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Various compression methods have been proposed to achieve high 

compression ratios and high image qualities in low computation time. 

One of these methods is Fractal Image Compression. The basic idea of 

fractal image compression is the partitioning of input image into non-

overlapping range blocks. For every range block a similar but larger 

domain block is found. The set of coefficients of mapping the domain 

blocks to the range block, using affain transform, is recorded as 

compression data. The compressed image data set is called the Iterated 

Function System (IFS) mapping set. Decoding process applies the 

determined IFS transformations on any initial image, and the process is 

repeated many times till reaching the attractor. 

In this research work, four IFS coding schmes have been 

established and tested. The first scheme is the traditional Fractal Image 

Compression (FIC) method, it is implemented on color images after 

transforming the (RGB) color components to (YCbCr) components. The 

compression results led to encoding time=144.02 sec, compression 

ratio=8.89 and PSNR=33.39. 

The second scheme uses the FIC method with a predictor based on 

centralized moment features, this predictor is introduced to predict the 

type of symmetry operation required to set the domain block in a proper 

state to best matches the range block. The use of this predictor helps in 

reducing the number of trials of symmetry mappings from 8 trials to only 

one symmetry case. The use of predictor had reduced the encoding to 

approximately 14% in comparison with that of traditional method. 

The third and fourth scheme implies the use of FIC method 

enhanced by the use of moment descriptor (order-1) and (order-3), 

  



respectively. Either of these descriptors is used to classify the domain and 

range blocks into classes, each class is assigned by a class index whose 

value is equal to moments descriptor value. For encoding each range 

blocks only the domain blocks have similar descriptor values to that for 

range block will be IFS-matched with it. In these schemes the symmetry 

predictor, used in the second scheme, had been used to reduce the search 

about the best available similar domain block. The attained encoding time 

in both 3rd and 4th scheme is approximately 0.9% of that spend by a 

traditional scheme. 
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1.1 Preface 
The term fractal was first used by Benoit Mandelbrot to designate 

objects that are self-similar at different scales. Such objects have details 

at every scale [NeGa95]. 

Mandelbrot's fractal geometry provides both a description and a 

mathematical model for many of the seemingly complex forms found in 

nature. Shapes such as coastlines, mountains and clouds are not easily 

described by traditional Euclidean geometry. Nevertheless, they often 

possess a remarkable simplifying invariance under changes of 

magnification. This statistical self-similarity is the essential quality of 

fractals in nature [BDM88]. 

Fractals are ubiquitous in complex natural phenomena. They are 

observed in the architecture of the mammalian lung, they determine the 

inter-beat interval in human heartbeats and the variation in human strides, 

they influence the information content of DNA sequences, and they 

describe the branching of trees and the root systems in plants, as well as 

the growth of bacterial colonies and many other biological systems. In 

physical phenomena they are also seen everywhere, in viscous fingering, 

dielectric breakdown, snowflake growth, and so on [WBG03]. 

Michael Barnsley and his coworkers at the Georgia institute of 

technology were the first to recognize the potential interest of fractal 

methods for image compression. Barnsley developed the theory of 

Iterated Function Systems (IFS), which was introduced by J. Hutchinson 

in 1981. After the publication of Barnsley’s book "Fractals Everywhere" 

in 1988, and his paper in the January-1988 issue of BYTE magazine, 
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fractal image compression (FIC) became a very fashionable subject. The 

interest in this technique was aroused by the fantastic compression ratios 

claimed by Barnsley (i.e. up to 10,000 to 1). Together with Alan Sloan, 

Barnsley found Iterated Systems, Inc. and obtained US patent (4,941,193) 

on image compression using IFS. 

A breakthrough was made in 1988 by Arnaud Jacquin, one of 

Barnsley’s Ph.D. students. Instead of trying to find an IFS for a complete 

image, Jacquin brought the idea of partitioning the image into non-

overlapping ranges, and finding a local IFS for each range. Jacquin 

developed the theory of Partitioned Iterated Function Systems (PIFS) and 

implemented a version of his algorithm. The main difficulty of FIC 

process is to find within the image reduced copies of the whole image. 

Real-world images often contain some self-similarity, but only between 

selected portions of the image. The breakthrough made by Jacquin was to 

partition the input image, and to find a local IFS for each partition. With 

this new method, it finally became possible to completely automate the 

compression process and furthermore to do it in a reasonable amount of 

time. 

Yuval Fisher, Roger Boss, and Bill Jacobs were also among the first 

pioneers to make public contributions to the theory of PIFS [NeGa95]. 

 

1.2 Image Compression 
The fast development of multimedia computing has led to the 

demand of using digital images. The manipulation, storage and 

transmission of these images in their raw form is very expensive, it 

significantly slows the transmission of the applications contain them and 

makes their storage costly. However, digital image processing is 

exploited in many diverse applications, but the size of these images 

places excessive demands for storage and transmission technology. Image 

2  
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data compression is required to permit further use of digital image 

processing, it is the process of reducing the number of bits required to 

represent these images with lower bit rate, better quality and fast 

implementation [KD98]. 

 
1.3 Fractal Image Compression 

In fractal image compression the image to be coded is partitioned 

into blocks called ranges. Each range is approximated by another part of 

the image called domain [RHS97]. 

Fractal image compression is a block based image compression, it 

detects and encodes the existing similarities between different regions in 

the image. It allows interesting compression ratios; however it suffers 

from long compression (encoding) time, whereas the decompression is 

fast. The time consuming part of the encoding step is due to the search for 

an appropriate domain block for each range block. Most of time required 

in the fractal compression is spent in the matching of a large number of 

blocks in the image. To speed up the fractal coding time, several methods 

have been devised to accelerate the search and reduce the encoding 

complexity, such as the Fisher classification method, or other methods 

which some of them are based on using artificial intelligence techniques 

(like, genetic algorithms and artificial neural networks) [Moha03]. 

 

1.4 Partitioned Iterated Function System 
The theory of iterated function systems defines mathematically some 

concepts of chaos and irregularity. The research done mainly by Barnsley 

led to significant new methods for image understanding. Other 

researchers have followed those ideas and focused on the special 

characteristics of IFS fractals (such as, the measures over IFS attractors). 

3  



Chapter One                                                                                                                General Introduction 

IFS description provides a potential new method for researching the 

image shape and texture. It forms, through a set of simple geometric 

transformations, a basic set of tools for interactive image construction. 

Iterated function systems are based on the mathematical foundations 

laid by Hutchinson. IFS fractals have an elegant recursive definition: A 

fractal is constructed from a collage of transformed copies of itself; it is 

inherently self-similar and infinitely scalable. 

The transformation is performed by a set of affine maps. An affine 

mapping of the plane is a combination of a reflection, rotation, scaling, 

sheer and translation (See Figure 1.1). 

 

 
 Figure (1.1) Geometric transformations implemented in the IFS model [Niki07] 

 

Partitioned iterated function systems (PIFSs) are utilized in fractal 

image compression schemes. To solve the image encoding problem, it is 

4  
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important to find a PIFS such that its attractor is as close to the encoded 

image as possible [Niki07]. 

The idea of fractal compression had reached the practical reality by 

Jacquin when he introduced the partitioned IFS (PIFS); which differs 

from an IFS in that each of the individual mappings operates on a subset 

of the image, rather than the entire image. Since the image support is tiled 

by "range blocks," each of which is mapped from one of the "domain 

blocks", as depicted in Figure (1.2), the combined mappings constitute a 

transform on the image as a whole. The transform that minimize the 

collage error within this framework is constructed by individually 

minimizing the collage error for each range block. This transform 

requires locating the domain block which may be made closest to each 

approximated range (using affain mapping). This transform is represented 

by specifying, for each range block, the identity of the matching domain 

block together with the block mapping parameters which minimizes the 

collage error for that block. Distances are usually measured by the mean-

squared error (MSE) metric since optimization of the standard block 

mappings is simple under this measure [WoJa99]. 

 

 
 Figure (1.2) One of the block mappings in a PIFS representation [WoJa99] 
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1.5 Related Work 
Many researchers have considered FIC as headlines in their work; 

some of their published works are the following: 

1. Wohlberg and Jager (1994) [WoJa94], they indicated that lossy image 

coding by partitioned iterated function systems, popularly known as 

fractal image compression, had become an active area of research. In 

this scheme, an image is coded as a set of contractive transformations 

in a complete metric space. As a result of a well known theorem in 

metric space theory, the set of contractive transformations (subject to a 

few constraints) is guaranteed to produce an approximation to the 

original image, when iteratively applied to any initial image. 

2. Rejeb and Anheier (1997) [ReAn97], proposed a time improved 

fractal image coder with a reduced domain pool and optimal 

luminance transform parameters calculation. This scheme is applicable 

to the Fischer's (1994) classification method. The encoding process is 

accelerated by reducing the domain pool, and then by minimizing the 

number of operations for the similarity search; this reduction is based 

on discarding the domains with nearly the same variance from each 

class of the domain pool. This approach provided a greater speed loss 

with a slight loss in the compression ratio and a slight improvement in 

image quality. The results of the conducted experiments showed that 

an acceleration of 6.7 for the image “Lena” is reached with a good 

decoded image quality. For a speed up factor of 2, the compression 

ratio is about 0.8% reduced and the image quality is about 0.23% 

improved. In order to increase the compression ratio again Jaquin's 

(1992) method was used, and some of the range blocks with shade 

property have been removed from the search. 

6  
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3. Salih and Smith (1999) [SaSm99], presented a method of mapping 

similar regions within an image by an approximation of the collage 

error, this resulted in writing range blocks as a linear combination of 

domain blocks. Also, they addressed the complexity of the encoder, by 

proposing a new classification scheme based on the domain and range 

blocks moments which reduced the encoding time by a factor of 

hundreds with insubstantial loss in the image quality. 

4. Chang and Kuo (2000) [ChKu00], they referred that the domain pool 

design is one of the dominant issues which affect the coding 

performance of fractal image compression. This paper employed the 

LBG algorithm and proposed a block averaging method to design an 

efficient domain pool based on a proposed iteration-free fractal image 

codec. The redundancies between the generated domain blocks have 

been reduced by the proposed methods. Therefore, the obtained 

domain pool is more efficient than that generated in the conventional 

fractal coding scheme, and thus the coding performance is improved. 

On the other hand, the iteration process in the conventional fractal 

coding scheme not only required a large size of memory and a high 

computation complexity but also prolongs the decoding process. The 

proposed iteration-free fractal codec can overcome the problems 

mentioned above. By the conducted computer simulation, it was 

noticed that both the LBG-based and block-averaging methods for the 

domain pool design in the proposed iteration free scheme have 

achieved excellent performances. For example, based on the proposed 

block-averaging method, the decoded Lena image has at least a 0.5 dB 

higher PSNR (under the same bit rate) and an eight-time faster 

decoding speed than the conventional fractal coding schemes that 

require iterations. 

7  
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5. Al-A'mri (2001) [Alam01], presented a hierarchical quad-tree scheme 

for partitioning image, in FIC, in two different ways; fixed block size 

and variable block size. In these methods the image is partitioned into 

sub-squares called ranges. The domain blocks are obtained by shifting 

a block of twice the range size over the original image. Although, 

various kinds of criteria could be used for image partitioning; in this 

study a uniformity criterion had been utilized to perform image 

partitioning. 

6. Tong and Wong (2002) [ToWo02], they referred that fractal image 

encoding is a computationally intensive method of compression due to 

its need to find the best match between image sub-blocks, this done by 

repeatedly searching a large virtual codebook constructed from the 

image under compression. One of the most innovative and promising 

approaches to speed up the encoding is to convert the range-domain 

block matching problem to a nearest neighbor search problem. This 

paper presented an improved formulation of approximate nearest 

neighbor search based on orthogonal projection and pre-quantization 

of the fractal transform parameters. Furthermore, an optimal adaptive 

scheme is derived for the approximate search parameter to further 

enhance the performance of the new algorithm. Experimental results 

showed that this new technique was able to improve both the fidelity 

and compression ratio, while significantly reduce memory 

requirement and encoding time. 

7. Al-Dulaimy (2003) [Aldu03], the main purpose of his work is to 

reduce the encoding time of fractal image compression method. He 

proposed two approaches: the first is based on a new mathematical 

approach, called Improved Searching Mechanism (ISM), which 

determines IFS codes with less number of computation steps. While in 

the second approach, called Loosely Coupled Multiprocessing (LCM), 

8  
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the encoding operations are executed using loosely coupled 

multiprocessing system. 

8. Yung-Gi (2005) [Yung05], in his work he proposed an algorithm to 

improve the time-consuming encoding drawback by an adaptive 

searching window, partial distortion elimination (PDE), and 

characteristic exclusion algorithms. The proposed methods efficiently 

had decreased the encoding time. In addition, the compression ratio is 

also raised due to the reduced searching window. While conventional 

full search fractal encoding to compress a 512×512 image needs to 

search 247,009 domain blocks for every range block, this 

experimental results showed that the proposed method only needs to 

search 122 domain blocks, which is only 0.04939% compared to a 

conventional fractal encoder, at a bit rate of 0.2706 bits per pixel (bpp) 

while maintaining almost the same decoded quality in visual 

evaluation. 

9. Distasi, Nappi, and Riccio (2006) [DNR06], the proposed a method to 

reduce the complexity of the image coding phase by classifying the 

blocks according to an approximation error measure. It was formally 

shown that postponing range/domain comparisons with respect to a 

preset block, is possible and can reduce drastically the amount of 

operations needed to encode each range. The proposed method had 

been compared with three other fractal coding methods, showing 

under which circumstances it performs better in terms of both bit rate 

and/or computing time. 

