Republic of Iraq

Ministry of Higher Education and Scientific Research
Al-Nahrain University

College of Science

Block Symmetry Predictor to Improve
Fractal Image Compression

A Thesis Submitted to the College of Science, AL-Nahrain
University In Partial Fulfillment of the Requirements for
The Degree of Master of Science in Computer Science

Submitted by:
Ruaa Abdullah Jaber
(B.Sc. 2006)

Supervised by:
Dr. Loay E. George

November 2008 Thu Algeda 1429

T####%###%###%###%###¥,

vhuv

AUT
MYL S

4&0

o S5 BN
roa MMV JEONF
=0

t

L
A
@

)
v
L
L
L
'Y‘LY“
"

)
!
5
)

ol

E{?
oy

("l g
L)

Y
B JON
:

o’
'v
vis
) :'Y’l)"‘
YoM

)

)

14

)02

o
Y9
V2%
97

T

(i
@85

#
V)
##

55 #####################

Supervisor Certification

I certify that this thesis was prepared under our supervision at the
Department of Computer Science/College of Science/Al-Nahrain
University, by Ruaa Abdullah Jaber as partial fulfillment of the

requirements for the degree of Master of Science in Computer Science.

Supervisor

Signature:
Name : Dr. Loay E. George
Title : Senior Research

Date /12008

The Head of the Department Certification

In view of the available recommendations, I forward this thesis for

debate by the examination committee.

Signature:

Name : Dr. Taha S. Bashaga

Title : Head of the department of Computer Science,
Al-Nahrain University.

Date /[/2008

Certification of the Examination Committee

We certify that we have read this thesis and as an examining
committee, examined the student in its content and what is related to it,
and that in our opinion it meets the standard of a thesis for the degree of

Master of Science in Computer Science.

Signature:

Name: Dr. Abdul Monem S. Rahma
Title : Assistance Professor
Date : / /2008

(Chairman)
Signature: Signature:
Name: Dr. Bushra Q. Al-Abudi Name: Dr. Haithem A. Al-Ani
Title : Assistant Professor Title : Lecturer
Date : / /2008 Date : / /2008
(Member) (Member)

Signature:

Name: Dr. Loay E. George
Title : Assistant Professor
Date : / /2008

(Supervisor)
Approved by the Dean of the College of Science, Al-Nahrain University.

Signature:

Name: Dr. LAITH ABDUL AZIZ AL-ANI
Title: Assist. Prof.
Date: / /2008

(Dean of College of Science)

DEDICATED TO MY

PARENTS...
SISTERS...
AND BROTHERS...

To everyone
Taught me a letter

2

)5
¥

R R RS ik

etnooledgment

7 would lbe to express my diuncene appreciation to my
supersison, Dr. Loay E. Geonge. {for giving me the major
defpe To go on To explore the subject, sharing with me the
ideas in my rneseanch "Block Symmetry Predicton to
Tmprove Fractal Tmage (Qompresscon" and discuss the
fpointe that) felt they are important.

Grateful thanks for the Fead of Department of Computer
Science. Dn. Taka S. Badkaga.

Ao, T wish to thank the otaff of (Compater Scieace
Deparntment at H-Natnain Wnivensity for thein help.

7 would libe to say "thank you" to my factliul frieuds for

Abstract

Various compression methods have been proposed to achieve high
compression ratios and high image qualities in low computation time.
One of these methods is Fractal Image Compression. The basic idea of
fractal image compression is the partitioning of input image into non-
overlapping range blocks. For every range block a similar but larger
domain block is found. The set of coefficients of mapping the domain
blocks to the range block, using affain transform, is recorded as
compression data. The compressed image data set is called the Iterated
Function System (IFS) mapping set. Decoding process applies the
determined IFS transformations on any initial image, and the process is
repeated many times till reaching the attractor.

In this research work, four IFS coding schmes have been
established and tested. The first scheme is the traditional Fractal Image
Compression (FIC) method, it is implemented on color images after
transforming the (RGB) color components to (YCbCr) components. The
compression results led to encoding time=144.02 sec, compression
ratio=8.89 and PSNR=33.39.

The second scheme uses the FIC method with a predictor based on
centralized moment features, this predictor is introduced to predict the
type of symmetry operation required to set the domain block in a proper
state to best matches the range block. The use of this predictor helps in
reducing the number of trials of symmetry mappings from 8 trials to only
one symmetry case. The use of predictor had reduced the encoding to
approximately 14% in comparison with that of traditional method.

The third and fourth scheme implies the use of FIC method

enhanced by the use of moment descriptor (order-1) and (order-3),

respectively. Either of these descriptors is used to classify the domain and
range blocks into classes, each class is assigned by a class index whose
value is equal to moments descriptor value. For encoding each range
blocks only the domain blocks have similar descriptor values to that for
range block will be IFS-matched with it. In these schemes the symmetry
predictor, used in the second scheme, had been used to reduce the search
about the best available similar domain block. The attained encoding time
in both 3™ and 4™ scheme is approximately 0.9% of that spend by a

traditional scheme.

List of Abbreviations

Abbreviation Meaning
BMP Bitmap
BR Bit Rate
Cr Compression Ratio
dB decibels
DPCM Differential Pulse Coding Modulation
FIC Fractal Image Compression
HV Horizontal Vertical
HVS Human Vision System
IFS Iterated Function System
ISM Improved Searching Mechanism
LCM Loosely Coupled Multiprocessing
MAD Mean Absolute Difference
MAE Mean Absolute Error
MSE Mean Square Error
NTSC National Television Systems Committee
PAL Phase Alternating Line
PIFS Partitioned Iterated Function System
PSNR Peak Signal to Noise Ratio
RGB Red, Green, Blue
RMSE Root Mean Square Error
SSD Sum of the Squared Difference
SSE Sum of the Squared Error

vi

Table of Contents

Chapter One: General Introduction

1.1 Preface ---==--===mm e 1
1.2 Image CompPresSion ===--====m==mmmmmm oo oo oo 2
1.3 Fractal Image Compression =----=---========mmmmmmmmem e 3
1.4 Partitioned Iterated Function System --------====-===cmmcmmmmmmmeee- 3
1.5 Related Work ==----==mmmm e 6
1.6 Aim of Thesis ==========mmm e 10
1.7 Thesis Layout ==----==mmmmmmm oo oo 11

Chapter Two: Fractal Image Compression

2.1 Introduction -=---======= === 12
2.2 Fractals —--====mmmm oo 12
2.3 Self Similarity ---==--====mmm e m e 13
2.4 Famous Fractal Shapes ---------========— oo 14
2.5 Color Models ==========m e 16
2.6 Image Fractal Coding ------=========mmmmm oo 20
2.7 Iterated Function System for Zero-Mean Blocks -------------------- 22
2.8 Moment DeSCriptor =-===-=====m=mmmm oo 24
2.9 Moments Ratio Factor ------------———=—eceomeeee oo 25
2.10 Down Sampling Methods -----============== oo 26
2.11 Affine Transformation --------===memmmmmm oo 28
2.12 Partition Schemes ===-========m oo 30
2.13 QuUantization ===-========m = 34

2.13.1 Scalar Quantization --------============ee 34
2.14 DPCM (Differential Pulse Coding Modulation) -------------------- 35
2.15 The Test Measures ----==--=========mmmmm oo 39

A. Fidelity Criteria ----=-==-========m e 39

vii

B. Compression Compactness ----------==========--=mmmommm e~ 42

2.16 ENtropy ===-mmmmmmmmm oo oo e oo oo e 42
2.17 Huffman Coding -----============ === oo 43
2.18 Arithmetic Coding ------==============mm oo 44
2.19 Shift Coding ==---======= == 45

Chapter Three: The Enhanced FIC-Scheme

3.1 Introduction —-==--===m==mm s 47
3.2 The System Model ---=-========mm oo 48
3.3 Encoder Module -----=====mmmmmm oo oo 49
3.3.1 Load BMP Image ---------========mm s 49
3.3.2 Conversion from RGB to YCbCr Color Space -------------- 51
3.3.3 Down Sampling -------==========mmmm oo 51
3.3.4 Resizing the Bands (Y, Cb, Cr) -=----===—====mmmemm - 53
3.3.5 FIC Encoder —========m e e e e e 56

A. Range Pool Generation -----=---======--=emmmmmmmmme - 56

B. Domain Pool Generation ----=====-====mcmmmmemmmmmoeee - 58

C. Determination of Some Involved Coding Parameters ---- 58
D. Blocks Isometry State Assignment --------------------—---- 59
E. Blocks Classification Using Moments-Based Descriptor 64

F. Sorting of Domain Blocks ----------==--==mmmeemmcemm - 65

G. Range Blocks Coding -------==========mmmmmmmmmm oo 67

3.3.6 Encoding the IFS Code ---------========mmmmmm e 73

3.4 Decoder Module -=--==-=======m oo m e 76
3.4.1 Load and Decode the IFS Code --------=====-mmmmmmeeeee - 76
3.4.2 FIC Decoder =-=-=====mmmmmmmm e e 77

A. Dequantization --=----========mmmmm oo 79

B. Reconstruction of Range Pool --------------==---cceemecee - 79

viii

3.4.3 Range Pool Resizing ------=----====—=mmmmemm e 80
3.4.4 Up Sampling --------====-mm oo 83
3.4.5 Conversion from YCbCr to RGB ------------— e - 84

Chapter Four: Performance Test Results

4.1 Introduction =======mmm e e 86
4.2 Image Test Material -------========—m = 87
4.3 Testing Strategy ----------==mmmmmmm oo oo 88
4.4 Block Length Test ~---==---===mmm=mm e 88
4.5 Jump Step Test —---mmmmmmmm e 91
4.6 Maximum Scale Test -------=mmmmmmmm oo 94
4.7 Scale Bits Test ==nmmmmmmmm e e 97
4.8 Offset Bits Test —---===--===m oo 101
4.9 Minimum Error Test ==---=--=mmmmmmmm e 104
4.10 Minimum Block Error Test -----==------mmmmmemm e 108
4.11 Number of Bins Test -----=====-=====mmm e 112
4.12 WIindow Size Test ==-mmmmmmmmmmmm e oo 115
4.13 The Effect of Both No. of Bins and Window Size ---------------- 118
4.14 Implementing Dis1FIC on Different Images ---------------------- 120
4.15 DISCUSSION ======== === == o oo e e 122

Chapter Five: Conclusions and Future Work

5.1 Conclusions ===========mmmm oo 124
5.2 Future Works -===-====-— = 125
References

X

leptt@r&n@
1.1 Preface

The term fractal was first used by Benoit Mandelbrot to designate
objects that are self-similar at different scales. Such objects have details
at every scale [NeGa95].

Mandelbrot's fractal geometry provides both a description and a
mathematical model for many of the seemingly complex forms found in
nature. Shapes such as coastlines, mountains and clouds are not easily
described by traditional Euclidean geometry. Nevertheless, they often
possess a remarkable simplifying invariance under changes of
magnification. This statistical self-similarity is the essential quality of
fractals in nature [BDMS&8].

Fractals are ubiquitous in complex natural phenomena. They are
observed in the architecture of the mammalian lung, they determine the
inter-beat interval in human heartbeats and the variation in human strides,
they influence the information content of DNA sequences, and they
describe the branching of trees and the root systems in plants, as well as
the growth of bacterial colonies and many other biological systems. In
physical phenomena they are also seen everywhere, in viscous fingering,
dielectric breakdown, snowflake growth, and so on [WBGO03].

Michael Barnsley and his coworkers at the Georgia institute of
technology were the first to recognize the potential interest of fractal
methods for image compression. Barnsley developed the theory of
Iterated Function Systems (IFS), which was introduced by J. Hutchinson
in 1981. After the publication of Barnsley’s book "Fractals Everywhere"
in 1988, and his paper in the January-1988 issue of BYTE magazine,

Ghapter One General Introdiuction

fractal image compression (FIC) became a very fashionable subject. The
interest in this technique was aroused by the fantastic compression ratios
claimed by Barnsley (i.e. up to 10,000 to 1). Together with Alan Sloan,
Barnsley found Iterated Systems, Inc. and obtained US patent (4,941,193)
on image compression using IFS.

A breakthrough was made in 1988 by Arnaud Jacquin, one of
Barnsley’s Ph.D. students. Instead of trying to find an IFS for a complete
image, Jacquin brought the idea of partitioning the image into non-
overlapping ranges, and finding a local IFS for each range. Jacquin
developed the theory of Partitioned Iterated Function Systems (PIFS) and
implemented a version of his algorithm. The main difficulty of FIC
process is to find within the image reduced copies of the whole image.
Real-world images often contain some self-similarity, but only between
selected portions of the image. The breakthrough made by Jacquin was to
partition the input image, and to find a local IFS for each partition. With
this new method, it finally became possible to completely automate the
compression process and furthermore to do it in a reasonable amount of
time.

Yuval Fisher, Roger Boss, and Bill Jacobs were also among the first

pioneers to make public contributions to the theory of PIFS [NeGa95].

1.2 Image Compression

The fast development of multimedia computing has led to the
demand of using digital images. The manipulation, storage and
transmission of these images in their raw form is very expensive, it
significantly slows the transmission of the applications contain them and
makes their storage costly. However, digital image processing is
exploited in many diverse applications, but the size of these images

places excessive demands for storage and transmission technology. Image

Ghapter One General Introdiuction

data compression is required to permit further use of digital image
processing, it is the process of reducing the number of bits required to
represent these images with lower bit rate, better quality and fast

implementation [KD98].

1.3 Fractal Image Compression

In fractal image compression the image to be coded is partitioned
into blocks called ranges. Each range is approximated by another part of
the image called domain [RHS97].

Fractal image compression is a block based image compression, it
detects and encodes the existing similarities between different regions in
the image. It allows interesting compression ratios; however it suffers
from long compression (encoding) time, whereas the decompression is
fast. The time consuming part of the encoding step is due to the search for
an appropriate domain block for each range block. Most of time required
in the fractal compression is spent in the matching of a large number of
blocks in the image. To speed up the fractal coding time, several methods
have been devised to accelerate the search and reduce the encoding
complexity, such as the Fisher classification method, or other methods
which some of them are based on using artificial intelligence techniques

(like, genetic algorithms and artificial neural networks) [Moha03].

1.4 Partitioned Iterated Function System

The theory of iterated function systems defines mathematically some
concepts of chaos and irregularity. The research done mainly by Barnsley
led to significant new methods for image understanding. Other
researchers have followed those ideas and focused on the special

characteristics of IFS fractals (such as, the measures over IFS attractors).

Ghapter One General Introdiuction

IFS description provides a potential new method for researching the
image shape and texture. It forms, through a set of simple geometric
transformations, a basic set of tools for interactive image construction.

Iterated function systems are based on the mathematical foundations
laid by Hutchinson. IFS fractals have an elegant recursive definition: A
fractal is constructed from a collage of transformed copies of itself; it is
inherently self-similar and infinitely scalable.

The transformation is performed by a set of affine maps. An affine
mapping of the plane is a combination of a reflection, rotation, scaling,

sheer and translation (See Figure 1.1).

Ya
0.60
D50
D.40

0.30
020

010

0 A
B .10 .30 f.40 b.40 BED 060)]

Figure (1.1) Geometric transformations implemented in the IFS model [Niki07]

Partitioned iterated function systems (PIFSs) are utilized in fractal

image compression schemes. To solve the image encoding problem, it is

Ghapter One General Introdiuction

important to find a PIFS such that its attractor is as close to the encoded
image as possible [Niki07].

The idea of fractal compression had reached the practical reality by
Jacquin when he introduced the partitioned IFS (PIFS); which differs
from an IFS in that each of the individual mappings operates on a subset
of the image, rather than the entire image. Since the image support is tiled
by "range blocks," each of which is mapped from one of the "domain
blocks", as depicted in Figure (1.2), the combined mappings constitute a
transform on the image as a whole. The transform that minimize the
collage error within this framework is constructed by individually
minimizing the collage error for each range block. This transform
requires locating the domain block which may be made closest to each
approximated range (using affain mapping). This transform is represented
by specifying, for each range block, the identity of the matching domain
block together with the block mapping parameters which minimizes the
collage error for that block. Distances are usually measured by the mean-
squared error (MSE) metric since optimization of the standard block

mappings is simple under this measure [WoJa99].

- - .
|
A
Partition Scheme Virtual Codebook
{Range Blocks) {Domain Blocks)

Figure (1.2) One of the block mappings in a PIFS representation [WoJa99]

Ghapter One General Introdiuction

1.5 Related Work

Many researchers have considered FIC as headlines in their work;
some of their published works are the following:

1. Wohlberg and Jager (1994) [WoJa94], they indicated that lossy image
coding by partitioned iterated function systems, popularly known as
fractal image compression, had become an active area of research. In
this scheme, an image is coded as a set of contractive transformations
in a complete metric space. As a result of a well known theorem in
metric space theory, the set of contractive transformations (subject to a
few constraints) is guaranteed to produce an approximation to the
original image, when iteratively applied to any initial image.

2. Rejeb and Anheier (1997) [ReAn97], proposed a time improved
fractal image coder with a reduced domain pool and optimal
luminance transform parameters calculation. This scheme is applicable
to the Fischer's (1994) classification method. The encoding process is
accelerated by reducing the domain pool, and then by minimizing the
number of operations for the similarity search; this reduction is based
on discarding the domains with nearly the same variance from each
class of the domain pool. This approach provided a greater speed loss
with a slight loss in the compression ratio and a slight improvement in
image quality. The results of the conducted experiments showed that
an acceleration of 6.7 for the image “Lena” is reached with a good
decoded image quality. For a speed up factor of 2, the compression
ratio is about 0.8% reduced and the image quality is about 0.23%
improved. In order to increase the compression ratio again Jaquin's
(1992) method was used, and some of the range blocks with shade

property have been removed from the search.

Ghapter One General Introdiuction

3. Salih and Smith (1999) [SaSm99], presented a method of mapping
similar regions within an image by an approximation of the collage
error, this resulted in writing range blocks as a linear combination of
domain blocks. Also, they addressed the complexity of the encoder, by
proposing a new classification scheme based on the domain and range
blocks moments which reduced the encoding time by a factor of
hundreds with insubstantial loss in the image quality.

4. Chang and Kuo (2000) [ChKu00], they referred that the domain pool
design is one of the dominant issues which affect the coding
performance of fractal image compression. This paper employed the
LBG algorithm and proposed a block averaging method to design an
efficient domain pool based on a proposed iteration-free fractal image
codec. The redundancies between the generated domain blocks have
been reduced by the proposed methods. Therefore, the obtained
domain pool is more efficient than that generated in the conventional
fractal coding scheme, and thus the coding performance is improved.
On the other hand, the iteration process in the conventional fractal
coding scheme not only required a large size of memory and a high
computation complexity but also prolongs the decoding process. The
proposed iteration-free fractal codec can overcome the problems
mentioned above. By the conducted computer simulation, it was
noticed that both the LBG-based and block-averaging methods for the
domain pool design in the proposed iteration free scheme have
achieved excellent performances. For example, based on the proposed
block-averaging method, the decoded Lena image has at least a 0.5 dB
higher PSNR (under the same bit rate) and an eight-time faster
decoding speed than the conventional fractal coding schemes that

require iterations.

Ghapter One General Introdiuction

5. Al-A'mri (2001) [AlamO01], presented a hierarchical quad-tree scheme
for partitioning image, in FIC, in two different ways; fixed block size
and variable block size. In these methods the image is partitioned into
sub-squares called ranges. The domain blocks are obtained by shifting
a block of twice the range size over the original image. Although,
various kinds of criteria could be used for image partitioning; in this
study a uniformity criterion had been utilized to perform image
partitioning.

6. Tong and Wong (2002) [ToWo02], they referred that fractal image
encoding is a computationally intensive method of compression due to
its need to find the best match between image sub-blocks, this done by
repeatedly searching a large virtual codebook constructed from the
image under compression. One of the most innovative and promising
approaches to speed up the encoding is to convert the range-domain
block matching problem to a nearest neighbor search problem. This
paper presented an improved formulation of approximate nearest
neighbor search based on orthogonal projection and pre-quantization
of the fractal transform parameters. Furthermore, an optimal adaptive
scheme is derived for the approximate search parameter to further
enhance the performance of the new algorithm. Experimental results
showed that this new technique was able to improve both the fidelity
and compression ratio, while significantly reduce memory
requirement and encoding time.

7. Al-Dulaimy (2003) [Aldu03], the main purpose of his work is to
reduce the encoding time of fractal image compression method. He
proposed two approaches: the first is based on a new mathematical
approach, called Improved Searching Mechanism (ISM), which
determines IFS codes with less number of computation steps. While in

the second approach, called Loosely Coupled Multiprocessing (LCM),

Ghapter One General Introdiuction

the encoding operations are executed using loosely coupled
multiprocessing system.

8. Yung-Gi (2005) [YungO05], in his work he proposed an algorithm to
improve the time-consuming encoding drawback by an adaptive
searching window, partial distortion elimination (PDE), and
characteristic exclusion algorithms. The proposed methods efficiently
had decreased the encoding time. In addition, the compression ratio is
also raised due to the reduced searching window. While conventional
full search fractal encoding to compress a 512x512 image needs to
search 247,009 domain blocks for every range block, this
experimental results showed that the proposed method only needs to
search 122 domain blocks, which is only 0.04939% compared to a
conventional fractal encoder, at a bit rate of 0.2706 bits per pixel (bpp)
while maintaining almost the same decoded quality in visual
evaluation.

9. Distasi, Nappi, and Riccio (2006) [DNRO6], the proposed a method to
reduce the complexity of the image coding phase by classifying the
blocks according to an approximation error measure. It was formally
shown that postponing range/domain comparisons with respect to a
preset block, is possible and can reduce drastically the amount of
operations needed to encode each range. The proposed method had
been compared with three other fractal coding methods, showing
under which circumstances it performs better in terms of both bit rate
and/or computing time.

10.Al-Hilo (2007) [Alhi07], designed and implemented a color image
scheme using PIFS method. Since the main weak point in FIC is its
need for long encoding time, in this research project a new block
indexing method was suggested in order to reduce the long encoding

time. The idea of reducing the mapping search operation is based on

Ghapter One General Introdiuction

making IFS matching between the range and domain blocks that have
similar block indexing values; this leads to significant reduction in the
encoding time. The proposed block indexing process is based on using
moments (mg;, myp) to produce an invariant descriptor to classify
domain and range blocks. The utilization of this feature had
significantly reduced the number of matching trials to find the closest
domain block for each range block. The invariance of the proposed
descriptor against affine transforms was the main reason behind
reducing the number of range-domain comparisons which in turn led

to speeding-up the domain search task.

1.6 Aim of Thesis

The aim of this work is to design and implement a fractal image
compression system based on [FS-transform for zero-mean range-domain
blocks. Some improvements were performed on the IFS-matching stage,
these improvements implies the use of two moment based indexes as
criterion to reduce the number of range-domain matching trials. This first
moment based index is IFS-invariant, it is used to classify the range and
domain blocks, and then only the blocks have similar indexes are passed
through the domain-range matching test. While, the second index is
utilized to predict the type of isometric process needed to be applied on
the domain block to ensure the best IFS-matching state with the tested
range block. Some additional steps are proposed to improve the
performance of the improved FIC scheme, due to these additional steps
the range pool partition could be done for any chosen block size without
necessity for choosing block size as a divisible factor of both image width

and height.

10

Ghapter One General Introdiuction

1.7 Thesis Layout

In addition to chapter one, the remaining parts of this thesis consists
of the following chapters:

Chapter Two: (Fractal Image Compression)

In this chapter some image compression methods beside to fractal
image compression technique are presented. Also, the relevant concepts
and theorems with partitioned iterated function system, block symmetry
predictor and moments descriptors are explained.

Chapter Three: (The Enhanced FIC-Scheme)

In this chapter, the proposed system design and implementation steps
are given. The encoding and decoding modules are described in details.
Chapter Four: (Performance Test Results)

This chapter is dedicated to present the results of the conducted tests
on the established coding system using different bitmap test images.
Chapter Five: (Conclusions and suggestions)

Some conclusion remarks that derived from the analysis of test
results are given in this chapter. Also, some suggestions for future work

are listed.

11

Chapter Two
Fractal Image Compression

2.1 Introduction

This chapter introduces the definition of fractal, and the
classification of its models. Also some of the famous fractal shapes, and
some relevant concepts used in fractal image compression are presented.
The aspects and equations deal with fractal image compression are
described.

