
Republic of Iraq
Ministry of Higher Education
and Scientific Research
Al-Nahrain University
College of Science

Texture Classification
Based on Fuzzy Logic

A Thesis
Submitted to the College of Science, Al-Nahrain

University in Partial Fulfillment of the Requirements for
The Degree of Master of Science in Computer

Science

By
Rukaya Ayad Abd Al-Jabar

(B.Sc. 2004)

Supervised By
Dr. Sawsan K. Thamer

1429 2008

 الرحِيمِ الرحمنِ اللّهِ بِسمِ

كأَلُونسينِ ووحِ عقُلِ الر وحالر رِ مِنأَم

 وما ربي

 قَلِيلاً إِلاَّ الْعِلْمِ من أُوتِيتم

 العظيم االله صدق

) ٨٥الآیة(الأسراء سورة

Supervisor Certification

I certify that this thesis was prepared under my supervision at

the Department of Computer Science/College of Science/Al-Nahrain

University, by Rukaya Ayad Abd Al-Jabar as partial fulfillment of

the requirements for the degree of Master of Science in Computer

Science.

Supervisor

Signature:

Name: Dr. Sawsan K. Thamer

Title: Lecturer

Date: / / 2008

The Head of the Department Certification

In view of the available recommendations, I forward this thesis

for debate by the examination committee.

Signature:

Name: Dr. Taha S. Bashaga

Title: Head of the department of Computer Science,

Al-Nahrain University.

Date: / / 2008

Examining Committee Certification

We certify that we have read this thesis and as an examining

committee, examined the student in its content and what is related to it

and that in our opinion it meets the standard of a thesis for the degree

of Master of Science in Computer Science.

Supervisors Certification

Signature:

Name: Dr. Sawsan K. Thamer

Title: Lecturer

Date: / / 2009

Examining Committee Certification

Signature:

Name: Dr. Laith Alani

Title: Assistance Professor (Chairman)
Date: / / 2009

Signature: Signature:

Name: Dr. Taha S. Bashaga Name: Dr. Bara’a A. Attea

Title:Lecture (Member) Title: Assistant Professor (Member)
Date: / / 2009 Date: / / 2009

The Dean of the College Certification

 Approved by the Council of the College of Science

Signature:

Name: Dr. Laith Alani

Title: The Dean of College of Science, Al-Nahrain University.

Date: / / 2009

 DEDICATED TO

 My Parents …

 My Husband…
 My Friends…

To everyone
 Taught me a letter

ACKNOWLEDGMENT
Above all else, I want to express my great thanks to my god (Allah) for

his uncountable gifts and for helping me to present this wok.

I would like to express my sincere appreciation to my supervisor, Dr.

Sawsan K. Thamer, for her guidance, generosity and continued assistance

during the development of this work.

Grateful thanks for the Head of Department of Computer Science, Dr.

Taha S. Bashaga, Also,I wish to thank the staff of Computer Science

Department at Al-Nahrain University for their help.

I would like to say "thank you" to my faithful friends for supporting and

giving me advises.

Finally, special thank go to my family, especially my mother and my

husband, for their understanding, support, and encouragement during the

search period.

Rukaya Ayad

Abstract
The classification process is an important task in many application of

computer image analysis for classifying images based on color or texture

low-level features.

In this work, a texture classification system is presented which

supports querying with respect to texture low-level feature. The

fundamental idea is to generate automatically image description by

analyzing the image content. The underlying techniques are based on the

Gray-Level Co-occurrence Matrix (GLCM) and Gray-Level Run Length

Matrix (GLRLM) as statistical approaches to texture analysis. These two

techniques are applied in separated manner.

Each class is represented by features vector(s) in the features space

and stored in a file. Then, a selection to the best set of features is done

using fuzzy concepts (triangular membership functions or trapezoidal

membership functions). Given the query image, the system first extracts

its features vector, and then compares the selected features with those

stored in the file to find the nearest class using fuzzy concept.

During the evaluation process, it was found that; the best results are

obtained from combination among features which in turn achieve higher

selection rate for features as well as for whole system (gets selection rate

nearly 90% for combination among four features and 60% without

combination).

ANN Artificial Neural Network
BMP BitMap Pixel
ClusteProm Cluster prominence
DifEnt Difference entropy
DifMom Difference moment
DifVar Difference variance
FTCS Fuzzy-Based Texture Classification System
GLCM Gray Level Co-occurrence Matrix
GLD Gray Level Distribution
GLRLM Gray Level Run Length Matrix
HGRE High Gray-Level Run Emphasis
Homog Homogeneity
HSI Hue, Saturation, and Intensity
HSV Hue, Saturation, and Value
InfMeasCor Information measures of correlation
InvDifMom Inverse difference moment
LGRE Low Gray-Level Run Emphasis
LRE Long Run Emphasis
LRHGE Long Run High Gray-level Emphasis
LRLGE Long Run Low Gray-level Emphasis
MaxProb Maximum probability
pdf Probability Density Function
RGB Red, Green, and Blue
RLD Run Length Distribution
RP Run Percentage
SRE Short Run Emphasis
SRHGE Short Run High Gray-level Emphasis
SRLGE Short Run Low Gray-level Emphasis
STD Standard Deviations
SumAvg Sum average
SumEnt Sum Entropy
SumVar Sum Variance
TFN Triangular Fuzz Number

List of Abbreviations

 1

Table of contents

Chapter One

(Overview)

1.1 Introduction ……………………………………......... 1

1.2 Texture analysis ………………………………........... 4

1.3 Review of Previous Studies …………………............. 7

1.4 Aim of the Work ……………………………….......... 8

1.5 Chapters Overview …………………………….......... 9

Chapter Two

(Texture Analysis and Fuzzy Logic)

2.1 Introduction ………………………………………….. 10

2.2 Texture ……………………………………………….. 11

2.3 Texture Analysis and its Applications ……………….. 14

2.3.1 Texture Classification ………………………….. 15

2.3.2 Texture Segmentation ……………………….…. 16

2.3.3 Shape from Texture ……………………………. 18

2.3.4 Texture Synthesis …………………………….… 18

2.4 Feature Selection and Extraction …………………..…. 19

2.4.1 Spectral Approaches ………………………..…... 20

2.4.2 Structural Approach ………………………….…. 21

2.4.3 Statistical Approach …………………………..… 21

 2

2.4.3.1 Co-occurrence matrices ………………… 22

2.4.3.2 Run Length matrices ……………….…… 28

2.5 Classification Using Fuzzy Logic ………………….... 33

2.6 Fuzzy Logic Concepts ………………………….…… 33

2.7 Fuzzy Sets Concepts …………………………............ 35

2.8 Types of Fuzzy Number ……………………………... 36

2.8.1 Triangular Fuzzy Number ……………………... 36

2.8.2 Trapezoidal Fuzzy Number ……………..……... 37

2.8.3 Gaussian Fuzzy Number ……………………..... 38

Chapter Three

(Fuzzy-Based Texture Classification System

Implementation)

3.1 Introduction ………………………………………….. 41

3.2 FTCS Structure …..……………………………….….. 41

3.3 Image Preprocessing ………………………………… 43

3.4 Feature Extraction ……………………………………. 49

3.5 Fuzzification …………………………………………. 54

3.6 Feature Selection …………………………………….. 58

3.7 Classification ………………………………………… 62

3.8 Features Combinations ………………………………. 64

 3

Chapter Four

(Tests and Results)

4.1 Introduction ………………………………………….. 68

4.2 FTCS System Interfaces …………………………….. 68

4.2.1 Training Form …………………………………. 68

4.2.2 Testing Form …………………………………... 71

4.3 Test Material ………………………………………... 74

4.4 FTCS Models Analysis ……………………………. 78

Chapter Five

(Conclusions and Suggestions for Future Work)

5.1 Introduction ………………………………………….. 86

5.2 Conclusions …………………………………………... 86

5.3 Suggestions for Future Work …................................... 87

Chapter One

Overview

Chapter One Overview

 1

Chapter One

Overview

1.1 Introduction

Computer vision refers to the field of computer science that is

concerned with the design and implementation of algorithms that allow

machines to simulate human vision. Various fields related to computer

processing of images are categorized according to the type of input

which they take and type of results they produce; these categories are

[Nib86]:

• Image processing: takes an image as an input, perform some

operations on it (such as: enhancement, transformation, rotation,

etc.), then produces the processed image as an output.

• Computer graphics: produces images according to received

description information (such as: line drawing or use 3 dimensional

view of an object with effect for shading, lighting, etc.).

• Pattern recognition and Computer vision: produces descriptive

information concerning the received image.

Computer vision is broader than pattern recognition in the sense

that is concerned with a complete system.

Pattern recognition is the scientific discipline whose goal is the

classification of objects into a number of categories or classes.

Depending on the application, these objects can be images or signal

waveforms or any type of measurements that need to be classified.

Chapter One Overview

 2

These objects will be referred to by using the generic term patterns (i.e

usually, it is refer to a pattern as a description of an object which is to

be recognized). Objects are described by a set of measurements called

also attributes or features [Fri99, The03, and Kun04].

Applications of pattern recognition systems and techniques are

numerous and cover a broad scope of activities. A few examples are

enumerated only to refer to several professional activities [Mar01]:

• Astronomy:
Analysis of telescopic images
Automated spectroscopy

• Biology:
Automated cytology
Properties of chromosomes
Genetic studies

• Engineering:
Fault detection in manufactured products
Character recognition
Speech recognition
Automatic navigation systems
Pollution analysis

• Geology:
Classification of rocks
Estimation of mining resources
Analysis of geo-resources using satellite images
Seismic analysis

• Medicine:
Analysis of electrocardiograms
Analysis of electroencephalograms
Analysis of medical images

Chapter One Overview

 3

• Military:
Analysis of aerial photography
Detection and classification of radar and sonar signals
Automatic target recognition

• Security:
Identification of fingerprints
Surveillance and alarm systems

As can be inferred from the above examples, the patterns to be

analysed and recognized can be signals (e.g. e1ectrocardiographic

signals), images (e.g. aerial photos) or plain tables of values (e.g. stock

exchange rates) [Mar01].

A pattern recognition investigation may consist of several stages,

enumerated below [Web02]:

1. Formulation of the problem: gaining a clear understanding of the

aims of the investigation and planning the remaining stages.

2. Data collection: making measurements on appropriate variables and

recording details of the data collection procedure (ground truth).

3. Initial examination of the data: checking the data, calculating

summary statistics and producing plots in order to get a feel for the

structure.

4. Feature selection or feature extraction: selecting variables from the

measured set that are appropriate for the task. These new variables

may be obtained by a linear or nonlinear transformation of the

original set (feature extraction). To some extent, the division of

feature extraction and classification is artificial.

Chapter One Overview

 4

5. Unsupervised pattern classification or clustering. This may be

viewed as exploratory data analysis and it may provide a successful

conclusion to a study. On the other hand, it may be a means of

preprocessing the data for a supervised classification procedure.

6. Apply discrimination or regression procedures as appropriate. The

classifier is designed using a training set of exemplar patterns.

7. Assessment of results. This may involve applying the trained

classifier to an independent test set of labelled patterns.

8. Interpretation.

There are two main divisions of classification: supervised

classification (discrimination) and unsupervised classification (sometimes

in the statistics literature simply referred to as classification or clustering).

In supervised classification, we have a set of data samples (each

consisting of measurements on a set of variables) with associated labels,

the class types. These are used as exemplars in the classifier design.

In unsupervised classification, the data are not labeled and we seek

to find groups in the data and the features that distinguish one group from

another. Most important feature to be extracted about regions in pattern

recognition or image classification problems is through texture analysis

[Sam99, Dud00, Web02, and The03].

1.2 Texture analysis

Texture provides a rich source of information about the natural

scene. For designers, a texture adds richness to a design. For computer

scientists, a texture is attractive not only because it is an important

Chapter One Overview

 5

component in image analysis for solving a wide range of applied

recognition, segmentation and synthesis problems, but also it provides a

key to understand basic mechanisms that underlie human visual

perception [Zho06].

Texture analysis is one of the most important techniques used in

analysis and classification of images presenting repetition of

fundamental image elements. Texture can be recognized when it is

seen, but it is a very difficult concept to define [Gui88, Roa87].

The attributes and utilities of textures can be summarized as [Ach05]:

• Textures are repetitive patterns, which characterize the surfaces of

many classes of objects. Thus classification of object patterns

becomes easy if the textures present in the image are identified

and differentiated from each other.

• Textures provide vital information about the arrangement of the

fundamental elements of an image.

• The attributes of a texture may be described in qualitative terms

such as coarseness, homogeneity, orientation of image structure,

and spatial relationships between image intensities or tones.

Texture analysis is the quantification and use of such image

properties which aid in texture discrimination.

Texture analysis applications have been utilized in a variety of

image processing fields such as: automated inspection, medical image

processing, remote sensing, and document processing [Sam99].

The various methods for modeling texture and extracting texture

features can be applied in four broad categories of problems: texture

segmentation, texture classification, texture synthesis, and shape from

Chapter One Overview

 6

texture. Among the main tasks of texture analysis are segmentation and

classification [Sam99, Sag06]:

• Texture segmentation: Is the process that subdivides an image in to

its constituent parts or objects. One does not need to know which

specific texture exist in the image in order to do texture

segmentation. All that indeed is away to tell that two textures

(usually in adjacent regions of an image) are different.

• Texture classification: Texture classification involves deciding what

texture category an observed image belongs to. In order to

accomplish this, one needs to have a priori knowledge about the

classes to be recognized. Once this knowledge is available and the

texture features are extracted, then one can use classical pattern

classification techniques in order to do the classification.

Texture features could be derived using various approaches such as

[Sag06]:

• Structural approach.

• Statistical approach.

• Syntactic approach.

Statistical texture analysis methods deal with the distribution of grey

levels (or colures) in a texture. The first order statistics and pixel-wise

analysis are not able to efficiently define or model a texture. Therefore,

statistical texture analysis methods usually employ higher order statistics

or neighborhood (local) properties of textures. The most commonly used

statistical texture analysis methods are co-occurrence matrices,

Chapter One Overview

 7

autocorrelation function, texture unit and spectrum, and grey level run-

length [Mon04].

