
Republic of Iraq
Ministry of Higher Education
and Scientific Research
Al-Nahrain University
College of Science

An Internet Based Model for Students

Submission to Iraqi Universities

A Thesis Submitted to the College of Science,
Al-Nahrain University in Partial Fulfillment of the

Requirements for the Degree of Master of Science
in Computer Science

Submitted by:

Hayder K. Mohammed
(B.Sc. 2005)

Supervised by:
Dr.Loay E. George

January 2011 Safar 1432

SUPERVISOR CERTIFICATION

I certify that this thesis was prepared under our supervision at the

Department of Computer Science/College of Science/Al-Nahrain

University, by Hayder Kadhim Mohammed as partial fulfillment of the

requirements for the degree of Master of Science in Computer Science.

Supervisor

Signature :

Name : Dr. Loay E. George

Title : Senior Researcher

Date : / / 2011

The Head of the Department Certification

In view of the available recommendations, I forward this thesis for

debate by the examination committee.

Signature :

 Name : Dr. Haitham A. Al Ani

 Title : Head of the Department of Computer Science,

Al-Nahrain University.

 Date : / / 2011

 EXAMINING COMITTEE CERTIFICATION

We certify that we have read this thesis and as an examining committee,

examined the student in its content and what is related to it and that in our opinion it

meets the standard of a thesis for the degree of Master of Science in Computer Science.

Examining Committee Certification

Signature :

Name : Dr.Amir S. Al Malah

Title : Assis. Prof. (Chairman)

Date : / / 2011

Signature :

Name : Dr.Bara’a A. Attea

Title : Assis. Prof. (Member)

Date : / / 2011

Signature :

Name : Dr.Abeer M. Yousif

Title : Lecturer (Member)

Date : / / 2011

Supervisor Certification

Signature :

Name : Dr. Loay E. George

Title : Assis. Prof.

Date : / / 2011

The Dean of the College Certification

Approved by the Council of the College of Science

Signature :

Name : Dr. Laith Abdul Aziz Al-Ani

Title : The Dean of College of Science, Al Nahrain University.

Date : / / 2011

 يمِحالر نِمحالر م اِسبِ

 كبرو أراقْ قٍلَع نم ننسالإِْ قلَخ قلَخ ىذالَّ كبر مِاسأ بِرقْا

 ملَعي مالَم ننسالإِ ملَّع مِلَقَالْبِ ملَّع ىذالَّ مركْالأَ

صقَد الع ظيم ْا

٥-١(قِلَالع(

Dedication

My efforts on this research are dedicated to my father Kadhim,
mother Eman, and sisters Hanin and Sarah. Without you to

inspire me, this just wouldn’t be possible.

-Hayder Kadhim

 ACKNOWLEDGEMENTS

y journey was long, that many have contributed to. One

page may not survive mentioning them all, but I love to

express gratitude to those who gave their greatest support.

First, thank you God, your generosity touched my life. I sought your

help, you gave me your soul. Because of you all events are blessings given

to me to learn from.

And, if I can see further, it is because I’m standing on the shoulders

of a giant, my supervisor, Dr.Loay E. George, none of this could happen

without him. Thank you sir for your great support, you are an honest father,

a friend and a teacher.

I would also like to thank the small and warmth family at the

Department of Computer Science. They gave me every possible support

and help to finish this thesis. I thank Dr.Taha S. Bashaga, the head of the

department, and the staff because they make up such a wonderful family.

Also, I would like to express my sincere gratitude to Mr.R.J. Owen

and Mr.Ben Clinkinbeard, for their great support on guiding me pickup the

right approach on architecting the proposed application. Your advice to use

the Swiz architectural framework was very helpful.

Finally, thank you father, mother, sisters, and friends for the

enlightenment, guidance and shelter you have provided during that journey.

M

 ABSTRACT

tudents admission to the Iraqi educational institutions suffers

continually from being a slow paced process, in which,

students have to do lots of paper work, that requires them to be precise and

careful not to make any mistakes. Additionally, the process is time and

effort consuming for the employees involved in the preparation and

organization of the required materials, as well as, being money consuming

for the Ministry of Higher Education.

This research addresses the problem statement, and provides an

internet based solution, that aims to facilitate admissions by fully

automating the whole process, and eliminating the paper work needed by

system users. The developed solution is given the abbreviation OASIS

which stands for (Online Admission System for Iraqi Students). OASIS

consists of four different modules: the Visitor module, which provides

visitors with the ability to view current admission status. The Student

module, which provides students with the ability to apply for the Iraqi

educational institutions online, in addition to save, load and submit their

wish lists. The Operator module, which enables operators to manipulate

student’s data. Finally, the Administrator module, which enables system

administrators to nominate students. The established automation system is

in the form of a Rich Internet Application, which is considered to be a new

category of applications that resembles to desktop applications. It is

supposed to enhance user experience by providing him with the feeling that

the application behaves like a typical desktop application where no page

refreshes are required.

S

The development of the proposed system was conducted using

Adobe Flash Platform, which is an integrated set of tools and technologies

from Adobe corporation. OASIS was developed using Adobe Flash Builder

4.0 Premium, with ActionScript 3.0 and MXML as the main programming

languages, and an architectural framework called Swiz, for architecting the

application.

i

 LIST OF ABBREVIATIONS

Abbreviation Meaning
AIR Adobe Integrated Runtime
AJAX Asynchronous JavaScript and XML
AMF Action Message Format
API Application Programming Interface
CSS Cascading Style Sheets
ECMAScript European Computer Manufacturers Association Script
EER Enhanced Entity Relationship
ERD Entity Relationship Diagram
FXG Flash XML Graphics
GUI Graphical User Interface
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
OASIS Online Admission System for Iraqi Students
IDE Integrated Development Environment
MVC Model View Controller
MXML Macromedia Extensible Markup Language
OOA/D Object Oriented Analysis and Design
PHP Hypertext Preprocessor or Personal Home Page
RDBMS Relational Database Management System
RIA Rich Internet Application
SDK Software Development Kit
SGML Standard Generalized Markup Language
SOA Service Oriented Architecture
SQL Structured Query Language
SWC Shockwave Component
SWF Shockwave Format
UML Unified Modeling Language
W3C World Wide Web Consortium
XML Extensible Markup Language
XUL XML User Interface Language

ii

WPAS Web-based Postgraduate Application System
UI User Interface
UCRMS University Course Registration and Management

System
LAN Local Area Network
DBMS Database Management System
IT Information Technology
SVG Scalable Vector Graphics
NF Normal Form
BCNF Boyce-Codd Normal Form
DKNF Domain Key Normal Form

ii

TABLE OF CONTENTS

CHAPTER ONE | ADMISSION SYSTEMS

1.1 Online Admission Systems -- 2

1.2 The Iraqi Admission System -- 4

1.2.1 Manual or Paper-Based Admissions ------------------------ 5

1.2.2 Internet Based Admissions ----------------------------------- 8

1.3 Related Work -- 9

1.4 Aim of Thesis -- 12

1.5 Thesis Layout -- 13

CHAPTER TWO | RICH INTERNET APPLICATIONS

2.1 Limitations of Current Web Applications ------------------------- 16

2.2 Promises of Rich Internet Applications ---------------------------- 17

2.3 Rich Internet Applications Architecture --------------------------- 22

2.4 Rich Internet Applications Development Technology ----------- 25

2.5 Client Side Technology: Adobe Flash Platform ------------------ 27

2.5.1 Benefits --- 28

2.5.2 Technologies --- 29

A. ActionScript -- 30

B. XML --- 31

C. MXML -- 32

D. FXG -- 32

iii

E. CSS -- 33

F. AMF --- 33

G. SWF --- 35

2.5.3 Adobe Flash Builder -- 36

2.5.4 Flex Framework -- 37

2.5.5 Flex Application --- 39

2.5.6 Adobe Flash Player -- 40

2.5.7 Adobe AIR -- 41

A. WebKit -- 42

B. Adobe Flash Player -- 42

C. SQLite --- 43

2.6 Server Side Technology: Zend Server ----------------------------- 45

2.6.1 HTTP -- 45

2.6.2 Web Server --- 46

2.6.3 Database -- 46

2.6.4 RDBMS --- 46

2.6.5 PHP -- 46

2.6.6 SQL -- 47

2.6.7 Apache -- 48

2.6.8 My SQL --- 48

2.6.9 PHPMyAdmin --- 49

2.6.10 Zend AMF --- 50

2.7 Analysis and Design Technology ----------------------------------- 50

2.7.1 Object Oriented Analysis and Design ----------------------- 51

2.7.2 Unified Modeling Language --------------------------------- 51

2.7.3 Prototype -- 53

2.7.4 ICONIX --- 53

2.7.5 Enterprise Architect --- 58

iv

2.7.6 Database Modeling -- 58

2.7.7 MySQL Workbench --- 60

2.7.8 Swiz Architectural Framework ------------------------------ 60

CHAPTER THREE | ARCHITECTURE OF OASIS

3.1 OASIS Overview --- 62

3.2 Technical Considerations -- 65

3.3 Preparation of the Development Environment ------------------- 65

3.3.1 Zend Server --- 66

3.3.2 My SQL Workbench -- 66

3.3.3 Browser --- 67

3.3.4 Flash Builder, Zend Framework and Flash Player -------- 67

3.3.5 Swiz Framework --- 68

3.3.6 Zend Studio --- 68

3.4 Analyzing Requirements --- 69

3.5 Architecting the Database --- 70

3.5.1 Analysis and Design --- 70

3.5.2 Physical Implementation -------------------------------------- 82

3.6 Architecting the RIA --- 82

3.6.1 Overview -- 83

3.6.2 OASIS: Analysis Phase --------------------------------------- 84

A. Functional Requirements --------------------------------- 85

B. Storyboards --- 86

C. Use Cases --- 89

D. Robustness Analysis --------------------------------------- 96

3.6.3 OASIS: Design Phase --- 99

v

A. Sequence Diagrams -- 99

B. Class Diagrams --- 104

C. Applying Swiz Architectural Framework -------------- 106

CHAPTER FOUR | IMPLEMENTATION OF OASIS

4.1 Implementation Overview --- 109

4.2 Implementation of the Visitor Module ----------------------------- 110

4.2.1 Home -- 110

4.2.2 Students --- 111

4.2.3 Student’s Details --- 114

4.2.4 Institutions -- 115

4.2.5 College or University Details -------------------------------- 117

4.2.6 Login -- 118

4.3 Implementation of the Student Module ---------------------------- 119

A. Home --- 119

B. Profile -- 119

C. Wish List --- 119

D. Students -- 119

4.4 Implementation of the Operator Module -------------------------- 120

A. Home --- 121

B. Profile -- 121

C. Students -- 121

D. Institutions --- 124

E. Database -- 124

4.5 Implementation of the Administrator Module -------------------- 125

A. Announcements --- 125

vi

B. Profile -- 125

C. Operators --- 125

D. Nomination -- 125

CHAPTER FIVE | DISCUSSION AND FUTURE WORK

5.1 Discussion --- 128

5.2 Future Work --- 130

REFERENCES

CHAPTER ONE
ADMISSION SYSTEMS

 1

 CHAPTER ONE
ADMISSION SYSTEMS

igher education benefits its students and the community as a

whole. For both it develops what psychologists call affect:

attitudes, emotions, motivation, values and interpersonal skills based upon

feelings for others. It develops cognition: knowledge, perception and

thoughts. The human race survives and dominates in its environment

through the use of knowledge. This is a potential asset and that fact is the

reason why it should be developed to the maximum [DHI99]. As the global

economy becomes more competitive, the states and nations that invest time

and energy in expanding and nurturing their higher educational systems,

will likely be the big winners of tomorrow [RRH05].

The process through which students are selected to enter higher

education is called admission or entrance [Robi08]. Higher admission is

one of the most important activities within a university as one cannot

survive without students [Lewi07]. The specific practices of admission may

vary widely from one country to another. Often, prospective college or

university students apply for admission during their last year of secondary

school [Robi08].

Effective admission procedures are a critical component of an

institution’s ability to fulfill its mission and goals, and on a greater scale, of

the capacity of higher education to contribute to a nation’s economic and

social goals. At the broadest level, maximizing the effectiveness of

admission processes helps maximize the capacity of higher education to

promote social mobility, encourage economic development, and ultimately,

H

ADMISSION SYSTEMS CHAPTER ONE

 2

alleviate poverty on a global scale [Robi08]. A poor admissions system can

mean fewer students being admitted into a university because of mistakes

or an overly low response time [Lewi07].

The next section introduces the online admission system and its

benefits for the current application process:

1.1 Online Admission Systems
The internet has made it easier than ever to apply to college. Students

no longer have to send for application forms, wait for them to arrive, and

then fill them out by hand. Forms can be downloaded from almost all

college sites or better yet, completed and submitted directly online, saving

some of the time and effort, and even postage; these mentioned steps are

the main steps of the traditional route required to be followed for paper

application submission [Sall09].

Internet is likely to have the most profound impact on the poorer

developing world by providing its inhabitants with unprecedented means to

enjoy the paperless efficiencies, services and opportunities that have been

mostly restricted to the richer in the developed world.

As Internet-connected computers are becoming more common and

their penetration in the societies. This development provides unprecedented

opportunities in education. Educational institutions are particularly paper-

intensive. Paperless practices can not only greatly reduce paper

consumption, but, more importantly, they can produce a paperless

generation of students who are acculturated to using Internet-based media

instead of paper. The education system is usually the first contact with

document generation and reading, and exposure to paperless practices at

this early stage could very effectively lead to its adoption in life [Geor08].

ADMISSION SYSTEMS CHAPTER ONE

 3

The Indian experience indicates that about 84% to 94% respondents

agree with the idea: the introduction of computer will lead to fair and

equitable admission and evaluation, the use of computer can improve

university administration, and computer is neutral for learning by men and

women [Sarl93].

The main features of using distributed computers environment could

be summarized as follows [Sarl93], [Geor08], [JGR08], [Lewi07],

[Wing00]:

1. A computer based centralized system offers great relief to the students

and parents since they have to fill-in only one form. This saves their

time and also helps them to work out their own alternative career

choices since the admissions are decided through the computerized

system.

2. Paperless systems in various public services agencies will also

counteract bureaucracy as well as corruption; since various control

measures can be integrated into Internet-based office systems, and a

greater transparency can be achieved by making data accessible to

various entities.

3. The system can reduce the burden of all parties involved in the process,

and also reduce errors.

4. Another benefit of a software system is the use of a central database.

Meaning all of the required information is stored in one central location

and thus is easily accessible. This is a far more reasonable storage

method than a paper-based file system, where the time of travelling to

and physically searching the records for the required information could

be a burden. Human error could also be a factor in that mistakes could

be made in the filing process; which would not occur in a well written

ADMISSION SYSTEMS CHAPTER ONE

 4

database system and mistakes or changes on physical records can be

messy to correct.

5. Furthermore, Software systems are also much faster at performing

certain tasks than humans; so, time can be saved when performing

processes such as sending communication e-mails, creating

recommendations and the comparison of applications. This also means

that these tasks can be done solely by the system, freeing up those

involved to perform more important tasks. In the long term, if methods

or minor details concerning the admissions process at universities

changes, this can be reflected in potentially minor changes to the code of

the system, rather than having to retrain employees regarding the new

practices.

6. Finally, computers have now become a much more “rich” media than

paper ever was. A rapid development of standard systems interfaces,

including web technology, has enabled systems to contain more

automatic updates and much more intuitive information access methods

than the paper based medium ever could.

1.2 The Iraqi Admission System
Gaining a greater understanding of the admission system currently in

use and exploring the issues and challenges that it has, will help to diagnose

this system better. The current admission system in Iraq relays on students’

scores on secondary leaving examinations in the admission process. The

leaving exams used in this process are nationally administered by the

ministry of higher education.

A student’s score is the only factor considered in the admission

process. The process is centrally coordinated and planned, students submit

ADMISSION SYSTEMS CHAPTER ONE

 5

their institution preferences and are automatically matched by computer to

an institution, based on their preferences and examination scores.

 The Iraqi ministry of higher education currently provides two means

of admission, Manual or Paper-based admissions and Internet-based

admissions. The following two subsections introduces both methods and

their issues:

1.2.1 Manual or Paper-Based Admissions
Currently, the paper-based admission system is the main method

used by students to apply for higher education in Iraq. The mechanism of

this method includes the following procedures [MOH09]:

1. After announcing national exam results, students have to visit a nearby

delivery and guidance center for the purchase of a student’s guidebook,

an application form, sticky labels for personal information and

educational institutions names, and a receipt.

2. Students have to read the provided guidebook to understand the

information and instructions that it contains, these information will

improve student’s choices. Guidance of somebody, like parents, or

someone with knowledge such as an instructor or a senior student is

very important at this stage.

3. The application form should be filled with student’s preferences

according to the instructions in the student’s guidebook, the student is

advised to write his choices on a draft paper before sticking labels into

the application, to reduce errors and the need for application

replacement.

4. Then, school committee fills their information and symbols into the

application. They should check that the application is free of errors,

scratch, deletion, and white ink. Sticky labels must be in a good

ADMISSION SYSTEMS CHAPTER ONE

 6

condition so that it will not affect the system that will read these

stickers.

5. After that, school administration has to stamp these applications and

send it with receipts to the nearest delivery and guidance center to

analyze it again for errors. Delivery of the applications must be

separated into parts and according to the deadlines written in the

student’s guidebook.

6. Next, Guidance and delivery centers have to separate and organize

students applications according to the courses that the student succeeded

in.

7. Finally, application forms are delivered to the central admissions

department in the ministry of higher education every three days.

The downsides of the manual method are:

1. Government may spend too much money on printing of admission

forms, and in absence of any reliable schema on how many applications

it is going to receive it may overspend by printing unnecessary

applications.

2. Thousands of parents and students line up every year, for collecting

application forms and then again for submitting the application forms.

This leads to problems with application management, and annoyed

parents and students alike.

3. The system tends to be time consuming and prone to duplication of

operations. Table (1.1) shows the number of operations required by this

admission method and where the delays are:

4. Application form force students to perform too much paper work of

cutting and pasting. Students may confuse numbers and symbols of the

ADMISSION SYSTEMS CHAPTER ONE

 7

educational institutions and may unintentionally make mistakes that

affect the student and the people involved in the admission process.