The concept of moments descriptor (which is used in this research
work), affine transformations, down sampling methods, fidelity criteria,
image partitioning schemes, quantization, Differential Pulse Coding
Modulation (DPCM), and some color models are also described in this

chapter.

2.2 Fractals

A good definition of the term fractal is elusive. Any particular
definition seems to either exclude sets that are thought of as fractals or to
include sets that are not thought of as fractals.

The definition of a "fractal" should be regarded in the same way as
the biologist regards the definition of "life." There is no hard and fast
definition, but just a list of properties characteristic of a living thing. In
the same way, it seems best to regard a fractal as a set that has properties
such as those listed below, rather than to look for a precise definition

which will almost certainly exclude some interesting cases [Fish95].

12

(G/f’apter Jwo Fractal Jmaqe tompre&.n'on

When referring to fractal objects, most researchers typically define

them as things that [Niki07]:

Have a 'fine' structure, continual zoom in any region of a fractal
can lead to fascinating complex details.

Show some form of self-similarity, mostly approximate or
statistical. Fractals provide a repeated graphical content that is
easy to recognize and is visually appealing.

Are too irregular to be described by the classic Euclidean
geometry, both globally and locally. The lack of tangents presents
a serious drawback for differential geometry-based analysis and
modeling.

Usually have a non-integer 'dimension' (defined in some way).
Such a dimension is greater than the fractal topological
dimension. Unlike the widely known Euclidean dimension (0 for
a point, 1 for lines and curves, 2 for filled circles and 3 for cubes
and other volumetric objects), the fractal dimension is not
necessarily an integer.

Are usually defined in a very simple way. Most fractals have
relatively simple models that exploit recursive or iterative

rendering schemes.

2.3 Self Similarity

A typical image does not contain the type of self-similarity found in

fractals. But, it contains a different sort of self-similarity. Figure (2.1)

shows regions of Lenna that are self-similar at different scales. A portion

of her shoulder overlaps a smaller region that is almost identical, and a

portion of the reflection of the hat in the mirror is similar to a smaller part

of her hat.

13

tﬁapter Jwo Fractal Jmaqe tompre.r.n'on

Figure (2.1) Lena image with self-similarity

The difference here is that the entire image is not self-similar, but
parts of the image is self-similar with properly transformed parts of itself.
Various studies indicated that most of the natural images contain this type
of self-similarity. It is the restricted redundancy type that fractal image

compression schemes attempt to eliminate [Sank98].

2.4 Famous Fractal Shapes

In general, fractals can be classified into two categories:
Deterministic and Random fractals. The first category represents a type of
fractals that are composed of several scaled down and rotated copies of
themselves (such as Sierpinski triangle, Von Koch curve, Hilbert curve,
Mandelbrot and Julia set). The second category represents natural
phenomena that are everywhere in nature (such as clouds, mountains,
coastlines, turbulence, roots, branches of tree, blood vessels, etc...)
[TaLo98].

Two popular shapes of deterministic fractals are described in the

following:

14

(G/f’apter Jwo Fractal Jmaqe tompre&.n'on

1. The Sierpinski Triangle

The Sierpinski triangle is named after the Polish mathematician
Waclaw Sierpinski, who described some of its interesting properties in
1916 [Mand04]. It is one of the simplest fractal shapes. It can be
generated by infinitely repeating a procedure of connecting the midpoints
of the three sides of triangle to form four separate triangles, and cutting
out the triangle in the center. Figure (2.2) illustrates the stages of

Sierpinski triangle construction [LaniO4].

Figure (2.2) Sierpinski triangle construction stages [Lani(04]

2. Von Koch Curve

The curve of Von Koch is generated by a simple geometric
procedure, which can iterate an infinite number of times by dividing a
straight line segment into three equal parts and substituting the
intermediate part with two segments of the same length. Von Koch curve
is a very elementary example of fractal; it follows a simple rule of

construction. Figure (2.3) presents the stages of Von Koch construction

[Bour91].

] M 27T Tote,

Figure (2.3) Von Koch curve construction stages [Bour91]

15

(Gﬁ"apter Jwo Fractal Jmaqe tompre&.n'on

2.5 Color Models

The purpose of a color model (also called color space or color
system) 1s to facilitate the specification of colors in some standard in
accepted way. In essence, a color model is a specification of a coordinate
system and a subspace within that system, where each color is
represented by a single point [Gonz02].

In the following some of the popular color models used in various

compression schemes are given:

1. RGB model

The red-green-blue (RGB) primary color system is the best known of
several color systems. This is due to the main feature of the human
perception of color. The color sensitive area in the Human Vision System
(HVS) consists of three different sets of cones and each set is sensitive to
the light of one of the three primary colors: red, green, and blue.
Consequently, any color sensed by the HVS can be considered as a
particular linear combination of the three primary colors [ShSu00].

Figure (2.4) shows the RGB color space, using a cube created by
three axes representing pure red, green, and blue color. A main property
of this color space is that the sum of all three basic colors, using
maximum intensity, is white. Gray-scale values follow the line from
black (the origin of the coordinate system) to white [Klin03].

The RGB model is used mainly in color image acquisition and
display systems. In color signal processing, including image and video
compression, the luminance-chrominance color system is more efficient
and, hence, widely used. This has something to do with the color
perception of the HVS. It is known that the HVS is more sensitive to
green than to red, and is least sensitive to blue. An equal representation of

red, green, and blue leads to inefficient data representation when the HV'S

16

(Gﬁ"apter Jwo Fractal Jmaqe tompre&.n'on

is the ultimate viewer. Allocating data only to the information that the

HVS can perceive can make video coding more efficient.

1 Blue

(0,0,1) Cyan Gray-scale Line

Magenta Whlte/
Green
Black (0,1,0)
(1,0,0)
Yellow
Red

Figure (2.4) RGB Color Cube [Klin03]

Luminance is concerned with the perceived brightness, while
chrominance is related to the perception of hue and saturation of color.
Roughly speaking, the luminance-chrominance representation agrees
more with the color perception of the HVS. This feature makes the
luminance-chrominance color models more suitable for color image

processing than RGB representation [ShSu00].

2. YUV model

The color space in Phase Alternating Line (PAL) TV-Standard
System is represented by YUV, where Y represents the luminance and U
and V represent the two color components [Ghan03]. The luminance Y

can be determined from the RGB model via the following relation:

Y=0.299R+ 0.587G+ 0.114B ,.....eevceeeeeeeeeeeeeeeeeeeee . 2.1)

17

(G/f’apter Jwo Fractal Jmaqe tompre&.n'on

It is noted that the three weights associated with the three primary
colors, R, G, and B, are not the same. Their different magnitudes reflect
the different responses of the HVS to different primary colors.

Instead of being directly related to hue and saturation, the other two

chrominance components, U and V, are defined as color differences, as

follows:
U=0.492(B- Y) seeeeeiaiie e et e e e (2.2)
V=0.87T(R-Y) e e e, (2.3)

In this way, the YUV model lowers computational complexity. It has
been used in Phase Alternating Line (PAL) video standard. Note that
PAL is an analog composite color TV standard and is used in most
European countries, some Asian countries, and Australia. In composite
systems, both the luminance and chrominance components of the TV
signals are multiplexed within the same channel. For completeness, the

transform equations from expression of RGB to YUV are listed below:

Y 0.299 0587 0.114 \(R
U|=|-0.147 —0.289 0436 | G| seeeeririiiiiiiiiiiiiniiniininnin. (2.4)
V 0.615 -0.515 -0.100 \ B

3. YIQ model

This color space has been utilized in National Television Systems
Committee (NTSC) TV systems. NTSC is an analog composite color TV
standard and is used in North America and Japan [ShSu00].

The luminance information is still in Y, which represents the gray
scale information, while hue (I) and saturation (Q) carry the color

information [T1Aj05].

18

(G/f’apter Jwo Fractal Jmaqe tompre&.n'on

The two equations below shows that the two chrominance
components (I, Q) are the linear transformation (i.e., rotation by 33°) of

the U and V components defined in the YUV model. Specifically,

I=-cos(B3)U+SIN(33)) e (2.5)
O =5sI(33)U+ coS(33)V 5 enriiiiiiiieie e, (2.6)

Substituting the U and V expressed in Equations (2.2) and (2.3) into
the above two equations, the YIQ could directly expressed in terms of

RGB. That 1s,

Y 0.299 0.587 0.114 \(R
I [=]0.596 —0.275 —0321[G| serevvnvinniniiiiiiiiiiiiiiiinean, (2.7)
0 0212 -0.523 0311 \ B

4. YDbDr

The YDbDr model is used in the Sequential Couleur a Memoire
(SECAM) TV system. SECAM is used in France, Russia, and some
eastern European countries. The relationship between YDbDr and RGB is

shown by the following expression:

Y 0.299 0.587 0.114 (R
Db |=]—-0450 —0.883 1.333 || G| seeeernineiiiiiiiiiiiiaannnnn, (2.8)
Dr -1.333 1.116 -0217\ B
That is,
Db =3.050U ..o (2.9)
Dr=-2.100V e (2.10)

19

(Gﬁ"apter Jwo Fractal Jmaqe tompre&.n'on

5. YCbCr model

From the above mentioned models, it can be seen that the U and V
chrominance components are the differences between the gamma-
corrected color B and the luminance Y, and the gamma-corrected R and
the luminance Y, respectively. The chrominance component pairs I and
Q, and Db and Dr are both linear transforms of U and V. Hence they are
very closely related to each other. It is noted that U and V may be
negative as well. So, in order to make chrominance components
nonnegative, the Y, U, and V are scaled and shifted to produce the
YCbCr model, which is used in the international coding standards JPEG
and MPEG [ShSu00], where Y is the luminous component while Cb and
Cr provide the color information [TiAj05, ShSu00]:

Y 0.257 0504 0.098 | R 16
Ch|=[-0.148 —0.291 0439 | G [+]|128 | seeerrrrrrrreercreeennennnn(2.11)
Cr 0439 -0368 -0.071)\B 128

R) (1 0001 1.582 Y'Y
G|l=|1 1863 =0.0002 | Ch| ,eevurieeeeniieiiiiieiiiiaein... (2.12)
B) 1 —0.188 —0.469) Cr

2.6 Image Fractal Coding

PIFS image encoder consists of a set of transforms on regions of the
image. The set of regions (i.e., the domain blocks) from which the
transform domains are chosen are overlapped, while the regions (i.e., the
range blocks) forming the ranges of the transformation are tiled.

The set of transformations consist of a spatial contraction (e.g.,
averaging each 4 neighboring pixels) to construct a kxk blocks from a
2kx2k blocks, followed by one of the 8 square symmetry operations (4
rotations and 4 reflections), and followed by a contractive affine

transformation on the grey scale values (for a block with pixel values).

20

(G/f’apter Jwo Fractal Jmaqe tompre&.n'on

For a range block with pixel values (7y,7;,....,7,n.7), and the domain

block (dy,d;,....,d,.;),the contractive affine approximation is,

!

B S S, F 0, e e e (2.12)

Where s (scale) and o (offset) are the affine transform coefficients, ;' s
are the approximate (constructed) range values. The scale (s) and offset
(o) parameters are determined by applying the method of least sum of

square errors (y°) between 7' and r values [ToPi01]:

m—1
=2 r-n)
OO U SO OUUO PR RO PRPR (2.13)

Os 0o

After straight forward manipulation to above equations, the following

expressions for scale (s) and offset (0) coefficients are obtained:

m—1 m—1 m—1
my dr =2 d, 3,
_ =0 i=0 =0
g1 S0 (2.14)
m—1 m—1
m dlz—[d[j
i=0 i=0
m—1 m—1 m—1 m—1
5SS
B RS, (2.15)

In each range-domain matching instance before determining the
value of 4, the scale (s5) and offset (o) values should firstly imposed to
the clipping conditions (0, < 0 < 04) and (] s |< Spax), Where (0,1,
omax) are the lower and upper boundaries of the permissible values of
offset, sn.x 1S the maximum permissible scale value. Secondly, they

should be quantized by using the following equations:

21

(G/f’apter Jwo Fractal Jmaqe tompre&.n'on

i, = round(s (2"_l —2)} .. (2.16)
Smax
: 2" -1
i) = round| —=———(0=0,;,) [s-rererereeiiiiiii i, (2.17)
Omax _Omin
! Smax
= el e e (2.18)
= e (2.19)

Where, i; and i, are the quantization indices of scale and offset
coefficients. s, and o, are the quantized values of scale and offset
coefficients respectively. The quantized values of scale and offset
parameters should be used to construct the approximates ' and the sum of
errors (y°).

To asses the involved computational complexity; consider an nxn
image partitioned into non-overlapping range blocks, each clock has a
size (kxk). The number of tiled range blocks is #”/k°, while the number of
domain blocks is (n-2k-1)°. The computation of best match between a
range block and a domain block is O(k’). Considering & to be constant,
the computational complexity of an exhaustive search is O(n’).

The most direct and easy way to reduce the search complexity is by
monitoring the matching error; at any matching instance the IFS matching
error is checked. If it is below a pre-defined permissible level ¢
(threshold) then the registered domain block is considered as the best
matched block and, then, the search across the domain blocks is stopped

[Geor06].

2.7 Iterated Function System for Zero-Mean Blocks

The traditional offset factor has dynamic range [-255,510], this may

cause large errors in some image regions (or points), especially those

22

(G/f’apter Jwo Fractal Jmaqe tompre&.n'on

points belong to high contrast area. Also, the traditional offset factors
require an additional bit (sign-bit). The results of some conducted tests
indicated that the offset values of adjacent range blocks doesn't show
significant correlation similar to that registered between the average
brightness values of the adjacent blocks. So, to handle this disadvantage a
change in the traditional IFS scheme was introduced, where the

contractive affain transform is changed to become [ToPi01]:

Pl = S(d, =) e (2.20)
Where,

1 m—1

) N (2.21)
m i

_ 1 m—1

A =) e e (2.22)
m i=0

To determine the scale (s) value, the method of least sum of

square errors (equations 2.13) is applied to get [Geor06],

m=1 _
1 dr,—dr
g={ =0 102 50 el (2.23)
Oy
0 if o, =
_ m=1
1 =0’ +S|:SO'§, +2d7—£2diri} et e, (2.24)
m i
Where,
m—1
02 = LN @ (2.25)
m i—o
m—1
02 =S F (2.26) [Geor06]
m i=0

23

(G/f’apter Jwo Fractal Jmaqe tompre&.n'on

2.8 Moment Descriptor

In general, moments are set of parameters which describes the
distribution of material (in image processing it is equivalent to brightness)
relative to a reference point or an axis. The idea of using moments to
construct the image feature vectors is one of the most common methods
used today. Each moment order reflects different information for the
same image.

For a 2-D continuous function f{x,y), the moment of order (p+q) is

defined as :

m, = T]zxpyqf(x,y)dxdy e et e (2.27)

—00—00

Forp,q=0,1,2,

A uniqueness theorem states that: if f{(X,y) is piecewise continuous
and has nonzero values only in a finite part of the xy-plane, moments of
all orders exist, and the moment sequence (m,,) is uniquely determined

by f(x, y). Conversely, the set of moments {m,,} uniquely determines f(x,

y)-
The central moments are defined as:
M,y = J-J.(x—xc)p(y—yc)qf(x,y)dxdy et ettt (2.28)
Where
c="0 and y, =T
M, My,

For a 2-D discrete function f(X,y), the moment of order (p+q) about

the center point (x., y.) is defined as [Gonz02]:

24

(G/f’apter Jwo Fractal Jmaqe tompre&.n'on

Hoy =2 0 (x=X) (1= 1) S6D) et (2.29)

When this definition is applied to determine the first order moments

of the domain and range blocks the following expressions are obtained:

M,010)= S (x, —k)(d, -)

M,00=Y (v, ~k)d, -)

e e e (2.30)
m—1
M, (1,0) = D" (x, — k) =7)
i=0
m—1
i=0
Where,
_ 1 m—1
A =) A i 2.31
m ; i ()
Fo L3 2.32
r —;;r[ye e et e (2.32)
k-1
K = e 2.33
= (2:33)
k 1s the block width (or height).
2.9 Moments Ratio Factor
Consider the following Moments-Ratio factor (R):
MQOD if [M(1,0)] > [M (0,1)
_JM(10)
R= M(L0) e et (2.34)
—>= if' M0, M(1,0
M) if |M (0,1 > |M (1,0

It is easily to prove that the magnitude of R factor is rotation and
reflection invariant. Also, by combining equations (2.34), (2.30) and

(2.20), we can easily prove that:

25

(Gﬁ"apter Jwo Fractal Jmaqe tompre&.n'on

Ry =R e, (2.35)

r

This result implies that "if the range and domain blocks satisfy the
contractive affine transform, then their moments ratio factors (R4 and R))
should have similar magnitudes. This doesn't means that any two blocks
have similar R magnitudes are necessarily similar to each other".

This fact is utilized to improve (speed up) the range-domain search
task. Instead of comparing all domain blocks with each affine
transformed range block, only the domain blocks whose moments-ratio
factors (R) are similar to that of the tested range block should be passed
through the IFS-matching test [Geor(06].

2.10 Down Sampling Methods

Down sampling is a process used for minification only. It may be
used to create thumbnail representations of an image. The basic idea
behind down sampling process is to represent a block of adjacent pixels
with one pixel. The type of down-sampling method depends on the speed
and quality requirements. The most popular down-sampling methods are

[Cran97]:

1. Median Representation

Median representation replaces a block of pixels with its median
value, see Figure (2.5) where an nxn window is passed over the image.
For each down sampled block, its pixels values are read and put into an
array, and then sorted in ascending order according to their values. The
middle value is then used to represent that block. This method requires
much computation time due to the number of comparisons needed to sort

the block of pixels.

26

Ghapter Jwo

Fractal Jmaqe tompre&.n'on

2. Average Representation

Average representation also uses the nxn window (see Figure 2.6).

Each block of pixels is represented by the average of all pixels values.

This is not as slow as median representation.

Input image
L 13 4 8
|~ 2 9 6
7 25 16
L1]

Ordered

pixels

2

4

Output image g

8

/ 9

13

] 16

25

Figure (2.5) Minification by median representation

Input image

Output image

2 9 6
7 25 16
Average

vy

pixels

/10

Figure (2.6) Minification by average representation

27

(G/f’apter Jwo Fractal Jmaqe tompre&.n'on

2.11 Affine Transformation

An affine transformation 1is the composition of a linear

transformation with translation. It can be written as:
wx,y)=(ax+by+e,cx+dy+ f)=(X",0") seeereiiiiiiiiiiiiiiiii (2.36)

Where, w is the affine transformation, (a, b, ¢, d, e, and f) are real
numbers, (x,y) are the old coordinates of the transformed point, and (X',
y") are the new coordinates of the point.

This transformation is a two-dimensional affine transformation
[Colv96], it maps a plane to itself. In matrix form, the general equation of

an affine transformation is:

w@ _ [‘c’ Z j@{;} T (2.37) [San97]

WOX) = AX AT e (2.38)

Where, 4 is a (2x2) real matrix
e 1s the translation along x-direction
f1s the translation along y-direction
(a, b, c, d) are the coefficients of combined isometric operations

(i.e., scaling, rotation, skew, reflection).

T = [;j is called the translation vector [Colv96]

Affine transformations can skew, rotate, scale and translate a

matrix [Sank98]. As a special case, a matrix A can be written in the form:

I R T s R (2.39)
c d r;sin@ r,cosf

Where, 1, =va’ +¢’ is the scaling factor along x-direction.

28

t/fapter Jwo Fractal Jmaqe tompre.r.n'on

r, =vb> +d”* 1is the scaling factor along y-direction.

tan@ = < is the angle of rotation around x-direction.
a

There are seven (simple) special cases of affine transformations;
Table (2.1) illustrates these cases [Ning97, BaHu93]:

Table (2.1) The special cases of affine transformations

Special Cases Affine Transformation Figures
1 0y«
1.Identity w(X) = ” | ‘
0 1Ay
1 0y xy (e
2. Translation w(X) = I |+l
\ 0 1 AN .,1"‘ / \ A
‘0)X
w(X) =[
3.Dilation U WIS
If 1=0 stretch. if r=0 contrast
. i -1 0 x)
about x axis: w(X) = ‘
0 1My)
4.Reflection
] 1] \| X \i
about y axis: w(X) = [1
0 LAY
v [cosf —sind | x'
wlx)=|
5.Rotation | sin @ cosd /| v |
0=@=27
1 0)x
w(X) =] !]
'\.C 1 4 \..-L:.-
6.Skewing \
x) (1 by x
or w(X)=
0 1 | v
(1rcosd rsin@ x| (e
w(X) = . |+
\rsind —rcosd v)| | f
7.Similitude reosd —rsind N x fe
w(x)=| " o |
| rsing reos@ fly) | fF)
0=@=2x

29

Ghapter Jwo

Fractal Jmaqe tompre.r.n'on

Eight transformation matrices could be obtained from the processes

of rotation (0, 90, 180, 270) and reflection; these transformations matrices

are called the standard indexed spatial matrices. Table (2.2) illustrates the

effects of these 8 transformation matrices [Ning97]:

Table (2.2) The standard indexed spatial matrices [Ning97]

) . . _) "~ Fls Flip+ Fli
Identity rotation 20 | rotationl80 | rotation270 x-flip roratilgg 00 | rota ti:fn‘l 30 roratifni?ﬂ
(1 0] l'O —1) I;_l O‘] I 0 l‘l -1 U| 0 1| ['1 0) (0 1)
\0 1, 1 OJ L0 -1 —1 0, 01 1 0 0 —1] —1 OJ

2.12 Partition Schemes

The first decision to be made when designing a fractal coding
scheme is the choice of the type of image partition used for the range
blocks. Since domain blocks must be transformed to cover range blocks,
this decision, together with the choice of block transformation, restricts
the possible sizes and shapes of the domain blocks. A wide variety of
partitions have been investigated, the majority being composed of

rectangular blocks.

30

(G/f’apter Jwo Fractal Jmaqe tompre&.n'on

(a) (k)

Figure (2.7) Right-angled range partition schemes. (a) Fixed block size,
(b) Quadtree, (¢) Horizontal-vertical, (d) Irregular partition [WoJa99]

1. Fixed Size Square Blocks

The simplest possible range partition consists of fixed size square
blocks, as depicted in Figure (2.7a). This type of block partition is
successful in transform coding of individual image blocks since an
adaptive quantization mechanism is able to compensate for the varying
“activity” levels of different blocks, allocating few bits to blocks with
little detail and many to detailed blocks [Wo0Ja99].

An image 1s partitioned into a set of nonoverlapped, equally spaced,
fixed size, small rectangular blocks. In such case the translation, rotation
and zooming can be made easily [ShSu00].

Fractal coding based on the standard block transform, is not capable
of such adaptation, representing a significant disadvantage of this type of
block partition for fractal coding. This deficiency may be addressed by

introducing adaptivity to the available block transforms, but the usual

31

(G/f’apter Jwo Fractal Jmaqe tompre&.n'on

solution is to introduce an adaptive partition with large blocks in low
detail regions and small blocks where there is significant detail. Of
course, there is a tradeoff between the lower distortion expected by
adapting the partition to the image content, and the additional bits
required to specify the partition details.

2. Quadtree

The quadtree partition, see Figure (2.7b), employs the well-known
image processing technique that based on a recursive splitting of selected
image quadrants [WoJa99]. An image is represented as a tree in which
each node, corresponding to a square portion of the image, contains four
subnodes, corresponding to the four quadrants of the square. The root of
the tree is the initial image [Fish95]. The usual top-down construction
starts by selecting an initial level in the tree, corresponding to some
maximum range block size, and recursively partitioning any block for
which a match better than some pre-selected threshold is not found. The
partitioning decision could depend of volume of details existing in the
block, the details could be measured using various homogeneity
measures. The alternative bottom-up construction begins with a uniform
partition using the smallest block size, and then proceeds to merge those
neighboring blocks for which a more efficient representation is provided
by the resulting larger block, which is one level up the quadtree. Compact
coding of partition details is possible by taking advantage of the tree
structure of the partition [WoJa99].

Jacquin’s original PIFS scheme used a variant of the quadtree
partition in which the block splitting was restricted to two levels. Instead
of automatically discarding the larger block prior to splitting it into four

sub-blocks 1f an error threshold was exceeded, it was retained if

32

(Gﬁ"apter Jwo Fractal Jmaqe tompre&.n'on

additional transforms on up to two sub-blocks were sufficient to reduce

the error below the threshold [Fish95].