10. Al-Hilo (2007) [Alhi07], designed and implemented a color image 

scheme using PIFS method. Since the main weak point in FIC is its 

need for long encoding time, in this research project a new block 

indexing method was suggested in order to reduce the long encoding 

time. The idea of reducing the mapping search operation is based on 

9  
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making IFS matching between the range and domain blocks that have 

similar block indexing values; this leads to significant reduction in the 

encoding time. The proposed block indexing process is based on using 

moments (m01, m10) to produce an invariant descriptor to classify 

domain and range blocks. The utilization of this feature had 

significantly reduced the number of matching trials to find the closest 

domain block for each range block. The invariance of the proposed 

descriptor against affine transforms was the main reason behind 

reducing the number of range-domain comparisons which in turn led 

to speeding-up the domain search task. 

 
1.6 Aim of Thesis 

The aim of this work is to design and implement a fractal image 

compression system based on IFS-transform for zero-mean range-domain 

blocks. Some improvements were performed on the IFS-matching stage, 

these improvements implies the use of two moment based indexes as 

criterion to reduce the number of range-domain matching trials. This first 

moment based index is IFS-invariant, it is used to classify the range and 

domain blocks, and then only the blocks have similar indexes are passed 

through the domain-range matching test. While, the second index is 

utilized to predict the type of isometric process needed to be applied on 

the domain block to ensure the best IFS-matching state with the tested 

range block. Some additional steps are proposed to improve the 

performance of the improved FIC scheme, due to these additional steps 

the range pool partition could be done for any chosen block size without 

necessity for choosing block size as a divisible factor of both image width 

and height. 
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1.7 Thesis Layout 
In addition to chapter one, the remaining parts of this thesis consists 

of the following chapters: 

Chapter Two: (Fractal Image Compression) 

In this chapter some image compression methods beside to fractal 

image compression technique are presented. Also, the relevant concepts 

and theorems with partitioned iterated function system, block symmetry 

predictor and moments descriptors are explained. 

Chapter Three: (The Enhanced FIC-Scheme) 

In this chapter, the proposed system design and implementation steps 

are given. The encoding and decoding modules are described in details. 

Chapter Four: (Performance Test Results) 

This chapter is dedicated to present the results of the conducted tests 

on the established coding system using different bitmap test images. 

Chapter Five: (Conclusions and suggestions) 

Some conclusion remarks that derived from the analysis of test 

results are given in this chapter. Also, some suggestions for future work 

are listed. 



 

 

 

 

 

 

 

 
 

 

 



 
2.1 Introduction 

This chapter introduces the definition of fractal, and the 

classification of its models. Also some of the famous fractal shapes, and 

some relevant concepts used in fractal image compression are presented. 

The aspects and equations deal with fractal image compression are 

described. 

The concept of moments descriptor (which is used in this research 

work), affine transformations, down sampling methods, fidelity criteria, 

image partitioning schemes, quantization, Differential Pulse Coding 

Modulation (DPCM), and some color models are also described in this 

chapter. 

 

2.2 Fractals 
A good definition of the term fractal is elusive. Any particular 

definition seems to either exclude sets that are thought of as fractals or to 

include sets that are not thought of as fractals. 

The definition of a "fractal" should be regarded in the same way as 

the biologist regards the definition of "life." There is no hard and fast 

definition, but just a list of properties characteristic of a living thing. In 

the same way, it seems best to regard a fractal as a set that has properties 

such as those listed below, rather than to look for a precise definition 

which will almost certainly exclude some interesting cases [Fish95]. 
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When referring to fractal objects, most researchers typically define 

them as things that [Niki07]: 

• Have a 'fine' structure, continual zoom in any region of a fractal 

can lead to fascinating complex details. 

• Show some form of self-similarity, mostly approximate or 

statistical. Fractals provide a repeated graphical content that is 

easy to recognize and is visually appealing. 

• Are too irregular to be described by the classic Euclidean 

geometry, both globally and locally. The lack of tangents presents 

a serious drawback for differential geometry-based analysis and 

modeling. 

• Usually have a non-integer 'dimension' (defined in some way). 

Such a dimension is greater than the fractal topological 

dimension. Unlike the widely known Euclidean dimension (0 for 

a point, 1 for lines and curves, 2 for filled circles and 3 for cubes 

and other volumetric objects), the fractal dimension is not 

necessarily an integer. 

• Are usually defined in a very simple way. Most fractals have 

relatively simple models that exploit recursive or iterative 

rendering schemes. 

 

2.3 Self Similarity 
A typical image does not contain the type of self-similarity found in 

fractals. But, it contains a different sort of self-similarity. Figure (2.1) 

shows regions of Lenna that are self-similar at different scales. A portion 

of her shoulder overlaps a smaller region that is almost identical, and a 

portion of the reflection of the hat in the mirror is similar to a smaller part 

of her hat. 

13  
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Figure (2.1) Lena image with self-similarity 

 

The difference here is that the entire image is not self-similar, but 

parts of the image is self-similar with properly transformed parts of itself. 

Various studies indicated that most of the natural images contain this type 

of self-similarity. It is the restricted redundancy type that fractal image 

compression schemes attempt to eliminate [Sank98]. 

 

2.4 Famous Fractal Shapes 
In general, fractals can be classified into two categories: 

Deterministic and Random fractals. The first category represents a type of 

fractals that are composed of several scaled down and rotated copies of 

themselves (such as Sierpinski triangle, Von Koch curve, Hilbert curve, 

Mandelbrot and Julia set). The second category represents natural 

phenomena that are everywhere in nature (such as clouds, mountains, 

coastlines, turbulence, roots, branches of tree, blood vessels, etc…) 

[TaLo98]. 

Two popular shapes of deterministic fractals are described in the 

following: 

 

14  



Chapter Two                                                                                                    Fractal Image Compression 

1. The Sierpinski Triangle 

The Sierpinski triangle is named after the Polish mathematician 

Waclaw Sierpinski, who described some of its interesting properties in 

1916 [Mand04]. It is one of the simplest fractal shapes. It can be 

generated by infinitely repeating a procedure of connecting the midpoints 

of the three sides of triangle to form four separate triangles, and cutting 

out the triangle in the center. Figure (2.2) illustrates the stages of 

Sierpinski triangle construction [Lani04]. 

 

 
 
 Figure (2.2) Sierpinski triangle construction stages [Lani04] 

 

2. Von Koch Curve 

The curve of Von Koch is generated by a simple geometric 

procedure, which can iterate an infinite number of times by dividing a 

straight line segment into three equal parts and substituting the 

intermediate part with two segments of the same length. Von Koch curve 

is a very elementary example of fractal; it follows a simple rule of 

construction. Figure (2.3) presents the stages of Von Koch construction 

[Bour91]. 

 

 
Figure (2.3) Von Koch curve construction stages [Bour91] 
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2.5 Color Models 
The purpose of a color model (also called color space or color 

system) is to facilitate the specification of colors in some standard in 

accepted way. In essence, a color model is a specification of a coordinate 

system and a subspace within that system, where each color is 

represented by a single point [Gonz02]. 

In the following some of the popular color models used in various 

compression schemes are given: 

 

1. RGB model 

The red-green-blue (RGB) primary color system is the best known of 

several color systems. This is due to the main feature of the human 

perception of color. The color sensitive area in the Human Vision System 

(HVS) consists of three different sets of cones and each set is sensitive to 

the light of one of the three primary colors: red, green, and blue. 

Consequently, any color sensed by the HVS can be considered as a 

particular linear combination of the three primary colors [ShSu00]. 

Figure (2.4) shows the RGB color space, using a cube created by 

three axes representing pure red, green, and blue color. A main property 

of this color space is that the sum of all three basic colors, using 

maximum intensity, is white. Gray-scale values follow the line from 

black (the origin of the coordinate system) to white [Klin03]. 

The RGB model is used mainly in color image acquisition and 

display systems. In color signal processing, including image and video 

compression, the luminance-chrominance color system is more efficient 

and, hence, widely used. This has something to do with the color 

perception of the HVS. It is known that the HVS is more sensitive to 

green than to red, and is least sensitive to blue. An equal representation of 

red, green, and blue leads to inefficient data representation when the HVS 
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is the ultimate viewer. Allocating data only to the information that the 

HVS can perceive can make video coding more efficient. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Luminance is concerned with the perceived brightness, while 

chrominance is related to the perception of hue and saturation of color. 

Roughly speaking, the luminance-chrominance representation agrees 

more with the color perception of the HVS. This feature makes the 

luminance-chrominance color models more suitable for color image 

processing than RGB representation [ShSu00]. 

 

2. YUV model 

The color space in Phase Alternating Line (PAL) TV-Standard 

System is represented by YUV, where Y represents the luminance and U 

and V represent the two color components [Ghan03]. The luminance Y 

can be determined from the RGB model via the following relation: 

Y= 0.299R+ 0.587G+ 0.114B ,…………………………………..(2.1) 
 

(0,0,1) 

(0,1,0) 

(1,0,0) 

Blue 

Cyan 

Green

Red 

Yellow 

Magenta 

Black 

White 

Gray-scale Line 

Figure (2.4) RGB Color Cube [Klin03] 
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It is noted that the three weights associated with the three primary 

colors, R, G, and B, are not the same. Their different magnitudes reflect 

the different responses of the HVS to different primary colors. 

Instead of being directly related to hue and saturation, the other two 

chrominance components, U and V, are defined as color differences, as 

follows: 
 
U =0.492(B- Y) ,..………………………………………………..(2.2) 

V =0.877(R- Y) ,……...……………………………………….....(2.3) 
 
In this way, the YUV model lowers computational complexity. It has 

been used in Phase Alternating Line (PAL) video standard. Note that 

PAL is an analog composite color TV standard and is used in most 

European countries, some Asian countries, and Australia. In composite 

systems, both the luminance and chrominance components of the TV 

signals are multiplexed within the same channel. For completeness, the 

transform equations from expression of RGB to YUV are listed below: 
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100.0515.0615.0
436.0289.0147.0
114.0587.0299.0

 ,...………………………….(2.4) 

 

3. YIQ model 

This color space has been utilized in National Television Systems 

Committee (NTSC) TV systems. NTSC is an analog composite color TV 

standard and is used in North America and Japan [ShSu00].  

The luminance information is still in Y, which represents the gray 

scale information, while hue (I) and saturation (Q) carry the color 

information [TiAj05]. 
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The two equations below shows that the two chrominance 

components (I, Q) are the linear transformation (i.e., rotation by 33o) of 

the U and V components defined in the YUV model. Specifically, 
 
I = -cos(33)U+ sin(33)V ,…………………………..………….(2.5) 

Q = sin(33)U+ cos(33)V ,……………..…………………….....(2.6) 
 
Substituting the U and V expressed in Equations (2.2) and (2.3) into 

the above two equations, the YIQ could directly expressed in terms of 

RGB. That is, 
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 ,...……………………………(2.7) 

 

4. YDbDr 

The YDbDr model is used in the Sequential Couleur a Memoire 

(SECAM) TV system. SECAM is used in France, Russia, and some 

eastern European countries. The relationship between YDbDr and RGB is 

shown by the following expression: 
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 ,...………………………...(2.8) 

 
That is, 
 

Db = 3.059U ,..………………………………………………….(2.9) 

Dr = -2.169V ,...………………………………………………..(2.10) 
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5. YCbCr model 

From the above mentioned models, it can be seen that the U and V 

chrominance components are the differences between the gamma-

corrected color B and the luminance Y, and the gamma-corrected R and 

the luminance Y, respectively. The chrominance component pairs I and 

Q, and Db and Dr are both linear transforms of U and V. Hence they are 

very closely related to each other. It is noted that U and V may be 

negative as well. So, in order to make chrominance components 

nonnegative, the Y, U, and V are scaled and shifted to produce the 

YCbCr model, which is used in the international coding standards JPEG 

and MPEG [ShSu00], where Y is the luminous component while Cb and 

Cr provide the color information [TiAj05, ShSu00]:  
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469.0188.01
0002.0863.11
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 ,………………………………(2.12) 

2.6 Image Fractal Coding 
PIFS image encoder consists of a set of transforms on regions of the 

image. The set of regions (i.e., the domain blocks) from which the 

transform domains are chosen are overlapped, while the regions (i.e., the 

range blocks) forming the ranges of the transformation are tiled. 

The set of transformations consist of a spatial contraction (e.g., 

averaging each 4 neighboring pixels) to construct a kxk blocks from a 

2kx2k blocks, followed by one of the 8 square symmetry operations (4 

rotations and 4 reflections), and followed by a contractive affine 

transformation on the grey scale values (for a block with pixel values). 
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For a range block with pixel values (r0,r1,....,rm-1), and the domain 

block (d0,d1,....,dm-1),the contractive affine approximation is, 

iii osdr +=′  ,...………………………………………………...(2.12) 

 
Where s (scale) and o (offset) are the affine transform coefficients, ri′ s 

are the approximate (constructed) range values. The scale (s) and offset 

(o) parameters are determined by applying the method of least sum of 

square errors (χ2) between r' and r values [ToPi01]: 
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After straight forward manipulation to above equations, the following 

expressions for scale (s) and offset (o) coefficients are obtained: 
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In each range-domain matching instance before determining the 

value of , the scale (s) and offset (o) values should firstly imposed to 

the clipping conditions ( omin ≤ o ≤ omax ) and (| s |≤ smax ), where (omin, 

omax) are the lower and upper boundaries of the permissible values of 

offset, smax is the maximum permissible scale value. Secondly, they 

should be quantized by using the following equations: 

2χ
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Where, is and io are the quantization indices of scale and offset 

coefficients. sq and oq are the quantized values of scale and offset 

coefficients respectively. The quantized values of scale and offset 

parameters should be used to construct the approximates r' and the sum of 

errors ( ). 2χ

To asses the involved computational complexity; consider an nxn 

image partitioned into non-overlapping range blocks, each clock has a 

size (kxk). The number of tiled range blocks is n2/k2, while the number of 

domain blocks is (n-2k-1)2. The computation of best match between a 

range block and a domain block is O(k2). Considering k to be constant, 

the computational complexity of an exhaustive search is O(n4). 

