat exchanger network.

4.6.1. The Effect of Changing ΔT_{min} :-

All the three systems are networked by $\Delta T_{min}=20$ °F, and if this value will be changed, the cost of the network will affected directly. This affect had seen when system C was solved by pinch analysis again but with $\Delta T_{min}=10^{\circ}$ F, the value of the cost will be $1,015\times10^{6}$ ID /y. While the cost for the same system before changing the $\Delta T_{min}=565.88\times10^{6}$ ID/y. This means that the total cost for the network have been changed approximately by 45% after changing the parameter of ΔT_{min} . The number of exchangers will increase also with the decrease of ΔT_{min} ; eight heat exchangers were used in case of 20 °F and nine heat exchangers in case of 10 °F.

When a small value of ΔT_{min} is chosen ($\Delta T_{min} \le 10^{\circ}$ C), the area requirements in the heat exchanger will raise, if higher value of ΔT_{min} is chosen ($\Delta T_{min} \ge$ 10°C) the heat recovery will decrease and demand for external utilities increases. This means an increase in ΔT_{min} values gives higher energy costs and lower capital costs. And a decrease in ΔT_{min} values gives lower energy costs and higher capital costs. An optimum ΔT_{min} exists when the total annual cost of energy and capital cost is minimized, where the optimum is 10° C for ΔT_{min} , in our case of shell and tube heat exchangers a value of 8.3-11.1° C is reasonable, as in most references 11.1°C was chose for this work.

Chapter Five COCLUSIONS AND SUGGESTIOANS

5.1. Conclusions:-

1. Three methods were used for this work; Heuristics method, TI and pinch analysis methods which applied on three liquid systems to find the minimum cost configuration for the heat exchanger network.

2. The log mean temperature difference is selected to be $11^{\circ}C$ (20 °F); this is the more appropriate value for the shell and tube heat exchanger. Decreasing the log mean temperature difference from $20F^{\circ}$ to $10F^{\circ}$ lead to raise the area requirements, that means a lower energy costs and higher capital costs.

3. Increasing the number of streams lead to increase the number of the possibilities; also the number of exchangers will increase with increasing the number of streams, and also reducing the number of exchangers will definitely lower the cost for equipment (Capital Cost). However it will increases the cost of utilities (Operating cost).

5.2. Suggestions and future work:-

1. This work can be extended by using two phase flow instead of single phase that means the heat capacity of the streams will be change.

2. Stream splitting can be considered for future work, it will be used if unequal number of hot and cold streams system is taken.

3. A special method for optimization can be used to determine the optimum configuration.

4. Develop a computer program to give the configurations directly for any number of hot and cold streams as figures after taking the basic design data as input data. And then the calculations of area and cost are done by this program.

References

- The Chemical Engineering Resource page, "Pinch technology: Basics for Beginners", www.solarpaces.org.2005.
- 2. Tutorial 7: "Designing and Simulating Heat Exchange Networks, <u>ChE 3GO4 winter 2004</u>, MC Master University.
- 3. Abbas .H.A *et.al.* "Heat Exchange Network Retrofit via constraint logic programming", 2005.
- Smarjit, Ghosh "Heat Exchange Network Synthesis: the possibility of Randomization", chemical eng. Journal 72(1999) PP 209-216.
- Yourun Li and R.L Motard "Optimal Pinch approach temperature in heat exchanger network", ind. Eng. Chem. Fundam. Vol.25PP 577-581, 1986.
- Sinnot R.K. "Chemical Engineering: An Introduction to Chemical Eng. Design" volume 6, Pergamon Press, New York, 1983.
- Babu B.v., Mohiddin S.B "Automated Design of Heat Exchangers using Artificial Intelligence Based Optimization", Birla Institute of technology and science.
- 8. Grossmann. I.E, Wester berg A.W, "Heat and Power Integration", Printce Hall, 1997.
- 9. Heat Exchanger Network Synthesis, 2004.
- 10.Linnhoff and Flower "Synthesis of Heat Exchange Networks", ICHE journal (vol.24, no.4), july 1978, PP 663-651.

- 11.Peter s. and Timmerhous D. "Plant Design and economics for chemical engineers", third edition, MC GRAW HILL, 1981.
- 12.sieder D. and bewin R. "process design Principles" chapter7, John wiley and sons, 1999.
- 13.Sounders E.A.D "Heat Exchangers, Selection, Design and construction", John Wiley and sons, New York, 1988.
- 14.Luy Ben and wenzel "Chemical Process Analysis", Prentice Hall International, 1988.
- 15.Nishida, Kobayashi and Ichikawa "Optimal synthesis of heat exchange systems, necessary conditions for minimum heat transfer area and their applications to systems synthesis", chemical eng. Science, vol. 26 PP 1841-1856, 1971.
- 16.Rudd D.F, powers G.J and siirola J.J, "Process synthesis", Prentice Hall, 1973.
- 17.Telange, knoph. F and pike w. "the heat exchanger network" (then) users manual and tutorial, then manuals. Louisiana State University, 2001.
- 18.Lee K.F, Masso A.H and Rudd D.F "Branch and Bound synthesis of integrated process designs". I & EC fundamentals, vol.9, no. 1 February, 1970.
- 19.Kelahan RC and Gaddy J.L "synthesis of heat exchange networks by mixed integer optimization", AICHE Journal, vol. 23, no. 6, PP 816-823, nov. 1977.
- 20.Rathore N.S and power J. "A forward Branching scheme for the synthesis of energy recovery systems", ind. Eng. Chem., process design development, vol. 14, no.2, 1975.

- 21.Linnhoff and verdveld, heat exchanger networks by pinch technology, 1981.
- 22.Heat Recovery Networks, chapter 6, <u>www.scilo.br</u>, 2001
- 23.Telang K.S, et al "An advanced process analysis system for improving chemical and refinery processes", Louisiana University.
- 24. Hopper et.al., optimal networks for heat exchange, 2000.
- 25.Nick hallale "Burning Bright trends in process integration", <u>www.aich.org/cep</u>, July 2001.
- 26.fletcher R. "practical methods of optimization" second edition, John Wiley and sons, 1987.
- 27.Kesler M.G, Parker. R.O. "optimal networks of heat exchanger", chem. Eng. Progress symposium series, no. 92, vol. 65, New York University.
- 28.Kobayashi, Umeda and Ichikawa, "synthesis of optimal heat exchange systems-an approach by the optimal assignment problem in linear programming", chem... Eng. Science, vol. 26, no. 9. 1971, PP 1367-1380.
- 29.Pho T.K and Lapiduse L. "Topic in computer-aided design", AICHE vol. 19, no.6, Nov. 1973, PP 1182-1188.
- 30.Wright D., Bacon w. "Analysis of heat exchange network using statistical time series analysis method" Ind. Eng. Chem., process des. Dev., vol 14, no.4, 1975.
- 31.Nishida N. and Lapduse "studies in chemical process and synthesis", AICHE Journal, vol. 23, no.1 Jan. 1977.
- 32.Colbert R "Industrial Heat Exchange Networks", CEP July, 1982.

- 33.Annika Carlsson, "Optimum Design of Heat Exchange Networks in Retrofit Situations", 2005.
- 34.Brend et.al., heat exchanger networks, 1996.
- 35.Vieria A.j.m, pessoa F.L.P and queiroz E.M "fluid dynamical considerations on heat exchanger networks", Brazilian Journal, chem... Eng. Vol. 17, no. 1, san Paulo, 2004.
- 36.Abbass A., Wiggins A., Lakshmanan and Morton "constraint logic programming for chemical process synthesis".
- 37. Jules Ricardo "optimization strategies for the synthesis design of highly dynamic energy systems, sep. 2000.
- 38.Optimization and networks, 2006.
- 39.Rakesh mekta "crude unit integrated energy analysis", <u>www.eptq.com</u>, 2002.

40. Juha Aaltola, "simultaneous synthesis of flexible heat exchanger networks", 2003.

41. Colin S. Howat "introduction to heat exchanger networking", university of Kansas, 2003.

42. Yeap B.L., wilso D.H, polley G.T, pugh S.J "Retrofitting Crude Oil Refinery heat exchanger to minimize fouling while maximizing heat recovery, 2001.

43. Kovac, Glavic "optimization by stage wise model for complex industrial heat exchanger network, 2005.

44. Heat Exchanger Networks, CHE 396 senior Design, <u>www.doc.gold.ac.uk/papers</u>, 2003.

45. Heat Exchange Network and utilities: Energy targets, chapter 6, 2002.

46. Standard shell and tube heat exchanger, 2005

47. Shorter communications, "a fast method for the synthesis of optimal heat exchanger networks", chem. Eng. Science, vol. 29, 1974, PP 2375-2377.

48. Vladimir G., Alexander K. and Paul B." Optimization and Generation of Heuristics Rules using a combined Fuzzy and Neural Network approach", 2006.

49.Eugene L. Grant, Grant w., Richard S., "principles of eng. Economy", eighth edition, John Wiley and sons, 1990.

50.Anthony Atkinson, Barbara Bogack and antonym zhighijarsky "Optimum design", kluwer Academic Publishers, 2001.

51. Philip F. Ostwald, "engineering cost estimating" third edition, prentice hall, New Jersey, 1992.

<u>Appendix A</u>

Cost Calculations

The cost of utilities can be corrected by

 $C_s=24*365*C_{s1}*m_w$ A_1

 $m_{w=}Q/\lambda$ Where C_s for 1000 lb (453.6 kG) of steam= 4059.15 ID

For 1 lb of steam = 2.7×10^{-3} \$

 λ = 656.6 Btu/lb

At saturated pressure 6.636 KN/m² (962.lb/in².abs)

Temperature= $280C^{\circ}(540^{\circ} F)$

 $C_W = 24*365*C_{w1}*m_w$ A₂

$m_w = Q/(Cp.\Delta T_w)$

Where C_W = for 4546 liter (1000 gal) of cooling water =124 ID

For 1 lb of cooling water $5*10^{-5}$ \$

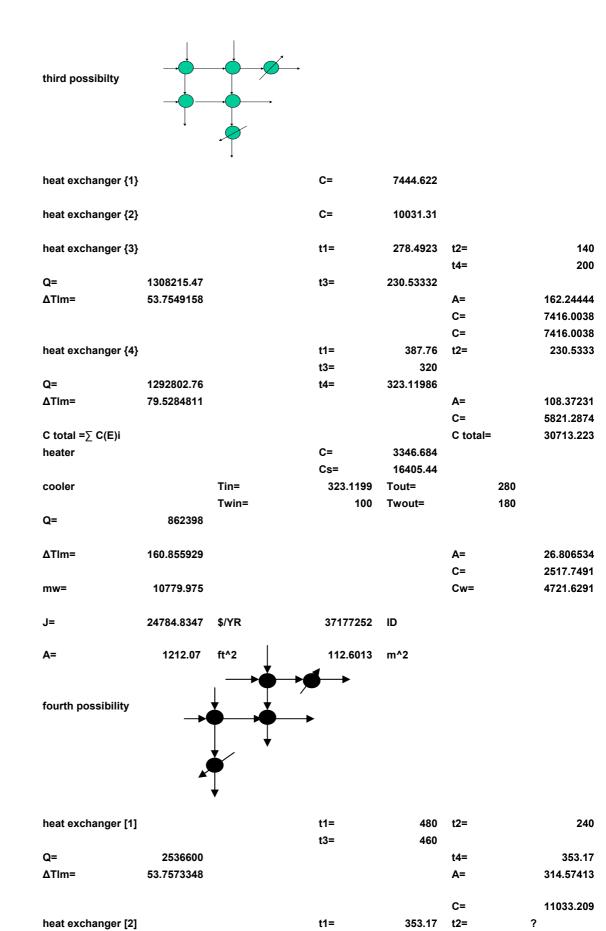
A-1

System A

Heat exchangers network optimization					
stream	m(lb/hr)	cp(Btu/lb.F) Tin		Tout	
Α	20643	0.7	140	320	
В	27778	0.6	320	200	
с	23060	0.5	240	500	
D	25000	0.8	480	280	
t1= Input temperature of hot streams.					

t2= Input temperature of cold stream.

t3= Output temperature of cold stream.


4= Output temperature of hot streams.

t4= t3=t1-20

First possibilty

	● ¹ → ● ¹ →					
\downarrow \downarrow						
heat exchang	er {1}		t1=	320	t2=	240
Q©=	691800		t3=	300		
ΔTIm=	28.2443496		t4=	278.49233		
			A=	163.2893		
C=350(A)^0.6			C=	7444.6224		
heat exchang	er {2}		t1=	480	t2=	300
Q©=	1844800		t3=	460		
			t4=	387.76		
ΔTIm=	45.8186573		A=	268.42049		
			C=	10031.305		
heat exchang	er {3}		t1=	387.76	t2=	140
					t4=	280
Q(h)=	2155200		t3=	288.09		
ΔTIm=	118.695255		A=	121.04949		
			C=	6220.794		
Ctotal=∑ C(E))i		Ctotal=	23696.722		
heaters						
heater {1}						
the cost for 1	Ib of steam=		2.7*10^-3	\$		
Q=	461200		Ts=	540	λ=	656.6
			Tin=	460	Tout=	500
ΔTIm=	57.7078016					
				A=	39.95993496	
C=350*(A)^0.0	6			C=	3199.211174	
				Cs=	16613.31465	
heater {2}			Ts=	540		
			Tin=	288.09	Tout=	320
Q=	461102.691					
ΔTIm=	235.594941			A=	9.785920891	
ms=	702.258134			C=	1375.400142	
		B1-1		Cs=	16609.80939	