3. Horizontal-Vertical

The horizontal-vertical (HV) partition, see Figure (2.7c), like the
quadtree, produces a tree-structured partition of the image. Instead of
recursively splitting quadrants, however, each image block is split into
two sub-blocks by a horizontal or vertical line. Splitting positions may be
constructed so that boundaries tend to fall along prominent edges, or it is
based on the accuracy of approximation by constant pixel values in each
of the new blocks created by a particular split. Compact coding of the
partition details, similar to that utilized for the quadtree partition, is

possible [WoJa99].

4. Irregular Regions

A tiling of the image by right-angled irregular-shaped ranges may be
constructed by a variety of merging strategies on an initial fixed square
block, see Figure (2.7d), or quadtree partition. Chain codes allow the
range shapes to be coded efficiently [Fish95].

5. Overlapped Blocks

Overlapping range blocks have been used to reduce blocking
artifacts, within a quadtree partition, and with multiple domain transforms
in a fixed block size partition. This overlapping step may not lead to a
corresponding improvement in mean square error. A more complex form
of block overlapping, but with a fixed block size range partition, provided
improved MSE and subjective quality. These techniques, while are
promising, have been overtaken to a large extent by developments in

wavelet domain fractal coding [WoJa99].

33

(Gﬁ"apter Jwo Fractal Jmaqe tompre&.n'on

2.13 Quantization

The dictionary definition of the term “quantization” is “to restrict a
variable quantity to discrete values rather than to a continuous set of
values” [Salo07]. Any analog quantity that is to be processed by a digital
computer or digital system must be converted to an integer number
proportional to its amplitude. The conversion process between analog
samples and discrete-valued samples is called quantization [Prat01].

In the field of data compression, quantization is used in two ways:

1. If the data to be compressed is in the form of large numbers,
quantization is used to convert it to small numbers. Small numbers
take less space than large ones, so quantization generates compression.
On the other hand, small numbers generally contain less information
than large ones, so quantization results in lossy compression.

2. If the data to be compressed is analog (e.g., a voltage that changes with
time) quantization is used to digitize it into small numbers. The
smaller the numbers the better the compression, but also the greater
the loss of information. This aspect of quantization is used by several

speech compression methods.

2.13.1 Scalar Quantization

Scalar quantization is an example of a lossy compression method,
where it is easy to control the trade-off between compression ratio and the
amount of loss. However, because it is so simple, its use is limited to
cases where much loss can be tolerated [Salo07].

The amplitude of an analog signal sample is compared to a set of
decision levels. If the sample amplitude falls between two decision levels,

it 1s quantized to a fixed reconstruction level lying in the quantization

34

(G/f’apter Jwo Fractal Jmaqe tompre&.n'on

band. In digital systems, each quantized sample is assigned a binary code

[PratO1].

2.14 DPCM (Differential Pulse Coding Modulation)

The DPCM system was developed at Bell Laboratories a few years
after World War II. It is most popular as a speech-encoding system, and it
is widely used in telephone communications [Sayo06].

The DPCM compression method is a member of the family of
differential encoding (compression) methods, which itself is a
generalization of the simple concept of relative encoding. It is based on
the well-known fact that neighboring pixels in an image (and also
adjacent samples in digitized sound) are correlated. Correlated values are
generally similar, so their differences are small which resulting in
compression. Table (2.3) lists 25 consecutive values of the function sin 8,
calculated for € values from 0 to 360° in steps of 15°. The values
therefore range from —1 to +1, but the 24 differences sin 6;.,—sin 6; (also
listed in the table) are all in the range [—0.259, 0.259]. The average of the
25 values is zero, as is the average of the 24 differences. However, the
variance of the differences is small, since they are all closer to their

average.

Table (2.3) 25 Sine values and 24 Differences

Sin(t) 0 0.259 |0.500 |0.707 |0.866 |0.966 | 1.000 |0.966

Diff 0.259 10.241 |0.207 |0.159 |0.100 |0.034 |-0.034

Sin(t) | 0.866 | 0.707 |0.500 |0.259 |0 -0.259 | -0.500 | -0.707

Diff |-0.100 | -0.159 | -0.207 |-0.241 | -0.259 |-0.259 |-0.241 | -0.207

Sin(t) | -0.866 | -0.966 | -1.000 | -0.966 | -0.866 | -0.707 |-0.500 |-0.259 |0

Diff |-0.159 | -0.100 | -0.034 | 0.034 |0.100 |0.159 |0.207 |0.241 |0.259

35

(G/f’apter Jwo Fractal Jmaqe tompre&.n'on

Figure (2.8a) shows the histogram of an image that consists of 8-bit
pixels. For each possible pixel value (between 0 and 255) there is a
different number of pixels. Figure (2.8b) shows the histogram of the
differences between consecutive pixels. It is easy to see that most of the
differences (which, in principle, can be in the range [-255, 255]) are

small; only a few are outside the range [—50, +50].

1500 |"| 10000

h JI I' 5000 | |

0 128 255 -200 0 200

Figure (2.8) A Histogram of an image pixel values and of their
differences

Differential encoding methods calculate the differences d; = a; — a;-
between consecutive data items a;, and encode the d;’s [Sayo06, Salo07].
The first data item, a,, is either encoded separately or is written on the
compressed stream in raw format. In either case the decoder can decode
and generate a, in exact form. In principle, any suitable method, lossy or
lossless, can be used to encode the differences. In practice, quantization is
often used, resulting in lossy compression. The quantity encoded is not

the difference d; but a similar, quantized number that is denoted by d,.
The difference between d; and d. is the quantization error g; [Salo07].

It turns out that the lossy compression of differences introduces a

new problem, namely, the accumulation of errors. This is easy to see

36

(G/f’apter Jwo Fractal Jmaqe tompre&.n'on

when the operation of the decoder is considered. The decoder get (as
input) the encoded values of d,, decodes them, and uses them to generate
"reconstructed" values 4, (where a,= 4, +d,) instead of the original data
values a;. The decoder starts by reading and decoding ao. It then inputs
d,=d;+q; and calculates 4,= apt+ d,= aytd;+q; = a+q,. The next step is
to input d,= dr+q, and to calculate 4,= 4,+ d,=a, +q, +do + q» = ar +
g1 + ¢». The decoded value a, contains the sum of two quantization

errors. In general, the decoded value a, equals [Salo07]

G =@ 4 G, e (2.40) [ShSu00]

and it includes the sum of n quantization errors. Sometimes, the
errors ¢; are signed and tend to cancel each other out in the long run. In
general, however, this is a problem.

The solution is easy to understand once it is realized that the encoder
and the decoder operates on different pieces of data. The encoder
generates the exact differences d; from the original data items «;, while
the decoder generates the reconstructed a, using only the quantized
differences d,. The solution is, therefore, to modify the encoder to
calculate differences of the form d; = a; —a,,. The difference d; is

calculated by subtracting the most recent reconstructed value 4,, (which

both encoder and decoder have) from the current original item a;.

The decoder starts by reading and decoding a,. It then inputs
d, =d, +q, and calculates 4, =a, +d, =a, +d, +q, = a, +q,. The next step is
to input d, =d, +q, and calculates a4, =a,+d, =4, +d, +q, =a, +q,. The
decoded value 4, contains just the single quantization error ¢,. And, in

general, the decoded value a, equals a,+¢,, so it contains just

37

(G/f’apter Jwo Fractal Jmaqe tompre&.n'on

quantization error ¢,. The quantization noise in decoding a, equals the
noise generated when a, was quantized.

Figure (2.9a) summarizes the operations of both encoder and

decoder. It shows how the current data item «, is saved in a storage unit
(a delay), to be used for encoding the next item «, .

The next step in developing a general differential encoding method
is to take advantage of the fact that the data items being compressed are

correlated. This means that in general, an item «, depends on several of
its near neighbors, not just on the preceding item a, ,. Better prediction

(and, as a result, smaller differences) can therefore be obtained by using

N of the previously-seen neighbors to encode the current item a, (where
N is a parameter). Therefore, it would like to have a function p; = f(a, |,

a

o - 4,) to predict a; , see Figure (2.9b) [Salo07].

(1 ./.- -\\‘I ':'!li - fl;i l!-!l| -I_-ll‘/- ™ i1
I, (Juant. T __J
i + ;-l-_’ ™
) t1—1 I\\ :I DE].&}"
11 _—
Delay ‘—l o

Encoder Decoder
a. Differential [Sayo06]

G N[di di /N a
Ay, (Juant. T _ j'—
_ ,.]-I-
+ A
bi * [f :jl Pred.
m e -
Pred. .'——[“i
Encoder Decoder
b. DPCM

Figure (2.9) A Differential and DPCM codecs

38

(Gﬁ"apter Jwo Fractal Jmaqe tompre&.n'on

Notice that f'has to be a function of the a. ., not the «, ., since the

i—j 2 i-j o
decoder has to calculate the same /. Any method using such a predictor is
called differential pulse code modulation, or DPCM. In practice, DPCM
methods are used mostly for audio compression, but are illustrated here in

connection with image compression [Salo07].

2.15 The Test Measures

A lot of key parameters were utilized in the literature to describe the
performance of various compression methods. In this research the fidelity
criteria (MAE, MSE, and PSNR) in addition to the compression ratio and
bit rate were used to describe the performance of the established four FIC

schemes at different coding conditions:

A. Fidelity Criteria

There are several types of matching criteria, among which the mean
square error (MSE) and mean absolute difference (MAD) are used most
often. It is noted that the sum of the squared difference (SSD) or the sum
of the squared error (SSE) is essentially same as MSE. The mean absolute
difference is sometimes referred to as the mean absolute error (MAE).

In the MSE matching criterion, the dissimilarity metric M(u,v) is

defined as [ShSu00]

MOLV)=(UV) e (2.41)
While, in the MAD,
MUV)Z|UV| e (2.42)

Developers of lossy image compression methods need a standard

metric to measure the quality of reconstructed images compared with the

39

(G/f’apter Jwo Fractal Jmaqe tompre&.n'on

original ones. Well reconstructed image resembles the original one, and
the metric value should indicate this resemblance in proper way. Such a
metric is a dimensionless number, and that number should not be very
sensitive to small variations in the reconstructed image. The most
common measure used for this purpose is the peak signal to noise ratio
(PSNR). It is familiar to workers in the field, it is also simple to calculate,
but it has only a limited, approximate relationship with the perceived
errors noticed by the human visual system. This is why higher PSNR
values imply closer resemblance between the reconstructed and the
original images, but they do not provide a guarantee that viewers will like
the reconstructed image.

Denoting the pixels of the original image by P; and the pixels of the
reconstructed image by Q; (where 1 <i < n), then the mean square error

(MSE) between the two images is defined as:

MSE =23 (B =0 1o (2.43)

n i

It is the average of the square of the errors (pixels' differences) of the
two images. The root mean square error (RMSE) is defined as the square
root of the MSE [Salo07]. The Peak signal-to-noise ratio (PSNR) is
defined as [Fish95]:

max.|P|
PSNR =20 lo el P 2.44
glo(RMSE J ()
The absolute value is normally not needed, since pixel values are
rarely negative. For a bi-level image, the numerator is 1. For a grayscale
image with eight bits per pixel, the numerator is 255.
Greater resemblance between the images implies smaller RMSE and,

as a result, larger PSNR. The PSNR is dimensionless, since the units of

40

(G/f’apter Jwo Fractal Jmaqe tompre&.n'on

both numerator and denominator are pixel values. However, because of
the use of the logarithm, it can be said that the PSNR value is expressed
in decibels (dB). The use of the logarithm also implies less sensitivity to
changes in the RMSE. The PSNR has no absolute meaning, it is
meaningless to say that a PSNR of, say, 25 is good. PSNR values are
used only to compare the performance of different lossy compression
methods, or to describe the effects of different parametric values on the
performance of an algorithm. The MPEG committee, for example, uses
an informal threshold of PSNR= 0.5 dB to decide whether to incorporate
a coding optimization, since they believe that an improvement of that
magnitude would be visible to the eye.

Typical PSNR values range between 20 and 40. Assuming pixel
values in the range [0, 255], a RMSE value of 25.5 results in a PSNR of
20, and a RMSE value of 2.55 results in a PSNR of 40. A RMSE of zero
(i.e., identical images) results in an infinite (more precisely, undefined)
PSNR. A RMSE of 255 results in a PSNR of zero, and RMSE values
greater than 255 yield negative PSNRs.

Some authors define the PSNR as

maxA|P|2
PSNR =10 108,)| — o | ettt ittt et 2.45
glo(MSE J ()

In order for the two formulations to produce the same result, the
logarithm 1s multiplied in this case by 10 instead of 20, since
logio(4%)=2log;o(4). Either definition is useful, because only relative
PSNR values are used in practice [Salo07].

41

(G/f’apter Jwo Fractal Jmaqe tompre&.n'on

B. Compression Compactness

Various measures are used to describe the achieved reduction in data
size due to compression, in this research work the compression ration
(Cr) and bit rate were adopted as compression measures.

Compression ratio is used to refer to the degree of reduction of
image file (or data) size due to compression process. This measure is
defined as the ratio between the size of the original uncompressed image

file to the size of the overall compressed file [Umba98]:

Cp = Yncompression filesize (2.46)

compression file size
Bit rate (BR) refers to the average number of bits required to
represent the value of each image pixel, usually it is determined as the
ratio between the size of compressed file and the size of the original

image file:

BR compression file size (m blts) (2.47)

image file size (in pivels) 1
The above defined Cr and BR parameters have been used as
indicators for the compactness ability of the proposed compression

schemes in this research project.

2.16 Entropy
The entropy of a single symbol a; is defined as —P; log, P;, where

P; is the probability of occurrence of a; in the data. The entropy of «; is
the smallest number of bits needed, on average, to represent symbol a;.
Claude Shannon, the creator of information theory, coined the term
entropy in 1948, since this term is used in thermodynamics to indicate the

amount of disorder in a physical system.

42

(G/f’apter Jwo Fractal Jmaqe tompre&.n'on

Assume the H is the amount of information, in bits, sent by the
transmitter in one time unit. The amount of information contained in one

base-n symbol is thus H/s (because it takes time 1/s to transmit one

symbol), or —» 'P,log, P, . This quantity is called the entropy of the data

being transmitted. In analogy we can define the entropy of a single
symbol a; can be defined as —P; log, P;. This is the smallest number of
bits needed, on average, to represent the symbol.

The entropy of the data depends on the individual probabilities P;,

and its largest value occurred when all n probabilities are equal [Salo04].

2.17 Huffman Coding

This technique was developed by David Huffman as part of a class
assignment; the class was the first ever in the area of information theory,
and was taught by Robert Fano at MIT. The codes generated using this
technique or procedure are called Huffman codes. These codes are prefix
codes and are optimum for a given model (set of probabilities).

The Huffman procedure is based on two observations regarding
optimum prefix codes [Sayo06].

1. The more frequently occurring symbols can be allocated with shorter
codewords than the less frequently occurring symbols .
2. The two least frequently occurring symbols will have codewords of the

same length, and they differ only in the least significant bit [T1Aj05].

It 1s easy to see that the first observation is logical and correct. If
symbols that occur more often had longer codewords than the codewords
for symbols that occurred less often, the average number of bits per

symbol would be larger than that obtained when the conditions were

43

(G/f’apter Jwo Fractal Jmaqe tompre&.n'on

reversed. Therefore, a code that assigns longer codewords to symbols that
occur more frequently cannot be optimum.

A simple application of Huffman coding to image compression
would be to generate a Huffman code for the set of values that any pixel
may take. For monochrome images, this set usually consists of integers
from 0 to 255 [Sayo06].

Huffman coding is a popular method for data compression. It
serves as the basis for several popular programs run on various platforms.
Some programs use just the Huffman method, while others use it as one
step in a multistep compression process. It generally, it produces better
codes. It produces the best code when the probabilities of the symbols are
negative powers of 2. Huffman constructs a code tree from the bottom up
(builds the codes from right to left). Since its development, in 1952, this
method has been the subject of intensive research into data compression.

The algorithm starts by building a list of all the alphabet symbols
in descending order of their probabilities. It then constructs a tree, with a
symbol at every leaf, from the bottom up. This is done in steps, where at
each step the two symbols with smallest probabilities are selected, added
to the top of the partial tree, deleted from the list, and replaced with an
auxiliary symbol representing the two original symbols. When the list is
reduced to just one auxiliary symbol (representing the entire alphabet),
the tree is complete. The tree is then traversed to determine the codes of

the symbols [Salo07].

2.18 Arithmetic Coding

The method of generating variable-length codes called arithmetic
coding. Arithmetic coding is especially useful when dealing with sources
with small alphabets, such as binary sources, and alphabets with highly

skewed probabilities. It is also a very useful approach when, for various

44

(G/f’apter Jwo Fractal Jmaqe tompre&.n'on

reasons, the modeling and coding aspects of lossless compression are to
be kept separate [Sayo06].

The Huffman method is simple, efficient, and produces the best
codes for the individual data symbols. However, the only case where it
produces ideal variable-size codes (codes whose average size equals the
entropy) is when the symbols have probabilities of occurrence that are
negative powers of 2 (i.e., numbers such as 1/2, 1/4, or 1/8). This is
because the Huffman method assigns a code with an integral number of
bits to each symbol in the alphabet. Information theory shows that a
symbol with probability 0.4 should ideally be assigned a 1.32-bit code,
since —log; 0.4 = 1.32. The Huffman method, however, normally assigns
such a symbol a code of 1 or 2 bits.

Arithmetic coding overcomes the problem of assigning integer
codes to the individual symbols by assigning one (normally long) code to
the entire input data. The method starts with a certain interval, it reads the
input file symbol by symbol, and it uses the probability of each symbol to
narrow the interval. Specifying a narrower interval requires more bits, so
the number constructed by the algorithm grows continuously. To achieve
compression, the algorithm is designed such that [Salo07] more probable
symbols reduce the interval less than the less probable symbols and hence
add fewer bits in the encoded message [TiAj05], with the result that high-
probability symbols contribute fewer bits to the output [Salo07].

2.19 Shift Coding

The idea of this method is to encode the sequence of numbers by
codewords whose bit length is less than the bit length required to
represent the maximum value of the sequence of numbers to be coded.
The numbers whose values are large may splitted into a sequence of

codewords, by using the following formula:

45

(G/f’apter Jwo Fractal Jmaqe tompre&.n'on

X is the number to be coded.

n is the number of codewords that used to encode the number X.

Wi, 1s the lowest value which cannot be coded by using a single
codeword.

W, is the value of the last codeword used to encode X.

The values of W,,,, W,, and n are determined by using the following

equations
Wi = 20 e (2.49)
W= X0 Wit e, (2.50)
0= X IV Wi et e, (2.51)

Where b is the number of bits used to represent each single shift
codeword.

The performance of Huffman coding and shift coding are better
when the sequence of numbers has a histogram whose shape is highly
peaked. The performance of shift coding is better than Huffman and
arithmetic coding when the histograms have long tails [MahmO7,

Gonz02].

46

(hapter Thres
The Entace FLC e

Chapter Three
The Enhanced FIC-Scheme

3.1 Introduction

This chapter is dedicated to present the design considerations and
implementation requirements, which were taken into consideration
throughout the design stage of the proposed enhanced fractal image
compression scheme, that has some additional stages to speed-up the
compression task in comparison with the traditional scheme.

In this research project, two major enhancement steps have been
introduced to significantly reduce the time of the elapsed encoding process,
without making significant reduction in 1image quality. The first
enhancement step is using the developed moment based predictor to reduce
the number of isometric mapping trials, applied on each domain block,
from 8 to 1 trial; in other words, the introduced predictor can assign the
proper isometric mapping that required to set the domain block in closest
form to the matched domain block. The second enhancement step implies
using the moment based descriptor to classify the domain and range blocks
into classes, and instead of testing all domain blocks belong to domain pool
to find out the block the best matches the coded range block (using IFS-
mapping), only the domain blocks that have similar class index to that of
range block will be passed through the IFS-matching test.

The two main modules of the established FIC-schemes are: encoding
and decoding modules. The structure of the established system and the

functionality of its modules will be discussed in details in the next sections.

47

‘Ghapter Jhree The Enkanced” FIC Schome

3.2 The System Model

The general structure of the proposed system is illustrated in figure
(3.1). It consists of two basic modules: encoding and decoding modules.
The input to the encoder module is a BMP (Bitmap) image file. The data of
this image is passed through the encoding stages, and subjected to various
operations to produce the compressed file. This compressed file could be
passed through decoding stages, and subjected to a sequence of operations,
to reconstruct the bitmap image.

Each module (i.e. encoder and decoder) implies several operations,

working systematically to lead to the final result.

g -
Bitmap Load Color Cb.Cr > Down
color image Bitmap image |R.G.B transform sample
e file data from RGB to by 2
YCbCr Y

Resize the Y, Cb', Cr' bands
Y'qu"qu"
\ 4
. . DPCM (for FIC encoder
Mapping to Positive .

(Scall:epcoegfﬁcients and | offset <JFS0-Code| (applied on each

offset codewords)) quantization | set component,

indexed only) separately)

\ 4

Shift Encoder .
Codewords Compression
(Scale and offset Stream
codewords
L o o o o o o o e e e e e e e e e o e - -
a. Encoding Module

Figure (3.1) The System Model

48

‘Ghapter Jhree The Enkanced” FIC Schome

I
I I
| Mapping Positive |1
: C . Load the Shift Decoding to :
| orsntpressmn codewords »| (Scale and offset p| Positive/Negative |,
| ream from the file coefficients (Scale and offset |1
: coefficients :
I I
I I
I I
I I
1 Cb.Cr Resize the FIC Decoder (to - ‘-' 1
: —| reconstructed | y,Cb.Cr establish each | [FSO Differential Pulse |1
" Y bands to their [* component, N Decoder (offset :
I Up original size individually) coefficients) I
Il sampling |
[by2 :
| Y |
| Cb.Cr |
I v v I
I Reconstructed |
| Color Transform R.G.B Save as Color image |
'] from YCbCr to RGB ”| bitmap image file !
I I
- _ e e M L e eymmY£7mTTT L L L L L 1

b. Decoding Module

Figure (3.1) Continue

3.3 Encoder Module

As shown in figure (3.1a) the main stages of the encoder are started
from loading image data, and passed through color transform,
downsampling, FIC encoding, DPCM, and, as a final stage, shift encoding.

The output of the last stage (i.e., codewords) are saved in compressed file.

3.3.1 Load BMP Image
The input to this system is a BMP image file; in the established

system, the BMP image file was used as an input to the system. The
considered color resolution of the images is either 24 or 8 bit/pixel. The
image data is loaded and used to fill-up the Red, Green, and Blue arrays,

each array is assigned for one primary color, as illustrated in Algorithm

3.1).

49

‘Ghapter Jhree The Enkanced” FIC Schome

Algorithm (3.1) Read BMP Image

Goal: Read 24 or 8 bit/pixel BMP image file
Input:
ImgFileName// image file name
Output:
Wid, Hgt// image width and height
Red(0 to Wid-1, 0 to Hgt-1)// Red component of image
Grn(0 to Wid-1, 0 to Hgt-1)// Green component of image
Blu(0 to Wid-1, 0 to Hgt-1)// Blue component of image

Stepl: Get from ImgFileName the BMPH // BMPH is the BMP Header
Get image's width and height values from its header
Set Wid — BMPH.Wid
Set Hgt «— BMPH.Hgt
Step2: Check image pixel resolution
If BMPH.BitPlane = 24 Then
Set DataSize<— BMPH.FileSize-BMPHSize
Get ImgFileName, Img(DataSize-1) //Img contains the image's data
Set [—0
For all X, Y Do {where 0<X<Wid-1, 0<Y<Hgt-1}
Set Red(X,Y)«—Img(I)
Set Grn(X,Y)—Img(I+1)
Set Blu(X,Y)«—Img(I+2)
Increment [by 3
End For
Else if BMPH.BitPlane = 8 Then
Set NoColor<— (BMPH.OffsetPosition —54) div 4
Get ImgFileName, RGBrecord(NoColor-1) // RGBrecord contains 4
cells Red , Green, Blue, and A is a reserved byte for BMP
images of 8 bit/pixel resolution
Set DataSize<— BMPH . FileSize — BMPHSize — NoColor
Get ImgFileName, Img(DataSize—1)
Set [—0
For all X, Y Do {where 0<X<Wid-1, 0<Y<Hgt-1}
Set Red(X,Y)«—RGBrecord(Img(X)).Red
Set Grn(X,Y)—RGBrecord(Img(X)).Green
Set Blu(X,Y)«—RGBrecord(Img(X)).Blue
End For
Return (Wid, Hgt, Red, Grn, Blu)

Else
Display Message "The Sellected Image's BitPlane is neither 24 nor 8"
End If
Step3: End.