Fuzzy approaches to pixel classification have found applications in

problems where (1) precise knowledge about the pattern classes is not

available, (2) large number of pattern samples are not available for

statistical estimation of parameters; (3) patterns have partial membership

to different classes [Ach05].

In classical two-state logic, an element either belongs or does not

belong to a given class. In real life, however, the classes are often ill

defined, or overlapping, or fuzzy and a pattern may belong to more than

one class. In such a situation, the fuzzy set theoretic techniques have

proved to be useful.

There has an increasing use of fuzzy set theory and fuzzy algorithms

for image processing implementations. This is motivated by desire to

model the ambiguity and noise contained in digitally defined image

[Ali99].

1.3 Review of Previous Studies

1. Hirota, et al (1994) [Hir94], have introduced "Implicitly - supervised

fuzzy pattern recognition", Introduced a new model of fuzzy pattern

recognition where data available about class membership is given

implicitly rather than explicitly. While the explicit classification

training set conveys complete details about class membership, the

implicit format of classification lends itself to more synthetic forms

of classification outcomes (such as those expressed in terms of

similarities between some pairs of patterns).

Chapter One Overview

 8

2. I. Nedeljkovic (2004) [Ned04], had introduced "Image Classification

Based on Fuzzy Logic", an idea to solve the problem of image

classification in fuzzy logic manner as well as comparison of the

results of supervised and fuzzy classification was the main

motivation of this work. Behind this idea was also the question if the

possible promising results can give the answer to the question of

diminishing the influence of person dealing with supervised

classification.

3. M. M. Hoque and S. M. Faizur (2007) [Moh07], had introduced

"Fuzzy Features Extraction from BANGLA Handwritten Character".

This paper described a method to efficiently detect the meaningful

fuzzy features including global features, geometric features and

positional features from handwritten Bangla character respectively.

The system has been tested for different types of Bangla handwritten

alphabets in various styles and they got a successful feature

extraction results for most of the test cases.

1.4 Aim of the Work

The aim of this work is to build an image classification system to

manipulate an input image and classify it into one of the predefined set of

classes. This classification is accomplished by using the following steps:

1. Extract feature sets using statistical approach.

2. Select the best features using fuzzy logic.

3. Classify the query image using fuzzy logic depending on the

selected features.

Chapter One Overview

 9

1.5 Thesis Layout

• Chapter two: This chapter describes in some details the definition

of texture, application of texture analysis and it introduces how

features are extracted from images. It includes also the basic

concepts of fuzzy logic.

• Chapter three: In this chapter the implementation steps of the

Fuzzy Texture Classification System (FTCS) are presented.

• Chapter Four: In this chapter, the test results are presented and

discussed to evaluate the performance of the established system.

• Chapter Five: In this chapter, some of the derived conclusions are

listed and a list of suggestions for the future work is given.

Chapter Two

Texture Analysis

AND
FUZZY LOGIG

Chapter Two Texture Analysis and Fuzzy Logic

10

Chapter Two

Texture Analysis and Fuzzy

Logic

2.1 Introduction

In a typical pattern recognition or object classification process, the

first step is the extraction of features or key properties of objects (i.e.

mapping from the real world to the feature space). The next step is

classification of objects according to their features (i.e. mapping from the

feature space to the classification space). The human brain is an excellent

classifier which can successfully classify objects in noisy environments

even without significant features. However, it still cannot be expected the

same performance from our artificial classifiers. Therefore, to work

towards a successful classification, extracted features of different objects

must show adequate separation in the feature space.

Figure 2.1 illustrates the structure of a traditional pattern recognition

system. The two main stages, feature extraction and classification,

eventually map the input object into one of the K classes of the

classification space [Mon04].

Objec

t
Preprocessing Feature

Extraction Features

Classifier Class

Figure 2.1: A pattern recognition system.

Chapter Two Texture Analysis and Fuzzy Logic

11

2.2 Texture

Quantitative study of images is often concerned with four types of

parameters, which are of fundamental importance. These are Contrast (a

very important measure in image processing which often determines the

quality of an image), Color (adds more useful discriminatory information

to the image), Shape (a measure which is used in recognizing the various

object contained in an image), and Texture (Describe the spatial

distribution of tonal value within band and provide useful information for

performing automatic interpretation and recognition) [Ala96].

Texture is an important characteristic for the analysis of many types

of images. It can be seen in all images from multi-spectral scanner images

obtained from aircraft or satellite platforms (which the remote sensing

community analysis) to microscopic images of cell cultures or tissue

samples (which the biomedical community analysis) [Har79].

Although texture can be recognized when it is seen, but it is very

difficult to define. This difficulty is demonstrated by the number of

different texture definitions attempted by vision researchers. The

following are some of these definitions:

• A region in an image has a constant texture if a set of local statistics

or other local properties of the picture function are constant, slowly

varying, or approximately periodic [Tuc98].

• The image texture is nonfigurative and cellular. An image texture is

described by the number, and types of its (tonal) primitives, and the

spatial organization, or layout of its (tonal) primitives. A

fundamental characteristic of texture: it cannot be analyzed without a

frame of reference of tonal primitive being stated or implied. For any

smooth gray-tone surface, there exists a scale such that when the

Chapter Two Texture Analysis and Fuzzy Logic

12

surface is examined, it has no texture. Then as resolution increases, it

takes on a fine texture and then a coarse texture [Har79].

• Texture is used to describe two dimensional arrays of variations...

The elements and rules of spacing or arrangement may be arbitrarily

manipulated, provided a characteristic repetitiveness remains

[Tra01].

• The notion of texture appears to depend upon three ingredients: (i)

some local ‘order’ is repeated over a region which is large in

comparison to the order’s size, (ii) the order consists in the

nonrandom arrangement of elementary parts, and (iii) the parts are

roughly uniform entities having approximately the same dimensions

everywhere within the textured region [Tra01].

Texture may be classified as being artificial or natural. Artificial

textures consist of arrangements of symbols, such as line segments, dots,

and stars placed against a neutral background. Several examples of

artificial texture are presented in figure (2.2). As the name implies,

natural textures are images of natural scenes containing semi repetitive

arrangements of pixels. Examples include photographs of brick walls,

stone, sand, and grass. Figure (2.3) shows several natural texture

examples [Pra01].

Uniformity, density, coarseness, roughness, regularity, linearity,

directionality, frequency, and phase, are important to describe textures.

Some of these perceived qualities are not independent. For example,

frequency is not independent of density and the property of direction only

applies to directional textures. The fact that the perception of texture has

so many different dimensions is an important reason why there is no

Chapter Two Texture Analysis and Fuzzy Logic

13

single method of texture representation which is adequate for a variety of

textures. For that, different types of texture may need different features to

represent and classify them [Tuc98].

Texture properties are used to discriminate (i) one object from other,

(ii) an object from background, (iii) to draw inference about 3D worlds.

For that any machine vision system must be able to deal with texture

[Kar94].

Figure (2.2): Artificial texture.

Chapter Two Texture Analysis and Fuzzy Logic

14

2.3 Texture Analysis and its Applications

Major goals of texture research in computer vision are to understand,

model and process texture, and ultimately to simulate human visual

learning process using computer technologies.

Four major application domains related to texture analysis are

texture classification, texture segmentation, shape from texture, and

texture synthesis [Zho06].

Figure (2.3): Natural texture.

Chapter Two Texture Analysis and Fuzzy Logic

15

2.3.1 Texture Classification

Texture classification assigns a given texture to some texture classes.

There are two main classification methods; they are supervised and

unsupervised classification. A supervised classifier is trained using the set

to learn a characterization for each texture class. Unsupervised

classification does not require prior knowledge, which is able to

automatically discover different classes from input textures [Tuc98,

Zho06].

Before the classification process done, the training process is done,

where some known texture images are used to train the classifier.

Training typically involves four major steps. These are:

1. Image pre-processing,
2. Sampling,
3. Feature extraction,
4. Classifier training.

The pre-processing step is used typically for image enhancement and

noise removal, although some techniques perform scaling and rotation in

this step as well, in order to compensate for variations in the training data.

Image data are often limited in terms of the number of original

source images available, so sampling process is done in order to increase

the amount of data which divided the images into sub images, either

overlapped or disjoint, of a particular window size.

The most important stage of the classification process is the feature

extraction stage, at which time the sample image is transformed into a

much lower dimensionality feature vector. Many different techniques

have been used to handle this stage.

Chapter Two Texture Analysis and Fuzzy Logic

16

The vectors from all of the training images are then input to the

classification system for training. . Again, many different classifiers have

been used, although some of them perform slightly better than others,

generally the choice of classifier has the least effect on the overall

performance of the system. Therefore, speed of training, ease of

implementation, and suitability to a given task are more important factors

in the choice of a classifier than is its raw performance [Sag06].

2.3.2 Texture Segmentation

Texture segmentation is a difficult problem because one usually

does not know a priori what types of textures exist in an image, how

many different textures there are, and what regions in the image have

which textures. In fact, one does not need to know which specific textures

exist in the image in order to do texture segmentation. All that is needed

is a way to tell that two textures (usually in adjacent regions of the

images) are different.

The two general approaches to perform texture segmentation are

analogous to methods for image segmentation: region-based approaches

or boundary-based approaches.

Region-based approach, one tries to identify regions of the image

which have a uniform texture. Pixels or small local regions are merged

based on the similarity of some texture property. The regions having

different textures are then considered to be segmented regions.

The boundary-based approaches are based upon the detection of

differences in texture in adjacent regions. Thus boundaries are detected

where there are differences in texture [Tuc98].

Chapter Two Texture Analysis and Fuzzy Logic

17

Texture segmentation could also be supervised or unsupervised

depending on if prior knowledge about the image or texture class is

available. Supervised texture segmentation identifies and separates one or

more regions that match texture properties shown in the training textures.

Unsupervised segmentation has to first recover different texture classes

from an image before separating them into regions. Compared to the

supervised case, the unsupervised segmentation is more flexible for real

world applications despite that it is generally more computationally

expensive. Similar to classification, segmentation of texture also involves

extracting features and deriving metrics to segregate textures. Figure (2.4)

shows an example of texture segmentation.

Partitioning an image into homogeneous regions is very useful in a

variety of applications of pattern recognition and machine leaning

[Zho06].

Figure (2.4): Example of texture segmentation showing
(a) Original image

 (b) Segmented image

(a) (b)

Chapter Two Texture Analysis and Fuzzy Logic

18

2.3.3 Shape from Texture

Determining the shape of an object in three dimensional shape is an

important task in image processing, and there exist many features in

images that allow the viewer to make such a determination, for example

variations in intensity on the surface of objects, the relative positions and

orientations of edges and corners, and shadowing effects. Texture is

another property which can be used to determine the relative orientation

of a surface [Sag06].

2.3.4 Texture Synthesis

Computer graphics applications often use textures to render

synthetic images. These textures can be obtained from a variety of

sources such as hand-drawn pictures or scanned photographs. Hand-

drawn pictures can be aesthetically pleasing, but it is hard to make them

photo-realistic. Most scanned images, however, are of inadequate size

and can lead to visible seams or repetition if they are directly used for

texture mapping.

Texture synthesis is an alternative way to create textures. Because

synthetic textures can be made any size, visual repetition is avoided.

Texture synthesis can also produce tileable images by properly handling

the boundary conditions.

The goal of texture synthesis can be stated as follows: Given a

texture sample, synthesize a new texture that, when perceived by a human

observer, appears to be generated by the same underlying process. Figure

(2.5) Show an example of texture synthesis [Wei01].

Chapter Two Texture Analysis and Fuzzy Logic

19

2.4 Feature Selection and Extraction

Any pattern which can be classified in some category must possess a

number of features. The first step in the process of classification is to

consider the problem, what features to select and how to extract

(measure) them [Fri99].

A judicious selection of features for building classifiers is a very

crucial aspect of classifier design, and deserves careful consideration. On

one hand, there is certainly nothing to lose in using all available

measurements in classifier design. On the other hand, too many features

make the classifier increasingly complex (sometimes confusing too), in

fact, unnecessarily so, in case some of the measurements are redundant.

Feature selection, is essentially the selection of the subset of

measurements that optimizes some criterion of separability of classes,

since, intuitively, the best set of features should discriminate most

(a) Texture

Texture Synthesis

(b) Synthesis result

Figure (2.5) Problem Formulations: Given a sample texture (a), our goal is to
synthesize a new texture that looks like the input (b). The synthesized texture is
tileable can be of arbitrary size specified by the user.

Chapter Two Texture Analysis and Fuzzy Logic

20

efficiently among the classes, that is, enhance the separability among

them, while increasing homogeneity within classes at the same time.

Feature extraction, aims to reduce the number of measurements

available in a different way by looking for a transformation of the original

vector of measurements that optimizes some appropriately defined

criterion of separability among classes, possibly leading to fewer features

at the same time.

There are various methods of extracting texture features from

images, some of these methods are: statistical, structural (or syntactic),

and spectral [Fri99, Pal01].

2.4.1 Spectral Approach
The spectral approach to texture analysis deals with images in the

frequency domain. Therefore, this approach requires Fourier transform to

be carried out on the original images to acquire their corresponding

representations in the frequency space.

The two-dimensional power spectrum of an image reveals much

about the periodicity and directionality of its texture. For instance, an

image of coarse texture would have a tendency towards low frequency

components in its power spectrum, whereas another image with finer

texture would have higher frequency components.

Fourier transform based methods usually perform well on textures

showing strong periodicity, however their performance deteriorates as the

periodicity of textures weakens. [Kon02].

Given such performance problems and the high computational

complexity of the Fourier transform, the spectral approach is neither a

very popular approach among researchers dealing with texture analysis,

nor seems to be promising. In fact, Haralick, to whom the early

Chapter Two Texture Analysis and Fuzzy Logic

21

classification of approaches in textual analysis is owed, does not even

mention the spectral approach, but sticks to the classification of all

methods among the two other approaches: structural and statistical

[Kon02].