Ch total =	4574.61132			Cstotal	33223.12404	
cooler	4574.01152		the cost of		ing water =5*10^	5 lb/br
COOIEI			Twin=	100 10 10 100	•	-5 10/11 180
				278.4923	Twout=	200
0-	420004E 47		Tin=	270.4923	Tout=	200
Q= ΔTIm=	1308215.47		A=	07 070544		
Δ1im=	99.2442413		A= C=	87.878514	C	7460 477
I-	42726 0656	¢MD	-	5133.3121 ID	Cw=	7162.477
J=	43726.0656	\$/YR	65589098	U		
A=	3122.15ft^2	Ļ	290.04774	m^2		
second possibilit		$\rightarrow \bullet \rightarrow$				
	3					
		Ų─ŗŲ→				
	K	\mathbf{T}				
heat exchanger {	1}	• •		C=	7444.622	
heat exchanger {			t1=	480	t2=	140
	-			t3=	320	
Q=	2601018			t4=	349.9491	
ΔTIm=	183.845044			A=	94.31921365	
				C=	5355.846816	
heat exchanger {	3}		t1=	349.9491	t2=	300
	-			t3=	329.9491	
Q=	345313.123			t4=	332.6834439	
∆TIm=	25.8246886			A=	89.14289441	
				C=	5177.499708	
Ctotal =	17977.9685					
Heaters						
heater {1}			Ts=	540	λ=	656.6
			Tin=	329.9491	Tout=	500
Q=	1960686.88					
ΔTIm=	102.53478			A=	95.61082018	
				C=	5399.73281	
				Cs=	69743.982	
Coolers						
cooler {1}			Twin=	100	Twout=	180
Q=	1308215.47		Tin=	278.4923	Tout=	200
ΔTIm=	99.2442413			A=	87.87851391	
				C=	5133.312065	
mw=	16352.6933			Cw=	7162.479674	
cooler {2}			Twin=	100	Twout=	180
_			Tin=	332.6834	Twout=	280
Q=	1053668					
ΔTIm=	165.967198			A=	42.32434725	
<i>(</i>)				C=	3311.480528	
m(w)=	13170.85			Cw=	5768.8323	
Cc total =	8444.79259					
Cw total =	12931.312	¢ \/D	44000000			
J=	75512.8143	\$/YR	113269221	ID		
A=	7761.058 ft^2		721.00229	m^2		

			t3=	320	t4=	280
Q=	1460000				t2=	218.9
ΔTIm=	45.5				A=	213.919
					C=	8754.2241
heat exchanger [3]]		t1= t3=	320 218.7273	t2=	140
Q=	1127107.8		13-	210.7275	t4=	320
ΔTIm=	105.9213				A=	70.939
					C=	4514.3901
C total=∑ C(E)i					Ctotal=	24301.823
heater					C=	3346.684
					Cs=	16405.44
			T '	054 7405	T	
cooler			Tin= Twin=	251.7435 100	Tout= Twout=	200 180
Q=	850006.8			100	inout	100
m(w)=	10625.055					
ΔTIm=	84.67				A=	66.927
					C=	4359.4215
					<u> </u>	4333.4213
J=	24170.0129	\$/YR	36255019		Cw=	
J= A=	24170.0129 1205.98	\$/YR ft ^2	36255019 112.03554	m^2	Cw=	4563.78
				m^2	Cw=	
A=				m^2	Cw=	
A=				m^2	Cw=	
A=				m^2	Cw=	
A=		ft^2		m^2	Cw=	
A=				m^2	Cw=	
A= fifth possibility	1205.98	ft^2		m^2	Cw=	
A=	1205.98	ft^2			Cw= t2=	
A= fifth possibility heat exchanger [1]	1205.98	ft^2	112.03554 → 9 →	320	t2=	4563.78
A= fifth possibility	1205.98	ft^2	112.03554 → 9 →			4563.78
A= fifth possibility heat exchanger [1]	1205.98	ft^2	112.03554	320	t2=	4563.78
A= fifth possibility heat exchanger [1] Q=	1205.98	ft^2	112.03554	320	t2= t3=	4563.78 140 140
A= fifth possibility heat exchanger [1] Q=	1205.98] 2000016 50.4	ft^2	112.03554	320	t2= t3= A=	4563.78 140 140 264.55238
A= fifth possibility heat exchanger [1] Q= ΔTIm= heat exchanger [2]	1205.98] 2000016 50.4 2]	ft^2	112.03554	320 200	t2= t3= A= C= C=	4563.78 140 140 264.55238 9944.319 11033.21
A= fifth possibility heat exchanger [1] Q= ΔTIm=	1205.98] 2000016 50.4 2]	ft^2	112.03554	320 200 353.17	t2= t3= A= C=	4563.78 140 140 264.55238 9944.319
A= fifth possibility heat exchanger [1] Q= ΔTIm= heat exchanger [2]	1205.98] 2000016 50.4 2]	ft^2	112.03554	320 200	t2= t3= A= C= C=	4563.78 140 140 264.55238 9944.319 11033.21 278.4085
A= fifth possibility heat exchanger [1] Q= ΔTIm= heat exchanger [2] heat exchanger [3]	1205.98] 2000016 50.4]	ft^2	112.03554	320 200 353.17	t2= t3= A= C= C= t2=	4563.78 140 140 264.55238 9944.319 11033.21
A= fifth possibility heat exchanger [1] Q= ΔTIm= heat exchanger [2] heat exchanger [3] Q= ΔTIm=	1205.98] 2000016 50.4 2]] 606904.5	ft^2	112.03554	320 200 353.17	t2= t3= A= C= c= t2= t4= A= C=	4563.78 140 140 264.55238 9944.319 11033.21 278.4085 322.82478 104.5756 5698.0501
A= fifth possibility heat exchanger [1] Q= ΔTIm= heat exchanger [2] heat exchanger [3] Q=	1205.98] 2000016 50.4 2]] 606904.5	ft^2	112.03554	320 200 353.17	t2= t3= A= C= t2= t4= A=	4563.78 140 140 264.55238 9944.319 11033.21 278.4085 322.82478 104.5756

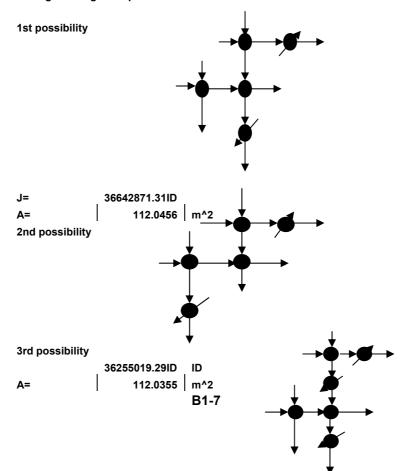
heater					cost=	3346.684
cooler			323.1199 100	Tout= Twout=	Cs= 280 180	16405.44
Q=	862398		100	m(w)	10750	
ΔTIm=	160.79				A=	35.756701
					C=	2992.8332
I _	04400 5000	¢ N/D	20040074		Cw=	4721.6312
J= A=	24428.5809 1183.17	\$/YR ft^2	36642871 109.91649	ID m^2		
sixth possibility	1100.17	11 2	105.51045			
				•		
heat exchanger [1]			•		C=	9963.918
heat exchanger [2]					C=	11033.21
heat exchanger [3]			t1=	333	t2=	278.4085
_			t3=	320		
Q=	601001.3				t4=	340
ΔTIm=	31.23701				A=	128.26693
					C=	6440.7562
C total =∑ C(E)i					C total=	27437.884
heater					cost= Cs=	3346.684
cooler		Tin=	353.17	Tout=	333	16405.44
		Twin=	100	Twout=	180	
Q=	403400			m(w)=	5042.5	
ΔTIm=	189.487663				A=	14.192657
					C=	1719.1203
cooler		Tin=	309.9499	Tout=	Cw= 280	2208.615
COOlei		Twin=	509.9499 100	Twout=	180	
Q=	598998		100	m(w)=	7487.475	
ΔTIm=	153.618455			. /	A=	25.995054
					C=	2471.7382
					Cw=	2208.615
C=∑ C©i					C=	4190.8585
J=	25391.1117	\$/YR	38086668	ID	Cw=	3279.5141
A=	1261.81	ft^2	117.22215	m^2		

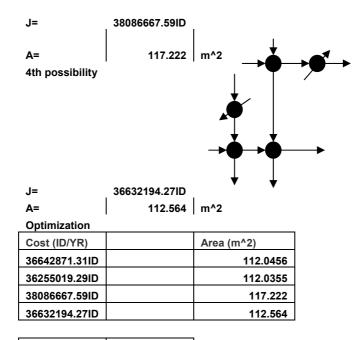
seventh possibility		, 	•	● →			
heat exchanger [1]	▲ →	Ť,	.	→	C=	11033.21	
heat exchanger [2]		↓	↓		C=	8732.754	
heat exchanger [3]				t1=	?	t2=	140
Q=	1137617.36			t3=	218.7273	t4= t2=	200 268.2565
ΔTIm=	54.5973573					A=	138.90994
						C=	6756.2863
∑ C(E)i=						Ct=	26522.25
heater						cost= Cs=	3346.684 16405.44
cooler		Tin=		320	Tout=	2682565	10405.44
Coolei		Twin=		100	Twout=	180	
Q=	862398.566				m(w)=	10779.98207	
ΔTIm=	153.695587				()	A=	37.407214
						C=	3074.9727
						Cw=	4721.6321
J=	24421.4628	\$/YR		36632194	ID		
A=	1182.603	ft^2		109.86382	m^2		
eighth possibility			1				
		-	× • •	′ → ♦ → →	→		
heat exchanger [1]					•	C=	7444.622
heat exchanger [2]				t1=	?	t2=	140
Q=	2601018			t3= t1=	320 410.0509	t4=	280
Q- ΔTIm=	113.194641			LI-	410.0505	A=	153.18852
Δ1111-	113.134041					A- C=	7164.7952
heat exchanger [3]				t1=	480	t2=	?
neat exchanger [0]				t3=	460	t4=	410.0509
Q=	1398982			10-	400	t2=	338.66592
ΔTIm=	40.3857207					A=	230.93674
						C=	9165.6625
C total=∑C(E)i						C total=	23775.08
heater [1]						cost=	3346.684
						Cs=	16405.44
heater [2]				Tin=	300	Tout=	338.6659
				Ts=	540	λ=	656.6

Q=	445817.827				m(s)=	678.97933
ΔTIm=	220.101294				A=	10.12756
C(h)=∑C(H)i					Cs=	15858.27
C(h)=	1404.01241					
cooler					C=	5566.29
					Cw=	7206.611
J=	42879.5276	\$/YR	64319291	ID		
A=	3022.06	ft^2	280.74937	m^2		

optimization

the costs values		Areas (m^2)
J1=	65589098.34	290.04774
J2=	113269221.5	721.00229
J3=	37177252.02	112.6
J4=	36255019	112.0355
J5=	36642871.31	112.0456
J6=	38086667.59	117.222
J7=	36632194.27	112.564
J8=	64321627.97	280.74937

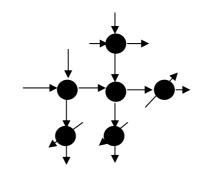

min.= 36255019 112.0355


The fourth structer is the optimum

Rudd,Lee,and Masso heuristic

stream		cp(Btu/lb.F) Tin	Tin	Tout
Α	20643	0.7	140	320
В	27778	0.6	320	200
С	23060	0.5	240	500
D	25000	0.8	480	280

matching the highest supply temp.hot stream with the highest target temperature cold stream.


min.= 36255019.29ID

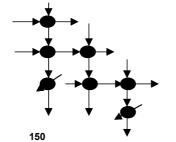
112.0355

THE SECOND STRUCTURE IS THE OPTIMUM.

Linhoff heuristic

stream	m(lb/hr)	cp(Btu/lb.F) Tin	Tin	Tout	m.Cp
А	20643	0.7	140	320	14450.1
В	27778	0.6	320	200	16666.8
С	23060	0.5	240	500	11530
D	25000	0.8	480	280	20000

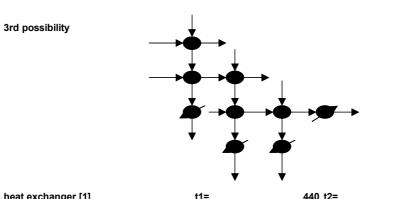
J=	113269221.5ID	
A=	721.002288	m^2

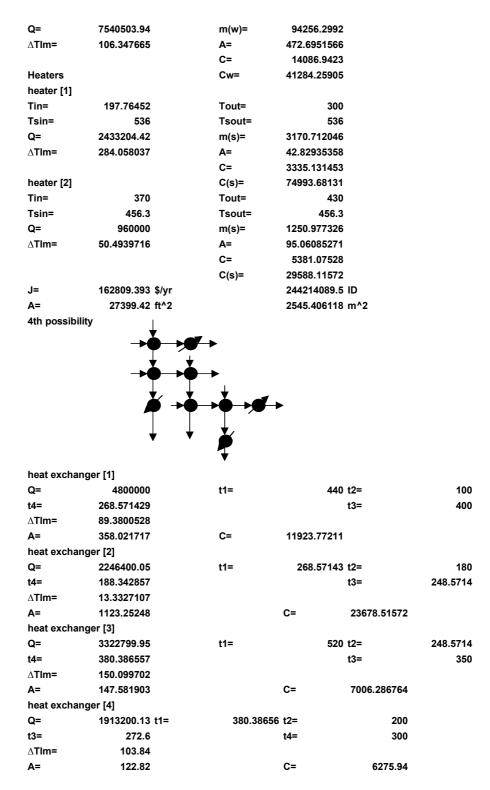

this structure is not represent the optimum ,which is quite far from the optimum .

Appendix B2

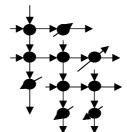
System B

Stream	m(lb/hr)	ср	Tin	Tout
1	20000	0.8	100	430
2	40000	0.7	440	150
3	36000	0.91	180	350
4	35000	0.68	520	300
5	31000	0.85	200	400
6	42000	0.8	390	150


1st possibility

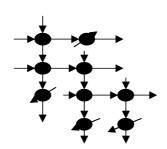

U=	150	¥			
heat exchan	iger [1]	t1=	440 t2=	200	
			t3=	400	
Q=		5270000			
t4=		251.7857143			
Δ TIm=		45.63951504			
A=	769.800759	C=	18875.35139		
heat exchan	ger [2]	t1=	251.78571	t2=	100
Q=	2108571.2			t3=	231.7857
t4=	176.4796				
Δ TIm=	42.1083744				
A=	333.832439	C=	11433.65716		
heat exchan	ger [3]	t2=	231.7857	t1=	520
Q=	3171428.8	t3=	430		
t4=	386.746689				
Δ TIm=	119.553414				
A=	176.84864	C=	7809.605194		
heat exchan	ger [4]	t1=	386.74669	t2=	180
Q=	2064571.2			t4=	300
t4=	243.021099				
Δ TIm=	131.506286				
A=	104.662738	C=	5700.898392		
heat exchan	iger [5]				
Q=	3504628.8	t1=	390	t2=	243.0211
t4=	285.695571			t3=	350
Δ TIm=	41.3228126				
A=	565.406624	C=	15685.00205		
COOLERS					
U=	150	B2-1			

cooler [1]				
Tin=	176.4796	Tout=	150	
Twin=	100	Twout=	156.4796	
Q=	756000			
∆TIm=	32.7407			
A=	153.936843	C=	7185.774589	
cp for wate	er =1			
m(w)=	13385.3639	Cw=13385.3	364*24*365*5*10^-5	
Cw=	5862.7894 \$/ yr			
cooler [2]				
Tin=	285.6956	Tout=	150	
Twin=	100	Twout=	180	
Q=	4559372.16			
∆TIm=	74.4056172			
m(w)=	56992.152			
Cw=	24962.5626			
A=	408.51505	C=	12906.03625	
total cost o	of heat exchangers=	59504.514	2	
	of coolers=	20091.8108	34	
	of cooling water=	30825.3519		
	-			
	ost of the structure=J < +Cc+Ch}+U			
J=	38784.9845 \$/YR	58177476.7		
о А=	2556.57 ft^2	237.50535		
heat excha	unger [1]		_ →	
Q=	5569200	t1=	440 t2=	180
t4=	241.1		t3=	350
∆TIm=	74.6195813			
A=	497.563767	C=	14527.04537	
heat excha	inger [2]			
Q=	1937600	t1=	241.1 t2=	100
t4=	171.9		t3=	221.1
∆TIm=	40.5613253			
A=	318.464282	C=	11114.87244	
heat excha				
Q=	3342400	t1=	520 t2=	221.1
⊈ t4=	379.563025		t3=	430
∆TIm=	121.02107	B2-2		-100