Table (1.1) Delays in the manual admission system

 Operation Delay
1 Preparation of the student’s guidebook, application form, sticky labels. Yes

2 Printing of the student’s guidebook, application form, sticky labels. No

3
Distribution of the student’s guidebook, application form, sticky labels

to the delivery and guidance centers all over Iraq.
No

4
Students visit delivery and guidance centers to purchase a copy of the

student’s guidebook, application form, sticky labels.
Yes

5 Students fill in their application forms. No

6 Students submit their application forms to their schools. No

7 School administration validate application forms. Yes

8 Schools deliver application forms to the delivery and guidance centers. No

9 Delivery and guidance centers validate application forms again. Yes

10
Delivery and guidance centers organize application forms according to

student’s success course.
Yes

11
Delivery and guidance centers deliver application forms to the

department of central admissions in the ministry of higher education.
No

12
Application forms are scanned and converted into readable data using

OCR technology.
Yes

13 A computer algorithm processes data and displays results. No

14 Announcement of results No

5. The current manual admission system requires students to fill in 50

college and institute preferences or the application will be refused.

6. After printing the application form it will be difficult to do any changes

to it. Reprinting will cost additional money.

7. The huge number of applications may lead to misplacement of forms.

ADMISSION SYSTEMS CHAPTER ONE

 8

8. Wastage of human resources due to involvement of people and teachers
in form collection.

9. The admission process is not transparent, leading to scope for

widespread malpractices. Corruption may also be a particularly

significant problem, and inequity is often an issue both in the admission

process itself and in the greater social and economic context.

10. Finally, it is difficult to prevent disqualified students from applying.

1.2.2 Internet-Based Admissions
The current internet based admission application is still in its beta

version and it is integrated into the ministry of higher education website.

According to the ministry of higher education, the application will be put to

test in the third quarter of 2010.

The core of the application is built around an electronic form, which

consists of four pages. The first page is the login page which is responsible

for authenticating students. Students are required to enter their examination

number which is printed to their examination card.

The second page is the selections page which contains 50 fields.

Students must choose 30 colleges and 20 institutions and then press submit

button to send the application and to be directed to the conformation page

in which students may check their selections before sending their

application. When the student clicks confirm, the application will be sent

and his account will be deleted.

The final page is complains page. Students may use this page to issue

some difficulties or problems they face with the current application

[Mini09].

ADMISSION SYSTEMS CHAPTER ONE

 9

The main downsides of this method are:

1. Authentication is based on the examination number only. Examination

number could be easily acquired by someone else and used to enter his

own preferences.

2. Each field in the application form contains a list of all educational

institutions, which makes the selection process prone to duplication.

3. Absence of selection recommendation mechanism.

4. Students are required to select 30 colleges and 20 institutes at least, or

the form will be refused.

5. The application does not support form saving for later use.

6. Inadequate preview of university, college, department structure.

7. No automatic mailing, the system lacks communication with its

students. Students won’t be able to check their application status.

8. No search capability.

9. Viewing of admission results is not supported.

10. The application is hosted inside a vast website that makes the

application hard to find.

1.3 Related Work
As mentioned in the introduction of this chapter, online admissions

differ from one country to another; therefore, this section tries to pick some

of the scientific studies that are close or plays some role in the subject of

online admissions. The following is a brief overview of these studies:

1. Fritz H. Grupe (2002) [Frit02], had described an Internet-based expert

system found at www.MyMajors.com; this system provides advice to

high school students or college freshmen who are seeking assistance in

selecting a potential major. It emulates a professional academic advisor.

The on demand, approximately 15-min consultation gathers information

http://www.mymajors.com/

ADMISSION SYSTEMS CHAPTER ONE

 10

from the student on his or her grades, degree of enjoyment of traditional

courses, standardized test scores, interests, and aptitudes. It assesses

student qualifications for a variety of majors. The expert system

recommends six majors from among 60 widely diverse majors for the

students to consider, and produces a report that fully describes the

students’ responses in such a way that the output can be used by a

human advisor to further extend and strengthen the advisement process.

2. Nunthasak Sooksakoun (2004) [Nunt04], the objective of this research

was to design and develop the course registration system for the Faculty

of Engineering at Mahidol University based on Object-Oriented

Analysis and Design (OOA/OOD) concept of the Unified Modeling

Language (UML). This research aimed at dealing with the two major

problems of (a) data inconsistency and (b) various data formats and

distributed physical locations (i.e. digital files and hardcopy) of the

previous system. The result of the study was a database schema and the

application prototype with the major functions to view student, teacher,

subject information, report system for each section and class roster,

process course grades, search information and course registration. The

application was setup in real environment of the LAN system. The

evaluation of the system found that it was able to support all of the

objectives and cover the proposed scope to the full satisfaction of the

registrars.

3. J.M.N.C. Gunawardana, G.P. Ishara, R.G. Ragel and S. Radhakrishnan

(2008) [JGR08], in their paper they described the design, development

and deployment of an online course registration system at the Faculty of

Engineering in University of Peradeniya. The system has not only

reduced the burden of all parties involved in the course registration

process, but also improved the process by reducing errors. In this

ADMISSION SYSTEMS CHAPTER ONE

 11

system, students register for their courses online, which are approved by

their advisers and then processed automatically to provide a set of

reports to the administrative staff. Most aspects of course registration

(such as pre-requisites, the maximum number of courses a student can

register per semester, etc.) are checked automatically reducing the

burden (time and pressure) of the advisers and the administrative staff.

4. Faraj A. Faraj (2009) [Fara09], had designed and developed a Web-

based Postgraduate Application System (WPAS) for university Utara

Malaysia. The WPAS is a real-time application system which is free

from traditional document processing procedures. It provides a

convenient graphical user interface (GUI) for both student and

admission department staff. It allows students to create their application

online, apply for degree programs, view application status, and update

application information from time-to-time. It also allows administrators

to manage student accounts, offer of place and admission information.

All of the services are possible anywhere at any time. Finally, this study

concluded that the overall results obtained are encouraging but

improvement to the prototype is definitely needed.

5. Muniba Memon and Asadullah Shaikh (2009) [Muni09], provided an

overview of development method, design, discussion and testing of web

based online admission system generated from transformation using

Model-Driven Architecture. The role of MDA in the development of a

web based application system through transformation is a vital part of

the development strategy because in today’s world people like to save

their time and cost. Currently technologies are changing day by day for

better and quick results, due to that the demands and needs of MDA are

also increasing rapidly. Furthermore, the purpose of system is to convert

semi-automatic system into web-based online admission system.

ADMISSION SYSTEMS CHAPTER ONE

 12

6. Sarmad Mahmoud Hadi (2010) [Sarm10], had proposed a system

architecture of three tiers (i.e., the client, the server, and the Database

Management System-DBMS) which are combined in a web application

that concerns announcing the Iraqi ministerial college admissions. The

database used is the actual results of the year 2008-2009. The proposed

system acts as a web based DBMS where it could be used for both

viewing and editing online data. Implementation proved that the three-

tier architecture allows more efficient bandwidth utilization between

client and server machines, with similar performance.

1.4 Aim of Thesis
 The objective behind this study is to analyze, design and implement a

web based software model for students admission and nomination for the

higher educational institutions in Iraq. It is supposed to serve four levels of

access: Visitor, Student, Operator and Administrator. Each level will

provide different set of services and functionality.

ADMISSION SYSTEMS CHAPTER ONE

 13

1.5 Thesis Layout
 The remaining chapters of this research can be outlined as follows:

Chapter TWO entitled “RICH INTERNET APPLICATIONS”

This Chapter provides a detailed introduction to the development

environment and tools used to build the proposed system, it describes Rich

Internet Applications, their structure, functionality, and their building tools.

Chapter THREE entitled “ARCHITECTURE OF OASIS”

This Chapter describes the steps that were followed in designing and

architecting the proposed system, from analysis to implementation.

Chapter FOUR entitled “IMPLEMENTATION OF OASIS”

Chapter four is dedicated to present a brief description of the

designed user interfaces, and the concepts behind building each interface.

Chapter FIVE entitled “CONCLUSIONS AND FUTURE WORK”

The final Chapter is dedicated to preview the conclusions derived

during the development process of the proposed system. In addition to,

suggesting some work for the future projects related to the field of Rich

Internet Applications.

CHAPTER TWO
RICH INTERNET APPLICATIONS

 14

 CHAPTER TWO
RICH INTERNET APPLICATIONS

he term Rich Internet Application (RIA) describes the new

category of applications that bridge the client and the Internet

cloud. They have come about as a means of solving the "rich versus reach"

problem, enabling Internet applications to be both rich in functionality and

engaging to use, yet able to take full advantage of the Internet's reach,

connectivity, and deployment model [Adob09]. RIA will not replace water

pipes with electric wires. Rather innovators discovered a way to transport

electricity, through water pipes. This breakthrough discovery made it

possible to deliver very sophisticated, responsive interactive and

graphically rich applications over the Web [Noda05].

A Rich Internet Application is the focal point of the convergence

between desktop applications and browser-based clients. RIAs combine the

strengths of both domains while liberating the user from their respective

constraints. They are considered to be lightweight applications with a

subset of the functionality and feature set of a desktop application. The user

interface may run in a web browser or some other application runtime. On

first use RIAs are downloaded and accessed on demand. They may then be

cached for future use or, in some scenarios, be deployed onto a device to

provide access even when the user is disconnected from the network. Data

may be cached locally and then synchronized with a remote server or may

be kept on the server and retrieved when necessary [Adob09].

A Rich Internet Application provides sophisticated interfaces for

representing complex processes and data, minimizing client-server data

T

RICH INTERNET APPLICATIONS CHAPTER TWO

 15

transfers and moving the interaction and presentation layers from the server

to the client. Typically, a RIA is loaded by the client along with some initial

data; then, it manages data rendering and event processing, communicating

with the server when the user requires further information or must submit

data [Mari09].

RIA technology has not arrived in a vacuum. For years, users have

been trying to access corporate data and applications from remote locations

such as the home, hotels, or on the road. Developers are always looking for

new and better ways of delivering applications and improving functionality

[Adob09]. Although the first RIA term was coined by Adobe in 2002, it

gained momentum recently for the following reasons [Noda05]:

1. Most RIAs require download of an initial application. This was a huge

barrier when the majority of Internet users relied on dial-up connections.

Broadband gets rid of this barrier and enables heavier content transports.

2. The difference in computing power between clients and servers has

narrowed significantly. RIAs utilize more client computing power than

traditional send and receive web applications. This shift has created an

ideal environment for RIA.

3. Better response to user actions today more than ever, businesses demand

complex and responsive applications. They require a very sophisticated

user interface to better present information and quickly respond to user

actions. It becomes extremely difficult for HTML-based applications to

meet these needs.

RIAs are also becoming increasingly popular and accepted.

According to Gartner Group (http://www.gartner.com/), mainstream

adoption and critical mass among IT and commercial software projects

occurred at 2008, and it was expected that at least 60 percent of new

RICH INTERNET APPLICATIONS CHAPTER TWO

 16

application development projects will include RIA technology by 2010

[Stal07].

2.1 Limitations of Current Web Applications
Web-based applications have jumped in use and popularity in the last

decade, beginning with Amazon.com's e-commerce Web site in the 90's to

today's enterprise resource planning and business intelligence applications.

Using a browser, end users can book airline tickets, bid on auctions, check

email, buy and sell stocks, submit tax forms, or listen to music from any

networked computer [Noda05].

But as the original World Wide Web was a platform for accessing

static or dynamic content encoded in hypertext markup language. User

interaction was limited to navigating links and entering data in forms. This

thin client architecture was simple and universal (no client installation

required) but severely limited the quality of the applications that could be

delivered over the Internet. Early attempts at extending interface

functionality such as Java applets and client-side scripting enriched HTML-

based navigation with interactive objects, animated presentation effects,

and input validation. However, these features' diffusion was limited by

standardization issues (for example, proliferation of client-side scripting

languages) and architectural issues (such as firewall incompatibility)

[PGF10].

Most of the processing of current web applications is done on the

server, and the client machine running a web browser became a dumb

terminal [Vale09]. They were designed to make life more flexible for the IT

team and to take advantage of near universal access to the Internet. While,

eliminating overhead of installing applications locally, web applications

come with a loss of the rich functionality that desktop applications possess.

RICH INTERNET APPLICATIONS CHAPTER TWO

 17

Currently, web applications struggle with consistency problem across

different browsers and browser versions. Response times and performance

depend heavily on the ability of the server to manage the number of users

and their requests. Security is an even bigger challenge. With the number of

malware threats constantly on the rise, there is a persistent risk of

usernames and passwords being captured and of infected data being sent to

the server. These threats show no signs of subsiding even though there are

new standard security approaches in place [Adob09].

Then came the term Rich Internet Application to provide a set of

technologies that can eliminate or deal with the problems that the current

web applications suffer from, the next section explains the benefits from

developing RIAs:

2.2 Promises of Rich Internet Applications
The intervening years have seen much progress in increasing the

functionality of tasks performed through the Web, with a corresponding

increase in the complexity of their creation. Modern Web solutions

resemble desktop applications, enabling sophisticated, user interactions,

client-side processing asynchronous communications, and multimedia. The

idea "network is computing platform" was strengthened by Web 2.0's

emergence, it has emphasized HTML/HTTP's limits [PGF10].

RIAs provide a way to deal with the expansion in web applications

functionality, and bypass the limitations that the original Web introduces by

offering the following benefits [Vale09], [Noda05], [Adob09], [Lawt08],

[Mari09], [Stal07], [PGF10]:

1. The new Rich Internet Applications have all the benefits of the

client/server type of development but with no maintenance problems

RICH INTERNET APPLICATIONS CHAPTER TWO

 18

because they are delivered using a proprietary web browser plug-in or

working independently via virtual machines.

2. Every task is accomplished on demand and in realtime without multiple

steps or pages being reloaded. RIA can also be applied to any processes

that require multiple steps and back-and-forth page iterations.

Registration is one example, shopping cart checkouts are another. This

will not only improve the user experience, but also reduce server load.

3. RIAs separate the application from the platform or device on which it is

being used. This partitioning makes RIAs flexible and reduces the costly

support associated with desktop applications. Small and lightweight,

RIAs can be installed by the user quickly, easily, and when they are

needed.

4. Unlike static web applications and desktop applications that are

constrained by their domain, RIAs can be used in either a connected or

disconnected mode. As a result, the richness typically associated with

large desktop applications can be applied to a lightweight application.

This is something that static web-based applications have struggled with

substantially in the past, and marks a big step forward.

5. Underpinning RIAs are the tools that bring together design and

development teams to realize the opportunity presented by combining a

rich user interface (UI) with rich functionality RIAs they add an

important value to usability, flexibility, and the long-term effectiveness

and efficiency of business applications and operations.

6. For some time, enterprises have had to choose between using static web

applications, which are often low on rich features, and deploying

desktop applications, which are complex and difficult to install. By

combining the strengths of both web and desktop applications, RIAs add

value rather than complication.

RICH INTERNET APPLICATIONS CHAPTER TWO

 19

7. RIA's bring a lot “expressiveness” to the user. His experience with an

online application does not need to be dull. He wants to see smooth

menu animations, drop shadows, vector graphics, and maps

manipulation. Rich media content like audio and video and real time

data pooling and messaging are common now inside RIAs.

8. RIAs can accelerate data input through caching, just as in a desktop

application. The input screens can be easily tuned to streamline them for

the data entry user.

9. RIAs typically feature asynchronous communication, in which the client

engine can interact with the server without waiting for the user to

perform an action such as clicking on a link. This increases

responsiveness as users don't have to wait for data to move between

client and server. For example, users can manipulate a Google Maps

display without waiting for pages to reload each time.

10. Rich Internet Applications are more interactive and more responsive

applications than traditional web applications. The basic characteristics

are: unnecessary page reload, drag & drop facilities, short response time

and multimedia animations. Based on these characteristics, different

functionalities such as live validation, auto completion, periodic refresh,

and even rich text editors can be offered to the RIA user. This minimizes

or eliminates gaps in the user's engagement. The effect on the user is

that their attention can remain consistently engaged. When, the

application responds directly to a user's command, or when the user can

directly manipulate elements on the screen, it engenders a feeling of

connectedness and responsiveness to the application. The user trusts the

application, which feels more like a solid-state machine. The feeling of a

solid-state machine also empowers the user to explore more, without

fear of losing the page-oriented thread or having to reload previous data-

RICH INTERNET APPLICATIONS CHAPTER TWO

 20

filled pages upon return. Not having to subtly re-orient themselves with

each new page, users can optimize their focus and stay engaged with the

tasks at hand.

11. RIAs generally have clients handle user-interface-related activity, while

the application server processes and stores data and streamlines data

updates sent to the client. This frees server resources, allowing the same

hardware to handle more client sessions concurrently. It also reduces

client-server traffic, which in turn, resulting in better performance.

12. In traditional web applications, data resides on the server. In RIA

applications data can be distributed between both, server and client. The

developer can decide about the distribution and even design an

application that may temporarily be used irrespective of the server.

Therefore, a RIA can use the client's persistent and volatile content.

Data can be manipulated on the client, and finally sent to the server once

the operation has been completed. The advantages of the distribution of

data on client and server side are: offline usage validation and

preparation of data on client side.

13. In conventional web applications, there is only one controller at the

server side, which orchestrates the computation of the page. At each

user interaction, the whole page is computed by scratch and reloaded. In

RIAs a second controller at client side is introduced that is responsible

for the computation and refreshment of a portion of a page. Data

processing can be executed both at client and server side.

14. The original Web was a request-response machine: the server sent

information only in response to a client request. In RIA, both the client

and server can initiate communication; program elements in the client

side stand ready to receive and execute asynchronous server commands.

This bidirectionality eliminates many unnecessary server roundtrips.

RICH INTERNET APPLICATIONS CHAPTER TWO

 21

15. Transitions and user guidance, While it can with no doubt be distracting

to have too much motion in a website, but designing and delivering

usable and engaging applications indicates that discreet and purposeful

motion is incredibly useful in providing context and guidance for the

user. The design of these transitions is referred to as an application's

"choreography". These transitions are far from gratuitous animation!

Well-defined “choreography” is like walking the user into another room,

while affording the user the certain knowledge on how to return to the

room.

According to a Forrester report published in March 2007, entitled as

"The Business Case for Rich Internet Applications", which was based on

interviews with RIA technology providers and designers, as well as

Forrester Research clients and customers. The report revealed that "well-

designed RIAs can produce eye-popping results that can be useful for

improving the value of current investments and make the case for future

RIA projects". According to the report findings, firms that measure the

business impact of their RIAs say that rich applications meet or exceed

their goals. Specific findings demonstrate that improved ease of use for

customer-facing RIAs drives higher conversion rates and order size. More

shoppers convert to buyers when they can easily trade off product options

and costs in real time. And because of increased ease of completing

complex orders online, fewer customers give up.

Additionally, the ability for RIAs to incorporate rich media pays

dividends. Rich media helps boost margins. RIAs not only enable better

configurations, they also allow firms to embed video and other contextual

help content into applications. Users who access these types of help

features convert at a higher rate than those who don't" [Adbe10].