2.4.2 Structural Approach

Structural approaches (Haralick 1979, Levine 1985) represent

texture by well defined primitives (microtexture) and a hierarchy of

spatial arrangements (macrotexture) of those primitives. To describe the

texture, one must define the primitives and the placement rules. The

choice of a primitive (from a set of primitives) and the probability of the

chosen primitive to be placed at a particular location can be a function of

location or the primitives near the location. The advantage of the

structural approach is that it provides a good symbolic description of the

image; however, this feature is more useful for synthesis than analysis

tasks. The abstract descriptions can be ill defined for natural textures

because of the variability of both micro- and macrostructure and no clear

distinction between them. It may prove to be useful for bone image

analysis, e.g. for the detection of changes in bone microstructure [Mat98].

2.4.3 Statistical Approach

From the statistical point of view, an image is a complicated pattern

on which statistics can be obtained to characterize these patterns. The

techniques used within the family of statistical approaches make use of

the intensity values of each pixel in an image, and apply various

statistical formulae to the pixels in order to calculate feature descriptors.

Chapter Two Texture Analysis and Fuzzy Logic

22

Texture feature descriptors, extracted through the use of statistical

methods, can be classified into two categories according to the order of

the statistical function that is utilized: First-Order Texture Features and

Second Order Texture Features [Tuc98, Kon02].

• First Order Texture Features are extracted exclusively from the

information provided by the intensity histograms, thus yield no

information about the locations of the pixels. Another term used for

First-Order Texture Features is Grey Level Distribution Moments.

• Second-Order Texture Features take the specific position of a pixel

relative to another into account. The most popularly used of second-

order methods is the co-occurrence matrix method [Kon02, Tuc98].

2.4.3.1 Co-occurrence matrices

The feature set of Haralick is probably one of the most famous

methods of texture analysis. It is based on the calculation of the co-

occurrence matrix, a second-order statistics of the gray levels in the

image window [Jäh99].

The co-occurrence matrix method of texture description is based on

the repeated occurrence of some gray-level configuration in the texture;

this configuration varies rapidly with distance in fine textures and slowly

in coarse textures. Suppose the part of a textured image to be analyzed is

an M×N rectangular window. An occurrence of some gray-level

configuration may be described by a matrix of relative

frequencies ()jidP ,,θ , describing how frequently two pixels with gray-

levels i,j appear in the window separated by a distance d in direction θ.

These matrices are symmetric if defined as given in equations (2,1) to

(2,4). However, an asymmetric definition may be used, where matrix

values are also dependent on the direction of co-occurrence.

Chapter Two Texture Analysis and Fuzzy Logic

23

Non-normalized frequencies f of co-occurrence as functions of angle

θ and distance d can be represented formally as [Son08]:

While a normalized co-occurrence matrix Pθ,d(i,j) is calculated from

[Jäh99]:

A set of texture features can be computed from Co-occurrence

matrix, these descriptors include [Jäh99, Sam99, Lim04, Dua06, and,

Son08]:

 P(i,j)= Pθ,d(i,j) / M × N ………………… (2.5)

where M × N: total number of possible pairs

P0°,d(i,j) =|{[(k,l),(m,n)] ∈ D :
 k - m = 0, | l - n| = d, f(k,l) = i, f(m, n) = j}|

………………… (2.1)

 P45°,d(i,j) =|{[(k,l),(m,n)] ∈ D :

(k - m = d, l - n = -d) ∨ (k - m = -d, l - n = d), f(k,l) =i , f(m, n) =j}|
………………… (2.2)

 P90°,d(i,j) =|{[(k,l),(m,n)] ∈ D :
 |k - m|= d, l - n = 0, f(k,l) = i, f(m, n) =j}|

………………… (2.3)

 P135°,d(i,j) =|{[(k,l),(m,n)] ∈ D :

(k - m = d, l - n = d) ∨ (k - m = -d, l - n = -d), f(k,l) = i, f(m, n) =j}|
………………… (2.4)

where |{…}| refers to set cardinality and D=(M × N) × (M × N)

Chapter Two Texture Analysis and Fuzzy Logic

24

1. Energy (Angular second momentum): It describes the uniformity of

the texture. When all the matrix elements are almost equal, i.e., when

gray level intensities are very close to each other, the value of the

energy is small. Thus, the higher the value of the energy, the more

irregular the matrix.

Energy =

2. Contrast (Inertia): When the high values of the matrix are further

away from the main diagonal, the value of inertia becomes higher.

So inertia and the inverse difference moment are measures for the

distribution of gray-scales in the image.

Contrast =

3. Correlation: It measures the correlation between the elements of the

matrix. When correlation is high the image will be more complex

than when correlation is low. Haralick's correlation is a measure of

gray level linear dependence between the pixels at the specified

positions relative to each other.

Correlation =

Where µx, µy, σx and σy are the means and standard

deviations of ∑=
k

x kiPiP),()(and ∑=
k

y jkPjP),()([Kon02].

),(
1

0

1

0
jiP

G

i

G

j
∑ ∑

−

=

−

=

 ………….………. (2.6)














∑ ∑∑

−

=

−

=

−

= =−

1

1

1

1

1

0

2),(
G

i

G

j

G

n nji

jiPn ……………...…. (2.7)

() 







−∑∑

−

=

−

=

1

1

1

1
),(1 G

i

G

j
yx

yx

jiPij µµ
σσ

…….…. (2.8)

Chapter Two Texture Analysis and Fuzzy Logic

25

4. Variance (Sum of squares): Inform on how spread out the

distribution of gray levels is. The variance is expected to be large if

the gray levels of the image are spread out vastly.

Variance =

where µ is the mean of the density function),(jiP .

5. Inverse difference moment (InvDifMom): It has a relatively high

value when the high values of the matrix are near the main diagonal.

This is because the squared difference (i-j)2 is smaller near the main

diagonal, which increases the value of 1/(1+(i - j) 2).

InvDifMom =

6. Entropy: It measures the randomness of the elements in the matrix.

When all elements of the matrix are maximally random, entropy has

its highest value. So, a homogeneous image has lower entropy than

an inhomogeneous image. In fact, when energy gets higher, entropy

should get lower. Entropy has its highest peak when the GLCM is

uniform.

Entropy =

7. Sum average (SumAvg)

SumAvg =

() (){ }jiPjiP
G

i

G

j
,log,

1

0

1

0
∑∑

−

=

−

=

−
…...……. (2.11)

())(
2

2
iPi

G

i
yx∑

=
+

 …………….……. (2.12)

()),(
1

0

1

0

2
jiPi

G

i

G

j
∑∑

−

=

−

=
−µ …………...………. (2.9)

()
),(

1
11

0

1

0
2 jiP

ji

G

i

G

j
∑∑

−

=

−

= −+
…………….. (2.10)

Chapter Two Texture Analysis and Fuzzy Logic

26

where

∑
=+

+ =
ikjkj

yx kjPiP
;,

),()(

8. Sum Entropy (SumEnt)

SumEnt =

9. Sum Variance (SumVar)

SumVar =

10. Difference variance (DifVar)

DifVar =

11. Difference entropy (DifEnt)

DifEnt =

12. Information measures of correlation (InfMeasCor)

InfMeasCor1 =

InfMeasCor2 =

where

() ()()iPiPHX x

G

i
x log

1

0
∑

−

=

−= , () ()()jPjPHY y

G

j
y log

1

0
∑

−

=

−=

() (){ })(log)(
2

2

iPiP yx

G

i
yx +

=
+∑−

.…….. (2.13)

() ())()(
2

2

22

2
iPiPii

G

i
yx

G

i
yx∑ ∑

=
+

=
+ 








−

………. (2.14)

() ()∑ ∑
−

=
−

−

=
− 





















−

1

0

2
1

0

)()(
G

i
yx

G

j
yx jPjiiP

 .…….…. (2.15)

() (){ })(log)(
1

0

iPiP yx

G

i
yx −

−

=
−∑−

……..……. (2.16)

()HYHX
HXYHXY
,max

1−

….……………. (2.17)

()e HXYHXY −−− 221

 ………………. (2.18)

Chapter Two Texture Analysis and Fuzzy Logic

27

=HXY () ()()jiPjiP
G

i

G

j

,log,
1

0

1

0
∑ ∑

−

=

−

=

−

=1HXY () () ()()jPiPjiP yx

G

i

G

j

log,
1

0

1

0
∑ ∑

−

=

−

=

−

=2HXY () () () ()()jPiPjPiP yx

G

i

G

j

yx log
1

0

1

0
∑ ∑

−

=

−

=

−

13. Maximum probability (MaxProb): Result is retrieved from maximum

value in the pixel pair that is most predominant in the image. The

maximum probability is expected to be high if the occurrence of the

most predominant pixel pair is high.

MaxProb =

14. Difference moment (DifMom)

DifMom =

15. Homogeneity (Homog): The homogeneity is expected to be large if

the gray levels of each pixel pair are similar.

Homog =

16. Cluster shade (ClusterShade) and Cluster prominence (ClusteProm):

They measure the skewness of the matrix, in other words the lack of

symmetry. When cluster shade and cluster prominence are high, the

image is not symmetric. In addition, when cluster prominence is low,

there is a peak in the co-occurrence matrix around the mean values.

For the image, this means that there is little variation in gray-scales.

() ()jiPji
kG

i

G

j
,

1

0

1

0
∑∑

−

=

−

=

−

…...………………. (2.20)

()
∑ ∑

−

=

−

= −+

1

0

1

0 1
,G

i

G

j ji
jiP

………….………. (2.21)

………………...………. (2.19) ()()jiP
ji

,max
,

Chapter Two Texture Analysis and Fuzzy Logic

28

ClusterShade =

ClusterProm =

2.4.3.2 Run Length matrices (Primitive Length matrices)

The gray level run length method is a way of extracting higher-

order statistical texture features. The technique has been described and

applied by Galloway at 1975 and by Chu et al at 1990, which calculates

characteristic textural features from gray-level run lengths in different

image directions [Alb95, Jäh99].

A large number of neighboring pixels of the same gray-level

represents a coarse texture; a small number of these pixels represent a

fine texture, and the lengths of texture primitives (run) in different

directions can serve as a texture description. A primitive is a maximum

contiguous set of constant-gray-level pixels located in a line; these can

then be described by gray-level, length, and direction. The texture

description features can be based on computation of continuous

probabilities of the length and the gray-level of primitives in the texture

[son08].

The basis of the calculation of the features is a run-length matrix that

is defined as:

() ()ji

G

i

G

j

yx Pji ,

41

0

1

0
∑∑

−

=

−

=

−−+ µµ

 .….….. (2.23)

() 







= rgargP ,, ……….………. (2.24)

() ()jiPji
G

i

G

j

yx ,
31

0

1

0
∑∑

−

=

−

=

−−+ µµ

..……... (2.22)

Chapter Two Texture Analysis and Fuzzy Logic

29

Where rga , is the number of occurrences of a connected pixel

interval of run length r in the direction θ with all pixel values of the

interval being equal to the gray-level value g.

Usually, four run-length matrices for the directions θ = 0°; 45°; 90°;

and 135° are calculated. In order to get sufficiently high run-length

values, a reduction of the gray values of an image is performed.

The texture description features can be determined as follows [Jäh99,

The03]:

1. Short Run Emphasis (SRE): This feature emphasizes small run

lengths, due to the division by r2.

SRE =

2. Long Run Emphasis (LRE): This gives emphasis to long run lengths.

Thus, we expect SRE to be large for coarser and LRE to be large for

smoother images.

LRE =

3. Gray Level Distribution (GLD): When runs are uniformly distributed

among the gray levels, GLD takes small values.

GLD =

()
∑ ∑

= =

G

g

R

r r
rgP

N 1 1
2

,1
 ……………….………. (2.25)

()∑ ∑
= =

G

g

R

r
rgPr

N 1 1

2 ,1

 ……………………. (2.26)

()∑ ∑
= =








G

g

R

r
rgP

N 1

2

1
,1

 …………….………. (2.27)

Chapter Two Texture Analysis and Fuzzy Logic

30

4. Run Length Distribution (RLD): Is a measure of run length

nonuniformity.

 RLD=

5. Run Percentage (RP): where Npix is the total possible number of

runs in the image, if all runs had length equal to one, that is, the total

number of pixels. RP takes low values for smooth images.

 RP=

6. Low Gray-level Run Emphasis (LGRE): The LGRE is expected

large for the image with low gray level values.

LGRE =

7. High Gray-level Run Emphasis (HGRE): The HGRE is expected

large for the image with high gray level values.

HGRE =

8. Short Run Low Gray-level Emphasis (SRLGE): Measures the joint

distribution of short runs and low gray level values. The SRLGE is

expected large for the image with many short runs and lower gray

level values.

()
2

1 1

,1 ∑ ∑
= =








R

r

G

g

rgP
N ………..……….... (2.28)

()∑ ∑
= =

G

g

R

rpix

rgP
N 1 1

,1
 ………………………. (2.29)

()
∑ ∑

= =

G

g

R

r g
rgP

N 1 1
2

,1

………………………. (2.30)

()∑ ∑
= =

G

g

R

r
grgP

N 1

2

1
,1

…………..……….. (2.31)

Chapter Two Texture Analysis and Fuzzy Logic

31

SRLGE =

9. Short Run High Gray-level Emphasis (SRHGE): Measures the joint

distribution of short runs and High gray level values. The SRHGE is

expected large for the image with many short runs and high gray

level values.

SRHGE =

10. Long Run Low Gray-level Emphasis (LRLGE): Measures the joint

distribution of long runs and low gray level values. The LRLGE is

expected large for the image with many long runs and low gray level

values.

LRLGE =

11. Long Run High Gray-level Emphasis (LRHGE): Measures the joint

distribution of long runs and high gray level values. The LRHGE is

expected large for the image with many long runs and high gray

level values.

LRHGE =

where:

()
∑ ∑

= =

G

g

R

r r
grgP

N 1 1
2

2,1

………….………… (2.33)

()
∑ ∑

= =

G

g

R

r g
rrgP

N 1 1
2

2,1
 ……………………. (2.34)

()∑ ∑
= =

G

g

R

r
rgrgP

N 1 1

22,1

…………..….. (2.35)

()
∑ ∑

= =

G

g

R

r rg
rgP

N 1 1
22

,1

……………………. (2.32)

N: number of pixel in image window

G: number of gray level in image

R: maximum run length in image

Npix : total possible number of runs in the image

Chapter Two Texture Analysis and Fuzzy Logic

32

Example: Consider a 5x5 sub-image with gray level ranges from 0-3

• Find co-occurrence matrix.