50

‘Ghapter Jhree The Enkanced” FIC Schome

3.3.2 Conversion from RGB to YCbCr Color Space

In this stage the three obtained basic colors (Red, Green, and Blue) are
converted into the YCbCr color representation. This stage is important to
make the image data representation more suitable for compression. This
conversion is made using equation (2.11). Algorithm (3.2) shows the

implemented steps to make this color conversion.

Algorithm (3.2) YCbCr color model transformation

Goal: Convert the image from RGB to YCbCr color model
Input:
Wid, Higt
Red(0 to Wid-1, 0 to Hgt-1)
Grn(0 to Wid-1, 0 to Hgt-1)
Blu(0 to Wid-1, 0 to Hgt-1)
Output:
Yc(0 to Wid-1, 0 to Hgt-1)// Y component of the image
Cbh(0 to Wid-1, 0 to Hgt-1)// Cb component of the image
Cr(0 to Wid-1, 0 to Hgt-1)// Cr component of the image

Stepl: Convert each RGB pixel value into its corresponding YCbCr value
For all X, Y Do {where 0<X<Wid-1, 0<Y<Hgt-1}
Set Yc(X,Y)«—0.257*Red(X,Y)+0.504*Grn(X,Y)+0.098*Blu(X,Y)+16
Set Cb(X,Y)——0.148*Red(X,Y)—0.291*Grn(X,Y)+0.439*Blu(X,Y)+128
Set Cr(X,Y)— 0.439*Red(X,Y) —0.368*Grn(X,Y) —0.07 1 *Blu(X,Y)+128
End For
Step2: Return (Yc, Cb, Cr).

3.3.3 Down Sampling

The three color components of YCbCr model are: Y-component
which represents the luminance, and (Cb, Cr) components which represent
the chrominance components of the color image. Most of the data energy is
concentrated in Y component, while the components Cb, Cr convey little
part of the image information energy. Beside to that the Human Vision
System (HVS) doesn't show high spatial discrimination for the
chrominance components (Cb, Cr), while it has high discrimination power

against the contents of Y-component. So, the chrominance components are

51

‘Ghapter Jhree The Enkanced” FIC Schome

down-sampled by 2 using the averaging method, see section (2.10), which

is depicted in algorithm (3.3).

Algorithm (3.3) Down-Sampling by Averaging

Goal: Down-sampling Cb and Cr by 2
Input:
Wid, Hgt
Ch(0 to Wid-1, 0 to Higt-1)
Cr(0 to Wid-1, 0 to Higt-1)
Output:
nWid, nHgt// new width and height after down-sampling
Cbh'(0 to Wid/2-1, 0 to Higt/2-1)// Cb component of the image after down-
sampling
Cr'(0 to Wid/2-1, 0 to Higt/2-1)// Cr component of the image after down-
sampling
Step1: Convert the width and height into its corresponding down-sampled ones
Set Wh—Wid div 2-1
Set Hh«—Hgt div 2-1
If Wid is even number then Set nWid<—Wh else Set nWid—Wh+1
If Hgt is even number then Set nHgt<—Hh else Set nHgt«—Hh+ 1
Step2: Convert Cb and Cr into Cb' and Cr' by down-sampling
For all X, Y Do {where 0<X<Wh, 0<Y<nHgt-1}
Set Cb'(X)Y)—(Cb(X*2,Y*2) + Chb(X*2+1,Y*2) + Ch(X*2,Y*2+1) +
Cb(X*2+1,Y*2+1))/4
Set Cr'(XY)«— (Cr(X*2,Y*2) + Cr(X*2+1,Y*2) + Cr(X*2,Y*2+1) +
Cr(X*2+1,Y*2+1))/4

End For
Step3: Check if there are un-computed pixels in rows or colums
If Wid is an odd number of columns then
Set Wm«—Wid-1
For all Y Do{where 0<Y<Hh}
Set Cb'(nWid,Y)—(Cb(nWid,Y*2)+Cb(nWid, Y*2+1))/2
Set Cr'(mWid,Y)— (Cr(nWid, Y*2)+CrnWid, Y*2+1))/2
End For
End If
If Hgt is an odd number of rows then
Set Hm<—Hgt-1
For all X Do{where 0<X<Wh}
Set Cb'(X,nHgt)«—(Cbh(X*2,nHgt)+Cb(X*2+1,nHgt))/2
Set Cr'(X,nHgt)— (Cr(X*2,nHgt)+Cr(X*2+1,nHgt))/2
End For
End If
If both Wid and Hgt are odd numbers Then
Set Cb'(mWid,nHgt)«—Cb(Wm,Hm)
Set Cr'(nWid,nHgt)—Cr(Wm,Hm)
End If
Step4: Return (Cb', Cr', nWid, nHgt).

52

‘Ghapter Jhree The Enkanced” FIC Schome

Beside to the manipulation of down-sampling, by applying the
averaging method, some additional steps taken to handle the problem of the
odd numbers of columns and rows, because the averaging method requires

that the numbers of columns and rows should be even.

3.3.4 Resizing the Bands (Y, Cb, Cr)
In this step the bands sizes (i.e., width and height) are adjusted before

partitioning each band into range blocks.

The image will loose some of its pixels if the block length is not
suitable relative to the width and height of each band. This problem is
solved by resizing the three bands (Y, Cb, and Cr) to set their dimensions
as multiples of the block length. The bilinear interpolation method was
used to create the additional columns and rows. The maximum number of
columns or rows that may required to be generated depends on the block
size. The number of additional columns or rows is determined using the

following equation:

Where:
S is the width or height of the image.
b is the block size.
n is the number of additional columns or rows.

[x] is the lowest integer number higher than or equal to x.

Algorithm (3.4) shows the steps taken to perform the bands resizing
task.

53

‘Ghapter Jhree The Enkanced” FIC Schome

Algorithm (3.4) Resize the Three Bands

Goal: Resize the bands Y, Cb, and Cr
Input:
Bnd()// one of these bands Y, Cb, or Cr
W// width of the band
H// height of the band
BlkLength// the block length
Output:
nBnd// the new band after resizing
nW// the new width
nH// the new height
Step1:Check if the width and the height are accept the division by the block length
without any rest
Check If (W mod BlkLength) not zero Or (H mod BlkLength) not zero Then
Set Nx—W div BlkLength
Set Wp—Nx * BlkLength
Check If Wp < W Then
Increment Nx by 1
Set Wp — Wp + BlkLength
End If
Decrement Nx by 1
Set Wpm—Wm-1
Set Wm «—W-1
Set Lx — Wp—-W
Set Tx «— Wm / (Lx + 1)//These statements were set to solve the width
problem
Set Ny < H Div BlkLength
Set Hp < Ny * BlkLength
Check If Hp < H Then
Increment Ny by 1
Set Hp < Hp + BlkLength
End If
Decrement Ny by 1
Set Hpom «— Hp — 1
Set Hm — H - 1
Set Ly — Hp—H
Set Ty «<— Hm /(Ly + 1)

Set Img—Bnd// where the size of Img is the new size Wpm*Hpm
Check If Lx is a larger than zero Then
For all Y Do {where 0<Y<Hm}
Set St<—0
Set Xx—-1
For all Ix Do {where 1<Ix<Lx}
Set Ed—Tx*Lx
For all X Do {where St<X<Ed}
Increment Xx by 1
Set A(Xx)—Img(X,Y)
End For

54

‘Ghapter Jhree The Enkanced” FIC Schome

Increment Xx by 1
Set A(Xx)—(Img(Ed,Y)+Img(Ed+1,Y))/2
Set St—Ed+1

End For

For all X Do {where St<X<Wm,
Increment Xx by 1
Set A(Xx)—Img(X,Y)

End For

For all X Do {where 0<X<Wpm}
Set Img(X,Y)«—A(X)

End For

End For
End If

Check If Ly is a larger than zero Then
For all X Do {where 0<X<Wpm)
Set St«<—0
Set Yy—-1
For all Iy Do {where 1<ly<Ly}
Set Ed—Ty*Ly
For all Y Do {where St<Y<Ed}
Increment Yy by 1
Set A(Yy)—Img(X,Y)
End For
Increment Yy by 1
Set A(Yy)«—(Img(X, Ed)+Img(X,Ed+1))/2
Set St—Ed+1
End For
For all Y Do {where St<Y<Hm}
Increment Yy by 1
Set A(Yy)—Img(X,Y)
End For
For all Y Do {where 0<Y<Hpm,
Set Img(X,Y)«—A(Y)
End For
End For
End If
Set nW—Wp
Set nH—Hm

Set nBnd—Img
End If
Step2: Return(nBnd, nW, nH).

55

‘Ghapter Jhree The Enkanced” FIC Schome

The above algorithm describes the resizing steps applied on one band,
so this algorithm is implemented on the three bands (i.e., Y, Cb, Cr)

individually, one after the other.

3.3.5 FIC Encoder

The inputs to this module are: (1) the block length (BlkLength), which
is the width and height of the square block, (2) jump step (JmpStp), it is the
distance between any two adjacent domain blocks, (3) minimum allowed
block error (MinBErr) between any two IFS matched blocks (i.e., domain
and range block) which have same moment descriptor value, (4) the
allowed error (MinErr) between the matched range and domain blocks, (5)
maximum allowed scale value (MaxScl), (6) the no. of bits used to encode
the offset (i.e., oNoBits) and scale (i.e., sNoBits) coefficients, (7) the
number of bins (NoBins), it is the number of uniform quantization bins of
the blocks moment descriptor, (8) window size (WinSiz), it is used to set
the search space according to the blocks moment descriptor, (9) width
(nWid) and height (nHgt) of the coded resized band.

The three bands (Yc, Cb', Cr') are passed sequentially in FIC encoder
in order to be encoded individually (i.e. this module will be applied three
times, once for every band). Figure (3.2) illustrates the main stages of the
FIC encoder. In the following subsections the involved stages of this

module are described.

A. Range Pool Generation

The first step in FIC stage is the generation of range pool. In this
generator the resized Y-component, and the resized-downsampled bands
(Cb, Cr) are partitioned into non-overlapped blocks, and each block is

considered as a range block belong to the range pool array.

56

t/fapter %ee

The Enkianced FIG Scheme
\ 4
Load the | Range Pool Down sampling Determination of

. to generate
Band arra "] Generation v .
y ! Domain Pool

A 4

some coding
parameters

Sort the domain Determination the Determination of
block list according |4 moments < isometric index

to their moment | descriptor of each of each domain

descriptor value domain block block (Id)

Determine some of Determination of
Load the isometric index
the range block >
range block parameters of the range
block (Ir)

v

Set ;{im very large number

v

Apply symmetry Load the domain
predictor using Id block has similar
and Ir to find out the descriptor index,
required symmetry Ir — Id| <w
\ transform
Apply IFS mapping
to determine (7,5)

Apply symmetry operation

A

i.e.,

A 4

Apply the condition
|s|<max scale

Register (r,s) as

v optimal affain
\ 4 £S5y coefficients, and set
Quantize (7, 5) to get the }(;in =y 2
quantization indices (Ir,Is)

Determine) :

Output IFS
code set

Figure (3.2) The FIC Encoder

57

‘Ghapter Jhree The Enkanced” FIC Schome

B. Domain Pool Generation

The second step i1s down sampling (by 2) the components Y and the
down sampled Cb and Cr. Then, the domain pool is generated by
partitioning the downsampled bands into overlapped blocks using moving
window method. The overlapping space depends on the jump step of the

moving window.

C. Determination of Some Involved Coding Parameters

Some parameters are used in the encoding phase, such as:

1. The quantization step of scale coefficients, which is computed using
equation (2.16).

2. The quantization step of offset coefficient which is computed using
equation (2.17).

3. The number of range blocks in horizontal and vertical directions
(NxR and NyR) in the range pool.

4. The number of domain blocks in the horizontal and vertical
directions (NxD, NyD) in the domain pool.

5. The number of blocks in domain pool (NoD).

OffsetNoBits 1

OffsetQuantizationStep(rQstp) = 553 e (3.2)
SealeNobits—1 __ |
ScaleQuantizationStep(sQstp) = Fy7ersmerorull IR (3.3)
NxR = nWid div BlockLength —1 ,..........couuiiiuiiaiiieiaiiieanineaannnns 3.4
NyR = nHgt div BlockLength —1 ,...........ccuuiiiiiiiiniiiiiiiiiiiinnnn, (3.5)
NxD = (Wid" — BlockLength) div JumpStep ,............cc.ceueeeiuiueennnn, (3.6)
NyD = (Hgt" — BlockLength) div JUumpStepcc.ccveeuiuineennnn, 3.7)
NoD = Nxd * NyD+ NXxD + NyD ...ooeiieiiiiiiaiie e aaiiieeeaaanaans (3.8)

58

‘Ghapter Jhree The Enkanced” FIC Schome

D. Blocks Isometry State Assignment
Table (3.1) shows the mapping equations of the following considered
eight transforms (i.e., isometric or symmetry mappings):
1. No operations,
Rotation-90,
Rotation-180,
Rotation-270,
Reflection around Y-axis,
Reflection with rotation-90,

Reflection with rotation-180,

® NS kLD

Reflection with rotation-270.

In table (3.1) the symbol ¢ denotes the coordinates of the center point

of the mapped square block (whose size is mxm).

Table (3.1) The considered isometric mappings

ID | Transform Mapping Equations

0 | No operation ;
=(x-c)cos(90)+(y-c)sin(90)+c=y
y'=-(x-¢)sin(90)+(y-c)cos(90)+c=2c-x
x'=(x-c)cos(180)+(y-c)sin(180)+c=2c-x
y'=-(x-c)sin(180)~+(y-c)cos(180)+c=2c-y
x'=(x-c)cos(270)+(y-c)sin(270)+c=2c-y
y'=-(x-c)sin(270)+(y-c)cos(270)+c=x

x!
!

y

x!

1 | Rotation 90

2 | Rotation 180

3 | Rotation_270

4 | Reflection x:izc'x
Y=y
5 Reflection with | x'=(=x-c)cos(90)+(y-c)sin(90)+c=y
rotation 90 y'=-(-x-¢)sin(90)+(y-c)cos(90) +c=x
6 Reflection with | x'=(-x-c)cos(180)+(y-c)sin(180)+c=x
rotation 180 Y'=-(-x-¢)sin(180)+(y-c)cos(180)+c=2c-y
7 Reflection with | x'=(-x-c)cos(270)+(y-c)sin(270)+c=2c-y

rotation 270 y'=-(-x-¢)sin(270)+(y-c)cos(270)+c=-x
Where, c=(m-1)/2

59

‘Ghapter Jhree The Enkanced” FIC Schome

For an image block I(x,y) {x,y

0,1,.....m-1}, its first order centralized

moments are defined as:

m—1 m-1

Mg =Y D TORYNX=C) e (3.9)
y=0 x=0
m—1 m—1

M, :Z T(X,0)(F =€) oyt (3.10)
y=0 x=0

By combining both equations (3.9) and (3.10) with the equations
listed in table (3.1), the relationship between the new moments values
(M';9, M'y;) of the mapped block (using isometric mappings) with its old
moments values (M;), My;) could determined, table (3.2) lists these

relationships.

Table (3.2) The relationship between moments before and after
the transform

TranI%form Transform Relationship
0 No operation M =M,y M'y;=My,;
1 Rotation_90 M'1y=My; M'y=M,,
2 Rotation 180 M'yy=-M;y M'y;=-My,;
3 Rotation 270 M'p=-My; M'y;=M,;
4 Reflection M'jg=-M;y My =-My,
5 Reflection + rotation 90 M =M, M'y,=M,;
6 Reflection + rotation 180 | M',y=M,;y M'y;=-M,
7 Reflection + rotation 270 | M';y=-My,; M'y;=-M,,

In this section, a new method for block classification according to its
isometric state is described; the classification is based on applying three
Boolean criteria, they depends on the status of its first order moments (i.e.,

Mo, My;). These used criteria are:

60

‘Ghapter Jhree The Enkanced” FIC Schome

1. Is |M;y| = |My,| or not ?

2. Is |Mjp| = 0 or not ?

3. Is My, = 0 or not ?

The use of these three Boolean criteria on any block leads to eight

block states, as shown in table (3.3).

Table (3.3) The truth table for the eight blocks states

Block's Boolean Criteria
I(rjnl(?esi \Miol 2 [Mot| | M1l 20 | [Mpi| 20
0 T T T
1 T T F
2 T F T
3 T F F
4 F T T
5 F T F
6 F F T
7 F F F

Now, if the relationship between the new and old moment values is
taken into consideration when the block is mapped by one of the

considered isometric mapping (see table 3.2), then the relationship between

the indexes of block could be established (see table 3.4).

61

t/fapter %ee

The Enkanced” FIC Schome

Table (3.4) The Block's state indexes before and after isometric
mappings

Old Class New Class Index
z;‘;;’; R90 | R180 | R270 M | M+R90 | M+R180 | M+R270
O(TTT) 6(FTF) | 3(TFF) | 5(FFT) | 2(TFT) | 4FTT) | I(TTF) 7(FFF)
I(TTF) | 4(FTT) | 2(TFT) | 7(FFF) | 3(TFF) | 6(FTF) | O(TTT) | 5(FFT)
2(TFT) | 7(FFF) | I(TTF) | 4FTT) | O(TTT) | 5(FFT) | 3(TFF) | 6(FTF)
3(TFF) S5(FFT) | O(TTT) | 6(FTF) | I(TTF) | 7(FFF) | 2(TFT) 4(FTT)
4(FTT) | I(TTF) | 7(FFF) | 2(TFT) | 5(FFT) | O(TTT) | 6(FTF) | 3(TFF)
5(FFT) | 3(TFF) | 6(FTF) | O(TTT) | 4(FTT) | 2(TFT) | 7(FFF) | I(TTF)
6(FTF) | O(TTT) | 5(FFT) | 3(TFF) | 7(FFF) | I(TTF) | 4(FTT) | 2(TFT)
7(FFF) | 2(TFT) | 4(FTT) | I(TTF) | 6(FTF) | 3(TFF) | 5(FFT) | O(TTT)

R90= Rotation 90;

R180= Rotation 180;

M= Mirror or Reflection,;

R270= Rotation 270;

The arrangement of the contents of table (3.4) could be inverted such

that the type of transform needed to map the block from certain isometric

state to other state is assigned, see table (3.5).

convert the block state

Table (3.5) The required isometric operation to

New Block State Index
0|1]2]3[4[5]|]6]7
0O 064|253 |17
1 610214 |1]7]5]3
Old 2 41206 |3]|5]7]1
Block 3 | 2146|071]3]|5
State 4 | 5|11]3]17]0]4]6]2
Index S |[3]17|5]1]14]0]2]6
6 1| 5] 7]13|]6[]2]0]4
7 | 713[1[5]|]2]]6]|4]0
0= No Operation; 1= Rotation 90;
2= Rotation_180; 3= Rotation_270;
4= Reflection; 5= Reflection+Rotation 90;

6= Reflection+Rotation 180;
7= Reflection+Rotation 270;

62

‘Ghapter Jhree The Enkanced” FIC Schome

Algorithm (3.5) lists the steps taken to find the index of block
symmetry state, it uses the determined two moments (M, M,) of a block to

find its moment index.

Algorithm (3.5) Get Block Index

Goal: Using block moments to get the block index
Input:

Mx //Moment which its g=0
My // Moment which its p=0
Output:
Index //Block Index
Step1: Check the moment value
If |Mx|>|My| Then
Check if Mx>0 Then
Check if My>=0 Then
Set Index—0
Else
Set Index—06
Else
Check If My>=0 Then
Set Index<—4
Else
Set Index<—2
End If
Else
Check If Mx>=0 Then
Check If My>=0 Then
Set Index—7
Else
Set Index—1
Else
Check If My>=0 Then
Set Index<—3
Else
Set Index—5
End If
End If

Step2: Return(Index)

63

‘Ghapter Jhree The Enkanced” FIC Schome

E. Blocks Classification Using Moments-Based
Descriptor

Beside to using moments to index the isometric (symmetry) state of
each range and domain block, and these isometric state indices will be used
to assess the type of symmetry operation required to make the matched
domain block in its best isometric state before trying to determine its best
IFS- mapping coefficients. This step should reduce the elapsed encoding
time around 7-8 times.

In order to gain more decrease in encoding time an additional
descriptor, based also on the centralized moments, had been used. This
descriptor is used to classify the domain and range block into classes, and
each class is given an index. So when trying to find out the domain block
that shows best [FS-match with the tested range block, then only those
domain blocks belong to classes have similar index number to the class
index of the range block will subjected to IFS-matching test.

In this research work the first-order centralized moments (M10, MO1)
or the third-order centralized moments (M30, M03) have been used to
determine the moment descriptor, using equations (2.29), (2.30) and (2.34).
The moment descriptor (Momldx) values have been determined for all
domain and range blocks.

For the purpose of reducing the computational redundancy the
moment descriptors of the domain blocks are precomputed and registered
in memory beside to other parameters and terms, which have been
predetermined and saved in an array of records. This array includes the
moment descriptors (i.e., Momldx) in addition to the following parameters:
(1) the position of the domain block (i.e., Xd, Yd), (2) the average (AvgD)
of the domain blocks (using equation 2.31), (3) the variance (mVarD) of
the domain blocks (using equation 2.25), and (4) the symmetry (or

64

‘Ghapter Jhree The Enkanced” FIC Schome

isometric) state indexes of the domain blocks, which are determined using

algorithm (3.5).

F. Sorting of Domain Blocks
The above mentioned array of records (i.e., Domldx) has to be sorted
in ascending order according to the value of moment descriptor (i.e.,

Momldx), the steps of the applied sorting algorithm are described in
algorithm (3.6).

Algorithm (3.6) Sorting Algorithm

Goal: Sort the array Domldx in ascending order according to Momldx
Input:
Domldx()// unsorted array of record of 6 cells
NoD// the number of domain blocks
NoBin// the number of bins of the Momldx values
Output:
Domldx()// sorted array of record of 6 cells
Stepl: Sort the array
Set M—0
Set K—0
For all I Do {where 0<I<(NoBin-1)}
For all J Do {where K<J<NoD)
Check If Domldx(J).Momldx=I Then
Check If not(J=M) Then
Swap(Domldx(J),Domldx(M))
Decrement J by 1

End If
Increment M by 1
End If
End For
Set K—M
End For

Step2: Return(Domldx)

To more simplify the search task in the sorted array of records an

array of pointers is used to point out to the boundaries (i.e., start index and

65

‘Ghapter Jhree The Enkanced” FIC Schome

end index) of each set of sequential records have same moment descriptor

values. The involved steps of this stage are depicted in algorithm (3.7).

Algorithm (3.7) Finding Limits

Goal: Find the limits of each moment class
Input:
Domldx()// sorted array of record of 6 cells
NoD// the number of domain blocks
NoBin// the number of bins of the Momldx values
Output:
St(NoBin)// array of start limits of each moment index
Ed(NoBin)// array of end limits of each moment index
Stepl: Find the limits
Set K—0
For all I Do {where 0<I<NoBin}
Check If Domldx(K).Momldx>I Then
Set St(l)—-1
Set Ed(l)«—-2
Else
Set St()—K
Set Ed(1)«—-1
For all L Do {where (K+1)<L<NoD}
Check If Domldx(L).Momldx>1I Then
Set Ed(l)«—L-1
Set K—L
Set L—NoD// End the loop of L
End If
End For
Check If Ed(1)=-1 Then
Set Ed(I)«—NoD
For all J Do {where (I+!)<J<NoBin}
Set St(J)—-1
Set Ed(J)«—-2
End For
Set [—NoBin// Ending the loop of 1
End If

End If
End For

Step2: Return(St, Ed).

Now the array of records of the domain blocks is ready to be searched

to find the most available similar domain block for each tested range block.