RICH INTERNET APPLICATIONS CHAPTER TWO

 22

Finally, users will ultimately determine if an RIA succeeds or fails.

For them, the interest is in what the RIA allows them to achieve. Ease of

use and stability of the application are two key factors in user acceptance,

and RIAs have inherent advantages in both of these areas [Adob09].

2.3 Rich Internet Applications Architecture
Architecture refers to the blue print, or the underlying schematics

used to map out or design a web application. The basic concept of a tiered

architecture involves breaking up an application into logical chunks, (or

tiers). Each of which is assigned general or specific roles. Tiers can be

located on different machines or on the same machine where they are

virtually or conceptually separate from one another. The more tiers used,

the role of each tier becomes more specific.

A 3-tier architecture is the most common approach used for web

applications today. Although the 3-tier approach increases scalability and

introduces a separation of business logic from the display and database

layers, it does not truly separate the application into specialized, functional

layers. For prototype or simple web applications, a 3-tier architecture may

be sufficient. However, with complex demands placed on web applications,

a 3-tiered approach falls short in several key areas, including flexibility and

scalability. These shortcomings occur mainly because the business logic

tier is still too broad- it has too many functions grouped into one tier that

could be separated out into a finer grained model. Fig (2.1) illustrates a 3-

tier architecture.

While all approaches have their benefits, the nature of web-based

applications lend themselves to an n-tiered approach. Traditionally, it starts

with a basic 3-tier model and expands on it [Jerm09]. Figure (2.2)

illustrates an n-tier architecture.

RICH INTERNET APPLICATIONS CHAPTER TWO

 23

Figure (2.1) A 3-Tier architecture

The benefits of n-tiered architecture are [Jerm09]:

1. The most important benefit of an n-tiered architecture, compared to a 3-

tier approach, is breaking up the business logic from the application-

server level into a more fine-grained model.

2. Separating the responsibilities of an application into multiple tiers

makes it easier to scale the application.

3. An n-tiered architecture allows to separate the workload better for

developers. By breaking design into tiers, developers with different

specialties can focus on a tier that best suits their skill set.

4. An n-tiered model also makes an application more readable and its

components more reusable. By separating an application into tiers, it

will be much harder to fall into the trap of writing spaghetti code-which

refers to huge line counts of code with a complex, tangled control

structure and deeply nested if-then statements.

RICH INTERNET APPLICATIONS CHAPTER TWO

 24

5. Finally, an n-tiered approach makes applications more robust by

eliminating a single point of failure. For example, if the developer

decides to change database vendors he won’t have to hunt through every

single template of his application to make the necessary changes.

Simply he replaces the data tier and adjusts the applicable portions of

the integration tier to query the new database. He will not break the

business logic or, more importantly, presentation tier code.

In essence, RIAs are client/server applications that fit into the

traditional n-tier development process where the client can be deployed

anywhere while the data stays on the server [Adob09].

Figure (2.2) N-Tiered architecture

It is important to understand the sub-architectures within the overall

architecture of the RIA. In the big picture, the client communicating with

RICH INTERNET APPLICATIONS CHAPTER TWO

 25

the server through a services layer. Each component of the larger

architecture has an MVC architecture of its own. There is an MVC inside of

the client application itself, and an MVC in the backend services as well.

Model-View-Controller (MVC) is a software architectural pattern

where an application is broken into separate layers for the data model, the

user interface (view), and the business logic. The logic, model, and views

are decoupled, and communicate through an intermediary controller. This

pattern enables both abstraction of logic, and reuse of code/components

throughout the application.

The MVC on the client manages the interaction between user and the

user interface. User can invoke commands, update views, load data, etc…

The client MVC maintains the state of the application, handles all requests

to the server for data, and controls how the data is presented in the view.

The MVC on the server handles requests from the client. At the

services-layer, MVC processes the requests from the client application, and

delegates actions on the server. The request could be saving data in a

database, updating the file system, some kind of analytical processing, or

returning chunks of data to the server. The big differentiation here is that

there is no user interface. Instead of a user interface, the view would be the

format of the data that is being returned to the client application [Andr08].

2.4 Rich Internet Applications Development Technology
Leading Tech Companies have made their move and begun to realize

the benefits of RIA. For example, Google Maps and Gmail leverage RIA by

using a technique called “AJAX” (Asynchronous JavaScript and XML).

Adobe’s RIA Flash platform release, notably “Flex”, had opened the door

for many companies and developers. Microsoft’s .NET Framework shares

the same visions in that it pursues rich and powerful web application clients

RICH INTERNET APPLICATIONS CHAPTER TWO

 26

while reducing development time and cost. Laszlo Systems delivered the

“Open Laszlo” server platform for free. While Mozilla Foundation had

offered a proprietary RIA technology called XUL (XML User Interface

Language) [Noda05].

Most implementation technologies are invoked through a browser and

might rely on the Web’s inherent facilities or supplement conventional

browsers with scripts or plug-ins. RIA can also be executed outside a

browser with scripting-based technologies such as Ajax. Modern browsers

understand these scripting languages and can interpret and effect these

scripts. Plug-in solutions include Flash, Open- Laszlo, and Flex. Plug-ins

provide better performance than JavaScript because they run their own

native code, allowing advanced rendering and event processing.

Browser-based approaches, such as Mozilla XUL, support a rich

interaction natively, without the need for proprietary extensions to the

browser. However this type of solution is hindered by its browser

dependent nature (for example, applications based on XUL might be

inaccessible to users with other browsers). Finally, RIAs can be executed

outside the browser, using a specific runtime environment, as with AIR and

JavaFX. Here, the user must install additional software, but the capabilities

regarding client side storage and offline use improve [PGF10].

Proprietary RIA approaches, on the other hand, use a stateful

programming model. Clients can take over much of the work, which frees

the Web server from responsibility for functions such as storage. In

addition, each client maintains, its own session. This relieves servers, which

can maintain sessions for only a limited number of users, of this

responsibility. RIAs developed via proprietary platforms can store data

locally and are better able to tap into the client’s graphics drivers for

improved rendering and performance. Ajax-based platforms can’t offer

RICH INTERNET APPLICATIONS CHAPTER TWO

 27

these capabilities because these standards have not evolved sufficiently

[Lawt08].

Table (2.1) Development technologies comparison

 AJAX Adobe Flash Java

Graphical Richness Average
(Same as HTML) Very Rich Rich

Container/ Engine
Footprint

Very Light
(Browser built-in) Light Heavy

Application
Download Fast Slow Slow

Audio/Video
Support Poor Excellent OK

Consistency on
Different

Computing
Environments

Varies Very Consistent Relatively
Consistent

Plug-in/Runtime
Requirement on

Client
No Flash Player Java Runtime

Development
Challenge

Very complex
without tools, and

high skills required

Relatively easy
with tools such as

Flex or open
Laszlo

Relatively easy
with tools such as

NexaWeb

Security Concerns

JavaScript codes
are open to public.
Everybody can see

source code if
desired

Flash files
(compressed

binary) are created.

Class/Jar
compressed binary
files are created.

2.5 Client Side Technology: Adobe Flash Platform
The Adobe Flash Platform is a web design and development

platform for creating expressive applications, content, and video that run

consistently across operating systems and devices. It had reached over 98%

of Internet-connected desktop users. The Flash Platform consists of an

integrated set of technologies—including client runtimes, tools,

frameworks, services, and servers—that provide delivery of applications

and content to the widest possible audience [Adsy10]. The platform is

RICH INTERNET APPLICATIONS CHAPTER TWO

 28

surrounded by an established ecosystem of support programs, business

partners, and user communities [Adby10].

2.5.1 Benefits
The benefits of using Adobe Flash Platform for building RIAs can be

listed as follows [Adbs10], [Adst10], :

1. The platform has multiple elements of openness. It is more involved in a

wide range of open-source initiatives than most of its industry

contemporaries. This enables developers to build Rich Internet

Applications at the fraction of the cost of other platforms. Figure (2.3)

shows how different parts of the platform fit into open, proprietary or

third party categories.

Figure (2.3) Flash Platform openness

RICH INTERNET APPLICATIONS CHAPTER TWO

 29

2. Reach: the Flash Platform runtimes are installed on over 98% of all

Internet-connected computers and over a billion devices.

3. Expressiveness: Industry-leading tools and technologies enable

developers to go beyond the limitations of HTML and create

experiences with pixel-perfect precision and immersive interactivity.

4. Consistency: the Flash Platform ensures the integrity of creative vision

with consistent experiences across operating systems, browsers, and

devices without having to write multiple versions of code.

5. Enhanced search engine indexing that provides the ability for top search

engines to understand what’s inside of RIAs and other rich web content

created with Adobe Flash technology and add that relevance back to the.

6. The Flash Platform leverages data from any back-end system and

exposes it in a rich, easy to use user experience.

7. It has an active, supportive ecosystem.

8. Emphasis on data security.

9. Finally, Support for free learning resources, which includes: Adobe

Developer Connection, Flex Developer Center, Free Online Video

Tutorials, More than 335 user groups, Adobe TV, Tour de Flex, Support

Programs and more than 250 training partners.

2.5.2 Technologies
The set of technologies that make up Adobe Flash Platform can be

illustrated in Figure (2.4) [Adse10]. As shown in Figure (2.4), Adobe Flash

Platform contains many tools and technologies. The following Subsections

explains technologies that were used in building our application.

RICH INTERNET APPLICATIONS CHAPTER TWO

 30

Figure (2.4) Flash Platform development technologies

A. ActionScript
ActionScript is the official programming language of Adobe’s Flash

platform. While originally conceived as a simple tool for controlling

animation, ActionScript has evolved into a sophisticated programming

language for creating content and applications for the Web, mobile devices,

and desktop computers.

ActionScript’s core language is based on the ECMAScript 4th edition

language specification [Coli07]. The language offers a robust programming

model that will be familiar to developers with a basic knowledge of object-

oriented programming [Adsm10].

ActionScript code is written in plain text, so an ActionScript program

can be created with nothing more than a simple text editor, such as Notepad

on Windows or TextEdit on Macintosh. However, most ActionScript

programmers write ActionScript code using one (or both) of two

RICH INTERNET APPLICATIONS CHAPTER TWO

 31

commercial tools produced by Adobe Systems Incorporated: Flash Builder

and the Flash authoring tool [Coli07].

ActionScript’s key core-language has many features, among these

features are the following:

1. First-class support for common object-oriented constructs, such as

classes, objects, and interfaces.

2. Single-threaded execution model.

3. Runtime type-checking.

4. Optional compile-time type-checking.

5. Dynamic features such as runtime creation of new constructor functions

and variables.

6. Runtime exceptions.

7. Direct support for XML as a built-in data type.

8. Packages for organizing code libraries.

9. Namespaces for qualifying identifiers.

10. Regular expressions.

B. XML
XML stands for Extensible Markup Language, and it is used to

describe documents and data in a standardized, text-based format that can

be easily transported via standard Internet protocols. XML, is based on the

Standard Generalized Markup Language (SGML) which is the foundation

for all modern markup languages [Bria03].

XML is easy to use, easy to create and can be parsed in any

programming language, it can even be read by human beings.[Robe10].

RICH INTERNET APPLICATIONS CHAPTER TWO

 32

C. MXML
Is a pure XML-based markup language that follows all conventions

and syntax rules used by such languages. It is used to define a Flash

application and many of its components.

Most of the elements in MXML correspond to ActionScript.

Therefore, MXML and ActionScript can be used interchangeably in many

situations but MXML is commonly used to declare visual layout of an

application and many objects.

When compiling a Flash application, MXML code is rewritten in the

background into pure ActionScript [Davi10].

The reason behind using another language like MXML in addition to

ActionScript, is that it will be much easier to follow or understand a user

interface described using an XML language than an imperative one. And

this translates into less code to write for a user interface. Also, it is much

easier to build tools for declarative languages than imperative languages.

[Miha09].

D. FXG
It is an XML-based language which stands for Flash XML Graphics,

that enables developers to represent graphic objects as XML markup. It was

created by Adobe as a language that represents graphical objects in a Flash

application. Its capabilities closely follow the rendering model of Adobe

Flash Player that is responsible for executing Flash applications in the

browser. There are many similarities between FXG and SVG (Scalable

Vector Graphics), another XML language that represents graphics that’s

been available for many years. In fact, the Adobe development team first

considered using SVG, but decided to create a new language because the

existing SVG didn’t match how graphics are rendered in Flash Player.

RICH INTERNET APPLICATIONS CHAPTER TWO

 33

Many Adobe Creative products are able to export graphics as FXG markup,

including Photoshop, Illustrator, and Fireworks which are well known

graphic design tools [Davi10].

E. CSS
Website developers may already be familiar with the concept of CSS

(Cascading Style Sheets) because this technology has been increasingly

used to control the visual appearance of Web pages. Since its introduction

in 1996, the CSS recommendation is created and published by the World

Wide Web Consortium (W3C) which is an international community for

developing Web standards. It is up to the vendors who actually create the

Web browsers and other products, to implement CSS for their own

platforms. Web browsers, for example implement various subsets of the

W3C recommendation; it is only in recent years that the major browsers

such as Internet Explorer and Firefox have approached compatibility in

their CSS implementations.

Adobe Flex Framework, which is one of the Flash Platform

development technologies, implements significant parts of the W3C’s CSS

recommendation and adds features that make the technology particularly

effective for implementing Flash application graphic designs [Davi10].

F. AMF
Action Message Format, is a compact binary format that is used to

serialize ActionScript objects to exchange them over the Web. Once it is

serialized, an AMF encoded object may be used to persist and retrieve the

public state of an application across sessions or allow two endpoints to

communicate through the exchange of strongly typed data [Ados06].

RICH INTERNET APPLICATIONS CHAPTER TWO

 34

AMF is transported over HTTP, but it can also be transported over

real time communication protocols. Exchanging data using AMF is

dramatically faster than any other mean of communication [Davi08];

because it encodes data. For example, if the same string is repeated in a

data set, it is encoded one time, and all other occurrences of the string are

references. If a number is smaller than four bits, only the minimum number

of bytes required are used.[Corl10].

Figure (2.5) Census Benchmark

AMF is considered to be a very powerful tool for Flash developers

because it is so lightweight and is processed so quickly. Objects that are

RICH INTERNET APPLICATIONS CHAPTER TWO

 35

returned in AMF format are typed; that is, their properties are Strings or

Numbers, and this makes processing data returned from Flash Remoting

much easier [RMJ08]. The format itself is open, and anyone can read the

white papers and implement programs that use it [Mhai08].

James Ward a technical evangelist at Adobe, created an application to

test the bandwidth used while using different data formats to send large

data sets. The results shown in Figure (2.5), demonstrates how efficient the

AMF is in transferring large amounts of data [Robe10], [Jame07].

G. SWF
The SWF file is a collection of embedded assets and ActionScript

bytecode that is created as a result of compiling ActionScript source code

into binary format. This file is understood and executed by Flash runtimes.

The compiler that is responsible of compiling ActionScript source code is

called ActionScript compiler and is included in all of the Adobe Flash

Platform professional tools as shown in Figure (2.6) [Coli07], [Tril10].

Figure (2.6) Generating a SWF and embedding in HTML

The SWF (pronounced “swiff “) file format delivers vector graphics, text,

video, and sound over the Internet and has the extension .swf. The SWF file

format is designed to be an efficient delivery format, not a format for

RICH INTERNET APPLICATIONS CHAPTER TWO

 36

exchanging graphics between graphic editors. It is designed to meet the

following goals [Adte08]:

1. The graphics described by SWF files render quickly. The format is

primarily intended for on-screen display and supports anti-aliasing, fast

rendering to a bitmap of any color format, animation, and interactivity.

2. The format can travel over a network with limited and unpredictable

bandwidth. The files are compressed to be small and support

incremental rendering through streaming.

3. The files work well on limited hardware, and can take advantage of

better hardware when it is available. This ability is important because

computers have different monitor resolutions and bit depths.

2.5.3 Adobe Flash Builder
Adobe Flash Builder is an integrated development environment

(IDE) for building cross-platform, Rich Internet Applications (RIAs). Using

Flash Builder, applications can be built using the Adobe Flex framework,

MXML, Adobe Flash Player, Adobe AIR, and ActionScript.0. These

applications are named as Flex applications. Flash Builder also includes

testing, debugging, and profiling tools for testing performance [Absy10].

MXML, ActionScript, and CSS code in Adobe Flash Builder can be

edited with separate editors. The Flash Builder workbench is both project

and document-centric. The appropriate editor opens automatically because

the editors are associated with resource types [Absy10].

The Builder provides the ability of creating projects that can work

with any backend server technology, and enables the use of a Network

Monitor tool to generate a detailed audit trail of all data passed between the

local application and the back end. It also includes data access components

that are based on a service-oriented architecture (SOA). These components

RICH INTERNET APPLICATIONS CHAPTER TWO

 37

use remote procedure calls to interact with server environments, such as

PHP, Adobe ColdFusion, and Microsoft ASP.NET, to provide data to

applications and send data to back-end data sources. Depending on the type

of interfaces to a particular server-side application. Flash builder can

connect an application by using many methods like Adobe Action Message

Format (AMF) remoting services by using a special component [Absy10].

2.5.4 Flex Framework
Flash Builder is based on the Flex SDK which is a free, open source

framework consisting of a standards-based language and programming

model MXML, a package of extendable ActionScript classes, and

command-line tools to compile and debug applications. Although the Flex

SDK can be used on its own, most developers use it in conjunction with the

Flash Builder IDE to more rapidly build applications. Because the

framework is open source, developers can directly discuss ideas and

proposals with project committers, submit code through the open bug

tracking system, and contribute enhancements directly to the Flex project

[Adsy10].

The general benefits of Open Source can be summarized as the

following:

1. They are free. The greatest thing about open source software is that it is

free and available to the general public. Software developers and

programmers volunteer their time to improve existing software and

create new programs. Open source software cannot, by definition,

require any sort of licensing or sales fees.

2. They are cross-platform and “technology-neutral”. By requiring open

source software to be non-platform specific, the open source community

has ensured that the programs are usable by everyone.

RICH INTERNET APPLICATIONS CHAPTER TWO

 38

3. They must not restrict other software. This basically means that if an

open source program is distributed along with other programs, those

other programs may be open source or commercial in nature. This gives

software developers maximum control and flexibility.

4. They embrace diversity. Diversity of minds and cultures simply

produces a better result. For this reason, open source programs cannot,

by definition, discriminate against any person or group of persons, nor

against any “field of endeavor” [Eric01].

The structure, components and functionality of the Flash builder,

Flex SDK and Flex framework can be illustrated in Figure (2.7) [Tril10].