A=	184.122208	C=	8000.769324	
heat exchang	ger [4]			
Q=	4204485.05	t1=	379.56303 t2=	200
t4=	202.903989		t3=	359.563
∆TIm=	8.8596652			
A=	3163.76519	C=	44074.82435	
heat exchang	ger [5]	t1=	390 t2=	359.563
Q=	275014.95		t3=	370
T4=	381.815031			
∆TIm=	20			
A=	91.67165	C=	5265.129692	
		Ctotal=	82982.64	
Coolers				
cooler [1]				
Tin=	171.9	Tout=	150	
Twin=	100	Twout=	151.9	
Q=	613200	m(w)=	11815.0289	
∆TIm=	32.7407	A=	124.8598837	
		C=	6337.555857	
		C(w)=	5174.982659	
Heaters				
heater [1]				
Tin=	370	Tout=	400	
Tsin=	456.3	Tsout=	456.3	
Q=	790500			
m(s)=	1030.10164			
∆TIm=	70.2353953	A=	56.27504454	
		C=	3928.778575	
heater [2]		Cs=	28119.03	
Tin=	202.904	Tout=	300	
Tsin=	456.3	Tsout=	456.3	
Q=	2310884.8			
m(s)=	3011.31717			
∆TIm=	200.953588	A=	57.49797316 C=	3979.784588
			Cs=	71223.67382
	heat exchangers=	82982.0	64	
total cost of	coolers=	6337.55	59	
total cost of		7908.56310		
	cooling water=	5174.982		
total cost of		99342.7038		
J=	105308.543 \$/YR	157962814		
A=	15473.449 FT^2	1437.4834 [,]	12 M^2	

heat excha	nger [1]	t1=	440	t2=	200
Q=	5270000			t3=	400
t4=	251.785714				
Δ TIm=	45.639515				
A=	769.800759	C=	18875.35139		
heat excha	nger [2]	t1=	251.78571	t2=	180
Q=	1696499.86			t3=	231.78571
t4=	191.196418				
Δ TIm=	15.1749693				
A=	745.306221				
C=	18512.6629				
heat excha	nger [3]	t1=	520	t2=	231.7857
Q=	3872700.47			t3=	350
t4=	357.281493				
Δ TIm=	146.623938				
A=	176.083138	C=	7789.304924		
heat excha	nger [4]				
Q=	3796503.84	t1=	357.28149	t2=	100
t4=	197.764522			t3=	337.28149
Δ TIm=	49.0062247				
A=	516.465525		C=	14855.69063	
heat excha	nger [5]	t1=	390	t2=	337.2815
Q=	523496			t3=	370
t4=	374.419762				
Δ TIm=	27.6907952				
A=	126.033698		C=	6373.236762	
Coolers					
cooler [1]					
Tin=	191.19642	Tout=	150		
Twin=	100	Twout=	171.19462		
Q=	1153499.76	m(w)=	16202.06358		
Δ TIm=	32.7419514	A=	234.8668318		
		C=	9258.935485		
cooler [2]		C(w)=	7096.503849		
Tin=	374.41976	Tout=	150		
Twin=	100	Twout=	180		

heat excha Q=	9749500	t1=	390 t2=	272.6072
t4=	99.8363095	U -	t3=	37
∆TIm=	49.6556326		13-	57
A=	1308.94852	C=	25955.0329	
Coolers	1500.54052	0-	23333.0323	
cooler [1]				
Tin=	188.34286	Tout=	150	
Twin=	100.34200	Twout=	168.34286	
Q=	1073600.08	Twout-	100.34200	
u_− m(w)=	15709.0217			
∆TIm=	32.7407			
A=	218.606623	C=	8868.823938	
A-	210.000025	C(w)=	6880.55151	
cooler [2]		C(W)-	0000.33131	
Tin=	313.62203	Tout=	150	
Twin=	100	Twout=	180	
1 WIII-	100	Twout-	100	
Q=	5497700.21			
u= m(w)=	68721.2526			
∆TIm=	85.0688697			
A=	430.843091	C=	13324.76394	
Heaters	1001010001	C(w)=	30099.90864	
heater [1]		-()		
Tin=	400	Tout=	430	
Tsin=	456.3	Tsout=	456.3	
Q=	480000			
m(s)=	625.488663			
∆TIm=	39.4153083	C=	4119.038325	
A=	60.8900477	Cs=	14794.05786	
heater [2]				
Tin=	370	Tout=	400	
Tsin=	456.3	Tsout=	456.3	
Q=	790500			
m(s)=	1030.10164			
∆TIm=	70.2353953			
A=	56.2750445	C=	3928.778575	
		c(s)=	24363.96403	
total cost o	of heat exchangers =	64888.	12	
	of coolers =	22193.	58	
total cost o	of heaters=	8047.3	81	
	of cooling water =	36980.4		
total cost o	-	24363.9		
J=	70857.375 \$/YR	106286062	5 ID	
A=	6980.101 ft^2	648.45138		



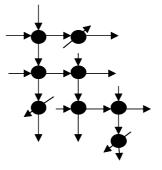
		-		
heat excha	nger [1]		* *	
Q=	4800000	t1=	440 t2=	100
t4=	268.571429		t3=	400
Δ TIm=	89.3800528			
A=	358.021717	C=	11923.77211	
heat excha	nger [2]			
Q=	2246400.05	t1=	268.57143 t2=	180
t4=	188.342855		t3=	248.5714
∆TIm=	13.3327212			
A=	1123.2516	C=	23678.50458	
heat excha	nger [3]			
Q=	3977999.95	t1=	390 t2=	248.5714
t4=	271.607144		t3=	370
∆TIm=	21.4821201			
A=	1234.51501	C=	25059.12309	
heat excha	nger [4]			
Q=	1359848.14	t1=	271.60714 t2=	200
t4=	231.135469		t3=	251.6071
∆TIm=	25.1583653			
A=	360.343534	C=	11970.10844	
heat excha	nger [5]			
Q=	3910151.86	t1=	520 t2=	251.6071
t4=	355.707905		t3=	400
∆TIm=	111.862129			
A=	233.033996	C=	9215.515081	
Coolers				
cooler [1]				
Tin=	370	Tout=	350	
Twin=	100	Twout=	180	
Q=	655200			
m(w)=	8190			
∆TIm=	218.629535			
A=	19.9790024	C=	2110.631052	
cooler [2]		C(w)=	3587.22	
Tin=	355.70791 Tout=	30	00	
Twin=	100 Twout=	18	30	
Q=	1325848.26			
m(w)=	16573.1032			
∆TIm=	187.591888			
A=	47.1181803	C=	3531.67841	

cooler [3]		Cw=	7259.019213	
Tin=	188.34286 Tout=		50	
Twin=	100 twout=	168.342	86	
Q=	1073600.08			
m(w)=	15709.0217			
∆TIm=	32.7407 A=	218.60662	29	
		C=	8868.823938	
		C(w)=	6880.55151	
cooler [4]				
Tin=	231.13547	Tout=	150	
Twin=	100	Twout=	180	
Q=	2726151.79			
m(w)=	34076.8974			
∆TIm=	50.5656102	A=	359.421061	
		C=	11951.71305	
Heaters		C(w)=	14925.68106	
heater [1]				
Tin=	400	Tout=	430	
Tsin=	456.3	Tsout=	456.3	
Q=	480000			
m(s)=	625.488663			
∆TIm=	39.4153083	A=	60.89004768	
		C=	4119.038325	
		C(s)=	14794.05786	
total cost o	f heat exchangers =		81754.80962	
total cost o	f coolers =		26462.84645	
total cost o	f heaters=		4119.038325	
total cost o	f cooling water=		32652.47178	
total cost o	f steam=		14794.05786	
\$/yr	58680.1991 J=		88020298.62 ID	
ft^2	5097.67 A=		473.573543 m^2	
6th possibil	ity	≻♥ ►	→ →	
	_	→ ∳→ ,∳	/	
heat exchar t1=		↓ ↓ t2=	200	
t1=	390	↓ ↓ t2=	200	
		↓ ↓ t2= t4=	200 256.6815476	

heat exchan	aer [2]				
t1=	256.6815	t2=	100		
t3=	236.6815				
Q=	2186904	t4=	191.5950714		
∆TIm=	47.0510943	A=	309.8622935	C=	10933.75361
heat exchan	iger [3]				
t1=					
t3=					
Q=					
∆TIm=					
heat exchan	iger [4]				
t1=	520	t2=	236.6815		
t4=	430				
Q=	3093096	t4=	390.0379832		
∆TIm=	118.877624	A=	173.461071	C=	7719.501544
heat exchan	iger [5]				
t1=	390.038	t2=	180		
t3=	300				
Q=	2142904.4	t3=	245.4122222		
∆TIm=	131.930062	A=	108.2848682	C=	5818.46877
Coolers					
cooler [1]	440	t2=	245.4122		
Tin=	350				
Twin=	3426296.33	t4=	317.632274		
Q=	80.7841989	A=	282.7530115	C=	10349.33364
∆TIm=					
		_			
	191.5951	Tout=	150		
	100	Twout=	171.5951		
	1397595.36	m(w)=	19520.82419		
	32.7407	A=	284.5785945	C=	10389.37405
cooler [2]			450	C(w)=	8550.120995
Tin=	317.6323	Tout=	150		
Twin=	100	Twout=	180		
Q=	4693704.4	m(w)=	58671.305	•	
∆Tim=	86.5450663	A=	361.5614848	C=	11994.36722
Heaters				C(w)=	25698.03159
heater [1]		T	400		
Tin= Tain	370	Tout=	400		
Tsin Q=	456.3	Tsout=	456.3		
	790500	m(s)= A=	1030.101642	C=	2020 770575
∆TIm=	70.2353953	A-	56.27504454		3928.778575
total cost of	heat exchangers=	54825.761	82	C(s)=	24363.96403
total cost of	-	22383.741			
total cost of		3928.7785			
	f cooling water=	34248.152			
total cost of	-	24363.964			
J=	66725.9448 \$/YR	100088917			
3= A=	6315.06 ft^2	586.6690			
		B2-9	=		
		•			

heat exchanger [1]

t1=	390	t2=	200		
t3=	370				
Q=	4479500	t4=	256.6815476		
Δ TIm=	35.212603	A=	848.0865031	C=	20004.70426
heat excha	nger [2]				
t1=	256.6815	t2=	180		
t3=	236.6815				
Q=	1856885.94	t4=	201.4170375		
Δ TIm=	20.7004358	A=	598.0183074	C=	16221.71369
heat excha	nger [3]				
t1=	440	t2=	236.6815		
t3=	350				
Q=	3712314.06	t4=	307.417355		
∆TIm=	79.981642	A=	309.4305115	C=	10924.60959
heat exchai					
t1=	307.4174	t2=	100		
t3=	287.4174				
Q=	2998678.4	t4=	200.3216979		
∆TIm=	49.8072808	A=	401.3708237	C=	12770.13605
heat exchai					
t1=	520	t2=	287.4174		
t3=	430				
Q=	2281321.6	t4=	424.1461513	0-	0074 4000
∆TIm=	111.740647	A=	136.1081316	C=	6674.1888
heater [1]					
Tin=	370	Tout=	400		
Tsin=	456.3	Tsout=	456.3		
1311-	400.0	13001-	450.5		
Q=	790500	m(s)=	1030.101642		
∆TIm=	70.2353953	A=	56.27504454	C=	3928.778575
Coolers				C(s)=	24363.96403
cooler [1]					
Tin=	201.417	Tout=	150		
Twin=	100	Twout=	180		
		B2-10			


		<i>.</i>	04505 4 A		
Q=	1727611.2	m(w)=	21595.14	6 -	44502 04620
∆TIm=	33.7128081	A=	341.6330069	C=	11593.21629
cooler [2]				C(w)=	9458.67132
cooler [2] Tin=	200.3217	Tout=	150		
Twin=	100	Twout=	180		
1 WIII-	100	Twout-	100		
Q=		m(w)=	17612.595		
α– ∆TIm=	1409007.6	A=	284.9617534	C=	10397.76479
Δ1111-	32.9636658	A-	204.0017004	C(w)=	7714.31661
cooler [3]	02.000000			0(11)-	7714.01001
Tin=	424.1462	Tout=	300		
Twin=	100	Twout=	180		
Q=	2954679.56	m(w)=	36933.4945		
∆TIm=	221.33984	A=	88.99375613	C=	5172.300716
				C(w)=	16176.87059
total cost o	f heat exchangers =		66595.35239	()	
total cost o	-		27163.2818		
total cost o			3928.778575		
	f cooling water=		33349.85852		
total cost o	•		24363.96403		
J=	67482.5638 \$/yr		101223845.7 ID/YR		
A=	6434.86 ft ²		597.798494 m^2		
8th possibi	lity I				
	·				
	$\rightarrow \phi \rightarrow$				
	↓ ↓				
	→♥→♥)→♥→			
		. 4			
	, Š →Č)→•Ò→	•		
		T			
	· · · · · · · · · · · · · · · · · · ·				
	•	•			
heat excha	nger [1]				
t1=	390	t2=	180		
t3=	350				
Q=	5569200	t4=	224.25		
∆TIm=	42.0892438	A=	882.1256139	C=	20482.65754
heat excha	nger [2]				
t1=	224.25	t2=	100		
t3=	204.25				
Q=	1668000	t4=	174.6071429		
Δ TIm=	41.4789046	A=	268.0880828	C=	10023.84978
heat excha	nger [3]				
t1=	440	t2=	204.25		
			B2-11		

t3=	400				
Q=	3132000	t4=	328.1428571		
∆TIm=	74.2061573	A=	281.3782677	C=	10319.11317
heat exchai	nger [4]				
t1=	328.1429	t2=	200		
t3=	308.1429				
Q=	2849565.42	t4=	226.3727066		
∆TIm=	23.0396508	A=	824.5395276	C=	19669.57302
heat exchai	nger [5]				
t1=	520	t2=	308.1429		
t3=	400				
Q=	2420434.59	t4=	418.3010679		
∆TIm=	115.008908	A=	140.3041799	C=	6796.892641
heater [1]					
Tin=	400	Tout=	430		
Tsin=	456.3	Tsout=	456.3		
Q=	480000	m(s)=	625.488663		
Δ TIm=	39.4153083	A=	60.89004768	C=	4119.038325
				C(s)=	14794.05786
Coolers					
cooler [1]					
Tin=	174.6071	Tout=	150		
Twin=	100	Twout=	154.6071		
Q=	826798.56	m(w)=	15140.8619		
∆TIm=	32.7407	A=	168.3528573	C=	7582.289099
				C(w)=	6631.697513
cooler [2]					
Tin=	226.3727	Tout=	150		
Twin=	100	Twout=	180		
Q=	2138435.6	m(w)=	26730.445		
∆TIm=	48.1635872	A=	295.9961698	C=	10637.50309
				C(w)=	11707.93491
cooler [3]					
Tin=	418.3011	Tout=	300		
Twin=	100	Twout=	180		
Q=	2815566.18	m(w)=	35194.57725		
∆TIm=	218.591584	A=	85.86991727	C=	5062.588999
total cost o	f heat exchangers=		67292.08615	C(w)=	15415.22484
total cost o	f heaters=		4119.038325		
total cost o	f coolers=		23282.38119		
total cost o	f cooling water=		33754.85726		
total cost o	f steam=		14794.05786		
J=	58018.2657 \$/YR		87027398.52 ID/YR		
A=	5002.2 ft^2		464.70438 m^2		
		B2-12			