The most direct and easy way to reduce the search complexity is by 

monitoring the matching error; at any matching instance the IFS matching 

error is checked. If it is below a pre-defined permissible level ε 

(threshold) then the registered domain block is considered as the best 

matched block and, then, the search across the domain blocks is stopped 

[Geor06]. 

 

2.7 Iterated Function System for Zero-Mean Blocks 
The traditional offset factor has dynamic range [-255,510], this may 

cause large errors in some image regions (or points), especially those 
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points belong to high contrast area. Also, the traditional offset factors 

require an additional bit (sign-bit). The results of some conducted tests 

indicated that the offset values of adjacent range blocks doesn't show 

significant correlation similar to that registered between the average 

brightness values of the adjacent blocks. So, to handle this disadvantage a 

change in the traditional IFS scheme was introduced, where the 

contractive affain transform is changed to become [ToPi01]: 
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To determine the scale (s) value, the method of least sum of 

square errors (equations 2.13) is applied to get [Geor06], 
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2.8 Moment Descriptor 
In general, moments are set of parameters which describes the 

distribution of material (in image processing it is equivalent to brightness) 

relative to a reference point or an axis. The idea of using moments to 

construct the image feature vectors is one of the most common methods 

used today. Each moment order reflects different information for the 

same image.  

For a 2-D continuous function f(x,y), the moment of order (p+q) is 

defined as : 
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= dxdyyxfyxm qp
pq ),(  ,...…………………………………….(2.27) 

 
For p, q = 0, 1, 2, …. 

A uniqueness theorem states that: if f(x,y) is piecewise continuous 

and has nonzero values only in a finite part of the xy-plane, moments of 

all orders exist, and the moment sequence (mpq) is uniquely determined 

by f(x, y). Conversely, the set of moments {mpq} uniquely determines f(x, 

y). 

The central moments are defined as: 
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For a 2-D discrete function f(x,y), the moment of order (p+q) about 

the center point (xc, yc) is defined as [Gonz02]: 
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When this definition is applied to determine the first order moments 

of the domain and range blocks the following expressions are obtained: 
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k is the block width (or height). 

 

2.9 Moments Ratio Factor 
Consider the following Moments-Ratio factor (R): 
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It is easily to prove that the magnitude of R factor is rotation and 

reflection invariant. Also, by combining equations (2.34), (2.30) and 

(2.20), we can easily prove that: 
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rd RR =  ,………………………………………………………..(2.35) 

 
This result implies that "if the range and domain blocks satisfy the 

contractive affine transform, then their moments ratio factors (Rd and Rr) 

should have similar magnitudes. This doesn't means that any two blocks 

have similar R magnitudes are necessarily similar to each other". 

This fact is utilized to improve (speed up) the range-domain search 

task. Instead of comparing all domain blocks with each affine 

transformed range block, only the domain blocks whose moments-ratio 

factors (R) are similar to that of the tested range block should be passed 

through the IFS-matching test [Geor06]. 

 

2.10 Down Sampling Methods 
Down sampling is a process used for minification only. It may be 

used to create thumbnail representations of an image. The basic idea 

behind down sampling process is to represent a block of adjacent pixels 

with one pixel. The type of down-sampling method depends on the speed 

and quality requirements. The most popular down-sampling methods are 

[Cran97]:  

 

1. Median Representation  

Median representation replaces a block of pixels with its median 

value, see Figure (2.5) where an nxn window is passed over the image. 

For each down sampled block, its pixels values are read and put into an 

array, and then sorted in ascending order according to their values. The 

middle value is then used to represent that block. This method requires 

much computation time due to the number of comparisons needed to sort 

the block of pixels. 
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2. Average Representation  

Average representation also uses the nxn window (see Figure 2.6). 

Each block of pixels is represented by the average of all pixels values. 

This is not as slow as median representation. 
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 Figure (2.5) Minification by median representation 
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 Figure (2.6) Minification by average representation 
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2.11 Affine Transformation 
An affine transformation is the composition of a linear 

transformation with translation. It can be written as: 
 

)','(),(),( yxfdycxebyaxyxw =++++=  ,…………………….….(2.36) 
 
Where, w is the affine transformation, (a, b, c, d, e, and f) are real 

numbers, (x,y) are the old coordinates of the transformed point, and (x', 

y') are the new coordinates of the point. 

This transformation is a two-dimensional affine transformation 

[Colv96], it maps a plane to itself. In matrix form, the general equation of 

an affine transformation is: 
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TAXXw +=)(  ,………………………………………….…..…(2.38) 

 
Where, A is a (2×2) real matrix 

e is the translation along x-direction 

f is the translation along y-direction 

(a, b, c, d) are the coefficients of combined isometric operations 

(i.e., scaling, rotation, skew, reflection). 
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T  is called the translation vector [Colv96] 

 
Affine transformations can skew, rotate, scale and translate a 

matrix [Sank98]. As a special case, a matrix A can be written in the form: 
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Where, 22
1 car +=  is the scaling factor along x-direction. 
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22
2 dbr +=  is the scaling factor along y-direction. 

a
c

=θtan  is the angle of rotation around x-direction. 

 
There are seven (simple) special cases of affine transformations; 

Table (2.1) illustrates these cases [Ning97, BaHu93]: 

Table (2.1) The special cases of affine transformations 
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Eight transformation matrices could be obtained from the processes 

of rotation (0, 90, 180, 270) and reflection; these transformations matrices 

are called the standard indexed spatial matrices. Table (2.2) illustrates the 

effects of these 8 transformation matrices [Ning97]: 

 

Table (2.2) The standard indexed spatial matrices [Ning97] 

 

 
2.12 Partition Schemes 

The first decision to be made when designing a fractal coding 

scheme is the choice of the type of image partition used for the range 

blocks. Since domain blocks must be transformed to cover range blocks, 

this decision, together with the choice of block transformation, restricts 

the possible sizes and shapes of the domain blocks. A wide variety of 

partitions have been investigated, the majority being composed of 

rectangular blocks. 
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 Figure (2.7) Right-angled range partition schemes. (a) Fixed block size, 
(b) Quadtree, (c) Horizontal-vertical, (d) Irregular partition [WoJa99]  

 

1. Fixed Size Square Blocks 

The simplest possible range partition consists of fixed size square 

blocks, as depicted in Figure (2.7a). This type of block partition is 

successful in transform coding of individual image blocks since an 

adaptive quantization mechanism is able to compensate for the varying 

“activity” levels of different blocks, allocating few bits to blocks with 

little detail and many to detailed blocks [WoJa99]. 

An image is partitioned into a set of nonoverlapped, equally spaced, 

fixed size, small rectangular blocks. In such case the translation, rotation 

and zooming can be made easily [ShSu00]. 

Fractal coding based on the standard block transform, is not capable 

of such adaptation, representing a significant disadvantage of this type of 

block partition for fractal coding. This deficiency may be addressed by 

introducing adaptivity to the available block transforms, but the usual 
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solution is to introduce an adaptive partition with large blocks in low 

detail regions and small blocks where there is significant detail. Of 

course, there is a tradeoff between the lower distortion expected by 

adapting the partition to the image content, and the additional bits 

required to specify the partition details. 

 

2. Quadtree 

The quadtree partition, see Figure (2.7b), employs the well-known 

image processing technique that based on a recursive splitting of selected 

image quadrants [WoJa99]. An image is represented as a tree in which 

each node, corresponding to a square portion of the image, contains four 

subnodes, corresponding to the four quadrants of the square. The root of 

the tree is the initial image [Fish95]. The usual top-down construction 

starts by selecting an initial level in the tree, corresponding to some 

maximum range block size, and recursively partitioning any block for 

which a match better than some pre-selected threshold is not found. The 

partitioning decision could depend of volume of details existing in the 

block, the details could be measured using various homogeneity 

measures. The alternative bottom-up construction begins with a uniform 

partition using the smallest block size, and then proceeds to merge those 

neighboring blocks for which a more efficient representation is provided 

by the resulting larger block, which is one level up the quadtree. Compact 

coding of partition details is possible by taking advantage of the tree 

structure of the partition [WoJa99]. 

Jacquin’s original PIFS scheme used a variant of the quadtree 

partition in which the block splitting was restricted to two levels. Instead 

of automatically discarding the larger block prior to splitting it into four 

sub-blocks if an error threshold was exceeded, it was retained if 

32  



Chapter Two                                                                                                    Fractal Image Compression 

additional transforms on up to two sub-blocks were sufficient to reduce 

the error below the threshold [Fish95]. 

 

3. Horizontal-Vertical 

The horizontal-vertical (HV) partition, see Figure (2.7c), like the 

quadtree, produces a tree-structured partition of the image. Instead of 

recursively splitting quadrants, however, each image block is split into 

two sub-blocks by a horizontal or vertical line. Splitting positions may be 

constructed so that boundaries tend to fall along prominent edges, or it is 

based on the accuracy of approximation by constant pixel values in each 

of the new blocks created by a particular split. Compact coding of the 

partition details, similar to that utilized for the quadtree partition, is 

possible [WoJa99]. 

 

4. Irregular Regions 

A tiling of the image by right-angled irregular-shaped ranges may be 

constructed by a variety of merging strategies on an initial fixed square 

block, see Figure (2.7d), or quadtree partition. Chain codes allow the 

range shapes to be coded efficiently [Fish95]. 

 

5. Overlapped Blocks 

Overlapping range blocks have been used to reduce blocking 

artifacts, within a quadtree partition, and with multiple domain transforms 

in a fixed block size partition. This overlapping step may not lead to a 

corresponding improvement in mean square error. A more complex form 

of block overlapping, but with a fixed block size range partition, provided 

improved MSE and subjective quality. These techniques, while are 

promising, have been overtaken to a large extent by developments in 

wavelet domain fractal coding [WoJa99]. 
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2.13 Quantization 
The dictionary definition of the term “quantization” is “to restrict a 

variable quantity to discrete values rather than to a continuous set of 

values” [Salo07]. Any analog quantity that is to be processed by a digital 

computer or digital system must be converted to an integer number 

proportional to its amplitude. The conversion process between analog 

samples and discrete-valued samples is called quantization [Prat01]. 

 In the field of data compression, quantization is used in two ways: 

1. If the data to be compressed is in the form of large numbers, 

quantization is used to convert it to small numbers. Small numbers 

take less space than large ones, so quantization generates compression. 

On the other hand, small numbers generally contain less information 

than large ones, so quantization results in lossy compression. 

2. If the data to be compressed is analog (e.g., a voltage that changes with 

time) quantization is used to digitize it into small numbers. The 

smaller the numbers the better the compression, but also the greater 

the loss of information. This aspect of quantization is used by several 

speech compression methods. 

 

2.13.1 Scalar Quantization 
Scalar quantization is an example of a lossy compression method, 

where it is easy to control the trade-off between compression ratio and the 

amount of loss. However, because it is so simple, its use is limited to 

cases where much loss can be tolerated [Salo07]. 
The amplitude of an analog signal sample is compared to a set of 

decision levels. If the sample amplitude falls between two decision levels, 

it is quantized to a fixed reconstruction level lying in the quantization 
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band. In digital systems, each quantized sample is assigned a binary code 

[Prat01]. 

 
2.14 DPCM (Differential Pulse Coding Modulation) 

The DPCM system was developed at Bell Laboratories a few years 

after World War II. It is most popular as a speech-encoding system, and it 

is widely used in telephone communications [Sayo06]. 

The DPCM compression method is a member of the family of 

differential encoding (compression) methods, which itself is a 

generalization of the simple concept of relative encoding. It is based on 

the well-known fact that neighboring pixels in an image (and also 

adjacent samples in digitized sound) are correlated. Correlated values are 

generally similar, so their differences are small which resulting in 

compression. Table (2.3) lists 25 consecutive values of the function sin θ, 

calculated for θ values from 0 to 360o in steps of 15o. The values 

therefore range from −1 to +1, but the 24 differences sin θi+1−sin θi (also 

listed in the table) are all in the range [−0.259, 0.259]. The average of the 

25 values is zero, as is the average of the 24 differences. However, the 

variance of the differences is small, since they are all closer to their 

average. 

 

Table (2.3) 25 Sine values and 24 Differences 

Sin(t) 0 0.259 0.500 0.707 0.866 0.966 1.000 0.966  

Diff _ 0.259 0.241 0.207 0.159 0.100 0.034 -0.034  

Sin(t) 0.866 0.707 0.500 0.259 0 -0.259 -0.500 -0.707  

Diff -0.100 -0.159 -0.207 -0.241 -0.259 -0.259 -0.241 -0.207  

Sin(t) -0.866 -0.966 -1.000 -0.966 -0.866 -0.707 -0.500 -0.259 0 

Diff -0.159 -0.100 -0.034 0.034 0.100 0.159 0.207 0.241 0.259 
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Figure (2.8a) shows the histogram of an image that consists of 8-bit 

pixels. For each possible pixel value (between 0 and 255) there is a 

different number of pixels. Figure (2.8b) shows the histogram of the 

differences between consecutive pixels. It is easy to see that most of the 

differences (which, in principle, can be in the range [-255, 255]) are 

small; only a few are outside the range [−50, +50]. 