Figure (2.7) Structure of Flash Builder

RICH INTERNET APPLICATIONS CHAPTER TWO

 39

Creating a rich, interactive application, with the extensive set of

classes provided by the Flex framework along with the rich object model

provided by the Flash Platform runtimes, almost always makes it easier and

faster to create an application with Flex than any other technology

[Adsy10].

2.5.5 Flex Application
As mentioned previously, Flex applications are built in Flash Builder

using three programming languages ActionScript, MXML, and FXG. These

applications are stateful; that is, they have the capability to remember data

persistently for the duration of the user’s session in a way that classic Web

applications usually don’t. The content of an application’s data can come

from many sources XML files, databases or other server-side resources

[Davi10].

Flex applications communicate differently. The server sends the

compiled Flex application (i.e., the SWF file) that runs inside the browser

Fig. (2.8) Data transfer scenario between the Flex application and the
server

RICH INTERNET APPLICATIONS CHAPTER TWO

 40

using the Flash Player plug-in. Usually, this SWF file holds only the client-

side business logic. If data are need (from a database for example) the Flex

application makes a request for those data. The server sends only the data

(this can be in XML, AMF3 format), and the client knows how to represent

this data visually. This is a service oriented architecture; that is the Flex

application is the client; a client that can consume data services from the

server. The application can change state without refreshing the page or

reloading the SWF file in the browser. The application is a client that can

do more than “just” render data. For more illustration see Figure (2.8)

[Corl10].

Finally, Flex applications have no direct way of reading data from a

database. Because the client should never be trusted. Flex applications rely

on server-side scripts to manage the databases [Corl10].

2.5.6 Adobe Flash Player

Is a cross-platform browser-based application runtime used to run

media created in the Adobe Flash authoring environment and full SWF-

based applications created using Adobe Flash Builder [Vale09].

Flash Player is doing the work at runtime, interpreting ActionScript

code and executing the application’s functionality. Flash Player

understands only compiled ActionScript [Davi10].

Installed on over 98% of connected computers and more than 1

billion devices, Flash technology is used to deliver more than 80% of web

video [Adsm09]. The widespread use of Adobe Flash Player provides a

broad foundation for RIAs, as it has since the original design principles of

RIA were defined. By delivering content in the browser with Flash Player,

developers achieve a consistent and engaging presentation experience with

a wide reach that spans computers and devices [Adob09].

RICH INTERNET APPLICATIONS CHAPTER TWO

 41

The drawback of Flash Player, is that it has very little access to the

operating system. For example, it cannot manage files, control operating

system windows, or access most hardware [Coli07].

The features of RIAs in the browser are [Aosy10]:

1. Application delivery: Applications can be easily discovered, explored,

and used.

2. Installation: No application installation is necessary.

3. Application updates: Applications are updated by pushing new content

to a website.

4. Multiple operating system support: Applications run on multiple

operating systems and browsers.

5. Programming languages: JavaScript is provided by browsers, and

ActionScript is provided by Adobe Flash Player software.

6. Background capability: RIAs can run only in a visible browser window.

7. Persistence: Activity is limited to the browser session. When the

browser is closed, information is lost.

8. Desktop integration: Applications are sandboxed, so desktop integration

is limited.

9. User interface control: RIAs run within a browser window that has its

own controls, branding, and integration with the desktop.

10. Data storage: Applications have limited local storage, which the browser

can destroy.

2.5.7 Adobe AIR
Adobe Integrated Runtime is a cross-platform runtime environment

for building Rich Internet Applications using Adobe Flash, Adobe Flex,

HTML, or Ajax, that can be deployed as a desktop application. AIR, has

been in development from the last couple of years. Developers are now able

RICH INTERNET APPLICATIONS CHAPTER TWO

 42

to build cross platforms applications, leveraging their existing skills in

HTML, Flash and Flex and deploying them on almost all operating

systems. Using AIR developers can create applications that combine

benefits of web application like: network and user connectivity, rich media

content, easy development and broad reach with the strengths of the

desktop applications like: interaction with other applications, local resource

access, offline access to information, rich interactive experience [Vale09].

As said by Adobe, AIR runtime installations reached 300 Million

worldwide, and number of applications developed for AIR reached 840

[Adbs10].

The Adobe AIR runtime may be a relatively new platform, but it

actually embeds three highly mature and stable cross-platform technologies

to power AIR applications. These are the following:

A. WebKit:
Used for rendering HTML content inside an AIR application.

WebKit is an open source, cross-platform browser and is the base layer for

Apple’s Safari browser. WebKit is known for its strong support of W3C

standards, such as HTML,XHTML, Document Object Model DOM

Cascading Style Sheets (CSS), and ECMAScript. However, it also provides

support for enhanced functionality (enabling the creation of rounded

corners ,using CSS). Because developing for AIR means developing for

WebKit the developer is free to take advantage of these nonstandard

extensions and not worry about browser compatibility.

B. Adobe Flash Player:
The same player that was mentioned in section 2.5.6 Adobe Flash

Player, which is used to render SWF files.

RICH INTERNET APPLICATIONS CHAPTER TWO

 43

C. SQLite:
A database engine for enabling local database access. It is an

extremely lightweight, open source, cross-platform SQL database engine

that is embedded in many desktop and mobile products. In contrast to most

SQL databases, it doesn’t require a separate server process, and it uses a

standard file to store an entire database.

AIR applications can be installed and run on a number of different

operating systems. These include Windows, Machintosh and Linux

[Vale09]. Figure (2.9) demonstrates the architecture behind AIR.

The main features of RIAs on the desktop are the following [Aosy10]:

1. Application delivery: Installed applications have more persistence,

power, and functionality.

2. Installation: Applications are installed seamlessly from the browser or

downloaded and installed like a traditional desktop application.

3. Application updates: AIR provides APIs that allow applications to be

updated as easily as pushing new content to a website.

4. Multiple operating system support: AIR applications are cross-platform,

so they can be installed on and run on multiple operating systems.

5. Programming languages: Integrated JavaScript and ActionScript virtual

machines are compatible with the browser.

6. Background capability: Applications can run in the background or

provide notifications like traditional desktop applications.

7. Persistence: RIAs are installed and available on the desktop. They store

information locally and operate offline.

8. Desktop integration: Applications can access a desktop file system,

clipboard, drag-and-drop events, system tray/notifications, and more.

RICH INTERNET APPLICATIONS CHAPTER TWO

 44

9. User interface control: RIAs have a customizable user interface and

desktop integration, enabling branded experiences.

10. Data storage: Applications have unlimited local storage and access to a

local database, plus encrypted local storage.

Figure (2.9) Adobe AIR Architecture

RICH INTERNET APPLICATIONS CHAPTER TWO

 45

2.6 Server Side Technology: Zend Server
Zend Server is a Web Application Server for running and managing

PHP applications that require a high level of reliability, performance and

security on Linux, Windows or IBM. The community edition of Zend

Server is free, and is used for running non-critical PHP applications or just

for experimenting with PHP.

Zend Server Eliminates wasted time spent on putting together PHP

stack piece by piece. It provides a complete PHP stack that can be

controlled by the Administration Interface. The stack contains the following

components: Apache, MySQL, PHP, phpMyAdmin and Zend Framework.

With the help of native installers Zend server installs the stack in minutes

[Zend10].

2.6.1 HTTP
The hypertext transfer protocol is the core communications protocol

used to access the World Wide Web and is used by all of today’s web

applications. It is a simple protocol that was originally developed for

retrieving static text-based resources, and has since been extended and

leveraged in various ways to enable it to support the complex distributed

applications that are now common place. HTTP uses a message-based

model in which a client sends a request message, and the server returns a

response message. The protocol is essentially connectionless. Although

HTTP uses a stateful protocol as its transport mechanism, each exchange of

request and response is an autonomous transaction, and may use a different

connection [Dafy08].

RICH INTERNET APPLICATIONS CHAPTER TWO

 46

2.6.2 Web Server
Is a server software that uses HTTP to serve up documents and any

associated files and scripts when requested by a client such as a web

browser [Micr02].

2.6.3 Database
A database is a repository for data. In other words, lots of

information can be stored in a database. A relational database is a special

type of database using structures called tables. Tables are linked together

using what are called relationships. Tables can be built with relationships

between those tables, not only to organize data, but also to allow later

retrieval of information from the database [Gavi06].

2.6.4 RDBMS
A relational database management system is a term used to describe

an entire suite of programs for both managing a relational database and

communicating with that relational database engine [Gavi06].

2.6.5 PHP
PHP is a server-side scripting language designed specifically for the

Web. PHP originally stood for Personal Home Page but was changed and

now stands for PHP Hypertext Preprocessor [Luke09]. It is a scripting

language, as opposed to a programming language: PHP was designed to

write Web scripts, not standalone applications [Larr08].

PHP has seen an exponential growth in use since its inception,

overtaking ASP as the most popular scripting language being used today. It

is the most requested module for Apache [Larr08]. As of November 2007,

RICH INTERNET APPLICATIONS CHAPTER TWO

 47

it was installed on more than 21 million domains worldwide, and this

number is growing rapidly [Luke09].

As it become one of the most widely used application scripting

frameworks on the Web. PHP has evolved into a high-performance

application server technology that's used both to dynamically generate Web

pages and to provide a middleware layer for rich client applications such as

those built with Adobe Flash Builder [Davi10].

The features of PHP can be summarized into the following [Davi10],

[Larr08] :

1. PHP is completely free. It can be download and used on as many servers

as wanted without any registration or license fees.

2. PHP is portable between operating systems.

3. PHP has excellent performance and scalability. According to Yahoo!

PHP handles over 3.5 billion hits per day.

4. PHP is easier to learn than the alternatives.

5. PHP has tight integration with nearly every database available.

6. PHP has nearly limitless feature set due to its extendibility.

2.6.6 SQL
SQL is short for Structured Query Language. It is originally

produced by IBM. It was created as an uncomplicated, non-procedural way

of accessing data from a relational database [Gavi06]. SQL is a group of

special words used exclusively for interacting with databases. Every major

database uses SQL, and MySQL is no exception. There are multiple

versions of SQL, and MySQL has its own variations on the SQL standards,

but SQL is still surprisingly easy to learn and use. In fact, the hardest thing

to do in SQL is using it to its full potential [Larr08].

RICH INTERNET APPLICATIONS CHAPTER TWO

 48

2.6.7 Apache
Apache is a free open source HTTP Web server introduced in 1995

by the apache group. Apache is popular on UNIX based systems including

Linux, and also runs on Windows NT and other operating systems

[Rame08].

Apache's main job is to parse any file requested by a browser and

display the correct results according to the code within that file. Apache is

quite powerful and can accomplish virtually any task required. According

to the Netcraft Web site (www.netcraft.com), in the year 2005, Apache is

running over 34 million Internet servers, more than Microsoft, Sun ONE,

and Zeus combined. Its flexibility, power, and, of course, price make it a

popular choice [Eric01].

2.6.8 MySQL
MySQL is a fast, robust, relational database management system

(RDBMS). A database enables you to efficiently store, search, sort, and

retrieve data. The MySQL server controls access to data to ensure that

multiple users can work with it concurrently, to provide fast access to it,

and to ensure that only authorized users can obtain access. Hence, MySQL

is a multiuser, multithreaded server. It uses Structured Query Language

(SQL).

MySQL has been publicly available since 1996 but has a

development history going back to 1979. It is the world's most popular

open source database and has won the Linux Journal Readers Choice

Award on a number of occasions [Luke09].

The MySQL software consists of several, pieces, including the

MySQL server (mysqld which runs and manages the databases), the

MySQL client (mysql, which gives you an interface to the server), and

RICH INTERNET APPLICATIONS CHAPTER TWO

 49

numerous utilities for maintenance and other purposes. MySQL has been

known to handle databases as large as 60,000 tables with more than five

billion rows. MySQL can work with tables as large as eight million

terabytes on some operating systems [Larr08].

The main features of MySQL can be summarized into the following

[Luke09]:

1. Performance: MySQL is undeniably fast. The developers' benchmark

page at http://web.mysql.com/whymysql/benchmarks demonstrates that

Many of the benchmarks show MySQL to be orders of magnitude faster

than the competition. In 2002, eWeek published a benchmark comparing

five databases powering a web application. The best result was a tie

between MySQL and the much more expensive Oracle.

2. Low Cost: MySQL is available at no cost under an open source license

or at low cost under a commercial license.

3. Ease of Use: Most modern databases use SQL. This makes changing

From other RDBMS an easy to do task. MySQL is also easier to set up

than many similar products.

4. Portability: MySQL can be used on many different Unix systems as well

as under Microsoft Windows.

5. Availability of source code.

2.6.9 PHPMyAdmin
phpMyAdmin is a free software tool written in PHP intended to

handle the administration of MySQL over the World Wide Web.

phpMyAdmin supports a wide range of operations with MySQL. The most

frequently used operations are supported by the user interface (managing

databases, tables, fields, relations, indexes, users, permissions, etc), while

still have the ability to directly execute any SQL statement [PMA10]. It is

http://web.mysql.com/whymysql/benchmarks

RICH INTERNET APPLICATIONS CHAPTER TWO

 50

somewhat easier and more natural to use than the mysql client but requires

a PHP installation and must be accessed through a Web browser. One of the

best reasons to use phpMyAdmin is the ability to transfer a database from

one computer to another [Larr08].

2.6.10 Zend AMF
Zend AMF is a part of the free, open-source Zend Framework that is

used for developing web applications and services with PHP [Zend10].

PHP doesn't support remoting and AMF natively [Corl10]. The effort to

provide AMF support for the Zend Framework was sponsored by Adobe

starting in 2008 and was based on the existing codebase of AMFPHP.

Because Zend AMF is now approved for use by Adobe Systems, and

support for it included in Adobe Flash Builder. Flash Builder automatically

installs a version of Zend AMF into PHP server. From that point, it is very

easy to create server-side PHP code that exchanges data with Flex

applications using the binary AMF protocol [Davi10].

2.7 Analysis and Design Technology
Planning for success in Rich Internet Applications goes beyond

writing code. Successful implementations require prior considerations

related to the ultimate application users' technical and usage context, and

effective design principles. Benefits obviously don't happen automatically,

but result from well-supported design practice. This means that design

needs to be given enough attention.

Furthermore, designing great user experiences is not about making

an application attractive. User experience design should be done in service

of surfacing capability, improving task completion, and making the

application enjoyable [Stal07].

RICH INTERNET APPLICATIONS CHAPTER TWO

 51

2.7.1 Object Oriented Analysis and Design
Object Oriented Analysis is a procedure that identifies the

component objects and requirements of a system or process that involves

computers and describes how they interact to perform specific tasks. The

reuse of existing solution is an objective of this sort of analysis. Object

Oriented Analysis generally precedes Object Oriented Design or Object

Oriented Programming when a new Object Oriented computer system or

new software is developed.

While Object Oriented Design is the process of transforming an

Object Oriented Model into the specifications required to create a system.

Moving from Object Oriented analysis to object Oriented design is

accomplished by expanding the model into more and more detail

[Rame08].

An object-oriented approach to application development makes

programs more intuitive to design, faster to develop, more amenable to

modification, and easier to understand. Abstractions reveal causes and

effects, expose patterns and frameworks, and separate what's important

from what's not. Object-orientation provides an abstraction of the data.

Moreover, it provides a concrete grouping between the data and the

operations that can be performed. With the data, in effect giving the data

behavior. It groups operations and data into modular units called objects

and lets combine objects into structured networks to form a complete

program. In an object-oriented programming language, objects and object

interactions are the basic elements of design [Appl10].

2.7.2 Unified Modeling Language
The Unified Modeling Language (UML) is a useful tool for system

development [Jose04]. UML is a family of graphical notations, backed by

RICH INTERNET APPLICATIONS CHAPTER TWO

 52

single meta-model, that help in describing and designing software systems,

particularly software systems built using the object-oriented style. The

fundamental driver behind UML is that programming languages are not at a

high enough level of abstraction to facilitate discussions about design

[Mart04].

Before the advent of the UML, system development was often a hit

or miss proposition. Almost 80 percent of all software projects fail. These,

projects exceed their budgets, don't provide the features customers need or

desire or worse, are never delivered [Paul05]. System analysis would try to

assess the needs of their clients, generate a requirements analysis in some

notation that the analyst understood (But not always the client) [Jose04].

UML has become a standard in the system development world. It is

the result of work done by Gram Booch, James Rumbaugh, and Ivar

Jacobson. Consisting of a set of diagrams, the UML provides a standard

that enables system analysts to build a multifaceted blueprint that’s

comprehensible to clients, programmers and everyone involved in the

development process [Jose04].

If every participant speaks UML, then the pictures mean the same

thing to everyone looking at those pictures. Learning the UML, therefore, is

essential to being able to use pictures to cheaply, flexibly, and quickly

experiment with solutions. It is faster, cheaper, and easier to solve problems

with pictures than with code [Paul05].

UML consists of a number of graphical elements that combine to

form diagrams. The purpose of the diagrams is to present multiple views of

a system; this set of multiple views is called a model. A UML model

doesn’t tell how to implement the system [Jose04].

RICH INTERNET APPLICATIONS CHAPTER TWO

 53

2.7.3 Prototype
A prototype is a simple, incomplete model or mock-up of a design,

and is primarily a vehicle for exploration, communication, and evaluation.

Its purpose is to obtain user input in design, and to provide feedback to

designers. Its major function is the communicative role it plays, not

accuracy or thoroughness. A prototype enables a design to be better

visualized and provides insights into how the software will look and work.

It also aids in defining tasks, their flow, the interface itself, and its screens.

A prototype is a simulation of an actual system that can be quickly created.

A prototype may be a rough approximation, such as a simple hand-drawn

sketch, or it may be interactive, allowing the user to key or select data using

controls, navigate through menus, retrieve displays of data, and perform

basic system functions.

A prototype need not be perfectly realistic, but it must be reasonably

accurate and legible. A prototype also need not be functionally complete,

possessing actual files or processing data. By nature, a prototype cannot be

used to exercise all of a system’s functions, just those that are notable in

one manner or another. A prototype should be capable of being rapidly

changed as testing is performed [Wilb07].

2.7.4 ICONIX
ICONIX is a process that describes a series of specific steps used to

drive Object Oriented software designs from use cases. It uses minimalist,

core subset of UML in its process. ICONIX process resonate better with

programmers than many other approaches, because it actually forces the

use cases into concrete, tangible and specific statements of required system

behavior that programmers can deal with efficiently.

RICH INTERNET APPLICATIONS CHAPTER TWO

 54

In theory, every single aspect of the UML is potentially useful, but in

practice, there never seems to be enough time to do modeling, analysis, and

design. There's always pressure from management to jump to code, to start

coding prematurely because progress on software projects tends to get

measured by how much code exists. ICONIX process, as shown in Figure

(2.10), is a minimalist, streamlined approach that focuses on that area that

lies in between use cases and code [Doug07].