9th possibi	lity	Ť			
		→∳→ø	′ →		
		¥ ¥			
		→●→●	→ ,		
		± _ ±			
		+ 👗	- 👗		
heat excha	nger [1]				
t1=	390	t2= ♥	★ ₁₀₀		
t3=	370				
Q=	4320000	t4=	261.4285714		
Δ TIm=	67.7232709	A=	425.2600269	C=	13220.89274
heat excha					
t1=	261.4286	t2=	180		
t3=	241.4286				
Q=	2012400.94	t4=	201.535715		
∆TIm=	20.7583906	A=	646.2931777	C=	16995.18073
heat excha	nger [3]				
t1=	440	t2=	241.4286		
t3=	350				
Q=	3556799.06	t4=	312.971462		
∆TIm=	80.4187279	A=	294.8566134	C=	10612.91212
heat excha		40-	200		
t1= t3=	312.9715 292.9715	t2=	200		
(3– Q=	292.9715	t4=	225.4786777		
∆TIm=	22.6289099	(4- A=	721.7313401	C=	18159.06081
	12:0200000	~	12111010401	C C	
heat excha	nger [5]				
t1=	520	t2=	292.9715		
t3=	400				
Q=	2820200.98	t4=	401.5041607		
∆TIm=	120	A=	156.6778319	C=	7262.273094
coolers					
cooler [1]					
Tin=	201.5357	Tout=	150		
Twin=	100	Twout=	180		
Q=	1515149.58	m(w)=	18939.36975		
∆TIm=	33.7931009	A=	298.9070827	C=	10700.14758
cooler [2]				C(w)=	8295.443951
Tin=	225.4787	Tout=	150		
Twin=	100	Tout=	180		

Q=	2113403.6	m(w)=	26417.545		
∆TIm=	47.703645	A =	295.3517981	C=	10623.60258
				C(w)=	11570.88471
cooler [3]				.,	
Tin=	401.5042	Tout=	300		
Twin=	100	Twout=	180		
Q=	2415799.96	m(w)=	30197.4995		
∆TIm=	210.569124	A =	76.48477989	C=	4722.946837
				C(w)=	13226.50478
heater [1]				.,	
Tin=	370	Tout=	430		
Tsin=	456.3	Tsout=	456.3		
Q=	960000	m(s)=	1250.977326		
∆TIm=	50.4939716	A =	95.06085271	C=	5381.07528
				C(s)=	29588.11572
total cost o	of heat exchangers =		66250.31949	(-)	
	of coolers=		26046.69701		
	of heaters=		5381.07528		
	of cooling water=		33092.83344		
total cost of	-		29588.11572		
J=	72448.7583 \$/YR		108673137.5 ID/YR		
A=	7243.328 ft^2		672.9051712 m^2		
heat excha	ngor [4]		A		
t1=	390 390	t2=	▼ 100		
t3=	370	12-	100		
Q=	4320000	t4=	261.4285714		
α– ∆Tim=	67.7232709	A=	425.2600269		
	01.1202100	C=	13220.89274		
heat excha	anger [2]	0-	13220.03214		
t1=	261.4286	t2=	200		
t3=	241.4286		200		
Q=	1091643.61	t4=	228.9392068		
∆TIm=	24.1950005	A=	300.7904075		
,		C=	10740.54783		
heat excha	anger [3]	-			
t1=	440	t2=	241.4286		
t3=		-			
Q=	400				
Q-		t4=	290.7729861		
∆TIm=	400 4178356.39 44.5088294	t4= A=	290.7729861 625.8468179		
	4178356.39				

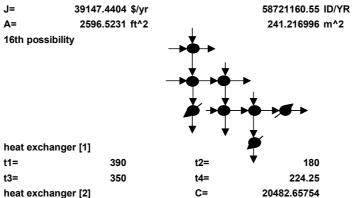
heat exchar	iger [4]		
t1=	290.773	t2=	180
t3=	270.773		
Q=	2973723.48	t4=	184.56859
∆TIm=	10.4511487	A=	1896.903758
		C=	32426.13769
heat exchar	iger [5]		
t1=	520	t2=	270.773
t3=	350		
Q=	2595476.52	t4=	410.9463647
Δ TIm=	154.60747	A=	111.9168223
		C=	5934.788776
Coolers			
cooler [1]			
Tin=	228.9392	Tout=	150
Twin=	100	Twout=	180
Q=	2652357.12	m(w)=	33154.464
∆TIm=	49.4677043	A=	357.4530299
		C=	11912.40455
		C(w)=	14521.65523
cooler [2]	404 5000	- ,	
Tin=	184.5686	Tout=	150
Twin=	100	Twout=	164.5686
Q=	967920.8	m(w)=	14990.58056
∆TIm=	32.7407	A=	197.0881907
		C=	8334.209359
cooler [3]	440.0404	Cw=	6565.874286
Tin= Twin=	410.9464 100	Tout=	300 180
Q=	2640524.32	Twout=	
Q– ∆TIm=		m(w)=	33006.554
Δ1 m -	215.102311	A= C=	81.83777943 4918.586874
		C= Cw=	14456.87065
heaters		Cw-	14450.07005
heater [1]			
Tin=	370	Tout=	430
Tsin=	456.3	Tsout=	456.3
Q=	960000	ms=	1250.977326
∆TIm=	50.4939716	A=	95.06085271
		C=	5381.07528
		Cs=	29588.11572
total cost of	f heat exchangers=		55031.43596
total cost of	-		25165.20079
total cost of			5381.07528
	f cooling water=		35544.40017
total cost of	0		29588.11572
J=	73690.2871		110535430.6 ID/YR
A=	7451.385		692.2336665 m^2

			-+
heat excha	• • •		
t1=	440	t2=	100
t3=	400		
Q=	4800000	t4=	268.5714286
Δ TIm=	89.3800528	A=	358.0217173
		C=	11923.77211
heat excha	nger [2]		
t1=	268.5714	t2=	200
t3=	248.5714		
Q=	1279856.39	t4=	222.8622432
∆TIm=	21.399228	A=	398.7235405
		C=	12719.53312
heat excha	nger [3]		
t1=	520	t2=	248.5714
t3=	400		
Q=	3990143.61	t4=	352.3469071
∆TIm=	111.691423	A=	238.1647287
		C=	9336.723789
heat excha	nger [4]		
t1=	352.3469	t2=	180
t4=	300		
Q=	1245856.22	t3=	218.0297991
Δ Tim=	127.024104	A=	65.38686677
		C=	4298.94967
heat excha	nger [5]		
t1=	390	t2=	218.0298
t3=	350		
Q=	4323343.75	t4=	261.329055
∆TIm=	41.6278393	A=	692.3801994
Coolers		C=	17712.29464
cooler [1]			
Tin=	222.8622	Tout=	150
Twin=	100	Twout=	180
Q=	2040141.6	m(w)=	25501.77
Δ TIm=	46.339515	A=	293.5063951
		C=	10583.72594
		C(w)=	11169.77526

cooler [2]				
Tin=	261.3291	Tout=	150	
Twin=	100	Twout=	180	
Q=	3740657.76	m(w)=	46758.222	
∆TIm=	64.3994476	A=	387.2349735	
		C=	12498.35306	
heater		C(w)=	20480.10124	
Tin=	400	Tout=	430	
Tsin=	456.3	Tsout=	456.3	
Q=	480000	m(s)=	625.488663	
∆TIm=	39.4153083	A=	60.89004768	
		C=	4119.038325	
		C(s)=	14794.05786	
total cost o	f heat exchangers=		55991.27334	
total cost o	-		23082.079	
total cost o			4119.038325	
	f cooling water=		31649.8765	
total cost of	-		14794.05786	
J=	54763.1734		82144760.13 ID	/YR
A=	3368.32		312.916928 m	
12th possib	oility	I		
	-•	∳→∳→ ¢	↓ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•
				•
			↓ ,•,*	•
t1=	440		↓ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•
heat exchar t1= t2=	440 180			•
t1= t2= t3=	440 180 350			•
t1= t2= t3= C=	440 180 350 14527.05			•
t1= t2= t3= C= heat exchar	440 180 350 14527.05 nger [2]			•
t1= t2= t3= C= heat exchar t1=	440 180 350 14527.05 nger [2] 241.1	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	200	•
t1= t2= t3= C= heat exchar t1= t3=	440 180 350 14527.05 nger [2] 241.1 221.1			
t1= t2= t3= C= heat exchar t1= t3= Q=	440 180 350 14527.05 nger [2] 241.1 221.1 555985	t4=	221.2433929	
t1= t2= t3= C= heat exchar t1= t3= Q=	440 180 350 14527.05 nger [2] 241.1 221.1	t4= A=	221.2433929 179.7955972	
t1= t2= t3= C= heat exchar t1= t3= Q= ∆TIm=	440 180 350 14527.05 nger [2] 241.1 221.1 555985 20.6154473	t4=	221.2433929	•
t1= t2= t3= C= heat exchar t1= t3= Q= ∆TIm= heat exchar	440 180 350 14527.05 nger [2] 241.1 221.1 555985 20.6154473	t4= A=	221.2433929 179.7955972	•
t1= t2= t3= C= heat exchar t1= t3= Q= ∆TIm= heat exchar t1=	440 180 350 14527.05 nger [2] 241.1 221.1 555985 20.6154473 nger [3]	t4= A= C=	221.2433929 179.7955972 7887.429236	•
t1= t2= t3= C= heat exchar t1= t3= Q= ∆TIm= heat exchar	440 180 350 14527.05 nger [2] 241.1 221.1 555985 20.6154473 nger [3] 520	t4= A= C=	221.2433929 179.7955972 7887.429236	•
t1= t2= t3= C= heat exchar t1= t3= Q= ∆TIm= heat exchar t1= t3= Q=	440 180 350 14527.05 nger [2] 241.1 221.1 555985 20.6154473 nger [3] 520 400	t4= A= C= t2=	221.2433929 179.7955972 7887.429236 221.1	
t1= t2= t3= C= heat exchar t1= t3= Q= ∆TIm= heat exchar t1= t3= Q=	440 180 350 14527.05 nger [2] 241.1 221.1 555985 20.6154473 nger [3] 520 400 4714015	t4= A= C= t2= t4=	221.2433929 179.7955972 7887.429236 221.1 321.9321429	
t1= t2= t3= C= heat exchar t1= t3= Q= ∆TIm= heat exchar t1= t3= Q= ∆TIm=	440 180 350 14527.05 nger [2] 241.1 221.1 555985 20.6154473 nger [3] 520 400 4714015 110.138223	t4= A= C= t2= t4= A=	221.2433929 179.7955972 7887.429236 221.1 321.9321429 285.3393304	
t1= t2= t3= C= heat exchar t1= t3= Δ TIm= heat exchar t1= t3= Q= Δ TIm= heat exchar	440 180 350 14527.05 nger [2] 241.1 221.1 555985 20.6154473 nger [3] 520 400 4714015 110.138223	t4= A= C= t2= t4= A=	221.2433929 179.7955972 7887.429236 221.1 321.9321429 285.3393304	•
t1= t2= t3= C= heat exchar t1= t3= Q= ∆TIm= heat exchar t1= t3=	440 180 350 14527.05 nger [2] 241.1 221.1 555985 20.6154473 nger [3] 520 400 4714015 110.138223	t4= A= C= t2= t4= A= C=	221.2433929 179.7955972 7887.429236 221.1 321.9321429 285.3393304 10406.02888	
t1= t2= t3= C= heat exchar t1= t3= Δ TIm= heat exchar t1= t3= Q= Δ TIm= heat exchar t1=	440 180 350 14527.05 nger [2] 241.1 221.1 555985 20.6154473 nger [3] 520 400 4714015 110.138223 nger [4] 321.9321	t4= A= C= t2= t4= A= C=	221.2433929 179.7955972 7887.429236 221.1 321.9321429 285.3393304 10406.02888	
t1= t2= t3= C= heat exchar t1= t3= Q= Δ TIm= heat exchar t1= t3= Q= Δ TIm= heat exchar t1= t4=	440 180 350 14527.05 nger [2] 241.1 221.1 555985 20.6154473 nger [3] 520 400 4714015 110.138223 nger [4] 321.9321 300	t4= A= C= t2= t4= A= C= t2=	221.2433929 179.7955972 7887.429236 221.1 321.9321429 285.3393304 10406.02888 100	► C=

heat excha	nger [5]		
t1=	390	t2=	187.4783
t3=	370	_	
Q=	2920347.2	t4=	303.0849048
∆TIm=	54.4934398	A=	357.2720206
		C=	11908.78482
coolers			
cooler [1]			
Tin=	221.1	Tout=	150
Twin=	100	Twout=	180
Q=	1990800	m(w)=	24885
∆TIm=	45.4047153	A=	292.3044426
		C=	10557.69944
		C(w)=	10899.63
cooler [2]			
Tin=	303.0849	Tout=	150
Twin=	100	Twout=	180
Q=	5143652.64	m(w)=	64295.658
∆TIm=	81.1287007	A=	422.6743102
		C=	13172.60157
		C(w)=	28161.4982
heater			
Tin=	370	Tout=	430
Tsin=	456.3	Tsout=	456.3
Q=	960000	m(s)=	1250.977326
∆TIm=	50.4939716	A=	95.06085271
		C=	5381.07528
		Cs=	29588.11572
total cost o	f heat exchangers:	=	58411.33193
total cost o	f coolers=		23730.301
total cost o	f heaters=		29588.11572
total cost o	f cooling water=		39061.1282
total cost o	f steam=		29588.11572
J=	79822.2188		119733328.2 ID/YR
A=	8513.2		790.87628 m^2
		↓	
13 possibili	ty _	è → ¶ →	
		↓ ↓	
	_	▶♦→♦→	
		<i>∳</i> → • • •	▶ ● [▼] →
			/
heat excha	• • • •	-	
t1=	390	t2= *	200
t3=	370		050 000
Q=	4479500	t4=	256.682
∆TIm=	35.2127675	A=	848.0825415

		C=	20004.64819
heat excha	• • • •	_	
t1=	256.682	t2=	180
t3=	236.682		
Q=	1856902.32	t4=	201.41705
∆Tlm=	20.7004419	A=	598.0234061
		C=	16221.79668
heat excha	nger [3]		
t1=	520	t2=	236.682
t3=	350		
Q=	3712297.68	t4=	364.0211059
∆TIm=	147.643759	A=	167.6240928
		C=	7562.578725
heat excha	nger [4]		
t1=	364.0211	t2=	100
t4=	300		
Q=	1523702.18	t3=	195.2313863
∆TIm=	183.953797	A=	55.22046667
		C=	3884.437051
heat excha	nger [5]		
t1=	440	t2=	195.2314
t3=	400		
Q=	3276297.6	t4=	322.9893714
∆TIm=	75.5714565	A=	289.0242561
		C=	10486.45312
coolers			
cooler [1]			
Tin=	201.4171	Tout=	150
Twin=	100	Twout=	180
Q=	1727614.56	m(w)=	21595.182
∆TIm=	33.7128758	A=	341.6329851
		C=	11593.21585
		C(w)=	9458.689716
cooler [2]			
Tin=	322.9894	Tout=	150
Twin=	100	Twout=	180
Q=	4843703.2	m(w)=	60546.29
$\Delta TIm=$	88.4983313	A=	364.8809441
		C=	12060.31786
heaters		c(w)=	37568.97295
heater [1]			
Tin=	370	Tout=	400
Tsin=	456.3	Tsout=	456.3
C=	3928.77	C(s)=	24363.964
heater [2]			
Tin=	400	Tout=	430
Tsin=	456.3	Tsout=	456.3
C=	4119.038	c(s)=	14794.06


total cost of heat exchangers=	58159.91376
total cost of coolers=	23653.53371
total cost of } 95171.8122	8047.808
total cost of	47027.66266
total cost of steam=	39158.024
J=	142757718.3 ID/YR
A=	1060.269335 m^2