 

 

 
Figure (2.8) A Histogram of an image pixel values and of their 

differences 
 

Differential encoding methods calculate the differences di = ai − ai−1 

between consecutive data items ai, and encode the di’s [Sayo06, Salo07]. 

The first data item, a0, is either encoded separately or is written on the 

compressed stream in raw format. In either case the decoder can decode 

and generate a0 in exact form. In principle, any suitable method, lossy or 

lossless, can be used to encode the differences. In practice, quantization is 

often used, resulting in lossy compression. The quantity encoded is not 

the difference di but a similar, quantized number that is denoted by . 

The difference between di and is the quantization error qi [Salo07]. 

id̂

id̂

It turns out that the lossy compression of differences introduces a 

new problem, namely, the accumulation of errors. This is easy to see 
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when the operation of the decoder is considered. The decoder get (as 

input) the encoded values of , decodes them, and uses them to generate 

"reconstructed" values  (where =  + ) instead of the original data 

values ai. The decoder starts by reading and decoding a0. It then inputs 

=d1+q1 and calculates = a0+ = a0+d1+q1 = a1+q1. The next step is 

to input = d2+q2 and to calculate = + = a1 + q1 + d2 + q2 = a2 + 

q1 + q2. The decoded value  contains the sum of two quantization 

errors. In general, the decoded value equals [Salo07] 

id̂

â

iâ iâ

1d̂

1ˆ −ia

2 â

nˆ

id̂

d̂

1d̂ 1â

2d̂ â 1 2

2
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∑
=

+=
n

i
inn qaa

1

ˆ  ,……………………………………….(2.40) [ShSu00] 

 
and it includes the sum of n quantization errors. Sometimes, the 

errors qi are signed and tend to cancel each other out in the long run. In 

general, however, this is a problem. 

The solution is easy to understand once it is realized that the encoder 

and the decoder operates on different pieces of data. The encoder 

generates the exact differences di from the original data items ai, while 

the decoder generates the reconstructed  using only the quantized 

differences . The solution is, therefore, to modify the encoder to 

calculate differences of the form di = ai − . The difference di is 

calculated by subtracting the most recent reconstructed value  (which 

both encoder and decoder have) from the current original item ai. 

iâ

id̂

1ˆ −ia

1ˆ −ia

The decoder starts by reading and decoding a0. It then inputs 

 and calculates . The next step is 

to input  and calculates . The 

decoded value  contains just the single quantization error . And, in 

general, the decoded value  equals 

111
ˆ qdd +=

2d̂

11110101
ˆˆ qaqdadaa +=++=+=

21212 ˆˆˆˆ dadaa ++=+=

iâ ii qa

22 qd +=

2â

222 qaq +=

2q

+ , so it contains just 
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quantization error . The quantization noise in decoding  equals the 

noise generated when  was quantized. 

iq iâ

ia

Figure (2.9a) summarizes the operations of both encoder and 

decoder. It shows how the current data item  is saved in a storage unit 

(a delay), to be used for encoding the next item . 

ia

a 1+i

The next step in developing a general differential encoding method 

is to take advantage of the fact that the data items being compressed are 

correlated. This means that in general, an item  depends on several of 

its near neighbors, not just on the preceding item . Better prediction 

(and, as a result, smaller differences) can therefore be obtained by using 

N of the previously-seen neighbors to encode the current item  (where 

N is a parameter). Therefore, it would like to have a function pi = f( , 

, ..., ) to predict ai , see Figure (2.9b) [Salo07]. 

ia

1−ia

ia

1ˆ −ia

2ˆ −ia Nia −ˆ

 

 
Decoder Encoder  

 a. Differential [Sayo06] 

 
 b. DPCM 

Encoder Decoder 

Figure (2.9) A Differential and DPCM codecs 
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Notice that f has to be a function of the , not the , since the 

decoder has to calculate the same f. Any method using such a predictor is 

called differential pulse code modulation, or DPCM. In practice, DPCM 

methods are used mostly for audio compression, but are illustrated here in 

connection with image compression [Salo07]. 

jia −ˆ jia −

 

2.15 The Test Measures 
A lot of key parameters were utilized in the literature to describe the 

performance of various compression methods. In this research the fidelity 

criteria (MAE, MSE, and PSNR) in addition to the compression ratio and 

bit rate were used to describe the performance of the established four FIC 

schemes at different coding conditions: 

 
A. Fidelity Criteria 

There are several types of matching criteria, among which the mean 

square error (MSE) and mean absolute difference (MAD) are used most 

often. It is noted that the sum of the squared difference (SSD) or the sum 

of the squared error (SSE) is essentially same as MSE. The mean absolute 

difference is sometimes referred to as the mean absolute error (MAE). 

In the MSE matching criterion, the dissimilarity metric M(u,v) is 

defined as [ShSu00] 
 
M(u,v)=(u-v)2 ,…………………………………………………(2.41) 
 

While, in the MAD, 
 

M(u,v)=|u-v| ,…………………………………………………..(2.42) 
 
Developers of lossy image compression methods need a standard 

metric to measure the quality of reconstructed images compared with the 
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original ones. Well reconstructed image resembles the original one, and 

the metric value should indicate this resemblance in proper way. Such a 

metric is a dimensionless number, and that number should not be very 

sensitive to small variations in the reconstructed image. The most 

common measure used for this purpose is the peak signal to noise ratio 

(PSNR). It is familiar to workers in the field, it is also simple to calculate, 

but it has only a limited, approximate relationship with the perceived 

errors noticed by the human visual system. This is why higher PSNR 

values imply closer resemblance between the reconstructed and the 

original images, but they do not provide a guarantee that viewers will like 

the reconstructed image. 

Denoting the pixels of the original image by Pi and the pixels of the 

reconstructed image by Qi (where 1 ≤ i ≤ n), then the mean square error 

(MSE) between the two images is defined as: 
 

(∑
=

−=
n

i
ii QP

n
MSE

1

21 )  ,…………………………………………...(2.43) 

 
It is the average of the square of the errors (pixels' differences) of the 

two images. The root mean square error (RMSE) is defined as the square 

root of the MSE [Salo07]. The Peak signal-to-noise ratio (PSNR) is 

defined as [Fish95]: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

RMSE
P

PSNR iimax
log20 10  ,……………………………….….….(2.44) 

 
The absolute value is normally not needed, since pixel values are 

rarely negative. For a bi-level image, the numerator is 1. For a grayscale 

image with eight bits per pixel, the numerator is 255. 

Greater resemblance between the images implies smaller RMSE and, 

as a result, larger PSNR. The PSNR is dimensionless, since the units of 
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both numerator and denominator are pixel values. However, because of 

the use of the logarithm, it can be said that the PSNR value is expressed 

in decibels (dB). The use of the logarithm also implies less sensitivity to 

changes in the RMSE. The PSNR has no absolute meaning, it is 

meaningless to say that a PSNR of, say, 25 is good. PSNR values are 

used only to compare the performance of different lossy compression 

methods, or to describe the effects of different parametric values on the 

performance of an algorithm. The MPEG committee, for example, uses 

an informal threshold of PSNR= 0.5 dB to decide whether to incorporate 

a coding optimization, since they believe that an improvement of that 

magnitude would be visible to the eye. 

Typical PSNR values range between 20 and 40. Assuming pixel 

values in the range [0, 255], a RMSE value of 25.5 results in a PSNR of 

20, and a RMSE value of 2.55 results in a PSNR of 40. A RMSE of zero 

(i.e., identical images) results in an infinite (more precisely, undefined) 

PSNR. A RMSE of 255 results in a PSNR of zero, and RMSE values 

greater than 255 yield negative PSNRs. 

Some authors define the PSNR as 
 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

MSE
P

PSNR ii
2

10

max
log10  ,………………………………….….(2.45) 

 
In order for the two formulations to produce the same result, the 

logarithm is multiplied in this case by 10 instead of 20, since 

log10(A2)=2log10(A). Either definition is useful, because only relative 

PSNR values are used in practice [Salo07]. 
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B. Compression Compactness 
Various measures are used to describe the achieved reduction in data 

size due to compression, in this research work the compression ration 

(Cr) and bit rate were adopted as compression measures. 

Compression ratio is used to refer to the degree of reduction of 

image file (or data) size due to compression process. This measure is 

defined as the ratio between the size of the original uncompressed image 

file to the size of the overall compressed file [Umba98]: 
 

sizefilencompressio
sizefileionuncompressCr =  ,…………………………………….(2.46) 

 

Bit rate (BR) refers to the average number of bits required to 

represent the value of each image pixel, usually it is determined as the 

ratio between the size of compressed file and the size of the original 

image file: 
 

( )
( )pixelsinsizefileimage

bitsinsizefilencompressioBR =  ,……………………………….(2.47) 

 

The above defined Cr and BR parameters have been used as 

indicators for the compactness ability of the proposed compression 

schemes in this research project. 

 

2.16 Entropy 
The entropy of a single symbol ai is defined as −Pi log2 Pi, where 

Pi is the probability of occurrence of ai in the data. The entropy of ai is 

the smallest number of bits needed, on average, to represent symbol ai. 

Claude Shannon, the creator of information theory, coined the term 

entropy in 1948, since this term is used in thermodynamics to indicate the 

amount of disorder in a physical system. 
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Assume the H is the amount of information, in bits, sent by the 

transmitter in one time unit. The amount of information contained in one 

base-n symbol is thus H/s (because it takes time 1/s to transmit one 

symbol), or . This quantity is called the entropy of the data 

being transmitted. In analogy we can define the entropy of a single 

symbol ai can be defined as −Pi log2 Pi. This is the smallest number of 

bits needed, on average, to represent the symbol. 

∑− n
ii PP

1 2log

The entropy of the data depends on the individual probabilities Pi, 

and its largest value occurred when all n probabilities are equal [Salo04]. 

 
2.17 Huffman Coding 

This technique was developed by David Huffman as part of a class 

assignment; the class was the first ever in the area of information theory, 

and was taught by Robert Fano at MIT. The codes generated using this 

technique or procedure are called Huffman codes. These codes are prefix 

codes and are optimum for a given model (set of probabilities). 

The Huffman procedure is based on two observations regarding 

optimum prefix codes [Sayo06]. 

1. The more frequently occurring symbols can be allocated with shorter 

codewords than the less frequently occurring symbols . 

2. The two least frequently occurring symbols will have codewords of the 

same length, and they differ only in the least significant bit [TiAj05]. 

 

It is easy to see that the first observation is logical and correct. If 

symbols that occur more often had longer codewords than the codewords 

for symbols that occurred less often, the average number of bits per 

symbol would be larger than that obtained when the conditions were 

43  



Chapter Two                                                                                                    Fractal Image Compression 

reversed. Therefore, a code that assigns longer codewords to symbols that 

occur more frequently cannot be optimum. 

A simple application of Huffman coding to image compression 

would be to generate a Huffman code for the set of values that any pixel 

may take. For monochrome images, this set usually consists of integers 

from 0 to 255 [Sayo06]. 

Huffman coding is a popular method for data compression. It 

serves as the basis for several popular programs run on various platforms. 

Some programs use just the Huffman method, while others use it as one 

step in a multistep compression process. It generally, it produces better 

codes. It produces the best code when the probabilities of the symbols are 

negative powers of 2. Huffman constructs a code tree from the bottom up 

(builds the codes from right to left). Since its development, in 1952, this 

method has been the subject of intensive research into data compression. 

The algorithm starts by building a list of all the alphabet symbols 

in descending order of their probabilities. It then constructs a tree, with a 

symbol at every leaf, from the bottom up. This is done in steps, where at 

each step the two symbols with smallest probabilities are selected, added 

to the top of the partial tree, deleted from the list, and replaced with an 

auxiliary symbol representing the two original symbols. When the list is 

reduced to just one auxiliary symbol (representing the entire alphabet), 

the tree is complete. The tree is then traversed to determine the codes of 

the symbols [Salo07]. 

 

2.18 Arithmetic Coding 
The method of generating variable-length codes called arithmetic 

coding. Arithmetic coding is especially useful when dealing with sources 

with small alphabets, such as binary sources, and alphabets with highly 

skewed probabilities. It is also a very useful approach when, for various 
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reasons, the modeling and coding aspects of lossless compression are to 

be kept separate [Sayo06]. 

The Huffman method is simple, efficient, and produces the best 

codes for the individual data symbols. However, the only case where it 

produces ideal variable-size codes (codes whose average size equals the 

entropy) is when the symbols have probabilities of occurrence that are 

negative powers of 2 (i.e., numbers such as 1/2, 1/4, or 1/8). This is 

because the Huffman method assigns a code with an integral number of 

bits to each symbol in the alphabet. Information theory shows that a 

symbol with probability 0.4 should ideally be assigned a 1.32-bit code, 

since −log2 0.4 ≈ 1.32. The Huffman method, however, normally assigns 

such a symbol a code of 1 or 2 bits. 

