
Republic of Iraq
Ministry of Higher Education
and Scientific Research
Al-Nahrain University
College of Science

A LAN-Based Instant Messaging
System with Some Security

Aspects

A Thesis
Submitted to the College of Science, Al-Nahrain University

In Partial Fulfillment of the Requirements for
The Degree of Master of Science in Computer Science

By
Marwa Saad Malki AL-Kas

(B.Sc. 2005)

Supervisor
Dr. Abeer M. Yousif Dr. Jamal M. Kadhem
October 2008 Shawwal 1429

Dedication…….

To My
Dear Parent
Sister Dahlia
Brother Laith

Everyone who help
and support me.

Marwa

 First, I would like to thank God, for all the

blessings that have given us and enabled me to achieve this

research work.

 I would like to thanks my supervisors, Dr.Abeer M.

Yousif and Dr.Jamal M. Kadhem, for giving me

opportunity to work on this interesting subject. Dr.Abeer's

and Dr.Jamal's discussion, directions, reviews and valuable

comments help direct me to the right path to accomplish

this work.

 Grateful thanks for the Head of Department of

Computer Science Dr.Taha S. Bashaga, staff and my

friends for continuous support and encouragement.

 After all, I want to give my biggest thanks to my father

and my mother for their support and patience during the

period of my study.

Marwa

Abstract
 Instant messaging is a form of online, real time form of communication

between two or more people based on typed text. IM system has grown

rapidly among network users. But most of existing instant messaging

systems have severe security problems, people want to retain their privacy

and communication should not copy or modified by a third party.

 This thesis presents the design and implementation of a secure instant

messaging system. It achieved security objectives such as data integrity and

confidentiality through encryption. It ensures that the conversation is only

read by intended recipient. The name of the proposed system is chosen to be

SIMSM (the acronym for SIMple Secure Messenger).

 SIMSM is designed for local networks. Based on client-server

connection, it enables users to send and receive secure instant messaging

between them. No internet connection is required. Easily in sending and

receiving text messages. It supports standard messaging features such as

private chat, group chat (conference), message notification and encryption.

 The primary constituting modules are: Registration Module which

identifies users to the system; Login Module which allows users to access

the system; Sign-In Problem Module that deals with forgetting the

identification (ID) and password problem; Private Chat Module that enable

private chat between online users; and Conference Chat Module that enable

more than one online user to chat with each others.

 The proposed IM system has been evaluated according to two important

factors in instant messaging: security and time consuming. Many test cases

were taken to show that SIMSM is quite suitable for secure chatting service.

The proposed secure instant messaging had been established using windows

API functions with Java platform version 6.0.0.105 programming language.

List of Abbreviations
Abbreviation Meaning
3DES Triple Data Encryption Standard

AES Advanced Encryption Standard

AIM American Instant Messaging

ANSI American National Standards Institute

AOL American OnLine

API Application Programming Interface

ATM Automated Teller Machine

BOS Basic OSCAR Service

DES Data Encryption Standard

DH Diffie-Hellman

DSA Digital Signature Algorithm

DSS Digital Signature Standard

EIM Enterprise Instant Messaging

GPRS General Packet Radio Service

GUI Graphic User Interface

HTTPS Hyper Text Transfer Protocol Secure socket layer

ICQ I Seek You

IETF Internet Engineering Task Force

IM Instant Messaging

IMKE Instant Messaging Key Exchange

IMPS Instant Messaging and Presence Service

IMS Instant Messaging System

IPSEC Internet Protocol SECurity

JDBC Java Data Base Connectivity

JDK Java Development Kit

JJC Java JabberC

LAN Local Area Network

MD Message Digest

MIT Massachusetts Institute of Technology

MSN MircoSoft Network

NET NETwork

NIST National Institute of Standards and Technology

OMA Open Mobile Alliance

OSCAR Open System for Communication in Realtime

PEM Privacy Enhanced Mail

PGP Pretty Good Privacy

POS Point Of Sale

RSA Rivest Shamir Adleman

SHA Secure Hash Algorithm

SHS Secure Hash Standard

SKIP Simple Key Management for Internet Protocols

SSL Secure Socket Layer

TCP/IP Transmission Control Protocol/ Internet Protocol

UDP User Datagram Protocol

URL Uniform Resource Locator

VPN Virtual Private Network

XCP EXtensible Communications Platform

XML Extensible Markup Language

YAHOO Yet Another Hierarchical Officious Oracle

List of Figures

Figure name Page
(2.1) Symmetric key encryption . 21

(2.2) Asymmetric key encryption . 24

(2.3) Digital signature . 27

(2.4) The Diffie-Hellman key exchange algorithm . 30

(3.1) SIMSM global design . 35

(3.2) SIMSM structure . 39

(3.3) Diffie-Hellman man-in-the-middle attack . 65

(3.4) Encrypt DH public key . 65

(3.5) Generating shared key between user A and user B 66

(4.1) Server login frame . 72

(4.2) Server main frame . 73

(4.3) Server about frame . 74

(4.4) Log of users . 74

(4.5) View log by performing a specific query . 75

(4.6) SIMSM main form . 76

(4.7) Error login message . 77

(4.8) Exit message . 77

(4.9) Registration frame . 78

(4.10) Password error message . 79

(4.11) Successful registration message . 80

(4.12) Sign-In problem frame . 80

(4.13) Changing password frame . 82

(4.14) SIMSM chat frame . 83

(4.15) SIMSM first menu . 84

(4.16) Conference chat menu . 85

(4.17) Skin style menu . 86

(4.18) Motif and Metal skin . 86

(4.19) Help menu . 87

(4.20) About flash window . 87

(4.21) Invite users to conference . 88

(4.22) Adding users to selected list . 88

(4.23) Conference invitation message . 89

(4.24) Accept the invitation . 89

(4.25) Starting conference chat . 90

(4.26) Deny joining the conference . 90

(4.27) Private chat window . 91

(4.28) Smile faces code . 92

(4.29) Protecting a password in SIMSM . 94

List of Tables

Table name Page
(2.1) Advantages and disadvantages of symmetric key cryptography 22

(2.2) Advantages and disadvantages of the public key cryptography 24

(3.1) User message object fields . 51

(3.2) User object fields . 51

(3.3) User status . 51

(3.4) Headers types in message object . 52

(4.1) Time to register one user . 96

(4.2) Time to register five users . 96

(4.3) Time for authentication process . 97

(4.4) Time to login five uses . 98

(4.5) One-to-One chatting . 99

(4.6) Five-to-One chatting . 99

(4.7) Chatting process . 100

List of Algorithms

Algorithm name Page
(3.1) Asymmetric Key Maker . 41

(3.2) Receiving Registered Information . 41

(3.3) RSA Decryption . 43

(3.4) Check ID Existence . 43

(3.5) Store In DataBase . 44

(3.6) Sign-In Problem Thread . 45

(3.7) Changing Password . 46

(3.8) Retrieving User ID . 47

(3.9) Check Authentication Process . 48

(3.10) Look Up Password . 49

(3.11) Make Digest Message . 50

(3.12) Process Client Message . 53

(3.13) Write to Clients . 54

(3.14) Invite to Conference Chat . 54

(3.15) Write to Conference Chat . 55

(3.16) Request Conference List to Client . 55

(3.17) Write to Client . 56

(3.18) Encryption . 58

(3.19) Protect Login Process . 59

(3.20) Message Digest . 60

(3.21) Generate DH Key Pair . 61

(3.22) Process Server Message . 62

(3.23) Sign-In Problem . 63

(3.24) Generate Secret Key . 66

(3.25) Decryption Message . 68

List of Contents
C H A P T E R 1: Introduction to Instant messaging Page
 1.1 Overview to Instant Messaging . 1

 1.2 Main Types of IM Applications . 2

 1.3 Instant Messaging Services . 3

 1.3.1 Instant Message . 3
 1.3.2 Chat Session . 4
 1.3.3 ChatRoom . 4
 1.4 IM Network Components . 5

 1.4.1 IM Servers . 5
 1.4.2 IM Clients . 5
 1.5 Server Configuration . 5

 1.6 Basic IM Features 6

 1.7 Risks of using IM . 7

 1.8 Related Works . 8

 1.9 Aim of Thesis . 11

 1.10 Thesis Layout . 12

C H A P T E R 2: Secure Instant Messaging System

 2.1 Introduction . 13

 2.2 Security concepts and requirements . 14

 2.3 Authentication Methods . 15

 2.3.1 Password . 15

 2.3.2 Public Key Cryptography . 17

 2.3.3 Zero-Knowledge proof . 17

 2.3.4 Digital Signature . 18

 2.4 IM Security Solutions . 18

 2.4.1 Secure Protocol Solutions . 18

 2.4.2 Third-Party Solutions . 19

 2.4.3 Cryptography Solution . 19

 2.5 Taxonomy of Cryptography . 20

 2.5.1 Hash Functions . 20

 2.5.2 Symmetric Key Encryption . 21

 2.5.3 Asymmetric Key Encryption . 24

 2.6 Diffie-Hellman Key Exchange . 27

 2.6.1 Mathematical Concepts . 28

 2.6.2 Diffie-Hellman Key Exchange Algorithm 30

 2.6.3 Simple Key Management for Internet Protocols (SKIP) 31

 2.6.4 The security of Diffie-Hellman . 32

C H A P T E R 3: Design and Implementation of SIMSM

 3.1 Introduction . 34

 3.2 SIMSM Global Design . 34

 3.3 SIMSM Requirements . 36

 3.4 Features of SIMSM system . 37

 3.5 SIMSM Structure . 37

 3.6 Server Program . 40

 3.6.1 Initialization Module . 40

 3.6.2 Check Authentication Module . 47

 3.6.3 User Information Module . 50

 3.6.4 Process Client Message Module . 52

 3.7 Client Program . 57

 3.7.1 Registration Module . 57

 3.7.2 Login Module . 59

 3.7.3 Sign-In Problem Module . 63

 3.7.4 Secure Private Chat Module . 64

 3.7.5 Conference Chat Module . 68

C H A P T E R 4: SIMSM Interface and Evaluation

 4.1 SIMSM Interfaces . 72

 4.1.1 SIMSM Server Program Interface . 72

 4.1.2 SIMSM Client Program Interfaces . 76

 4.2 SIMSM Evaluation . 92

 4.2.1 Security Factor . 92

 4.2.2 Time Consuming Factor . 95

C H A P T E R 5: Conclusion and Suggestion for Future Work
 5.1 Conclusion . 101

 5.2 Future Work . 102

List of Reference

Appendix A: Database Connection

1.1 Overview to Instant Messaging

 Instant Messaging (IM) is a form of online, real time communication. It

allows users to see whether their contacts are online, and to send them a

typed message. It is similar to email as a communication tool, but, unlike

traditional email, is instantaneous. Messages sent via IM appear immediately

on the recipient’s computer screen. In this way, IM is a truly synchronous

(that is, real time) form of communication [Dav07]. Instant messaging is a

combination of the telephone, which facilitates conversations with multiple

people in real time, and of e-mail, which combines the speed of online

communication with a written record of your conversation [Fly04].

 Instant Messaging also known as a "chatting," has become very popular

for both business and personal use. In business, there is variety of benefits

associated with the use of IM in business, not least of which is the ability to

communicate more efficiently, but also for faster problem solving and

decision making [Ost06].

 Popular messengers are include American Online Instant Messenger

(AIM), Windows Live Messenger (formerly MicroSoft Network (MSN)

Messenger), Yahoo! Messenger and I Seek You (ICQ) Messenger. These

individual messengers generally don’t interoperate, so that someone using

Windows Live Messenger, for example, cannot chat to someone using

Google Talk. However, there are a third-party client (also known as

aggregator or multi-network clients) that allows you to log in to accounts on

many different networks simultaneously.

Beside the ability to send typed messages backward and forwards, IM also

allows the user to transfer files, white boarding, audio and video

conferencing, and other IM features [Dav07].

 IM provides convenient communication between people using a variety

of different device types. The most familiar form today is computer-to-

computer instant text messaging, but IM also can work with mobile devices,

such as digital cellular phones, and can incorporate voice or video [IEC04].

1.2 Main Types of IM Applications
 There are two main types of IM applications: Public and Enterprise IM

applications [Sha05].

 1- Public applications are free and able to be downloaded off the Internet.

They are the most widely used type of IM application in both the home

and workplace. Examples of public IM are American OnLine (AOL)

Instant Messenger (AIM), Yahoo! Messenger, MSN, Google Chat, and

others. The proprietary services in public IM networks offered by major

Internet service providers, including AOL, Yahoo! [Wil04].

2- Enterprise IM (EIM) application solutions were created to specifically

target the security problems that public IM posed on organizations.

Enterprise IMs are not free and must be purchased as with any

proprietary software package. IBM Lotus Sametime, Microsoft Office

Live Communications Server, and Jabber Extensible Communications

Platform (Jabber XCP) are examples of EIM applications. Enterprise IM

systems are provided by an internal software solution that is owned and

controlled by the enterprise [Wha08].

1.3 Instant Messaging Services

 An instant messaging system is a combination of two services: Presence

Service and Instant Messaging Service. Presence service, allows its users to

learn who is actually online and to whom an instant message can be sent

[Wrz02]. It's serves to accept information, store it, and distribute it.

Examples of this type of information would be client status (online, away,

busy, etc.), user name, public profile information, and so on. Basically, this

is what users are allowed to see or know about other users. Instant messaging

service is a means of sending small and simple messages that are delivered

immediately to online users [Rit05]. The instant messaging service makes

use of the presence service to determine which users are online and which

can be therefore contacted [Wrz02].

 In the following sections, types of communication in Instant Messaging

Service will be explained [Wrz02].

1.3.1 Instant message

 An instant message is a small unit of data exchanged by the users of an

instant messaging system. An instant message consists mainly of plain text.

It can also contain other elements. For example, a system can support

Uniform Resource Locator (URL) which can be recognized by the client-side

software and marked out in the text displayed to the user. A user can launch

the application by clicking on the URL [Wrz02].

1.3.2 Chat session

 Instant messaging systems also support a concept of chat session or, to

use more human-friendly terminology, a conversation. In a chat session, a

sequence of instant messages exchanged by two users can be recognized

and presented to them as a coherent whole. The client-side software of an

instant messenger presents all the messages of the session as a whole by, for

example, displaying them in one window. To hold such a conversation, a

user creates a chat session and then invites another user to join it. The other

user can choose between joining the session and rejecting the invitation. If

he/she joins, the session is established and the users can send and receive

messages within that session. When a user wants to terminate a conversation,

he/she leaves the session [Wrz02].

1.3.3 Chatroom

 A chatroom can be seen as the persistent version of a multi-party chat

session. A chatroom is a virtual place where people can meet and talk. A

chatroom itself is not a group but rather a meeting point that the user to

easily initiate a conversation. A chatroom is public, that is to say, directly

accessible from the outside without further need of being invited by a current

group member. When a user wants to take part in a chatroom conversation,

he/she enters the chatroom. Every message sent within this chatroom is

delivered to this user. Messages sent by the user within this chatroom are

delivered to all other users of the chatroom [Wrz02].

1.4 IM Network Components
 The basic components in most IM networks are: Server and Client

[Wil04].