66

‘Ghapter Jhree The Enkanced” FIC Schome

G. Range Blocks Coding
As a first step in this stage, some of the range blocks parameters must
be precomputed. These parameters are:

1. The average (AvgR) of the range block which is computed by
equation (2.21).

2. The mean variance (mVarR) of the range block (equation 2.26).

3. The first moments (M10, MOI1), or equivalently, the third order
moments (M30, M03), of the range block (equation 2.29), and then
using these moments to determine moment descriptor, (i.e., moments
ratio factor) (MomlIdxR) for each range block (using equations 2.34).

4. The isometric state index of the range block, the value of this
parameter depends on two moments values (as illustrated in
algorithm 3.4).

5. The offset quantization index, which is determined using the

quantization step value (rQstp).

As a next step the blocks of domain pool are searched to find out the
domain block that can best matches the range block using IFS-mapping.
This searching process should be repeated as long as there is still range
block, in range pool need to be coded. Since, there is large number of range
blocks and domain blocks, repeating the exhaustive search within domain
pool causes a huge number of blocks matchings, and in such case the
computational complexity of the encoding process become too high. To
handle this problem, the moments based descriptor is used as classifier
index, such that only the domain blocks that have similar descriptor values
to that of range block are imposed to IFS-mapping tests. The implemented
steps to handle the range block coding stage are illustrated in algorithm

(3.8).

67

‘Ghapter Jhree The Enkanced” FIC Schome

Algorithm (3.8) Search within Domain Blocks

Goal: Find the nearest similar domain block for each range block
Input:
JmpStp// number of pixels to jump between two domain blocks
NxR// the number of blocks in the width of the range pool
NyR// the number of blocks in the height of the range pool
WinSiz// the interval of the domain blocks classes
NoBin// the number of bins of the Momldx values
St()// array of start limits of each moment index
Ed()// array of end limits of each moment index
Domldx()// array of record of 6 cells
Tbl()// array of symmetry operation to convert the block's moment status
using table (3.5)
Y" or Cb" or Cr" as Dom()// is the domain pool
NoD// the number of domain blocks
MinChi// The minimum value of the Chi squared {where MinChi=0}
Output:
IFSr()// array of record of 4 cells (Ip, Sym, Irng, and Isc).
Stepl:For all Ix, Iy Do (For all range block compute (AvgR, mVarR, Mx, My,
MomldxR, SymR, 1Ir) as mentioned above){where O0<Ix<NxR and
0<Iy<NyR}
Step2: Search the domain blocks
Set Flag<—0
For all Iwin Do {where 0<I<WinSiz}
Check If Iwin>0 Then
Set M—1
Else
Set M«—0
End If
For all J Do {where 0<J<M}
Case J
0: Set K—MomldxR+I
1: Set K—Momldx-1
End Case
Check If K value is between 0 and NoBin Then

Check If St(K)>0 and Ed(K)<NoBin Then
For all L Do {where St(K)<L<Ed(K)} HD

68

‘Ghapter Jhree The Enkanced” FIC Schome

Set Xd—Domldx(L).Xd
Set Yd—Domldx(L).Yd
Check If Domldx(L).mVarD is not 0 Then
Step3://Predict and Perform the symmetry operation
Set [«—Tbl(SymR, Domldx(L).Symldx)
Case |
0:/7 Symmetry=0 (Identity)
For all X)Y Do {where 0<(X,Y)<BlkLength-1}
Set D2(X,Y)—Dom(X"Y')
//where X', Y' is computed in table (3.1)
when ID=0
End For

1://Symmetry=1 (Rotation 90°)
For all XY Do {where 0<(X,Y)<BlkLength-1}
Set D2(X,Y)—Dom(X",Y")
//where X', Y' is computed in table (3.1)
when ID=1
End For
2://Symmetry=2 (Rotation 180°)
For all XY Do {where 0<(X,Y)<BlkLength-1}
Set D2(X,Y)—Dom(X",Y")
//where X', Y' is computed in table (3.1)
when ID=2
End For
3://Symmetry=3 (Rotation 270°)
For all XY Do {where 0<(X,Y)<BlkLength-1}
Set D2(X,Y)—Dom(X",Y")
//where X', Y' is computed in table (3.1)
when ID=3
End For
4://Symmetry=4 (Reflection)
For all XY Do {where 0<(X,Y)<BlkLength-1}
Set D2(X,Y)—Dom(X",Y")
//where X', Y' is computed in table (3.1)
when ID=4
End For
5:/Symmetry=5 (Reflection with Rotation 90°)
For all XY Do {where 0<(X,Y)<BlkLength-1}
Set D2(X,Y)—Dom(X"Y')
//where X', Y' is computed in table (3.1)
when ID=5
End For
6://Symmetry=6 (Reflection with Rotation 180°)
For all XY Do {where 0<(X,Y)<BlkLength-1}
Set D2(X,Y)—Dom(X"Y')
//where X', Y' is computed in table (3.1)
when ID=6

End For 0 I

69

‘Ghapter Jhree The Enkanced” FIC Schome

7: //Symmetry=7 (Reflection with Rotation 270°)
For all X)Y Do {where 0<(X,Y)<BlkLength-1}
Set D2(X,Y)—Dom(X"Y')
//where X', Y' is computed in table (3.1)
when ID=7
End For
End Case

Step4:// Determine Scale Coefficients and Bound the value, finaly Quantize
//Determine the Scale coefficient (Scl) using
equation(2.23)

Check If ScI>MaxScl Then
Set Scl—MaxScl

Else If Scl<-MaxScl Then
Set Scl—-MaxScl

End If

//Then quantize this Scl coefficient using sQstp to be
Isc coefficient (i.e. Isc is the quantized scale)

Step5://Determine the Chi Square coefficient using equation(2.24)

Step6:// Compare Chi and Register the Optimal Chi-Case

Check If Flag=0 Or Flag=1 And Chi<MinChi Then
Set MinChi<—Chi
Set OptSym<«—I
Set Optlsc—Isc
Set OptXd—Xd
Set OptYd—Yd
Check If (MinChi<MinBErr And Iwin=0) Or

(MinChi<MinErr And Iwin>(0) Then
//End Loops L, J, Iwin

End If

End If

Set Flag«—1

Else
Step7://Handle the Case Dom(L).mVarD=0 for all domain values
Set Isc—0
Set Scl—0
Set Chi—mVarR
//Compare Chi and Register the Optimal Chi-Case as
in (Step6)
End If

Endlf I coni: >

70

‘Ghapter Jhree The Enkanced” FIC Schome

End If
End For
End For

Step8://Compare the Optimal quantized scale coefficient
Check If Optlsc>(0 Then
Set Optlsc—Optlsc+Optlsc
Elself Optlsc<0 Then
Set Optlsc—-Optlsc-Optlsc-1
End If

Step9://Register the optimal IFS coefficients and save them in I1FSr()
Set OptX—OptX / JmpStp
Set OptY—OptY / JmpStp
Set [FSr(Ix,Iy).Ip—(NxD+1)*OptY+OptX //The optimal position of the
most similar domain block
Set IFSr(Ix,Iy).Irng—Ir //The optimal quantized offset coefficient of this
domain block
Set [FSr(Ix,1y).Isc<—Optlsc //The optimal quantized scale coefficient of this
domain block
Set IFSr(Ix,1Iy).sym«—OptSym //The optimal symmetry index of this domain
block
End For

Stepl0: Return(IFSr)

The steps of the above listed algorithm requires less computation time
in comparison with traditional algorithm because there is a reduction in
both the number of tested domain blocks for each range block, and in the
number of isometric mappings trials (i.e., instead of the 8 trials only one
isometric mapping case is tested). Also, the use of sorted array of records
of the domain block with pointers refer to the boundaries of each domain
class will be useful to reduce the search space with the domain pool.

In this project the applied similarity condition the coded range block
and any domain block listed in the domain pool is the following:

|F, - F,|<w then the range and domain block are similar

Otherwise they are dissimilar

71

‘Ghapter Jhree The Enkanced” FIC Schome

In the above condition, the symbols F4 and F, denote the index of the
moment descriptor of domain and range blocks, respectively.

The symbol (w) denotes the permissible similarity margin (called
window size) between the moment descriptor indexes of the two matched
block.

The main steps of any IFS matching instance between any pair of
domain and range blocks are the following steps:

1. Computing the scale coefficient value using equation (2.23).
2. Applying the bounding condition on the determined scale coefficient,
1e.,

if s<-maxScale then s=—maxScale

elseif s>maxScale then s =maxScale
3. Quantize the determined values of scale and offset coefficients using

the following equations:

S, =round(j e e e e (3.11)
sQstp

T (3.12)

0, —round(r) ... (3.13)
rostp

O, =0, FFOSIP 5eueeiiiiiiiii i (3.14)

Where: sQstp, rQstp are the quantization steps of scale and offset

coefficients, respectively (see equations 3.2 and 3.3).

S, Sq are the quantization index and the quantized value,
respectively, of the scale coefficient.

Oy, Oy are the quantization index and the quantized value,
respectively, of the offset coefficient.

4. Determining the mean square error (*) between the actual values of

the range block elements are the corresponding approximate values

due to IFS-mapping of the domain block.

72

‘Ghapter Jhree The Enkanced” FIC Schome

5. Comparing the value of error (*) with lowest value registered error
(z2..) attained through the previous matching trials between the range

block and other pre-tested domain blocks.

3.3.6 Encoding the IFS Code

To increase the attained compression ratio, the determined IFS
coefficients in the system are coded using both DPCM and shift coding,
and the output (i.e., codewords) of the shift encoder are saved in the
compressed file, to be restored later for decoding purpose.

At first the file must be prepared to save the shift encoder codewords
in it. Some overhead information (i.e., width and height of the image, the
block length, the jump step, the number of offset bits, the number of scale
bits, the maximum scale value) must be saved at the beginning of the file,
these parameters are considered as a part of the header of the compressed
file, and their registration in the file is necessary for decoding operations.

After the header section, the binary codewords, produced by applying
shift encoder on IFSr() coefficients, are saved in the file. Algorithm (3.9)
shows the implemented steps to shift encoding the IFS coefficients, taking
into consideration the following three remarks:

A. The offset coefficients had been first coded using DPCM and the

output of this encoder was shift coded.

B. Before applying shift coding the scale and offset coefficients have

been mapped using the following function:

. {2c if c20
c =

2|c| -1 otherwise ’

73

‘Ghapter Jhree The Enkanced” FIC Schome

Where ¢' is the original value of scale index or of the DPCM
output of the offset coefficient. The value of ¢’ is always positive,
which is a necessary condition to conduct shift encoding.

C. Before applying shift encoding the proper size of its codewords
should be determined, so in algorithm (3.9) a simple optimization
technique i1s implemented, it is based on testing all possible
codeword sizes to find out the best size that lead to lowest

consumption in bits (i.e., lowest output size).

Algorithm (3.9) Encode IFS Code

Goal: Encode The IFSr() components
Input:
NxR// number of blocks in the width of the range pool
NyR// number of blocks in the height of the range pool
IFSr()// array of record of 4 cells (Ip, Sym, Irng, Isc)
Output:
Compressed File
Stepl: Get the component from IFSr() array
Set N—Nxr*NyR+NxR+NyR
Set [—-1
For all Iy Do {where 0<Iy<NyR}
For all Ix Do {where 0<Ix<NxR}
Increment [by 1
Set Z(1)«—IFSr(Ix,Iy).component
End For
Check If Iy<NyR Then
Increment [y by 1
For all Ix Do {where NxR>Ix>(0)}
Increment [by 1
Set Z(1)«—IFSr(Ix,Iy).component
End For
End If
End For

Step2: DPCM Encoding the IFS component
For all I Do {where N>I>1}
Set Zz(1)—Z()-Z(I-1)
End For

Step3: Mapping to Positive values the component
Set Max1<—0
For all I Do {where I<I<N}
Check If Zz(I) > 0 Then

74

‘Ghapter Jhree The Enkanced” FIC Schome

Set Zz(1)—Zz(l) + Zz(I)
Else Check If Zz(I) < 0 Then
Set Zz(l)— -Zz(I) - Zz(1) - 1
End If
Check If Max1 < Zz(I) Then
Set Max1<—Z7z(])
End If
End For
Step4: Shift-Code Optimizer for the component
ForallIDo1To N
Set J—Zz(1)
Set His(J)«—His(J) + 1 // histogram of each component
End For
Set Totl<—N + 1
Set oSm«—rNoBit * Totl
Set [—1
Set Bt2—1
Step5:Check If I < Max1Then
Set [—]*2+ 1
Set Bt2—Bt2 + 1
Goto Step 5
End If
Set Btl—Bt2 —4
Check If Btl < I Then
Set Btl—1
End If
For all Bt Do {where BtI<Bt<Bt2}
Set Rg—2" — |
Set Max2<—Maxl1 - Rg
Set [—1
Set Btt—1
Step6: Check If I < Max2 Then
Set [—]*2+ 1
Set Btt«—Bitt + 1
Goto Stepb
End If
Set Sm—0
For all I Do {where Rg<I<Max1}
Set Sm—Sm + His(l)
End For
Set Tot«~—Totl * Bt + Sm * Btt
Check If Bt = Btl Or (Bt > Btl And Tot < OptTot) Then
Set OptTot—Tot
Set OptBt1<—Bt
Set OptBt2«Btt
End If
End For

75

‘Ghapter Jhree The Enkanced” FIC Schome

Step7: Encoding the component using the shift encoding
Check If (OptTot + 8) < oSm Then
PutBit 1 //on the compressed file
PutWord OptBtl, 4 //on the compressed file
PutWord OptBt2, 4
Set Rg = 27" _ |
PutWord Z(0), NoBit
For all I Do {where I<I<N}
Check If Zz(I) < Rg Then
PutWord Zz(1), OptBt]
Else
PutWord Rg, OptBt1
PutWord Zz(I) - Rg, OptBt2
End If
End For
Else
Step8: Fix Length Encoding the component Indicies
PutBit 0
For all I Do {where 0<I<N}
PutWord Z(I), NoBit
End For
End If

Step9:End.

3.4 Decoder Module

Figure (3.1Db) illustrates the main stages of the decoding module, it is
obvious that the sequence of its stages takes the inverse order of the
encoding module sequence. Also, the functionality of decoding module
would mainly be the reverse of the functionality of the corresponding stage
in encoder module.

In the following subsections the main stage of the decoder module are

described.

3.4.1 Load and Decode the IFS Code

These two stages are the first two stages in decoding module. The
decoding process begins with loading the data of the compressed file

(ComFileName). At first, the contents of header section must be extracted

76

‘Ghapter Jhree The Enkanced” FIC Schome

because they are necessary to setup some parameters of the decoding
modules, and to make the decoder capable to load the registered codewords
in the compression file. As a second stage the shift decoding and DPCM
are implemented to decode the scale and offset coefficients. Also, in this
stage the inverse mapping process (from positive to negative-positive) is

applied, using the following equation:

¢ div 2 if ¢'is even
c= ,
~((c'+1)div2) if ¢"is odd

This process will retrieve the decoded offset and scale coefficients to
their original values. The output from this stage is an array, nlFSr(), of IFS-

coefficients.

3.4.2 FIC Decoder

In this stage, the steps of decoding the IFS code are implemented to
establish the compressed image. This stage consist of two main processes:
1. Dequantization of IFS coefficients.

2. IFS mapping to reconstruct YCbCr bands.

Algorithm (3.10) Loading and Shift Decoding

Goal: Decode The IFS code
Input:

Compressed File

Output:
NxR// number of blocks in the width of the range pool
NyR// number of blocks in the height of the range pool
IF'Sr()// array of record of 4 cells (Ip, Sym, Irng, Isc)

Step1:// Get all parameters from the compressed file
Step2:// Decode the component of IFS code
Set N—NxR*NyR+NxR+NyR
Check If GetBit=1 Then
Step3:// Shift decode the component
Set Btl1«—GetWord(4)
Set Bt2«—GetWord(4)
Set Rg—2"" — |

77

‘Ghapter Jhree The Enkanced” FIC Schome

Set Z(0)—GetWord(NoBit)
For all I Do {where I<I<N}
Set Z(1)—GetWord(Btl)
Check If Z(I) = Rg Then
Set Z(l)«—Rg + GetWord(Bt2)
End If
End For
Step4:// Mapping to Negative/Psitive the values of the component
For all I Do {where I<I< N}
Check If not(Z(I) = 0) Then
Check If (Z(I) And 1) = 0 Then
Set Z(I)—Z(D) \ 2
Else
Set Z(I)— -((Z(I) + 1) | 2)
End If
End If
End For
Step5:// DPCM Decoding of the component
For all I Do {where 1<I<N}
Set Z(I)—Z() + Z(I - 1)
End For

Else
Step6:// Fix Length Decoding of the IFS component
For all I Do {where 0<I<N}
Set Z(1)«—GetWord(NoBit)
End For
End If

Step7:// Put the Component Indicies in IFSr Array
Set [«—-1
For all Iy Do {where 0<Iy<NyR}
For all IxDo {where 0<Ix<NxR}
Increment [by 1
Set [FSr(Ix, Iy).component—Z(I)
End For
Check If Iy < NyR Then
Increment Iy by 1
For all Ix Do {where NxR>Ix> 0}
Increment [by 1
Set [FSr(Ix, Iy).component—Z(I)
End For
End If
End For
Step8:// Return (IFSr).

78

‘Ghapter Jhree The Enkanced” FIC Schome

A. Dequantization

After shift decoding and inverse mapping (from positive to
positive/negative) to retrieve the IFS() coefficients, the values of scale and
offset coefficients need to be dequantized because the stored values of both
coefficients are their quantization indices (i.e., s;, 0;) and not their quantized

values (i.e., s,, 0,). Algorithm (3.11) shows the steps taken to dequantize

the IFS() coefficients.

Algorithm (3.11) Dequantization

Goal: Dequantize the IFSr() components
Input:
JmpStp// the jump step between each two domain blocks
Nxd// the width of the domain pool
nlFSr()//array of record of 4 cells (Ip, Sym, Irng, and Isc).
Qutput:
olF'Sr()// dequantized array of record of 5 cells (Xd, Yd, Sym, Irng, and
Isc).
Step1: Dequantize all the components
For all Ix,Iy Do {where 0<Ix<NxR and 0<Iy<NyR}
Set olFSr(Ix,1y). Xd«—nlFSr(Ix,Iy).Ip mod (Nxd+1))*JmpStp
Set olFSr(Ix,1y). Yd—nlFSr(Ix,1y).Ip div (Nxd+1)) *JmpStp
Set olFSr(Ix,1y).Sym«—nlFSr(Ix,1y).Sym
Set olFSr(Ix,1y). Irng—nlFSr(Ix,1y) Irng*rQstp
Set olFSr(Ix,1y).Isc<—nlFSr(Ix,Iy).Isc *sOstp
End For
Step2: Return(olFSr)

B. Reconstruction of Range Pool

This stage is initialized by generating a domain pool whose elements
values are assigned in arbitrary way. In the established system the elements
of the domain pool have given same value (i.e., zero value). The
dequantized values of IFS() coefficients are used to map the domain blocks
to produce the range blocks approximates. Then, each generated range

block is set in its position in the empty range pool.

79

‘Ghapter Jhree The Enkanced” FIC Schome

After the complete generation of all range blocks of the range pool,
then the contents of this pool are down sampled (by 2), using averaging
method, to regenerate the domain pool. This newly generated domain pool
is used again with the IFS() code set to regenerate the range pool. This
sequence (i.e., domain pool generation, IFS mapping, and range pool
generation) is repeated till the reconstructed range pool reaches the
attractor state. The range pool reconstruction is performed three time to
reconstruct the three color bands (i.e., Y-component, downsampled Cb and

Cr components).

3.4.3 Range Pool Resizing

In this stage the sizes of the three reconstructed range pools are
adjusted to be equal to their original size. As mentioned in paragraph
(3.2.5.2), the resizing step is done to make the range pool dimensions (i.e.,
width and height) multiples of range block length. The rows and columns
decimation method was used to adjust the size of range pools to its original
size. Algorithm (3.12) lists the implemented steps to adjust the size of one

range pool.

80

‘Ghapter Jhree The Enkanced” FIC Schome

Algorithm (3.12) Resize the Range Pool to Its Original Size

Goal: Resize the range pool after reconstruction
Input:
W// the width of the range pool
H// the height of the range pool
BlkLength// the block length
Rng()// the range pool
Output:
nRng()// the new range pool
Stepl: Check if the height and width value are accepted to division by the block
length without any rest
Check If (W mod BlkLength) is not zero Or (H mod BlkLength) is not zero
Then
Set Nx < W div BlkLength
Set Wp < Nx * BlkLength
Check If Wp < W Then
Increment Nx by 1
Set Wp — Wp + BlkLength
End If
Decrement Nx by 1
Set Wpm — Wp — 1
Set Wm — W—1
Set Lx — Wp—W
Set Tx «— Wm div (Lx + 1)
End If

Set Ny — H div BlkLength

Set Hp < Ny * BlkLength

Check If Hp < H Then
Increment Ny by 1
Set Hp <— Hp + BlkLength

End If

Decrement Ny by 1

Set Hpm «— Hp — 1

Set Hm — H—1

Set Ly — Hp— H

Set Ty — Hm div (Ly + 1)

Set Img<—Rng// Img is a temporary array of dimension Wpm*Hpm

Check If Lx is larger than zero Then
For all Y Do {where 0<Y<Hpm}
Set St — 0
Set X1 — -1

Set X2 — -1 |]|]

81

t/fapter yz;‘ee

The Enkanced” FIC Schome

For all Ix Do {where 1<Ix<Lx}
Set Ed — Tx * Ix
For all X Do {where St<X<Ed}
Increment X1 by 1
Increment X2 by 1
Set A(X2) «— Img(X1, Y)
End For
Increment X1 by 1
Set St — Ed + 1
End For
For all X Do {where St<X<Wm,
Increment X1 by 1
Increment X2 by 1
Set A(X2) «— Img(X1, Y)
End For
For all X Do {where 0<X<Wm}
Set Img(X, Y) — A(X)
End For
End For
End If
Check If Ly is larger than zero Then
For all X Do {where 0<X<Wm}
Set St — 0
Set Y1 — -1
Set Y2 — -1
For all Iy Do {where I<Iy<Ly}
Set Ed — Ty * Iy
For all Y Do {where St<X<Ed)}
Increment Y1 by 1
Increment Y2 by 1
Set A(Y2) «— Img(X, Y1)
End For
Increment Y1 by 1
Set St — Ed + 1
End For
For all Y Do {where St<X<Hm)}
Increment Y1 by 1
Increment Y2 by 1
Set A(Y2) «— Img(X, Y1)
End For
For all Y Do {where 0<Y<Hm)
Set Img(X, Y) — A(Y)
End For
End For
End If
End If
Set nRng«—Img
Step2: Return (nRng)

82

‘Ghapter Jhree The Enkanced” FIC Schome

3.4.4 Up Sampling

In this stage the reconstructed range pools of the chromatic bands (i.e.,
Cb and Cr) are up sampled (by 2) using nearest neighbor interpolation
method. Algorithm (3.13) shows the steps taken to apply this stage.

Algorithm (3.13) Up-Sampling Method

Goal: Up sample the two bands Cb, and Cr
Input:

Wid// the width of the bands

Hgt// the height of the bands

sCb()// the down sampled Cb

sCr()// the down sampled Cr
Output:

rCh(), rCr()// the reconstructed Cb and Cr
Step1: Initialize some parameters

Set Wm—Wid-1

Set Whm—(Wid+1) div 2 -1

Set Hm<—Hgt-1

Set Hhm«—(Hgt+1) div 2 -1
Step2: For all X)Y Do {where 0<X<Whm and 0<Y<Hhm}

Set rCb(X*2, Y*2)—sCb(X,)Y)

Set rCr(X*2, Y*2)—sCr(X,Y)

Check If (X*2+1)<Wid Then
Set rCb(X*2+1, Y*2)«—sCb(X,Y)
Set rCr(X*2+1, Y*2)—sCr(X,Y)
End If

Check If (Y*2+1)<Wid Then
Set rCb(X*2, Y*2+1)«—sCb(X,Y)
Set rCr(X*2, Y*2+1)«—sCr(X,Y)
Check If (X*2+1)<Wid Then
Set rCb(X*2+1, Y*2+1)«—sCb(X,Y)
Set rCr(X*2+1, Y*2+1)—sCr(X)Y)
End If
End If
End For
Step3: Return(rCb, rCr)

83

‘Ghapter Jhree The Enkanced” FIC Schome

3.4.5 Conversion from YCbCr to RGB

As a last decoding stage the reconstructed bands (Y, Cb, Cr) are
converted to RGB color representation, using equations (2.12), Algorithm

(3.14) shows the implemented steps to make the color conversion.