Arithmetic coding overcomes the problem of assigning integer 

codes to the individual symbols by assigning one (normally long) code to 

the entire input data. The method starts with a certain interval, it reads the 

input file symbol by symbol, and it uses the probability of each symbol to 

narrow the interval. Specifying a narrower interval requires more bits, so 

the number constructed by the algorithm grows continuously. To achieve 

compression, the algorithm is designed such that [Salo07] more probable 

symbols reduce the interval less than the less probable symbols and hence 

add fewer bits in the encoded message [TiAj05], with the result that high-

probability symbols contribute fewer bits to the output [Salo07]. 

 

2.19 Shift Coding 
The idea of this method is to encode the sequence of numbers by 

codewords whose bit length is less than the bit length required to 

represent the maximum value of the sequence of numbers to be coded. 

The numbers whose values are large may splitted into a sequence of 

codewords, by using the following formula: 
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X = nWm+Wr   ,………………………………………………..(2.48) 

Where: 

X   is the number to be coded. 

n    is the number of codewords that used to encode the number X. 

Wm is the lowest value which cannot be coded by using a single 

codeword. 

Wr  is the value of the last codeword used to encode X. 

 

The values of Wm, Wr, and n are determined by using the following 

equations 
 
Wm = 2b – 1  ,…………………………………………..……(2.49) 

Wr = X mod Wm  ,…………………………….……………..(2.50) 

n = X div Wm   ,……………………………………………...(2.51) 
 
Where b is the number of bits used to represent each single shift 

codeword. 

The performance of Huffman coding and shift coding are better 

when the sequence of numbers has a histogram whose shape is highly 

peaked. The performance of shift coding is better than Huffman and 

arithmetic coding when the histograms have long tails [Mahm07, 

Gonz02]. 



 

 

 

 

 

 

 

 

 
 

 

 
 



 
 

3.1 Introduction 
This chapter is dedicated to present the design considerations and 

implementation requirements, which were taken into consideration 

throughout the design stage of the proposed enhanced fractal image 

compression scheme, that has some additional stages to speed-up the 

compression task in comparison with the traditional scheme. 

In this research project, two major enhancement steps have been 

introduced to significantly reduce the time of the elapsed encoding process, 

without making significant reduction in image quality. The first 

enhancement step is using the developed moment based predictor to reduce 

the number of isometric mapping trials, applied on each domain block, 

from 8 to 1 trial; in other words, the introduced predictor can assign the 

proper isometric mapping that required to set the domain block in closest 

form to the matched domain block. The second enhancement step implies 

using the moment based descriptor to classify the domain and range blocks 

into classes, and instead of testing all domain blocks belong to domain pool 

to find out the block the best matches the coded range block (using IFS-

mapping), only the domain blocks that have similar class index to that of 

range block will be passed through the IFS-matching test. 

The two main modules of the established FIC-schemes are: encoding 

and decoding modules. The structure of the established system and the 

functionality of its modules will be discussed in details in the next sections. 
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3.2 The System Model 
The general structure of the proposed system is illustrated in figure 

(3.1). It consists of two basic modules: encoding and decoding modules. 

The input to the encoder module is a BMP (Bitmap) image file. The data of 

this image is passed through the encoding stages, and subjected to various 

operations to produce the compressed file. This compressed file could be 

passed through decoding stages, and subjected to a sequence of operations, 

to reconstruct the bitmap image. 

Each module (i.e. encoder and decoder) implies several operations, 

working systematically to lead to the final result. 

Bitmap 
color image 

file

Load 
Bitmap image 

file data 
R,G,B

Color 
transform 

from RGB to 
YCbCr

Down 
sample 

by 2 

Cb,Cr

Y

Resize the Y, Cb', Cr' bands 

Y',Cb",Cr" 

FIC encoder 
(applied on each 

component, 
separately) 

DPCM (for 
offset 

quantization 
indexed only) 

Mapping to Positive 
(Scale coefficients and 

offset codewords) 

IFS()-Code 
set 

Shift Encoder 
(Scale and offset 

codewords 

Compression 
Stream 

Codewords

a. Encoding Module 
Figure (3.1) The System Model 
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3.3 Encoder Module 
As shown in figure (3.1a) the main stages of the encoder are started 

from loading image data, and passed through color transform, 

downsampling, FIC encoding, DPCM, and, as a final stage, shift encoding. 

The output of the last stage (i.e., codewords) are saved in compressed file. 

 

3.3.1 Load BMP Image 
The input to this system is a BMP image file; in the established 

system, the BMP image file was used as an input to the system. The 

considered color resolution of the images is either 24 or 8 bit/pixel. The 

image data is loaded and used to fill-up the Red, Green, and Blue arrays, 

each array is assigned for one primary color, as illustrated in Algorithm 

(3.1). 

 

Compression 
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Load the 
codewords 

from the file 
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(Scale and offset 

coefficients 

Shift Decoding 
(Scale and offset 
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Resize the 
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Cb,Cr 
Y,Cb,Cr

Up 
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by 2 
Y 
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R,G,B 
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Color image 

file 
Save as 

bitmap image 

b. Decoding Module 
Figure (3.1) Continue 
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Algorithm (3.1) Read BMP Image  
Goal: Read 24 or 8 bit/pixel BMP image file 
Input: 

 ImgFileName// image file name  
Output:  

Wid, Hgt// image width and height 
Red(0 to Wid-1, 0 to Hgt-1)// Red component of image 
Grn(0 to Wid-1, 0 to Hgt-1)// Green component of image 
Blu(0 to Wid-1, 0 to Hgt-1)// Blue component of image 

Step1: Get from ImgFileName the BMPH // BMPH is the BMP Header 
Get image's width and height values from its header 
Set Wid ← BMPH.Wid 
Set Hgt ← BMPH.Hgt 

Step2: Check image pixel resolution 
If BMPH.BitPlane = 24 Then 

Set DataSize← BMPH.FileSize-BMPHSize 
Get ImgFileName, Img(DataSize-1) //Img contains the image's data 
Set I←0 
For all X, Y Do {where 0≤X≤Wid-1, 0≤Y≤Hgt-1} 

Set Red(X,Y)←Img(I) 
Set Grn(X,Y)←Img(I+1) 
Set Blu(X,Y)←Img(I+2) 
Increment I by 3 

End For 
Else if BMPH.BitPlane = 8 Then 

Set NoColor← (BMPH.OffsetPosition –54) div 4 
Get ImgFileName, RGBrecord(NoColor-1) // RGBrecord contains 4 

cells Red , Green, Blue, and A is a reserved byte for BMP 
images of 8 bit/pixel resolution  

Set DataSize← BMPH.FileSize – BMPHSize – NoColor 
Get ImgFileName, Img(DataSize–1) 
Set I←0 
For all X, Y Do {where 0≤X≤Wid-1, 0≤Y≤Hgt-1} 

Set Red(X,Y)←RGBrecord(Img(X)).Red 
Set Grn(X,Y)←RGBrecord(Img(X)).Green 
Set Blu(X,Y)←RGBrecord(Img(X)).Blue 

End For 
Return (Wid, Hgt, Red, Grn, Blu) 

Else 
Display Message "The Sellected Image's BitPlane is neither 24 nor 8" 

End If 
Step3: End. 
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3.3.2 Conversion from RGB to YCbCr Color Space 
In this stage the three obtained basic colors (Red, Green, and Blue) are 

converted into the YCbCr color representation. This stage is important to 

make the image data representation more suitable for compression. This 

conversion is made using equation (2.11). Algorithm (3.2) shows the 

implemented steps to make this color conversion. 

 

 
 
 
 
 
 
 
 
 
 
 

Algorithm (3.2) YCbCr color model transformation 
Goal: Convert the image from RGB to YCbCr color model 
Input:  

Wid, Higt 
Red(0 to Wid-1, 0 to Hgt-1) 
Grn(0 to Wid-1, 0 to Hgt-1) 
Blu(0 to Wid-1, 0 to Hgt-1) 

Output: 
 Yc(0 to Wid-1, 0 to Hgt-1)// Y component of the image 
Cb(0 to Wid-1, 0 to Hgt-1)// Cb component of the image 
Cr(0 to Wid-1, 0 to Hgt-1)// Cr component of the image 

Step1: Convert each RGB pixel value into its corresponding YCbCr  value 
For all X, Y Do {where 0≤X≤Wid-1, 0≤Y≤Hgt-1} 

Set Yc(X,Y)←0.257*Red(X,Y)+0.504*Grn(X,Y)+0.098*Blu(X,Y)+16 
Set Cb(X,Y)←–0.148*Red(X,Y)–0.291*Grn(X,Y)+0.439*Blu(X,Y)+128 
Set Cr(X,Y)← 0.439*Red(X,Y) –0.368*Grn(X,Y) –0.071*Blu(X,Y)+128 

End For 
Step2: Return (Yc, Cb, Cr). 

3.3.3 Down Sampling 
The three color components of YCbCr model are: Y-component 

which represents the luminance, and (Cb, Cr) components which represent 

the chrominance components of the color image. Most of the data energy is 

concentrated in Y component, while the components Cb, Cr convey little 

part of the image information energy. Beside to that the Human Vision 

System (HVS) doesn't show high spatial discrimination for the 

chrominance components (Cb, Cr), while it has high discrimination power 

against the contents of Y-component. So, the chrominance components are 
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down-sampled by 2 using the averaging method, see section (2.10), which 

is depicted in algorithm (3.3). 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Algorithm (3.3) Down-Sampling by Averaging 
Goal: Down-sampling Cb and Cr by 2 
Input:  

Wid, Hgt 
Cb(0 to Wid-1, 0 to Higt-1) 
Cr(0 to Wid-1, 0 to Higt-1) 

Output: 
nWid, nHgt// new width and height after down-sampling 
Cb'(0 to Wid/2-1, 0 to Higt/2-1)// Cb component of the image after down-

sampling 
Cr'(0 to Wid/2-1, 0 to Higt/2-1)// Cr component of the image after down-

sampling 
Step1: Convert the width and height into its corresponding down-sampled ones 

Set Wh←Wid div 2-1 
Set Hh←Hgt div 2-1 
If Wid is even number then Set nWid←Wh else Set nWid←Wh+1 
If Hgt is even number then Set nHgt←Hh else Set nHgt←Hh+1 

Step2: Convert Cb and Cr into Cb' and Cr' by down-sampling 
For all X, Y Do {where 0≤X≤Wh, 0≤Y≤nHgt-1} 

Set Cb'(X,Y)←(Cb(X*2,Y*2) + Cb(X*2+1,Y*2) + Cb(X*2,Y*2+1) + 
Cb(X*2+1,Y*2+1))/4 

Set Cr'(X,Y)← (Cr(X*2,Y*2) + Cr(X*2+1,Y*2) + Cr(X*2,Y*2+1) + 
Cr(X*2+1,Y*2+1))/4 

End For 
Step3: Check if there are un-computed pixels in rows or colums 

If Wid is an odd number of columns then 
Set Wm←Wid-1 
For all Y Do{where 0≤Y≤Hh} 

Set Cb'(nWid,Y)←(Cb(nWid,Y*2)+Cb(nWid,Y*2+1))/2 
Set Cr'(nWid,Y)← (Cr(nWid,Y*2)+Cr(nWid,Y*2+1))/2 

End For 
End If 
If Hgt is an odd number of rows then 

Set Hm←Hgt-1 
For all X Do{where 0≤X≤Wh} 

Set Cb'(X,nHgt)←(Cb(X*2,nHgt)+Cb(X*2+1,nHgt))/2 
Set Cr'(X,nHgt)← (Cr(X*2,nHgt)+Cr(X*2+1,nHgt))/2 

End For 
End If 
If both Wid and Hgt are odd numbers Then 

Set Cb'(nWid,nHgt)←Cb(Wm,Hm) 
Set Cr'(nWid,nHgt)←Cr(Wm,Hm) 

End If 
Step4: Return (Cb', Cr', nWid, nHgt). 
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Beside to the manipulation of down-sampling, by applying the 

averaging method, some additional steps taken to handle the problem of the 

odd numbers of columns and rows, because the averaging method requires 

that the numbers of columns and rows should be even. 

 
3.3.4 Resizing the Bands (Y, Cb, Cr) 

In this step the bands sizes (i.e., width and height) are adjusted before 

partitioning each band into range blocks. 

The image will loose some of its pixels if the block length is not 

suitable relative to the width and height of each band. This problem is 

solved by resizing the three bands (Y, Cb, and Cr) to set their dimensions 

as multiples of the block length. The bilinear interpolation method was 

used to create the additional columns and rows. The maximum number of 

columns or rows that may required to be generated depends on the block 

size. The number of additional columns or rows is determined using the 

following equation: 
 

S
b
Sbn −⎥⎥
⎤

⎢⎢
⎡=  ,……………………………………………………....(3.1) 

 

Where: 

S   is the width or height of the image. 

b   is the block size. 

n   is the number of additional columns or rows. 

⎡ ⎤x   is the lowest integer number higher than or equal to x. 