14th possib	ilty →	→ ● [▼] →	
	→		
	-		
	•		
heat exchar		↓ ↓	
t1=	390	t2=	200
t3=	370	t4=	256.682
C=	200004.648		
heat exchar	• • •		
t1=	256.682	t2=	100
t3=	236.682		
Q=	2186912	t4=	191.5953333
Δ TIm=	47.051178	A=	309.8628758
heat exchar	nger [3]	C=	10933.76594
t1=	440	t2=	236.682
t3=	400		
Q=	2613088	t4=	346.6754286
Δ TIm=	69.1948392	A=	251.7613578
heat exchar	nger [4]	C=	9652.981806
t1=	346.6754	t2=	180
t3=	300		
Q=	3931200	t4=	206.2754
∆TIm=	35.5039398	A=	738.1715976
heat exchq	nger [5]	C=	18406.12821
t1=	520	t2=	300
t3=	350		
Q=	1638000	t4=	451.1764706
∆TIm=	160.404198	A=	68.07801869
coolers		C=	4404.252292
cooler [1]			
Tin=	191.5953	Tout=	150
Twin=	100	Twout=	171.5953
Q=	1397602.08	m(w)=	19520.86352
∆TIm=	32.7407	A=	284.5799628
		C=	10389.40402
cooler [2]		C(w)=	8550.138222
Tin=	206.2754	Tout=	150
		B2-20	

Twin=	100	Twout=	180
Q=	1575711.2	m(w)=	19696.39
∆TIm=	36.8743763	A=	284.8791596
		C=	10395.95646
cooler [3]		C(w)=	8627.01882
Tin=	451.1765	Tout=	300
Twin=	100	Twout=	180
Q=	3598000.7	m(w)=	44975.00875
Δ TIm=	233.785211	A=	102.6013202
		C=	8951.073198
heaters		C(w)=	19699.05383
heater [1]			
Tin=	370	Tout=	400
Tsin=	456.3	Tsout=	456.3
C=	3928.778	C(s)=	24363.964
heater [2]			
Tin=	400	Tout=	430
Tsin=	456.3	Tsout=	456.3
C=	4119.038	C(s)=	14794.06
total cost	of heat exchangers=	- (-)	243401.7764
	of coolers=		29736.43368
	of heaters=		8047.816
	of cooling water=		36876.21087
total cost	•		39158.024
J=	104152.837 \$/yr		156229256.2 ID/YR
3- А=	13263.916 ft^2		1232.217796 m^2
15 th poss		. ↓	1252.217750 111 2
15 til p055		→●→	
		\downarrow \downarrow	
		→●→●	→
		\downarrow \downarrow	↓
		A + •	→∲→
		\downarrow \downarrow	
		· · · · · · · · · · · · · · · · · · ·	
haat avala		. ↓	. ↓
heat excha t1=	390 390	t2=	180
		12-	100
t3=	350		
Q=	5569200	t4=	224.25
∆TIm=	42.0892438	A=	882.1256139
heat excha	• • •	C=	20482.65754
t1=	224.25	t2=	200
t3=	204.25		
Q=	111987.5	t4=	220.9170387
∆TIm=	20.4550934	A=	36.49865185
heat excha	anger [3]	C=	3029.940766
t1=	440	t2=	204.25
t3=	400		
Q=	5158012.5	t4=	255.7852679

∆TIm=	45.5243203	A=	755.3490036
heat exchar	nger [4]	C=	18661.93364
t1=	255.7853	t2=	100
t3=	235.7853		
Q=	2172564.8	t4=	178.1937
Δ TIm=	42.681	A=	339.34925
heat exchar	nger [5]	C=	11546.65475
t1=	520	t2=	235.7853
t3=	430		
Q=	3107435.2	t4=	389.4354958
Δ TIm=	119.001491	A=	174.0838242
		C=	7736.118177
Coolers			
cooler [1]			
Tin=	220.917	Tout=	150
Twin=	100	Twout=	180
Q=	2382811.2	m(w)=	29785.14
Δ TIm=	45.3068569	A=	350.6181866
		C=	11775.21127
cooler [2]		Cw=	13045.89132
Tin=	178.1937	Tout=	150
Twin=	100	Twout=	158.1937
Q=	789423.6	m(w)=	13565.44781
Δ TIm=	32.7407	A=	160.7425618
		C=	7374.737657
cooler [3]		Cw=	5941.666139
Tin=	389.4355	Tout=	300
Twin=	100	Twout=	180
Q=	2128564.9	m(w)=	26607.06125
∆TIm=	204.681504	A=	69.32933537
		C=	4452.647003
total cost of heat exchangers=			61457.30488

total cost of coolers= total cost of cooling water=

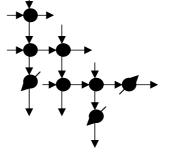
241.216996 m^2

200

23602.59593

30641.45029

11653.89283


Cw=

t1= t3= heat exchanger [2] t1= 224.25

B2-22

t2=

t3=	204.25	t4=	220.9		
heat exchanger [3]		C=	3029.940766		
t1=	520	t2=	204.25		
t3=	400				
Q=	5158012.5	t4=	303.2767857		
∆TIm=	109.177851	A=	314.9608626		
heat exchan	iger [4]	C=	11041.34548		
t1=	303.2768	t2=	100		
t4=	300				
Q=	3200000	t3=	168.8230185		
∆TIm=	21.5281783	A=	990.9493057		
		C=	21963.36642		
heat exchan	iger [5]				
t1=	440	t2=	168.823		
t3=	400				
Q=	3698832	t4=	307.8988571		
∆TIm=	79.5061967	A=	310.1504162		
		C=	10939.85247		
Coolers					
cooler [1]		11775.211	27	Cw=	13045.89132
cooler [2]					
Tin=	307.8989	Tout=	150		
Twin=	100	Twout=	180		
Q=	4421169.2	m(w)=	55264.615		
∆TIm=	82.9402486	A=	355.3698213		
		C=	11870.70113		
Heaters		Cw=	24205.90137		
heater [1]					
Tin=	400	Tout=	430		
Tsin=	456.3	Tsout=	456.3		
C=	4119.038	Cs=	14794.06		
total cost of	f heat exchangers=		67457.16267		
total cost of	f coolers=		23645.9124		
total cost of	f heaters=		4119.038		
total cost of	f cooling water=		37251.79269		
total cost of	f steam=		14794.06		
J=	61568.064		92352096	ID/YR	
A=	5522.6275		513.0520948		
17th possib	1		0.00020040		
	· →	▶			

B2-23

heat exchang	jer [1]		
t1=	390	t2=	180
t3=	350	t4=	224.25
heat exchang	jer [2]	C=	20482.65754
t1=	224.25	t2=	200
t3=	204.25	t4=	220.9
heat exchang	jer [3]	C=	3029.94
t1=	520	t2=	204.25
t3=	400		
Q=	5158012.5	t4=	303.2767857
∆TIm=	109.177851	A=	314.9608626
heat exchang	jer [4]	C=	11041.34548
t1=	303.2768	t2=	100
t4=	300		
Q=	77987.84	t3=	104.87424
∆TIm=	199.200212	A=	2.610032022
heat exchang	jer [5]	C=	622.3798817
t1=	440	t2=	104.8742
t3=	400		
Q=	4722012.8	t4=	271.3566857
Δ TIm=	88.6967323	A=	354.9182084
		C=	11861.64747
Coolers			
cooler [1]			
Tin=	220.9	Tout=	150
Twin=	100	Twout=	180
		C=	11775.21127
cooler [2]		Cw=	13045.89132
Tin=	271.3567	Tout=	150
Twin=	100	Twout=	180
Q=	3397987.6	m(w)=	42474.845
∆TIm=	68.6135127	A=	330.1572793
		C=	11357.96617
heaters		Cw=	18603.98211
heater [1]			
Tin=	400	Tout=	430
C=	4119.038	Cs=	14794.06
total cost of	heat exchangers=		47037.97038
total cost of	coolers=		23133.17744
total cost of			4119.038
total cost of	cooling water=		31649.87343
total cost of	steam=		14794
I_	50070 000		
J=	53872.892	80809338.0	
A=	2588.9499	240.513445	/ m^2

18th possib		→∲→∮	•		
heat excha	nger [1]		T		
t1=	390	t2=	▼ 100		
t3=	370				
C=	13267				
heat excha	nger [2]				
t1=	261.4286	t2=	180		
t3=	241.4286				
Q=	2012400.94	t4=	201.535715		
∆TIm=	20.7583906	A=	646.2931777		
heat excha	nger [3]	C=	16995.18073		
t1=	520	t2=	241.4286		
t3=	350				
Q=	3556799.06	t4=	370.5546612		
∆TIm=	148.627483	A=	159.5397652		
heat excha		C=	7341.577936		
t1=	370.5547	t2=	200		
t4=	300	10			
Q=	1679201.86	t3=	263.7268258		
∆TIm=	103.376359	A=	108.2905143		
heat exchai		C=	5818.6508		
t1=	440	t2=	263.7268		
t3= Q=	400 3590798.82	t4=	311.757185		
હ– ∆Tlm=	43.8928279	(4- A=	545.3888469		
Coolers	43.0320273	А- С=	15349.41386	C(w)=	24797.37876
cooler [1]		0-	10040.41000	O(W) -	24/3/.3/0/0
Tin=	201.5357	Tout=	150		
C=	11593.215	Cw=	9458.689		
cooler [2]		•			
Tin=	311.7572	Tout=	150		
Twin=	100	Twout=	180		
Q=	4529201.6	m(w)=	56615.02		
∆TIm=	84.3781691	A=	357.8494018		
heater [1]		C=	11920.32844		
Tin=	370	Tout=	430		
C=	5381.0753	C(s)=	29588.116		
total cost o	f heat exchangers=		58771.82332		
total cost o	f coolers=		23513.54344		
total cost o	f heater=		5381.0753		

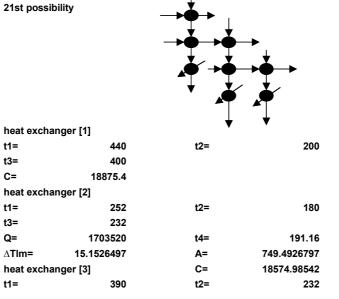
total cost o	of cooling water=		34256.06776
total cost o	of steam=		29588.116
J=	72610.828		108916241.9 ID/YR
A=	7270.354		675.4158866 m^2
19th possil	bility	1	
		± ±	
		→♥→♥	
		\downarrow \downarrow	· ↓
		, ∳ ∕ → •	→•́•→
		I I	I
		· · .	
heat excha	inger [1]	T	
t1=	440	t2=	200
t3=	400		
Q=	5270000	t4=	251.7857143
∆TIm=	45.639515	A=	769.8007593
heat excha	inger [2]	C=	18875.35139
t1=	251.7857	t2=	100
t3=	231.7857		
Q=	2108571.2	t4=	176.4795857
∆TIm=	42.1083578	A=	333.8325706
heat excha	inger [3]	C=	11433.65986
t1=	390	t2=	231.7857
t3=	370		
Q=	2211428.8	t4=	324.1836667
∆ Tim=	47.3074087	A=	311.6395314
heat excha	inger [4]	C=	10971.33737
t1=	324.1837	t2=	180
t3=	304.1837		
Q=	4068258.01	t4=	203.1045925
∆TIm=	21.5149767	A=	1260.597232
heat excha		C=	25375.45592
t1=	520	t2=	304.1837
t3=	350		
Q=	1500941.99	t4=	456.9352106
∆TIm=	161.222006	A=	62.06522411
coolers		C=	4166.554252
cooler [1]			
Tin=	176.4796	Tout=	150
C=	7374.73	C(w)=	5941.666
cooler [2]			
Tin=	203.1046	Tout=	150
Twin=	100	Twout=	180
Q=	1784314.56	m(w)=	22303.932
~			

∆TIm=	34.8389948	A=	341.4401148
		C=	11589.2884
cooler [3]		C(w)=	9769.122216
Tin=	456.9352	Tout=	300
Twin=	100	Twout=	180
Q=	3735057.76	m(w)=	46688.222
∆TIm=	236.384624	A=	105.3384295
		C=	5722.952585
heater[1]		C(w)=	20449.44124
Tin=	370	Tout=	430
C=	5381.0753	C(s)=	29588.116
		.,	
total cost o	f heat exchangers=		70822.3588
total cost o	f coolers=		24686.97099
total cost o	f heaters=		5381.0753
total cost o	f cooling water=		36160.22945
total cost o	•		29588.116
J=	75837.386		113756078.9 ID/YR
A=	7816.737	1	726.1748673 m^2
20 th possi	bility		
	-	⋗ ── ≻──	
	_		
			1
			V
			→
			∳ •
heat excha			Č ↓
t1=	390	12=	100
		t2= t4=	100 261.4286
t1=	390		
t1= t3=	390 370 13267		
t1= t3= C=	390 370 13267		
t1= t3= C= heat exchar	390 370 13267 nger [2]	t4=	261.4286
t1= t3= C= heat exchar t1=	390 370 13267 nger [2] 261.4286	t4=	261.4286
t1= t3= C= heat exchar t1= t3=	390 370 13267 nger [2] 261.4286 241.4286	t4= t2=	261.4286 200
t1= t3= C= heat exchar t1= t3= Q=	390 370 13267 nger [2] 261.4286 241.4286 1091643.61 24.1950005	t4= t2= t4=	261.4286 200 228.9392068
t1= t3= C= heat exchan t1= t3= Q= ∆TIm=	390 370 13267 nger [2] 261.4286 241.4286 1091643.61 24.1950005	t4= t2= t4= A=	261.4286 200 228.9392068 300.7904075
t1= t3= C= heat exchan t1= t3= Q= ∆TIm= heat exchan	390 370 13267 nger [2] 261.4286 241.4286 1091643.61 24.1950005 nger [3]	t4= t2= t4= A= C=	261.4286 200 228.9392068 300.7904075 10740.54783
t1= t3= C= heat exchan t1= t3= Q= ∆TIm= heat exchan t1=	390 370 13267 nger [2] 261.4286 241.4286 1091643.61 24.1950005 nger [3] 520	t4= t2= t4= A= C=	261.4286 200 228.9392068 300.7904075 10740.54783
t1= t3= C= heat exchan t1= t3= Q= ∆TIm= heat exchan t1= t3=	390 370 13267 nger [2] 261.4286 241.4286 1091643.61 24.1950005 nger [3] 520 400	t4= t2= t4= A= C= t2=	261.4286 200 228.9392068 300.7904075 10740.54783 241.4286
t1= t3= C= heat exchan t1= t3= Q= ∆TIm= heat exchan t1= t3= Q=	390 370 13267 nger [2] 261.4286 241.4286 1091643.61 24.1950005 nger [3] 520 400 4178356.39 111.289044	t4= t2= t4= A= C= t2= t4=	261.4286 200 228.9392068 300.7904075 10740.54783 241.4286 344.4388071
t1= t3= C= heat exchan t1= t3= Q= ΔTIm= heat exchan t1= t3= Q= ΔTIm=	390 370 13267 nger [2] 261.4286 241.4286 1091643.61 24.1950005 nger [3] 520 400 4178356.39 111.289044	t4= t2= t4= A= C= t2= t4= A=	261.4286 200 228.9392068 300.7904075 10740.54783 241.4286 344.4388071 250.3005535
t1= t3= C= heat exchan t1= t3= ΔTIm= heat exchan t1= t3= Q= ΔTIm= heat exchan	390 370 13267 nger [2] 261.4286 241.4286 1091643.61 24.1950005 nger [3] 520 400 4178356.39 111.289044 nger [4]	t4= t2= t4= A= C= t2= t4= A= C=	261.4286 200 228.9392068 300.7904075 10740.54783 241.4286 344.4388071 250.3005535 9619.336788
t1= t3= C= heat exchan t1= t3= Q= ∆TIm= heat exchan t1= t3= Q= ∆TIm= heat exchan t1=	390 370 13267 nger [2] 261.4286 241.4286 1091643.61 24.1950005 nger [3] 520 400 4178356.39 111.289044 nger [4] 344.4388	t4= t2= t4= A= C= t2= t4= A= C=	261.4286 200 228.9392068 300.7904075 10740.54783 241.4286 344.4388071 250.3005535 9619.336788
t1= t3= C= heat exchan t1= t3= ΔTIm= heat exchan t1= t3= Q= ΔTIm= heat exchan t1= t4=	390 370 13267 nger [2] 261.4286 241.4286 1091643.61 24.1950005 nger [3] 520 400 4178356.39 111.289044 nger [4] 344.4388 300	t4= t2= t4= A= C= t2= t4= A= C= t2=	261.4286 200 228.9392068 300.7904075 10740.54783 241.4286 344.4388071 250.3005535 9619.336788 180
t1= t3= C= heat exchan t1= t3= ΔTIm= heat exchan t1= t3= Q= ΔTIm= heat exchan t1= t4= Q=	390 370 13267 nger [2] 261.4286 241.4286 1091643.61 24.1950005 nger [3] 520 400 4178356.39 111.289044 nger [4] 344.4388 300 1057643.44 125.979399	t4= t2= t4= A= C= t2= t4= A= C= t2= t3=	261.4286 200 228.9392068 300.7904075 10740.54783 241.4286 344.4388071 250.3005535 9619.336788 180 212.2845983
t1= t3= C= heat exchant t1= t3= ΔTIm= heat exchant t1= t3= Q= ΔTIm= heat exchant t1= t4= Q= ΔTIm=	390 370 13267 nger [2] 261.4286 241.4286 1091643.61 24.1950005 nger [3] 520 400 4178356.39 111.289044 nger [4] 344.4388 300 1057643.44 125.979399	t4= t2= t4= A= C= t2= t4= A= C= t2= t3= A=	261.4286 200 228.9392068 300.7904075 10740.54783 241.4286 344.4388071 250.3005535 9619.336788 180 212.2845983 55.96912151