Figure (2.10) ICONIX process

ICONIX includes the following steps [Doug07]:

1. Requirements defenition

a. Functional requirements: Defining what the system should be capable

of doing depending on how the project is organized. Either the

developer will be involved in creating the functional requirements or

the requirements will be "handed down from on high" by a customer

or a team of business analysts.

RICH INTERNET APPLICATIONS CHAPTER TWO

 55

b. Domain modeling: Understanding the problem space in unambiguous

terms, Figure (2.11)

c. Behavioral requirements: Defining how the user and the system will

interact (i.e writing the first-draft use cases). Starting with a GUI

(Graphical User Interface) prototype, storyboarding the GUI, and

identifing all the use cases that are going to be implemented, Figure

(2.12).

Figure (2.11) Example of a Domain Model diagram

RICH INTERNET APPLICATIONS CHAPTER TWO

 56

Figure (2.12) Example of a Usecase diagram
2. Analysis / preliminary design

a. Robustness analysis: Drawing a robustness diagram (an "object

picture" of the steps in a use case), rewriting the use case text, Figure

(2.13)

Figure (2.13) Robustness diagram symbols

RICH INTERNET APPLICATIONS CHAPTER TWO

 57

b. Updating the domain model while writing the use case and drawing

the robustness diagram. This step is for discovering missing classes,

correcting ambiguities and adding attributes to the domain objects.

c. Naming all the logical software functions (controllers) needed to

make the use case work.

d. Rewriting the first draft use cases.

3. Detailed design

a. Sequence diagramming: Drawing a sequence diagram (one sequence

diagram per use case) to show in detail how to implement the use

case. The primary function of sequence diagramming is to allocate

behavior to classes, Figure (2.14).

b. Updating the domain model while drawing the sequence diagram, and

adding operations to the domain objects. By this stage, the domain

objects are really domain classes, or entities, and the domain model

should be fast becoming a static model, or class diagram a crucial part

of the detailed design.

c. Cleaning up the static model.

Figure (2.14) Sequence diagram notation

RICH INTERNET APPLICATIONS CHAPTER TWO

 58

4. Implementation

a. Coding/unit testing:Writing the code and the unit tests.

b. Integration and scenario testing: Basing the integration tests on the

use cases.

c. Performing a Code Review and Model Update to prepare for the next

round of development work.

2.7.5 Enterprise Architect
Enterprise Architect is a comprehensive UML analysis and design

tool, covering all aspects of the software development cycle from

requirements gathering, through analysis, model design, testing, change

control and maintenance to implementation, with full traceability. It is a

multi-user, visual tool helping analysts, testers, project managers, quality

control staff and deployment staff to build and document robust,

maintainable systems and processes.

Enterprise Architect supports generation and reverse engineering of

source code for many popular languages, including ActionScript and PHP

[Spar09].

2.7.6 Database Modeling
Database design is so important because all applications written

against that database model design are completely dependent on the

structure of that underlying database. If the database model need to be

altered at a later stage, everything constructed based on the database model

probably must be changed and perhaps even completely rewritten. That can

get very expensive and time consuming. A design is needed to ensure that it

works before spending humungous amounts of money finding out that it

RICH INTERNET APPLICATIONS CHAPTER TWO

 59

doesn't. The idea is to fix as many problems and errors in the design. Fixing

the design is much easier than fixing a finished product.

Database model is a blueprint for how data is stored in a database

and is similar to an architectural approach for how data is stored, a pretty

picture commonly known as an entity relationship diagram (ERD). A

database, on the other hand, is the implementation or creation of a physical

database on a computer. A database model is used to create a database.

The process of relational database model design is the method used

to create a relational database model. This process is mathematical in

nature, but very simple, and is called normalization. The process of

normalization consists of a number of distinct steps called Normal Forms.

Normal Forms are: 1st Normal Form (1NF), 2nd Normal Form (2NF), 3rd

Normal Form (3NF), Boyce-Codd Normal Form (BCNF), 4th Normal

Form (4NF), 5th Normal Form (5NF), and Domain Key Normal Form

(DKNF).

In terms of relational database modeling, normalization becomes a

process of removing duplication in data, among other factors. Removal of

duplication tends to minimize redundancy. Minimization of redundancy

implies getting rid of unneeded data present in particular places, or tables.

The benefits of applying Normalization are [Gavi06]:

1. The physical space needed to store data is reduced.

2. Data becomes better organized.

3. Normalization allows changes to small amounts of data (namely single

records) to be made to one table at once. In other words, a single table

record is updated when a specific item is added, changed, or removed

from the database. No need to search through an entire database to

change a single field value in a single record, just the table.

RICH INTERNET APPLICATIONS CHAPTER TWO

 60

2.7.7 MySQL Workbench
MySQL Workbench provides a graphical tool for working with

MySQL Servers and database. The Workbench provides three main areas

of functionality [Orac10]:

1. SQL Development: Enables creating and managing connections to

database servers. As well as allowing the configuration of connection

parameters, MySQL Workbench provides the capability to execute SQL

queries on the database connections using the built-in SQL Editor.

2. Data Modeling: Enables creating models of database schema

graphically, reverse and forward engineer between a schema and a live

database, and edit all aspects of database using the comprehensive table

editor. The Table Editor provides easy-to-use facilities for editing

Tables, Columns, Indexes, Triggers, Partitioning, Options, Inserts and

Privileges, Routines and Views.

3. Server Administration: Enables creating and administering server

instances.

2.7.8 Swiz Architectural Framework
Swiz is a framework for Adobe Flex, AIR, and Flash that aims to

bring complete simplicity to RIA development. Swiz provides [Swiz10]:

• Inversion of Control / Dependency Injection.

• Event handing and mediation.

• A simple life cycle for asynchronous remote methods.

• A framework that is decoupled from application code.

In contrast to other major frameworks for Flex, Swiz [Swiz10]:

• Imposes no JEE patterns on your code.

• No repetitive folder layouts.

• No boilerplate code on development.

RICH INTERNET APPLICATIONS CHAPTER TWO

 61

• Does not require to extend framework-specific classes.

• Swiz represents best practices learned from the top RIA developers

at some of the best consulting firms in the industry, enabling Swiz to

be simple, lightweight, and extremely productive.

CHAPTER THREE
ARCHITECTURE OF OASIS

 62

 CHAPTER THREE
ARCHITECTURE OF OASIS

fter a brief introduction of the main technologies used to

develop the research project, this chapter intends to discuss the

steps behind developing the college admission system with the aid of

utilizing the benefits of the introduced technologies. This chapter

demonstrates the existing interactions between different application

components, the introduced procedures to analyze user and system

requirements, definition of use cases and development of user interfaces

and remote services.

 Also, this chapter explains the motivation behind using such

technologies and the promises and improvements that could be gained.

 The developed Rich Internet Application, described in this chapter, is

given the abbreviation OASIS, which stands for Iraqi Central Admission

and Nomination System. OASIS is supposed to serve four levels of users

including Visitor, Student, Operator and Administrator. The main part of

this chapter is laid out according to the proposed user levels.

3.1 OASIS Overview
 The system as a whole consists of different components that

communicate and collaborate with each other. These components are

distributed according to their area of functionality. Some of the components

operate in the Client side, while others in the Server side.

 Figure (3.1) illustrates these components, and the sequence of steps

they undergo to collaborate with each other.

A

ARCHITECTURE OF OASIS CHAPTER THREE

 63

Figure (3.1) OASIS overview

The operational steps are:

1. User should assign the application’s web address (i.e., URL) inside the

Browser’s window and hits Enter key.

2. The browser requests the main HTML page, which was chosen as the

starting page.

3. The browser receives the requested main HTML page which contains the

embedded SWF file; SWF contains the whole Rich Internet Application

encoded source code (i.e., OASIS application file with .swf extension).

4. Flash Player recognizes the downloaded SWF file (OASIS.swf), and

executes it.

ARCHITECTURE OF OASIS CHAPTER THREE

 64

5. When the executed application or the User requires any data from the

Web Server, the application requests that data by generating a remote

procedure call to a specific PHP service. Flash Player handles that

request to the Web Server, which in turn will handle that request to the

specific PHP service file.

6. When executing the specified PHP service, any data required will be

requested from MySQL Database that contains the OASIS database

tables.

7. After executing the service, the server translates and encodes the resulted

data into an AMF format, which has the advantage of being smaller in

size, since it is in Binary format. As stated in Chapter 2, this

functionality is supported by the Zend Framework.

8. Then, the server sends the resulted AMF message to Flash Player

through HTTP protocol.

9. Flash Player receives the resulted AMF message, decodes it into the

appropriate format.

10. Finally, OASIS application processes the received data, if needed, and

displays it into the application’s data fields.

 From the above steps, it was obvious that once the OASIS Rich

Internet Application is downloaded from the Server, the application will

reside in the client’s device without being reloaded each time a new page is

requested in the application.

 The coming sections explain the procedures and methods that were

followed to design and develop the proposed system starting from

requirements analysis, development environment preparation, database

design, till the structuring of the Rich Internet Application.

ARCHITECTURE OF OASIS CHAPTER THREE

 65

3.2 Technical Considerations
When the work has started, the first step was to study system

requirements and base technical decisions on the current problem domain,

and what users want to see. The choice of the development tools and

technologies were decided according to some considerations, which can be

summarized as follows:

1. The designed system should target a wide range of users which have

average or little understanding of how to use the internet. The designed

user interfaces preferable to be consistent and user friendly.

2. The system should be secure and provides different levels of access.

3. The system should handle large amounts of data, as it has to deal with

thousands of Iraqi students.

4. The chosen development technology has to be well supported,

documented, and wide spread.

5. The availability of high bandwidth network connections in Iraq made it

possible to consider richer web applications.

6. The considered development technology must be consistent with all of

the available browsers.

7. The technology considered should be able to support local languages

(like Arabic in the case of OASIS).

8. There is a need to free the server from doing too much business work

that can be done at the client.

3.3 Preparation of the Development Environment
 To prepare for the development process of the proposed system,

multiple tools have to be installed and configured correctly. The next

subsections summarize these tools briefly.

ARCHITECTURE OF OASIS CHAPTER THREE

 66

3.3.1 Zend Server
 The first step in preparing for OASIS development, is the installation

and configuration of a back end server and a database technology, to be

used for establishing data connections for data access and manipulation

purposes.

 Zend server was chosen as the back end technology, because it has all

the tools and services needed for the OASIS database development process,

it is easy to install with few simple steps, and has a great support.

 Zend Server automatically installs the latest versions of Apache

server, PHP, PHPMyAdmin and MySQL server, with the only

configuration step of setting a password for the server access.

 After installing the server, it can be accessed by typing in

http://localhost/ in any browser window; if the installation was successful

the browser displays Zend Server Test Page.

3.3.2 My SQL Workbench
 In order to make the creation and manipulation processes of the

OASIS database an easy going process, and to handle data professionally,

MySQL Workbench was used.

 MySQL Workbench comes with a bundle of tools for connecting with

existing databases and run SQL queries, SQL scripts, edit data and manage

database objects. But the most important reason for choosing this

Workbench is its ability to create and manage database models graphically,

and apply forward and backward engineering on the created model.

 This offers the ability to create and design database models

graphically, and the developer can get an idea of how the model will look

like and what are the weak points in the design, before delving into the

coding process. After the design is accepted, MySQL Workbench has the

http://localhost/

ARCHITECTURE OF OASIS CHAPTER THREE

 67

ability to convert that design into SQL statements which can be executed

later on. The described Workbench will be better demonstrated in

“Architecting Database” section of this chapter.

3.3.3 Browser
 The proposed OASIS Rich Internet Application was implemented and

tested on different types of browsers, to check the operability of the

application, these test steps will be demonstrated in Chapter 4 later on. For

that reason, seven different types of the most commonly used browsers

were installed:

1. Google Chrome browser.

2. Mozilla Firefox browser.

3. Apple Safari browser.

4. Opera browser.

5. Internet Explorer browser.

6. Maxthon browser.

7. Flock browser.

3.3.4 Flash Builder, Zend Framework and Flash Player
 The next step is to install the Rich Internet Application development

environment, Flash Builder 4, which was used to develop OASIS Rich

Internet Application.

 After installation, Flash Builder automatically installs the latest

debugging version of Flash Player into the installed operating system,

which in turn integrates itself into all of the installed browsers. As

mentioned in Chapter 2, Flash Player is a runtime environment in which

the OASIS Rich Internet Application will be executed inside.

ARCHITECTURE OF OASIS CHAPTER THREE

 68

 In a final step, Flash Builder also installs a copy of Zend Framework

into the installed Zend Server, which is responsible for providing AMF

support.

3.3.5 Swiz Framework
 Swiz Architectural Framework is the next tool to be installed inside

Flash Builder. The following points summarize the steps required to install

Swiz:

1. Swiz is downloaded from Swiz’s website as a compressed ZIP file,

which contains a Library File with the extension .swc.

2. The file is unzipped to any location.

3. Then, the unzipped SWC file is imported inside Flash Builder to be

ready for use.

 The above steps conclude the installation step, however, a further step

of configuration is required to start using the framework, that step will be

mentioned in “Applying Swiz Architectural Framework” section during this

Chapter.

3.3.6 Zend Studio
 The final step in the preparation stage is to install a tool that supports

editing of PHP and HTML files. The chosen tool is Zend Studio, which has

features (like refactoring, code generation, code assist and semantic

analysis) combined with each other to enable rapid application

development.

ARCHITECTURE OF OASIS CHAPTER THREE

 69

3.4 Analyzing Requirements
 The first step in developing any software application is to analyze its

problem domain, and then to define the requirements resulting from that

analysis. This section will state the problem studied during the development

of this research project, and then tries to draw the functional requirements

of it.

 As mentioned in Chapter 1, the developed application is related to

students and should consider the variations in their ability to apply for

educational institutions using an internet based system. The proposed

system is supposed to function on a specific sample of students and

educational institutions. This sample comprises Iraqi students and

universities.

 The system is also considered to serve different levels of

administrators, by providing multiple levels of authentication. Finally,

administrators should have the ability of initiating automatic college

nomination of students according to their ranks.

 The concluded functional requirements, which define what the system

should be capable of doing, were categorized according to the proposed

user levels. The Visitor: which is a type of user that has no privileges, he

has the ability to view latest announcements, search for students, and view

universities and colleges. The Student: a type of user that has student

privileges, he has the same visitor ability in addition to viewing his profile,

create, view, edit, load and save his wish list, and logout of the system. The

Operator: which has the same ability of the student; he can manipulate and

edit students, universities and colleges, with no wish list manipulation.

Finally, the Administrator: This is responsible for manipulating and editing

operators and nominating students.

ARCHITECTURE OF OASIS CHAPTER THREE

 70

3.5 Architecting the Database
 This section focuses on the steps followed to analyze, design and

implement OASIS database. These steps were separated into two main

stages: Analysis and Design, and Physical Implementation.

3.5.1 Analysis and Design

 The process starts by analyzing the problem domain and its concluded

requirements, which were explained in the previous section. These

requirements provide information on some of the needed tables which are

supposed to be included in the proposed database model. In this step the

following tables were introduced:

a. Administrator table.

b. Student table.

c. Operator table.

d. Educational Institution table.

e. College table.

f. Wish List table.

g. Degree table.

 After that step, Student’s Guide Book was studied carefully to explore

any further required tables, and any missing fields.

 Next, the resulted tables were normalized. Normalization can be

described as being a step toward the introduction of granularity, removal of

duplication, or minimizing of redundancy; or simply the introduction of

tables, all of which place data into a better organized state.

 Although normalization is very effective, OASIS database was not

normalized further than 2nd Normal form. There are potential problems in

ARCHITECTURE OF OASIS CHAPTER THREE

 71

taking this redundancy minimization process too far. These problems can

be summarized as follows [Gavi06]:

a. Too much minimization of redundancy implies too much granularity and

too many tables. Too many tables can lead to extremely huge SQL join

queries. The more tables in a SQL join query, the slower queries execute.

Performance can be so drastically affected as to make applications

completely useless.

b. Better organization of data with extreme amounts of redundancy

minimization can actually result in more complexity, particularly if end-

users are exposed to database model structure. The deeper the level of

normalization, the more mathematical the model becomes, making the

model “techie-friendly” and thus very “user-unfriendly”.

 Taking into consideration that the physical space is not nearly as big

a concern as it used to be, because disk space is one of the cheapest cost

factors to consider (unless, of course, when dealing with a truly huge data

warehouse) [Gavi06].

 Subsequently, the noted tables and their fields were modeled

graphically via computer using MySQL Workbench.

 At first, MySQL Workbench is launched. When the bench tool box is

started, a new EER (Enhanced Entity Relationship) model is created. The

created database schema was given the name OASIS Schema, and the

tables were created one by one using the tools provided inside the bench.

 The following paragraphs explain the considerations that were

followed in creating the proposed model inside MySQL Workbench:

1. Student table was created to hold Student’s profile data. Figure (3.2)

illustrates the created table:

ARCHITECTURE OF OASIS CHAPTER THREE

 72

Figure (3.2) Student table

 Three letters naming convention, “tbl”, was used as a prefix for the table

name, in order to be easily recognized as a table in SQL statements.

Table fields were also prefixed with “std”, to be recognized during table

querying process.

2. MyISAM was chosen as the storage engine for this table, as it performs

very quickly during the SELECTs and INSERTs operations [Larr08],

which were used extensively during OASIS implementation. MyISAM

also supports FULLTEXT indexes [Larr08], which were used in the

search operation inside OASIS. Finally, OASIS Rich Internet

Application does not have any transactional operations which are why

InnoDB engine was not considered.

3. stdStudentID is the primary key. stdCode and stdAuthorizationCode

were included to enable student’s authentication. stdBranch which

ARCHITECTURE OF OASIS CHAPTER THREE

 73

indicates student’s branch, accepts “scientific” and “literary”. stdMuslim

indicates student’s religion which accepts “yes” for a Muslim and “no”

for other beliefs. stdSecondRound indicates if the student have any

postponed exams. stdAddedLanguage indicates if the student have any

added languages like French. stdWishListSubmitted indicates if the

student have submitted his Wish List. stdCollegeID indicates the result of

the nomination process for the student. stdActive indicates if the student

is active and can be included in the nomination process.

Figure (3.3) College table

4. Then, to enhance the performance of finding entries on some of the table

fields, indexes were created. Students usually login to OASIS by entering

their Code and AuthorizationCode, the search for these codes can be

enhanced by creating a UNIQUE index for stdCode and

ARCHITECTURE OF OASIS CHAPTER THREE

 74

stdAuthorizationCode fields, UNIQUE index was chosen as the fields

have no repeated values.