1.4.1 IM Servers

 IM servers provide IM services such as presence notification, account

registration and instant messaging. A client must connect to the server in

order to be given an online presence status on the IM network. An IM

network may have multiple servers working in tandem to provide scalability

which is the ability to handle large numbers of users distributed over

geographically large area. Transfer between servers is generally transparent,

meaning principles have no knowledge as to which server they may be

connected to. The servers of the public IM networks are located on the

premises of the organization providing the service. For example, the MSN

servers are located in an area chosen by Microsoft.

1.4.2 IM Clients

 The client software is the public face of an IM network. Once installed

on a workstation, the client software can be used to connect to the IM server

to access IM services. Clients are also able to store specific user information

locally. This information includes passwords and account names (for

automated login) and records of chat sessions. Clients for the public IM

services are available as a free download on the Internet.

1.5 Server Configuration
 Server configuration explains how servers, the backbone of an IM

network, function in the network hierarchy.

There are two types of server configurations: Single Server Architecture and

Multiple Server Architecture [Wil04].

 In single server architecture, all IM tasks can be conducted on a single

server; including account creation, authentication and IM services. Single

server architecture allows for easier management and increased security but

is not a scalable solution and may struggle with a large load of users.

 While in multiple server architecture most large IM networks operate

using multiple servers. The role of servers in multiple server architecture can

be divided into two groups: Replicated Servers and Distributed Services. In

Replicated Servers, individual servers capable of providing all IM

functionalities can be replicated and interconnected to support a large

network. While in Distributed Services; servers may be divided based on the

role that they play within the IM network. One server type may fulfill the

function of account registration or login, while another server type may

provide notification and messaging [Wil04].

1.6 Basic IM Features
 The following features are existing relatively in the most popular IM

software products currently in operation [Rit05].

1- Instant Messaging (also known as IM): The transmission of text from one

user to another via an IM service. These messages generally have no security

and are routed over the Internet.

2- Voice/Video Chat: A direct connection must be established between two

users to enable voice/video chat. The data is typically transferred via User

Datagram Protocol (UDP) connections. AIM does not support video chat, but

it does support voice chat.

3- File Transfers: File transfers require a direct connection to be established

between users. However, once a file transfer is completed, the direct

connection is closed.

4- File Sharing: File sharing allows a user to browse a selected directory

structure and download files. File sharing is an optional capability that must

be enabled in AIM and ICQ before any sharing can take place. However, file

sharing is enabled by default in Yahoo! The connection method for file

sharing is the same as for a regular file transfer.

1.7 Risks of Using IM
 Although Instant Messaging (IM) has significant advantages, including

ease of use an instantaneous communication, it also provides a significant

security risk [Rit05]. Many of IM protocols not design to carry sensitive data

in a corporate environment, and therefore do not offer encryption or other

security features [Pic02]

 Because of public IM is free, easy to use, and availability, the most

existing popular public instant messaging systems, such as AIM, MSN,

Yahoo, and ICQ Messenger, cannot be considered secure [Wrz02]. For

examples in AOL instant Messenger (AIM), there are two types of servers on

the AIM network: the OSCAR (Open System for Communication in

Realtime) server, and the BOS (Basic OSCAR Service) servers. While the

OSCAR is responsible for authorizing clients, the BOS is responsible for

handling various features of the AIM service. All the communication sent or

received via AIM has no encryption. Also the Yahoo! Messenger has the

weakest security features of the major messaging platforms. Its protocol does

not encrypt the password, and the messaging is simply passing in clear text

messages from one user to another, it means it has Unencrypted

communication risk. All the popular IM mentioned above have another two

risks: Social Engineering, and the Theft of Identity [Oll04].

 Social Engineering means some malicious IM users have convinced

others to divulge sensitive information, such as username, passwords, and

credit card numbers, and due to social engineering the theft of identity occur.

There are several utilities that enable a malicious use to impersonate another

user. This can also lead to more serious social engineering issues, where a

user can mistakenly trust a malicious user and provide sensitive and

confidential information [Pic02].

 Companies using IM experience a reduction in phone bills, a reduction

in voice mail minutes, and improved worker productivity through faster

problem solving and decision making. But Unmanaged or unknown use of

IM can also pose many risks to organizations. These risks including for

examples leakage of confidential information, potential productivity loss as

employees chat with family and friends, legal and corporate exposure from

inappropriate use of IM, and other security risks [Sha05].

1.8 Related Works
 Various efforts in the field of providing secure instant messaging

system were introduced; some of these efforts are summarized below:

1- Wrzesinska, (2002), [Wrz02], his project was aimed to introduce an

instant messaging system that is both secure and scalable. Security in his

system relies mostly on using security protocol called SSL (Secure Socket

Layer). Scalability in his system achieved through the distribution of its

components, multiple servers, and distributed database.

2- Symantec Inc., (2002), [Sym02], Symantec describes significant

vulnerabilities that are present in common instant messaging system and

the type of attacks that can exploit them. Also explores the security issues

introduced with the use on instant messaging and offers best practices that

can help in deploying a secure IM platform within enterprise. Examples

for these practices are: Establish a corporateIM usage policy, Properly

configure perimeter firewalls, Deploy desktop antivirus software, Deploy

corporate IM servers, Employ personal firewalls, and others practices.

3- Kim, and et al (2003), [Kim03], they introduced a way to make data,

sent over various networks via instant messaging clients, encrypted and a

way to authenticate users on the already established system. They decided

to use Rivest Shamir Adleman (RSA) asymmetric key encryption

algorithm for authentication and Advanced Encryption Standard (AES)

symmetric key encryption algorithm for communication once

authentication is completed.

4- Almanei, (2003), [Alm03], his project is to present a secure working

Jabber client, based on Jabber Protocol, which is actually an Extensible

Markup Language (XML) messaging protocol. He used an already

available client called Java JabberC (JJC) client, and modifying the code

of this client by using Diffie-Hellman key exchange and Data Encryption

Standard (DES) algorithms for key exchange and encryption, decryption

respectively to satisfy a secure Java JabberC. He used a cryptographic

library of java, which provides a framework for key exchange and

encryption.

5- Kling, (2003), [Kli03], the aim of his project is to point out weaknesses

in the ICQ instant messaging, he makes an investigate to the ICQ security

and the result of his investigate showed that the ICQ had a non-secured

authentication phase, non-secured messages and no protection for stored

messages. From these results, the main conclusion that he was derived is

the use of the ICQ resulted in non-secure instant messaging sessions.

Through his investigation he used a forensic technique to try to extract

digital evidence and investigate if the ICQ history files is encrypted or

unencrypted.

6- Fredrik, (2003), [Fre03], his project was aimed to create an instant

messaging client that implements the specification from OMA (Open

Mobile Alliance), called Instant Messaging and Presence Service (IMPS).

The purpose of this specification is to create an IM protocol that should

be available to the public and possible to implement on both mobile and

stationary devices. The security in OMA IMPS has many different levels

of cryptology. On the lowest level, encryption of the network traffic is

used by GPRS (General Packet Radio Service) networks, on the system

level, it uses an encrypted protocol like HTTPS (Hyper Text Transfer

Protocol Secure socket layer) that used to secure the communication with

the server and on the highest level in the system, and this is done by

ensuring that sensitive data never transmitted from the client. Since it

consider IMPS protocol as secure protocol, but one of the major problems

with OMA IMPS is that the system may be setup in a way allowing the

user to authenticating in non-secure way, giving an opportunity for

malicious user to gain unauthorized access to the system. In other words,

OMA IMPS offers support for both secure and not secure logging into the

server and sending messages.

7- Williams and Ly (2004), [Wil04], they studied the security of IM

applications within the workplace and suggested a secure method of

implementing a secure IM prototype that can be used at work. Their IM

application developed based on Jabber, which is an open source IM

system, and used DES encryption for java based that can be implemented

to a public IM application to keep the information exchanged secure.

8- Abdul Mannan, (2005), [Abd05], he presented in his research work the

most significant threats to IM systems, and decided that there is need a

technique to secure IM protocol, so he used an Instant Messaging Key

Exchange (IMKE) protocol as a step toward secure IM. IMKE was

designed to provide secure communication and authentication, and its

implementation was done using the open source Jabber server and client

on Linux operation system.

1.9 Aim of Thesis
 This research work aims to design and implement a secure instant

messaging system for local networks. This is done by adding standard

encryption methods, which provides two basic services for users: a way to

protect data between client-server and client - client from unintended viewers

through encryption, and a way to authenticate users. This research work

aimed also to add some features and functionalities to the secure IM system

like conference chat, transfer smiles with text and etc.

1.10 Thesis Layout
 Beside chapter one, the remaining part of the thesis consists of the

following chapters:

v Chapter Two: Concerned with the definition of secure instant

messaging solutions and types of cryptography algorithms. At the end

of this chapter, the Diffie-Hellman key exchanged algorithm is

presented with its related mathematical concepts.

v Chapter Three: Introduces the design and implementation

requirements of the established secure instant messaging system, and

then the structure of the system will be explained together with

modules and algorithms that are used to implement the system.

v Chapter Four: Presents user interface and evaluation of the designed

system.

v Chapter Five: Introduces the derived conclusions and suggestions for

future works are given.

2.1 Introduction
 In recent years, instant messaging systems have gained more and more

popularity. Most of the existing systems have shown to have severe security

problems with respect to user privacy, message authenticity and

eavesdropping. Now, as security became more important, some efforts are

being made to incorporate security features into IM systems [Wrz02].

 One thing that must be kept in mind when designing a secure system is

the users. As the number of users that use instant messaging is quickly

growing and increasing, the number of security risks increases also [Leg04].

The persons using an instant messaging system might very well be the

biggest security threat against the system. A system is never be secure if the

people using it don’t care about protecting it. Thus, the system must not only

be designed with a high level of encryption and other security measures, it

must also guard against its own users.

 Also, one of the major security problems within the networks is the

transmission of information in plaintext over insecure networks. The

sensitive data such as account names or passwords are being transferred

across any number of networks to reach the IM servers [Wil04]. So we need

security because people want to retain their privacy. Communications should

not be overheard, copied, blocked or modified by a third party. Therefore,

there is a considerable effort being made to incorporate security into the

existing communication systems and to create new secure communication

tools.

2.2 Security concepts and requirements
There are some specific security requirements relating to network security,

which are: Authentication, Authorization, Integrity, and Confidentiality

[Can01].

1- Authentication: authentication serves as proof that you are who you say

you are or what you claim to be. Authentication is critical if there is to be

any trust between parties. Authentication is required when communicating

over a network or logging onto an instant messaging systems. When logging

onto a network, one or more of three basic schemes are used for

authentication: something you know, something you have, and something

you are [Can01 and Pip04].

a. Something you know: The most commonly employed scheme is

"something you know" Typically, the something you know that

authenticates your identity is a password, code, or sequence. The

security is predicated on the idea that if you know the secret password

or code then you must be who you claim to be and be authorized to

access the network.

b. Something you have: "Something you have" requires a key, badge, or

token card, some device or "thing" that provides you with access.

Security is predicated on the concept that only authorized individuals or

entities will have access to the specific device. The drawback to this

scheme is that the "thing" can be lost or stolen.

c. Something you are: "Something you are" authentication relies upon

some physical or behavioral characteristic. It is referred to as biometric

authentication. Biometrics refers to the automated identification of a

person, on the basis of physiological and behavioral characteristics. The

physiological characteristics could be face, fingerprints, hand geometry,

handwriting, iris, retinal etc...[Kol01].

2- Authorization (Access Control): this refers to the ability to control the

level of access that individuals or entities have to a network or system and

how much information they can receive. Your level of authorization

basically determines what you are allowed to do once you are authenticated

and allowed access to a network, system, or some other resource such as data

or information [Can01 and Wil03].

3- Integrity: assuring the receiver that the received message has not been

altered in any way from the original [Kes07].

4- Confidentiality/Privacy: refers to the protection of information from

unauthorized disclosure. Usually achieved either by restricting access to the

information or by encrypting the information [Can01].

2.3 Authentication Methods
 Authentication mechanisms can be classified in many ways; the

following overview will generalize several authentication mechanisms to

authenticate uses over network [Dun02].

2.3.1 Password

 One of the most commonly used authentication schemes employs

passwords. Password can be classified into two main types: fixed password

and one-time password.

1- Fixed Password

 Along with a user name, a password must be presented to the

authentication system to gain access [Fis00]. Authentication is based on

knowing the (name, password) pair. The length and format of the password

also vary from one system to another. The system compares the entered

password against the expected response and reacts accordingly. If the

password matches that on file for the user, the user is authenticated to the

system. If the password match fails, the system requests the password again

[Pfl97].

 A fixed password system is vulnerable to interception and replay. The

extent of the risk to which the system is exposed will depend on the

deployment. If passwords are being transmitted across an unprotected

network the risk is greater than with a closed system where there are limited

opportunities for eavesdropping. Since user-chosen passwords are

memorable, they are likely to contain some inherent structure. To help

provide additional protection, some proposals deploy machine-generated

passwords, but these are not especially popular. In fact, such approaches can

sometimes be counter-productive since a password that is difficult to

remember is sometimes written down, which might degrade the overall

security of the system [Pip04].

 There is a reason why passwords are so popular: they are fast, they are

cheap, and, in practice, people don't forget them or lose the pieces of paper

all that often. Username and passwords are an authentication solution for

low-value transactions and for accessing non-sensitive online information

[Zwi00].

2- One-time password

 There are two types of one-time passwords, a password list and

challenge-response password [Dun02].

a. The challenge-response password responds with a challenge value after

receiving a user identifier. The response is then calculated from either

the response value or select from a table based on the challenge.

b. A one-time password list makes use of lists of passwords, which are

sequentially used by the person wanting to access a system. The values

are generated so that it is very hard to calculate the next value from the

previously presented values. It is important to keep in mind that

password systems only authenticate the connecting party. It does not

provide the connecting party with any method of authenticating the

system they are accessing, so it is vulnerable to spoofing or a man-in-

middle attack.

2.3.2 Public Key Cryptography

 Public key cryptography is based on complex mathematical problems

that require very specialized knowledge. Public key cryptography makes use

of two keys, one private and the other public. The private key is used to

decrypt and also to encrypt messages between the communicating machines.

Both encryption and verification of signature is accomplished with the public

key. Basically, the public-key authentication process includes the following:

Client selects some random numbers and sends the results to the server as a

message: Message 1. The server then sends different random numbers back

to the client based on Message 1. The Clients then computes the new value

and sends Message 2 to the server. The Server then uses the clients public

key to verify that the values returned could have only been computed using

the private key. This authenticates the client to the server. If the client wants

to authenticate the server, the same procedure is repeated with changed roles

[Dun02].

2.3.3 Zero-Knowledge Proof

 A zero-knowledge proof is an interactive method for one party to prove

to another that a (usually mathematical) statement is true, without revealing

anything other than the veracity of the statement [Zer08].

2.3.4 Digital Signature

 Digital signature is completely analogous to a handwritten signature

used for centuries to authenticate documents. The reason that signatures have

been used is that, everyone's signature is unique and hard to forge and a

document, which has been signed, would be hard to repudiate later. These

same assurances are desirable for computer generated and transmitted

documents. It's liked to be able to prove that a document sent by somebody

was indeed sent by that individual [Fis00].

2.4 IM Security Solutions
 In order to provide secure instant messaging system, there are many

solutions to make those systems relatively secure [Man04 and Wil04]:

Secure Protocol Solutions, Third-Party Solutions, and Cryptography or

Encryption Solutions.