Algorithm (3.14) Convert from YCbCr to RGB color space

Goal: Extract RGB from the YCbCr
Input:

Yc()// the Y component
Cb()// the Cb component
Cr()// the Cr component
Output:
Red()// the red component
Grn()// the green component
Blu()// the blue component
Step1: Determine the reconstructed values and check if they are acceptable

Set A=Y+ 1.58163 *Cr+ 0.00131 *Cb
Check If A <= 0 Then

Set Red < (0
Else If A >= 255 Then

Set Red «— 255
Else
Set Red — A

End If
Set A — Y+ 1.86324 *Cb - 0.00018 * Cr
Check If A <= 0 Then

Set Blu < 0
Else If A >= 255 Then

Set Blu < 255
Else

Set Blu — A
End If

SetA<—Y-0.18817 *Cb-0.46978 * Cr
Check If A <= 0 Then
Set Grn — 0
Else If A >= 255 Then
Set Grn «— 255
Else
Set Grn — A
End If

Step2: Return(Red, Grn, Blu).

84

‘Ghapter Jhree The Enkanced” FIC Schome

The reconstructed red, green, and blue bands will be saved in a bitmap
formatted file, as a decompressed image file, and it will have the same size
as the original file. For testing purpose, the contents of the two images (i.e.,
original and decompressed images) are compared using some fidelity
criteria (such as MAE, MSE, PSNR) in order to find how much error (i.e.,

difference) is introduced due to compression.

85

(Chaptee Four
Do o Rl

Chapter Four
Performance Test Results

4.1 Introduction

In this research project four FIC schemes have been applied. The
first scheme is the traditional FIC scheme, denoted as "TradFIC" and
established for comparison purpose with other three enhanced FIC
schemes. The second scheme, denoted as "PredFIC", it is the enhanced
version of FIC scheme, where the isometric (or symmetric) predictor is
added to traditional FIC-scheme to reduce the number of domain block
mapping trials from 8 to only 1. The index of the selected isometric
mapping is assigned by the introduced moment-based predictor. The third
established FIC-scheme is an improved version of PredIFS, where beside
to using moment-based symmetry predictor a block descriptor, where
based on first order moments, is used to more speed-up to FIC coding
stage, this third scheme is denoted as "Dis1FIC". The fourth FIC scheme
uses another blocks descriptor which is based on third order moments,
instead of first order moments, and this scheme 1s denoted as "Dis3FIC".

This chapter is devoted to present the results of the conducted tests
to study the compression performance of the suggested fractal image
compression schemes. Some of the famous fidelity measures (i.e. MSE,
MAE, PSNR, CR) have been used to assess the quality of the
reconstructed image.

The effects of some involved coding parameters on the performance
of the four applied IFS scheme (i.e., TradFIC, PredFIC, Dis1FIC, and
Dis3FIC) have been investigated.

86

(Ghdapter T;vur ﬂjetﬁmance :Z;ot &.sufto‘

The developed systems have been established using Visual Basic
(version 6.0) programming language, and they work under Microsoft
windows XP Professional operating system. The tests have been
conducted using laptop computer (Processor: mobile AMD Athlon™™ XP-
M (LV) 2400+, MMX, 3DNow, ~1.8GHz; Memory: 480MB).

4.2 Image Test Material
Two bitmap images have been taken as test samples, each image
consists of the same number of pixels (i.e., 256X256), and they have color

resolution (24bpp), and size (192KB). Figure (4.1) shows these two

images.

a. Lena b. Girl
Figure (4.1) The bitmap images used as test samples

87

(G/fapter %ur eﬂrfémaﬂce :7;.9t ﬂg&uft&

4.3 Testing Strategy

The testing operations have been applied on the above mentioned
two image samples. The tests were conducted to explore the effectiveness
of each involved parameter in the compression scheme on the
compression performance parameters; including the three fidelity criteria
(MAE, MSE, PSNR), compression ratio, bit rate, and the elapsed time of
the compression process. The tested compression scheme parameters are:
block length, jump step, maximum scale, scale bits, offset bits, minimum
error, minimum block error, number of bins, window size.

The test procedure followed to investigate the effectiveness of each
parameter is "changing the value of this parameter, while the values of
other parameters are set fixed at their default values". The adopted default

values are described in table (4.1).

Table (4.1) The default values of the relevant coding parameters

Default
Parameter
Value

Block Length 4
Jump Step 1
Maximum Scale Value 3
Number of Scale Bits 6
Number of Offset Bits 8
Minimum Error 1.5
Minimum Block Error 1
Number of Bins 100
Window Size 1

4.4 Block Length Test

In this set of tests the effects of block length on compression
performance parameter are investigated. The tests have been conducted
on Lena and Girl images. The tests results indicated that the performance
parameters are significantly affected by the value of block length. Here,

in this set of tests the value of block length was varied while the values of

88

(G/fapter %ur ﬂjerférmance :7;.9t ﬂg&uft&

other involved parameters are kept fixed at their default values. The
noticed effects of the block length parameter are clarified in the following
remarks:
1. Table (4.2) shows the effects of the block length parameter on the
compression performance parameters (MAE, MSE, PSNR, CR, BR,

encoding time) when the Dis1FIC scheme is applied on Lena image.

Table (4.2) The effect of block length parameter of Dis1FIC scheme

Block Over All Compression | Bit Time in
Length MAE | MSE | PSNR Ratio Rate | Seconds
4 3.92 | 42.01 | 31.90 8.875 2.704 1.26
5 4.73 | 63.61 | 30.10 13.453 1.784 1.32
6 5.53 | 85.12 | 28.83 19.326 1.242 1.25
7 6.19 | 106.20 | 27.87 26.117 0.919 1.26

8 6.91 | 130.61 | 26.97 35.393 0.678 1.34

2.Table (4.3) illustrates the effects of the block length on the
compression performance parameters, when Dis3FIC scheme is

applied on Lena image.

Table (4.3) The effect of block length parameter of Dis3FIC

scheme
Block Over all Compression | Bit | Time in
Length MAE | MSE | PSNR Ratio Rate | Seconds
4 391 | 42.05 | 31.89 8.863 2.708 1.21
5 4.75 | 63.65 | 30.09 13.440 1.786 1.33
6 5.61 | 86.96 | 28.74 19.334 1.241 1.27
7 6.23 | 107.16 | 27.83 26.089 0.920 1.35
8 6.91 | 130.24 | 26.98 35.368 0.679 1.38

3.Figure (4.2) illustrates the effects of block length variation
compression performance parameters of the four FIC schemes. The

test image was Lena image.

89

t/fapter %ur ﬂjerﬁmance :7;.9t ﬂg&ufts
11 193
— — — Trad. (1) Mean Absolute Error I Trad.
10 Pred. | —— Pred.
ol ~ Desc.1 163 |— - Desc.1
——Desc.3 1481 pescs
8 133 +
'-'<J w118 4
= =103 -
88
73
58 -
:: 7/// = (2) Mean Square Error
4 5 6 7 8 4 6 7 8
Block Length Block Length
34 36
|(3) Peak Signal to Noise Ratio
33 32 |
28 -
o 24
o
20
16
26 {— — Descd 12 4
—— Desc.3 (4) Compression Ratio
25 T T T 8 T T T
4 5 7 8 4 5 6 7 8
Block Length Block Length
3 5) Bit Rat 300 i
(5) Bi e 270 (6) Time
2.5
® 240 +
5 2210 | e T T — — "
o L e
o180 —_—~
© n i
m1.5+ -5150 — _Trad.
1 0120 1 —— Pred.
E 90 — — Desc.1
0.5 4 Pred. 60 - ——Desc.3
. — — Desc.1 30
——Desc.3 - T
0 > | ‘ 0 ‘ ‘ ‘
4 5 6 7 8 4 6 8
Block Length Block Length

Figure (4.2) The effects of block length on the compression
performance parameters, the test image was Lena

4.Figure (4.3) shows the effects of block length wvariation on

compression performance of the four FIC schemes. The test image

was Girl image.

90

t/fapter %ur ﬂjerﬁmance :7;.9t ﬂg&ufts
10 146
— — — Trad. (1) Mean Absolute Error — — — Trad.
9 Pred. 131 1 pred.
gl — - Desc.1 116 {— - Desc.1
;] ——— Desc.3 101 4 ————Desc.3
Y| 4 %1
= = 71
56 -
41
26 -]
1" [(2) Mean Square Error
6 4 5 6 7 8
Block Length Block Length
38 40
37 (3) Peak Signal to Noise Ratio — — — Trad.
36 - Pred.
32— -~ Desc.1 /
—Desc3
28 - e
%24 | P ~
20 - /
299 pred. 16 - /
287 _ pesci 12 =
274 Desc.3 (4) Compression Ratio
26 T T T 8 T T T
4 6 7 8 4 5 6 7 8
Block Length Block Length
3 5) Bit Rat: 300 Trad
— — — Trad. i
(5) e 270 | (6) Time
2.5 —— Pred.
%240 |— - Desc.
2 5210] ———Desc.3
9 180 - R o
%1.5 ™ ©150 | T T
91201 7
14— =" Trad. E 90 -
Pred. = 60 4
051 _
Desc.1 30 Y
————Desc.3 —
0 T . 0 T T T
4 5 7 8 4 8

6
Block Length

6
Block Length

Figure (4.3) The effects of block length on the compression
performance parameters, when Girl image is used as test material

4.5 Jump Ste

p Test

This set of conducted tests is dedicated to investigate the effects of

jump step parameter on the compression performance parameters for the

four FIC schemes. This set of tests was conducted on both images (Lena,

Girl). The results of this set of tests indicated that the performance

parameters are significantly affected by jump step values, which had been

varied between 1 and 4. The values of other parameters were set fixed at

their default values. The obtained results are described in the following:

91

gje{ﬁmawce y;.st &o‘ufts

'C/fapter ?ﬁmr

1. Figure (4.4) shows some of the reconstructed Lena images, where

the applied FIC scheme is Dis1FIC.

Jump Step=1 Jump Step=2 Jump Step=3 Jump Step=4
MAE=3.92 MAE=4.30 MAE=4.72 MAE=4.91
MSE=42.01 MSE=52.38 MSE=64.31 MSE=70.58

PSNR=31.90 PSNR=30.94 PSNR=30.05 PSNR=29.64

CR=8.875 CR=9.532 CR=9.881 CR=10.268
BR=2.704 BR=2.518 BR=2.429 BR=2.337
Time=1.18 Time=0.41 Time=0.27 Time=0.23

Dis1FIC scheme is applied

Figure (4.4) Samples of the reconstructed Lena images when

2.Figure (4.5) shows the samples of jump step test set for Dis3FIC

scheme applied on Lena image.

Jump Step=1 Jump Step=2 Jump Step=3 Jump Step=4
MAE=3.91 MAE=4.31 MAE=4.72 MAE=4.93
MSE=42.05 MSE=52.08 MSE=63.97 MSE=71.46

PSNR=31.89 PSNR=30.96 PSNR=30.07 PSNR=29.59

CR=8.863 CR=9.525 CR=9.886 CR=10.258
BR=2.708 BR=2.520 BR=2.428 BR=2.340
Time=1.24 Time=0.43 Time=0.37 Time=0.31

Figure (4.5) The jump step test results for Dis3FIC scheme

Figure (4.6) shows the effects of jump step parameter value on the

compression performance parameters of the four FIC schemes when

they applied on Lena image.

92

t/fapter %ur eﬂtﬁmmce :7;.9t ﬂg&uft&

11 193
— — — Trad. (1) Mean Absolute Error 178 | — — — Trad. (2) Mean Square Error
10 Pred. Pred.
o — - Desc.1 1631 _ Desc.1
——Desc.3 1481 pescs
8 133
w w 4
< 7| - 118
= =103 -
6 88 -
5 S 73
//// 58 //
47:7‘:7‘5*:_?71 iiiii o 439 e —— == ===
3 ‘ ‘ b e :
1 3 4 1 2 3 4
Jump Step Jump Step
34 36
- — — — Trad. (4) Compression Ratio
3B \A‘;‘\—¥—\ﬁ<_\<¥ 32 Pred.
32 — — — Desc.
31 \ 281 pesc3
%30 . — | 24 1
o 29 20
28’———Trad. 16 |
27 H{— Pred.
26 {— — Desci 12
— Desc.3 (3) Peak Signal to Noise Ratio —
25 T T 8 T T
1 2 3 4 1 2 3 4
Jump Step Jump Step
3 300
(5) Bit Rate 270 | (6) Time
2.5 T — 4
== — %240
210 +
24 g — — — Trad.
©180
o $ 150 | —— Pred.
m 1.5 c — - Desc.
@120 1~ ——Desc.3
14— - Trad. £ 90 \\
—— Pred. = 60 > ~
0.5 ~.
——Desc.; 30 4 —_
Desc. — T
0 i 0 —_—
1 2 3 4 1 2 3 4
Jump Step Jump Step

Figure (4.6) The effect of jump step parameter on the performance
of the four FIC schemes, for the case of Lena image

4. Figure (4.7) shows the difference between the four FIC schemes
when they implemented on Girl image using same coding

parameters:

93

t/fapter %ur ﬂjerﬁmance :7;.9t ﬂg&ufts
10 146
— — — Trad. (1) Mean Absolute Error — =~ Trad. (2) Mean Square Error
9{—— Pred. 131 1 Ppred.
gl — - Desc.1 116 {— - Desc.
——Desc.3 — Desc.3
71 101 -
L<ItJ W 86
= 61 = 71
Jump Step Jump Step
38 40
37 | — — —Trad. (4) Compression Ratio
36 — = 36 Pred.
] —_—
35 - - 32 ~ Desct
34 —Desc.3
o 33 — 281
32 %24
o i
31 20 |
30 T " rad.
299 pred. 16 1
281 pesct 12 |
279 pescs (3) Peak Signal to Noise Ratio I ——————
26 T T 8 T T
1 2 3 4 1 4
Jump Step Jump Step
3 300
— — — Trad. i
270 | ra (6) Time
25 —— 240 | ——— Pred.
B) — - Desc.
21 B 8210’7Desc.3
S 180
&1.5 150 -
2120 1
11— "Trad. E 20
051 Pred. 60 \\\\
) — — Desca1 30 4 S~ R
0 — Desc.3 ‘ ‘ (5) Bit Rate 0 === ‘ \‘*—~‘—ﬁ 4444
1 4 1 2 3 4
Jump Step Jump Step

Figure (4.7) The effect of jump step of the four FIC schemes when
they applied on Girl image

4.6 Maximum Scale Test

In this set of tests the effect of maximum scale parameter is studied

for the four established IFS- schemes. In this set of tests the value of

maximum scale parameter was varied within the range [1, 5]. The values

of other parameters were fixed at their default values. The results of this

set are summarized in the following tables and figures:

94

(G/fapter %ur ﬂjerférmance :7;.9t ﬂg&uft&

1. Table (4.4) shows the effects of maximum scale parameter on the
compression performance of DislFIC scheme, applied on Lena

image.

Table (4.4) The results of maximum scale test of Dis1FIC

scheme
Max Over All Compression | Bit | Time in
Scale MAE | MsE | PSNR Ratio Rate | Seconds
1 4.04 | 46.23 | 31.48 8.786 2.732 1.14
2 392 | 42.35 | 31.86 8.786 2.732 1.24
3 392 | 42.01 | 31.90 8.875 2.704 1.26
4 392 | 41.85 | 31.91 8.929 2.688 1.16
5 394 | 42.13 | 31.92 8.993 2.669 1.19

2. Table (4.5) shows the effects of maximum scale parameter on the
compression performance of Dis3FIC scheme, applied on Lena

image.

Table (4.5) The results of maximum scale test of Dis3FIC

scheme
Max Over All Compression | Bit | Time in
Scale MAE | MSE | PSNR Ratio Rate | Seconds
1 4.04 | 46.82 | 31.43 8.786 2.732 1.24
2 392 | 4237 | 31.86 8.786 2.732 1.22
3 391 | 42.05 | 31.89 8.863 2.708 1.26
4 393 | 42.07 | 31.89 8.934 2.686 1.20
5 393 | 42.02 | 31.90 8.991 2.669 1.21

3. Figure (4.8) illustrates the effects of maximum scale parameter on
the performance parameters of the four FIC schemes, the Lena

image was used as test material.

95

t/fapter %ur eﬂrfémaﬂce :7;.9t ﬂg&uft&

193
L E—ry (1) Mean Absolute Error P Trad. (2) Mean Square Error
10 {—— Pred. —— Pred.
ol ~ Desc.1 163 |— - Desc.
——Desc.3 148 - ——Desc.3
8 133
w w]
< 7 118
= =103 -
6 7 88 4
51 73 4
4] 58
- T =] R e N N — _
3 T T T 28 T,‘, e ?7 —_— ‘717, g |
1 2 4 5 1 2 3 4 5
Maximum Scale Maximum Scale
36
—————————————— —_— — — — Trad. (4) Compression Ratio
- 32 | Pred.
— — Desc.
28 | pesc3
- 24
o
20 -
16 4
12
(3) Peak Signal to Noise Ratio
. . 8 : : .
1 2 3 4 5 1 2 3 4 5
Maximum Scale Maximum Scale
3 300
,,,,, — -~ Trad. (6) Time
25 | - - 2104 peq. I—
' . 240 | pesend
(5) Bit Rate % SC.
2 g210’7Desc.3
S 180
1.5 P50 L o]
2120 1
11— Traa. E 90
—— Pred. = 60 |
051 _ Desc. 30 |
0 7')9“{3 : ‘ 0 ‘ ‘ ‘
1 2 3 4 5 1 2 .3 4 5
Maximum Scale Maximum Scale

Figure (4.8) The effect of maximum scale parameter on the performance
parameters of the four FIC-schemes, when they applied on Lena image

4. Figure (4.9) shows the effects of maximum scale parameter of the

four FIC schemes when they applied on Girl image.

96

t/fapter %ur eﬂrfémaﬂce :7;.9t ﬂg&uft&

10 146
— — —Trad. (1) Mean Absolute Error — — — Trad. (2) Mean Square Error
91 Pred. 131 1 Pred.
8 — — Desc.1 116 1 — - Desc.
7 ————Desc.3 101 - ————Desc.3
w w |
Y .| 86
= = 71
5 T 56 4
4 - 41 4
31 26
2/ ——+ T T "M+ — =
1 2 3 4 5 1 2 4 5
Maximum Scale Maximum Scale
38 40
37 4 L — = — Trad. (4) Compression Ratio
= == === - 36 4 Pred.
361 —— - Desc.1
3B 32 7 es¢
34 — Desc.3
28
rr 33
Z32 - %24 1
o 4
31 20 |
30 T 7.
29 - Pred. 16
289 pesct 12
279 Desc.3 (3) Peak Signal to Noise Ratio
26 T T T 8 T T T
1 2 3 4 5 1 2 3 4 5
Maximum Scale Maximum Scale
3 300
— — — Trad. i
270 | o (6) Time
—— Pred.
257 — 7 240
%) — - Desci
24 -§210 71———Desc.3
0180
o b3
m1.5 p 150
©120
Ll e———) Eoot—- -« — -
—— Pred. = 60
059 _ pescit 30 4
— Desc3 (5) Bit Rate L
0 ; . I 0 T T T
1 2 3 4 5 1 2 .3 4 §
Maximum Scale Maximum Scale

Figure (4.9) The effect of maximum scale on the performance of the
four FIC schemes, when they applied on Girl image

4.7 Scale Bits Test

In this section the result of some tests made on both images (Lena
and Girl) are shown to investigate the effects of changing the number of
bits used to represent the value of scale coefficients. In this set of tests
the value of scale bits parameter was varied from 2 to 8. The values of
other parameters were fixed at their default values. The following figures

illustrate the obtained results:

97

t/fapter ﬁur

ﬂ%{ﬁmmce :7;.st &o‘ufto‘

1. Figure (4.10) shows the effect of the scale bits parameter on the

performance of Dis1FIC scheme, the test image was "Girl".

Scale Bits=2 Scale Bits=3 Scale Bits=4 Scale Bits=5
MAE=3.44 MAE=2.66 MAE=2.46 MAE=2.37

MSE=31.51 MSE=20.95 MSE=18.65 MSE=17.69

PSNR=33.15 PSNR=34.92 PSNR=35.42 PSNR=35.65
CR=10.685 CR=10.284 CR=9.882 CR=9.506
BR=2.246 BR=2.334 BR=2.429 BR=2.525
Time=1.25 Time=0.96 Time=0.94 Time=0.84

Scale Bits=6 Scale Bits=7 Scale Bits=8
MAE=2.33 MAE=2.31 MAE=2.31
MSE=17.39 MSE=17.24 MSE=17.20

PSNR=35.73 PSNR=35.77 PSNR=35.77
CR=9.126 CR=8.778 CR=8.477
BR=2.630 BR=2.734 BR=2.831
Time=0.82 Time=0.81 Time=0.79

Figure (4.10) Some samples of reconstructed Girl images when it
is compressed by Dis1FIC using different values of scale bit
parameter

2.Figure (4.11) describes the results of applying Dis3FIC scheme on

Girl image, the number of scale bits was varied.

98

t/fapter ﬁur

ﬂ%{ﬁmmce :7;.st &o‘ufto‘

Scale Bits=2 Scale Bits=3 Scale Bits=4 Scale Bits=5
MAE=3.45 MAE=2.68 MAE=2.45 MAE=2.37

MSE=31.56 MSE=21.22 MSE=18.75 MSE=17.75

PSNR=33.14 PSNR=34.86 PSNR=35.40 PSNR=35.64
CR=10.681 CR=10.289 CR=9.881 CR=9.513
BR=2.247 BR=2.333 BR=2.429 BR=2.523
Time=1.11 Time=0.91 Time=0.84 Time=0.84

Scale Bits=6 Scale Bits=7 Scale Bits=8
MAE=2.33 MAE=2.31 MAE=2.31
MSE=17.55 MSE=17.22 MSE=17.31

PSNR=35.69 PSNR=35.77 PSNR=35.75
CR=9.123 CR=8.775 CR=8.473
BR=2.631 BR=2.735 BR=2.832
Time=0.83 Time=0.79 Time=0.77

Figure (4.11) Some samples of reconstructed Girl images when it
is compressed by Dis3FIC scheme using different values of scale
bit parameter

3.Figure (4.12) shows the effect of scale bits parameter on the
performance of the four FIC schemes, when they applied on Lena

image.

99

t/fapter %ur ﬂjerﬁmance :7;.9t ﬂg&ufts
Ly p—— Trad. (1) Mean Absolute Error 193 ——— Trad. (2) Mean Square Error,
10 4 Pred. 178 1 pred.
9| ~ Desc.1 1631 pescit
————Desc.3 148 1 pesc3
8 1 133
W w]
< 7 118
= =103
6 7 88 4
51 73
4 S 58 -
B —— 43 \\\\<7¥<
3 T T T T T 28 J e —— |
2 3 5 7 8 2 3 4 5 6 7 8
Scale Bits Scale Bits
34 36
33 e — e = — = = — — — Trad. (4) Compression Ratio
) = 32 Pred.
32 /// — — Desc1
31 4 ; - 281 pescs3
£ 30 - 5Mf
229 20
2t‘,'f———Trad. 16 -
27 - Pred.
26— ~ Desc.1 12
——Desc.3 (3) Peak Signal to Noise Ratio I ——
25 T T T T T 8 T T T : :
2 3 4 5 6 7 8 2 3 4 5 6 7 8
Scale Bits Scale Bits
3 300
(5) Bit Rate 270 (6) Time — — — Trad.
2.5 240 | —— Pred.
% — — Desc.
2 g 210 N ———Desc.3
0180 1
.4 H AN
m1.5 21% S _]
©120
1 — — — Trad. £ 90
0 —— Pred. = 60 |
57 — — Desc.1 30 —
0 ———Desc.3 0
2 6 8
2 : 4 Scali Bits ¢ ! 8 Scale Bits

Figure (4.12) The effect of scale bits parameter on the
performance of the four FIC schemes, when they applied on
Lena image

4. Figure (4.13) shows the effect of scale bits parameter on the

compression performance parameters of the four FIC-schemes,

applied on Girl image.