t3=	350		
Q=	4511556.5	t4=	278.872982
∆TIm=	77.7072915	A=	387.0556133
		C=	12494.87934
coolers			
cooler [1]			
Tin=	228.9392	Tout=	150
Twin=	100	Twout=	180
Q=	2652357.12	m(w)=	33154.464
Δ TIm=	49.4677043	A=	357.4530299
		C=	11912.40455
cooler [2]		C(w)=	14521.65523
Tin=	278.873	Tout=	150
Twin=	100	Twout=	180
Q=	3608444	m(w)=	45105.55
Δ TIm=	71.6809245	A=	335.6024424
		C=	11469.99192
heater [1]		C(w)=	19756.2309
Tin=	370	Tout=	430
C=	5381.0753	C(s)=	29588.116
total cost of	heat exchangers=		50037.71396
total cost of	coolers=		23382.39648
total cost of heater=			5381.0753
total cost of cooling water=			34277.88613
total cost of	steam=		29588.116
J=	71746.1207		107619181.1 ID/YR
A=	7126.626		662.0635554 m^2

t1=

t3=


C=

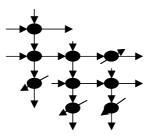
t1=

t3=

Q=

t1=

t3=	350		
Q=	3865680	t4=	274.95
∆TIm=	41.4575087	A=	621.6292495
heat excha	nger [4]	C=	16603.01304
t1=	274.4927	t2=	100
t3=	254.4927		
Q=	2471883.2	t4=	200.9247476
∆TIm=	49.9954301	A=	329.6145527
heat excha	nger [5]	C=	11346.76005
t1=	520	t2=	245.4927
t3=	430		
Q=	2952116.8	t4=	395.961479
Δ TIm=	117.655913	A=	167.2740302
coolers		C=	7553.098647
cooler [1]			
Tin=	191.16	Tout=	150
C=	10389.404	C(w)=	8550.138
cooler [2]			
Tin=	200.9247	Tout=	150
C=	11593.22	C(w)=	9548.689
cooler [3]			
Tin=	395.9615	Tout=	300
Twin=	100	Twout=	180
Q=	2283883.7	m(w)=	28548.54625
∆TIm=	207.878629	A=	73.24413954
		C=	4601.842738
total cost o	of heat exchangers=		72953.25716
total cost o	of coolers=		26584.46674


12504.26326

C(w)=

total cost of coolers= total cost of cooling water=

J=	40556.8626
A=	2754.189

22nd possibility

heat exchanger [1]	
t1=	440
t3=	350
heat exchanger [2]	
t1=	241
t3=	221

180

30603.09026

60835293.97 ID/YR 255.8641581 m^2

200

B2-29

t2=

t2=

Q=	553350	t4=	221.2375	
∆TIm=	20.6125591	A=	178.9685587	
heat excha	inger [3]		C	= 14533.77
t1=	390	t2=	221	
t3=	370			
Q=	3926150	t4=	273.1502976	
∆TIm=	33.5458865	A=	780.254632	
heat excha	inger [4]		С	= 7865.640421
t1=	273.1503	t2=	100	
t3=	253.1503			
Q=	2450404.8	t4=	200.2215857	
∆TIm=	49.7760184	A=	328.1908139	
heat excha			C	= 19028.73235
t1=	520	t2=	253,1503	
t3=	430		20011000	
Q=	2829595.2	t4=	401.1094454	
og- ∆TIm=	116.588319	A=	161.7998111	
coolers	110.000019	A-	C	= 11317.32785
cooler [1]				- 11317.32765
	004	Tauta	450	
Tin=	221	Tout=	150	
Twin=	100	Twout=	180	
Q=	1988000	m(w)=	24850	
∆TIm=	45.3512594	A=	292.2373824 C	= 7403.802932
cooler [2]				
Tin=	200.2216	Tout=	150	
Twin=	100	Twout=	180	
C=	11593.22	C(w)=	9548.689	
cooler [3]			C	
Tin=	401.1094	Tout=	300 C	(w)= 10884.3
Twin=	100	Twout=	180	
Q=	2406403.72	m(w)=	30080.0465	
∆TIm=	210.378219	A=	76.25642764	
heater				
Tin=	370	Tout=	400	
Tsin=	456.3	Tsout=	456.3	
Q=	790500	m(s)=	1030.101642	
∆TIm=	70.2353953	A=	56.27504454 C	= 4714.481306
			С	(W)= 13175.06037
total cost o	of heat exchangers=		60149.27355	
total cost o	of coolers=		26863.94739	
total cost o	of heaters=		3928.778575	
total cost o	of cooling water=		33608.04937	
total cost o	•		24363.96403 C	= 3928.778575
				(s)= 24363.96403
J=	67066.2134		106015615 ID	
A=	6368.828		591.6641212 m	

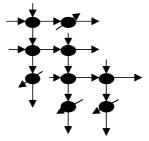
23rd possil	bility			
	→●	→		
	+			
heat excha	nger [1]	* *		
t1=	440	t2=	180	
t3=	350	t4=	241	
heat excha	nger [2]			
t1=	241	t2=	100	
t3=	221			
Q=	1936000	t4=	171.8571429	
∆TIm=	40.5467252	A=	318.3158838 C=	14533.77
heat excha				
t1=	390	t2=	221	
t3=	370			
Q=	2384000	t4=	319.047619	
∆TIm=	49.0951678	A=	323.7250028 C=	11111.76455
heat excha				
t1=	319.0476	t2=	200	
t3=	299.0476			
Q=	2609904.26	t4=	241.371878	
∆TIm=	29.4026503	A=	591.7616799 C=	11224.67539
heat excha				
t1=	520	t2=	299.0476	
t3=	400			
Q=	2660095.74	t4=	408.2312714	40440 07000
∆TIm=	114.506706	A=	154.872778 C=	16119.67003
coolers				
cooler [1] Tin=	171.8571	Tout=	150	
C=	6354.984	C(w)=	5188.615	
cooler [2]	0354.904	C(w)-	C=	7211.956481
Tin=	241.3719	Tout=	150	7211.330401
Twin=	100	Twout=	180	
Q=	3070095.84	m(w)=	38376.198	
∆TIm=	55.4918831	A=	368.8342236	
	00.4010001	A -	000.0042200	
cooler [3]				
Tin=	408.2313	Tout=	300	
Twin=	100	Twout=	180	
Q=	2575904.94	m(w)=	32198.81175 C=	12138.54888
∆TIm=	213.805097	A=	80.31941181 C(w)=	16808.77472
heater				
Tin=	370	Tout=	430	
		B2-31		

C=	5381.0753	C(s)=	29588.116		
			C=	4863.62806	7
total cost o	f heat exchangers=		60201.83645 C(w)=	14103.0795	5
total cost o	f coolers=		23357.16094		
total cost o	f heater=		5381.0753		
total cost o	f cooling water=		36100.46927		
total cost o	-		29588.116		
J=	74582.5925 \$/yr		109311436 ID/YR		
A=	7602.37 ft^2		706.260173 m^2		
	↓				
24th possib	ility 🔸				
	. 🗶				
	-₽₩	┍╼╺╤╼╴	→		
	±				
			-		
	. ↓				
		T T			
hear excha	nger [1]	• •			
t1=	440	t2=	100		
t3=	400				
Q=	4800000	t4=	268.5714286		
∆TIm=	89.3800528	A=	358.0217173		
heat excha	nger [2]				
t1=	268.5714	t2=	200		
t3=	248.5714				
Q=	1279856.39	t4=	222.8622432		
∆TIm=	21.399228	A=	398.7235405	C=	11923.77211
heat excha	nger [3]				
t1=	390	t2=	248.5714		
t3=	370				
Q=	3199643.61	t4=	294.7725116		
∆TIm=	31.2934442	A=	681.6430074	C=	12719.53312
heat excha					
t1=	294.7725	t2=	180		
t3=	274.7725				
Q=	3104747.1	t4=	202.3693125		
∆TIm=	21.1625556	A=	978.0630643	C=	17546.97408
heat excha	naer [5]				
t1=	520	t2=	274.7725		
t3=	350				
Q=	2464452.9	t4=	416.4515588		
∆TIm=	155.409681	A=	105.7185495	C=	21791.55188
Coolers				-	
cooler [1]					
Tin=	222.8622	Tout=	150		

Twin=	100	Twout=	180		
Q=	2331590.4	m(w)=	29144.88	C=	5735.334627
∆TIm=	46.339515	A=	335.4358802		
cooler [2]					
Tin=	202.3693	Tout=	150		
Twin=	100	Twout=	180		
Q=	1759608.48	m(w)=	21995.106	C=	11466.57599
∆TIm=	34.352292	A=	341.4829849	C(w)=	12765.45744
cooler [3]					
Tin=	416.4516	Tout=	300		
Twin=	100	Twout=	180		
Q=	2771548.08	m(w)=	34644.351	C=	11590.16145
∆TIm=	217.717458	A=	84.86681481	C(w)=	9633.856428
Heaters					
heater [1]					
Tin=	400	Tout=	430		
Tsin=	456.3	Tsout=	456.3	C=	5027.022001
				C(w)=	15174.22574
heater [2]					
Tin=	370	Tout=	400		
Tsin=	456.3	Tsout=	456.3		
				C=	4119.038
				C(s)=	14794.06
total cost o	f heat exchangers =		69717.16582		
total cost o	f coolers=		28083.75944		
total cost o	f heaters=		8047.816		
total cost o	f cooling water=		37573.53961	C=	3928.778
total cost o	f steam=		39158.024	C(s)=	24363.964
J=	87316.4377 \$/yr		124507757		
A=	9886.59 ft^2		918.464211		

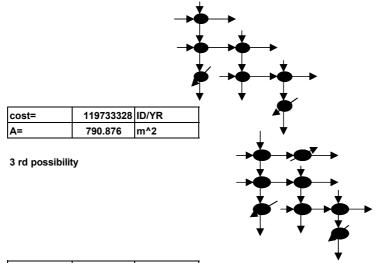
heat exchar	nger [1]					
t1=	520					
t4=	300				t2=	200
Q=	5236000	t3=	398.7096774			
		∆TIm=	110.3029245		A=	316.461842
heat exchar	nger [2]				C=	11072.88668
t1=	440		t2=	398.7079		
t3=	400					
Q=	34046.835					
t4=	438.784042					
∆TIm=	40.0380587		A=	5.669078551		
			C=	991.2324911		
heat exchar	nger [3]					
t1=	438.784		t2=	180		
t3=	350					
Q=	5569200					
t4=	239.884					
∆TIm=	73.3880475		A=	505.9134457		
			C=	14672.82634		
heat exchar	nger [4]		-			
t1=	239.884		t2=	100		
t3=	219.884		-			
Q=	1918144					
t4=	171.378857					
∆TIm=	40.3836293		A=	316.6537257		
			C=	11076.91455		
heat exchar	oger [5]		-			
t1=	390 [0]		t2=	219.884		
t3=	370					
Q=	2401856					
t4=	318.51619					
∆TIm=	49.2786207		A=	324.9355017		
			C=	11249.83992		
Coolers						
cooler [1]						
Tin=	171.3789		Tout=	150		
Twin=	100		Tw out=	151.3789		
Q=	598609.2					
∆TIm=	32.7407		A=	121.8889027		
C=	6246.64096		Cw=	5103.083748		
cooler [2]						
Tin=	318.5162		Tout=	150		
Twin=	100		Twout=	180		
Q=	5662144.32		mw=	70776.804		
_ ∆TIm=	118.812854		A=	317.706609		
C=	11098.9985		Cw=	31000.24015		
heater						
Tin=	370		Tout =	430		
			B2-34			