2.4.1 Secure Protocol Solutions

 Security protocol (cryptographic protocol or encryption protocol) is an

abstract or concrete protocol that performs a security-related function and

applies cryptographic methods. Protocols describe how the algorithms

should be used. A sufficiently detailed protocol includes details about data

structures and representations, at which point it can be used to implement

multiple, interoperable versions of a program. Cryptographic protocols are

widely used for secure application-level data transport [Wik07].

The most security protocols that used extensively in the real world are: SSL

(Secure Socket Layer) which is used to secure most Internet transactions

today. The second protocol is IPSEC (Internet Protocol SECurity), which is a

complex and over-engineered protocol with several security flaws. The final

real-world protocol is Kerberos, a popular authentication protocol built on

symmetric keys cryptography [Sta06].

2.4.2 Third-Party Solutions

 The third solution that makes an IM relatively secure is through using

and recommending the following practices for securely deploying IM system

within public and enterprise IM system [Man04 and Sha05].

1. Using Desktop antivirus software to scan IM file transfers for

computer viruses, worms, such as Norton Anti Virus and ZoneAlarm, and

these antiviruses must keep up-to-date.

2. Controlling instant messaging by stopping any unauthorized access and

establishing and enforcing rules on current usage and defining policies,

also stop inappropriate conversations by using keyword and phase filter to

block people from discussing certain topics.

3. Recommended instant messaging client settings.

4. Establish a corporate instant messaging usage policy, example for

enterprise use, given the risks involved in using public instant messaging

systems, corporations should consider prohibiting the use of public

instant messaging systems entirely, or ask employees to refrain from

using public instant messaging systems for business communications.

2.4.3 Cryptography Solution

 Cryptography is the study of methods for sending messages in secret

(namely, in enciphered or disguised form) so that only the intended recipient

can remove the disguise and read the message (or decipher it). The process

of transforming plaintext into ciphertext is called encryption or enciphering

[Mol07], which is one of solutions to make an instant messaging system

secure.

2.5 Taxonomy of Cryptography
 There are three categories of ciphers: hash functions, Symmetric ciphers,

and Asymmetric cipher [Sta06].

2.5.1 Hash Functions

 Hashing functions, also called message digests and one-way encryption

are algorithms that do not use a key and refer to a mathematical function that

takes a variable size string as input and transforms (hashes) it into a fixed-

size string, which is called the hash value, as output. In network security

applications, the mathematical function should have the essential properties

that the transformation is one-way and that it is computationally infeasible

for two different inputs to produce the same output. One of the most

common uses of hashing in network security is to produce condensed

representations of messages or “fingerprints,” often known as “message

digests” by applying a hashing algorithm to an arbitrary amount of data.The

two most commonly used hashing algorithms are MD5 and SHA [Fun05].

1- Message Digest (MD) algorithms: A series of byte-oriented algorithms

that produce a 128-bit hash value from an arbitrary-length message [Kes07].

MD5 creates a unique 128-bit message digest value derived from the

contents of a message or file. This value, which is a fingerprint of the

message or file content, is used to verify the integrity of the message's or

file's contents. If a message or file is modified in any way, even a single bit,

the MD5 cryptographic checksum for the message or file will be different. It

is considered very difficult to alter a message or file in a way that will cause

MD5 to generate the same result as was obtained for the original file. While

MD5 is more secure than MD4, it too has been found to have some

weaknesses: Analysis has found a collision in the compression function of

MD5, although not for MD5 itself. Nevertheless, this attack casts doubts on

the whether MD5 is truly a collision-resistant hash algorithm. The MD5

algorithm is intended for digital signature applications, where a large file

must be "compressed" in a secure manner before being encrypted with a

private (secret) key under a public-key cryptosystem such as RSA.

2- Secure Hash Standard (SHS): Algorithm for National Institute of

Standards and Technology NIST's Secure Hash Standard (SHS). SHA-1

produces a 160-bit hash value, five algorithms in the SHS: SHA-1 plus SHA-

224, SHA-256, SHA-384, and SHA-512 which can produce hash values that

are 224, 256, 384, 512 or 1024 bits in length [Kes07]. Although SHA-1

slower than MD5, but this large digest size makes it stronger against brute

force attacks, and therefore more secure than MD5 [Sec01]. The SHA-1 may

be used with the DSA (Digital Signature Algorithm) in electronic mail,

electronic funds transfer, software distribution, data storage, and other

applications which require data integrity assurance and data origin

authentication. The SHA-1 may also be used whenever it is necessary to

generate a condensed version of a message [Fip02].

2.5.2 Symmetric Key Encryption
 Symmetric key also referred to as private key or secret key is based on a

single key and algorithm being shared between the parties who are

exchanging encrypted information. The same key both encrypts and decrypts

messages [Can01]. This concept is illustrated in Figure (2.1).

Figure (2.1) Symmetric key encryption

The strength of the above scheme is largely dependent on the size of the key

and on keeping it secret. Generally, the larger the key, the more secure the

scheme. In addition, symmetric key encryption is relatively fast.

The main weakness of the system is that the key or algorithm has to be

shared. You can't share the key information over an unsecured network

without compromising the key. As a result, private key cryptosystems are not

well suited for spontaneous communication over open and unsecured

networks. In addition, symmetric key provides no process for authentication.

Table (2.1) lists the advantages and disadvantages of symmetric key

cryptosystems.
Table (2.1) Advantages and disadvantages of symmetric key cryptography

Advantages Disadvantages

Fast Requires secret sharing

Relatively secure Complex administration

Widely understood No authentication

The most popular symmetric-key algorithms are:

1- Data Encryption Standard (DES)

 A popular symmetric-key encryption method developed in 1975 and

standardized by American National Standards Institute (ANSI) in 1981 as

ANSI X.3.92. DES consists of an algorithm and a key. The key is a sequence

of eight bytes, each containing eight bits for a 64-bit key. Since each byte

contains one parity bit, the key is actually 56 bits in length [Can01]. The

DES algorithm is a careful and complex combination of two fundamental

building blocks of encryption: substitution and transposition. The algorithm

derives its strength from repeated application of these two techniques, one on

top of the other, for a total of 16 cycles. The algorithm begins by encrypting

the plaintext as blocks of 64 bits. The key is 64 bits long, but in fact it can be

any 56-bit number. (The extra 8 bits are often used as check digits and do not

affect encryption in normal implementations) [Pfl02].

DES is widely used in automated teller machine (ATM) and point-of-sale

(POS) networks [Can01].

2- Triple Data Encryption Standard (TDES)

 Also referred to as 3DES, a mode of the DES encryption algorithm that

encrypts data three times. Three 64-bit keys are used, instead of one, for an

overall key length of 192 bits (the first encryption is encrypted with second

key, and the resulting cipher text is again encrypted with a third key). Both

DES and 3DES are used in all common security technologies that utilize

encryption and decryption with secret keys [Fun05].

3- Advanced Encryption Standard (AES)

 The AES standard was developed to replace DES and 3DES. AES uses

the Rijndael algorithm, a symmetric block cipher algorithm that can process

blocks of 128 bits using cipher keys with lengths of 128, 192, and 256 bits.

The Rijndael algorithm is a substitution–linear transformation network with

ten, twelve, or fourteen rounds, depending on the key size. A data block to be

encrypted by the algorithm is split into an array of bytes, and each encryption

operation is byte-oriented. Just as DES and 3DES, AES is used in all

common security technologies that require cryptography utilizing secret keys

[Fun05].

2.5.3 Asymmetric Key Encryption

 Asymmetric cryptography is also known as public key cryptography.

Public key cryptography uses two keys as opposed to one key for a

symmetric system. With public key cryptography there is a public key and a

private key. The keys' names describe their function. One key is kept private,

and the other key is made public. Knowing the public key does not reveal the

private key. A message encrypted by the private key can only be decrypted

by the corresponding public key. Conversely, a message encrypted by the

public key can only be decrypted by the private key. This process is

illustrated in Figure (2.2).

Figure (2.2): Asymmetric key encryption

With the aid of public key cryptography, it is possible to establish secure

communications. Public key cryptosystems can provide a means of

authentication and can support digital certificates. Unlike symmetric key

cryptosystems, public key allows for secure spontaneous communication

over an open network. In addition, it is more scalable for very large systems

(tens of millions) than symmetric key cryptosystems. With symmetric key

cryptosystems, the key administration for large networks is very complex

[Can01].

Table (2.2) summarizes the advantages and disadvantages of the public key

cryptosystems.

Advantages Disadvantages

No secret sharing necessary Slower or computationally intensive
Authentication supported Certificate authority required

Scalable

 There are three public key algorithms in wide use today—Diffie-

Hellman; RSA; and the Digital Signature Algorithm (DSA).

1- Diffie-Hellman (DH)

 The Diffie-Hellman algorithm was developed by Whitfield Diffie and

Martin Hellman at Stanford University. It was the first usable public key

algorithm. Diffie-Hellman is based on the difficulty of computing discrete

logarithms. It can be used to establish a shared secret key that can be used by

Table (2.2) Advantages and disadvantages of the public key cryptography

two parties for symmetric encryption. Diffie-Hellman is often used for

Internet Protocol Security (IPSEC) key management protocols.

For spontaneous communications with Diffie-Hellman, two communicating

entities would each generate a random number that is used as their private

keys. They exchange public keys. They each apply their private keys to the

other's public key to compute identical values (shared secret key). They then

use the shared secret key to encrypt and exchange information [Can01].

2- Rivest, Shamir, Adelman (RSA)

 The RSA public key algorithm was developed by Ron Rivest, Adi Shamir,

and Len Adelman at Massachusetts Institute of Technology (MIT). RSA

multiplies large prime numbers together to generate keys. Its strength lies in

the fact that it is extremely difficult to factor the product of large prime

numbers. This algorithm is the one most often associated with public key

encryption. The RSA algorithm also provides digital signature capabilities.

They are used in SSL protocol to set up sessions and with privacy-enhanced

mail (PEM) and Pretty Good Privacy (PGP) [Can01].

3- Digital Signature Algorithm (DSA)

 DSA was developed as part of the Digital Signature Standard (DSS).

Unlike the Diffie-Hellman and RSA algorithms, DSA is not used for

encryption but for digital signatures [Can01]. DSA is an algorithm that

provides the capability to generate and verify signatures. Signature

generation makes use of a private key to generate a digital signature.

Signature verification makes use of a public key which corresponds to, but is

not the same as, the private key. Each user possesses a private and public key

pair. Public keys are assumed to be known to the public in general. Private

keys are never shared. Anyone can verify the signature of a user by

employing that user's public key. Signature generation can be performed

only by the possessor of the user's private key.

A hash function is used in the signature generation process to obtain a

condensed version of data, called a message digest see Figure (2.3). The

message digest is then input to the digital signature (ds) algorithm to

generate the digital signature. The digital signature is sent to the intended

verifier along with the signed data (often called the message). The verifier of

the message and signature verifies the signature by using the sender's public

key. The same hash function must also be used in the verification process

[Kam00].

Figure (2.3) Digital signature

2.6 Diffie-Hellman Key Exchange
 Whitfield Diffie and Martin Hellman discovered what is now known as

the Diffie-Hellman (DH) algorithm in 1976. It is an amazing and ubiquitous

algorithm found in many secure connectivity protocols on the Internet. In an

era when the lifetime of “old” technology can sometimes be measured in

months, this algorithm is now celebrating its 32th anniversary while it is still

playing an active role in important Internet protocols. DH is a method for

securely exchanging a shared secret between two parties, in real-time, over

an untrusted network.

 Mathematical Concepts
 To understand Diffie-Hellman key exchange algorithm, some

mathematical concepts related to this algorithm must be well understood,

these concepts are:

1- Prime Number [Pfl02]: a prime number is any number greater than 1 that

is divisible (with remainder 0) only by itself and 1.

2- Primitive Root [Bry06]: let p be a prime. Then b is a primitive root for p

if the powers of b, 1, b, b^2, b^3, ... include all of the residue classes mod p

(except 0). Since there are p-1 residue classes mod p (not counting 0), that

means the first p-1 powers of b have to be different mod p. It have noticed

that the powers of b form a repeating cycle, and that cycle can't be longer

than p-1.

 So, b is a primitive root if the cycle is as long as it can possibly be.

Examples: If p=7, then 3 is a primitive root for p because the first 6 powers

of (3 mod 7) are 1, 3, 2, 6, 4, 5---that is, every number mod 7 occurs except

0.

But 2 isn't a primitive root because the powers of 2 are 1, 2, 4, 1, 2, 4, 1, 2,

4...missing several values.

3- Discrete Logarithm [Cun06]: the ordinary logarithm problem given a

base b and a number X, find Y such that

 yb = X (2.1)

 Examples: The logarithm to base 2 of 128 is 7.

This can be done in modular arithmetic too. Suppose for a particular choice

of n, x, b, that there is a y such that

 yb = x (mod n) (2.2)

 Then finding that y is the Discrete Logarithm Problem modulo n.

 The Discrete Logarithm Problem is Useful for the following reason: suppose

n is large; then given n, b, y it's easy to find x, but no algorithm is known that

given n, b, y, will efficiently find x.

4- Modular Arithmetic [Wik08]: modular arithmetic can be handled

mathematically by introducing a congruence relation on the integers that is

compatible with the operations of the ring of integers: addition, subtraction,

and multiplication. For a fixed modulus n, it is defined as follows.

 Two integers a and b are said to be congruent modulo n, if their

difference a − b is an integer multiple of n. If this is the case, it is expressed

as:

 a ≡ b (mod n) (2.3)

The above mathematical statement is read: "a is congruent to b modulo n".

For example,

 38≡14 (mod 12)

because 38 − 14 = 24, which is a multiple of 12. For positive n and non-

negative a and b, congruence of a and b can also be thought of as asserting

that these two numbers have the same remainder after dividing by the

modulus n. So,

 38 ≡ 2 (mod 12)

 because, when divided by 12, both numbers give 2 as remainder

 The properties that make this relation a congruence relation (respecting

addition, subtraction, and multiplication) are the following.

 If a1 ≡ b1 (mod n) and a2 ≡ b2 (mod n), then:

• (a1+a2) ≡ (b1+b2) (mod n)

• (a1-a2) ≡ (b1-b2) (mod n)

• (a1a2) ≡ (b1b2) (mod n).

2.6.2 Diffie-Hellman Key Exchange Algorithm
 The purpose of the algorithm is to enable two users to exchange a key

securely that then be used for subsequent encryption of messages. The

algorithm itself is limited to the exchange of the keys [Sta03]. The discrete

logarithms are defined in the Figure (2.4).

 Step 1: Global Public Elements

 q Prime number

 α α < q and α a primitive root of q

 Step 2: User A Key Generation

 Select private AX AX < q

 Calculate public AY AY = qAX modα

 Step 3: User B Key Generation

 Select private BX BX < q

 Calculate public BY BY = qBX modα

 Step 4: Generation of Secret Key by User A

 Step 5: Generation of Secret Key by User B

The two calculations in (step 4) and (step 5) produce identical results.

qYK AX
B mod)(=

qYK BX
A mod)(=

Figure (2.4) Diffie-Hellman key exchange algorithm

qY
qq

q

q
q

qq

qY

B

BA

BA

AB

AB

AB

A

X
A

XX

XX

XX

XX

XX

X
B

mod)(
mod)mod(

mod)(

mod
mod)(

mod)mod(

mod)(

=

=

=

=

=

=

=

α

α

α

α

α

 The result is that the two sides have exchanged a secret key.