 

Algorithm (3.4) shows the steps taken to perform the bands resizing 

task. 
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Algorithm (3.4) Resize the Three Bands 
Goal: Resize the bands Y, Cb, and Cr 
Input:  

Bnd()// one of these bands Y, Cb, or Cr 
W// width of the band 
H// height of the band 
BlkLength// the block length 

Output: 
nBnd// the new band after resizing 
nW// the new width 
nH// the new height 

Step1:Check if the width and the height are accept the division by the block length 
without any rest 

Check If (W mod BlkLength) not zero Or (H mod BlkLength) not zero Then 
Set Nx←W div BlkLength 
Set Wp←Nx * BlkLength 
Check If Wp < W Then 

Increment Nx by 1 
Set Wp ← Wp + BlkLength 

End If 
Decrement Nx by 1 
Set Wpm←Wm-1 
Set Wm ←W-1 
Set Lx ← Wp – W 
Set Tx ← Wm / (Lx + 1)//These statements were set to solve the width 

problem 
Set Ny ← H Div BlkLength 
Set Hp ← Ny * BlkLength 
Check If Hp < H Then 

Increment Ny by 1 
Set Hp ← Hp + BlkLength 

End If 
Decrement Ny by 1 
Set Hpm ← Hp – 1 
Set Hm ← H - 1 
Set Ly ← Hp – H 
Set Ty ← Hm / (Ly + 1) 
 
Set Img←Bnd// where the size of Img is the new size Wpm*Hpm 
Check If Lx is a larger than zero Then 

For all Y Do {where 0≤Y≤Hm} 
Set St←0 
Set Xx←-1 
For all Ix Do {where 1≤Ix≤Lx} 

Set Ed←Tx*Lx 
For all X Do {where St≤X≤Ed} 

Increment Xx by 1 
Set A(Xx)←Img(X,Y) 

End For Continue 
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Increment Xx by 1 
Set A(Xx)←(Img(Ed,Y)+Img(Ed+1,Y))/2 
Set St←Ed+1 

End For 
 

For all X Do {where St≤X≤Wm} 
Increment Xx by 1 
Set A(Xx)←Img(X,Y) 

End For 
For all X Do {where 0≤X≤Wpm} 

Set Img(X,Y)←A(X) 
End For 

End For 
End If 
 
Check If Ly is a larger than zero Then 

For all X Do {where 0≤X≤Wpm} 
Set St←0 
Set Yy←-1 
For all Iy Do {where 1≤Iy≤Ly} 

Set Ed←Ty*Ly 
For all Y Do {where St≤Y≤Ed} 

Increment Yy by 1 
Set A(Yy)←Img(X,Y) 

End For 
Increment Yy by 1 
Set A(Yy)←(Img(X,Ed)+Img(X,Ed+1))/2 
Set St←Ed+1 

End For 
For all Y Do {where St≤Y≤Hm} 

Increment Yy by 1 
Set A(Yy)←Img(X,Y) 

End For 
For all Y Do {where 0≤Y≤Hpm} 

Set Img(X,Y)←A(Y) 
End For 

End For 
End If 
Set nW←Wp 
Set nH←Hm 
 
Set nBnd←Img 

End If 
Step2: Return(nBnd, nW, nH). 
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The above algorithm describes the resizing steps applied on one band, 

so this algorithm is implemented on the three bands (i.e., Y, Cb, Cr) 

individually, one after the other. 

 

3.3.5 FIC Encoder 
The inputs to this module are: (1) the block length (BlkLength), which 

is the width and height of the square block, (2) jump step (JmpStp), it is the 

distance between any two adjacent domain blocks, (3) minimum allowed 

block error (MinBErr) between any two IFS matched blocks (i.e., domain 

and range block) which have same moment descriptor value, (4) the 

allowed error (MinErr) between the matched range and domain blocks, (5) 

maximum allowed scale value (MaxScl), (6) the no. of bits used to encode 

the offset (i.e., oNoBits) and scale (i.e., sNoBits) coefficients, (7) the 

number of bins (NoBins), it is the number of uniform quantization bins of 

the blocks moment descriptor, (8) window size (WinSiz), it is used to set 

the search space according to the blocks moment descriptor, (9) width 

(nWid) and height (nHgt) of the coded resized band. 

The three bands (Yc, Cb', Cr') are passed sequentially in FIC encoder 

in order to be encoded individually (i.e. this module will be applied three 

times, once for every band). Figure (3.2) illustrates the main stages of the 

FIC encoder. In the following subsections the involved stages of this 

module are described. 

 
A. Range Pool Generation 

The first step in FIC stage is the generation of range pool. In this 

generator the resized Y-component, and the resized-downsampled bands 

(Cb, Cr) are partitioned into non-overlapped blocks, and each block is 

considered as a range block belong to the range pool array. 

56  



Chapter Three                                                                                                    The Enhanced FIC Scheme 

57  

Start 

Load the 
Band array 

Down sampling 
to generate 

Domain Pool 

Determination of 
some coding 
parameters 

Range Pool 
Generation 

Determination of 
isometric index 
of each domain 

block (Id) 

Determination the 
moments 

descriptor of each 
domain block 

Sort the domain 
block list according 

to their moment 
descriptor value 

Determination of 
isometric index 

of the range 
block (Ir) 

Determine some of 
the range block 

parameters 

Load the 
range block 

Set  very large number 2
minχ

Load the domain 
block has similar 
descriptor index, 
i.e., wIdIr ≤−  

Apply symmetry 
predictor using Id 

and Ir to find out the 
required symmetry 

transform

Apply symmetry operation 

Apply IFS mapping 
to determine ( sr , ) 

Apply the condition 
|s|≤max scale 

Quantize ( sr , ) to get the 
quantization indices (Ir,Is) 

Determine  2χ

2
min

2 χχ <  Yes

Register (r,s) as 
optimal affain 

coefficients, and set 
 22

min χχ =

No

MinErr<2χ  Output IFS 
code set 

Yes

No 

Other domain 
block 

No

Other range 
block exist 

Yes 

No 
Yes

End 

Figure (3.2) The FIC Encoder 
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B. Domain Pool Generation 
The second step is down sampling (by 2) the components Y and the 

down sampled Cb and Cr. Then, the domain pool is generated by 

partitioning the downsampled bands into overlapped blocks using moving 

window method. The overlapping space depends on the jump step of the 

moving window. 

 

C. Determination of Some Involved Coding Parameters 
Some parameters are used in the encoding phase, such as: 

1. The quantization step of scale coefficients, which is computed using 

equation (2.16). 

2. The quantization step of offset coefficient which is computed using 

equation (2.17). 

3. The number of range blocks in horizontal and vertical directions 

(NxR and NyR) in the range pool. 

4. The number of domain blocks in the horizontal and vertical 

directions (NxD, NyD) in the domain pool. 

5. The number of blocks in domain pool (NoD). 

 

( )
255

12 −
=

tsOffsetNoBi

rQstpeptizationStOffsetQuan  ,………………………...(3.2) 

( )
leMaximumSca

sQstppizationSteScaleQuant
sScaleNoBit 12 1 −

=
−

 ,……………………...(3.3) 

1−= hBlockLengtdivnWidNxR  ,…………………………………….(3.4) 

1−= hBlockLengtdivnHgtNyR  ,……………………………………..(3.5) 

( ) JumpStepdivhBlockLengtdWiNxD −′′=  ,…………………………...(3.6) 

( ) JumpStepdivhBlockLengttHgNyD −′′=  ,…………………………...(3.7) 

NyDNxDNyDNxdNoD ++= *  ,…………………………………….(3.8) 
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D. Blocks Isometry State Assignment 
Table (3.1) shows the mapping equations of the following considered 

eight transforms (i.e., isometric or symmetry mappings): 

1. No operations, 

2. Rotation-90, 

3. Rotation-180, 

4. Rotation-270, 

5. Reflection around Y-axis, 

6. Reflection with rotation-90, 

7. Reflection with rotation-180, 

8. Reflection with rotation-270. 

 

In table (3.1) the symbol c denotes the coordinates of the center point 

of the mapped square block (whose size is mxm). 

 

Table (3.1) The considered isometric mappings 

ID Transform Mapping Equations 

0 No operation x' = x 
y' = y 

1 Rotation_90 x'=(x-c)cos(90)+(y-c)sin(90)+c=y 
y'=-(x-c)sin(90)+(y-c)cos(90)+c=2c-x 

2 Rotation_180 x'=(x-c)cos(180)+(y-c)sin(180)+c=2c-x 
y'=-(x-c)sin(180)+(y-c)cos(180)+c=2c-y 

3 Rotation_270 x'=(x-c)cos(270)+(y-c)sin(270)+c=2c-y 
y'=-(x-c)sin(270)+(y-c)cos(270)+c=x 

4 Reflection x'=2c-x 
y'=y 

5 Reflection with 
rotation_90 

x'=(-x-c)cos(90)+(y-c)sin(90)+c=y 
y'=-(-x-c)sin(90)+(y-c)cos(90)+c=x 

6 Reflection with 
rotation_180 

x'=(-x-c)cos(180)+(y-c)sin(180)+c=x 
y'=-(-x-c)sin(180)+(y-c)cos(180)+c=2c-y 

7 Reflection with 
rotation_270 

x'=(-x-c)cos(270)+(y-c)sin(270)+c=2c-y 
y'=-(-x-c)sin(270)+(y-c)cos(270)+c=-x 

Where,    c=(m-1)/2 
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For an image block I(x,y) {x,y| 0,1,.....,m-1}, its first order centralized 

moments are defined as: 
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By combining both equations (3.9) and (3.10) with the equations 

listed in table (3.1), the relationship between the new moments values 

(M'10, M'01) of the mapped block (using isometric mappings) with its old 

moments values (M10, M01) could determined, table (3.2) lists these 

relationships. 

 

Table (3.2) The relationship between moments before and after 
the transform 

Transform 
ID Transform Relationship 

0 No operation M'10=M10     M'01=M01 
1 Rotation_90 M'10=M01     M'01=M10 
2 Rotation_180 M'10=-M10     M'01=-M01 
3 Rotation_270 M'10=-M01     M'01=M10 

4 Reflection M'10=-M10     M'01=-M01 
5 Reflection + rotation_90 M'10=M01     M'01=M10 
6 Reflection + rotation_180 M'10=M10     M'01=-M01 
7 Reflection + rotation_270 M'10=-M01     M'01=-M10 

 
In this section, a new method for block classification according to its 

isometric state is described; the classification is based on applying three 

Boolean criteria, they depends on the status of its first order moments (i.e., 

M10, M01). These used criteria are: 
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1. Is |M10| ≥ |M01| or not ? 

2. Is |M10| ≥ 0 or not ? 

3. Is |M01| ≥ 0 or not ? 

The use of these three Boolean criteria on any block leads to eight 

block states, as shown in table (3.3). 
 

Table (3.3) The truth table for the eight blocks states 

Boolean Criteria Block's 
Class 
Index |M10| ≥ |M01| |M10| ≥ 0 |M01| ≥ 0 

0 T T T 

1 T T F 

2 T F T 

3 T F F 

4 F T T 

5 F T F 

6 F F T 

7 F F F 
 

Now, if the relationship between the new and old moment values is 

taken into consideration when the block is mapped by one of the 

considered isometric mapping (see table 3.2), then the relationship between 

the indexes of block could be established (see table 3.4). 
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Table (3.4) The Block's state indexes before and after isometric 
mappings 

New Class Index Old Class 
Index 
(Nop) R90 R180 R270 M M+R90 M+R180 M+R270

0(TTT) 6(FTF) 3(TFF) 5(FFT) 2(TFT) 4(FTT) 1(TTF) 7(FFF) 
1(TTF) 4(FTT) 2(TFT) 7(FFF) 3(TFF) 6(FTF) 0(TTT) 5(FFT) 
2(TFT) 7(FFF) 1(TTF) 4(FTT) 0(TTT) 5(FFT) 3(TFF) 6(FTF) 
3(TFF) 5(FFT) 0(TTT) 6(FTF) 1(TTF) 7(FFF) 2(TFT) 4(FTT) 
4(FTT) 1(TTF) 7(FFF) 2(TFT) 5(FFT) 0(TTT) 6(FTF) 3(TFF) 
5(FFT) 3(TFF) 6(FTF) 0(TTT) 4(FTT) 2(TFT) 7(FFF) 1(TTF) 
6(FTF) 0(TTT) 5(FFT) 3(TFF) 7(FFF) 1(TTF) 4(FTT) 2(TFT) 
7(FFF) 2(TFT) 4(FTT) 1(TTF) 6(FTF) 3(TFF) 5(FFT) 0(TTT) 

R90≡ Rotation_90;       R180≡ Rotation_180;       R270≡ Rotation_270;      
M≡ Mirror or Reflection; 

 

The arrangement of the contents of table (3.4) could be inverted such 

that the type of transform needed to map the block from certain isometric 

state to other state is assigned, see table (3.5). 
 

Table (3.5) The required isometric operation to                 
convert the block state 

New Block State Index  
0 1 2 3 4 5 6 7 

0 0 6 4 2 5 3 1 7 
1 6 0 2 4 1 7 5 3 
2 4 2 0 6 3 5 7 1 
3 2 4 6 0 7 1 3 5 
4 5 1 3 7 0 4 6 2 
5 3 7 5 1 4 0 2 6 
6 1 5 7 3 6 2 0 4 

Old 
Block 
State 
Index 

7 7 3 1 5 2 6 4 0 
0≡ No Operation;         1≡ Rotation_90;                    
2≡ Rotation_180;         3≡ Rotation_270;                  
4≡ Reflection;              5≡ Reflection+Rotation_90;      
6≡ Reflection+Rotation_180;                                    
7≡ Reflection+Rotation_270; 

 
 

62  



Chapter Three                                                                                                    The Enhanced FIC Scheme 

Algorithm (3.5) lists the steps taken to find the index of block 

symmetry state, it uses the determined two moments (Mx, My) of a block to 

find its moment index. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Algorithm (3.5) Get Block Index 
Goal: Using block moments to get the block index 
Input:  

Mx //Moment which its q=0 
My // Moment which its p=0 

Output: 
Index //Block Index 

Step1: Check the moment value 
If |Mx|>|My| Then 

Check if Mx>0 Then 
Check if My>=0 Then 

Set Index←0 
Else 

Set Index←6 
Else 

Check If My>=0 Then 
Set Index←4 

Else 
Set Index←2 

End If 
Else 

Check If Mx>=0 Then 
Check If My>=0 Then 

Set Index←7 
Else 

Set Index←1 
Else 

Check If My>=0 Then 
Set Index←3 

Else 
Set Index←5 

End If 
End If 

 
Step2: Return(Index) 
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E. Blocks Classification Using Moments-Based 
Descriptor 

 

Beside to using moments to index the isometric (symmetry) state of 

each range and domain block, and these isometric state indices will be used 

to assess the type of symmetry operation required to make the matched 

domain block in its best isometric state before trying to determine its best 

IFS- mapping coefficients. This step should reduce the elapsed encoding 

time around 7-8 times. 