$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Tsin=	456.3		Twout=
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
C= 5381.07528 Cs= J= 72870.4811 \$/yr A= 7313.7366 ft^2 stru.no. cost (ID) Area (m^2) 1 58177477 237.50585 2 171360844 1437.4843 3 241437190 2545.4061 4 106286066 648.45135 5 88020299 473.5754 6 100088917 586.66907 7 101223846 597.79549 8 87027399 464.704 9 108673138 672.90517 10 110535431 692.23367 11 82144760 312.91693 12 119733328 790.876 13 142757718 1060.2693 14 156229256 123.2178 15 58721161 241.217 16 92352096 513.05209 17 58618338 240.51348 18 108916242 675.41589 19 1131756079	-			
J= 72870.4811 \$/yr A= 7313.7366 ft^2 stru.no. cost (ID) Area (m^2) 1 58177477 237.50585 2 171360844 1437.4843 3 241437190 2545.4061 4 106286066 648.45135 5 88020299 473.5754 6 100088917 586.66907 7 101223846 597.79549 8 87027399 464.704 9 108673138 672.90517 10 110535431 692.23367 11 82144760 312.91693 12 119733328 790.876 13 142757718 1060.2693 14 156229256 1232.2178 15 58721161 241.217 16 92352096 513.05209 17 58618338 240.51348 18 108916242 675.41589 19 1131756079 726.17457 20 107619181				
A=7313.7366 ft^2stru.no.cost (ID)Area (m^2)158177477237.5058521713608441437.484332414371902545.40614106286066648.45135588020299473.57546100088917586.669077101223846597.79549887027399464.7049108673138672.9051710110535431692.233671182144760312.916931211973328790.876131427577181060.2693141562292561232.21781558721161241.2171692352096513.052091758618338240.5134818108916242675.41589191131756079726.1745720107619181662.063562160835294255.864122106015615591.66412	-		¢ h	Cs=
stru.no. cost (ID) Area (m^2) 1 58177477 237.50585 2 171360844 1437.4843 3 241437190 2545.4061 4 106286066 648.45135 5 88020299 473.5754 6 100088917 586.66907 7 101223846 597.79549 8 87027399 464.704 9 108673138 672.90517 10 110535431 692.23367 11 82144760 312.91693 12 11973328 790.876 13 142757718 1060.2693 14 156229256 1232.2178 15 58721161 241.217 16 92352096 513.05209 17 58618338 240.51348 18 108916242 675.41589 19 1131756079 726.17457 20 107619181 662.06356 21 60835294 255.8641	-			
1 58177477 237.50585 2 171360844 1437.4843 3 241437190 2545.4061 4 106286066 648.45135 5 88020299 473.5754 6 100088917 586.66907 7 101223846 597.79549 8 87027399 464.704 9 108673138 672.90517 10 110535431 692.23367 11 82144760 312.91693 12 11973328 790.876 13 142757718 1060.2693 14 156229256 1232.2178 15 58721161 241.217 16 92352096 513.05209 17 58618338 240.51348 18 108916242 675.41589 19 1131756079 726.17457 20 107619181 662.06356 21 60835294 255.8641 22 106015615 591.66412				т
2 171360844 1437.4843 3 241437190 2545.4061 4 106286066 648.45135 5 88020299 473.5754 6 100088917 586.66907 7 101223846 597.79549 8 87027399 464.704 9 108673138 672.90517 10 110535431 692.23367 11 82144760 312.91693 12 11973328 790.876 13 142757718 1060.2693 14 156229256 1232.2178 15 58721161 241.217 16 92352096 513.05209 17 58618338 240.51348 18 108916242 675.41589 19 1131756079 726.17457 20 107619181 662.06356 21 60835294 255.8641 22 106015615 591.66412		. ,		ł
3 241437190 2545.4061 4 106286066 648.45135 5 88020299 473.5754 6 100088917 586.66907 7 101223846 597.79549 8 87027399 464.704 9 108673138 672.90517 10 110535431 692.23367 11 82144760 312.91693 12 11973328 790.876 13 142757718 1060.2693 14 156229256 1232.2178 15 58721161 241.217 16 92352096 513.05209 17 58618338 240.51348 18 108916242 675.41589 19 1131756079 726.17457 20 107619181 662.06356 21 60835294 255.8641 22 106015615 591.66412	-			ł
4 106286066 648.45135 5 88020299 473.5754 6 100088917 586.66907 7 101223846 597.79549 8 87027399 464.704 9 108673138 672.90517 10 110535431 692.23367 11 82144760 312.91693 12 119733328 790.876 13 142757718 1060.2693 14 156229256 1232.2178 15 58721161 241.217 16 92352096 513.05209 17 58618338 240.51348 18 108916242 675.41589 19 1131756079 726.17457 20 107619181 662.06356 21 60835294 255.8641 22 106015615 591.66412				ł
5 88020299 473.5754 6 100088917 586.66907 7 101223846 597.79549 8 87027399 464.704 9 108673138 672.90517 10 110535431 692.23367 11 82144760 312.91693 12 119733328 790.876 13 142757718 1060.2693 14 156229256 1232.2178 15 58721161 241.217 16 92352096 513.05209 17 58618338 240.51348 18 108916242 675.41589 19 1131756079 726.17457 20 107619181 662.06356 21 60835294 255.8641 22 106015615 591.66412	3	241437190	2545.4061	ļ
6 100088917 586.66907 7 101223846 597.79549 8 87027399 464.704 9 108673138 672.90517 10 110535431 692.23367 11 82144760 312.91693 12 119733328 790.876 13 142757718 1060.2693 14 156229256 1232.2178 15 58721161 241.217 16 92352096 513.05209 17 58618338 240.51348 18 108916242 675.41589 19 1131756079 726.17457 20 107619181 662.06356 21 60835294 255.8641 22 106015615 591.66412	4	106286066	648.45135	ļ
7 101223846 597.79549 8 87027399 464.704 9 108673138 672.90517 10 110535431 692.23367 11 82144760 312.91693 12 119733328 790.876 13 142757718 1060.2693 14 156229256 1232.2178 15 58721161 241.217 16 92352096 513.05209 17 58618338 240.51348 18 108916242 675.41589 19 1131756079 726.17457 20 107619181 662.06356 21 60835294 255.8641 22 106015615 591.66412	5	88020299	473.5754	ļ
8 87027399 464.704 9 108673138 672.90517 10 110535431 692.23367 11 82144760 312.91693 12 119733328 790.876 13 142757718 1060.2693 14 156229256 1232.2178 15 58721161 241.217 16 92352096 513.05209 17 58618338 240.51348 18 108916242 675.41589 19 1131756079 726.17457 20 107619181 662.06356 21 60835294 255.8641 22 106015615 591.66412	6	100088917	586.66907	
9 108673138 672.90517 10 110535431 692.23367 11 82144760 312.91693 12 119733328 790.876 13 142757718 1060.2693 14 156229256 1232.2178 15 58721161 241.217 16 92352096 513.05209 17 58618338 240.51348 18 108916242 675.41589 19 1131756079 726.17457 20 107619181 662.06356 21 60835294 255.8641 22 106015615 591.66412	7	101223846	597.79549	
10 110535431 692.23367 11 82144760 312.91693 12 119733328 790.876 13 142757718 1060.2693 14 156229256 1232.2178 15 58721161 241.217 16 92352096 513.05209 17 58618338 240.51348 18 108916242 675.41589 19 1131756079 726.17457 20 107619181 662.06356 21 60835294 255.8641 22 106015615 591.66412	8	87027399	464.704	T
11 82144760 312.91693 12 119733328 790.876 13 142757718 1060.2693 14 156229256 1232.2178 15 58721161 241.217 16 92352096 513.05209 17 58618338 240.51348 18 108916242 675.41589 19 1131756079 726.17457 20 107619181 662.06356 21 60835294 255.8641 22 106015615 591.66412	9	108673138	672.90517	1
12 119733328 790.876 13 142757718 1060.2693 14 156229256 1232.2178 15 58721161 241.217 16 92352096 513.05209 17 58618338 240.51348 18 108916242 675.41589 19 1131756079 726.17457 20 107619181 662.06356 21 60835294 255.8641 22 106015615 591.66412 <td>10</td> <td>110535431</td> <td>692.23367</td> <td>1</td>	10	110535431	692.23367	1
13 142757718 1060.2693 14 156229256 1232.2178 15 58721161 241.217 16 92352096 513.05209 17 58618338 240.51348 18 108916242 675.41589 19 1131756079 726.17457 20 107619181 662.06356 21 60835294 255.8641 22 106015615 591.66412	11	82144760	312.91693	†
14 156229256 1232.2178 15 58721161 241.217 16 92352096 513.05209 17 58618338 240.51348 18 108916242 675.41589 19 1131756079 726.17457 20 107619181 662.06356 21 60835294 255.8641 22 106015615 591.66412	12	119733328	790.876	†
15 58721161 241.217 16 92352096 513.05209 17 58618338 240.51348 18 108916242 675.41589 19 1131756079 726.17457 20 107619181 662.06356 21 60835294 255.8641 22 106015615 591.66412	13	142757718	1060.2693	1
16 92352096 513.05209 17 58618338 240.51348 18 108916242 675.41589 19 1131756079 726.17457 20 107619181 662.06356 21 60835294 255.8641 22 106015615 591.66412	14	156229256	1232.2178	İ
1758618338240.5134818108916242675.41589191131756079726.1745720107619181662.063562160835294255.864122106015615591.66412	15	58721161	241.217	İ
18 108916242 675.41589 19 1131756079 726.17457 20 107619181 662.06356 21 60835294 255.8641 22 106015615 591.66412	16	92352096	513.05209	1
19 1131756079 726.17457 20 107619181 662.06356 21 60835294 255.8641 22 106015615 591.66412	17	58618338	240.51348	1
20 107619181 662.06356 21 60835294 255.8641 22 106015615 591.66412	18	108916242	675.41589	†
21 60835294 255.8641 22 106015615 591.66412	19	1131756079	726.17457	İ
22 106015615 591.66412	20	107619181	662.06356	İ
	21	60835294	255.8641	t
23 109311436 706.26017	22	106015615	591.66412	t
	23	109311436	706.26017	t
24 124507757 918,46421				t
25 115788809 679.44613				ł

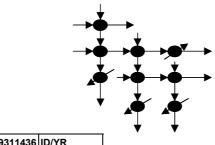

456.3 1250.977326 95.06085271 29588.11572 115788809 ID/YR 679.4461301 m^2

the first is the optimum.

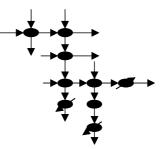
58177477 237.50585


Rudd Heuristic

1 st possibility


cost=	108673138	ID/YR
A=	672.90517	m^2

2 nd possibility

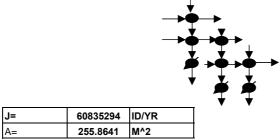

cost=	107619181 ID/YR	
A=	662.06356	m^2

4 th possibility

cost=	109311436	ID/YR
A=	706.26017	m^2

5 th possibility

B2-36


cost=	115788805	ID/YR
A=	679.44613	m^2

POS.NU.	COST (ID)	Area (m^2)
1	108673138	672.90517
2	119733328	790.876
3	107619181	662.06356
4	109311436	706.26017
5	115788805	679.44613

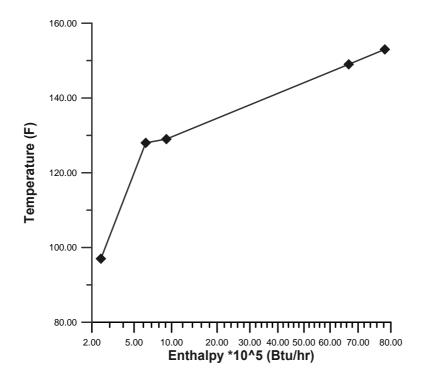
Min. 107619181 662.06356

Linnhoff Heuristic

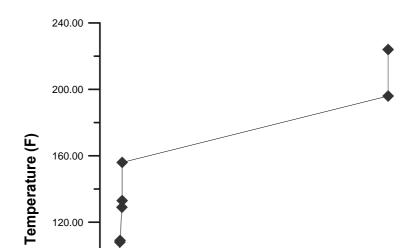
it give just one possibility

IT IS SO CLOSE TO THE OPTIMUM.

Appendix B3 SYSTEM C PINCH METHOD

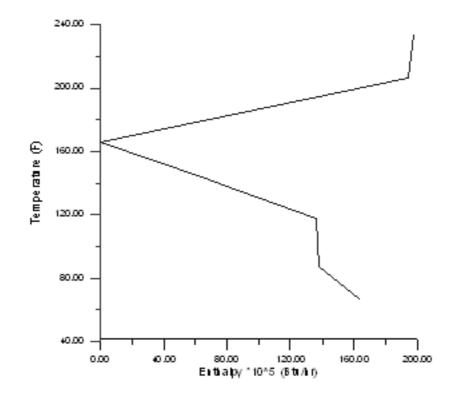

stream							
no.	condition	m.Cp	Tin (F)	Tout (F)			
1	cold	4893	77	133			
2	cold	2173	77	129			
3	cold	5.0*10^5	156	196			
4	hot	1.23*10^4	244	77			
5	hot	2.75*10^5	176	128			
6	hot	1046	244	129			

The intervals heat duty

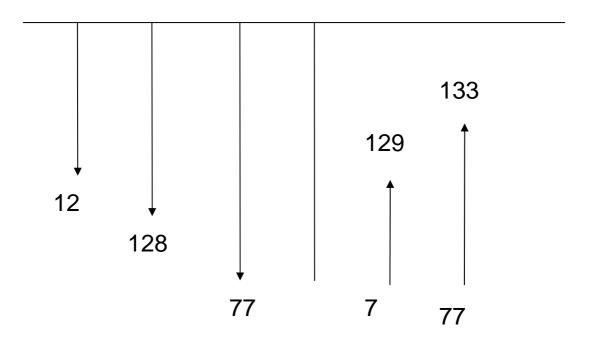

Q1=	3.73*10^5
Q2=	-19400000
Q3=	66.3^10^5
Q4=	11.3*10^5
Q5=	56.25*10^5
Q6=	2.8*10^5
Q7=	1.622*10^5
Q8=	2.46*10^5

Enthalpy values and cumalative H for hot streams

		H
Temp.		acumalative
77	H=0	0
97	H=2.46*10^5	2.46*10^5
128	H=3.813*10^5	6.273*10^5
129	H=2.87*10^5	9.14*10^5
149	H=5.766*10^6	6.68*10^6
153	H=1.153*10^6	7.883*10^6
176	H=6.63*10^6	1.446*10^7
216	H=5.33*10^5	1.499*10^7
244	H=3.73*10^5	1.5363*10^7



Temp.			H acc.	
77	H1=	162.87*10^5	162.87*10^5	
108	H2=	219046	16506046	
109	H3=	7066	16513112	
129	H4=	141320	16654432	
133	H5=	19572	16674004	
156	H6=	0	16674004	
196	H7=	2000000	36674004	
224	H8=	0	36674004	


To draw the grand composite curve

Hacc.
162.87
138.27
136.65
133.85
77.6
66.3
0
194
197.73

The pinch temperature is 166 F.