Furthermore, because AX and BX are private, an opponent only has the

following ingredients to work with: AYq ,,α and BY .Thus, the opponent is

forced to take a discrete logarithm to determine the key.

For any integer b and a primitive root a of prime number p , the unique

exponent i can be found such that

 pab i mod≡ where)1(0 −≤≤ pi (2.4)

The exponent i is referred to as the discrete logarithm, or index, of b for the

base a mod p. This value is denoted as)(, bind qα .

For example, attacking the secret key of user B, the opponent must compute

)(, BqB YindX α= (2.5)

The opponent can then calculate the key K in the same manner as user B

calculates it.

2.6.3 Simple Key Management for Internet Protocols (SKIP)
 The base and modules used in Diffie-Hellman may be dictated by a

standard. One such standard is Simple Key Management for Internet

Protocols (SKIP). SKIP is a protocol developed by the Internet Engineering

Task Force (IETF) security working group for the sharing of encryption

keys. Skip is hybrid Key distribution protocol. It is a Simple Key

Management for Internet Protocols. It is similar to SSL, except that it

(By the rules of modular arithmetic)

K

requires no prior communication in order to establish or exchange keys on a

session-by-session basis. Therefore, no connection setup overhead exists and

new keys values are not continually generated.

 SKIP uses Diffie-Hellman so that hosts can agree on a session key that

will be used to encrypt each data packet that is sent between them. It can be

used in firewalls, to secure communications on a local network, or to create a

Virtual Private Network (VPN). SKIP defines base and modulus values for

different sizes of Diffie-Hellman keys like (256, 512, 1024, 4096 bit)

[Knu98].

2.6.4 The Security of Diffie-Hellman
 The security of the Diffie-Hellman key exchange lies in the fact that,

while it is relatively easy to calculate exponentials modulo a prime, it is very

difficult to calculate discrete logarithms. For large primes, the latter task is

considered infeasible.

Here is an example, Key exchange is based on the use of the prime number

q=353 and a primitive root of 353, in this case α = 3.

A and B select private keys AX = 97 and BX = 233, respectively.

Each computes its public key:

 A computes AY = 973 mod 353 = 40.

 B compute BY = 2333 mod 353 = 248.

After they exchange public key, each can compute the common secret key:

 A computes K = .160353mod248353mod)(97 ==AX
BY

 B computes K = .160353mod40353mod)(233 ==BX
AY

We assume an attacker would have available the following information:

 q = 353; α = 3; AY = 40; BY =248

In this simple example, it would be possible by brute force to determine the

secret key 160. In particular, an attacker E can determine the common key by

discovering a solution to equation 40353mod3 =a or the equation

248353mod3 =b . The brute-force approach is to calculate power of 3 modulo

353, stopping when the result equals either 40 or 248. The desired answer is

reached with the exponent value of 97, which provides

40353mod397 = . With large numbers, the problem becomes impractical.

 As an example of another use of the Diffie-Hellman algorithm, suppose that

a group of users (e.g., all users on a LAN) each generate a long-lasting

private value AX and calculate a public value AY .

These public values, together with global public values for q and α, are

stored in some central directory. At any time, user B can access user A's

public value, calculate a secret key, and use that to send an encrypted

message to user A. If the central directory is trusted, then this form of

communication provides both confidentiality and a degree of authentication.

Because only A and B can determine the key, no other user can read the

message (confidentiality). Recipient A knows that only user B could have

created a message using this key (authentication) [Sta03].

3.1 Introduction
 This thesis presents the design and implementation of a secure instant

messaging system for LAN networks. It concentrates on the sets of security

requirements that instant messaging system should comply with.

 The name of the proposed system is chosen to be SIMSM, the acronym

for (SIMple Secure Messenger). SIMSM provides two basic services for

users: a way to protect messages from unintended viewers through

symmetric key encryption, and a way to authenticate users through

asymmetric key encryption such that each message between client and

server, and between client and client is encrypted.

In this chapter the word "Client user" and "Administrator user" will be used

as indication to real human being, while the words "Client" and "Server"

indicate the software programs that run by User and Administrator

respectively.

3.2 SIMSM Global Design
 SIMSM is designed to be Client-Server model as shown in Figure (3.1).

Such that all the messages are transmitted between the clients through central

server. The reasons for adopting centralized server are for the sake of its

simplicity and security.

Figure (3.1) SIMSM global design

The roles of the server will be:

1. Register users.

2. Authenticate users.

3. Generate asymmetric key used to encrypt data sent between server and

clients.

4. Process client messages.

5. Distribute presence notification.

6. Manage user's accounts.

7. Deliver messages to the intended reception.

 On the other hand, a client is relatively simple piece of software whose

most advanced part is probably the graphical user interface. A client sets up a

connection with the instant messaging server through the Transmission

Control Protocol (TCP) sockets.

The roles of client in the system are:

1. Communicate with the server over TCP sockets.

2. Process server message.

3. The client sends and receives presence notifications, participates in

conference chat or send subscription message through the connection

with the server.

2

 1 n

3.3 SIMSM Requirements
To implement the established system, a number of software and

hardware requirements are needed. Software requirements are:

1. Operating Systems to run Chat Server and Chat Client such as Windows

XP.

2. Java Development Kit (JDK) essentially a Java platform, consisting of

the Application Programming Interface (API) classes, a Java compiler,

and the Java Virtual Machine interpreter. The JDK is used to compile

Java applications and applets.

3. Programming language that support network operations like connection,

receiving incoming network packets and sending messages from host to

another using socket API functions. Java language is chosen to

implement this thesis.

4. Application to store clients information. Microsoft Office Access

software is used. And Java accesses information through the connection

with JDBC driver. See appendix A for more details.

While the hardware requirement is that there are at least three computers in

the network to make the system work properly, one of them is the server run

by the administrator and the others are clients run by users.

 Features of SIMSM System
 SIMSM will be designed to have the following features:

1. Provide secure private chat.

2. Enable conference chat.

3. Transfer smiles with text.

4. Has nice look and feel, and has simple GUI that makes it easy to use by

users.

5. Has relatively fast execution.

6. Does not need an internet connection.

3.5 SIMSM Structure
 The structure of the SIMSM consists of two main parts; Server and

Client as illustrated in Figure (3.2).

 These two parts imply different modules, and each module is performed

by specific units. Some modules execute units in both parts independently,

while in the other modules, there is overlapping between executing jobs of

units of both parts when the same shared result are needed.

Server modules are:

1. Initialization Module: It initializes server information. This module

performs the following functions:

A. Define and create Server Socket.

B. Define and starting threads.

2. Check Authentication Module: It authenticates users to use the system

depending on the clients information.

 3. Complete User Information Module: In this module, the server will

complete creating user's information to permit him/her to use the

system.

4. Process Client Message Module: This module processes each message

came from the client according to specific information in the message

object.

 On the other hand, Client consists of the following modules:

1. Registration Module: It identifies users to the system.

2. Login Module: This module logging the authenticated users into the

system, and generates Diffie-Hellman key pair to them.

3. Sign-In Problem Module: This module changing the forgetting

passwords of the user and retrieving their forgotten IDs.

4. Private Chat Module: It makes a private chat between two users only

if these users are in online status.

5. Conference Chat Module: The aim of this module is to enable user to

make a conference chat with more than one online users.

6. Process Server Message Module: This module handle and process all

messages come from server.

7. Conference Chat Module: The aim of this module is to enable user to

make a conference chat with more than one online users.

8. Process Server Message Module: This module handle and process all

messages come from server.

Registration
Module

Login Module

Sign-In
Problem
Module

Private
Chat

Module

Conference Chat Module

Read
Information

Encryption

Initialization
Module

Make Digest
(D1)

Generate DH Key Pair

Changing
Password

Forgot User
ID

Generate
Secret Key

Encrypt
 Message

Send
message to

Server

Conf.
Create

Conf.
Invite

Conf. Join

Conf. Deny

Conf.
Leave

Decrypt Store in DB

Process Client

Message
Module

Define and start
Threads

Define Server Socket

Complete User
Information

Module

Check
Authentication

Module

LookUp Password

Make Digest (D2)

Match D1,D2

Read ID , timestamp,
random number,D1

T

 Send acknowledge
value to Client

Read ID ,time,
rundom number,

password

Send D1, ID, timeStamp
random number to Server

Part

T

Start

Figure (3.2) SIMSM structure

Start

If acknowledge

F

Process
Server

Message
Module

3.6 Server Program
 The SIMSM server is the core of the system. The server is multi-

threaded program. These threads depend on the requested function of the

server.

 The server program consists of four modules as follows:

3.6.1 Initialization Module
 The main goal of this module is to initialize all necessary server and

client information. It executes two units, Define and Create server socket,

unit and Define and Start Threads unit. The first unit defines and creates a

ServerSocket with a specific port number to accept communication from

clients. The later unit defines and run a number of threads, namely as

Registration thread and Sign-In thread.

A. Registration Thread: This thread is dedicated to register new users to the

system. First, it defines a ServerSocket named "Reg_Socket" with a specific

port number to enable users to connect to the server and to register into the

system.

Second, the server will execute a number of functions as follows:

1. Generate RSA key pair (public and private keys) with 1024 bit key size.

2. Sends the RSA public key to the client to encrypt the registered

information of the user.

3. Receives the registered encrypted information from the client.

4. Decrypt the above received information by RSA private key.

5. Store the received information in the (RegDB) database after checking

the existence case of the user.

Algorithm (3.1) explains how server executes the above functions.

 Algorithm (3.1) Asymmetric Key Maker
 Goal: Generate 1024 RSA key pair.

 Const: Algorithm = "RSA".

 KeySize = 1024.

 Input: None.

 Output: Key pair with 1024 bit size.

 Step1: Define Server Socket with register port number (Registr_Port).

 Reg_Socket = new ServerSocket(Register_Port)

 Step2: Define DataOutputStream (out) with (Reg_Socket).

 Step3: Creat a KeyPairGenerator (KeyGen) using getInstance API function.

 KeyGen ← getInstance (Algorithm)

 Step4: Initialize KeyGen with 1024 bit KeySize.

 Step5: Creating key pair using genKeyPair API function and put result in (keyPair).

 keyPair ←KeyGen.genKeyPair()

 Step6: Connect to client using socket API functions, and send the public key

 to the client part using DataOutputStream.

 Out ← keyPair.PublicKey

 Step7: Store the keyPair in file named as "KeyFile".

 Step8: Call Algorithm (3.2) to receive the registered encrypted information from

 the client

 Step9: End.

 Algorithm (3.2) Receiving Registered Information
 Goal: Register new member into the SIMSM system.

 Input:

 Register Socket (rs).

 Output: None.

 Step1: Read Private Key (Prk) from a file (KeyFile).

 Step2: Define a DataInputStream (Ins) to read the user's registration information

 from the client.

 Continue

 and a DataOutputStream (Outs) to write an acknowledgment to the same client.

 Step3: Read the encrypted registered information through the DataInputStream (Ins),

 (Fname, Lname, Uid, address, ans, birth, pass).

 Step4: Call Algorithm (3.3) to decrypt the above received information by (Prv) key.

 FName ← Fname.

 LName ← Lname.

 UId ←UId.

 Address ← Decrypt (address, Prv).

 Ans ← Decrypt (ans, Prv).

 Birth ← Decrypt (Birth, Prv).

 Pass ← Decrypt (pass, Prv).

 Step5: Call Algorithm (3.4) to check the existence of User's ID and returns a

 boolean value.

 Step6: if (Check ID existence) then //See Algorithm (3.4)//

 write a message to the user client through the DataOutputSream

 (Outs) to tell him/her that this ID is used before.

 else

 Step6.1: Call Algorithm (3.5) to store register user information in the

 database.

 Step 6.2: send a client user an acknowledgment" successful registration".

 end if.

 Step7: Close DataInputStream and DataOutputStream.

 Step8: End.

 Algorithm (3.3) RSA Decryption
 Goal: Decrypt data by RSA algorithm.

 Input:

 EData: the encrypted data.

 Prv: the Private Key.

 Output: ClData: string represents the decrypted data.

 Step1: Creating a cipher object using getInstance API method with RSA

 cryptograph algorithm.

 Step2: Initialize this cipher object with the DECRYPT_MODE and (Prv) key.

 Step3: Decrypt EData using doFinal API function.

 ClData ← doFinal (EData).

 Step4: Return (ClData).

 Step5: End.

 Algorithm (3.4) Check ID existence
 Goal: Check the existence of User's ID.

 Input:

 UserID: the decrypted user ID.

 Output:

 Flag: Boolean variable represents true: if the ID is exist or false: otherwise.

 Step1: Load the JDBC driver from ("sun.jdbc.odbc.JdbcOdbcDriver") to connect

 java with Microsoft access.

 Step2: Establish the connection to the database (RegDB).

 Step3: Define a ResultSet (Rset) that select all Id's from the RegDB.

 Step4: Set Flag = false.

 Step5: While (Rset.next) and not (Flag)

 Step 5.1: returnId ← Rset.getString (Field name of User ID in

 the database(UserID).

 Step 5.2: if (UserID) is equal to (returnId) then

 Continue

 Step 5.2.1: Set Flag = true.

 Step 5.2.2: Close connection with RegDB.

 end if.

 end While

 Step6: Close connection with RegDB.

 Step7: Return (Flag).

 Step8: End.

 Algorithm (3.5) Store In DataBase
 Goal: Store registered information of the users in database table.

 Input:

 Fname: First name of the user.

 Lname: Last name of the user.

 Id: ID of the user.

 Address: address of the user.

 Pass: password of the Client's user.

 Birth: Birthdate of the Client's user.

 Ans: answer of the challenge question.

 Output: None.

 Step1: Load the JDBC driver from ("sun.jdbc.odbc.JdbcOdbcDriver") to connect

 java with Microsoft access.

 Step2: Establish the connection to (RegDB) database.

 Step3: Execute the INSERT query into the user register database (RegDB).

 Step4: Close the connection with the (RegDB) database.

 Step5: End.

B. Sign-In Problem Thread: This thread is concerned with Sign-In Problem

Module. Sign-In problem occurs when the user either forget his/her password

or ID. According to specific value receives from the client program; the

server will execute either algorithm (3.7) in the case of forgetting password

or execute Algorithm (3.8) in the other case.

 Algorithm (3.6) Sign-In Problem Thread
 Goal: Enable user to change the password or retrieve their forgotten ID.

 Input: None.

 Output: None.

 Step1: Define two boolean variables (Done) and (Flag) and,

 Set Done = false,

 Set Flag = true.

 Step2: While not (Done) and (Flag)

 Step3: Define new server socket with a SIGN_PORT that is already define in

 the system.

 Step4: Define a socket (sok) that accepts the server socket.

 Step5: Define DataInputStream (Ins) with the socket (sok).

 Step6: Define DataOutputStream (Outs) with the socket (sok).

 Step7: Read the information came from the client (Birth, City, EAns, EPass, Botm).

 Step8: Read the Private Key (Prv) from the "Keyfile".

 Step9: Call Algorithm (3.3) to decrypt the reading information with (Prv).