In order to gain more decrease in encoding time an additional 

descriptor, based also on the centralized moments, had been used. This 

descriptor is used to classify the domain and range block into classes, and 

each class is given an index. So when trying to find out the domain block 

that shows best IFS-match with the tested range block, then only those 

domain blocks belong to classes have similar index number to the class 

index of the range block will subjected to IFS-matching test. 

In this research work the first-order centralized moments (M10, M01) 

or the third-order centralized moments (M30, M03) have been used to 

determine the moment descriptor, using equations (2.29), (2.30) and (2.34). 

The moment descriptor (MomIdx) values have been determined for all 

domain and range blocks. 

For the purpose of reducing the computational redundancy the 

moment descriptors of the domain blocks are precomputed and registered 

in memory beside to other parameters and terms, which have been 

predetermined and saved in an array of records. This array includes the 

moment descriptors (i.e., MomIdx) in addition to the following parameters: 

(1) the position of the domain block (i.e., Xd, Yd), (2) the average (AvgD) 

of the domain blocks (using equation 2.31), (3) the variance (mVarD) of 

the domain blocks (using equation 2.25), and (4) the symmetry (or 
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isometric) state indexes of the domain blocks, which are determined using 

algorithm (3.5). 

 

F. Sorting of Domain Blocks 
The above mentioned array of records (i.e., DomIdx) has to be sorted 

in ascending order according to the value of moment descriptor (i.e., 

MomIdx), the steps of the applied sorting algorithm are described in 

algorithm (3.6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm (3.6) Sorting Algorithm 
Goal: Sort the array DomIdx in ascending order according to MomIdx 
Input:  

DomIdx()// unsorted array of record of 6 cells 
NoD// the number of domain blocks 
NoBin// the number of bins of the MomIdx values 

Output: 
DomIdx()// sorted array of record of 6 cells  

Step1: Sort the array 
Set M←0 
Set K←0 
For all I Do {where 0≤I≤(NoBin-1)} 

For all J Do {where K≤J≤NoD} 
Check If DomIdx(J).MomIdx=I Then 

Check If not(J=M) Then 
Swap(DomIdx(J),DomIdx(M)) 
Decrement J by 1 

End If 
Increment M by 1 

End If 
End For 
Set K←M 

End For 
 

Step2: Return(DomIdx) 

 

To more simplify the search task in the sorted array of records an 

array of pointers is used to point out to the boundaries (i.e., start index and 
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end index) of each set of sequential records have same moment descriptor 

values. The involved steps of this stage are depicted in algorithm (3.7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm (3.7) Finding Limits 
Goal: Find the limits of each moment class 
Input:  

DomIdx()// sorted array of record of 6 cells 
NoD// the number of domain blocks 
NoBin// the number of bins of the MomIdx values 

Output: 
St(NoBin)// array of start limits of each moment index 
Ed(NoBin)// array of end limits of each moment index 

Step1: Find the limits 
Set K←0 
For all I Do {where 0≤I≤NoBin} 

Check If DomIdx(K).MomIdx>I Then 
Set St(I)←-1 
Set Ed(I)←-2 

Else 
Set St(I)←K 
Set Ed(I)←-1 
For all L Do {where (K+1)≤L≤NoD} 

Check If DomIdx(L).MomIdx>I Then 
Set Ed(I)←L-1 
Set K←L 
Set L←NoD// End the loop of L 

End If 
End For 
Check If Ed(I)=-1 Then 

Set Ed(I)←NoD 
For all J Do {where (I+!)≤J≤NoBin} 

Set St(J)←-1 
Set Ed(J)←-2 

End For 
Set I←NoBin// Ending the loop of I 

End If 
End If 

End For 
 
Step2: Return(St, Ed). 

 

Now the array of records of the domain blocks is ready to be searched 

to find the most available similar domain block for each tested range block. 
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G. Range Blocks Coding 
As a first step in this stage, some of the range blocks parameters must 

be precomputed. These parameters are:  

1. The average (AvgR) of the range block which is computed by 

equation (2.21). 

2. The mean variance (mVarR) of the range block (equation 2.26). 

3. The first moments (M10, M01), or equivalently, the third order 

moments (M30, M03), of the range block (equation 2.29), and then 

using these moments to determine moment descriptor, (i.e., moments 

ratio factor) (MomIdxR) for each range block (using equations 2.34). 

4. The isometric state index of  the range block, the value of this 

parameter depends on two moments values (as illustrated in 

algorithm 3.4). 

5. The offset quantization index, which is determined using the 

quantization step value (rQstp). 

 

As a next step the blocks of domain pool are searched to find out the 

domain block that can best matches the range block using IFS-mapping. 

This searching process should be repeated as long as there is still range 

block, in range pool need to be coded. Since, there is large number of range 

blocks and domain blocks, repeating the exhaustive search within domain 

pool causes a huge number of blocks matchings, and in such case the 

computational complexity of the encoding process become too high. To 

handle this problem, the moments based descriptor is used as classifier 

index, such that only the domain blocks that have similar descriptor values 

to that of range block are imposed to IFS-mapping tests. The implemented 

steps to handle the range block coding stage are illustrated in algorithm 

(3.8). 
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 Algorithm (3.8) Search within Domain Blocks 
Goal: Find the nearest similar domain block for each range block 
Input:  

JmpStp// number of pixels to jump between two domain blocks 
NxR// the number of blocks in the width of the range pool 
NyR// the number of blocks in the height of the range pool 
WinSiz// the interval of the domain blocks classes 
NoBin// the number of bins of the MomIdx values 
St()// array of start limits of each moment index 
Ed()// array of end limits of each moment index 
DomIdx()// array of record of 6 cells 
Tbl()// array of symmetry operation to convert the block's moment status 

using table (3.5) 
Y" or Cb" or Cr" as Dom()// is the domain pool 
NoD// the number of domain blocks 
MinChi// The minimum value of the Chi squared {where MinChi=0} 

Output: 
IFSr()// array of record of 4 cells (Ip, Sym, Irng, and Isc). 

Step1:For all Ix, Iy Do (For all range block compute (AvgR, mVarR, Mx, My, 
MomIdxR, SymR, Ir) as mentioned above){where 0≤Ix≤NxR and 
0≤Iy≤NyR} 

Step2: Search the domain blocks 
Set Flag←0 
For all Iwin Do {where 0≤I≤WinSiz} 

Check If Iwin>0 Then 
Set M←1 

Else 
Set M←0 

End If 
For all J Do {where 0≤J≤M} 

Case J 
0: Set K←MomIdxR+I 
1: Set K←MomIdx-I 

End Case 
Check If K value is between 0 and NoBin Then 

Check If St(K)≥0 and Ed(K)≤NoBin Then 
For all L Do {where St(K)≤L≤Ed(K)} Continue 
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Set Xd←DomIdx(L).Xd 
Set Yd←DomIdx(L).Yd 
Check If DomIdx(L).mVarD is not 0 Then 

Step3://Predict and Perform the symmetry operation 
Set I←Tbl(SymR, DomIdx(L).SymIdx) 
Case I 

0:// Symmetry=0 (Identity) 
For all X,Y Do {where 0≤(X,Y)≤BlkLength-1} 

Set D2(X,Y)←Dom(X',Y') 
//where X', Y' is computed in table (3.1) 
when ID=0 

End For 
 
1://Symmetry=1 (Rotation 90o) 

For all X,Y Do {where 0≤(X,Y)≤BlkLength-1} 
Set D2(X,Y)←Dom(X',Y') 
//where X', Y' is computed in table (3.1) 
when ID=1 

End For 
2://Symmetry=2 (Rotation 180o) 

For all X,Y Do {where 0≤(X,Y)≤BlkLength-1} 
Set D2(X,Y)←Dom(X',Y') 
//where X', Y' is computed in table (3.1) 
when ID=2 

End For 
3://Symmetry=3 (Rotation 270o) 

For all X,Y Do {where 0≤(X,Y)≤BlkLength-1} 
Set D2(X,Y)←Dom(X',Y') 
//where X', Y' is computed in table (3.1) 
when ID=3 

End For 
4://Symmetry=4 (Reflection) 

For all X,Y Do {where 0≤(X,Y)≤BlkLength-1} 
Set D2(X,Y)←Dom(X',Y') 
//where X', Y' is computed in table (3.1) 
when ID=4 

End For 
5://Symmetry=5 (Reflection with Rotation 90o) 

For all X,Y Do {where 0≤(X,Y)≤BlkLength-1} 
Set D2(X,Y)←Dom(X',Y') 
//where X', Y' is computed in table (3.1) 
when ID=5 

End For 
6://Symmetry=6 (Reflection with Rotation 180o) 

For all X,Y Do {where 0≤(X,Y)≤BlkLength-1} 
Set D2(X,Y)←Dom(X',Y') 
//where X', Y' is computed in table (3.1) 
when ID=6 

End For 
Continue 
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7: //Symmetry=7 (Reflection with Rotation 270o) 
For all X,Y Do {where 0≤(X,Y)≤BlkLength-1} 

Set D2(X,Y)←Dom(X',Y') 
//where X', Y' is computed in table (3.1) 
when ID=7 

End For 
End Case 
 

Step4:// Determine Scale Coefficients and Bound the value, finaly Quantize 
//Determine the Scale coefficient (Scl) using 
equation(2.23) 

 
Check If Scl>MaxScl Then 

Set Scl←MaxScl 
Else If Scl<-MaxScl Then 

Set Scl←-MaxScl 
End If 
 
//Then quantize this Scl coefficient using sQstp to be 

Isc coefficient (i.e. Isc is the quantized scale) 
 

Step5://Determine the Chi Square coefficient using equation(2.24) 
 
Step6:// Compare Chi and Register the Optimal Chi-Case 

Check If Flag=0 Or Flag=1 And Chi<MinChi Then 
Set MinChi←Chi 
Set OptSym←I 
Set OptIsc←Isc 
Set OptXd←Xd 
Set OptYd←Yd 
Check If (MinChi<MinBErr And Iwin=0) Or 

(MinChi<MinErr And Iwin>0) Then 
//End Loops L, J, Iwin 

End If 
End If 
Set Flag←1 
 

Else 
Step7://Handle the Case Dom(L).mVarD=0 for all domain values 

Set Isc←0 
Set Scl←0 
Set Chi←mVarR 
//Compare Chi and Register the Optimal Chi-Case as 
in (Step6) 

End If 
 

End For 
End If Continue 
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End If 
End For 

End For 
 
Step8://Compare the Optimal quantized scale coefficient 

Check If OptIsc>0 Then 
Set OptIsc←OptIsc+OptIsc 

ElseIf OptIsc<0 Then 
Set OptIsc←-OptIsc-OptIsc-1 

End If 
 
Step9://Register the optimal IFS coefficients and save them in IFSr() 

Set OptX←OptX / JmpStp 
Set OptY←OptY / JmpStp 
Set IFSr(Ix,Iy).Ip←(NxD+1)*OptY+OptX //The optimal position of the 

most similar domain block  
Set IFSr(Ix,Iy).Irng←Ir //The optimal quantized offset coefficient of this 

domain block 
Set IFSr(Ix,Iy).Isc←OptIsc //The optimal quantized scale coefficient of this 

domain block 
Set IFSr(Ix,Iy).sym←OptSym //The optimal symmetry index of this domain 

block 
End For 
 
Step10: Return(IFSr) 

 

The steps of the above listed algorithm requires less computation time 

in comparison with traditional algorithm because there is a reduction in 

both the number of tested domain blocks for each range block, and in the 

number of isometric mappings trials (i.e., instead of the 8 trials only one 

isometric mapping case is tested). Also, the use of sorted array of records 

of the domain block with pointers refer to the boundaries of each domain 

class will be useful to reduce the search space with the domain pool. 

In this project the applied similarity condition the coded range block 

and any domain block listed in the domain pool is the following: 

wFF rd <−  then the range and domain block are similar 

Otherwise they are dissimilar 
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In the above condition, the symbols Fd and Fr denote the index of the 

moment descriptor of domain and range blocks, respectively. 

The symbol (w) denotes the permissible similarity margin (called 

window size) between the moment descriptor indexes of the two matched 

block. 