5. Finally, the search for students by name was enhanced by creating a

FULLTEXT index for stdFirstName, stdFatherName, stdGFatherName,

stdGGFatherName, and stdFamilyName.

 After creating the Student table, College table was created to handle

college’s data, as illustrated in Figure (3.3).

 The same considerations that were followed in Student table, were

followed in creating College table. clgCollegeID is the primary key.

clgCode indicates college specific code. clgEducationalInstitutionID

indicates the id of the university that the college belongs to. clgGender

were used to indicate that the college accepts students of a specific gender,

it accepts the values “male”, “female” or “both”. clgBranch indicates

accepted student’s branch, it can have the values “scientific”, “literary” or

“both”. clgMuslim indicates accepted student’s religion. clgDirect indicates

college’s application method. clgActive indicates college activity and its

inclusion in the nomination process. Finally, a UNIQUE index was created

for clgName.

Figure (3.4) Educational Institution table

ARCHITECTURE OF OASIS CHAPTER THREE

 75

 Educational Institutions table was created to handle university profile

data, as illustrated in Figure (3.4).

 As mentioned in student table before, the same considerations were

followed. The field ediEducationalInstitutionID is the primary key. A

UNIQUE index was created for ediName.

 School table was created to handle school profile data, as illustrated in

Figure (3.5).

Figure (3.5) School table

 The field schSchoolID is the primary key. schGovernment indicates

type of school government or private. schEvening indicates type of school

attendance morning or evening.

Figure (3.6) Subject table

ARCHITECTURE OF OASIS CHAPTER THREE

 76

 Subject table was created to handle the available subjects, scientific,

literary or both, as illustrated in Figure (3.6).

 The field sbjSubjectID is the primary key. sbjAddedLanguage

indicates if the language is an added language as French. schBranch

indicates subject’s branch, “scientific”, “literary” or “both”. schMuslim

indicates if the subject is for Muslims only. sbjActive indicates if the

subject is accessible or not.

Figure (3.7) Degree table

 Degree table was created to handle student’s degrees for the first and

second rounds, as illustrated in Figure (3.7).

 The field dgrDegreeID is the primary key. dgrStudentID indicates a

specific student id. dgrSubjectID indicates a specific subject id.

 Wish List table was created to handle student’s Wish List after

submission, as illustrated in Figure (3.8). The field wltWishListID is the

primary key. wltStudentID indicates a specific student id. wltCollegeID

indicates a specific college id.

ARCHITECTURE OF OASIS CHAPTER THREE

 77

Figure (3.8) Wish List table

 That concludes the tables needed by the student. When considering

the Operator, a table was created to hold its profile data as shown in Figure

(3.9).

Figure (3.9) Operator table

ARCHITECTURE OF OASIS CHAPTER THREE

 78

 The field optOperatorID is the primary key. optCode and

optAuthorizationCode were included to support authentication. optActive

indicates operator’s activity and his ability to operate students. A

FULLTEXT index was created for the fields optFirstName,

optFatherName, optGFatherName, optGGFatherName and

optFamilyName. And that concludes the tables needed by the Operator.

Then, the table that holds the administrator’s data was created in the same

way as the Operator’s table with a slight difference, as illustrated in Figure

(3.10).

Figure (3.10) Administrator table

 The field admAdministratorID is the primary key. admCode and

admAuthorizationCode were included to support authentication. admActive

indicates Administrator’s activity. And a FULLTEXT index was created for

ARCHITECTURE OF OASIS CHAPTER THREE

 79

the fields admFirstName, admFatherName, admGFatherName,

admGGFatherName and admFamilyName.

 The “Notice table” is used by the administrator to save

announcements for all OASIS users. The structure can be shown in Figure

(3.11).

Figure (3.11) Notice table

 The field ntcNoticeID is the primary key. ntcAdministratorID

indicates the Administrator’s id.

 After finishing the creation of the previous tables, an EER (Enhanced

Entity Relationship) model is created to represent the tables graphically.

The created tables are saved with the name OASIS schema, and extension

.mwb, which will be used in the next stage of the system workflow.

The resulting EER model is illustrated in Figure (3.12).

ARCHITECTURE OF OASIS CHAPTER THREE

 80

Figure (3.12) OASIS EER model Continue

ARCHITECTURE OF OASIS CHAPTER THREE

 81

Figure (3.12) OASIS EER model

ARCHITECTURE OF OASIS CHAPTER THREE

 82

3.5.2 Physical Implementation

 After the establishment of the EER model, the next step is to convert

the resulted model from a barely graphical schema, into a concrete physical

database, which will reside in the installed Apache web server.

 The process starts by opening the saved OASISschema.mwb file

inside MySQL workbench. Then, the model is converted into an SQL file

with the extension .sql; it contains the SQL statements required to

implement and create the proposed OASIS database. The bench names this

step as “Forward Engineer SQL CREAT Script”.

 After that, a new database connection is created inside MySQL

Workbench. Inside this connection the previously saved .sql file is opened,

and then finally executed inside the bench to create the tables physically

into the server.

 Once the process is finished, the tables can be explored by double

clicking each one to view its data, if available. If any further confirmation

is required, the created database can also be checked inside PHPMyAdmin.

3.6 Architecting the RIA
 This part of the Chapter explains the procedures followed in

designing and creating OASIS Rich Internet Application and its remote

PHP services. The application was developed inside Adobe’s Flash

Builder’s 4 integrated development environment. While the remote PHP

services were developed using Zend Studio.

 Any Rich Internet Application developed inside Flash Builder is, also,

considered to be a Flex Application beside a Rich Internet Application, as it

uses the Flex Framework classes.

ARCHITECTURE OF OASIS CHAPTER THREE

 83

3.6.1 Overview

 A general overview of the proposed structure of OASIS Rich Internet

Application and their PHP services is illustrated in Figure (3.13).

Figure (3.13) Structure of OASIS RIA

 As seen in the Figure, OASIS was separated into 4 different modules,

in which, each module functions for a specific group of Users. The tiling of

system functionality into 4-sets, where each set is handled by a specific

ARCHITECTURE OF OASIS CHAPTER THREE

 84

module can be very useful to get good level of code granularity, and it

makes the way easier to develop functionality, user interfaces and remote

services separately (separation of concerns).

 A reverse naming convention was used to name class packages for

OASIS, the proposed name typically have the following structure [Coli07]:

1. The reversed domain name of the organization creating the program.

2. Followed by a period (.).

3. Followed by the general purpose package’s contents.

 For OASIS the name “com.haydex.OASIS” was used. Domain names

are guaranteed to be unique by the system of authorized top-level-domain

registrars; thus, starting package names with the organization’s domain

name avoids name conflicts with code developed by other organizations

[Coli07].

 The structure of the mentioned system was developed using ICONIX

process, an object oriented analysis and design process that provides a

series of steps of how to get from use cases to working, and maintainable

object oriented application in as few steps as possible. The process is

divided into two phases the analysis phase and design phase, the next

sections will describe each phase and the steps involved in the structuring

of OASIS.

3.6.2 OASIS: Analysis Phase
 The analysis step is about building the right system. In this phase the

problem domain is analyzed, by recording functional and behavioral

requirements based on system usage and targeted business. The following

subsections describe the ICONIX steps used to analyze OASIS:

ARCHITECTURE OF OASIS CHAPTER THREE

 85

A. Functional Requirements
 Functional requirements define what the system should be capable of

doing, right at the start of the project, a list of functional requirements is

created using Enterprise Architect and as shown in Figure (3.14).

Figure (3.14) OASIS Requirements seperated into four packages

 The created list is separated into four packages according to OASIS

user types, it is considered to be an import document, but it’s difficult to

create a design from, it tends to be quite unstructured, the next steps will

drive its conclusions from that list.

ARCHITECTURE OF OASIS CHAPTER THREE

 86

B. Storyboards
 It’s notoriously difficult for us to picture a proposed system in our

mind. So quite often it’s easier to relate to a visual aid, which often takes

the form of a sequence of screens. These can be simple line drawings on

paper. What’s important is that they will appear within the context of the

usage scenarios being modeled. Figure (3.15) illustrates the prototype, that

was used as a blueprint for laying out and implementing OASIS

storyboards.

Figure (3.15) OASIS storyboards blueprint

 The logo part contains two important pieces of information; the users

can use them to investigate their type of access through “User Type” and

“User Name”. The Navigation Bar helps users to navigate the application

pages. While the Contents part is responsible for displaying page contents,

like text fields, data grids…etc.

 Figures (3.16) – (3.19) shows the mocked up storyboards for each of

the four OASIS users, these storyboards consist of buttons and controls

that make up OASIS states, which will be referenced by use cases,

robustness and sequence diagrams.

ARCHITECTURE OF OASIS CHAPTER THREE

 87

Figure (3.16) Visitor storyboard

Figure (3.17) Student storyboard

ARCHITECTURE OF OASIS CHAPTER THREE

 88

Figure (3.18) Operator storyboard

ARCHITECTURE OF OASIS CHAPTER THREE

 89

Figure (3.19) Administrator storyboard

C. Use Cases
 Use cases describe the way the user will interact with OASIS and how

OASIS will respond. These use cases are written in active voice, using an

event/response flow, it is really a runtime behavior specification describing

both sides of the user/OASIS dialogue, and references the introduced

storyboards.

 Use cases give a structured way of capturing the behavioral

requirements of a system, so that it can be reasonably possible to create a

ARCHITECTURE OF OASIS CHAPTER THREE

 90

design from them. They help to answer some fundamental questions: What

are the users of the system trying to do? What’s the user experience? A

surprising amount of what the software does is dictated by the way in

which users must interact with it.

 Use case modeling involves analyzing both the basic course (a user’s

typical “sunny-day” usage of the system; often thought of as 90% of the

behavior) and the alternate courses (the other 90% of the system

functionality, consisting of “rainy-day” scenarios of the way in which the

user interacts with the system; in other words, what happens when things

go wrong, or when the user tries some infrequently used feature of the

program).

 The introduced use cases for OASIS RIA were analyzed and created

inside Enterprise Architect, and were separated into the same packages

introduced in the requirements step, as shown in Figure (3.20).

Figure (3.20) OASIS use cases seperated into four packages

ARCHITECTURE OF OASIS CHAPTER THREE

 91

 The rest of this Chapter discusses five of the introduced use cases,

other use cases differ slightly, and mentioning them will be a waste of

space. These use cases are illustrated in Figures (3.21) – (3.25).

Add Student

Basic Course:

 The operator clicks the Add button in the Students Search state,

OASIS changes the Current State to the Add Student state, the

operator enters student's data and clicks the Save button. OASIS

checks errors in the form, if none is detected, OASIS updates the

Database . If the update is successful, OASIS displays a Message Box

"Student added successfully.", the operator clicks the Ok button,

OASIS changes the Current State to the Students Search state and

triggers the Search button automatically.

Alternate Courses:

_Errors detected: OASIS displays a Message Box "Errors detected in

the form, nothing was saved.".

_Database update failed: OASIS displays a Message Box "Student

was not added successfully, there was a problem with the database.".

_The operator clicks the Back button: OASIS checks Save State, if

saved, OASIS changes its Current State to the Search Students state.

_The operator clicks the Back button and unsaved changes are

detected: OASIS displays a Message Box "Are you sure, changes will

be discarded?", the operator clicks the Yes button, OASIS changes its

Current State to the Search Students state.

Figure (3.21) Add Student use case sunny and rainy day scenarios

ARCHITECTURE OF OASIS CHAPTER THREE

 92

Search for Students

Basic Course:

 The operator clicks the Students button in the navigation bar in any

of OASIS Operator states, OASIS changes its Current State to

Students Search state. The operator selects Search Type (Name or

Code), then selects Filters to apply (Branch Filter and Failure Filter),

then writes the Search Phrase in the Search Box and clicks the Search

button. OASIS creates a new Search Query and checks the Search

Query against the Database, OASIS retrieves the Search Results List.

Alternate Courses:

_None or implicit.

Figure (3.22) Search for Student use case sunny and rainy day scenarios

Load WishList

Basic Course:

 The student clicks the Load button below the WishList grid in the

WishList state. OASIS checks WishList if empty, OASIS checks

Save State, if saved, OASIS displays the File Browser window, the

student browses for the File and clicks the Open button, OASIS

checks File validity, if valid, OASIS decodes the file, and loads File

contents into WishList.

Alternate Courses:

_WishList is not empty and not saved: OASIS displays a Message

Box "You didn't save the current WishList, items will be replaced, are

ARCHITECTURE OF OASIS CHAPTER THREE

 93

you sure you want to proceed?", the student clicks the Yes button,

OASIS displays the File Browser window, the student browses for the

File and clicks the Load button, OASIS loads File contents into

WishList.

_The student clicks the Cancel button in the Message Box: OASIS

aborts the operation.

_The file is not valid: OASIS aborts the operation and displays "File

is not valid.".

_File was not loaded successfully: OASIS displays a Message Box

"File was not loaded successfully."

Figure (3.23) Load WishList use case sunny and rainy day scenarios

Import Database

Basic Course:

 The operator clicks the Import button in the Database state, OASIS

displays a File Browser window, the operator browses for the file and

clicks the Open button, OASIS closes the File Browser window and

displays a Message Box "Are you sure you want to proceed

importing? the current database data will be replaced.", the operator

clicks the Yes button, OASIS checks if the File is valid, if valid, it

reads file contents and updates the Database, if update is successful,

OASIS displays a Message Box "Import was successful.".

Alternate Courses:

_The operator clicks the Cancel button in the confiramtion message:

OASIS closes the message and aborts the operation.

ARCHITECTURE OF OASIS CHAPTER THREE

 94

_File is invalid: OASIS displays a Message Box "Import was not

successful, file contents are invalid."

_Update is not successful: OASIS displays a Message "Import was

not successful, there was a problem with the database.".

Figure (3.24) Import Database use case sunny and rainy day scenarios

Nominate Students

Basic Course:

The administrator clicks the Nominate button in the Nomination state,

OASIS checks Reset State, if not reseted, OASIS executes the

Nomination Algorithm, Algorithm (3.1), on the Database, if Database

update was successfull, OASIS displays a Message Box

"Nomionation was successful.".

Alternate Courses:

_Database is reseted: OASIS displays a Message Box "Database is

reseted, nomination failed.".

_Update is not successful: OASIS displays a Message Box "There

was a problem with the database updating, nomination failed.".

Figure (3.25) Nominate Students use case sunny and rainy day scenarios

ARCHITECTURE OF OASIS CHAPTER THREE

 95

Algorithm 3.1 Nominate Students

Goal: Nominate students to colleges according to student’s rank.
Works on: Database tables tblStudent, tblCollege, tblDegree, tblSubject, tblWishList

from OASIS database.

Step 1: Create a temporary studentsList. //The list holds the counted rank and ID of
each student in OASIS database.
Set i← 0
For Each student In tblStudent

Set sum←0
Set division←0
Set roundCounter←0
Set studentsList(i).ID←student.stdID
For Each degree In tblDegree {where degree.dgrStudentID=student.stdID}

Get subject From tblSubject {where
tblSubject.sbjSubjectID=degree.dgrSubjectID}
If subject.sbjAddedLanguage=yes Then

If degree.dgrSecondRound=yes Then
Set sum←sum+(degree.dgrDegreeSecondRound*(16/100))

Else
Set sum←sum+(degree.dgrDegreeFirstRound*(16/100))

End If
Else

If degree.dgrSecondRound = yes and roundCounter<3 Then
Set sum←sum+degree.dgrDegreeSecondRound-5
Increment roundCounter By 1

Else
If degree.dgrSecondRound=yes Then

Set sum←sum+degree.dgrDegreeSecondRound
Else

Set sum←sum+degree.dgrDegreeFirstRound
End If

End If
Increment division By 1

End If
End For
If student.stdFailure=no Then

Set sum←sum+10
End If
Set studentsList(i).rank←sum/division
Increment i By 1

End For
Step 2: Sort the temporary studentsList resulted from step 1 according to rank.

Set lastIndex←(Count studentsList)-1 //Finding the last index in the list.
Call quickSort(studentsList, 0, lastIndex) //This step calls a quick sort
algorithm on the provided studentsList.

ARCHITECTURE OF OASIS CHAPTER THREE

 96

Step 3: Nominate students according to the sorted studentsList from step 2.
For Each student In studentsList

For Each wishListItem In tblWishList {where
tblWishList.wltStudentID=Student.ID}

Get college From tblCollege {where
tblCollege.clgCollegeID=wishListItem.wltCollegeID}
If college.clgAvailableSeats>0 Then

Decrement college,clgAvailableSeats By 1
Set tblStudent.stdCollegeID←college.clgCollegeID {where
tblStudent.stdStudentID=student.ID}
Exit For

End If
End For

End For

D. Robustness Analysis
 Robustness analysis involves doing the exploratory design needed to

understand the requirements, refining and removing ambiguity from those

requirements as a result of the exploratory design, and linking the behavior

requirements (use case scenarios) to the objects. It helps to bridge the gap

between analysis and design. It’s a way of analyzing use case text and

identifying a first-guess set of objects for each use case. The robustness

diagram represents a preliminary conceptual design of a use case, not a

literal detailed design. It is an “object picture” of a use case, whose purpose

is to force refinement of use case text. The robustness diagram and the use

case text have to match precisely, so the robustness diagram force to tie the

use case text to the objects. This enables to drive object-oriented designs

forward from use cases.

 Using Enterprise Architect the text of each use case is pasted into a

new robustness diagram, then the use case text is rewritten (disambiguated)

while drawing the robustness diagram. The resulted diagrams of the five

use cases are illustrated in Figures (3.26) – (3.30).

ARCHITECTURE OF OASIS CHAPTER THREE

 97

Figure (3.26) Add Student robustness diagram

Figure (3.27) Search for Students robustness diagram

ARCHITECTURE OF OASIS CHAPTER THREE

 98

Figure (3.28) Load WishList robustness diagram

Figure (3.29) Import Database robustness diagram

ARCHITECTURE OF OASIS CHAPTER THREE

 99

Figure (3.30) Nominate Students robustness diagram

 When the preliminary design is complete, use cases should now be

thoroughly disambiguated and thus written in the context of objects.

3.6.3 OASIS: Design Phase
 Design is about building the system right. To this point, there should

be a pretty good understanding of what the “right OASIS” is, so now

reusability of code should be considered where possible. Once the

robustness analysis is finished, it’s time to begin the detailed design effort.

By this time, use case text should be complete, correct, detailed, and

explicit. In short, use cases should be in a state where a detailed design can

be implemented from them. The next subsections describe the detailed

design steps.