 Step10: if Botm = 1 then

 Step10.1: Call Algorithm (3.7) for changing the password of the user.

 Step10.2: Write a message to the client through the

 DataOutputStream (Outs).

 Outs ← "successful changing your password".

 Step10.3: Set Flag = false.

 Else

 Step10.1: Call Algorithm (3.8) for retrieving the ID of the user and put it

 in (UserId) variable.

 Step10.2: If UserId is Null then

 1. Outs ← "there is no such User ID belongs to this Password".

 2. Done = true.

 Continue

 else

 1."Your forgotten ID is ", UserId.

 2. Flag = false.

 end if.

 end While.

 Step11: End.

 Algorithm (3.7) Changing Password

 Goal: Create a new password to the user in case that he/she forgotten the password

 or want to change his/her knowing password.

 Input:

 Birth: birthday date of the user. //read from client's user

 City: address of the user. //read from client's user

 Ans: answer to the challenge question. //read from client's user

 Pass: new password of the user. //read from client's user

 Output: Changing password of the user in RegDB.

 Step1: Load the JDBC driver from ("sun.jdbc.odbc.JdbcOdbcDriver").

 Step2: Establish the connection to the RegDB.

 Step3: Execute an UPDATE query and change the password of the user with a new

 password.

 Step4: Close connection with a database.

 Step5: End.

 Algorithm (3.8) Retrieving User ID
 Goal: Retrieve the forgotten ID of the user.

 Input:

 birth: Birthday of the user. //read from client's user

 add: Address of the user. //read from client's user

 ans: Answer of question. //read from client's user

 EPass: Encrypted password. //read from client's user

 Output: Uid: retrieving user ID.

 Step1: Call Algorithm (3.3) to decrypt the EPass received from client program

 and put the result in (Pass).

 Step2: Load the JDBC driver from ("sun.jdbc.odbc.JdbcOdbcDriver").

 Step3: Establish the connection to the RegDB.

 Step4: Execute a query that search for an ID with the following (birth, add, ans and

 Pass) and put the result in (UserId) variable.

 Step5: Return (UserId).

 Step6: Close connection with a database.

 Step7: End.

3.6.2 Check Authentication Module
 The goal of this module is to check the authentication status of the user.

If the user is identified, then he/she will be permitted to use SIMSM, else the

user will have to re-login again. Algorithm (3.9) explains how the server

checks the authenticity of the user.

 Algorithm (3.9) Check Authentication Process
 Goal: Check if the user is authenticating user to the SIMSM or not.

 Input:

 _socket: socket address of the user.

 Output:

 Flag: Boolean variable represents True: if this user is valid user or

 False: otherwise.

 Step1: Define a DataInputStream (Ins) within the socket (_socket) to read the

 information came from client.

 Step2: Read the following information:

 userID ← Ins.read().

 time ← Ins.read().

 Random_Num ← Ins.read().

 Digest1 ← Ins.read().

 Step3: Call Algorithm (3.10) to look up the password of the user ID and put result

 in (Password) variable.

 Password ← LookUpPassword(userID).

 Step4: if (Password) is null Then

 Return (false)

 else

 Call Algorithm (3.11) to compute the message digest of (userID, time,

 Random_Num and the Password it just retrieved) and put resulted digest in

 (Digest2) varialbe.

 Step5: Matching

 if (Digest2) is equals (Digest1) then

 Return (true).

 else

 Return (false).

 Step6: Send returned (Flag) to client using a socket API function.

 Step7: End.

 Algorithms (3.10) Look Up Password
 Goal: Find the password of the specific user ID.

 Input:

 userID: ID of the user.

 Soc_user: socket address of the user.

 Output: return_pass: returned user's password.

 Step1: Define DataOutputStream (out) with the (Soc_user) socket.

 Step2: Define Boolean variables:

 Flag: if there is no such user ID.

 Step3: Set Flag1 = False.

 Step4: Load the JDBC driver from ("sun.jdbc.odbc.JdbcOdbcDriver").

 Step5: Establish the connection to the (RegDB) database.

 Step6: Execute a SELECT query to select all the IDs of the users and put the result

 set to (set) variable.

 Step7: While (set.next)

 if there exist such (user ID) in the database then

 1. return_pass ← get the password of this UserID.

 2. Flag = True.

 end if.

 end While.

 Step8: if not (Flag) then

 Step8.1: Out ← "re-enter your ID and password.If you have forgotten

 your ID or password, Click Sign-In Problem boutton".

 Step8.2: return_pass ← null.

 end if.

 Step9: Return (return_pass).

 Step10: End.

 Algorithm (3.11) Make Digest Message
 Goal: Create a message digest.

 Input:

 UserID: ID of the user.

 Pass: password that the server retrieved from the (RegDB) database.

 TimStmp: time stamp.

 RandomNum: double random number.

 Output: digest message (digMess).

 Step1: Prepare the SHA-1 algorithm for using to make a digest message using

 getInstance API function.

 Step2: Apply the SHA-1 algorithm to the input information to compute digest

 message and put result in (digMess) variable.

 Step3: Return (digMess).

 Step4: End.

3.6.3 Complete User Information Module
 In this module, the server is responsible about performing the following

functions:

1. Add user's socket address to a new vector list named as "list".

2. Define a DataInputStream to read the message object from client (see

Table (3.1)).

3. Add user ID name with his/her socket address into a table named

"_UserTable".

4. Add user's name with his/her user object into a table named "_userList".

5. Send to the client a list of online users.

6. Broadcast to all clients that this user is online now.

7. Define a new thread named "Service Thread", which is needed for every

client connected to the server for processing client message object by

calling Process Client Message Module.

Table (3.1) User message object fields

Field name Meaning

_header Describe what client wants to do. Table (3.4) presents

the types of the header.

_username User ID name.

_destination Destination Client's user.

_message Message string.

_host Address of the user's PC.

_user User Object, Table (3.2) presents the fields of user

object.

Userlist A list that contains all the online users in the system.

Table (3.2) User object fields

Field name Meaning

username ID name of the user.

Socket_address Socket address (IP address, Port number) of the PC.

User_Status Integer represents the status of user (see Table 3.3).

isConference Boolean variable has two values:

True: when user want to make conference chat.

False: otherwise.

DHPublic Represent the Diffie-Hellman public key.

Table (3.3) User status

Integer Number String Represented Status

0 ONLINE

1 BUSY

2 OFFLINE

3 AWAY

4 ON THE PHONE

5 BE RIGHT BACK

6 NOT AT MY DESK

Table (3.4) Header types in message object

Header Name

CLIENT_LOGIN

CLIENT_LOGOUT

CONFERENCE_CHAT

PRIVATE_CHAT

USERS_LIST

CHANGE_STATUS

CONFERENCE_CREATE

CONFERENCE_INVITE

CONFERENCE_JOIN

CONFERENCE_DENY

CONFERENCE_LEAVE

3.6.4 Process Client Message Module
 In this module, the server will execute a dedicated function according to

the value of header of the message object (see Table (3.4)). Algorithm (3.12)

explains how this module works.

 Algorithm (3.12) Process Client Message
 Goal: Process the client's user message object.

 Input:

 message: Message Object of the user.

 Output: None.

 Step1: Read the header of the message object (_header).

 Step2: Switch (_header):

 Case CHANGE_STATUS:

 The server called Algorithm (3.13) to notify all online users that this user

 change his/her status and GoTo Step3.

 Case CLIENT_LOGOUT:

1. The server get the socket of this user from UserTable.

2. Remove the user's socket address from the vector list and

 from UserTable.

3. Call Algorithm (3.13) to notify all users that this user is logout and

 GoTo Step3.

 Case CONFERENCE_CREAT:

 Server put the user name with the Selected_List to hash table named conf_list.

 and GoTo Step3.

 Case CONFERENCE_INVITE:

 Server called Algorithm (3.14) to invite users to a conference chat and

 GoTo Step3.

 Case CONFERENCE_JOIN:

 Server called Algorithm (3.15) to write to conference chat and GoTo Step3.

 Case CONFERENCE_DENY:

 Remove user from conf_list and call Algorithm (3.15) to write to the conference

 and GoTo Step3.

 Case CONFERENCE_LEAVE:

1. Server retrieve from conf_list the user's selected list of users.

2. Called Algorithm (3.15) to notify users in his/her Selected_List

 that he/she leaved the conference with a specific time then GoTo Step3.

 Continue

 Case CONFERENCE_CHAT:

 Server called Algorithm (3.15) then GoTo Step3.

 Case CONFERENCE_LIST:

 Server called Algorithm (3.16) to send a conference list to clien then

 GoTo Step3.

 Default Case

 Server called Algorithm (3.17).

 Step3: End.

 Algorithm (3.13) Write To Clients
 Goal: Notify the SIMSM online users.

 Input:

 message: user Message Object.

 list: List contains sockets address of client users.

 Output: None.

 Step1: Define DataOutputStream (dos).

 Step2: For count = 0 To list size

 Step2.1: Get the socket address.

 _socket ← list [count]

 Step2.2: Write message object to user with at the specific socket address.

 dos [_socket] ← message

 Step2.3: End For.

 Step3: End.

 Algorithm (3.14) Invite To Conference Chat
 Goal: Invite the selected users to a conference chat.

 Input:

 Selected_List: list of users selected to invite them to a conference chat.

 message: Message Object.

 Output: None.

 Step1: Define DataOutputStream (dos).

 Continue

 Step2: For i = 0 To size of Selected_List

 Step2.1: Get the socket address from UserTable of the Userlist [i]

 socket ← Get UserTabel. (get Selected_List[i])

 Step2.2: write a message object to the socket define in Step2.1

 dos ← message object.

 end For.

 Step3: End.

 Algorithm (3.15) Write To Conference Chat
 Goal: Join user to a conference chat.

 Input:

 message: Message object.

 Output: None.

 Step1: Get vector list (SList) of the user from the conf_list

 SList r← conf_lis.get(message._destination)

 Step2: For i=0 To size of SList

 Step2.1: Get the socket address from UserTable

 socket ←UserTable.get(SList(i))

 Step2.2: write the message object to the user with the socket (soc).

 end For.

 Step3: End.

 Algorithm (3.16) Request Conference List To Client
 Goal: Request a list of selected user of specific user to make a conference chat with

 them.

 Input: message: Message Object.

 Output: None.

 Step1: Define new Message Object (mess) and make the header of mess as

 _header = CONFERENCE_LIST

 Step2: Get the vector list (SList) of selected user that the user selected before.

 Continue

 SList ← Get conf_list [message._destination]

 Step3: mess._username ← message._username.

 Step4: mess._destination ←message._destination.

 Step5: mess.userlist ← SList.

 Step6: Get a socket address of the user from UserTable

 socket ← Get Socket (userTable [message.username])

 Step7: if (socket) not equal null then

 Step7.1: create a new DataOutputStream (dos) with a socket address

 define above.

 Step7.2: write a mess object to a specific socket address

 dos ← mess

 else

 Display an Exception message named Conference List Exception.

 end if.

 Step8: End.

Algorithm (3.17) Write to Client
 Goal: Write a message object to a specific user.

 Input:

 message: Message Object.

 Output: None.

 Step1: Get a Socket from a UserTable of a specific user.

 socket ← Socket (Get from UserTable [message._destination])

 Step2: Creat a new DataOutputStream (dos) with a socket address (socket).

 Step3: Write a message object to dos.

 dos ← message.

 Step4: End.

3.7 Client Program
 The client program is the main part of SIMSM that is installed on the

remote computers of a LAN. The users of these computers can not access the

chatting system unless their identities are authorized by the server program.

 The client program is divided into five modules, as it will be explained

in the next sections.

3.7.1 Registration Module
 In this module, the client has to perform a number of functions, which

are:

1. Create a socket to be used for connection with server.

2. Connect with the server.

3. Read the public key which is sent from the server.

4. Fill the required registered information.

5. Check the filled information if it satisfy the conditions of registration.

6. Encrypt selected registered information by RSA algorithm, see

Algorithm (3.18).

7. Send the register information to the server for decrypting and storing in

(RegDB) database, see Algorithm (3.2) at server part. And the client

waiting for an acknowledge message from the server.

The registered information are:

1. First Name, Last Name, and Address : those information should not

contains any special characters *, &, !, @, #,$, %, ^, (,), |, ", :, ?, >, <.

Note that the first and last name is for interface presentation not for

authentication.

2. Password: length of password must be at least 8 characters and less than

17 characters. The user is requested to enter a password twice times to

confirm its password.

The password must meet the following requirements:

• The length must be greater than or equal to 8 characters.

• Must contain at least two capital letters.

• Must contain at least two lower letters.

• Must contain at least two numeric characters.

• Must contain at least two special characters.

• Should not contain the first and last name.

3. Birthday date: the birthday date must be valid of the form (YYYY,

MM, DD).

4. UserID: the user ID must be unique, i.e. never used by any other client

before, if it is, then client user should choose another UserID.

5. Challenge information: a string represents an answer to a question; in

SIMSM client program there is specific number of questions, so that the

user selects one of the questions and answer it. This information will be

used when user needs to change the password or wants to retrieve

his/her forgot ID.

 Algorithm (3.18) Encryption
 Goal: Encrypt data.

 Input:

 data: data to be encrypted.

 Puk: Public key.

 _Algorithm: algorithm to be encrypted data with.

 Output: EData : encrypted data.

 Step1: Creating a cipher object using getInstance API function with (_ Algorithm)

 Continue

 cryptograph algorithm.

 Step2: Initialize this cipher object with the ENCRYPT_MODE and (Puk) key.

 Step3: Encrypt the data using doFinal API function and put result in (EData) variable.

 EData ← doFinal (data).

 Step4: Return (EData).

 Step5: End.

3.7.2 Login Module
 After finishing registration, login module is called when the user needs

to use the system. To login, the user must presents its own correct user ID

and password. After successful login the user will be considered to be in

online status. If the user enters invalid login information, the Server part will

prompts him/her to re-enter correct information, for three times as maximum,

after three times the user must waits 3 minutes to try again.

 If the user entered user ID already exist in OnlineClient table, then the

server informs the client that this UserID is already logged in. Algorithm

(3.19) shows how the Login module works.

 Algorithm (3.19) Protect Login Process
 Goal: Login system's member into the chat system.

 Input:

 UserID: the ID of the user.

 Pass1: the password of the user.

 Output:

 Flag: Boolean represent the state of login process (True or False).

 Step1: Read UserID and Pass1.

 Step2: Create a Time Stamp (time) and a double random number (Rnum).

 Step3: Call Algorithm (3.20) to compute the digest message to the (UserID, Pass1,

 time and Rnum) and put result in (Digest1) variable.

 Continue

 Step4: Send (Digest1) to the Server, and server will compute another

 digest named (Digest2) and matching if they are equals, and waiting

 a boolean from Algorithm (3.9) at Server Part.

 Step5: if server sends (true) means successful login then

 GoTo Step6.

 else

 Fail to login, the user has Sign-In problem. Goto Step13.

 Step6:Define a DataInputStream (dis) and DataOutputStream (dos) with a socket API

 function.

 Step7: Call Algorithm (3.21) to generate a Diffie-Hellman key pair to the user and put

 result in (DHKeyPair).

 Step8: Define a UserObject (userObj) to the Client's user with (_username, _address,

 ONLINE, DHPublicKey).