• Find run length matrix.

• Co-occurrence matrix when d=1



















=°

5010
0421
0041
0002

20
1)1,0(P ,



















=°

1140
2102
0012
2000

16
1)1,45(P



















=°

2230
2201
0023
3000

20
1)1,90(P ,



















=°

2120
1200
0122
3000

16
1)1,135(P

0 1 1 2 2

1 1 1 3 3

3 3 3 3 3

0 0 0 2 2

1 1 2 2 2

Sub-image

0

45

90

135

Chapter Two Texture Analysis and Fuzzy Logic

33

• Run length matrix



















=°

10010
00120
00120
00101

)0(P ,


















=°

00015
00015
00015
00004

)45(P



















=°

00023
00023
00023
00004

)90(P ,


















=°

00023
00023
00023
00004

)135(P

2.5 Classification using Fuzzy Logic

Image classification is an area where fuzzy representation and fuzzy

reasoning can be successfully applied, mainly for two reasons: (1)

ambiguity in the images to be recognized; and (2) the need for fast

processing, that is, complicated formulas may not be applicable for a real-

time recognition; in this case a fuzzy system may be more convenient.

Different approaches are possible depending on the image

recognition tasks, two of them being (1) objects recognition, that is,

recognizing shape, distance, and location of objects; and (2) texture

analysis, for example, an image X of size m×n pixels can be represented

as a set of fuzzy sets and membership degrees to which pixels belong to

the fuzzy concepts, such as "brightness," "darkness," "edginess,"

''smoothness" [Kas96].

2.6 Fuzzy Logic Concepts

The mathematical logic is called classical logic. The classical logic

considers the binary logic which consists of truth and false. The fuzzy

logic is a generalization of the classical logic and deals with the

ambiguity in the logic [Lee05].

Chapter Two Texture Analysis and Fuzzy Logic

34

Fuzzy logic is relatively young theory. Major advantage of this

theory is that it allows the natural description, in linguistic terms, of

problems that should be solved rather than in terms of relationships

between precise numerical values. This advantage, dealing with the

complicated systems in simple way, is the main reason why fuzzy logic

theory is widely applied in technique. It is also possible to classify the

remotely sensed image (as well as any other digital imagery); in such a

way that certain land cover classes are clearly represented in the resulting

image [Ned01].

Fuzzy image processing is a kind of nonlinear image processing.

The difference to other well-known methodologies is that fuzzy

techniques operate on membership values. The image fuzzification

(generation of suitable membership values) is, therefore, the first

processing step.

Generally, three various types of image fuzzification can be

distinguished: histogram-based gray-level fuzzification, local

neighborhood fuzzification, and feature fuzzification [Jäh99].

Some of the main characteristics of the fuzzy systems are [Kas96]:

• Fuzzy concepts have to have linguistic meaning; they need to be

articulated.

• Membership functions are numerical representations of the linguistic

concepts; they can be built either through learning from data, or

through experts' opinion, or through both.

• Fuzzy rules can represent vague, ambiguous or contradictory

knowledge.

• Fuzzy systems are robust; even if some rules are removed from the

rule map, the system could still work properly; fuzzy systems are

also robust toward changing conditions in the environment.

• Fuzzy systems are simple to build, easy to realize, easy to explain.

Chapter Two Texture Analysis and Fuzzy Logic

35

• Fuzzy logic is easy to implement using both software on existing

microprocessors or dedicated hardware.

2.7 Fuzzy Set Concepts
Fuzzy set theory, introduced by Lotfi A. Zadeh in 1965, is a

generalization of crisp set theory. Fuzzy sets are the tools which convert

the concepts of fuzzy logic into algorithms leading to applications. They

express precisely what one means by vague expressions [Ibr04].

A fuzzy set consists of objects and their respective grades of

membership in the set. The grade of membership of an object in the fuzzy

set is given by a subjectively defined membership function. The value of

the grade of membership of an object can range from 0 to 1 where the

value of 1 denotes full membership, and the closer the value is to 0, the

weaker is the object's membership in the fuzzy set [Fri99, Jäh99]..

The traditional way of representing elements u of a set A is through

the characteristic function:

μA(u) = 1, if u is an element of the set A, and

μA (u) = 0, if u is not an element of the set A,

that is, an object either belongs or does not belong to a given set.

In fuzzy sets an object can belong to a set partially. The degree of

membership is defined through a generalized characteristic function

called membership function:

μA(u): U → [0,1]

where U is called the universe, and A is a fuzzy subset of U [Kas96].

Chapter Two Texture Analysis and Fuzzy Logic

36

2.8 Types of Fuzzy Numbers
Fuzzy sets can also be defined by assigning a continuous function to

describe the membership either analytically or graphically [Ibr04]. Some

commonly used membership functions are illustrated below.

2.8.1 Triangular Fuzzy Number [Lee05]
Among the various shapes of fuzzy number, triangular fuzzy number

(TFN) is the most popular one.

Triangular Fuzzy Number It is a fuzzy number represented with

three points as follows: A = (a1, a2, a3).

This membership function of this fuzzy number will be interpreted in

figure (2.6).

 Figure (2.6): Triangular fuzzy number A = (a1, a2, a3).

…………. (2.36)

Chapter Two Texture Analysis and Fuzzy Logic

37

Some important properties of operations on triangular fuzzy number

are summarized:

• The results from Addition or Subtraction between triangular fuzzy

numbers result also triangular fuzzy numbers.

• The results from Multiplication or Division are not triangular fuzzy

numbers.

• Max or Min operation does not give triangular fuzzy number.

But we often assume that the operational results of Multiplication or

Division to be triangular fuzzy numbers as approximation values.

2.8.2 Trapezoidal Fuzzy Number [Lee05]

Another shape of fuzzy number is trapezoidal fuzzy number. This

shape is originated from the fact that there are several points whose

membership degree is maximum (α = 1) for all α∈ [0,1] .

Trapezoidal fuzzy number we can define trapezoidal fuzzy number

A as A = (a1, a2, a3, a4).

The membership function of this fuzzy number will be interpreted

figure (2.7).

when a2 = a3, the trapezoidal fuzzy number coincides with triangular

one.

Figure (2.7): Trapezoidal fuzzy number A = (a1, a2, a3, a4).

Chapter Two Texture Analysis and Fuzzy Logic

38

2.8.3 Gaussian Membership Function [Ibr04, Lee05]
Gaussian or bell shape membership function is often used in

practical applications, and its membership function is defined as follows:








 −−
= 2

2

2
)(exp)(

σ
µ

bxxA , .. (2.55)

The typical shape of this membership function is shown in Figure

(2.9).

Figure (2.9) The bell shape membership function [Ibr04]

 ………. (2.37)

Chapter three

Fuzzy-Based Texture

Classification System

Implementation

Chapter Three System Development and Implementation

 39

Chapter Three

Fuzzy-Based Texture Classification

System Implementation

3.1 Introduction
This chapter is devoted to describe Fuzzy-Based Texture

Classification System (FTCS) implementation to offer the facilities,

which may be required to perform the classification process by using

fuzzy logic.

The fundamental idea of this work is to implement a program which

takes texture image as input and produces image class as output. This task

is accomplished by using supervised classification, and statistical

approaches have been used to extract texture features of images using co-

occurrence and run length matrices. Fuzzy logic is used for computing

membership values for all extracted features using triangular and

trapezoidal membership functions. Then a combination between features

is used to select the best features which satisfy the best selection rate and

also using fuzzy logic with combination for comparing and producing the

nearest classes to test texture images from training texture images.

3.2 FTCS Structure

Texture classification assigns a given texture to some texture classes.

Supervised classification is providing an example for each texture class as

a training set. There are two phases to do classification process:

Chapter Three System Development and Implementation

 40

• Learning phase (offline phase), the target is to build a model for the

texture content of each texture class presented in the training data,

which generally comprises of images with known class labels. The

texture content of the training images is captured with the chosen

texture analysis method, which yields a set of textural features for

each image. These features, could be scalar numbers, discrete

histograms or empirical distributions, characterize a given textural

properties of the images, such as spatial structure, contrast,

roughness, orientation, etc. Figure (3.1) shows the basic modules for

learning phase diagram.

• Classification phase (online phase), the texture content of the

unknown image is first described with the same texture analysis

method applied in the learning phase. Then the textural features of

the image are compared with those of the training images using

classification algorithm and the image is assigned to the category

with the best match. Figure (3.2) shows the basic module for

classification phase diagram.

Figure (3.1): Learning Phase.

Input Training
Images Preprocessing

Feature Extraction
Using Statistical

Approach

Feature Selection
Using Fuzzy Logic

Store the best
features in a

SFeat file

Chapter Three System Development and Implementation

 41

3.3 Image Preprocessing
The input to this step is an image of bitmap (BMP) type (24 bit/pixel)

and the output are quantized gray samples. This stage contains a set of

modules. Figure(3.3) shows the basic modules for preprocessing step.

Scanners are capable of producing image representation in a variety

of formats. One of the most popular of these formats is the bitmap (BMP)

format. The bitmap bits are the set of bits define the image. In the 2-color,

16-color, and 256-color BMP formats, BMP files consist of three parts.

These three parts are header (provides essential information about the

image such as image-width, image-height, number of bit/pixel, and a

pointer to the beginning of the image-data), color palette (represent the

intensities in Red, Green, and Blue (RGB)), and image-data (each entry in

the bitmap is an index to the color table). In 16.7 million-color bitmap,

where no color table, each entry in image-data is directly specifies a color;

Input Testing
Images Preprocessing

Feature Extraction
Using Statistical

Approach

Classification based on the
Selected Feature Using Fuzzy

Logic
Matched Class

Figure (3.2): Classification Phase.

Samples

Image Reading Image color Conversion Image Quantization

Image sampling

Figure (3.3): Preprocessing Stage.

Chapter Three System Development and Implementation

 42

the 3-bytes in each 24-bit entry specify the pixel colors red, green and

blue component.

The BMP bits that represent a single line are stored in left-to-right,

the same way that the pixels they represent line up on the screen. The first

row pixel data in the bitmap responds to the bottom row of pixels on the

screen, the second row corresponds the row of pixels second from the

bottom, and so on.

• Image Reading module: Extracting required information from image

file (image-width, image-height, and the image-data). In this module

the color image will split into Red, Green, and Blue components as

illustrated in algorithm(3.1), and pass these components and these

information to the next modules.

Algorithm (3.1): Read BMP Image
Input:

Img_data // the image file name
Output:

Wid , Higt //The image's width and height
Red(0 to Wid-1, 0 to Higt-1)// Red component of image
Grn(0 to Wid-1, 0 to Higt-1)// Green component of image
Blu (0 to Wid-1, 0 to Higt-1)// Blue components of image

Goal:
Read 24 bit/pixel BMP image file

Step1:
Get from Img_data the Bmph //Bmph is contain the BMP header

information
Get from Bmph the Width and Height for the image
Set Wid← Bmph. Width
Set Higt← Bmph. Height

Continue

Chapter Three System Development and Implementation

 43

• Image Color Conversion module: This module concerned with

converting the color image of 24 bit/pixel to gray image of 256

color, as illustrated in algorithm(3.2), and pass the gray image to the

next modules.

Algorithm (3.2): Convert BMP Image to Gray Image
Input:

Wid , Higt
Red (0 to Wid-1, 0 to Higt-1)
Grn (0 to Wid-1, 0 to Higt-1)
Blu (0 to Wid-1, 0 to Higt-1)

Output:
Gry (0 to Wid-1, 0 to Higt-1) //Gray component of the image

Goal:
Convert the color image to gray image

Step1:
 For X=0 to Wid–1

For Y=0 to Higt–1
Set Gry(X, Y) ← (Red(X,Y)+Grn(X,Y)+Blu(X,Y))/3

End loop Y
End loop X

Step2:
Return (Gry)

Step2:
Check if the input image has pixel resolution 24
If Bmph. BitPlane = 24 Then

Set W← Wid* Bmph.BitPlane+31 mod 32
Img(W–1) // Img contain the raw image's data
For X=0 to Wid–1

Img(W–1) ← Get from Img_data file ,
For Y=0 to Higt–1

Set Red(X,Y) ← Img(3*X)
Set Grn(X,Y) ← Img(3*X+1)
Set Blu(X,Y) ← Img(3*X+2)

End loop Y
End loop X

Else
Displays massage "The Selected Image's Bitplane is not 24 "

End if
Step3:

Return (Red, Grn, Blu, Wid, Higt)

Chapter Three System Development and Implementation

 44

• Image Quantization Module: The main drawback in using the Co-

occurrence and Run Length matrices is the large memory

requirement for storing these matrices. Quantization process

overcomes this problem by removing some of the information details

by mapping groups of data points to a single point. For this reason

image quantization process is adopted in this work. As a first step in

the quantization operation a lookup table is established, this table is

used to convert each gray pixel value from range (0 to 255) to the

range (0 to GLevel-1), where GLevel is the number of quantized

levels the image will re-quantized to. This lookup table is established

once, so that each pixel is mapped into its corresponding

quantization value directly without need to recalculate the same re-

quantization equation.

The re-quantization mapping process was performed in different

ways, they are:

§ General Equation: Where assuming the image has maximum value

is 255 and minimum value is 0.

255

I*1)-(GlevelLookup(I) 





= Integer ………. (3.1)

where I = 0, 1, 2, ……., 255.

§ Using traditional (Min-Max): Where Min represents the minimum

value in the image and Max is the maximum value.

 







−
= Min)-(I*1)-(GlevelLookup(I)

MinMax
Integer ………. (3.2)

§ Mean and Stander deviation: Where Mean is the Mean value and

STD is the stander deviation value.

HightWidth

yxGry
Mean

Wid

x

Higt

y

*

),(
1

0

1

0
∑ ∑

−

=

−

== ……….. (3.3)

Chapter Three System Development and Implementation

 45

()

HightWidth

MeanyxGry
STD

Wid

x

Higt

y

*

),(
1

0

1

0

2∑ ∑
−

=

−

=

−
= ………. (3.4)

STDMeanMin *α−= ……….. (3.5)

STDMeanMax *α+= ……….. (3.6)

where α is the ratio of the distance from the Mean in terms of STD,

and it has values lay within the range [2, 3].