A. Sequence Diagrams
 Sequence diagrams show in detail how the use case is going to be

implemented. The primary function of sequence diagramming is to allocate

ARCHITECTURE OF OASIS CHAPTER THREE

 100

Figure (3.31) Add Student sequence diagram

ARCHITECTURE OF OASIS CHAPTER THREE

 101

behavior to the discovered objects (classes). ICONIX Process uses the

sequence diagram as the main vehicle for exploring the detailed design of a

system on a scenario-by-scenario basis. In object-oriented design, a large

part of building the system right is concerned with finding an optimal

allocation of functions to classes (aka behavior allocation).

 This step involves creating a sequence diagram for every use case,

with both basic and alternate courses on the same diagram, the five

sequence diagrams that were created for the previously introduced use

cases are illustrated in Figures (3.31) – (3.35).

Figure (3.32) Search for Students sequence diagram

ARCHITECTURE OF OASIS CHAPTER THREE

 102

Figure (3.33) Load WishList sequence diagram

ARCHITECTURE OF OASIS CHAPTER THREE

 103

Figure (3.34) Import Database sequence diagram

ARCHITECTURE OF OASIS CHAPTER THREE

 104

Figure (3.35) Nominate Students sequence diagram

B. Class Diagrams
 After sequence diagrams are created successfully, the next step is to

convert each of the introduced sequence diagram objects into classes and

apply attributes and operations to these classes according to the drawn

messages. The resulted classes are created in Enterprise Architect, and are

illustrated in Figures (3.36) – (3.38).

Figure (3.36) A snapshot of OASIS boundary classes

ARCHITECTURE OF OASIS CHAPTER THREE

 105

Figure (3.37) A snapshot of OASIS entity classes

Figure (3.38) A snapshot of OASIS control classes

ARCHITECTURE OF OASIS CHAPTER THREE

 106

C. Applying Swiz Architectural Framework
 The development of a Rich Internet Application differs from the

development process of a traditional Web Application, as the latter consists

of multiple web pages, in which each page has its own code saved to a

separate file.

 On the other hand, in a Rich Internet Application the whole code

usually resides in one file, just like a desktop application. This makes the

development of an application, like OASIS, is a nearly impossible process,

as the application has a diverse functionality that makes it hard to recognize

and organize code in one file correctly. During this stage in the design, it

pays to have a catalog of well-established design patterns to fall back on.

They’re there for guidance—a starting point for when doing detailed

designs. An architectural framework like Swiz separates the Rich Internet

Application into a number of loosely coupled layers to make the process of

software development and maintenance easier.

 Before applying Swiz, the framework was configured to make it ready

for use. Then, OASIS was architected according to the framework’s

considerations, each of the four introduced application modules, was

further structured to become as shown in Figure (3.39).

Each module consists of the following seven layers:

a. “Views” layer: which holds files responsible for laying out OASIS user

interfaces (usually MXML files, with the extension .mxml).

b. “Presentations” layer: which holds files used by the Views layer to

access other layers or implement some business logic (usually

ActionScript files, with the extension .as).

c. “Models” layer: which holds files that serve as a temporary location for

saving OASIS module data (usually they are ActionScript files, with the

extention .as).

ARCHITECTURE OF OASIS CHAPTER THREE

 107

d. “Controllers” layer: holds files responsible for mediating events, and

controlling OASIS application with business logic and validation rules

(usually they are ActionScript files, with the extension .as).

e. “Events” layer: holds files responsible for transmitting data inside

OASIS (usually they are ActionScript files, with the extension .as)

f. “Services” layer: holds files responsible for accessing remote PHP

services (usually they are ActionScript files, with the extension .as)

g. “ValueObjects” layer: holds files responsible for defining the structure of

the objects being transferred between OASIS and its remote PHP

services (usually they are ActionScript file, with the extension .as).

ValueObjects are also called Data Access Objects.

Figure (3.39) OASIS modules

 Finally, in addition to the benefit of organizing the application code,

the principal goal of layering OASIS application into logical groups of

ARCHITECTURE OF OASIS CHAPTER THREE

 108

classes is to make the code being written as reusable as possible that can

serve many different situations and applications, without the need to be

reengineered [Appl10].

CHAPTER FOUR
IMPLEMENTATION OF OASIS

 109

 CHAPTER FOUR
IMPLEMENTATION OF OASIS

his chapter is dedicated to present the implementation of the

proposed OASIS. The chapter puts each planned user module

into action, along with its designed user interfaces.

 The implementation is conducted using the same device that is used

to develop OASIS. The device is a tablet personal computer having:

Microsoft Windows 7 Ultimate as the operating system, Google Chrome

8.0 as the default browser, Adobe Flash Player 10.1 as an installed plug in

inside the browser, Apache 2.2-zend as the web server, MySQL 5.1 as the

database server, and PHP 5.3.2 as the server side scripting language. The

screen resolution is set to 1024*768 pixels. The tablet has the Processor:

Intel(R) Core(TM)2 Duo CPU U7700 @ 1.33GHz, 1333 Mhz, 2 Cores, 2

Logical Processors, with an installed physical memory of 3.00 GB.

4.1 Implementation Overview
 When OASIS is executed, Flash Builder automatically compiles the

application into a SWF file, embedded within OASIS.html. Then, it

publishes the resulting files into the default remote folder within Apache

server. The browser starts automatically, and loads OASIS.html to start the

application, which in turn displays its default state, as depicted in Figure

(4.1).

 T

IMPLEMENTATION OF OASIS CHAPTER FOUR

 110

Figure (4.1) The process of executing a Flex application

 In the next sections the states of the application, starting with the

“Visitor” as the default module, are illustrated.

4.2 Implementation of the Visitor Module
 The “Visitor” module is the first module to be executed, when

accessing OASIS application. Visitors of OASIS can easily navigate

different states of the module without the need for refreshing the page (by

the main navigation bar). The states of the “Visitor” module are

demonstrated in the following subsections:

A. Home
 The “Home” state is the first state to be displayed when the Visitor

module is executed, the designed user interface for this state can be

illustrated in Figure (4.2).

IMPLEMENTATION OF OASIS CHAPTER FOUR

 111

Figure (4.2) Visitor’s Home interface

 This state simply consists of one data grid that holds the current

announcements and their dates, which are requested from the server each

time the state is activated, so that announcements are always up to date.

B. Students
 When the “Visitor” clicks on students button in the navigation bar,

the application responds to that click, and changes the state to Students,

without requiring any server access. This state provides Visitors with the

ability of searching for students by Name or Code, with the ability of

filtering results. The designed state is illustrated in Figure (4.3).

OASIS

IMPLEMENTATION OF OASIS CHAPTER FOUR

 112

Figure (4.3) Visitor’s Students search interface

The “students” state consists of the following components:

1. The “Search Text Box”: which is used to enable Visitors to write a

search phrase. The text box is designed to recognize any invalid

characters immediately as the characters are being typed into it. This

facility reduces the processing required in checking for invalid

characters at the server. Also, the text box is designed to remember the

written phrase as the visitor make changes between Name and Code

search types.

2. The “Search Button”: when the visitor clicks on this button the search

process is started; during that search, the application accesses the server

to get the requested students according to the typed phrase, search type,

and filters.

3. The “Search Type Group”: it consists of two radio buttons, each is

used for assigning the search type; which can be Name or Code. When

OASIS

IMPLEMENTATION OF OASIS CHAPTER FOUR

 113

the Visitor make selection change, the Text Box changes its restrictions

to accept either Arabic and English characters, or Numbers.

4. The “Branch Filter Group”: this control group is used to filter results

by student’s branch. Visitors can choose between two branches,

Scientific and Literature, using the two available radio buttons. This

filter can be enabled or disabled by clicking the check box located at the

left of the group’s label. Finally, the group is disabled when searching

by code is initiated.

5. The “Failure Filter Group”: this group is used to filter results by

student’s failure and second round fields, the group contains two check

boxes, Visitors can choose between them or both. This filter can be

enabled or disabled by clicking the check box located to the left of

group’s label. Finally, the group is disabled when searching by code.

6. The “Results Label”: this label displays the entries found during the

search process, which is considered to be a very handful piece of

information.

7. The “Results Data Grid”: this grid is used to display the search result

returned from the server. The grid displays student’s Full Name,

Gender, Code, Branch, Province, Submitted Wish List, and Nomination

result. The columns of the grid have the ability to be resized, ordered

and changed in position easily. As a final point, Rich Internet

Applications are state full applications, in which grid’s data are saved in

OASIS memory, so any switching between the application states, will

not affect grid’s data (i.e. the grid does not clear its data when the

application state is changed).

8. The “View Button": this button is used to view details of the selected

student, in the data grid. A click on this button causes a change in the

application state to Student Details state.

IMPLEMENTATION OF OASIS CHAPTER FOUR

 114

C. Student Details
 Student Details state is designed to display a detailed view of

student’s data. The designed state can be shown in Figure (4.4).

Figure (4.4) Student Details view interface

 As seen in Figure (4.4), the state consists of a form, in which data are

displayed. The form is separated into groups, these groups make it easier

and faster to recognize information. The text fields inside these groups are

selectable, to enable data copying. The groups include:

1. Personal Group: This group contains fields related to the student’s

personal information, it contains the fields Name, Gender, Muslim and

Blind.

2. Authorization Group: Contains the Code field.

OASIS

IMPLEMENTATION OF OASIS CHAPTER FOUR

 115

3. Address Group: Contains the fields of the Province, Avenue, Alley and

Building.

4. Education Group: Contains fields Branch, School Name, Second

Round, Added Language, Failure, Graduation Year and College.

5. Grades Group: Contains a data grid that displays student’s grades, the

grid displays the Subject Name, Degree for the first round and the

Degree for the second round.

6. Wish List Group: Displays the student’s submitted Wish List in a data

grid.

 Finally, the Student Details state has a Back button, when clicked the

application changes the state back to Students state.

D. Institutions
 When the Visitor clicks the Institutions button in the Navigation bar,

the application changes its state into the Institutions state, without accessing

any data from the server. The data displayed inside this state was requested

when the application was loaded into the client’s computer. This eliminated

the need for requesting the institutions each time the state is accessed. The

designed Institutions state is shown in Figure (4.5).

IMPLEMENTATION OF OASIS CHAPTER FOUR

 116

Figure (4.5) Educational Institutions interface

 This state displays all of the available Universities and Colleges in

Iraq. It consists of two data grids:

1. Universities Data Grid: This grid displays the list of all universities in

Iraq, the Visitor can click on any of the entries, to display the list of

Colleges related to the selected University.

2. Colleges Data Grid: This grid displays the list of all Colleges available

for the selected University.

 Finally, each of the grids has a View button below it, each is used to

display the selected University or College Details state.

OASIS

IMPLEMENTATION OF OASIS CHAPTER FOUR

 117

E. College or University Details
 This state is established to display University or College details. The

state is similar to “Student Details” state discussed previously. The

constructed state is shown in Figure (4.6).

Figure (4.6) Intitution’s view details interface

 It has the same layout, but differs in its groups and fields. It consists

of the following groups:

1. General Group: Contains Name and Code fields.

2. Type Group: Contains Institution’s Branch, and if it is for Muslims

only.

3. Location Group: Contains the Province field.

4. Contact Group: Contains Email and Website fields.

OASIS

IMPLEMENTATION OF OASIS CHAPTER FOUR

 118

F. Login
 When the Visitor clicks on the Login button in the Navigation bar,

the Visitor module changes its state to the Login state. The screen layout of

this state is shown in Figure (4.7).

Figure (4.7) Visitor’s Login interface

The Login state consists of the following:

1. Code Text Box

2. Authentication Code Text Box

3. Login button

 The Visitor can enter his Code and Authentication Code into the

specified fields, and clicks on the Login button. If the login operation is

successful, then OASIS executes the requested User module.

OASIS

IMPLEMENTATION OF OASIS CHAPTER FOUR

 119

4.3 Implementation of the Student Module
 The “Student” Module is similar to the Visitor Module, but with

slight changes in functionality. Students are given access to their Wish List,

and to their profiles. They can edit their Wish List, Save, or Submit it. The

states that this module has, are:

A. Home

B. Profile

C. Wish List

D. Students

The Wish List interface is illustrated in Figures (4.8-4.10).

Figure (4.8) Student’s Wish List interface

OASIS

IMPLEMENTATION OF OASIS CHAPTER FOUR

 120

Figure (4.9) The “save” state of student Wish List

Figure (4.10) Student’s Profile interface

4.4 Implementation of the Operator Module
 The “Operator” module is executed when the Visitor login

successfully into the system, with the privileges of an Operator. After

OASIS

OASIS

IMPLEMENTATION OF OASIS CHAPTER FOUR

 121

logging-in OASIS displays the operator name just beside the main Logo.

The Operator module consists of different states, these states are:

A. Home
B. Profile

C. Students

 The “Students” state differs slightly from Students or Visitor

modules, Operator can manipulate the students list, it is illustrated in

Figures (4.11-4.15).

Figure (4.11) Operator Search Students interface

OASIS

IMPLEMENTATION OF OASIS CHAPTER FOUR

 122

Figure (4.12) Deletion of a student record

Figure (4.13) Saving changes applied on a student record

OASIS

OASIS

IMPLEMENTATION OF OASIS CHAPTER FOUR

 123

Figure (4.14) Adding a new Student record

Figure (4.15) Realtime field checking

OASIS

OASIS

IMPLEMENTATION OF OASIS CHAPTER FOUR

 124

D. Institutions

Figure (4.16) The list of Educational Institutions offered in the Operator

module

E. Database

Figure (4.17) Database manipulation interface

OASIS

OASIS

IMPLEMENTATION OF OASIS CHAPTER FOUR

 125

4.5 Implementation of the Administrator Module
 The “Administrator” module has different functionalities than the

operator module, it differs in having an announcements state for editing the

announcements. It has Operators editing state, and can start the Nomination

process. These states are:

A. Announcements

B. Profile

C. Operators

D. Nomination

 The Nomination, Announcements and Operators states are illustrated

in Figures (4.18-4.21).

Figure (4.18) Announcements interface

OASIS

IMPLEMENTATION OF OASIS CHAPTER FOUR

 126

Figure (4.19) Editing an Announcement

Figure (4.20) Nomination interface

OASIS

OASIS

IMPLEMENTATION OF OASIS CHAPTER FOUR

 127

Figure (4.21) Operators List

OASIS

CHAPTER FIVE
DISCUSSION AND FUTURE WORK

 128

 CHAPTER FIVE
 DISCUSSION AND FUTURE WORK

5.1 Discussion

uring the course of this research many remarks and

conclusions have been stimulated, among these remarks are:

1. Developing a Rich Internet Application emphasize the use of Object

Oriented concepts, which are used extensively throughout the

development of the proposed OASIS. Among many of the benefits that

have been introduced, the most useful ones found during our application

development are code organization, reusability and extensibility. It

became very easy to remove, add or modify features in the developed

application, without altering too much code. To apply these concepts, a

very useful Object Oriented technology was used, which is the Swiz

architectural framework.

2. At first, implementing OASIS as a Rich Internet Application, seemed to

be a very simple process, but then, that idea proved to be wrong. When

the work to build the application has started, surprisingly, the amount of

technologies and tools that have to be learned was vast and uncommon.

The development process proved to be entirely different from the typical

process used to build traditional web applications. but once these

technologies and tools were grasped, the development process became a

breeze, as it offered all of the advantages that the Rich Internet

Applications promised to provide.

3. One of the most useful features introduced by the OASIS Rich Internet

Application was the use of Asynchronous communications that highly

improved user’s experience. Users can navigate the application without

D

DISCUSSION AND FUTURE WORK CHAPTER FIVE

 129

waiting for the server to respond. No page freezes are encountered, and

the application feels like a traditional desktop application.

4. Using the AMF technology from Adobe, to encode/decode any

transmitted messages, had enhanced the security and information flaw

between the client and the server. Messages became smaller, and as a

result, the transfer became faster and more reliable. This feature

provided a better utilization of network traffic, which reduced the

amount of information exchange. And the data became more secure as

the transferred messages are encoded.

5. OASIS architecture is designed to be adapted to deal with any server

side technology. For example, if the technology is changed from PHP to

any other technology, then, the adaptation process is very easy, the

developer needs only to change the code in the services files to be

capable to deal with the new technology (such as JSP, ASP.NET,

CFC…etc). This adaptation is done without the need to change any

piece of code inside the Rich Internet Application.

6. The developed OASIS Rich Internet Application is designed to be an N-

Tiered application; each tier can be maintained separately (i.e, the

concept of separation of concerns). During the development process,

these tiers helped in fragmenting the whole process into sequential tasks.

For instance, the database tier was developed first, then the presentation

tier, and finally the services tier.

7. Development of user interfaces was fast and precise. The tools provided

to build the application was advanced and accurate. They enhanced the

experience of laying out the user interface by providing advanced

controls like the drag and drop feature, which was used to enable the

student create his Wish List. These tools reduced the number of steps

required by the user to do some operation.

DISCUSSION AND FUTURE WORK CHAPTER FIVE

 130

8. OASIS is designed to be statefull; this feature will make the path for

future development and usability of the application to be much easier.

Every step made by the user is remembered by the application, in which,

no extra programming is needed to retrieve the data belonging to the

previously conducted processes.

9. The left features were not included for time limitations or were beyond

the scope of this research, but with minor changes the system is

applicable for real world use by the Ministry of Higher Education.

5.2 Future Work
This section introduces some further areas of research on the

proposed topic. These areas believed to be important to the further

development of the OASIS Rich Internet Application. They can be

summarized as follows:

1. System security can be greatly enhanced by implementing user audit

logs. These logs keep records of user’s system usage with the dates of

their initiation.

2. As a Rich Internet Application, when the required features grow larger,

the application size is increased. This increment affects users of the

system. When the user wants to access the application it will take him

long time to load. This problem can be solved by modularizing the

application into several chunks, where each chuck is loaded and cached

when needed only.

3. Statistical information can be provided as a real time function in OASIS,

which can be used by the Ministry of Higher Education to create useful

reports, that give a clear idea about the situation of the current

admissions. Development tools of Rich Internet Applications provide

advanced components to implement that feature.

DISCUSSION AND FUTURE WORK CHAPTER FIVE

 131

4. Automatic mailing system could be developed for OASIS. This system

has the capability of keeping users instantly informed about any new

changes or information that the system has to offer, without requiring

them to visit OASIS. The system could also be implemented to send

messages to mobile devices.

5. AIR technology haven’t been explored extensively during the

development of OASIS. This technology is very important, and have to

be researched more to get all the benefits that it promises to provide.

When using AIR to deploy OASIS, users will be able to load the

application into their desktops only once, and use it as required.

6. Finally, documentation can be added to the system, where users can use

it to get information about how to use OASIS.