 Step9: Define a MessageObject (message) to the user with a

 _header = CLIENT_LOGIN

 _username = UserID.

 _ host = IP address of user's PC.

 _user = UserObj.

 Step10: Send the (message) object to the server usign a socket API function to start

 a Service Thread to the user.

 Step11: Receive a message object from server.

 Step12: Call Algorithm (3.22) to process server message.

 Step13: End.

 Algorithm (3.20) Message Digest
 Goal: calculating a message digest.

 Input:

 UserID: the ID of the user.

 Pass1: the password of the user.

 time: the TimeStamp that client create it.

 Rnum: the random number client create it.

 Continue

 Output:

 messageDigest : message digest.

 Step1: Create a MessageDigest object with SHA-1 hashing algorithm using

 getInstance API function.

 Step2: Take (UserID, Pass1, time and Rnum) to calculate a message digest.

 Step3: Return (messageDigest).

 Step4: End.

 As mentioned in chapter two, section 2.6.3, the Diffie-Hellman key

agreement algorithm needs to generate DH parameters that include a base

and modulus values. So the system defined 1024 bit DH parameters

sDHParameterSpec (skip1024Modulus, skip1024Base) using a SKIP

protocol.

 Algorithm (3.21) Generate DH Key Pair
 Goal: Generate a DH key pair (public and private keys).

 Input: None.

 Output: keyPair: DH key pair.

 Step1: Create a keyPairGenerator (kpg) using getInstance API finction with a "DH"

 algorithm.

 Step2: Initializing a KeyPairGenerator with sDHParameterSpec.

 Step3: Generating a Key Pair using a genKeyPair API function.

 keyPair ← kpg.genKeyPair().

 Step4: Return (keyPair).

 Step5: End.

 Algorithm (3.22) Process Server Message
 Goal: Process the server message object.

 Input:

 message: Message Object.

 Output: None.

 Step1: Read the header of message object (_header)

 Step2: Switch (_header):

 Case CLIENT_LOGIN:

 the client will open a main frame of chatting system with a Tree Panel of the all

 users that login to the system and add user to(_userlist) then GoTo Step3 .

 Case CLIENT_LOGOUT:

 the client will remove the user from the(_userlist)and from the Tree Panel, and

 notify the Server that this user is logging out from the system and GoTo Step3.

 Case CHANGE_STATUS:

 The client part will update the user status and send the message object of that

 user to server and GoTo Step3.

 Case CONFERENCE_INVITE:

 client will show the invitation windows with available users, and the user

 select the users want to make a conference chat with them, and send it to server

 and GoTo Step3.

 Case PRIVATE_CHAT:

1. client obtains the public key (thierPuk) of the first user from the user's

 user object.

2. call Algorithm(3.26) to generate a secret key with the current user

 private key (Prv) and the remote user's public key (thierPuk).

3. call Algorithm (3.27) to Decrypt the received message with the secret

 key.

4. display the decrypted message in the private chat windows and

 GoTo Step3.

 Step3: End.

3.7.3 Sign-In Problem Module
 This module is called when client's user faced a problem in logging to

the chatting system. This module offers two cases: First, if user forget his/her

ID. Second, if user want to change his/her password.

 The work of this module involves first confirming the identity of the

user by entering the birthday, address and answer to the question provided

when the user registered , then offers to user what he/she has problem with.

Algorithm (3.23) will explain how this module works.

 Algorithm (3.23) Sign-In Problem
 Goal: Find the forget ID and changing a password.

 Input: None.

 Output: None.

 Step1: Read the Birthday date (birth) of the user, //

 Read the address (add) of the user, confirming user identity

 Select a question and the associated answer (ans) to it. //

 Step2: Connect to server using socket API function.

 Step3: Read the public key from the Keyfile and put it in (Puk) variable.

 Step4: If user wants to retrieve his/her forgotten ID then

 Step4.1: Enter his/her password then

 Step4.2: Call Algorithm (3.18) with (password, Puk and "RSA") to encrypt the

 password before sending to the server and put the result in (EPass).

 Step4.3: Send (birth, add, ans and EPass) to Server part for retriving the ID

 of the user. The server call Algortihm (3.8) and put result in UserId.

 Step4.4: Return (UserId)

 Continue

 else

 if user wants to change his/her password then

 Step4.1: enter new password (pass) and confirm password.

 Step4.2: Call Algorithm (3.18) to encrypt the (pass) before sending to the

 server and put result in (EPass) variable.

 Step4.3: Send (birth, add, ans and EPass) to server to change the password

 of user in the (RegDB) database. And the server call Algorithm (3.7)

 for changing the password.

 end if.

 Step5: End.

3.7.4 Secure Private Chat Module
 The function of this module is to establish a secure two party chat

session (private chat) between two users. The user must selects an online

user by double clicking on the ID name of the user and open a private chat

window, at this moment the two users will generate a shared secret key to be

used later when they transfers an instant messaging between them.

 This module is classified into three units; Generate a secret key unit,

Encrypt a message unit and Private chat unit.

A. Generate Secret Key Unit

 This unit is responsible about creating session key between any two

clients (see Algorithm (3.24)). To create such a key Diffie-Hellman key

exchange algorithm is used.

But Diffie-Hellman algorithm is susceptible to a man-in-the-middle attack.

This attack is occurred when a third party places himself/herself between two

users (A and B) and captures messages from A to B and vice versa. With the

third party thusly placed, DH exchange between A and B can be subverted.

The third party establishes a shared secret, say pg at mod with A, and another

shared secret pg bt mod with B, as illustrated in Figure (3.3).

 pg a mod

 pg t mod pg b mod

Figure (3.3) Diffie-Hellman man-in-the-middle attack

To prevent Man-In-the-Middle attack, SIMSM system encrypts the DH

exchange with a shared symmetric key as shown in the Figure (3.4). It shows

the Diffie-Hellman key exchange that will take place between the two users

namely A and B.

Figure (3.4) Encrypt DH public key

Read B
Public Key

B

Public
Key

Read A
Public Key

User A
 a

User T
t

User B
b

A B

Generate DH
KeyPair

Store
Keys

Decrypt using KAB

Generate Session
Key

Generate DH
KeyPair

Store
Keys

Encrypt
with KAB

A
Public Key

Decrypt using KAB

Generate Session
Key

Generate SharedKey

KAB (see Figure (3.5))
Generate SharedKey

KAB (see Figure (3.5))

 Algorithm (3.24) Generate a Secret Key
 Goal: Generate secret key.

 Input:

 thier_Puk: public key of the second user.

 Prv: Private key of the first user.

 Output:

 Secret_Key: Secret Key.

 Step1: Create a Key agreement (ka) using getInstance API function with "DH"

 key agreement algorithm.

 Step2: Initializing a key agreement object with the private key (Prv).

 Step3: Executing a key agreement phase using dophase API function.

ka.dophase (their_Puk, Prv).

 Continue

Server
(Trusted Third Party)

1- generate public (Puk)and
 private (Prv) keys.

2- Ka = D(E(Ka,Puk),Prv).
3- Kb = D(E(Kb,Puk),Prv).

4- generate symmetric
 key (Ks).
5- E (Ks,Ka) and send it to
 user A.

6- E (Ks,Kb) and send it to
 user B.

Server public key (Puk)

Server public key (Puk)

User A

1- generate symmtric key
 (Ka).
2- Encrypt E(Ka,Puk) and

send it to server.

3- Ks = D(E(Ks,Ka),Ka)

User B

1- generate symmtric key
 (Kb).
2- Encrypt E(Kb,Puk) and

send it to server.

3- Ks = D(E(Ks,Kb),Kb)

Figure (3.5): Generating shared key between user A and user B

 Step4: Generate a shared secret key using a generateSecret API function to a "DES"

 algorithm and put result in (Secret_Key) variable.

 Step5: Return (Secret_Key).

 Step6: End.

B. Encrypt Message unit

 After the generation of a secret key by two users, the system encrypts the

typed messages that are transferred between the two users using Triple DES

algorithm with the shared secret key. The first user encrypts the message and

sends it to the second one. When the second user receiving the message

he/she will decrypt the message with the shared secret key generated before

and the message will be display at the private chat window.

Client program of the sending user will call Algorithm (3.18) with (message,

Secret_Key, "TripleDES") to encrypt message before send it. Client of the

receiving user will call Algorithm (3.25) when the second user receiving a

message to decrypt it and display on the private chat window.

C. Private Chat unit

 After the message is encrypted, it will be ready to send during private

chat unit. The client program changes the field of user message object to the

following:

_header = PRIVATE_CHAT.

_message = encrypted message.

_destination = second user ID.

_username = ID of user.

_user = user object of the sender.

_host = IP address of user.

 Then this message object will be send to the server to be sent to the

destination user (see Algorithm (3.17)).

When the destination user receives the message, the Algorithm (3.25) is

called with the (_message, Secret_key) to decrypt it with notification to the

received user.

 Algorithm (3.25) Decryption message
 Goal: Decryption the message.

 Input:

 Emessage: encrypted message.

 Secret_Key: Secret key.

 Output: message: clear text message.

 Step1: Creating a cipher object using getInstance API method with RSA

 cryptograph algorithm.

 Step2: Initialize this cipher object with the DECRYPT_MODE and (Secret_Key).

 Step3: Decrypt the encrypted message using doFinal API function and put result in

 Clear_Mess variable.

 Clear_Mess ← doFinal (Emessage).

 Step4: Return (Clear_Mess).

 Step5: End.

3.7.5 Conference Chat Module
 If user (A) wants to make a conference chat, the client will display to

him/her an invitation window contains a list of an online users. Then the user

(A) will select a number of those users who wants to chat with them. This

module consists of five units: Conference Create unit, Conference Invite

unit, Conference Join unit, Conference Deny unit and Conference Leave unit.

A. Conference Create Unit

 This unit executes the following function, when users (A) want to start

establishing a conference chat:

1. The client display an invitation window contains a list of online users.

2. User (A) select desirable users.

3. Client creates a list of the above users called Selected_List.

4. Client make a new user object named (conf-user) with the following

fields:

 username = user ID name.

 hostaddress = socket address of the user, which contains an IP address

 and port number.

 User_Status = ONLINE.

 isConference = true.

5. Client create a new message object with the following fields:

 _header = CONFERENCE_CREAT.

 _user = conf_user.

 _userlist = Select_List.

6. Client sends the above message object to the server.

7. The server receives and reads the message object, and then create a table

(see Algorithm (3.12)), called conf_list which contains user (A) ID and

his/her selected list.

8. The server returns message object to the client to start invitation process

unit.

B. Invite To Conference Unit

 In this unit, the client will change the header of the message object to be

_header = CONFERENCE_INVITE.

 And sends the message object to server, the server calls Algorithm (3.13)

to send the invitation message to all users in the Selected_List.

C. Join To Conference Unit

1. After the invitation message arrived to all selected user in Selected_List

through the server, the user has two options either accepts the invitation

message and join to the conference or refuses the invitation.

2. If user decided to join the conference chat, the header of his/her

message object will be

 _header = CONFERENCE_JOIN.

3. Client sends the message object to server.

4. The server should add the joined user to a list of joined user and call

Algorithm (3.15) to write to the conference chat.

5. Client reads the user object of the user, if the boolean field in his/her

user object (isConference) is true then it will request from the server a

user conference list (see Algorithm (3.16)) and make the header of user

message object as

 _header = CONFERENCE_LIST.

 _destination = UserID.

 and send it to the server.

D. Deny A Conference Unit

 The second option to the user after the reception of invitation message is

denying the invitation messages to join a conference chat, if the user refuse

to join to conference chat, the header of message object will be

_header = CONFERENCE_DENY

and send his/her message object to the server, the server will reads the

message object and finds the header is CONFERENCE_DENY, so the server

removed this denying user from the Selected_List of conference user and

from the conf_list and send it back to client.

E. Leave A Conference Unit

 If user wants to leave the conference chat, his/her message object will

updated the header to

_header = CONFERENCE_LEAVE.

and sends it to the server, the server will reads a message object and remove

this user from the conf_list and call Algorithm (3.15) to notify all the users in

the conference that this user has leaving the conference chat with a specific

time.

4.1 SIMSM Interfaces
 SIMSM system consists of two interfaces: Server interface, which is

installed in the Administrator computer, and Client interface which is

installed in the other remote computers.

 The client part is executed by SIMSM_client.exe, it must be run in the

remote computers, while at the Administrator side; the SIMSM_server.exe is

executed to start client's serving.

4.1.1 SIMSM Server Program Interfaces
 SIMSM server interface is designed to enable the Administrator to serve

clients reside at the host or remote PC (s) easily.

When SIMSM_server.exe is executed, the frame shown in Figure (4.1) will

appear to the administrator.

Figure (4.1) Server login frame

This frame consists of the following fields:

1. Administrator Name textbox: to allow Administrator to enter his/her

own name for login.

2. Password textbox: to allow Administrator to enter his/her own

password.

3. Login button: after the administrator enters the above information;

he/she will click on login button to access the Main frame of SIMSM

server part.

Then after, SIMSM server program will check if the entered name and

password are both valid or not. If they are valid then the Main frame

will appear as shown in Figure (4.2). Otherwise, an error message will

appear for three times to re-login, and then it terminates the execution.

Figure (4.2) Server main frame

 The Main frame of the server program consists of:

1. Start Server button: to start jobs of SIMSM server. Once the server is

started it will define a Server Socket, wait an acceptation from clients and

then start threads.

2. Stop Server button: to stop server from serving clients by closing the

server socket while the administrator still logging.

3. Exit button: to terminate the execution of the system.

4. About button: A click on this option will cause the display of a frame

contains short information about the SIMSM server, as shown in Figure

(4.3).

Figure (4.3) Server about frame

5. Log button: this button is to view the log table of the users, as shown in

Figure (4.4).

Figure (4.4) Log of users

As displayed in the Figure (4.4), this figure consists of:

1. SQL Query area: allow administrator to filter the table by writing an

SQL query, Administrator can Select, Delete and Update the table of the

users as shown in Figure (4.5).

2. View Table button: to see the result of SQL query issued by

administrator, as shown in Figure (4.4).

3. Log Table: to view the result of the query in this table, this table contains

information such as userID, date and time, login time, client address, port

number and logout time of the user.

Figure (4.5) View log by performing specific query

4.1.2 SIMSM Client Program Interfaces
 SIMSM Client is designed to allow user to chat securely. When a user

executes SIMSM_client.exe, the Login form shown in Figure (4.6) will

appear. The main function of this frame is to authenticate the user to login to

SIMSM messenger.

Figure (4.6) SIMSM Login form

This frame consists of the following fields:

1. SIMSM ID textbox: to allow user enter its own ID for login.

2. Password textbox: to allow user to enter the password assigned to his/her

UserID.

3. Login button: to login an already registered user after entering its valid

ID name and password. If the user enters wrong UserID or password or

both, an error message appears as shown in Figure (4.7) for three times

then the user must wait for 3 minutes and try to login again.

Figure (4.7) Error login message

4. Sign-Up button: to allow user to register as a new member to the system.

5. Sign-In Problem button: to allow the user to change its own password

and retrieving the forgetting UserID after proving his/her identity.

6. Quit button: to close the SIMSM messenger login frame as shown in

Figure (4.8).