Then the equation (3.2) will be used to compute lookup table.

§ Histogram equalization: The histogram of an image represents the

frequency of occurrence of various gray levels in the image.

Histogram equalization is a technique used for adjusting the

distribution of the gray scale of an image; such that the new gray

level histogram of the mapped image is nearly uniform [Ach05].

The core equation of the applied non-linear quantization based on

histogram equalization technique is:

 Pr(I)*1)-(GlevelLookup(I) = ……….. (3.7)

where, Pr is the accumulated probability of the gray level (I), and it

is computed according to the following equation:

∑
=

+−= 255

0

)J(

)I()1IPr()IPr(

J

His

His .…… (3.8)

Algorithm (3.3) shows the calculation steps for lookup table

and algorithm (3.4) shows the quantization steps.

Chapter Three System Development and Implementation

 46

 Algorithm (3.3): Lookup Table
Input:

MappingType // Mapping type for quantization
GLevel // Gray Level the image will quantized into
Wid, Higt

Output:
 Lookup (0 to 255)
Goal:

Generate lookup table to convert pixels range from 0-255 into
 0- GLevel-1

Step1:
Case MappingType

1: // General Equation
For I=0 to 255 do

Set Lookup(I) ← Integer((GLevel-1)×I / 255)
End Loop I

2: // Traditional Max and Min Values
Find Min and Max values in the image
For I=0 to 255 do

If I< Min Then
Set Lookup (I) ← 0

If I>Max Then
Set Lookup (I) ←255

Else
Set Lookup(I) ← Integer((Glevel-1)/(Max-Min)) × (I-Min)

End Loop I
For I=0 to 255 do

 If Lookup(I) > Glevel-1 Then
Set Lookup(I) ←Glevel-1

End Loop I
3: // Mean and STD Values
 Compute Mean by using equation (3.3)

Compute STD by using equation (3.4)
Compute Min and Max by using Mean and STD
Set Min←Mean-2×STD
Set Max ←Mean+2×STD
If Min < 0 Then

Min = 0
If Max > 255 Then

Max = 255
For I=0 to 255 do

If I< Min Then
Set Lookup (I) ← 0

If I>Max Then
Set Lookup (I) ←255

Else
Set Lookup(I) ← Integer((Glevel-1)/(Max-Min)) × (I-Min)

End Loop I
 Continue

Chapter Three System Development and Implementation

 47

• Image Sampling Modules: The quantized image will be divided

randomly into small sub-images (of size SLen×SLen) to increase the

amount of data for each image which increase the discrimination

between images, where SLen must be greater than 0 and less than

width and height of the image. Algorithm (3.5) shows the basic steps

for sampling process.

Algorithm (3.4): Quantize Gry Image
Input:
 Wid, Higt, GLevel
 Lookup (0 to 255)

Gry (0 to Wid-1, 0 to Higt-1)
Output:

QuantImg (0 to Wid-1, 0 to Higt-1)
Goal:

Quantize the gray image of 256 level for reduce the dimensionality

Step1:

Generate Lookup table by Call Algorithm(3.3)
For X=0 to Wid–1

For Y=0 to Higt–1
Set QuantImg(X,Y) ← Lookup(Gry(X,Y))

End loop Y
End loop X

Step2:
Return (QuantImg)

For I=0 to 255 do
 If Lookup(I) > Glevel-1 Then

Set Lookup(I) ←Glevel-1
End Loop I

4: // Using Histogram Equalization
Find histogram for image His(0 to 255)
Find summation for histogram Sum
Find Probability for each pixel value Pr (0 to 255)
Set Pr (0) ← His (0)/Sum
For I=1 to 255 do

Set Pr (I) ← His (I)/Sum
Set Pr (I) ← Pr (I) + Pr (I–1)
Set Lookup(I) ← (GLevel-1) * Pr (I)

End Loop I
End Case

Step2:
Return (Lookup)

Chapter Three System Development and Implementation

 48

3.4 Features Extraction
The goal of image analysis is to extract useful data for solving

application based problem. This is done by intelligently reducing the

amount of image data with the tools have explored. A feature vector is

one method to represent an image, or part of an image object, by finding

measurements on a set of features. The statistical features is one of the

most important features that is used to evaluate the performance of

co-occurrence matrices and run length matrices for solving texture

classification problem, thus, statistical features are adopted in this work.

The texture feature extraction is applied for each sample get from

gray image. The computation of the statistical features can be

summarized by the following two modules:

Algorithm (3.5): Get_Sample
Input:

Wid, Higt, SLen
 QuantImg (0 to SLen-1,0 to SLen-1)
Output:

Sample (0 to SLen-1,0 to SLen-1)
Goal:

Get sample from image

Step1:
Randomly select the starting point of the sample by Rnd function
Set Xs← (Wid–SLen)*Rnd
Set Ys← (Higt–SLen)*Rnd //Rnd return randomly value between 0 and 1

Step2:
Set the values of the sample from the array of QuantImg

For X=0 to SLen–1
For Y=0 to SLen–1

Set Sample(X,Y) ← QuantImg(Xs+X,Ys+Y)
End loop Y

End loop X
Step3:

Return (Sample)

Chapter Three System Development and Implementation

 49

• Module-1: For each sample the co-occurrence matrix C is extracted

in a four direction and the total for these directions, the co-

occurrence matrix is a two dimensional matrix of joint probability

C(I,J) between pairs of pixels separated by a distance d in a given

direction. Twenty one statistical texture features are calculated

depending on the extracted co-occurrence matrix C. These 21

statistical texture features which are computed in this work are:

Energy, Contrast, Correlation, Variance, InvDifMom, Entropy,

SumAvg, SumEnt, SumVar, DifVar, DifEnt, InfMeasCor1,

InfMeasCor2, MaxProb, DifMom of order 1, 2, 3, and 4,

Homogeneity, ClusterShade, ClusterProm. These statistical features

are defined in equations from (2.6) to (2.23). Algorithm (3.6)

illustrates the steps to calculate the co-occurrence matrices for a

given direction (theta), where theta represents the directions 0, 45,

90, and 135. The vectors of features for the four directions and for

the average are saved in a dedicated file, called "CocFeatures", to be

used later.

Algorithm (3.6): Compute Co_occurrence Matrix
Input:

SLen
d // distance between neighbor pixels
theta // direction angle
GLevel
Sample (0 to SLen,0 to SLen)

Output:
C(0 to GLevel–1, 0 to GLevel–1)

Goal:
Compute gray-level co-occurrence matrix for each sample

Step1:
//Calculate the array of the co_occurrence matrix
Reset TotNo
Case theta

0://Horizontal
For Y =0 to SLen-1 do

For X=0 to SLen–d-1 do
Continue

Chapter Three System Development and Implementation

 50

Set I ← Sample(X, Y)
Set J ← Sample(X + d, Y)
Increment C(I, J) and C(J, I) by 1
Increment TotNo by 2

End loop X
End loop Y

45://Diagonal
For Y= 0 to SLen –d-1 do

For X=0 to SLen –d-1 do
Set I ← Sample(X, Y)
Set J ← Sample(X + d, Y + d)
Increment C(I, J) and C(J, I) by 1
Increment TotNo by 2

End loop X
End loop Y

 90://Vertical
For Y=0 to SLen – d-1 do

For X=0 to SLen-1 do
Set I ← Sample(X, Y)
Set J ← Sample(X, Y + d)
Increment C(I, J) and C(J, I) by 1
Increment TotNo by 2

End loop X
End loop Y

135://Sub–Diagonal
For Y=0 to SLen –d-1 do

For X=d to SLen-1 do
Set I ← Sample(X, Y)
Set J ← Sample(X – d, Y + d)
Increment C(I, J) and C(J, I) by 1
Increment TotNo by 2

End loop X
End loop Y

End Case

Step2:

 Normalize the co_occurrence matrix to convert it to probability
 For X=0 to GLevel–1
 For Y=0 to GLevel–1
 Set C(X, Y) ← C(X, Y) / TotNo
 End loop Y
 End loop X
Step3:
 Return (C)

Chapter Three System Development and Implementation

 51

• Module2: For each sample the run length matrix RL is extracted in a

four direction and the total for these directions; 11 statistical texture

features are calculated depending on the extracted run length matrix

RL. These 11 statistical texture features which are computed in this

work are: SRE, LRE, GLD, RLD, RP, LGRE, HGRE, SRLGE,

SRHGE, LRLGE, and LRHGE. These statistical features are defined

in equations from (2.25) to (2.35). Algorithm (3.7) illustrates the

steps to calculate the run length matrices for a given theta, where

theta represents the directions 0, 45, 90, and 135. The vectors of

features for the four directions and for the average are saved in a

dedicated file, called "RlFeatures", to be used later.

Algorithm (3.7): Compute Run Length Matrix

Input:

SLen
theta // direction angle
GLevel
Sample (0 to SLen,0 to SLen)

Output:
RL (1 to SampleLen, 0 to GLevel–1)

Goal:
Compute gray-level run length matrix for each sample

Step1:

//Calculate the array of the run length matrix
Reset Length
Case theta

0://Horizontal
For Y =0 to SLen-1 do

For X =0 to SLen-1 do
 If Sample(X , Y) = Sample(X + 1, Y) Then

 Increment Length by 1
 Else

 Increment RL (Length, Sample(X,Y)) by 1
 Reset Length

 End If
 End loop X

End loop Y
 Continue

Chapter Three System Development and Implementation

 52

 45://Diagonal
For Y =0 to SLen-1 do

For X=0 to SLen-1 do
 If Sample(X, Y) = Sample(X + 1, Y + 1) Then

 Increment Length by 1
 Else

 Increment RL (Length, Sample(X,Y)) by 1
Reset Length

End If
End loop X

End loop Y
90://Vertical

For Y =0 to SLen – 1 do
For X=0 to SLen-1 do

 If Sample(X, Y)= Sample(X , Y+1) Then
 Increment Length by 1

 Else
 Increment RL (Length, Sample(X,Y)) by 1
 Reset Length

End If
End loop X

End loop Y
135://Sub–Diagonal

For Y=0 to SLen –d do
For X=d to SLen do

If Sample(X, Y) = Sample(X – 1, Y + 1) Then
Increment Length by 1

 Else
Increment RL (Length, Sample(X,Y)) by 1
Reset Length

End If
End loop X

End loop Y
Step2:

Return (RL)

Chapter Three System Development and Implementation

 53

Algorithm (3.8): Image Features Extraction

Input:
Img_data // Image file
NofSample// Number of sample

Output:
CocFeature file //Store Co_occurrence feature for all blocks
RLFeature file//Store Run Length feature for all blocks

Goal:
Extract Features for all samples and stored in a file

Step1: Read BMP file (Color image of 24 bit/pixel). //Call Algorithm (3.1)

Step2: Convert Color image to Gray image. //Call Algorithm (3.2)

Step3: Apply Quantization method on the Gray image. //Call Algorithm (3.4)

Step4: if NofSample <> 0 then Get_Sample //Call Algorithm (3.5)

 Else goto Step11

Step5: Calculate the Co_occurrence matrix for four angles and for the average of

these angles and normalize it. In this process five matrices are

extracted.//Call Algorithm (3.6)

Step6: Extract features for the five Co_occurrence matrices.//Using Equations from

(2.6) to (2.23)

Step7: Calculate the Run Length matrix for four angles and for the average of these

angles. In this process five matrices are extracted.//Call Algorithm (3.7)

Step8: Extract features for the five Run Length matrices.//Using Equations from

(2.25) to (2.35)

Step9: Store the features extracted from Co_occurrence matrices in the

"CocFeature" file and Store the features extracted from Run Length

matrices in the "RLFeature" file

Step10: decrement NofSample by 1 and goto Step4

Step 11: Exit

Algorithm (3.8) illustrates the basic steps for image preprocessing and

extracting features steps for any image (Training Image or Testing

Image).

Chapter Three System Development and Implementation

 54

3.5 Fuzzification Process
Before the fuzzification process is done, extracted features are both

normalized and quantized. This step is required to unify the dynamic

ranges of the extracted features.

The applied normalization process maps the extracted feature's

values to the range [0, 1]. This was performed by finding the actual

dynamic range (i.e., the highest and lowest values) [fmin, fmax] of each

feature over all classes, taken into consideration that there are many

samples in each class. The normalization of feature (f) is performed using

the following equation:

minmax

min

ff
ff

fnorm −
−

=

The uniform quantization process is used to map the normalized real

values of the features to discrete integer indices, whose values lay within

the range [0, Nbin-1], where Nbin is the number of quantization bins.

This was performed by steps declared in algorithm (3.9). The quantized

features are saved in a dedicated file, called "QFeatures", to be used later.

Algorithm (3.9): Normalize and Quantize Texture Features
Input:

Nbin // Represent number of bins in the histogram
NofClass//Represent number of training classes
NofSample//Represent number of samples in each class
NofFeat// Represent number of extracted features

Output:
QFeatures file

Goal:
 Normalize and quantize all extracted texture features

Continue

Chapter Three System Development and Implementation

 55

Fuzzification is the operation of transforming a crisp set to fuzzy set,

so each extracted feature is represented by a membership function. Two

types of membership functions have been used, they are: triangular and

trapezoidal. The fuzzification module is concerned with finding the

parameters of the best triangular or trapezoidal membership function that

fits the Probability Density Function (pdf) of each feature in each class.

Before the near optimal membership functions are computed, the

histogram of each feature must be computed for each class as shown in

algorithm (3.10). The corresponding probability density function (pdf) is

Step1:
Read the Co_occurrence or Run Length features and store in array
F(0 to NofClass–1,0 to NofSample–1,0 to NofFeat–1)

Step2:
Find Max and Min Values for each feature for all samples in all classes

 Max (0 to NofFeat–1), Min (0 to NofFeat–1)
For K = 0 To NofFeat–1

Set Max (K) ←F (0, 0, K)
Set Min (K) ←F (0, 0, K)
For I = 0 To NofClass–1

For J = 0 To NofSample–1
If F (I, J, K) < Min (K) Then
 Set Min (K) ←F (I, J, K)
If F (I, J, K) > Max (K) Then
 Set Max (K) ←F (I, J, K)

End loop J
End loop I

End loop K
Step3:

Normalize and Quantize features
QuantFeat (0 to NofClass-1, 0 to NofSample-1, 0 to NofFeat-1)
For I = 0 To ClassNo–1

For K = 0 To FeatNo–1
Set M ← Max(K) – Min(K)
For J = 0 To SampleNo–1

Set F(I, J, K) ← (F(I, J, K) – Min(K))/M //Normalize Feature
Set QuantFeat(I, J, K) ← Int((Nbin–1) * F(I, J, K)) //Quantize Feature

End loop J
End loop K

End loop I
Step4:

Save array (QuantFeat) in the file QFeatures

Chapter Three System Development and Implementation

 56

computed from the histogram, and then it is used to find the optimum

values of the membership function parameters (i.e. A, B and C values for

the triangular membership function and the A, B, C and D values for the

trapezoidal membership function) by using distance measure " 2χ ".