REFERENCES

i

 REFERENCES

[Absy10] Adobe; “Using Adobe Flash Builder 4”; Electronic Document;

Adobe Systems Inc., USA; 2010.

[Adbe10] Adobe; “Benefits of Rich Internet Applications (RIAs)”; Adobe

Systems Incorporated, USA; 2010;

http://www.macromediademos.com/uk/resources/business/rich_

internet_apps/benefits/

[Adbs10] Adobe; “The Flash Platform Evangelist Kit”; Power Point File;

Adobe Systems Inc., USA; 2010.

[Adby10] Adobe; ”Adobe Flash Platform”; Adobe Systems Inc., USA;

2010;

http://www.adobe.com/flashplatform/

[Adob09] Adobe; “The Business Benefits of Rich Internet Applications

for Enterprises”; Internet Paper; Adobe Systems Incorporated,

345 Park Avenue, San Jose, CA 95110-2704, USA; 2009.

[Ados06] Adobe; “Action Message Format -- AMF 3”; Electronic

Document; Adobe Systems Inc., USA; 2006.

[Adse10] Adobe; “Adobe Flash Platform and Web Technologies”;

Illustrated Diagram; Adobe Systems Inc., USA; 2010.

http://www.macromediademos.com/uk/resources/business/rich_internet_apps/benefits/
http://www.macromediademos.com/uk/resources/business/rich_internet_apps/benefits/
http://www.adobe.com/flashplatform/

 REFERENCES

ii

[Adsm09] Adobe; “Open Screen Project”; Adobe Systems Inc., USA;

2009;

http://www.openscreenproject.org/about/flash_platform.html

[Adsm10] Adobe; “Programming Adobe ActionScript 3.0”; Electronic

Book; Adobe Systems Incorporated, 345 Park Avenue, San

Jose, California 95110, USA; 2010.

[Adst10] Adobe; “Flash Platform Developer Center”; Adobe Systems

Inc., USA; 2010;

http://www.adobe.com/devnet/flashplatform/

[Adsy10] Adobe; “Introducing the Adobe Flash Platform”; Adobe

Systems Inc., USA; 2010;

http://www.adobe.com/devnet/flashplatform/articles/flashplatfo

rm_overview.html

[Adte08] Adobe; “SWF File Format Specification”; Electronic

Document; Version 10; Adobe Systems Inc., USA; 2008.

[Andr08] Andrew Trice; “Understanding the Architecture of a Rich

Internet Application”; Internet Article; O'Reilly Media, Inc.;

2008;

http://insideria.com/2008/02/understaning-the-architecture.html

[Aosy10] Adobe; “Browser vs. Desktop”; Adobe Systems Inc., USA;

2010;

http://www.adobe.com/products/air/comparison/

http://www.openscreenproject.org/about/flash_platform.html
http://www.adobe.com/devnet/flashplatform/
http://www.adobe.com/devnet/flashplatform/articles/flashplatform_overview.html
http://www.adobe.com/devnet/flashplatform/articles/flashplatform_overview.html
http://insideria.com/2008/02/understaning-the-architecture.html
http://www.adobe.com/products/air/comparison/

 REFERENCES

iii

[Appl10] Apple; “Object-Oriented Programming with Objective-C”;

Electronic Document; Apple Inc.; 2010.

http://developer.apple.com/library/ios/#documentation/cocoa/C

onceptual/OOP_ObjC/Introduction/Introduction.html

[Bria03] Brian Benz and John R. Durant; “XML Programming Bible”;

Book; Wiley Publishing, Inc., Indianapolis, Indiana; 2003.

[Coli07] Colin Moock; “Essential ActionScript 3.0”; Book; O’Reilly

Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA

95472; 2007.

[Corl10] Mihai Corlan; “The Architecture of Flex and PHP

Applications”; Internet Article; Adobe Systems Inc., USA;

2010;

http://www.adobe.com/devnet/flex/articles/flex_php_architectur

e.html

[Dafy08] Dafydd Stuttard and Marcus Pinto; “The Web Application

Hacker’s Handbook: Discovering and Exploiting Security

Flaws”; Book; Wiley Publishing, Inc., 10475 Crosspoint

Boulevard, Indianapolis, IN 46256; 2008.

[Davi08] David Deraedt; “Flex Architecture Fundamentals Part 1 : Rich

Internet Application Server Architecture Basics”; Internet

Article; 2008;

http://www.dehats.com/drupal/?q=node/32

http://developer.apple.com/library/ios/#documentation/cocoa/Conceptual/OOP_ObjC/Introduction/Introduction.html
http://developer.apple.com/library/ios/#documentation/cocoa/Conceptual/OOP_ObjC/Introduction/Introduction.html
http://www.adobe.com/devnet/flex/articles/flex_php_architecture.html
http://www.adobe.com/devnet/flex/articles/flex_php_architecture.html
http://www.dehats.com/drupal/?q=node/32

 REFERENCES

iv

[Davi10] David Gassner; “Flash Builder 4 and Flex 4 Bible”; Book;

Wiley Publishing, Inc., 10475 Crosspoint Boulevard,

Indianapolis, IN 46256; 2010.

[DHI99] Donald Bligh, Harold Thomas, and Ian McNay;

“Understanding Higher Education, An Introduction for Parents,

Staff, Employers and Students”; Intellect Books, School of Art

and Design, Earl Richards Road North, Exeter EX2 6AS, USA;

1999.

[Doug07] Doug Rosenberg and Matt Stephens; “Use Case Driven Object

Modeling with UML: Theory and Practice”; Book; Apress;

2007.

[Eric01] Eric J. Naiburg and Robert A. Maksimchuck; “UML for

Database Design”; Book; Addison-Wesley;2001.

[Fara09] Faraj A. Faraj; “Designing and Developing a Web-Based Post

Graduate Application System for UUM”; M.Sc. Thesis;

University of Utara, Department of Information Technology,

Malaysia; 2009.

[Frit02] Fritz H. Grupe; “An Internet-Based Expert System for Selecting

an Academic Major: www.mymajors.com”; Internet Paper;

Department of Accounting and Computer Information Systems,

University of Nevada, Reno, NV 89509, USA; 2002.

http://www.mymajors.com/

 REFERENCES

v

[Gavi06] Gavin Powell; “Beginning Database Design”; Book; Wiley

Publishing, Inc., 10475 Crosspoint Boulevard, Indianapolis, IN

46256; 2006.

[Geor08] George Dimopoulos; “Paperless Joy: Paperless Business &

Lifestyle Design With Information & Communication

Technology”; Book; Volume 1; Digital Life Artist Inc.,

Baltimore, MD; 2008.

[Jame07] James Ward; “Census – RIA Data Loading Benchmarks”; Rich

Internet Application; 2007;

http://www.jamesward.com/census/

[Jerm09] Jeremy Petersen; “Benefits of Using the N-Tiered Approach for

Web Applications”; Internet Article; Adobe Systems

Incorporated, USA; 2009;

http://www.adobe.com/devnet/coldfusion/articles/ntier.html

[JGR08] J.M.N.C. Gunawardana, G.P. Ishara, R.G. Ragel and S.

Radhakrishnan; “An Online Course Registration System for the

Faculty of Engineering in University of Peradeniya”;

Proceedings of the Peradeniya University Research Sessions,

Sri Lanka, Volume 13, Part II; 2008.

[Jose04] Joseph Schmuller; “Sams Teach Yourself UML in 24 Hours”;

Book; 3rd Edition; Sams Publishing; 2004.

[Larr08] Larry Ullman; “PHP 6 and MySQL 5 for Dynamic Web Sites”;

Book; Peachpit Press; 2008.

http://www.jamesward.com/census/
http://www.adobe.com/devnet/coldfusion/articles/ntier.html

 REFERENCES

vi

[Lawt08] George Lawton; “New Ways to Build Rich Internet

Applications”; IEEE Computer, vol. 41, no. 8, pp. 10-12; 2008.

[Lewi07] Lewis Howles; “A Student Admission System”; B.Sc. Thesis;

University of Sheffield, Department of Computer Science;

2007.

[Luke09] Luke Welling and Laura Thomson; “PHP and MySQL Web

Development”; Book; 4th Edition; Addison-Wesley;2009.

[Mari09] Marianne Busch and Nora Koch; “Rich Internet Applications,

State-of-the-Art”; Technical Report; Programming and

Software Engineering Unit (PST), Institute for Informatics,

Ludwig-Maximilians-Universität München, Germany; 2009.

[Mart04] Martin Fowler; “UML Distilled: a Brief Guide to the Standard

Object Modeling Language”; Book; Addison-Wesley; 2004.

[Mhai08] Mihai Corlan; “Flex and PHP: Remoting with Zend AMF”;

Internet Article; 2008;

http://www.corlan.org/2008/11/13/flex-and-php-remoting-with-

zend-amf/

[Micr02] Microsoft; “Microsoft Computer Dictionary”; Book; 5th

Edition; Microsoft Press; 2002.

[Miha09] Mihai corlan; “Flex for PHP Developers”; Internet Article;

2009.

http://www.corlan.org/flex-for-php-developers/

http://www.corlan.org/2008/11/13/flex-and-php-remoting-with-zend-amf/
http://www.corlan.org/2008/11/13/flex-and-php-remoting-with-zend-amf/
http://www.corlan.org/flex-for-php-developers/

 REFERENCES

vii

[Mini09] Ministry of Higher Education; “Student’s Guide for Using the

Electronic Form”; Electronic Document; Department of

Studies, Planning and Follow-up, Admission Central, Iraq;

2009;

http://www.moheiraq.org/EFormGuide.doc

[MOH09] Ministry of Higher Education; “Student’s Acceptance Guide at

Iraqi Universities and Institutes”; Printed Document;

Department of Studies, Planning and Follow-up, Admission

Central, Iraq; 2009.

[Muni09] Muniba Memon and Asadullah Shaikh; “The Role of Model-

Driven Architecture in Online Web-Based Admission System”;

Internet Paper; 8th National Research Conference (NRS)

proceedings published by SZABIST, Islamabad; 2009.

[Noda05] Tom Noda and Shawn Helwig; “Rich Internet Applications:

Technical Comparison and Case Studies of AJAX, Flash, and

Java based RIA”; Best Practice Reports, UW E-Business

Consortium, University of Wisconsin-Madison; 2005.

[Nunt04] Nunthasak Sooksakoun; “The Course Registration System: A

Case Study for Faculty of Engineering Mahidol University”;

M.Sc. Thesis; Mahidol University, Faculty Of Graduate

Studies, Thailand; 2004.

[Orac10] Oracle; “MySQL WorkBench”; Electronic Document; Oracle

and/or its affiliates; 2010.

http://www.moheiraq.org/EFormGuide.doc

 REFERENCES

viii

[Paul05] Paul Kimmel; “UML Demystified: A Self Teaching Guide”;

Book; McGraw-Hill; 2005.

[PGF10] Piero Fraternali, Gustavo Rossi and Fernando Sánchez-

Figueroa; “Rich Internet Applications”; IEEE Internet

Computing, vol. 14, no. 3, pp. 9-12; 2010.

[PMA10] PHPMyAdmin; “PHPMyAdmin”; 2010;

http://www.phpmyadmin.net/home_page/index.php

[Rame08] Ramesh Bangia; “Computer Fundamentals and Information

Technology”; Book; Firewall; 2008.

[RMJ08] Roger Braunstein, Mims H. Wright and Joshua J. Noble;

“ActionScript 3.0 Bible”; Book; Wiley Publishing, Inc., 10475

Crosspoint Boulevard, Indianapolis, IN 46256; 2008.

[Robe10] Robert Bak; “PHP as a Data Source for Flex Applications”;

Internet Article; O'Reilly Media, Inc.; 2010;

http://www.insideria.com/2010/06/a-whole-lot-of-people.html

[Robi08] Robin M. Helms; “University Admission Worldwide”;

Education Working Paper Series, International Bank for

Reconstruction and Development, The World Bank,

Washington, D.C. , USA; 2008.

[RRH05] The Roundtable on the Revitilization of Higher Education in

Iraq “The Current Status and Future Prospects for the

Transformation and Reconstruction of the Higher Education

System in Iraq”; Internet Article; Paris; 2005.

http://www.phpmyadmin.net/home_page/index.php
http://www.insideria.com/2010/06/a-whole-lot-of-people.html

 REFERENCES

ix

[Sall09] Sally P. Springer, Jon Reider and Marion R. Franck;

“Admission Matters: What Students and Parents Need to Know

About Getting Into College”; Book; Jossey-Bass; 989 Market

Street, San Francisco, CA 94103-1741; Second Edition; 2009.

[Sarl93] Sarla Achuthan, Binod C. Agrawal, Vimal P. Shah, R.P. Soni

and S.R. Thakore; “Computer Technology for Higher

Education: The Indian experience”; Book; Volume 2; Concept

Publishing Company, Gujarat University, A/15-16, Commercial

Block, Mohan Garden, New Delhi, India; 1993.

[Sarm10] Sarmad Mahmoud Hadi; “Developing a Three-Tier

Architecture”; M.Sc. Thesis; Al Nahrain University, College of

Information Engineering; 2010.

[Spar09] Sparx; “Enterprise Architect”; Electronic Document; Sparx

Systems; 2009.

[Stal07] Tad Staley; “Planning for RIA Success”; Internet Paper; Adobe

Consulting, Adobe Systems Incorporated, USA; 2007.

[Swiz10] Swiz; “Swiz Manual”; Electronic Document; 2010.

[Tril10] Trilemetry; “Understanding Flex in the Client/Server Model”;

Internet Article; Adobe Systems Inc., USA; 2010;

http://flashcommunicationserver.com/devnet/flex/articles/fcf_fl

ex_client_server.html

http://flashcommunicationserver.com/devnet/flex/articles/fcf_flex_client_server.html
http://flashcommunicationserver.com/devnet/flex/articles/fcf_flex_client_server.html

 REFERENCES

x

[Vale09] Valentin Vieriu and Catalin Tuican; “Adobe AIR, Bringing

Rich Internet Applications to the Desktop”; Internet Paper;

Annals. Computer Science Series. 7th Tome 1st Fasc.;

University of Timisoara, România; 2009.

[Wilb07] Wilbert O. Galitz; “The Essential Guide to User Interface

Design: An Introduction to GUI Design Principles and

Techniques”; Book; 3rd Edition; Wiley Publishing, Inc., 10475

Crosspoint Boulevard, Indianapolis, IN 46256; 2007.

[Wing00] Guy Wingate; “Validating Corporate Computer Systems: Good

IT Practice for Pharmaceutical Manufacturers”; Book; Informa

Healthcare; 2000.

[Zend10] Zend; “Zend Server”; Zend Technologies Ltd.; 2010;

http://www.zend.com/products/server/

http://www.zend.com/products/server/

 الخلاصة

 وعملية قبول الطلبة في المؤسسات التعليمية العراقية تعاني من كونها عملية بطيئة لا تزال

الحذر الشديدين الدقة و إلىتحتاج فبالنسبة للطلبة إن العمليةالكثير من العمل الورقي, إلىتحتاج

الوقت الكثير من تستهلك والفرزعملية إدخال البيانات الجانب الآخر فإن أما في لتجنب الأخطاء.

مكلفة عملية تعتبر فإنها و من جانب آخر والجهد بالنسبة للموظفين المشمولين بالإعداد والترتيب,

 لوزارة التعليم العالي العراقية.

لى حل يعتمد ع من ثم يتناول مقترح توفير, والمذكورةالمشكلة بتحليلهذا البحث يقوم

مما سيؤدي بالكامل, ممكننة لعملية حاسوبية وذلك من خلال تحويلها قبولالإنترنت لتسهيل عملية ال

الإداريين المستخدمين لنظام القبول. من قبل الطلبة والمشغلين و الورقي والمكتبيل العمل تقلي إلى

للطلبة هو اختصار للجملة (نظام القبول المركزي) والذي OASIS(أطلق عليهالحل المطور قد

يتكون من أربعة وحدات مختلفة: وحدة الزائر, والتي تمكن الزائرين للنظام OASIS).العراقيين

من عرض حالة القبول الحالية. وحدة الطالب, و التي تكمن الطلبة من التقديم للكليات بالإضافة الى

وارسال قائمة الكليات المختارة. وحدة المشغل, والتي تكمن مشغلي النظام من حفظ, استرجاع

هو بصيغة تطبيق النظام البيانات. وأخيرا, وحدة المدير, والتي توفر امكانية ترشيح الطلبة. تعديل

ق الإنترنت يانترنت غني, والذي يعتبر صنف جديد من التطبيقات التي تشبه التطبيقات المكتبية. تطب

 إحساسله الاستخدام, وذلك بتوفير تطبيق الغني يعتبر من التطبيقات التي تقوم بتحسين تجربة

 إلى, الأمر الذي سيؤول في تحميل الصفحات إعادة أي إلىالتطبيق المكتبي, والذي لا يحتاج

 النفقات والزمن المستهلك من خلال إشغال قنوات الإنترنت بعملية تناقل البيانات. اختزال

, والتي Adobe Flashباستخدام منصة تم إن عملية تطوير النظام المذكور قدا, و أخير

. حيث أن نظام Adobeهي عبارة عن مجموعة من الأدوات و التقنيات المدمجة من شركة

(OASIS) قد طوّر باستخدامAdobe Flash Builder 4.0 Premium مع ,ActionScript

 كهيكل معماري لبناء التطبيق المطلوب. Swizكلغتين أساسيتين, و قد أستخدم MXMLو 3.0

 جمهورية العراق
 وزارة التعليم العالي والبحث العلمي

 جامعة النهرين
 كلية العلوم

في الطلبة لقبول كأساس الإنترنت يعتمد نموذج
العراقية الجامعات

رسالة مقدمة إلى كلية العلوم في جامعة النهرين كجزء من
 متطلبات نيل درجة الماجستير في علوم الحاسبات

من قبل مقدمة

 حيدر كاظم محمد
)۲۰۰٥بكالوريوس جامعة النهرين (

 إشراف
 د.لؤي إدوار جورج

۱٤۳۲صفر ۲۰۱۱كانون الثاني

	Front Page
	Supervisor Certification
	Examining Comittee Certification
	السورة
	Dedication
	Acknowledgements
	Abstract
	List of Abbreviations
	Table of Contents
	Cover - Chapter One
	Chapter 1 Admission Systems
	Cover - Chapter Two
	Chapter 2 Rich Internet Applications
	Cover - Chapter Three
	Chapter 3 Architecture of ICANS
	Cover - Chapter Four
	Chapter 4 Implementation of ICANS
	Cover - Chapter Five
	Chapter 5 Discussion and Future Work
	Cover - References
	References
	الخلاصة
	الصفحة الأولى