Figure (4.8) Exit message

A. Registration into SIMSM
 The following steps show how a new user can use SIMSM client

messenger for registration process:

Step1: Click on Sign-Up button in Login frame, then the Register frame

will appear as shown in Figure (4.9).

Figure (4.9) Registration frame

This frame consists of the following fields:

1. First Name textbox: first name of user, its length must be between 2

and 15.

2. Last Name textbox: last name of user its length must be between 2 and

15.

3. UserID textbox: user ID name to be used to login, it should not contain

special characters like (!, @, #, $, % etc).

4. Check Availability button: clicking on this button allows the user to

check if his/her ID name is used before or not.

5. Password textbox: password to be used with the above UserID for

login, its length must be between 8 and 15, containing at least two

characters between (a-z), two characters between (A-Z), two number

value (0-9) and two special characters, if the password didn't match the

required conditions, an error message will appear as shown in Figure

(4.10).

Figure (4.10) Password error message

6. Question List: list of questions will appear to the user to select one of

them.

7. Answer textbox: the answer to the issued question will appear in this

textbox. This answer is needed when user forget/change its password or

forgot his/her ID name.

Step2: After filling the above registration information, the user must click on

Submit button to send their information to the server. The UserID,

password and answer of the question will be encrypted then they sent

with the others to the server.

Step3: If the entered information accepted by server, then the frame shown

in Figure (4.11) will appear, otherwise an error message

corresponding to the information error will appear and another try is

made by the user.

Figure (4.11) Successful registration message

B. Sign-In Problem
 When the user clicks on Sign-In Problem button as shown in Figure

(4.6), the Sign-In help frame, as shown in Figure (4.12), will appear.

Through this frame, the user is allowed to change his/her password and

retrieve the forgotten ID name.

Figure (4.12) Sign-In problem frame

In this frame the user can Change password and Retrieve the forgotten ID

name.

In both cases, the user must first confirm his/her identity.

Confirming Identity area is done by entering the same information at

registration process, which are: Birthday Date, Address and Answer.

A. Changing Password

 The following steps illustrate the process of changing a known or

forgotten password.

Step1: In order to change the password, the user must first confirm his/her

identity to the SIMSM server. If the birthday date, address or answer

were wrong then an error message will be appear to the user and

another try will made.

Step2: After confirming the identity, the user must enter the new password

with its conditions two times for confirmation as shown in Figure

(4.13). Then the user should press on Change Your Password button

to accept the change.

Figure (4.13) Changing password frame

Step3: After clicking on Change Your Password button, client will encrypt

the password and send it to the server to change the user's password

in the user registration database (RegDB). Then, a message box will

appear to inform the user that password changing operation was

successfully done.

B. Retrieving User ID

 The following steps illustrate the process of retrieving the forgotten ID

of the user.

 Step1: if the user forgets his/her ID, he/she must confirm his/her identity,

and enter password in the field of the second internal frame. See

Figure (4.13).

 Step2: Clicking on Find SIMSM ID button, client will encrypt the

password and send it to the server to retrieve the ID name of this

password.

C. Login into SIMSM
 When SIMSM Chat frame is appeared to the user, as shown in Figure

(4.6); the user should enter a valid SIMSM ID and password, and then made

a click on Login button. Now connection is provided, and the login frame is

displayed as shown in Figure (4.14).

Figure (4.14) SIMSM chat frame

SIMSM chat frame has a tree whose Look & Feel (appearence and the way

in which the user interacts with the program) is similar to that of YAHOO's.

This tree is updated on user login, logout or change status.

SIMSM chat frame contains four menus (SIMSM Menu, Chat, Skin Style,

and Help menu), and it contains user status box, list of users joined to the

system, and total number of users joined to the SIMSM messenger.

1. SIMSM Menu: this menu contains the following options as shown in

Figure (4.15).

Figure (4.15) SIMSM first menu

(a) Login option: if the user likes to re-login with another ID and

password, he/she can perform that by pressing Login option. The same

steps of Login into SIMSM will be executed again.

(b) Logout option: this option is used to logout the user from the SIMSM

system. Clicking on this option makes SIMSM client to send the

logout user ID to the server for removing it from the Online User

table.

(c) Exit option: this option is used to quit the SIMSM messenger. A click

on Exit option will make SIMSM ask user to confirm end of program.

If user select yes, otherwise the SIMSM will closed, SIMSM still

working.

2. Chat menu: this menu has one option, which is of starting a conference

chat as shown in Figure (4.16).

Figure (4.16) Conference chat menu

3. Skin Style menu: the SIMSM messenger contains three different skin

themes as shown in Figure (4.17).

 (a) Windows skin

 (b) Metal skin

 (c) Motif skin

The default skin is the Windows skin; the other two skins are shown in

Figure (4.18).

Figure (4.17) Skin style menu

Figure (4.18) Motif and Metal skin

4. About menu: this menu has one option, which is About, as shown in

Figure (4.19). Clicking on this option causes the appearance of a message

demonstrates the SIMSM chat messenger, as shown in Figure (4.20).

Figure (4.19) Help Menu

Figure (4.20) About flash window

D. Starting Conference Chatting
 When user starts a conference chat by clicks on the option in chat menu

as shown in Figure (4.16), the invitation frame will appear as shown in

Figure (4.21).

Figure (4.21) Invite users to conference

This frame contains the following:

(a) Available user list area: contains the available users in the SIMSM

messenger, the user can select one or more users to be invited to conference

chat.

(b) Selected users list area: contains the ID of the selected users for

conference chat.

(c) Add button: to add user (s) to the selected users list as shown in Figure

(4.22).

Figure (4.22) Adding users to selected list

(d) Remove button: to remove user(s) from the selected users list.

(e) Cancel button: to close the Invite Users to Conference frame and

canceling the invitation to conference chat.

(f) Invite button: when user clicks on Invite button an invitation message

box will be sent to all users in the Selected users list, as shown in Figure

(4.23).

Figure (4.23) Conference invitation message

The invited user either Accept or Deny the invitation, if the user accepts the

invitation, he/she will join the conference chat with the other users in

conference as shown in Figure (4.24).

Figure (4.24) Accept the invitation

After joining a conference chat, the user can adding other users to joining the

conference by using Add to Conference option in Conference menu.

The conference chat frame has a list component used to display the available

users list as shown in Figure (4.25).

Figure (4.25) Starting conference chat

Otherwise, the user will deny the invitation, as shown in Figure (4.26).

Figure (4.26) Deny joining the conference

E. Starting Private Chat
 To start secure private chat, the user must double click on the user ID

name of the only online users then a private chat window will appear as

shown in Figure (4.27).

Figure (4.27) Private chat window

The private chat frame is a Java frame with an area for typing a message and

Java Editor Pane for displaying received messages. The Java Editor Pane has

the ability to display HTML text, this helped to add smileys and other HTML

tags like font, image etc. SIMSM provides smileys like :), >:), :)) etc.

Private chat frame contains one menu: Help menu.

Help menu: this menu has one option, which is Help. Clicking on it will

display another frame contain a help with smile face symbols as shown in

Figure (4.28).

Figure (4.28) Smile faces code

4.2 SIMSM Evaluation
 The evaluation of SIMSM has two prospectivites; Security and Time

Consuming. The security evaluation of the established instant messaging

system depends on two factors; the strength of the used algorithms, and the

secure way to generate the required keys. While the time consuming of

SIMSM is computed according to the time required for sending the instant

messaging between users including the time required to encrypt and decrypt

the message.

4.2.1 Security Factor
 The security of the system was evaluated regarding to the three main

processes: (1) Registration process, (2) Authentication process, (3) Chatting

process.

A. Registration Process Security

 To protect sensitive registration information from being attacked through

the communication channel, SIMSM encrypts those information using RSA

algorithm to satisfy confidentiality and integrity. The selection of RSA is

based on two mathematical problems: the problem of factoring large number,

and the discrete logarithm problem.

 From the registration information is the password which is considered the

most sensitive data. If the password of the user is attacked by brute force

attack then it will takes very long breaking time to know the password. In the

established system, the password is recommended to be between 8-15

consisting characters from (A-Z), (a-z), (0-9) and (*,#, $,@,%,!) i.e. 68

characters, so the system as whole consist of (68)8+ (68)9+…+ (68)15

possible password of length between 8 to 15. It takes long time so it is very

enough to make this type of attack not attractive.

B. Authentication Process Security

 At the authentication phase, a secure procedure was used in the

authentication to protect password. A basic problem in client/server

applications is that the server wants to know who its clients are. In a

password-based scheme, the client prompts the user for his/her name and

password. The client relays this information to the server. The server checks

the name and password and either allows the user into the system or denies

access. The password is a shared secret because both the user and the server

must know it. The obvious solution is to send the user's name and password

directly to the server. But most computer networks, however, are highly

susceptible to eavesdropping, so this is not a very secure solution.

To avoid passing a clear text password from client to server, SIMSM send a

message digest of the password instead and the server creates a message

digest of its copy of the password. If the two message digests are equal, then

the client is authenticated. But this simple procedure is vulnerable to a replay

attack. A malicious user could listen to the digested password and replay it

later to gain illicit access to the server. So to avoid this problem, some

session-specific information were added to the message digest. In particular,

the client generates a random number and a timestamp and includes them in

the digest. These values must also be sent, in the clear, to the server, so that

the server can use them to calculate a matching digest value. The server

receives the extra information and includes it in its message digest

calculations. Figure (4.29) shows how authentication of the proposed system

works at the client side.

C. Chatting Process Security

 To achieve the goal of security of chatting which is the confidentiality of

instant messaging three points are taken into consideration:

1. Key distributed problem: Any private-key system suffers from the key

distributed problem. In order for secure communication to occur, the

key must first be securely sent to the other party. In the proposed

system, the Diffie-Hellman key exchange algorithm is used to solve this

problem. Such that between any two clients, the secret key is calculated

separately.
2. Man-In-The-Middle attack problem: This is solved by encrypting DH

exchange with a shared symmetric key created by DES algorithm.

ID
random number
timestamp

Digest
Algorithm

Client

Server

Figure (4.29) Protecting a password in SIMSM

3. Unencrypted communication problem: The main target of the system

which is the encryption of the exchange messages by using triple DES

algorithm using the session key generated in the above point.

4.2.2 Time Consuming Factor

 One of the important issues of any instant messaging system is

depending on the consuming time to send and receives messages between

clients. The time consuming was calculated regarding to the main processes

in the system which are: Registration process, Authentication process, and

Chatting process. The time of each process was calculated first alone for

multiple cases, then the total time for receiving the message was calculated

next.

A. Registration Process
The time for the following test cases including the time for computing

keys in addition to the time for encrypting and decrypting the registered

data using RSA.

Test Case One:

 The consuming time in case one is calculated for the same user but at

different times.

Table (4.1) Time to register one user

PC

 Name

PC

Address

Time for Registration

(measured in mile seconds)

PC1 192.168.0.11 625

PC1 192.168.0.11 578

PC1 192.168.0.11 641

PC1 192.168.0.11 563

PC1 192.168.0.11 609

 Average time = 623.2 ms

Test Case Two:

In this case five users make registration at the same time on different PCs.

Table (4.2) Time to register five users

PC

Name

PC

Address

Time for registration

(measured in mile seconds)

PC12 192.168.0.12 1047 579 872

PC10 192.168.0.10 953 625 679

PC8 192.168.0.8 875 750 969

PC3 192.168.0.3 1028 984 593

PC2 192.168.0.2 830 890 730

 Ave=946.6 Ave=756.6 Ave =768

Average Time = 832.73ms

One can notice from the above tables, the average time to complete the

registration process is less than one second, which is considered acceptable

waiting time for the user. Especially it occurs for once.

B. Authentication Process

 The time consuming for authentication process is the time for generating

DH key pair, computing digest message plus additional time.

Test Case One:

 The consuming time in case one is calculated for the same user but at

different times.

Table (4.3) Time for authentication process

PC

Name

PC

Address

Server

Address

Time to generate

DH key pair (ms)

Total Time for

 login

PC1 192.168.0.1 192.168.0.101 172 828

PC1 192.168.0.1 192.168.0.101 172 719

PC1 192.168.0.1 192.168.0.101 172 719

PC1 192.168.0.1 192.168.0.101 188 656

PC1 192.168.0.1 192.168.0.101 172 859

 Average Time (ms) = 175.2 756.2

Test Case Two:

 In this case five users were logged-in to the SIMSM at the same time on

different PCs.

Table (4.4) Time to login five users

PC

Name

PC

Address

Time to generate

DH key pair

Time for

 Login

PC12 192.168.0.12 187 188 171 Ave =182 2328 1125 656

PC10 192.168.0.10 187 250 203 Ave =231.3 950 1422 1906

PC8 192.168.0.8 187 172 188 Ave =182.3 2391 894 1281

PC3 192.168.0.3 204 188 188 Ave =193.3 937 1266 765

PC2 192.168.0.2 188 187 188 Ave =187.6 834 960 847

 Average Time (ms) = 1488 1123.4 1091

C. Chatting Security

 The time consuming for chatting process is the time for generating

session key for the first send message only between two users. In addition to

the consumed time for encryption of the message at client A, sending the

message, and decryption of the message at client B.

Test Case One:

 The consuming time in case one is calculated for the chatting process

between two users (A and B) using different transmitted message length

characters, see Table (4.5).

Test Case Two:

 The consuming time in case one is calculated for the chatting process

between six users using different transmitted message length, see Table

(4.6).

Table (4.5) One-to-One chatting

Table (4.6) Five-to-One chatting

* Zero (0) indicate the measured time is not significant (it is less than 0.5
millisecond)

Source PC
Name

Destinat
ion PC
Name

Messa
ge

Lengt
h

(char)

Time to
generate

Secret key
(in

millisecond)

Time for
Encryption

(in millisecond)

Time for
 Decryption

(in millisecond)

Time to receive message
from destination (ms)

PC1 PC2 20-40 16 15 0
*

0
*

Ave=
15

1
5

0
*

0
*

Ave=15 243 13
1

14
7

Ave=17
3.6

PC1 PC2 40-60 16 16 0
*

0
*

Ave=
16

1
6

0
*

0
*

Ave=16 147 15
2

14
7

Ave=
148.6

PC1 PC2 60-80 16 16 0
*

0
*

Ave=
16

1
6

0
*

0
*

Ave=16 153 14
7

14
7

Ave=
149

PC1 PC2 80-100 16 32 0
*

0
*

Ave=
32

3
2

0
*

0
*

Ave=32 153 15
3

14
7

Ave=
151

Source
PC

Name

Destination
PC

Name

Message
Length
(char)

Time to
generate

Secret key
(in

millisecond)

Time to receive message from
destination (in millisecond)

 PC2 PC3 PC4 PC5 PC6
PC2,PC3,PC4,PC5,PC6 PC1 20-40 16 550 787 1146 816 848 Ave =

829.4
PC2,PC3,PC4,PC5,PC6 PC1 40-60 16 520 692 1342 620 850 Ave =

820.8
PC2,PC3,PC4,PC5,PC6 PC1 60-80 16 960 1140 750 840 670 Ave =

872
PC2,PC3,PC4,PC5,PC6 PC1 80-100 16 869 1385 947 754 950 Ave =

981

Test Case Three:

 In this case seven PCs are chosen to be used for chatting. Such that the

users of these PCs are chatting among themselves. For example the user of

PC1 is sending messages to the users of PC3, PC5 and PC7, at the same time

the user of PC1 is receiving messages from the users of PC2, PC3, PC4 and

PC6.