The distance measure " 2χ " was used to find the minimum distance

between pdf bin values and the corresponding membership values. 2χ

Distance measure is computed as follows:

∑
−

=

−=
1

0

2)()(
NBin

i
iMembershipiPdfχ …………. (3.1)

The parameters of membership functions that led the minimum sum

of absolute differences (i.e., χ2) have been considered as the optimal

values.

Algorithm (3.11) shows the implemented taken to calculate the

parameters of the triangular membership functions; algorithm (3.12)

shows how to compute the triangular membership value for a specific

feature value, algorithm (3.13) shows the implemented taken to calculate

the parameters of the trapezoidal membership functions, and algorithm

(3.14) shows how to compute the trapezoidal membership value for a

specific feature value.

 Algorithm (3.10): Compute Normalize Histogram for Quantize
features

Input:
Nbin , NofSample
I // Class number
K // Feature number
QuantFeat(0 to ClassNo–1,0 to SampleNo–1,0 to FeatNo–1)

Output:
NHist file //Normalize histogram values

Goal:
Compute histogram for each feature in each class.

Continue

Chapter Three System Development and Implementation

 57

Algorithm (3.11): Compute Best Triangular Parameters
Input:

Nbin, NormHist
Output:

TrianMem file //Contain A, B, C, MinG for each feature in each class
Goal:

Find best triangular A, B and C parameters values for each feature histogram
which lead to minimum χ2.

Step1:
Find the best matched triangular membership function for histogram
For A1 = 0 To Nbin – 3

For B1 = A1 + 1 To Nbin – 2
For C1 = B1 + 1 To Nbin – 1

Reset G
For I = 0 To Nbin – 1

Call Algorithm(3.12)//to produce membership value(Mem) for I
in the A1,B1,C1 curve

Set G ←G + Abs (NormHist(I) – Mem)
End loop I
If G < MinG Then

Set MinG ← G, Set A ← A1, Set B ← B1, C ← C1
End loop C1

End loop B1
End loop A1

Step2:
Save in the TrianMem file (A,B,C,MinG)

Step1:
//Find histogram for all samples for Feature J in Class I
Hist (0 to Nbin–1)
For K=0 to NofSample do

Increment Hist(QuantFeat (I, J, K)) by 1
End loop K

Step2:
//Find Maximum value in the histogram
Set MaxHist ← the maximum value in the histogram

Step3:
//Normalize Histogram
NormHist (0 to Nbin–1)
For J=0 to Nbin do

Set NormHist (J) ←Hist(J)/MaxHist
End loop J

Step4:
Save array (NormHist) in the file NHist

Chapter Three System Development and Implementation

 58

Algorithm (3.13): Compute Best Trapezoidal Parameters
Input:

Nbin
NormHist(0 to Nbin–1)

Output:
TrapMem file //Contain A, B, C, D, MinG for each feature in each class

Goal:
Find best trapezoidal A, B, C and D parameters values for each feature histogram
which lead to minimum χ2.

Step1:
Find the best matched trapezoidal membership function for histogram
For A1 = 0 To Nbin – 4

For B1 = A1 + 1 To Nbin –3
For C1 = B1 + 1 To Nbin – 2

For D1=C1+1 To Nbin – 1
Reset G
For I = 0 To Nbin – 1

Call Algorithm(3.14)//to produce membership value(Mem)
for I in the A1,B1,C1,D1 curve

Set G ←G + Abs (NormHist(I) – Mem)
End loop I
If G < MinG Then

Set MinG←G
Set A← A1, Set B ←B1, Set C← C1, Set D← D1

End loop D1
End loop C1

End loop B1
End loop A1

Step2:
Save in the TrapMem file(A,B,C,D,MinG)

Algorithm (3.12): Compute Triangular Membership
Input:

I // histogram bin
A1,B1,C1 //boundary for traingular

Output:
Mem

Goal:
 Compute triangular membership function.

Step1:

//Calculate the triangular membership function
If I <= A1 Or I >= C1 Then Set Mem ← 0
If A1 < I and I <= B1 Then Set Mem ← (I – A1) / (B1 – A1)
If B1 <= I and I < C1 Then Set Mem ← (C1 – I) / (C1 – B1)

Step2:
Return (Mem)

Chapter Three System Development and Implementation

 59

3.6 Feature Selection:
Finding a specific features vector that has the best discrimination

power has been one of the most important problems in the field of texture

analysis and image classification. In practice a larger than necessary

number of feature candidates is generated and then the best of them is

adopted.

In this work, fuzzy logic is used to select the best features by

converting the texture features to fuzzy numbers as illustrated in

algorithm (3.15) which compute the membership values for each feature

in all classes, and find the best features vector by calculating the success

rate for each feature. The computation of success rate is done according

to the following criteria: if the extracted feature from a class has highest

membership value in that class relative to other classes, then the value of

success rate of that feature is incremented by 1, as shown in algorithm

(3.16). The steps taken to select the good features are shown in algorithm

(3.17) which depends on the values for the success rates.

Algorithm (3.14): Compute Trapezoidal Membership
Input:

I //histogram bin
A1,B1,C1,D1

Output:
Mem

Goal:
Compute trapezoidal membership function.

Step1:
Calculate the trapezoidal membership function
If I <= A1 or I >= D1 Then Set Mem ← 0
If B1 < I and I <= C1 Then Set Mem ← 1
If A1 <= I and I < B1 Then Set Mem ← (I – A1) / (B1 – A1)
If C1 < I and I <= D1 Then Set Mem ← (D1 – I) / (D1 – C1)

Step2:

Chapter Three System Development and Implementation

 60

Algorithm (3.15): Compute Membership for each Quantize Feature
in each Class

Input:
NofClass
NofSample
NofFeat

Output:
FMem file//contain the membership for each feature in all classes

Goal:
Calculate membership values for each quantized feature in all classes

Step1:
FeatMem (0 to ClassNo-1,0 to SampleNo-1,0 to FeatNo-1,0 to ClassNo-1)
For I = 0 To NofClass-1

For J = 0 To NofSample-1
For K = 0 To NofFeat-1

Read from file "QFeatures" Fq for feature K in sample J in class I
For I1 = 0 To NofClass-1

If Select Triangular Fuzzy Number Then
Read from TrianMem file A,B,C for Feature K in Class I1
Call Algorithm (3.12) //to produce membership value

(FeatMem(I,J,K,I1)) for Fq in the A,B,C
curve

If Select Trapezoidal Fuzzy Number Then
Read from TrapMem file A,B,C,D for Feature K in Class I1
Call Algorithm (3.14) //to produce membership value

(FeatMem(I,J,K,I1)) for Fq in the
A,B,C,D curve

End loop I1
End loop K

End loop J
End loop I

Step2:
Save in the FMem file the array (FeatMem)

Chapter Three System Development and Implementation

 61

Algorithm (3.16): Compute Success Rate for each Feature
Input:

NofClass
NofSample
NofFeat

Output:
TSuccRate file// Success Rate for each feature

Goal:
Compute success rate for each feature

Step1:

Read from the file membership for each feature in all classes
FeatMem(0 to ClassNo-1,0 to SampleNo-1,0 to FeatNo-1,0 to ClassNo-1)
Set FeatMem ← Read from FMem file

Step2:
 compute success rate for each feature in each class

SuccessRate(0 to FeatNo-1, 0 to ClassNo-1)
For I = 0 To NofClass-1

For J = 0 To NofSample-1
For K = 0 To NofFeat-1

Set MaxMemFunc ← FeatMem(I, J, K, 0)
Set Index ← 0
For I1 = 1 To NofClass-1

If MaxMemFunc < FeatMem(I, J, K, I1) Then
Set MaxMemFunc ←FeatMem(I, J, K, I1)
Set Index = I1

End If
End I1

If Index = I Then
 Increment SuccessRate(K, I) by 1

End loop K
End loop J

End loop I
Step3:

Compute Total Success Rate for each feature in all Classes
TotalSuccRate(0 to FeatNo-1)
For I = 0 To NofClass-1

For K = 0 To NofFeat-1
Set TotalSuccRate(K) ←TotalSuccRate(K) + SuccessRate(K, I)

End K
End I

Step4:
save in the file the success rate for each feature
Save in the file TSuccRate the array(TotalSuccRate)

Chapter Three System Development and Implementation

 62

Algorithm (3.17): Feature Selection
Input:

Nbin
NofClass
NofSample
NofFeat
Feature Name //either co_occurrence or run length feature

Output:
SFeat file//store the best features in this file

Goal:
 Select the best features

Step1: //either read the co_occurrence feature or run length feature

If Feature = "Co_occurrence" then goto Step2 Else goto Step3
Step2: //Find Normalize and Quantize Co_occurrence Features

Normalize and Quantize Texture Features (CocFeature) Call Algorithm(3.9)
goto Step4

Step3: //Find Normalize and Quantize Run Length Features
Normalize and Quantize Texture Features (RLFeature) Call Algorithm(3.9)

Step4: //Compute Normalize Histogram for Quantize features
Read from file "QFeatures" the features and find histogram for each feature in
each class then normalize histogram by Call Algorithm (3.10)

Step5: //Find the best shape which fit to normalize histogram for all features in each
class

Specify Fuzzy Number Shape
If Triangular then

Find the best triangular which fit to normalize histogram
By Call Algorithm(3.11)

If Trapezoidal then
Find the best trapezoidal which fit to normalize histogram
By Call Algorithm(3.13)

Step6: // Compute Membership for each Quantize features in each class
Call Algorithm(3.15) to compute membeaship values

Step5: //Compute Success Rate for each feature in all classes
Call Algorithm(3.16) which produce TotalSuuRate.

Step6: //Select the best feature depend on the value of TotalSuccRate
 Search for the features which has high TotalSuccRate values and select it

Step7:
Store the best features (selected) in the SFeat file

Step8: Exit

Chapter Three System Development and Implementation

 63

3.7 Classification:
In this process, the classifier is trained to determine the class for each

input image based on the obtained measures of the selected features. In

this case, a classifier is a function which takes the selected features as

input and texture classes as output by using fuzzy logic. To find the

match class, first the features is extracted for tested image, compute

membership values for each feature in each training class (i.e. using the

same parameters for training classes (A, B, C for triangular and A, B, C,

D for trapezoidal)), as illustrated in algorithm (3.18), then search for the

class which achieve higher membership value for each selected feature

and increase the success rates for that class by 1, as illustrated in

algorithm (3.19), finally search for the match class which has high

success rate. The whole steps for classification process illustrated in

algorithm (3.20).

Algorithm (3.18): Compute Membership for Testing Image
Input:

NofClass
NofSample
NofFeat

Output:
FMemT file // store the membership for test class in each training class

Goal:
 Compute Membership for Testing Image in each Training Class

Step1:

FeatMem (0 to SampleNo-1,0 to FeatNo-1,0 to ClassNo-1)
For J=0 to NofSample-1 do

For K =0 to NofFeat-1 do
Read from file Fq for Sample J in the testing class

 For I1=0 to NofClass-1 do
If Select Triangular Fuzzy Number Then

 Read from TrianMem file A,B,C for Feature K in the Class I1
 Compute membership for each feature Fq in the A,B,C curve by
 Call Algorithm(3.11) and store in (FeatMem(I,J,K,I1))

Continue

Chapter Three System Development and Implementation

 64

Algorithm (3.19): Find the nearest Class
Input:

NofClass
NofSample
NofSFeat//Number of selected features

Output:
ClassType
SFeat(0 to NofSFeat-1)//array of selected Features

Goal:
Search for the class which has high success rate which represent the class type for

the test image.

Step1:

SuccessRate(0 to NofSFeat -1, 0 to NofClass-1)
FeatMem(0 to NofSample-1,0 to NofSFeat -1,0 to NofClass-1)
Increment the content of SuccessRate (K,M) by 1 if feature K has the highest
membership in the Class M
FeatMem← Get from FMemT file
NofSFeat ← Get from SFeat file the number of selected features
For K = 0 To NofSFeat - 1

For J = 0 To NofSample-1
For M = 0 To NofClass-1

If (M = 0) Or (M > 0 And FeatMem(J, SFeat(K), M) > Max) Then
Set Max ← FeatMem(J, SFeat(K))
Set Idx ← M

End loop M
Increment SuccessRate(K, Idx) by 1

End loop J
End loop K

Step2:
Compute the success rate for all features to each class
TotalSuccRate(0 to ClassNo-1)
 For I = 0 To ClassNo-1

For K = 0 To SFeatNo-1
Set TotalSuccRate(I) ← TotalSuccRate(I) + SuccRate(K, I)

End loop K
End loop I

Step3:
 Return (TotalSuccRate)

If Select Trapezoidal Fuzzy Number Then
 Read from file A,B,C,D for Feature K in the Class I1

 Compute membership for each feature Fq in the A,B,C curve by
 Call Algorithm(3.13) and store in (FeatMem(I,J,K,I1))

 End loop I1
End loop K

End loop J
Step2:

 Save FeatMem array in the FMemT file

Chapter Three System Development and Implementation

 65

3.8 Features combinations:
To enhance the performance of the system for selection and

classification process, the system will include the combination between

two or more features by adding membership values for these features, and

then re-determines the success rates for these combined features, and

finding the best combined set of features based on success rates to be

Algorithm (3.20): Classification Process
Input:

Nbin
ClassNo
SampleNo
FeatNo
Feature Name //either co_occurrence or run length feature

Output:
SFeat file//store the best features in this file

Goal:
Find class type for test image

Step1:
//either read the co_occurrence feature or run length feature
If Feature = "Co_occurrence" then goto Step2 Else goto Step3

Step2:
//Find Normalize and Quantize Co_occurrence Features
Normalize and Quantize Texture Features (CocFeature) and Store in
(QFeatTest) file by Call Algorithm(3.9)
goto Step4

Step3:
//Find Normalize and Quantize Run Length Features
Normalize and Quantize Texture Features (RLFeature) and Store in
(QFeatTest) file by Call Algorithm(3.9)

Step4:
// Compute Membership for each Quantize features in each class
Call Algorithm(3.18) to compute membeaship values

Step5:
//Compute Success Rate for all features in each classes
Call Algorithm(3.19) which produce TotalSuccRate.