100

t/fapter %ur eﬂrfémaﬂce :7;.9t ﬂg&uft&

10 146
— — —Trad. (1) Mean Absolute Error — - — Trad. (2) Mean Square Error
9 - Pred. 131 4 Pred.
g1 ~ Desc.1 116 {— - Desc.1
————Desc.3 101 1 ————Desc.3
7 4
w w 1
<6 86
= = 714
1 56 |
4 41
3,\\\7 . 26 *\\§ _
2 T T T T : 11 —
2 3 5 6 7 8 2 3 4 5 7 8
Scale Bits Scale Bits
40
38 | — — — Trad. (4) Compression Ratio
37 e T —— ——| 36 Pred.
36 1 e T
s — — Desc.1
3514 _~ 32
———— Desc.3
34 4 28 |
33
#32 1 &24
o 31 -
20 -
30 T— " "Trad.
29 Pred. 16 1
281 pescit |
| 12
27 1 pesc3 (3) Peak Signal to Noise Ratio |
26 T T T T T 8 T T T T T
2 3 4 5 6 7 8 2 3 4 5 6 7 8
Scale Bits Scale Bits
3 300
— -~ Trad. (6) Time
25 —— 2104 preq.
7 E—— 240 _ o,
- — » sc.1
24 2210’7Desc.3
180
§1.5 1 150
2120 — _ _ L
Ly p———) £ 90 - i S]
Pred. = 60 -
051 pesct 30 4
0 7I‘Jesc.3 ‘ ‘ ‘ (5‘)BitRate 0 — “ % 7‘ 7‘ \‘ -
2 3 4 5 6 7 8
2 3 4 Scalg Bits 6 7 8 Scale Bits

Figure (4.13) The effect of scale bits parameter on the
performance parameters of the four FIC schemes, when they
applied on Girl image

4.8 Offset Bits Test

This set of conducted tests is to investigate the effects of the
parameter "number of offset bits" on the performance parameters of the
established FIC schemes. The value of the offset bits parameter was
varied between 4 to 8. While, the values of other parameters were set
fixed to have their default values. The results of this set of tests is

described in the following tables and figures:

101

(G/fapter %ur ﬂjerférmance :7;.9t ﬂg&uft&

1. Table (4.6) presents the effect of offset bits parameter on the

performance of Disl1FIC, when it is applied on Girl image.

Table (4.6) The results of offset bits tests of Dis1FIC scheme,

applied on Girl image

Offset Over All Compression | Bit | Time in
Bits MAE | MsE | psNR Ratio Rate | Seconds

4 8.74 | 134.46 | 26.84 10.504 2.285 1.51

5 490 | 46.99 | 3141 10.163 2.361 1.42

6 3.19 | 2443 | 34.25 9.846 2.438 1.31

7 2.56 | 18.63 | 3543 9.491 2.529 0.99

8 233 | 17.39 | 35.73 9.126 2.630 0.93

2.Table (4.7) lists the tests results of Dis3FIC scheme, when it is

applied on Girl image with different values of offset bits parameter.

Table (4.7) The results of offset bits test of Dis3FICscheme,

applied on Girl Image

Offset Over All Compression | Bit | Time in
Bits MAE | MSE | PSNR Ratio Rate | Seconds

4 8.73 | 133.63 | 26.87 10.498 2.286 1.42

5 490 | 47.45 | 31.37 10.164 2.361 1.34

6 3.17 | 24.17 | 34.30 9.844 2.438 1.30

7 2.56 | 18.69 | 3541 9.483 2.531 1.02

8 233 | 17.55 | 35.69 9.123 2.631 0.81

3.Figure (4.14) shows the effect of offset bits parameter when Lena

image is used as test material.

102

Ghapter Four ﬂjerﬁmance Jest ﬂg&ufts
11 193
(1) Mean Absolute Error (2) Mean Square Error
10 178 A

MAE

6 4 5 6 7 8
Offset Bits Offset Bits
34 36
I — — — Trad. (4) Compression Ratio
33 1 - - 32 1 Pred.
324 P = — - Desc.
31 281 pescs3
14 30 - 24
(% |(3) Peak Signal to Noise Ratio 5
o 29 20
28 1 — — — Trad. 16 4
27 1 Pred.
26 | — - Desc. 12
— Desc.3 Y |
25 T T T 8 T T T
4 6 7 8 4 5 6 7 8
Offset Bits Offset Bits
3 300
(5) Bit Rate e (6) Time
251 — - 52401 T
2 210 | N
180 ~1
4.5 ® 150 | —
m1.5 £ 120 | — — — Trad.
1] g ——— Pred.
— — — Trad. £ 90 - — _ Descd
0.5 Pred. 60 1 — Desc.3
=9 — — Desc.1 30 — — —
0 ‘ ‘ — 0 ‘ ‘ ‘
4 6 8
4 5 Offs:t Bits 7 8 Offset Bits

Figure (4.14) The effect of the parameter "offset bits' on the
compression performance, when Lena image is used as test
object

4. Figure (4.15) illustrates the performance behavior of the four FIC-

schemes when the value of scale bits parameter is varied. This test

was conducted using Girl image.

103

t/fapter %ur ﬂjerﬁmance :7;.9t ﬂg&ufts
10 146
(1) Mean Absolute Error — — —Trad. (2) Mean Square Error
9 Pred. 131 \»
8 4
7 4
<
= 5
5 4
41
3 4
2 T
4 6 7 8 4 6 7 8
Offset Bits Offset Bits
40
— — —Trad. (4) Compression Ratio
36 {—— Pred.
324 ~ Desc.1
—Desc.3
28 4
&24
20 1
16 -
12 -
8 : -
6 4 5 6 7 8
Offset Bits Offset Bits
3 300
270 | . (6) Time
2.5 - = - — " 240 - ~ _
3 h — — - Trad.
24 5210 | S ——— Pred.
x 5180 1 N — — Desc.1
m1.5 5150 1 \\\ —Desc.3
© 120 1 ~
Ly p—— vy E 90 T
Pred. . 60 -
0.5*7 — Desc.1 30— — —
o | Dese3 | | (5) Bit Rate 0 ‘ e
4 5 6 7 8 4 6 8
Offset Bits Offset Bits

Figure (4.15) The effect of the parameter "offset bits' on the
performance of the four FIC schemes, when Girl image is used

as test object

4.9 Minimum Error Test

In this set of tests the effects of the parameter "Minimum Error" are
investigated for the four established FIC schemes. The value of minimum
error parameter was varied from 1 to 15. The values of other coding
parameters were set fixed at their default values. The results of this set of

tests are summarized in the following:

104

'C/fapter ?ﬁmr

gje{ﬁmawce y;.st &o‘ufts

1. Figure (4.16) shows some samples of the reconstructed Lena images.

When it compressed by Dis1FIC using different values of minimum

error parameter.

Min Error=1 Min Error=3 Min Error=5 Min Error=7
MAE=3.91 MAE=3.99 MAE=4.37 MAE=4.38
MSE=41.93 MSE=43.24 MSE=51.61 MSE=51.72
PSNR=31.91 PSNR=31.77 PSNR=31.00 PSNR=30.99
CR=8.872 CR=8.875 CR=8.876 CR=8.874
BR=2.705 BR=2.704 BR=2.704 BR=2.705
Time=1.25 Time=1.16 Time=1.06 Time=0.98

Min Error=9 Min Error=11 Min Error=13 Min Error=15
MAE=4.52 MAE=4.53 MAE=4.53 MAE=6.16
MSE=55.64 MSE=56.13 MSE=56.01 MSE=114.24
PSNR=30.68 PSNR=30.65 PSNR=30.65 PSNR=27.55
CR=8.875 CR=8.872 CR=8.873 CR=8.869
BR=2.704 BR=2.705 BR=2.705 BR=2.706
Time=0.93 Time=0.92 Time=0.90 Time=0.90

Figure (4.16) Samples of the reconstructed Lena image when it is
compressed by Dis1FIC scheme using different values of minimum
error

2. Figure (4.17) presents some of the reconstructed Lena images. When
it is compressed using Dis3FIC scheme with different values of

minimum error parameter.

105

'C/fapter ?ﬁmr

cﬂ{ﬁmaﬂce g;.st &o‘ufts

Min Error=1 Min Error=3 Min Error=5 Min Error=7
MAE=3.91 MAE=3.98 MAE=4.35 MAE=4.37

MSE=42.03 MSE=43.18 MSE=50.95 MSE=51.43

PSNR=31.90 PSNR=31.78 PSNR=31.06 PSNR=31.02
CR=8.859 CR=8.859 CR=8.864 CR=8.864
BR=2.709 BR=2.709 BR=2.708 BR=2.708
Time=1.31 Time=1.02 Time=0.97 Time=0.96

Min Error=9 Min Error=11 Min Error=13 Min Error=15
MAE=4.53 MAE=4.53 MAE=4.54 MAE=6.16
MSE=56.29 MSE=56.33 MSE=56.66 MSE=115.34

PSNR=30.63 PSNR=30.62 PSNR=30.60 PSNR=27.51
CR=8.865 CR=8.866 CR=8.865 CR=8.863
BR=2.707 BR=2.707 BR=2.707 BR=2.708
Time=0.95 Time=0.94 Time=0.94 Time=0.93

Figure (4.17) Some samples of the reconstructed Lena image

compressed by Dis3FIC scheme using different values of parameter
"minimum error"

3. Figure (4.18) illustrates the effectiveness of minimum error
parameter on the performance behavior of the four established FIC

schemes. These compression schemes were applied on Lena image.

106

t/fapter T’Flmr

eﬂtﬁmmce :7;.9t ﬂg&uft&

1"
— — — Trad. (1) Mean Absolute Error
10 Pred.
— - Desc4
97 —Desc.3

MAE

Minimum Error

— — — Trad.
Pred.

— — Desca
————Desc.3

(2) Mean Square Error

7 9
Minimum Error

11

Minimum Error

34 36
(3) Peak Signal to Noise Ratio — — — Trad. (4) Compression Ratio
32 Pred.
— — Desc.1
28 1 pesc3
24
14
(]
20 -
16
12 S ey g
8 : ; ;
1 3 5 7 9 1 13 15
Minimum Error
3 300
— 270 (6) Time
2.5 - e~
- S w240 R
2] T 2210
8180 |
(5) Bit Rate [
%1-5’ I: ‘2150’ \\ — — — Trad.
21201\ —— Pred.
Ly [y £ 90 AN — - Desc.1
0.5 —— Pred. = 60 - AN - ——— Desc.3
21— - Desca 30 \‘\\\\\
P — | ‘ | ‘ 0 e e
1 3 5 7 9 1" 13 15 1 3 11 13 15

7 9
Minimum Error

Figure (4.18) The effect of minimum error parameter on the
performance of the four FIC-schemes applied on Lena image

4. Figure (4.19) shows the differences in performance behavior of the

four FIC-schemes, when they applied on Girl image using different

values of minimum error parameter.

107

t/fapter %ur ﬂjerﬁrmance :7;.9t ﬂg&ufts
146
10r—=— Trad. (1) Mean Absolute Error — — —Trad. (2) Mean Square Error
9 4 Pred. 131 1 Pred.
8’7 — Desc. 116 { — - Desc.
————Desc.3 101 A — Desc.3
7 4
W w |
< 6 - 86 _
= = 71 e ——
51 e ==] 56 - ///
4 = = Vi —_—
4 _ //// / 41 4 |- //
31 — 26 o
2 ‘ | | 1M = ‘ ‘ ; ; |
1 3 5 7 9 11 13 15 1 3 5 7 9 1 13 15
Minimum Error Minimum Error
38 - - - 40 - -
37 |(3) Peak Signal to Noise Ratio — — —Trad. (4) Compression Ratio
36 { —— Pred.
32— - Desc.1
—Desc.3
28 4
%24 |
20 1
29 Pred. 16
281 _ pesct 12 e —
279 pescs —
26 T " T T T T 8 T T : : :
1 3 5 7 9 1 13 15 1 3 5 7 9 1 13 15
Minimum Error Minimum Error
3 300 -
— -~ Trad. (6) Time
25 270 1 —— Pred. I—
. — w240*7 _ DescA
24 T A — N 2210 1 pesc3
180
&1 £ 150 |
© 120 -
Ly [E—ry E 90 4
Pred. 60 - N
059 pescd 30 \\\\
0 7‘[)955.3 ‘ ‘ ‘ (5)‘BitRate 0 \\\\\\ThkakT**T**
1 3 5 7 9 11 13 15 1 3 5 7 9 11 13 15
Minimum Error Minimum Error

Figure (4.19) The effect of minimum error parameter on the
performance parameters of the four FIC-schemes when they
applied on Girl image

4.10 Minimum Block Error Test

The minimum block error coding parameter belongs, exclusively, to

both DislFIC and Dis3FIC. In this set of tests the effects of this

parameter on the performance of the two enhanced FIC schemes are

investigated.

The listed figures in this section illustrates the effectiveness of

minimum block error on the parameters MAE, MSE, PSNR, compression

108

t/fapter ﬁur

ﬂ%{ﬁmmce :7;.st &o‘ufto‘

ratio (CR), bit rate (BR), and encoding time. The value of minimum
block error parameter was varied to have values from 1 to 19, and it is
important to mention that the value of this parameter should be higher
than or equal to the value of minimum error parameter. In this set of tests
the values of other coding parameter were set fixed to have their default

values. The results of this set of tests are summarized as follows:
1. Figure (4.20) shows samples of the reconstructed Girl image when it
was compressed by DislFIC scheme using different values of

minimum block error parameter.

Min Block Error=1 Min Block Error=4 Min Block Error=7 Min Block Error=10
MAE=2.32 MAE=3.11 MAE=3.68 MAE=4.04
MSE=17.25 MSE=24.70 MSE=33.98 MSE=42.38
PSNR=35.76 PSNR=34.20 PSNR=32.82 PSNR=31.86
CR=9.127 CR=9.106 CR=9.103 CR=9.106
BR=2.630 BR=2.636 BR=2.636 BR=2.636
Time=0.90 Time=0.42 Time=0.27 Time=0.25

ﬁs_
Min Block Error=13 Min Block Error=16 Min Block Error=19
MAE=4.30 MAE=4.49 MAE=4.62
MSE=49.76 MSE=56.50 MSE=61.51
PSNR=31.16 PSNR=30.61 PSNR=30.24
CR=9.098 CR=9.098 CR=9.101
BR=2.638 BR=2.638 BR=2.637
Time=0.25 Time=0.20 Time=0.18

Figure (4.20) Some samples of the reconstructed Girl image when it
is compressed by Dis1FIC using different values of the parameter

"minimum block error"

109

t/fapter ﬁur

ﬂ%{ﬁmmce :7;.st &o‘ufto‘

2. Figure (4.21) illustrates the effect of minimum block error parameter

on the compression performance of Dis3FIC scheme, when it is

applied on Girl image.

AR

Min Block Error=1 Min Block Error=4 Min Block Error=7 Min Block Error=10
MAE=2.32 MAE=3.11 MAE=3.62 MAE=3.98
MSE=17.33 MSE=24.92 MSE=33.39 MSE=41.56

PSNR=35.74 PSNR=34.16 PSNR=32.89 PSNR=31.94
CR=9.122 CR=9.130 CR=9.133 CR=9.136
BR=2.631 BR=2.629 BR=2.628 BR=2.627
Time=1.21 Time=0.41 Time=0.35 Time=0.33

Min Block Error=13 Min Block Error=16 Min Block Error=19
MAE=4.21 MAE=4.40 MAE=4.51
MSE=47.98 MSE=54.86 MSE=59.03

PSNR=31.32 PSNR=30.74 PSNR=30.42
CR=9.138 CR=9.139 CR=9.142
BR=2.626 BR=2.626 BR=2.625
Time=0.16 Time=0.16 Time=0.16

Figure (4.21) Some samples of reconstructed Girl image compressed
by Dis3FIC scheme using various values of the parameter
"minimum block error"

3. Figure (4.22) shows the effect of minimum block error parameter of

Dis1FIC and Dis3FIC schemes when they applied on Lena image.

110

t/fapter %ur ﬂjerﬁmance :7;.9t ﬂg&ufts
11 193
— - Desci (1) Mean Absolute Error I Desc.1 |(2) Mean Square Error|
10 { ——Desc.3
S¢ 163 | Desc.3
9 4
8 4
4
s 7 1
64 I
5 4
4 |
3 T T T T T T T
1 4 7 10 13 16 19 1 4 7 10 13 16 19
Minimum Block Error Minimum Block Error
34 36
(3) Peak Signal to Noise Ratio — — Desca (4) Compression Ratio
321 pesc3
28
24
x©
(]
20 -
16 -
2 | — — Desc.1 12
— Desc.3
25 T T T T T 8 T T T T T
1 4 7 10 13 16 19 1 4 7 10 13 16 19
Minimum Block Error Minimum Block Error
3 4
(6) Time
- 3.5 I—
2.5
(5) Bit Rate w 3
2 2
§2.5 b
14 n]
m1.5 pe 2
1.5 4 — - 2
1] § Desc.1
= 1 ———— Desc.3
1— - Desci b
0.5 S¢. 0.5 L
——Desc.3 = —_—
0 T T T T T 0 T T T T T
1 4 7 10 13 16 19 1 4 19

Minimum Block Error

7. 10 13
Minimum Block Error

Figure (4.22) The effect of minimum block error parameter on the
performance of Dis1FIC and Dis3FIC, when they applied on Lena
image

4. Figure (4.23) shows the difference in behaviors of the performance

parameters of the two enhanced FIC-schemes (i.e., DisIFIC and

Dis3FIC) when the value of parameter "minimum block error" was

varied.

111

t/fapter %ur ﬂjerﬁrmance :7;.9t ﬂg&ufts
10 146
— — Descd (1) Mean Absolute Error — — Desci |(2) Mean Square Error
9 | —Desc.3 131 4 Desc.3
8 - 116
7] 101
w w g
g6 86
= = 71
57 SN 56 | ==
41 - a1 -
3 26
2 . T T . T 11 T T
1 4 7 10 13 16 19 1 4 7 10 13 16 19
Minimum Block Error Minimum Block Error
38 40
37 | (3) Peak Signal to Noise Ratio — — Desca (4) Compression Ratio
367 pescs
32
28
%24
20 -
16
12 4
-—BDese3,
26 T T T T T 8 . . : T
1 4 7 10 13 16 19 1 4 7 10 13 16 19
Minimum Block Error Minimum Block Error
3 3
(5) Bit Rate — - Desc.1 (6) Time
254~~~] 2.5 { —Desc3
3
24 S 24
153
[
@ 1.5
£
]
g 114
E
0.5 -
0 T T T T T 0 T T T T T
1 4 7 10 13 16 19 1 4 7. 10 13 19
Minimum Block Error Minimum Block Error

Figure (4.23) The effect of minimum block error parameter on the
performance of Dis1FIC and Dis3FIC schemes when they applied
on Girl image

4.11 Number of Bins Test

This set of conducted tests was applied on the two enhanced FIC-

schemes (i.e., DislFIC and Dis3FIC), because this coding parameter

belongs to these two schemes only. In this set of tests the value of this

parameter was varied to investigate its effectiveness on the performance

parameters of the two enhanced FIC-schemes. The values of other coding

112

(G/fapter %ur ﬂjerférmance :7;.9t ﬂg&uft&

parameters were fixed to have their default values. The tests results are

summarized as follows:
1. Table (4.8) lists the values of compression performance parameters
of DislFIC scheme, when it is applied on Lena image using

different values of the parameter "no. of bins".

Table (4.8) The effect of number of bins parameter on the
performance of Dis1FIC scheme, when it is applied on Lena image

No. of Over All Compression | Bit | Time in
Bins MAE | MSE | PSNR Ratio Rate | Seconds
100 391 | 4193 | 31.91 8.872 2.705 1.29
250 4.15 | 48.14 | 31.31 8.867 2.707 0.62
400 4.33 | 53.29 | 30.86 8.868 2.706 0.45
550 446 | 5691 | 30.58 8.864 2.707 0.41
700 4.58 | 60.58 | 30.31 8.866 2.707 0.41
850 4.67 | 63.09 | 30.13 8.860 2.709 0.41
1000 | 4.76 | 66.14 | 29.93 8.857 2.710 0.36

2.Table (4.9) shows the wvalues of compression performance
parameters of Dis3FIC scheme, when it is applied on Lena image

using various values of the parameter "no. of bins".

Table (4.9) The effect of number of bins parameter on the
performance of Dis3FIC scheme, applied on Lena image

No. of Over All Compression | Bit | Time in
Bins MAE | MsE | PSNR Ratio Rate | Seconds
100 391 | 42.03 | 31.90 8.859 2.709 1.26
250 4.17 | 48.54 | 31.27 8.870 2.706 0.67
400 431 | 52.12 | 30.96 8.869 2.706 0.55
550 4.44 | 55.79 | 30.66 8.866 2.707 0.43
700 4.54 | 58.58 | 30.45 8.865 2.707 0.39
850 4.62 | 61.09 | 30.27 8.862 2.708 0.38
1000 470 | 63.61 | 30.10 8.865 2.708 0.38

113

tﬁapter T’Flmr

eﬂrfémaﬂce :7;.9t ﬂg&uft&

3. Figure (4.24) shows the difference in behavior of the performance

parameters of the two enhanced FIC-schemes, when they applied on

Lena image using different values of the parameter "no. of bins".

193

— — Desci1 (1) Mean Absolute Error a7sd— Desc.1 (2) Mean Square Error
10 { ——Desc.3 |
163 | Desc.3
91 148 -
8 - 133 4
w 4
E 7]] 118
= =103 -|
6 - 88 -
5 - 73 o
/:’/ 58 ,//
4 43 1
3 T T T T T 28 T T T T T
100 250 400 550 700 850 1000 100 250 400 550 700 850 1000
No. of Bins No. of Bins
34 36
|(3) Peak Signal to Noise Ratio — — Desc.1 (4) Compression Ratio
33 A
32 { —Desc.3
32
- 28 -
31 e
% 30 — = & 24 4
o 29 20 -
28
16
27
26 | — — Desca 12 4
—Desc.3
25 T T T T T 8 T T T T T
100 250 400 550 700 850 1000 100 250 400 550 700 850 1000
No. of Bins No. of Bins
3 4
(6) Time
3.5
2.5
- o 34
2 (5) Bit Rate 3
] 2.5
]
%151 2 24
Q 4
1 £ 15 — - DescA1
IR BN ———— Desc.3
4 — - Desc.
0.5 0.5 1 SS—— —
—Desc.3
0 T T T T T 0 T T T T
100 250 400 550 700 850 1000 100 250 400 550 . 700 850 1000
No. of Bins No. of Bins

Figure (4.24) The effect of number of bins parameter on the
performance of the two enhanced FIC-schemes, applied on
Lena image

4. Figure (4.25) presents the difference in performance behavior of the

two enhanced FIC-schemes (i.e., Dis1FIC and Dis3FIC), when they

applied on Girl image using different values of the parameter "no. of

bins".

114

t/fapter %ur ﬂjerﬁrmance :7;.9t ﬂg&ufts
10 146
— - Desci1 (1) Mean Absolute Error — - Desc.1 (2) Mean Square Error
91— Desc3 131 — Desc3
8 116
101
71 0
g w 86
N = 5|
51 56
41 |
3 */ 26 ,//
2 — ‘ | ‘ ‘ 1 | | | ‘ ‘
100 250 400 550 700 850 1000 100 250 400 550 700 850 1000
No. of Bins No. of Bins
38 40
37 | |(3) Peak Signal to Noise Ratio — — Desc. (4) Compression Ratio
36 61 Desc.3
35 32
34 —_
— 28 |
o 33
232 %24
o
31 4
20 |
30 -
29 - 16 -
28 17— - Desc. 12 4
71— Desc3 _ o |
26 T T T T T 8 T T T T T
100 250 400 550 700 850 1000 100 250 400 550 700 850 1000
No. of Bins No. of Bins
3 3
— - Desc.1 (6) Time
2.5 2.5 {——Desc3
)
°
2 4 g 2
o
P *
m1.51 - 1.5 |
o
1 g 11
= <
0.5 {— - Desc. 0.5 < - -
. —_— |
0 7‘Desc.3 ‘ | (5)‘ Bit Rate 0 | : : : :
100 250 400 550 700 850 1000 100 250 400 550 700 850 1000
No. of Bins No. of Bins

Figure (4.25) The effect of number of bins parameter on the
performance of the two enhanced FIC-schemes, when they
applied on Girl image

4.12 Window Size Test

In this set of tests, the effects of window size parameter on the

performance of the two enhanced FIC-schemes (i.e., DislFIC and

Dis3FIC) were explored, taking into consideration the window size

parameter belongs to these two FIC-schemes only. In this set of tests, the

value of window size was varied to have different integer values which

115

(G/fapter %ur ﬂjerférmance :7;.9t ﬂg&uft&

lay within the range [1, 5]. The values of other parameters were fix at
their default values. The tests results are summarized as follows:

1. Table (4.10) lists the values of performance parameters of Dis1FIC

scheme, when it is applied on Lena image using different values of

window size.