Table (4.7) Chatting process

PC Name (Sending Messages To)

 PC1 PC2 PC3 PC4 PC5 PC6 PC7

PC1 762 864 876

PC2 673 830 764 737

PC3 948 843 787

PC4 790 906 864

PC5 890 853

PC6 890 925 830

PC7 744 643 984

 Once can notice from Table (4.7), when the server is busy to services a

number of clients, the required time for serving and chatting between users is

still less than one second.

PC

Name

 (Receiving

Messages

From)

5.1 Conclusions
 During the design, implementation and evaluation phases of this

research project, a lot of remarks have been issued in the following are some

of them are listed:

1. The established system allows users on a LAN (Local Area Network) to

communicate with each other securely, quickly and with the features:

secure private chat, conference chat, and transfer smile with text.

2. The proposed protocol is estimated to have a real time performance good

enough to the instant messaging from the time of generating the secret

key to the time of decrypting messages, which is less than one second.

3. Applying security to conference chat with three or more parties using

Diffie-Hellman key exchange techniques is timing involved because each

party listens for keys coming from the left, performs a phase of the key

agreement , and passes the resulting key to the right.

4. The appearance of high values of the time required for testing the system

is due to many reasons for examples, the time needed to run the interface,

the time needed to run resident programs, the time required to optimize

the pc clock, etc.

5.2 Future Work
 In the following some suggestions for future work are given to enhance

the proposed secure instant messaging and make it more effective:

1. Provide more features to the proposed system (like File transfer,

Voice chat, Application sharing, Offline messages, etc).

2. Running the proposed system on a large network area.

3. Making the established system scalable, by increasing number of servers,

using distributed server instead of centralized server and therefore, the

system will be scalable with respects to the number of users it can handle.

Adding new user to the system without making worse its performance.

Also make the system geographically scalable. It means that if its users or

components lay far a part, this does not affect the overall performance of

the system.

4. Future implementation can also support more types of messages; possible

extensions include support for URLs.

5. Using a cluster of servers instead of using single server to achieve

recovery and backup cases.

References

[Abd05] Abdul Mannan, M.; “Securing Public Instant Messaging",

M.Sc. thesis, School of Computer Science, Carleton University,

Ottawa, Ontario, Canada, August, 2005.

[Alm03] Almanei, S.; “Secure Instant Messaging: the Jabber Protocol”,

M.Sc. thesis, Electrical Computer Engineering, Oregon State

University, June 3, 2003.

[Bry06] Bryn Mawr College Website, "What are primitive roots?",

2006.

http://www.brynmawr.edu/math/people/stromquist/numbers/prim

itive.html

[Can01] Canavan, E., J.; "Fundamentals of Network Security", Artech

House, ISBN 1-58053-176-8, 2001.

[Cun06] Cunningham & Cunningham Inc, "Discrete Logarithm

Problem", 2006.

[Dav07] Davis, K.; “AskNow Instant Messaging: innovation in virtual

reference”, National Library of Australia, Staff Paper, 2007.

[Dun02] Duncan, R.; "An Overview of Different Authentication

Methods and Protocols", SANS (SysAdmin, Audit, Network,

and Security) Institute, White Paper, 2002.

http://www.brynmawr.edu/math/people/stromquist/numbers/prim

[Fip02] Federal Information Processing Standers Publications 180-2

(FIPS), "Secure Hash Standard", U.S. DOC, National

Institute of Standards and Technology, August 1, 2002.

[Fis00] Fisch, A., E.; White, B., G.; “Secure Computers and Networks:

Analysis, Design and Implementation”, CRC Press, 2000.

[Fly04] Flynn, N.; "Instant Messaging Rules: a business guide to

managing policies, security, and legal issues for safe IM

communication", AMACOM, ISBN 0-8144-7253-2, 2004.

[Fre03] Fredrik, S.; "Implementation of an Instant Messaging Client

using the OMA IMPS Protocol", M.Sc. thesis, Umea

University, Sweden, 2003.

[Fun05] Fung, T., K.; "Network Security Technologies, Second

Edition", CRC press Company, 2005.

[IEC04] International Engineering Consortium; “Instant Messaging:

Definition And Overview”, December, 2004.

http://www.iec.org/online/tutorials/instant_msg/

[Kam00] Kammer R. G.; "Digital Signature Standard (DSS)", Federal

Information Processing Standards Publication 186-2, U.S.

Department of commerce, National Institute of Standard and

Technology, Paper, January 27, 2000.

http://www.iec.org/online/tutorials/instant_msg/

[Kes07] Kessler, C., G.; "An Overview of Cryptography", White Paper,

December, 2007.

 http://www.garykessler.net/library/crypto.html

[Kim03] Kim H., C.; Au L.; Wang G., W.; “Secure Instant Messaging

System”, CSE 400 Final Report, April 27, 2003.

[Kli03] Kling, M. ; "Unsecured Session with ICQ: applying forensic

computing", M.Sc. thesis, Department of Software Engineering

and Computer Science, Bleking Institute of Technology,

Sweden, June, 2003.

[Knu98] Knuden, B., J.; "Java Cryptography", First Edition, O'Reilly,

ISBN 1-56592-402-9, May, 1998.

[Kol01] Kolodgy, C.; "Biometrics: You Are Your Own Key", School of

Management, the University of Texas at Dallas, Center for

Information Technology and Management, 2001.

http://citm.utdallas.edu/research/Publications/white_papers_sour

ce/Biometrics.pdf

[Leg04] Liggio, S.; Kulve, T.; Riva, O.; Saarto, J., and Kojo.; "An

Analysis of Instant Messaging and E-mail Access Behavior in

Wireless Environment", IIP Mixture Project, University of

Helsin Department of Computer Science, March, 2004.

[Man04] Mannan, M.; Oorshot V.; "Secure Public Instant Messaging",

M.Sc. thesis, Carleton University, September, 2004.

http://www.garykessler.net/library/crypto.html
http://citm.utdallas.edu/research/Publications/white_papers_sour

[Mol07] Mollin, A., R.; "An introduction to cryptography, Second

Edition", Chapman & Hall/CRC, Taylar & Francis Group, ISBN

1-58488- 618-8, 2007.

[Oll04] Ollmann, G.; "Instant Messaging Security: Securing Against

the Threat of Instant Messengers", White Paper, March, 2004.

http://www.technicalinfo.net/papers/IMSecurity.html.

[Ost06] Osterman Research Inc.; “Instant Messaging Tough Enough

for Business: No Server Required”, An Osterman Research,

White Paper Prepared for WebEx, September 2006.

[Pfl97] Pfleeger, P., C.; “Security in Computing”, Prentice Hall, 1997.

[Pfl02] Pfleeger, P., C.; Pfleeger, L., S.; "Security in Computing",

Third Edition, Prentice Hall PTR, ISBN 0-13-035548-8,

December 2, 2002.

[Pic02] Piccard, P.; “Risk Exposure Through Instant Messaging And

Peer-to-Peer (P2P) Networks”, an X-Force White Paper,

Internet Security Systems, April, 2002.

[Pip04] Piper, F., Robshaw, J., B., M., and Schwiderski-Grosche S.;

"Identities and authentication", Royal Holloway College,

University of London, 2004.

 http://www.berr.gov.uk/files/file15274.pdf

http://www.technicalinfo.net/papers/IMSecurity.html
http://www.berr.gov.uk/files/file15274.pdf

[Rit05] Rittinghouse, J., W.; Ransome, J., F.; “IM Instant Messaging

Security", Elsevier digital press, ISBN 1-55558-338-5, 2005.

[Sec01] The Secure Hash Algorithm Directory, "The Secure Hash

Algorithm Directory MD5, SHA-1 and HMAC Resources",

2001.

http://www.secure-hash-algorithm-md5-sha-1.co.uk/

[Sha05] Shaw, P.; “Instant Messaging in the Workplace: Real Benefits,

Real Risks”, the source for IBM eServer Solution, Published 3

March, 2005.

http://www.mcshowcase.com/mcpress/Showcase.nsf/Focus/

8C77AE2EBA38BA0388256FB8007A5807?OpenDocument

[Sta06] Stamp, M.; "Information Security: principle and practice",

Willy Interscience, ISBN 13 978-0-471-73848-0, 2006.

[Sym02] Symantec Enterprise Security Inc.; “Securing Instant

Messaging”, White Paper, 2002.

[Wha08] “Learn IT: Instant Messaging in the Workplace”, 2008.

http://whatis.techtarget.com/definition/0,,sid9_gci934583,

00.html

[Wil03] William, S.; "Cryptography And Network Security, Principles

and Practice", Prentice Hall, Upper Saddle River, New Jersey,

2003.

http://www.secure-hash-algorithm-md5-sha-1.co.uk/
http://www.mcshowcase.com/mcpress/Showcase.nsf/Focus/
http://whatis.techtarget.com/definition/0,,sid9_gci934583

[Wil04] Williams, N.; Ly, J.; “Securing Public Instant Messaging (IM)

At Work”, Technical Report 040726A, Swinburne University of

Technology, Melbourne, Australia, September, 2004.

[Wrz02] Wrzesinska, M.; "A Secure Instant Messaging System", M.Sc.

thesis, Vrije Universiteit, June, 2002.

[Zup06] Zupan, A.; "Digital signature as a tool to achieve competitive

advantage of organization", M.Sc. thesis, University of

Ljubljana, 2006.

[Zwi00] Zwicky, D., E.; Cooper, S.; Chapman, B., D.; "Building Internet

Firewalls", Second Edition, O'Reilly & Associates, ISBN 1-

56592-871-7, June, 2000.

Web Sites:
• [Zer08] http://en.wikipedia.org/wiki/Zero-knowledge_proof

• [Web04] http://www.webopedia.com/TERM/D/DES.html

• [Wik07] http://en.wikipedia.org/wiki/Cryptographic_protocol

• [Wik08] http://en.wikipedia.org/wiki/Modular-arithmetic

http://en.wikipedia.org/wiki/Zero-knowledge_proof
http://www.webopedia.com/TERM/D/DES.html
http://en.wikipedia.org/wiki/Cryptographic_protocol
http://en.wikipedia.org/wiki/Modular-arithmetic

 In order to make Java access information in the database, it should

establish a connection with JDBC deriver and to make this connection the

following steps are needed:

Step1: Creating the Microsoft Access Database

 All you need to do is create the Access database and enter the data. To

do this, launch Microsoft Access and create a database.

Step2: Making the DSN Connection

 Now that the database is complete, there is one more step you need to

take to ensure the Java application you develop can make a connection to it.

This step is highly dependent on the platform that you are using. In this

example, you need to make a Data Source name (DSN) connection to the

database. This is the mechanism that allows the application to connect to the

database itself.

To accomplish this, you first need to bring up the Control Panel as indicated

bellow and click on the Administrative Tools icon.

Figure (A.1) Control panel window

Once you get to the Administrative Tools dialog box, you then click on the

Data Sources icon as seen in next Figure.

Figure (A.2) Administrative tools

Clicking on the Data Sources icon will bring you to the ODBC Data Source

Administrator that will allow you to specify the name and the driver to be

used by the application.

Figure (A.3) ODBC Data Source Administrator

Once you are in the ODBC Data Source Administrator, click on the File

DSN tab and click on the Add button (note that you won't see the

purchaseOrder System Data Source Name until you complete the add

process). The Microsoft ODBC Access Setup dialog box appears as shown

bellow.

Figure (A.4) ODBC Microsoft access setup

There are two things that must be completed in this dialog box:

1. Create a Data Source Name.

2. Click on the Select button and literally find the db.mdb file that you

previously created, as shown in the next figure.

Figure (A.5) Select a database

 At this point the DSN connection with database is complete.

 الخلاصة

المحادثة الفوري ھي شكل من أشكال الاتصال المباشر والحقیقي ب ین اثن ین او أكث ر م ن

ة المحادثة الفوریة نمت وانتشرت بسرعة بین مأنظ. الناس بالاعتماد على النص المطبوع

أنظم ة المحادث ة الفوری ة الحالی ة تع اني م ن مش اكل ف ي لك ن اغل ب .مس تخدمي الش بكة

واتص الاتھم یج ب إن لا , المس تخدمین یرغب ون ف ي الحف اظ عل ى خصوص یاتھم . الأمنی ة

 .تستنسخ ولا تعدل من قبل طرف ثالث

یحق ق المش روع الأھ داف . ھ ذا المش روع یق دم تص میم وتنفی ذ نظ ام محادث ة ف وري آم ن

یض من ب ان المحادث ة تق را .ت وسلامتھا عن طریق التشفیرالأمنیة مثلاً خصوصیة البیانا

المختص ر) SIMSM(أس م النظ ام المقت رح اختی ر لیك ون .فقط من قبل الشخص المعني

)SIMple Secure Messenger.(

SIMSM الخ ادم -عل ى تقنی ة الزب ون دص مم للش بكات المحلی ة بالاعتم ا)Client-

Server .(SIMSM لا . سال واس تقبال الرس ائل الفوری ة بی نھم یمكّنِ المستخدمین من إر

ی وفر , یرسل ویستقبل بسھولة الرسائل النص یة القص یرة . یحتاج إلى الاتصال بالانترنیت

إع لام المس تخدم , دردش ة المجموع ة , می زات الإرس ال القیاس یة مث ل الدردش ة الفردی ة

 .رةبالتغییرات الآنیة لباقي المستخدمین و تشفیر الرسائل النصیة القصی

وح دة التس جیل الت ي تس جل : ھن اك وح دات أساس یة یتك ون منھ ا النظ ام المقت رح وھ ي

وح دة ال دخول الت ي تس مح للمس تخدمین المخ ولین بال دخول إل ى المستخدمین ف ي النظ ام؛

وح دة مش اكل ال دخول ال ذي یتعام ل م ع مش اكل نس یان الھوی ة وكلم ة الس ر النظ ام؛

ي تمكن المستخدم من الدردشة الخاصة مع مستخدم للمستخدم؛ وحدة الدردشة الخاصة الت

آخر؛ ووحدة دردشة المجموعة التي تمكن أكثر من مستخدم للدردشة مع بعضھم البعض

 .في نفس الوقت

الأمنی ة و الوق ت : النظام المقترح قد قُیم طبقا لعاملین مھمین ف ي أنظم ة الإرس ال الفوری ة

مناس ب لخدم ة الدردش ة SIMSMت ب ان عدة حالات تجریبیة قد أخ ذت وبین . المستھلك

و لغ ة) Windows API Function(النظ ام المقت رح صُ مم باس تخدام ال دوال . الآمن ة

.)6.0.0.105(البرمج ة جاف ا نس خة

 جمھوریة العراق
 وزارة التعلیم العالي والبحث العلمي

 جامعة النھرین
 كلیة العلوم

 نظام محادثة فوري لشبكة اتصالات
 ع بعض سمات الأمنيةمحلية م

 رسالة

 جامعة النھرین في إلى كلیة العلوم ھمقدم

 الماجستیر درجة كجزء من متطلبات نیل شھادة

 بوفي علوم الحاس

 من قبل
 مروة سعد ملكي القس

)2005 بكالوريوس جامعة النهرين(

 نرفوشالم
جمال محمد كاظم . د یوسف عبیر متي .د
 1929 شوال 2008تشرین الاول