Step6:
//Search for the Class which has the highest TotalSuccRate value toFind which
class the test image belong to

 Max = TotalSucc(0): ClassType = 0
For I = 1 To ClassNo-1

 If TotalSuccRate(I) > Max Then Set ClassType ← I
End loop I

Step7:
Return (ClassType)

Chapter Three System Development and Implementation

 66

used in selection and classification process. Various combinations of two,

three, and four features have been investigated. Algorithm (3.21) shows

the steps taken to find out the success rates for combination between two

features. Other (bigger) combinations have been applied in similar way.

The same way is applied in classification by comparing the combined

features to find the class type.

Algorithm (3.21): Combination between two features
Input:

NofClass, NofSample, NofFeat
Output:

TSuccRateComb file// Success Rate for each feature
Goal:

Compute success rate for combined feature

Step1:

Read from the file membership for each feature in all classes
FeatMem(0 to NofClass-1,0 to NofSample-1,0 to NofFeat-1,0 to NofClass-1)
Set FeatMem ← Read from FMem file

Step2:
 Compute success rate for combined features in each class

SuccessRate(0 to FeatNo-1, 0 to FeatNo-1, 0 to ClassNo-1)
For K1 = 0 To NofFeat-2

For K2 = K1 + 1 To NofFeat-1
For I = 0 To NofClass-1

For J = 0 To NofSample-1
For I1 = 1 To NofClass-1

Set Mem←FeatMem(I, J, K1, I1)+FeatMem(I, J, K2, I1)
If (I1=0) or (I1>0 and Mem>MaxMem)Then

Set MaxMem←Mem
 Set Index←I1
 End If

 Next I1
 If Index=I Then Increment SuccRate(K1, K2,I) by 1

End loop J
End loop I

End loop K2
End loop K1

 Continue

Chapter Three System Development and Implementation

 67

 Step3:
Compute Total Success Rate for each feature in all Classes
TotalSuccRate(0 to FeatNo-1, 0 to FeatNo-1)
For I = 0 To NofClass-1
 For K1 = 0 To NofFeat-2
 For K2 = K1 + 1 To NofFeat-1
 TotalSuccRate(K1, K2) = TotalSuccRate(K1, K2) + SuccRate(K1, K2, I)

 End loop K2
 End loop K1
End loop I

Step4:
save in the file the success rate for combined features
Save in the file TSuccRateComb the array(TSuccRateComb)

Chapter Four

Tests

And

Results

Chapter Four Tests and Results

68

Chapter Four

Tests and Results

4.1 Introduction
This chapter is devoted to present and discuss the results of the

conducted tests to study the classification performance of the suggested

FTCS. In section (4.2) system interface is applied, in section (4.3) test

material is applied, and at last section, the overall experiments are given.

The FTCS were established using Visual Basic (version 6.0)

programming language. The tests have been applied using a personal

computer (Pentium 4, processor 1.60 GHz, RAM 1 G-byte).

4.2 FTCS Interface
There are two forms which refer to the two phases of the system.

First one represents the training phase and the second one represents the

testing phase.

4.2.1 Training Form

The Training Form contains many objects which are needed to

accomplish the training phase work, these objects are:

1. Menu bar that contains 2 items (Feature Extraction, Select Features).

2. Many input variables that should be specified to compute features,

these variables are:

• Distance: used to calculate co-occurrence matrix.
• Gray level (Quantize level): used to quantize the gray

image.
• Length of Sample: specified the length of each sample.
• Number of Sample: specified the number of samples.

Chapter Four Tests and Results

69

3. Frame which contains the fuzzy membership functions (Trapezoidal,

Triangular). The function should be specified before fuzzy selection

is computed.

4. Frame which contains mapping type, this should be specified for

lookup table computations.

Figure (4.1) shows the main form of training phase.

At first, the user must select from a list, distance, quantization level,

length of each sample and number of samples. Then specifies the type of

membership function (choose one option from frame1) and specifies the

mapping type used to calculate lookup table (choose one option from

frame2), then the user will start the process of the training phase by using

the Feature Extraction and Select Features operations.

1. Feature Extraction: This item contains two functions, as shown in

figure (4.2), (ComputeCo-occurrence_and_Run-Length_Features,

Exit).

Figure (4.1): Training Form.

Chapter Four Tests and Results

70

• ComputeCo-occurrence_and_Run-Length_Features: when the

user calls this function, the following tasks will be performed:

§ Load the images of 24 bit/pixel for the classes of the systems.

§ According to the specific number of sample with a specific

sample length takes a number of samples from each image.

§ Compute the co-occurrence matrix for each sample and a set

of texture features will be computed from co-occurrence

matrix and stored in CocFeature file.

§ Compute the run length matrix for the same sample and a set

of texture features will be computed from run length matrix

and stored in RLFeature file.

• Exit: when the user calls this function, the program execution

will be stopped.

2. Select Features: This item contains two functions, as shown in

figure (4.3) (BasedOnCooccurrence,BasedOnRunLength).

Figure (4.2): Feature Extraction.

Chapter Four Tests and Results

71

Figure (4.3): Select Features.

• BasedOnCoocurrence: when the user calls this function, the

following tasks will be performed:

§ Take the computed co-occurrence features.

§ Select the best features according to the success rate for the

features.

• BasedOnRunLength: when the user calls this function, the

following tasks will be performed:

§ Take the computed run length features.

§ Select the best features according to the selection rate for the

features.

4.2.2 Testing Form

 The Testing Form contains the menu bar that has two items

(Feature Extraction, Classification), as shown in figure (4.4).

Chapter Four Tests and Results

72

1. Feature Extraction: this item contains two functions, as shown in

figure (4.5) (Co-occurrence_and_Run-Length, Exit).

• Co-occurrence_and_Run-Length: when the user calls this

function, the following tasks will be performed:

§ Load the image of 24 bit/pixel for the test image.

§ According to the same number and length of samples giving in

the training phase, the samples take from test image.

§ Compute the co-occurrence matrix for each sample and a set

of texture features will be computed from this matrix and

stored in a file.

Figure (4.4): Testing Form.

Figure (4.5): Feature Extraction.

Chapter Four Tests and Results

73

§ Compute the run length matrix for each sample and a set of

texture features will be computed from this matrix and stored

in another file.

• Exit: when the user calls this function, the program execution

will be stopped.

2. Classification: This item contains two options, as shown in figure(4.6)

(UsingFuzzyBasedOnCo_ocurrence,

UsingFuzzyBasedOnRun_Length).

• UsingFuzzyBasedOnCo_ocurrence: when the user calls this

function, the following tasks will be performed:

§ Take the computed co-occurrence features.

§ Find the nearest class according to the success rate for the

training class.

• UsingFuzzyBasedOnRun_Length: when the user calls this

function, the following tasks will be performed:

§ Take the computed run length features.

§ Find the nearest class according to the success rate for the

training class.

Figure (4.6): Classification.

Chapter Four Tests and Results

74

4.3 Test Material
In FTCS, 10 textured images are selected to represent 10 different

classes. These classes represent the training images for the system. These

images have size 256×256 pixels with color resolution 24 bit/pixel, as

shown in figure (4.7).

To perform the texture classification testing, 20 textured images are

chosen for soft testing (which means that the test images are taken from

the training images either part of it or rotate it), as shown in figure (4.8)

and 30 textured images are chosen for hard testing, as shown in figure

(4.9). These images have different size with color resolution 24 bit/pixel.

Chapter Four Tests and Results

75

Figure (4.7): Training Images.

 C1 C2 C3

C10

 C4 C5 C6

 C7 C8 C9

Chapter Four Tests and Results

76

 S1 S2 S3 S4

 S5 S6 S7 S8

 S9 S10 S11 S12

 S13 S14 S15 S16

 S17 S18 S19 S20

Figure (4.8): Test Images using in Soft Testing Process.

Chapter Four Tests and Results

77

 H1 H2 H3 H4

 H5 H6 H7 H8

 H9 H10 H11 H12

 H13 H14 H15 H16

 H17 H18 H19 H20

 H21 H22 H23 H24

Chapter Four Tests and Results

78

4.4 FTCS Models Analysis
The analysis includes testing various parameter values, number of

gray levels was varied to be 16, 32 or 64, the distance between pixels for

calculation of co-occurrence matrix was varied to be 1,2, or 3, number of

selected sample was varied to be 100, 200, 500 or 1000, the length of

each samples was varied to be 10, 25, 50, 75 or 100, which mapping type

chose to do quantization also varied to be 1, 2, 3,or 4, and finally

determine the membership types which take either trapezoidal or

triangular. So the variation in the parameters will cause variation in the

results of success rates for the features.

Features computed using co-occurrence and run length matrices are

shown in table (4.1) and table (4.2) respectively, where column 1

represent the name of the features, column 2 to column 5 (Th0, Th45,

Th90, Th135) represent the theta of the direction, and column 6 (Avg)

represent the average for the four direction.

 H25 H26 H27 H28

 H29 H30

Figure (4.9): Test Images using in Hard Testing Process.

Chapter Four Tests and Results

79

Some of the experiment results are applied according to the

parameters mentioned in table (4.3), which declares the cases taken in the

results and the parameters which affect the success rate for features where

column 1 (CaseNo) represents case number, column 2 (Mtype) represents

mapping type, and column 3 (Glevel) represents gray level for

quantization.

Experiments with different parameters values are applied in table

(4.4) to table (4.9), which contain maximum success rate value for

different combinations of features, where column 1 (CaseNo) represent

case number, column 2 (single) represent success rates for features with

out combination, column 2 to column 4 represent success rates for

features with combination (Comb2, Comb3, Comb4), and column

5(Trap/Traing) represent membership function that used in selection

features. All of these tables applied results according to distance 1, but

different distance is given in table (4.10).

Finally, the best features for the images used in figure (4.7) are

obtained from the results for different experiments are shown in table

(4.11) with column 1 (Best CocFeat) for best co-occurrence features and

column 2 (Best RLFeat) for best run length features.

Chapter Four Tests and Results

80

 FeatureName Th0 Th45 Th90 Th135 Avg
Energy F0 F21 F42 F63 F84
Contrast F1 F22 F43 F64 F85
Correlation F2 F23 F44 F65 F86
Variance F3 F24 F45 F66 F87
InvDifMom F4 F25 F46 F67 F88
Entropy F5 F26 F47 F68 F89
SumAvg F6 F27 F48 F69 F90
SumEnt F7 F28 F49 F70 F91
SumVar F8 F29 F50 F71 F92
DifVar F9 F30 F51 F72 F93
DifEnt F10 F31 F52 F73 F94
InfMeasCor1 F11 F32 F53 F74 F95
InfMeasCor2 F12 F33 F54 F75 F96
MaxProb F13 F34 F55 F76 F97
DifMom1 F14 F35 F56 F77 F98
DifMom2 F15 F36 F57 F78 F99
DifMom3 F16 F37 F58 F79 F100
DifMom4 F17 F38 F59 F80 F101
Homog F18 F39 F60 F81 F102
ClusterShade F19 F40 F61 F82 F103
ClusterProm F20 F41 F62 F83 F104

FeatureName Th0 Th45 Th90 Th135 Avg
RP F0 F11 F22 F33 F44
SRE F1 F12 F23 F34 F45
LRE F2 F13 F24 F35 F46
RLD F3 F14 F25 F36 F47
LGRE F4 F15 F26 F37 F48
HGRE F5 F16 F27 F38 F49
GLN F6 F17 F28 F39 F50
SRLGE F7 F18 F29 F40 F51
SRHGE F8 F19 F30 F41 F52
LRLGE F9 F20 F31 F42 F53
LRHGE F10 F21 F32 F43 F54

Table (4.1) The index number of each co-occurrence features

Table (4.2) The index number of each run length features

Chapter Four Tests and Results

81

CaseNo Mtype Glevel

1 1 16
2 2 16
3 3 16
4 4 16
5 1 32
6 2 32
7 3 32
8 4 32
9 1 64
10 2 64
11 3 64
12 4 64

CaseNo Single Comb2 Comb3 Comb4 Trap/Traing
1 51 69 74 76 Traing
1 51 70 74 78 Trap
2 48 64 69 73 Traing
2 46 66 71 75 Trap
3 53 67 72 75 Traing
3 48 68 73 76 Trap
4 44 60 64 66 Traing
4 43 63 67 69 Trap

CaseNo Single Comb2 Comb3 Comb4 Trap/Traing
1 49 60 67 72 Traing
1 48 62 67 71 Trap
2 48 57 62 67 Traing
2 43 57 65 66 Trap
3 47 61 67 67 Traing
3 46 62 68 69 Trap
4 44 57 57 58 Traing
4 40 54 62 64 Trap

Table (4.3) Parameters for specific case

Table (4.4) Success Rates % for different combinations for
Co-occurrence features for 500 samples with length 50

Table (4.5) Success Rates % for different combinations for
Run length features for 500 samples with length 50

Chapter Four Tests and Results

82

CaseNo Single Comb2 Comb3 Comb4 Trap/Traing
1 60 86 89 92 Traing
1 60 86 90 93 Trap
2 60 83 87 89 Traing
2 55 81 89 90 Trap
3 64 83 89 90 Traing
3 59 83 90 92 Trap
4 62 78 82 85 Traing
4 58 77 85 87 Trap
5 60 85 91 94 Traing
5 60 86 92 95 Trap
6 60 85 87 90 Traing
6 56 81 89 92 Trap
7 65 84 90 91 Traing
7 59 79 89 92 Trap
8 64 77 83 85 Traing
8 58 77 83 86 Trap