Table (4.10) The effect of window size parameter on the
performance of Dis1FIC scheme

Window Over All Compression | Bit | Time in
Size MAE | MSE | PSNR Ratio Rate | Seconds

1 391 | 41.93 | 31.91 8.872 2.705 1.21

2 3.78 | 38.46 | 32.28 8.874 2.704 2.01

3 3.70 | 36.54 | 32.50 8.870 2.706 2.51

4 3.65 | 35.55 | 32.62 8.867 2.706 3.21

5 3.62 | 34.93 | 32.70 8.869 2.706 3.72

2. Table (4.11) lists the performance parameters of Dis3FIC scheme,
when it is applied on Lena image using different values of the

parameter "window size".

Table (4.11) The effect of window size parameter on
performance parameters of Dis3FIC scheme

Window Over All Compression | Bit | Time in
Size MAE | MsE | PsNR Ratio Rate | Seconds

1 3.91 | 42.03 | 31.90 8.859 2.709 1.21

2 3.78 | 38.83 | 32.24 8.866 2.707 1.93

3 3.71 | 36.90 | 32.46 8.866 2.707 2.53

4 3.67 | 35.74 | 32.60 8.870 2.706 3.37

5 3.64 | 35.00 | 32.69 8.868 2.706 3.85

3. Figure (4.26) shows the difference between the behaviors of the two
FIC-schemes when they applied to compress Lena image, using

different values of the parameter "window size".

116

t/fapter %ur ﬂjerﬁmance :7;.9t ﬂg&ufts
11 193
— — Desc. (1) Mean Absolute Error 178 | — — Desc. (2) Mean Square Error
10 { — Desc.3 163 | ——Desc.3
91 148
8 133
E 7 % 118 -
= =103 -|
6 - 88 -
5 73 A
58
47 e
3 T T T 28 T T T
1 3 5 1 2 3 4 5
Window Size Window Size
34 36
— — Desc. (4) Compression Ratio
33 7—,”}”’/—,’—/—' 32 {— Desc3 |
32
28
31
% 30 - & 24 1
o 29 - 20
28 -
16
27
26 | — — Desc. 12
—— Desc.3 (3) Peak Signal to Noise Ratio
25 T T T 8 T
1 2 3 4 5 1 3 4 5
Window Size Window Size
3 4
(6) Time
.5 (5) Bit Rate
8 3
24 c
§2.5
P b3
m 1.5+ - 2
1.5
11 E
= 1
0.5 { — — Desc1 0.5 - — - Desci1
— Desc3 ———— Desc.3
0 i . J 0 T T T
1 2 3 4 5 1 5
Window Size Window Size

Figure (4.26) The effect of window size parameter on
performance of the two enhanced FIC-methods, when they
applied on Lena image

4. Figure (4.27) shows the difference between the performance of two

enhanced FIC-schemes when they applied on Girl image, using

different window size values.

117

t/fapter %ur eﬂrfémaﬂce :7;.9t ﬂg&uft&

10 146
— — Desc.1 (1) Mean Absolute Error — — Desc.1 (2) Mean Square Error
9 —Desc3 131 — Desc3
8 116 -
101 -
71 0
g 6 w 86
E E 71 .
51 56 -
41 |
3 A 26 -
2 T T — 11
1 3 5 1 2 3 4 5
Window Size Window Size
38 40
37 4 — — Desc. (4) Compression Ratio
6,] 361 Descs
35 32
34
28 -
33
532 - %24 -
& 31 20 |
30 -
29 16 -
28 1 _ Dpesc. 12
I PE— Desc.3 (3) Peak Signal to Noise Ratio
26 T T T 8 T T T
1 2 3 4 5 1 2 3 4 5
Window Size Window Size
3 3
(6) Time
2.5 2.5
7}
°
2 g 2 |
]
%151 ©1.5
@
11 E 11
-
0.5 |— — Desc.1 0.5 4 — — Desci
——Desc.3 i ——Desc.3
0 sc‘ | | (5) Bit Rate 0 ‘ | ‘
1 2 3 4 5 1 2 3 4 5
Window Size Window Size

Figure (4.27) The effect of window size on the performance of
the two enhanced FIC-schemes, when they applied on Girl
image

4.13 The Effect of Both No. of Bins and Window Size

Table (4.12) lists the values of performance parameters of Dis1FIC
scheme, when it is applied on Lena image using different values of both

no. of bins and window size parameters.

118

(G/fapter %ur ﬂjerférmance :7;.9t ﬂg&uft&

Table (4.12) The effect of both no. of bins and window size
parameters on performance parameters of Dis1FIC scheme

No. of | Window Over All Compression Bit Time in
Bins Size MAE | MSE | PSNR Ratio Rate | Seconds
1 3.92 42.01 31.90 8.875 2.704 1.32
2 3.79 38.54 32.27 8.877 2.703 1.70
100 3 3.71 36.68 32.49 8.874 2.705 2.16
4 3.67 35.69 32.61 8.871 2.705 2.82
5 3.64 35.05 32.68 8.873 2.705 3.10
1 4.17 48.25 31.30 8.865 2.707 0.57
2 4.03 44.71 31.63 8.869 2.706 0.95
250 3 3.94 42.16 31.88 8.869 2.706 1.07
4 3.87 40.57 32.05 8.872 2.705 1.45
5 3.82 39.40 32.18 8.873 2.705 1.45
1 4.34 53.40 30.86 8.867 2.707 0.53
2 4.16 48.09 31.31 8.870 2.706 0.64
400 3 4.06 45.45 31.56 8.870 2.706 0.73
4 4.06 45.45 31.56 8.870 2.706 0.94
5 3.95 42.40 31.86 8.870 2.706 1.01
1 4.47 57.02 30.57 8.864 2.708 0.42
%5 4.27 51.21 31.04 8.866 2.707 0.48
550 3 4.16 48.03 31.32 8.871 2.705 0.62
4 4.09 46.18 31.49 8.872 2.705 0.68
5 4.04 44.70 31.63 8.870 2.706 0.80
1 4.59 60.67 30.30 8.866 2.707 0.41
2 4.36 53.59 30.84 8.867 2.707 0.47
700 3 4.23 50.16 31.13 8.867 2.707 0.62
4 4.16 48.03 31.32 8.869 2.706 0.70
5 4.10 46.49 31.46 8.872 2.705 0.66
1 4.68 63.18 30.13 8.859 2.709 0.42
2 4.45 56.57 30.60 8.871 2.706 0.54
850 3 4.31 52.07 30.96 8.864 2.708 0.46
4 4.22 49.74 31.16 8.867 2.707 0.64
5 4.15 47.62 31.35 8.870 2.706 0.75
1 4.77 66.21 29.92 8.858 2.709 0.38
2 4.51 58.39 30.47 8.864 2.708 0.41
1000 3 4.38 54.58 30.76 8.864 2.708 0.42
4 4.27 51.15 31.04 8.867 2.707 0.65
5 4.21 49.38 31.20 8.870 2.706 0.55

119

‘G/fapter .Tle;aur cﬂ{ﬁmaﬂce 7;.91,‘ &o‘ufts

4.14 Implementing Dis1FIC on Different Images
1. Figure (4.28) shows the effect of DislFIC scheme when it

implemented on Baboon image. The results were: (MAE=3.92,
MSE=31.98, PSNR=33.08, CR=8.998, BR=2.667, Time in
seconds=1.30).

:3‘ ol

st

a. Original Baboon b. Reconstructed Baboon

Figure (4.28) The performance of the enhanced FIC-scheme
Dis1FIC, when it applied on Baboon image

2. Figure (4.29) shows the original and reconstructed Bird image when
applying DislFIC scheme. The results were: (MAE=7.15,
MSE=202.46, PSNR=25.07, CR=8.786, BR=2.731, Time in
seconds=0.81).

120

‘G/tdapter .qumr cﬂ{ﬁmaﬂce y;.st &o‘ufts

a. Original Bird b. Reconstructed Bird

Figure (4.29) The performance of the enhanced FIC-scheme
Dis1FIC, when it applied on Bird image

3. Figure (4.30) shows the performance of DisIFIC scheme when it
applied on House image. The results were: (MAE= 18091,
MSE=701.34, PSNR=19.67, CR=8.625, BR=2.782, Time in
seconds=0.78).

e = ¥

a. Original House b. Reconstructed House

Figure (4.30) The performance of the enhanced FIC-scheme
Dis1FIC, when it applied on House image

4. Figure (4.31) shows original and reconstructed images of Parrot when

implementing Dis1FIC scheme on it. The results were: (MAE=6.49,

121

(Ghdapter %ur ﬂjtetﬁmance :Z;ot &o‘ufto‘

MSE=135.81, PSNR= 26.80, CR=8.526, BR=2.815, Time in
seconds=0.93).

a. Original Parrot b. Reconstructed Parrot

Figure (4.31) The performance of the enhanced FIC-scheme
Dis1FIC, when it applied on Parrot image

4.15 Discussion

1. The increase in the block length parameter causes an increase in
Cr and a decrease in PSNR.

2. The increase in jump step causes a decrease in PSNR and elapsed
encoding time, and an increase in Cr value.

3. The increase in maximum scale causes little increase in
compression ratio value, and a decrease in PSNR.

4. The increase in the number of bits used to encode the scale and
offset coefficients causes a decrease in the value of Cr and an
increase in PSNR value of the decompressed image.

5. The increase in the value of minimum error and minimum block
error parameters causes a little increase in Cr value, and a

decrease in PSNR value and encoding time.

122

t/fapter %ur eﬂrfémaﬂce :7;.9t ﬂg&uft&

6. The increase in the number of bins values causes a decrease in
encoding time, and PSNR, and a little decrease in Cr value.

7. The increase in window size parameter causes an increase in time
and PSNR, and a small decrease in compression ratio.

8. In general, the two enhanced FIC-schemes (i.e., Dis1FIC and
Dis3FIC) have encoding time much less than that spend by the
traditional FIC-scheme (i.e., TradFIC) and by the enhanced
scheme (1.e., PredFIC) which is based on using the symmetry

predictor only.

123

(hapter Fve

Coneion 2nd St

5.1 Conclusions

From the test results presented in previous chapter, some remarks

related to the behavior and performance of the investigated FIC schemes

are stimulated. Among these remarks are the followings:

I.

The use of symmetry predictor causes a speed-up in encoding
process, and the use of moment description causes more
significant speeding-up in encoding process. But, the image
quality had little degraded in comparison with its level when the
traditional method is applied.

The block length parameter mainly affects on the (MAE, MSE,
PSNR, Cr, BR, and time). It was found that the suitable values
are (4, 5) which led to good PSNR (less distortion) and Cr.

. When the jump step is taken small then the schemes have better

performance in terms of image quality and compression ratio.
But if the jump step is set large, the encoding process become

faster. The best values of jump step are (1, 2, 3).

. The use of maximum scale parameter value within the range [2.5,

3] will nearly preserve the image quality but with a little bit
degradation. The encoding time is little affected with the

variation of maximum scale values.

. The value of the parameters (scale bits and offset bits) affects the

performance of the FIC scheme, where the increase in the
number of encoding bits leads to less error and good quality but a

little bit decrease in compression ratio. But the compression time

124

Ghapter Five Gonclusions and Future Weorks

will little affected. The suitable values of these parameters are (7,
8).

6. The minimum error and minimum block error approximately have
little effect on compression ratio, while they have significant
effect on PSNR and encoding time. When they are increased, the
PSNR value is decreased, it has a suitable value if these
parameters' values are set (from 1 to 5) in case of using descriptor
order-1, but these values could be expanded to 7 in case of
descriptor order-3.

7. The use of large no. of bins with larger window size will lead to
suitable compression ratio and PSNR, and it speeds up the

compression time significantly.

5.2 Future Works

1. Other advanced partitioning schemes (such as HV, quadtree) can
be implemented to enhance the compression performance
parameter.

2. Using another window size scheme, like making it local adaptive
according to the population of each bin and its surrounding
neighbors.

3. Speeding up the descriptors using double blocks descriptors

instead of single descriptor.

125

\(‘
‘ _\}‘_\
P (I’(.\]’l(\(.\(\

[Acha05]
Acharya, T. and Ray, A. K.; "Image Processing Principles and
Applications"; Wiley-Interscience; United States of America;
2005.

[AlamO1]
Al-A'mri, J. H.; "Fractal Image Compression"; Ph.D. Thesis;
Baghdad University; College of Science; 2001.

[Aldu03]
Al-Dulaimy, A. A.; "Fractal Image Compression with Fasting
Approaches"; M.Sc. Thesis; Al-Nahrain (Saddam) University;
College of Science; 2003.

[AlhiO7]
Al-Hilo, E. A.; "Speeding-up Fractal Colored Image Compression
Using Moments Features"; Ph.D. Thesis; Al-Mustansiriyah
University; College of Science; 2007.

[BaHu93]
Barnsley, M., and Hurd, L.; "Fractal Image Compression";
Wellesley; Massachusetts: AK Peter. Ltd.; 1993.

[BDMS8]
Barnsley, M. F., Devaney, R. L., Mandelbrot, B. B., Peitgen, H. O.,
Saupe, D., Voss, R. F., Fisher, Y., and McGuire, M.; "The Science
of Fractal Images"; Springer-Verlag; New York; 1988.

geﬁrences

[Bour91]

Bourke, P., “An Introduction to Fractals”, Internet paper, 1991,
http://astronomy.swin.edu.au/~pbourke/fractals/fracintro/.

[ChKu00]

Chang, H.T., and Kuo, C.J.; "Iteration-free fractal image coding
based on efficient domain pool design"; Dept. of Inf. Manage.,
Chao Yang Univ. of Technol., Taichung; IEEE Transactions on
Image Processing; vol. 9; pp. 329-339; 2000.

[Colv96]
Colvin, J.; "Iterated Function Systems and Fractal Image
Compression"; 1996; kd4syw@usit.net.

[Cran97]

Crane, R.; "A Simplified Approach to Image Processing"; United
States of America; New Jersey; Hewlett-Packard Company; 1997.
[DNRO6]
Distasi, R., Nappi, M., and Riccio, D.; "A Range/Domain
Approximation Error-Based Approach for Fractal Image
Compression"; IEEE Transactions on Image Processing; vol. 15;
pp. 89- 97; 2006.
[Fish95]
Fisher, Y.; "Fractal Image Compression"; Springer-Verlag; United
States of America; New York; 1995.
[Geor06]
George, L. E.; "IFS Coding for Zero-Mean Image Blocks";
University of Baghdad; College of Science; Iraqi Journal of
Science; vol.47; no.1; 2006.

1

http://astronomy.swin.edu.au/%7Epbourke/fractals/fracintro/

zeﬁrences

[Ghan03]

Ghanbari, M.; "Standard Codecs: Image Compression to Advanced
Video Coding"; Magazine of the Institution of Electrical
Engineers; London; United Kingdom; 2003.

[Gonz02]
Gonzalez, R., and Woods, R.; " Digital Image Processing"; Pearson
Education International; Prentice Hall; Inc.; 2" Edition; New
Jersey; 2002.

[K1in03]
Klinger, T.; "Image Processing with LabVIEW and IMAQ Vision";
Prentice Hall PTR; United States of America; 2003.

[LaniO4]
Lanins, C., “Fractals”, A Fractal Unit for Elementary and Middle
School Unit, 2004, http://math.rice.edu/~Lanins/fractals/self.html.

[MahmO7]
Mhamood, R. F.; "Improved Once-Time-Search Method Based on
Inter-Block Correlation"; M.Sc. Thesis; Al-Nahrain University;
College of Science; 2007.

[Mand04]

Mandelbrot, B.,”Fractal”, Internet paper, Microsoft ® Encarta ®
online Encyclopedia, 2004, http://Encarta.msn.com.

[MohaO03]

Mohamed, M.; "Optimization of Fractal Image Compression Based
on Kohonen Neural Networks"; EEDIS Laboratory, Engineering
Faculty, University of SBA; mohamedmokht@yahoo.fr; Internet

paper; http://www.eurasip.org/Proceedings/Ext/ISCCSP2006/defev
ent/papers/cr1051.pdf; 2003.

111

http://math.rice.edu/%7ELanins/fractals/self.html
http://encarta.msn.com/
mailto:mohamedmokht@yahoo.fr
http://www.eurasip.org/Proceedings/Ext/ISCCSP2006/defev%20ent/papers/cr1051.pdf
http://www.eurasip.org/Proceedings/Ext/ISCCSP2006/defev%20ent/papers/cr1051.pdf

geﬁrence.f

[NeGa95]
Nelson, M. and Galilly, J. L.; "The Data Compression Book";
Prentice-Hall; Second Edition; England; 1995.

[NikiO7]

Nikiel, S.; "Iterated Function Systems for Real-Time Image
Synthesis"; Springer; Poland; 2007.

[Ning97]
Ning, L.; "Fractal Imaging"; Academic Press; 1997.

[PratO1]
Pratt, W. K.; "Digital Image Processing"; 3" Edition; John Wiley
and Sons; New York; 2001.

[ReAn97]
Rejeb, B., and Anheier, W.; "A New Approach for the Speed Up of
Fractal Image Coding"; 13" International Conference on Digital
Signal Processing Proceedings; vol.2; pp. 853-856; 1997.

[RHS97]
Ruhl, M., Hartenstein, H. and Saupe, D.; "Adaptive Partitionings
for Fractal Image Compression"; IEEE International Conference on
Image Processing (ICIP’97); Santa Barbara; ruhl, hartenst,
saupe@informatik.uni-freiburg.de; 1997.

[Salo04]

Salomon, D.; "Data Compression"; Springer-Verlag; United States
of America; New York; 3™ Edition; 2004.

[Salo07]
Salomon, D.; "Data Compression"; Springer; United Kingdom;
London; 4™ Edition; 2007.

[Sank9§]
Sankaranarayanan, V.; "Fractal Image Compression Literature

Survey"; Internet Paper; 1998.

v

mailto:saupe@informatik.uni-freiburg.de

geﬁrence.f

[SaSm99]
Salih, 1. and Smith, S. H.; "Encoding Time Reduction in Fractal

Image Compression"; IEEE Computer Society; Washington, DC,
USA; 1999.

[Sayo06]
Sayood, K.; "Introduction to Data Compression"; 3" Edition;
United States of America; Elsevier; 2006.

[ShSu00]
Shi, Y. Q., and Sun, H.; "Image and Video Compression for
Multimedia Engineering"; CRC Press LLC; United States of
America; 2000.

[TaLo98]
Taylor, M., and Louret, J.; "Scientific Fractals FAQ", 1998,
http://www.mta.ca/~mctaylor/sci.fractals-faq/.

[ToPi01]

Tong, C. S., and Pi, M.; "Fast Fractal Image Encoding Based on
Adaptive Search". IEEE Transactions on Image Processing; vol.
10; no. 9; pp. 1269-1277; 2001.
[ToWo002]
Tong, C. S., and Wong, M.; "Adaptive Approximate Nearest
Neighbor Search for Fractal Image Compression"; Dept. of Math.,
Hong Kong Baptist Univ., Kowloon; IEEE Transactions on Image
Processing; vol. 11; pp. 605-615; 2002.
[Umba98]
Umbaugh, S. E.; "Computer Vision and Image Processing: A
Practical Approach using CVIP Tools"; Prentice Hall, Inc.; 1998.
[WBGO03]
West, B. J., Bologna, M., and Grigolini, P.; "Physics of Fractal
Operators"; Springer-Verlag; New York; 2003.

http://www.mta.ca/%7Emctaylor/sci.fractals-faq/

geﬁrence.f

[WoJa94]
Wohlberg, B., and Jager, G.; "On the Reduction of Fractal Image

Compression Encoding Time"; IEEE South African Symposium on
Communications and Signal Processing (COMSIG '94); pp. 158-
161; 1994.

[WoJa99]
Wohlberg, B. and Jager, G.; "A Review of the Fractal Image
Coding Literature"; IEEE Transactions on Image Processing; vol.
8, no. 12; pp. 1716-1729; 1999.

[Yung05]
Yung-Gi1 Wu; "Fast and Low Bit Rate Fractal Image Encoding";
Journal Paper; SPIE Digital Library © 2008; Optical Engineering
vol. 44; no. 11; 2005.

vi

dem Y1

Leie il LS5 edilite il aladiuly) seall Jaral 3aye (33l 5l Cliaaiul Xl
< g JBL Jarall el g dda grazaall 3) saall 33 sa Ao ddadladl) ae dlle Jaria duu (38a3
Adiad) geall Jazaal Lpas 48 a5 (3 k) 28 saa) (A 5 susl) baraall 45,)k) (Sas
sl b A4l las e

O (il 5o (e (5580 58 5 g sl Jaaall pUai gty gy sl sl
ALa¥l sy seall 133 yuaiall A e 3 i) Gld sy Al il As e 4 Y
e Al ddalaie e adalie g saall adalie s V) cadaliall (e cpe 55)
Alalaia o 65 G Radl e llaial) adalia

& oy Jazadl sla) aty @l ary 5 anal) 4 sludiall IS Sl 48 jla aladiuly 5) seall § a0
OO il Aa e gl Gl Josad Baadaty @lld g gaal) LS5l (e sy JSI 3k
dlae i dgliiall ClS L alag) dlee () gl SIS 5k (e & sly JST g il COlalas
Ladil) 8 Al yo Wal (5 gl dariall bl (saa) 038 5 Dy sk Ui g (3 yaiiai Bana Al
L5 3y 138 5 cdans Jidll 5 poall e Joand in 40000 5)y gl (Ao 3ok
J sl

skl) gaall 5adill Jal je a7 3lai dag)l Gkl maenat o8 Casil) 14
e Al (5) Sl Taaall 45) sl Saudai a8 J4¥) JSagd) 3 L uatunall 8 1) J) A
bxall ddee 8 gl 38y (YCDCr) Al (RGB) <l sall Jasaty ¢l g 43 glall) sucall
33.39 5= 3 pall 32 oa Cialys 8,89 Adiatiall Jaraall daus S 5 4 ils 144,02
et

Josaill o it aladii) g jseall o) sl aiiall 34y yla oa SN J<ugd)
alasinl o) Lgiilae at i) adaliall g jall a8 o Call o tiall ading g ¢ kbl
Leland A danl) 4y ylall 8 aadined) (Aosladll) bl cidee dae G Jligas o il
by (e %014 Jsa maand barall il 5 QUi Y ol 48 yall oda g sasly lali dlee

JOA e e seall (5 s Jnial) Al ciianiad gl 5 GO JSg) B

i 5} Canis) 5 A, TN dmpall (o as el e acing pliall Caoal g i

Aol il e Eual cWalan J 550 A el s ¢ Sllaiall S L A jeb Jand plalial

pan A @il (pIGell pia pasd =il ol el Sl e gl IS b Gl

S5 50 %00.9) Jead Iarall i 5 s) ool il 5 Sl g B 50) sl
Al 45, Hhally bzl

)l &y e
el Gl g Mo adei) 515

0|88 3 O) dnaly
slad) 4,18
e f e

gl s awad! &gl AL f«g.).'\h
‘éJJ.uﬁ\

Al

(s 5aS el dadls (B sl IS) e
Glwlall agle 4 jiualall da jo Jo cilillaie

Jd (e
Al dlae gy

(2006 Crl) Anala g 511S3)

) &)

Zos> o9l 3

1429 sl gd 2008 (Al ¢y s

	Binder1
	Cover
	Aya
	certification1
	dedication
	Acknowledgment
	Abstract
	List of Abbreviations
	table of contents2
	chapter1_interface
	Chapter1
	chapter2_interface
	Chapter2
	chapter3_interface
	Chapter3
	chapter4_interface
	Chapter4
	chapter5_interface
	Chapter5
	references_interface
	References

	Abstract Arabic
	Cover2