Design below the pinch

ΔTIm= 21.465071

The matching of streams according to the convergence in capacity flow rate. the structure is given in chapter four. Figure (4.2)

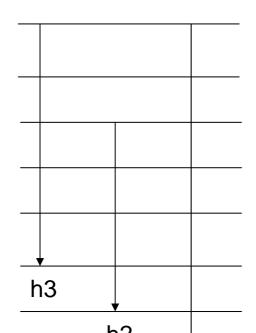
B3-5

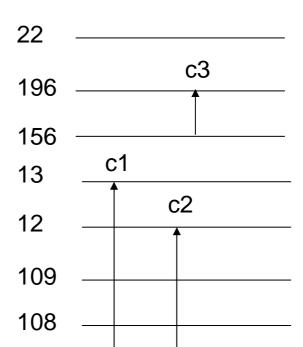
The calculat	tions for this ne	twork				
Above						
heat exchang	ıer {1}					
Q=	836400	t3=	157.67			
∆TIm=	45.378271	A=	122.87819	C=	6277.012	\$/yr
heat exchang	jer {2}				9415518	ID
Q=	71128	t3=	157.8			
ΔTIm=	43.902832	A=	10.800822	C=	1459.292	\$/YR
heater					2188938	ID
Tin=	157.8	Tout=	196			
Tsin=	540	Tsout=	540			
Q=	19100000					
∆TIm=	362.76485	A=	263.25594	C=	9915.051	\$/YR
λ=	656.6	ms=	29089.248		14872576	ID
				Cs=	254821.8	\$/YR
Below					3.82E+08	ID
heat exchang	jer {3}					
Q=	112996	t4=	166.8	C=	1506.966	\$/YR
ΔTIm=	66.10678	A=	11.395301		2260449	ID
heat exchang	jer {4}					
Q=	274008	t4=	175	C=	2548.804	\$/YR
ΔTIm=	66.766423	A=	27.35986		3823205	ID
O a al ana						
Coolers						
cooler {1}	400.0	Tauta				
Tin=	166.8	Tout=	77			
Twin=	100	Twout=	146.8			
Q=	1104540					

A=

343.05035

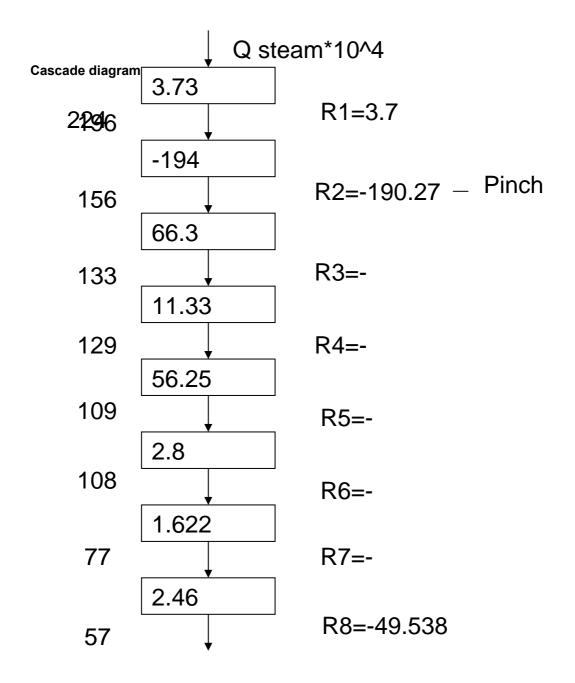
mw=	23601.282		Cw=	10337.362 15506042	\$/yr ID/YR		
cooler {2}					C=	11622.05	\$/YR
			B3-6				
Tin=	175		Tout=	129		17433076	ID
Twin=	100		Tw out=	155			
Q=	48116						
ΔTIm=	24.221966		A=	13.243076	C=	1649.155	\$/YR
mw=	874.83636		Cw=	383.17833	\$/YR	2473732	ID/YR
				574767.49	ID/YR		
cooler {3}							
Tin=	176		Tout=	128			
Twin=	100		Twout=	156			
Q=	13200000						
ΔTIm=	23.776107		A=	3701.1946	C=	48425.4	\$/YR
mw=	235714.29		Cw=	103242.86		72638097	ID
				154864286	ID/YR		
total cost of he	eat exchange	rs=		17688110			
total cost of he	-			14872576			
total cost of co	olers=			170945096			
total cost of st	eam=			382232714			
total cost of co	ooling water=			170945096			
J=	:	377125.6	\$/YR		565688369	ID/YR	

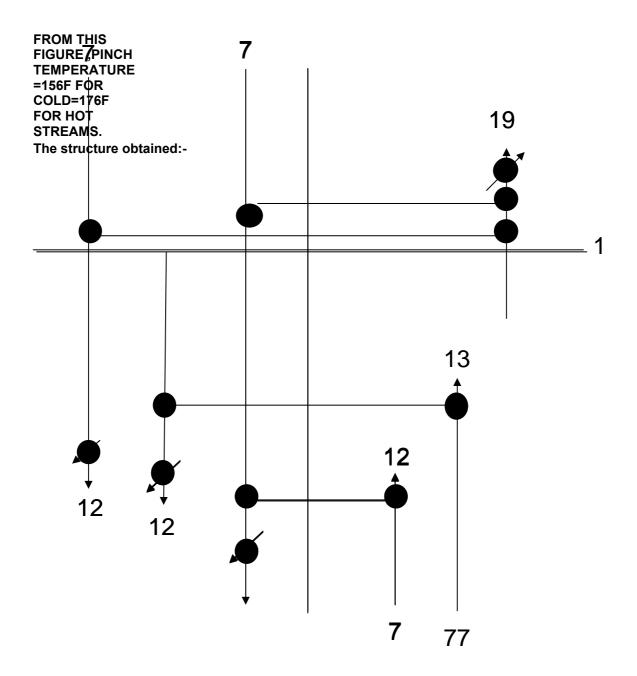

J=	377125.6	\$/YR	565688369	ID/YR
A=	113247.5	ft^2	10520.696	m^2


stream no.	condition	m.Cp	Tin (F)	Tout (F)
1	cold	4893	77	133
2	cold	2173	77	129
3	cold	5.0*10^5	156	196
4	hot	1.23*10^4	244	77
5	hot	2.75*10^5	176	128
6	hot	1046	244	129

Temperature Interval Method

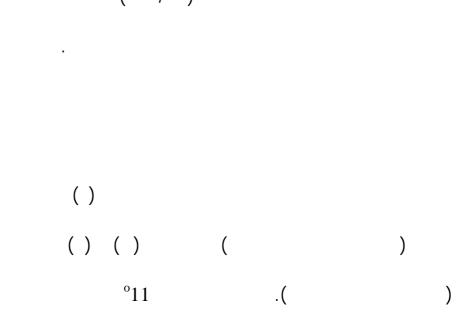
the temperature were adjuseted by $\Delta tmin=20F$

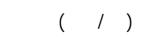

			Adjueted	temperature)
C1	77	133			
			77		T7
				133	Т3
C2	77	129			
			77		T7
				129	T4
C3	156	196			
			156		T2
				196	T1
H1	244	77			
			224		То
				57	Т8
H2	176	128			
			156		T2
				108	Т6
H3	244	129			
			224		То
				109	T5



Th heat duty for each interval

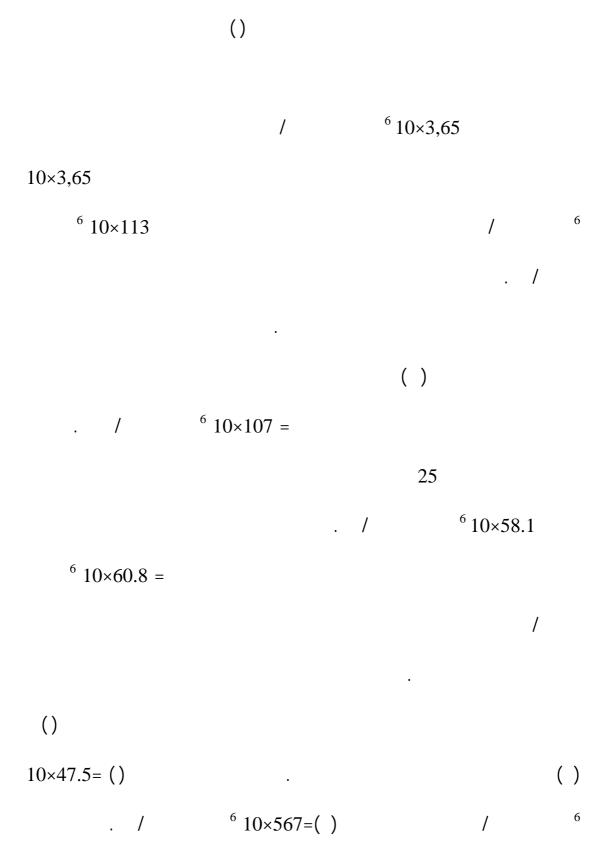
Q1=	373688
	-
Q2=	19466160
Q3=	6631958
Q4=	1133812
Q5=	5625600
Q6=	28303634
Q7=	162254
Q8=	246000

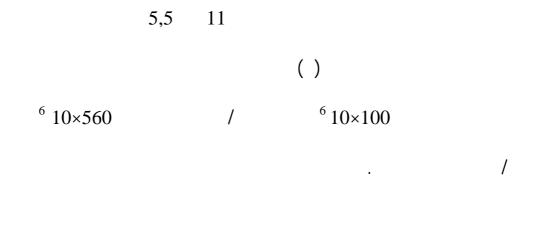



B3-11

Calculations fore the network						
Above						
heat exchanger {1}						
Q=	836400	t3=	157.67			

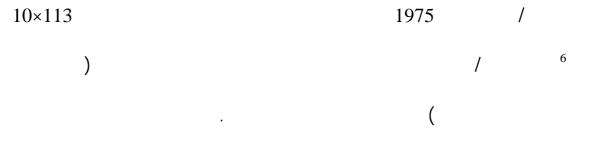
∆Tlm= heat exchang Q=	45.378271				0077 040	
-	43.370271	A=	122.87819	C=	6277.012	\$/yr
0=	er {2}				9415518	ID
Q-	71128	t3=	157.8			
∆TIm=	43.902832	A=	10.800822	C=	1459.292	\$/YR
heater					2188938	ID
Tin=	157.8	Tout=	196		1.00000	
Tsin=	540	Tsout=	540			
		i sout-	540			
Q=	19100000	•	000 0550 4	0	0045 054	# \\/D
ΔTIm=	362.76485	A=	263.25594	C=	9915.051	\$/YR
λ=	656.6	ms=	29089.248		14872576	ID
				Cs=	254821.8	\$/YR
Below					3.82E+08	ID
heat exchang	er {3}					
Q=	112996	t4=	166.8			
Ω TIm=	66.10678	A=	11.395301	C=	1506.966	\$/YR
heat exchang		~	11.000001	0-	2260449	ψ/ Π ID
Q=	274008	t4=	175		2200443	
				0-	0540.004	¢л/Б
∆TIm=	66.766423	A=	27.35986	C=	2548.804	\$/YR
Coolers					3823205	ID
cooler {1}						
Tin=	166.8	Tout=	77			
Twin=	100	Twout=	146.8			
Q=	1104540					
ΔTIm=	21.465071	A=	343.05035			
mw=	23601.282	Cw=	10337.362	\$/yr		
		•	15506042	ID/YR		
		C=	11622.051	\$/YR		
		0-		-		
			17433076	ID		
		B3-12				
		B3-12				
		B3-12				
cooler {2}						
cooler {2} Tin=	175	B3-12 Tout=	129			
	175		129			
	175 100	Tout=	129 155			
Tin=		Tout= Tw				
Tin= Twin=	100	Tout= Tw				
Tin= Twin= Q=	100 48116 24.221966	Tout= Tw out= A=	155 13.243076	\$/YR		
Tin= Twin= Q= ΔTIm=	100 48116	Tout= Tw out=	155 13.243076 383.17833	-		
Tin= Twin= Q= ΔTIm=	100 48116 24.221966	Tout= Tw out= A= Cw=	155 13.243076 383.17833 574767.49	ID/YR		
Tin= Twin= Q= ΔTIm=	100 48116 24.221966	Tout= Tw out= A=	155 13.243076 383.17833 574767.49 1649.1546	ID/YR \$/YR		
Tin= Twin= Q= ΔTIm= mw=	100 48116 24.221966	Tout= Tw out= A= Cw=	155 13.243076 383.17833 574767.49	ID/YR		
Tin= Twin= Q= ΔTIm= mw= cooler {3}	100 48116 24.221966 874.83636	Tout= Tw out= A= Cw= C=	155 13.243076 383.17833 574767.49 1649.1546 2473731.8	ID/YR \$/YR		
Tin= Twin= Q= ΔTIm= mw= cooler {3} Tin=	100 48116 24.221966 874.83636 176	Tout= Tw out= A= Cw= C= Tout=	155 13.243076 383.17833 574767.49 1649.1546 2473731.8 128	ID/YR \$/YR		
Tin= Twin= Q= ∆TIm= mw= cooler {3} Tin= Twin=	100 48116 24.221966 874.83636 176 100	Tout= Tw out= A= Cw= C=	155 13.243076 383.17833 574767.49 1649.1546 2473731.8	ID/YR \$/YR		
Tin= Twin= Q= ΔTIm= mw= cooler {3} Tin= Twin= Q=	100 48116 24.221966 874.83636 176 100 13200000	Tout= Tw out= A= Cw= C= Tout= Twout=	155 13.243076 383.17833 574767.49 1649.1546 2473731.8 128 156	ID/YR \$/YR		
Tin= Twin= Q= ΔTIm= mw= cooler {3} Tin= Twin= Q= ΔTIm=	100 48116 24.221966 874.83636 176 100 13200000 23.776107	Tout= Tw out= A= Cw= C= Tout= Twout= A=	155 13.243076 383.17833 574767.49 1649.1546 2473731.8 128 156 3701.1946	ID/YR \$/YR ID/YR		
Tin= Twin= Q= ΔTIm= mw= cooler {3} Tin= Twin= Q=	100 48116 24.221966 874.83636 176 100 13200000	Tout= Tw out= A= Cw= C= Tout= Twout=	155 13.243076 383.17833 574767.49 1649.1546 2473731.8 128 156 3701.1946 103242.86	ID/YR \$/YR ID/YR		
Tin= Twin= Q= ΔTIm= mw= cooler {3} Tin= Twin= Q= ΔTIm=	100 48116 24.221966 874.83636 176 100 13200000 23.776107	Tout= Tw out= A= Cw= C= Tout= Twout= A=	155 13.243076 383.17833 574767.49 1649.1546 2473731.8 128 156 3701.1946	ID/YR \$/YR ID/YR \$/YR ID/YR		
Tin= Twin= Q= ΔTIm= mw= cooler {3} Tin= Twin= Q= ΔTIm=	100 48116 24.221966 874.83636 176 100 13200000 23.776107	Tout= Tw out= A= Cw= C= Tout= Twout= A=	155 13.243076 383.17833 574767.49 1649.1546 2473731.8 128 156 3701.1946 103242.86	ID/YR \$/YR ID/YR		
Tin= Twin= Q= ΔTIm= mw= cooler {3} Tin= Twin= Q= ΔTIm=	100 48116 24.221966 874.83636 176 100 13200000 23.776107	Tout= Tw out= A= Cw= C= Tout= Twout= A= Cw=	155 13.243076 383.17833 574767.49 1649.1546 2473731.8 128 156 3701.1946 103242.86 154864286	ID/YR \$/YR ID/YR \$/YR ID/YR		
Tin= Twin= Q= ΔTIm= mw= cooler {3} Tin= Twin= Q= ΔTIm= mw=	100 48116 24.221966 874.83636 176 100 13200000 23.776107	Tout= Tw out= A= Cw= C= Tout= Twout= A= Cw=	155 13.243076 383.17833 574767.49 1649.1546 2473731.8 128 156 3701.1946 103242.86 154864286 48425.398	ID/YR \$/YR ID/YR \$/YR ID/YR \$/YR		


total cost of heaters=			14872576		
total cost of coolers=			92544904		
total cost of steam=			382232714		
total cost of cooling water=			170945096		
J=	377125.58	\$/YR	565688369	ID/YR	
A=	113247.54	ft^2	10520.696	m^2	



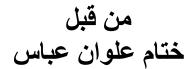
.

•



() ()

شکر و تقدیر


.

•

.

•

شبكات المبادلات ألحرارية

(بكالوريوس علوم في الهندسة الكيمياوية 2003)

1428 2007