CaseNo Single Comb2 Comb3 Comb4 Trap/Traing
1 60 76 85 90 Traing
1 60 78 86 91 Trap
2 58 75 82 87 Traing
2 56 79 82 85 Trap
3 59 76 81 86 Traing
3 56 75 83 89 Trap
4 58 73 78 82 Traing
4 59 74 82 83 Trap
5 55 74 80 83 Traing
5 55 74 80 84 Trap
6 55 69 78 81 Traing
6 52 74 78 81 Trap
7 59 76 80 80 Traing
7 57 71 80 85 Trap
8 53 71 75 76 Traing
8 51 68 76 79 Trap

Table (4.6) Success Rates % for different combinations for
Co-occurrence features for 500 samples with length 100

Table (4.7) Success Rates % for different combinations for
Run length features for 500 samples with length 100

Chapter Four Tests and Results

83

CaseNo Single Comb2 Comb3 Comb4 Trap/Traing
1 61 85 89 92 Traing
1 60 86 90 93 Trap
2 61 83 88 90 Traing
2 53 79 88 91 Trap
3 62 84 90 93 Traing
3 60 85 89 92 Trap
4 62 75 82 85 Traing
4 57 75 84 86 Trap
5 62 86 89 91 Traing
5 55 76 80 84 Trap
6 61 83 88 90 Traing
6 54 74 81 83 Trap
7 63 85 88 91 Traing
7 55 74 8 84 Trap
8 64 77 83 85 Traing
8 64 77 83 85 Trap
9 64 86 89 93 Traing
9 58 83 89 92 Trap
10 60 82 86 89 Traing
10 52 80 88 90 Trap
11 62 82 89 93 Traing
11 57 80 90 92 Trap
12 61 78 84 88 Traing
12 57 77 86 81 Trap

Table (4.8) Success Rates % for different combinations for
Co-occurrence features for 1000 samples with length 100

Chapter Four Tests and Results

84

CaseNo Single Comb2 Comb3 Comb4 Trap/Traing
1 59 76 86 90 Traing
1 61 79 87 92 Trap
2 59 78 83 87 Traing
2 55 79 84 87 Trap
3 60 77 82 86 Traing
3 57 76 83 88 Trap
4 46 68 80 82 Traing
4 57 74 82 83 Trap
5 61 75 82 86 Traing
5 56 8 91 92 Trap
6 54 77 80 83 Traing
6 59 79 89 92 Trap
7 60 71 80 83 Traing
7 58 77 84 86 Trap
8 54 7 76 78 Traing
8 50 68 76 80 Trap
9 61 74 79 83 Traing
9 48 70 79 8 Trap
10 55 76 79 83 Traing
10 50 72 78 82 Trap
11 60 74 79 80 Traing
11 53 69 78 78 Trap
12 49 68 75 76 Traing
12 47 66 74 77 Trap

Table (4.9) Success Rates % for different combinations for
Run length features for 1000 samples with length 100

Chapter Four Tests and Results

85

CaseNo distance Single Comb2 Comb3 Comb4 Trap/Traing
1 1 60 86 89 92 Traing
1 2 59 81 87 90 Traing
1 3 55 78 86 88 Traing

Best
CocFeat

Best
RLFeat

F5 F0
F9 F1
F10 F3
F23 F6
F26 F17
F31 F22
F40 F23
F41 F25
F44 F26
F46 F28
F50 F29
F51 F34
F52 F36
F53 F39
F54 F40
F60 F45
F65 F47
F83 F50
F86 F51
F94 F52

Table (4.10) Success Rates % for different combinations for
Co-occurrence features for 500 samples with length 100

Table (4.11) Best co-occurrence
and run length features

Chapter Five

Conclusions

And
Suggestions

For
Future Work

Chapter Five Conclusions and Suggestions for Future Work

 86

Chapter Five

Conclusions and Suggestions for

Future Work

5.1 Introduction
This chapter is devoted to present the derived conclusions concerned

with the performance of the classification methods based on using

statistical features as discriminating attributes. Furthermore, some

suggestions for future work are also presented in this chapter.

5.2 Conclusions
1. The co-occurrence matrices are calculated for the distances 1, 2,

and 3. Best results for these selected images are achieved when

distance between pixels for co-occurrence matrix is 1.

2. Best results are achieved when using general equation techniques

to generate lookup table.

3. The length and number of the samples play an important role for

increasing accuracy for the classification process.

4. Trapezoidal membership yield success rates better than triangular

membership but the difference does not give a high improvement

(93%, 91% respectively).

5. Co-occurrence method yields selection rates better than run length

method (90%, 85% respectively).

Chapter Five Conclusions and Suggestions for Future Work

 87

6. The performance of the system increases when using combination

between features (60% without combination, 75% with

combination two features, 85% with combination three features,

and 90% with combination four features).

7. Performance results nearly 95% for soft testing and 85% for hard

testing.

5.3 Suggestions for Future Work
1. FTCS use image with single texture, so to make the system more

flexible for multi texture the pre step for this system can be added,

which segment an image into regions with the same texture, i.e. as

a complement to grey level or color before classifying it.

2. Using structural attribute in addition to statistical attribute to

increase the recognition accuracy.

3. Combine between fuzzy and neural to increase the performance of

the system.

4. Using different color models to make the system more flexible,

such as HSV (Hue, Saturation and Value) and HSI (Hue,

Saturation and Intensity) which derived from RGB color model.

References

 88

References
1. [Ach05]: T. Acharya and A. K. Ray, "Image Processing: Principles

and Applications", Wiley, 2005.

2. [Ala96]: L. Abdul Aziz Al-Ani, "Classification of Digital Satellite

Images",(Ph.D.) thesis, College of Science, Al-Nahrain University,

Iraq, 1996.

3. [Alb95]: Albregtsen, F., "Statistical Texture Measures Computed

from Gray Level Run Length Matrices", Image Processing

Laboratory, Department of Informatics, Oslo University, 1995.

4. [Ali99]: R. S. Ali, "Image Segmentation Using Fuzzy and Neural

Networks", MSC thesis, College of science, Al-Nahrain

University, Iraq, 1999.

5. [Dua06]: M. G. Duaimi, "Development of a Content-Based Image

Retrieval System", (Ph.D) thesis, College of science, Al-Nahrain

University, 2006.

6. [Dud00]: R. O. Duda, P. E. Hart and D. G. Stork, "Pattern

Classification", 2nd edition, Wiley, 2000.

7. [Fri99]: M. Friedman and A. Kandel, "Introduction to Pattern

Recognition: Statistical, Structural, Neural and Fuzzy Logic

Approaches", World Scientific, 1999.

8. [Gon87]: R. C. Gonzalez and R. E. Gonzalez, "Digital Image

Processing", Addison Wesley Publishing Company, 1987.

9. [Gui88]: J. Guibert, D. C. He and L. Wang, "Texture

Discrimination Based on Optimal Utilization of Texture Feature",

Pattern Recognition, Vol.21, No.2, PP.141-149, 1988.

 89

10. [Har79]: R. M. Haralick, "Statistical and Structural Approaches to

Texture", Proceedings of the IEEE, Vol.67, PP.786-804, 1979.

11. [Hir94]: K. Hirota and W. Pedrycz, "Implicitly - supervised fuzzy

Pattern recognition", IEEE, 1994.

12. [Ibr04]: A. M. Ibrahim, "Fuzzy Logic: for Embedded Systems

Applications", Elsevier Science, 2004.

13. [Jäh99]: B. Jähne, H. Haussecker and P. Geissler, "Handbook of

Computer Vision and Applications: Volume2 Signal Processing

and Pattern Recognition", Academic Press, 1999.

14. [Jai98]: L. C. Jain and N. M. Martin, "Fusion of Neural Networks,

Fuzzy Systems, and Genetic Algorithms: Industrial Applications",

CRC Press LLC, 1998.

15. [Kar94]: K. Karu and A. K. Jain, "Learning Texture

Discrimination Masks", Proc. IEEE Int'l Conf Neural Networks,

June, PP.4374-4397, Orlando, 1994.

16. [Kas96]: N. K. Kasabov, "Foundations of Neural Networks, Fuzzy

Systems, and Knowledge Engineering", Massachusetts Institute,

1996.

17. [Kon02]: E. S. Konak, "A Content-Based Image Retrieval System

for Texture and Color Queries", MSC thesis, Computer

Engineering, Engineering and Science Bilkent University, 2002.

18. [Kun04]: L. I. Kuncheva, "Combining Pattern Classifier: Methods

and Algorithms", Wiley, 2004.

19. [Lee05]: K. H. Lee, "First Course on Fuzzy Theory And

Applications", Springer, 2005.

 90

20. [Lim04]: C. Limpsangsri, "Image Retrieval using texture", DePaul

University, 2004.

21. [Mar01]: J. P. Marques de Sa, "Pattern Recognition: Concepts,

Methods and Applications", Springer, 2001.

22. [Mat98]: A. Materka and M. Strzelecki, "Texture Analysis

Methods", Technical University of Lodz, Institute of Electronics,

Brussels, 1998.

23. [McN94]: F. M. McNeill and E. Thro, "Fuzzy Logic: A Practical

Approach", Academic Press, 1994.

24. [Moh07]: M. H. Mohammed and S. M. Faizur Rahman, "Fuzzy

Features Extraction from BANGLA Handwritten Character",

International Conference on Information and Communication

Technology ICICT, March 2007.

25. [Mon04]: A. Monadjemi, "Towards Efficient Texture

Classification and Abnormality Detection", (Ph.D.) thesis,

Department of Computer Science, Faculty of Engineering,

University of Bristol, October 2004.

26. [Ned01]: I. Nedeljkovic, "Image Classification Based on Fuzzy

Logic", Fuzzy Inference System FIS, 2004.

27. [Nib86]: W. Niblack, "An Introduction to Digital Image

Processing", Prentice_Hall International, 1986.

28. [Pal01]: S. K. Pal and A. Pal, "Pattern Recognition from Classical

to Modern Approaches", World Scientific, 2001.

29. [Pra01]: W. K. Pratt, "Digital Image Processing", 3rd edition,

Wiley, 2001.

 91

30. [Roa87]: J. J. Roan, J. K. Aggarwal and W. N. Martin, "Multiple

Resolution Imagery and Texture Analysis", Pattern Recognition,

Vol.20, No.1, PP.17-31, 1987.

31. [Sag06]: K. H. Sager, "Fractal Based Classification for Color

Textural Images", (Ph.D.) thesis, College of Science, Baghdad

University, Iraq, 2006.

32. [Sam99]: V. W. Samawi, "An Investigation in to the use of Neural

Networks in Texture Classification", (Ph.D.) thesis, College of

science, Al-Nahrain University, Iraq, 1999.

33. [Son08]: M. Sonk, V. Hlavac and R. Boyle, "Image Processing

Analysis and Machine Vision", Thomson, 3rd edition, 2008.

34. [The03]: S. Theodoridis and K. Koutroumbas, "Pattern

Recognition", 2nd edition, Elsevier, 2003.

35. [Tuc98]: M. Tuceryan and A. K. Jain, "Texture Analysis", Chapter

2.1 in Handbook of Pattern Recognition and Computer Vision, 2nd

Edition, World Scientific, 1998.

36. [Web02]: A. Webb, "Statistical Pattern Recognition", 2nd edition,

Wiley, 2002.

37. [Wei01] : L. Y. Wei, "Texture Synthesis by Fixed Neighborhood

Searching", (Ph.D.) thesis, Electrical Engineering, Stanford

University, Li-Yi-Wei, 2001.

38. [Zho06]: D. Zhou, "Texture Analysis and Synthesis using a

Generic Markov-Gibbs Image Model", (Ph.D.) thesis, Computer

Science, Auckland University, 2006.

 الخلاصة
لغرض في العديد من تطبيقات الحاسوب تعتبر عملية التصنيف واحدة من أهم العمليات

 .والتركيب النسيجي للصورة أاللونكتصنيف الصور بالنسبة الى الصفات المنخفضة المستوى

الخـصائص بالنسبة الى الاستفسارالعمل يتم عرض نظام التصنيف الذي يدعم في هذا

توماتيكيا عن و ا ميزات الصورة توليد تتلخص الفكرة الاساسية للعمل في . جيالتركيب النسي المن

 المتلازم للالوان تعتمد التقنيات المضمنة على اتخاذ مصفوفة الظهور .هاطريق تحليل محتويات

الرمادية و مصفوفة طول السلسلة للالوان الرماديـة كوسـائل احـصائية لتحليـل التركيـب

 .لاساليب بحالات منفردةو قد طبقت هذه ا. النسيجي

في فـضاء الـصفات و تخـزن) مجموعة متجهات (متجه او بواسطة يتمثل كل صنف

باسـتعمال مفـاهيم مـضببة لاحقا يتم اختيار افضل مجموعة من المتجهات للصورة . ملفب

يـتم , عند الاسـتعلام عـن الـصورة). وظائف عضوية مثلثية او وظائف عضوية رباعية (

 المتجهات المختـارة المخزونـه فـي ةاستخلاص متجه الصفات لهذه الصورة و من ثم مقارن

 . لايجاد اقرب صنف باستعمال القواعد المضببةملفال

و الـذي بين الميزاتِ الجمع افضل النتائج نحصل عليها من أن خلال عملية التقييم وجد

 نـسب الاختيـار تقريبـا صبحتُ (النظام ككلى لميزاتِ بالإضافة إلاختيارِ لإ يحقق نسب اعلى

).عيجم تبدون %60 بين أربع ميزاتِ وعند تجميع% 90

 العراق جمھوریة
 العلمي والبحث العالي التعلیم وزارة
 النھرین جامعة

 العلوم كلیة

 التركيب النسيجيتصنيف
 مضببة القاعدة البالاعتماد على

 رسالة

 من كجزء النھرین جامعة في العلوم الى كلیة مقدمة
 الحاسبات علوم في الماجستیر درجة نیل متطلبات

 قبل من

 رقية اياد عبد الجبار

)٢٠٠٤ النھرین جامعة بكالوریوس(

 بإشراف

 كمال ثامرسوسن. د

١٤٢٩ ٢٠٠٨