The main steps of any IFS matching instance between any pair of 

domain and range blocks are the following steps: 

1. Computing the scale coefficient value using equation (2.23). 

2. Applying the bounding condition on the determined scale coefficient, 

i.e., 

ScalesthenScalesifelse
ScalesthenScalesif

maxmax
maxmax
=>
−=−<

 

3. Quantize the determined values of scale and offset coefficients using 

the following equations: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

sQstp
sroundSI  ,………………………………………….(3.11) 

sQstpSS Iq *=  ,………………………………………………(3.12) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

rQstp
rroundOI  ,………………………………………….(3.13) 

rQstpOO Iq *=  ,……………………………………………...(3.14) 

Where:  sQstp, rQstp  are the quantization steps of scale and offset 

coefficients, respectively (see equations 3.2 and 3.3). 

SI, Sq   are the quantization index and the quantized value, 

respectively, of the scale coefficient. 

OI, Oq   are the quantization index and the quantized value, 

respectively, of the offset coefficient. 

4. Determining the mean square error ( 2χ ) between the actual values of 

the range block elements are the corresponding approximate values 

due to IFS-mapping of the domain block. 
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5. Comparing the value of error ( 2χ ) with lowest value registered error 

( 2
minχ ) attained through the previous matching trials between the range 

block and other pre-tested domain blocks. 

 

3.3.6 Encoding the IFS Code 
To increase the attained compression ratio, the determined IFS 

coefficients in the system are coded using both DPCM and shift coding, 

and the output (i.e., codewords) of the shift encoder are saved in the 

compressed file, to be restored later for decoding purpose. 

At first the file must be prepared to save the shift encoder codewords 

in it. Some overhead information (i.e., width and height of the image, the 

block length, the jump step, the number of offset bits, the number of scale 

bits, the maximum scale value) must be saved at the beginning of the file, 

these parameters are considered as a part of the header of the compressed 

file, and their registration in the file is necessary for decoding operations. 

After the header section, the binary codewords, produced by applying 

shift encoder on IFSr() coefficients, are saved in the file. Algorithm (3.9) 

shows the implemented steps to shift encoding the IFS coefficients, taking 

into consideration the following three remarks: 

A. The offset coefficients had been first coded using DPCM and the 

output of this encoder was shift coded. 

B. Before applying shift coding the scale and offset coefficients have 

been mapped using the following function: 
 

⎩
⎨
⎧

−
≥

=′
otherwisec

cifc
c

12
02

 ,……………………………………...(3.15) 
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Where c′  is the original value of scale index or of the DPCM 

output of the offset coefficient. The value of c′  is always positive, 

which is a necessary condition to conduct shift encoding. 

C. Before applying shift encoding the proper size of its codewords 

should be determined, so in algorithm (3.9) a simple optimization 

technique is implemented, it is based on testing all possible 

codeword sizes to find out the best size that lead to lowest 

consumption in bits (i.e., lowest output size). 

 

 

 

Algorithm (3.9) Encode IFS Code 
Goal: Encode The IFSr() components 
Input:  

NxR// number of blocks in the width of the range pool 
NyR// number of blocks in the height of the range pool 
IFSr()// array of record of 4 cells (Ip, Sym, Irng, Isc) 

Output: 
Compressed File 

Step1: Get the component from IFSr() array 
Set N←Nxr*NyR+NxR+NyR 
Set I←-1 
For all Iy Do {where 0≤Iy≤NyR} 

For all Ix Do {where 0≤Ix≤NxR} 
Increment I by 1 
Set Z(I)←IFSr(Ix,Iy).component 

End For 
Check If Iy<NyR Then 

Increment Iy by 1 
For all Ix Do {where NxR≥Ix≥0} 

Increment I by 1 
Set Z(I)←IFSr(Ix,Iy).component 

End For 
End If 

End For 
 

Step2: DPCM Encoding the IFS component 
For all I Do {where N≥I≥1} 

Set Zz(I)←Z(I)-Z(I-1) 
End For 
 

Step3: Mapping to Positive values the component 
Set Max1←0 
For all I Do {where 1≤I≤N} 

Check If Zz(I) > 0 Then Continue 
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Set Zz(I)←Zz(I) + Zz(I) 
Else Check If Zz(I) < 0 Then 

Set Zz(I)← -Zz(I) - Zz(I) - 1 
End If 
Check If Max1 < Zz(I) Then 

Set Max1←Zz(I) 
End If 

End For 
Step4: Shift-Code Optimizer for the component 

For all I Do 1 To N 
Set J←Zz(I) 
Set His(J)←His(J) + 1 // histogram of each component 

End For 
Set Tot1←N + 1 
Set oSm←rNoBit * Tot1 
Set I←1 
Set Bt2←1 

Step5:Check If I < Max1Then 
Set I←I * 2 + 1 
Set Bt2←Bt2 + 1 
Goto Step 5 

End If 
Set Bt1←Bt2 – 4 
Check If Bt1 < 1 Then 

Set Bt1←1 
End If 
For all Bt Do {where Bt1≤Bt≤Bt2} 

Set Rg←2Bt – 1 
Set Max2←Max1 - Rg 
Set I←1 
Set Btt←1 

Step6: Check If I < Max2 Then 
Set I←I * 2 + 1 
Set Btt←Btt + 1 
Goto Step6 

End If 
Set Sm←0 
For all I Do {where Rg≤I≤Max1} 

Set Sm←Sm + His(I) 
End For 
Set Tot←Tot1 * Bt + Sm * Btt 
Check If Bt = Bt1 Or (Bt > Bt1 And Tot < OptTot) Then 

Set OptTot←Tot 
Set OptBt1←Bt 
Set OptBt2←Btt 

End If 
End For Continue 
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Step7: Encoding the component using the shift encoding 
Check If (OptTot + 8) < oSm Then 

PutBit 1 //on the compressed file 
PutWord OptBt1, 4 //on the compressed file 
PutWord OptBt2, 4 
Set Rg = 2OptBt1 – 1 
PutWord Z(0), NoBit 
For all I Do {where 1≤I≤N} 

Check If Zz(I) < Rg Then 
PutWord Zz(I), OptBt1 

Else 
PutWord Rg, OptBt1 
PutWord Zz(I) - Rg, OptBt2 

End If 
End For 

Else 
Step8: Fix Length Encoding the component Indicies 

PutBit 0 
For all I Do {where 0≤I≤N} 

PutWord Z(I), NoBit 
End For 

End If 
 

Step9:End. 

 
3.4 Decoder Module 

Figure (3.1b) illustrates the main stages of the decoding module, it is 

obvious that the sequence of its stages takes the inverse order of the 

encoding module sequence. Also, the functionality of decoding module 

would mainly be the reverse of the functionality of the corresponding stage 

in encoder module. 

In the following subsections the main stage of the decoder module are 

described. 

 

3.4.1 Load and Decode the IFS Code 
These two stages are the first two stages in decoding module. The 

decoding process begins with loading the data of the compressed file 

(ComFileName). At first, the contents of header section must be extracted 
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because they are necessary to setup some parameters of the decoding 

modules, and to make the decoder capable to load the registered codewords 

in the compression file. As a second stage the shift decoding and DPCM 

are implemented to decode the scale and offset coefficients. Also, in this 

stage the inverse mapping process (from positive to negative-positive) is 

applied, using the following equation: 
 

( )( )⎩
⎨
⎧

′+′−

′′
=

oddiscifdivc
eveniscifdivc

c
21

2  ,………………………………..(3.16) 

 

This process will retrieve the decoded offset and scale coefficients to 

their original values. The output from this stage is an array, nIFSr(), of IFS-

coefficients. 

 

3.4.2 FIC Decoder 
In this stage, the steps of decoding the IFS code are implemented to 

establish the compressed image. This stage consist of two main processes: 

1. Dequantization of IFS coefficients. 

2. IFS mapping to reconstruct YCbCr bands. 

Algorithm (3.10) Loading and Shift Decoding 
Goal: Decode The IFS code 
Input:  

Compressed File 
Output: 

NxR// number of blocks in the width of the range pool 
NyR// number of blocks in the height of the range pool 
IFSr()// array of record of 4 cells (Ip, Sym, Irng, Isc) 

Step1:// Get all parameters from the compressed file 
Step2:// Decode the component of IFS code 

Set N←NxR*NyR+NxR+NyR 
Check If GetBit=1 Then 

Step3:// Shift decode the component 
Set Bt1←GetWord(4) 
Set Bt2←GetWord(4) 
Set Rg←2Bt1 – 1 Continue 
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Set Z(0)←GetWord(NoBit) 
For all I Do {where 1≤I≤N} 

Set Z(I)←GetWord(Bt1) 
Check If Z(I) = Rg Then 

Set Z(I)←Rg + GetWord(Bt2) 
End If 

End For 
Step4:// Mapping to Negative/Psitive the values of the component 

For all I Do {where 1≤I≤ N} 
Check If not(Z(I) = 0) Then 

Check If (Z(I) And 1) = 0 Then 
Set Z(I)←Z(I) \ 2 

Else 
Set Z(I)← -((Z(I) + 1) \ 2) 

End If 
End If 

End For 
Step5:// DPCM Decoding of the component 

For all I Do {where 1≤I≤N} 
Set Z(I)←Z(I) + Z(I - 1) 

End For 
 
Else 

Step6:// Fix Length Decoding of the IFS component 
For all I Do {where 0≤I≤N} 

Set Z(I)←GetWord(NoBit) 
End For 

End If 
 
Step7:// Put the Component Indicies in IFSr Array 

Set I←-1 
For all Iy Do {where 0≤Iy≤NyR} 

For all IxDo {where 0≤Ix≤NxR} 
Increment I by 1 
Set IFSr(Ix, Iy).component←Z(I) 

End For 
Check If Iy < NyR Then 

Increment Iy by 1 
For all Ix Do {where NxR≥Ix≥ 0} 

Increment I by 1 
Set IFSr(Ix, Iy).component←Z(I) 

End For 
End If 

End For 
Step8:// Return (IFSr). 



Chapter Three                                                                                                    The Enhanced FIC Scheme 

A. Dequantization 
After shift decoding and inverse mapping (from positive to 

positive/negative) to retrieve the IFS() coefficients, the values of scale and 

offset coefficients need to be dequantized because the stored values of both 

coefficients are their quantization indices (i.e., sI, oI) and not their quantized 

values (i.e., sq, oq). Algorithm (3.11) shows the steps taken to dequantize 

the IFS() coefficients. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm (3.11) Dequantization 
Goal: Dequantize the IFSr() components 
Input:  

JmpStp// the jump step between each two domain blocks 
Nxd// the width of the domain pool 
nIFSr()//array of record of 4 cells (Ip, Sym, Irng, and Isc). 

Output: 
oIFSr()// dequantized array of record of 5 cells (Xd, Yd, Sym, Irng, and 

Isc). 
Step1: Dequantize all the components 

For all Ix,Iy Do {where 0≤Ix≤NxR and 0≤Iy≤NyR} 
Set oIFSr(Ix,Iy).Xd←(nIFSr(Ix,Iy).Ip mod (Nxd+1))*JmpStp 
Set oIFSr(Ix,Iy).Yd←(nIFSr(Ix,Iy).Ip div (Nxd+1))*JmpStp 
Set oIFSr(Ix,Iy).Sym←nIFSr(Ix,Iy).Sym 
Set oIFSr(Ix,Iy).Irng←nIFSr(Ix,Iy).Irng*rQstp 
Set oIFSr(Ix,Iy).Isc←nIFSr(Ix,Iy).Isc*sQstp 

End For 
Step2: Return(oIFSr) 

B. Reconstruction of Range Pool 
This stage is initialized by generating a domain pool whose elements 

values are assigned in arbitrary way. In the established system the elements 

of the domain pool have given same value (i.e., zero value). The 

dequantized values of IFS() coefficients are used to map the domain blocks 

to produce the range blocks approximates. Then, each generated range 

block is set in its position in the empty range pool. 
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After the complete generation of all range blocks of the range pool, 

then the contents of this pool are down sampled (by 2), using averaging 

method, to regenerate the domain pool. This newly generated domain pool 

is used again with the IFS() code set to regenerate the range pool. This 

sequence (i.e., domain pool generation, IFS mapping, and range pool 

generation) is repeated till the reconstructed range pool reaches the 

attractor state. The range pool reconstruction is performed three time to 

reconstruct the three color bands (i.e., Y-component, downsampled Cb and 

Cr components). 

 
3.4.3 Range Pool Resizing 

In this stage the sizes of the three reconstructed range pools are 

adjusted to be equal to their original size. As mentioned in paragraph 

(3.2.5.2), the resizing step is done to make the range pool dimensions (i.e., 

width and height) multiples of range block length. The rows and columns 

decimation method was used to adjust the size of range pools to its original 

size. Algorithm (3.12) lists the implemented steps to adjust the size of one 

range pool. 
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Algorithm (3.12) Resize the Range Pool to Its Original Size 
Goal: Resize the range pool after reconstruction 
Input:  

W// the width of the range pool 
H// the height of the range pool 
BlkLength// the block length 
Rng()// the range pool 

Output: 
nRng()// the new range pool 

Step1: Check if the height and width value are accepted to division by the block 
length without any rest 
Check If (W mod BlkLength) is not zero Or (H mod BlkLength) is not zero 
Then 

Set Nx ← W div BlkLength 
Set Wp ← Nx * BlkLength 
Check If Wp < W Then 

Increment Nx by 1 
Set Wp ← Wp + BlkLength 

End If 
Decrement Nx by 1 
Set Wpm ← Wp – 1 
Set Wm ← W – 1 
Set Lx ← Wp – W 
Set Tx ← Wm div (Lx + 1) 

End If 
 
Set Ny ← H div BlkLength 
Set Hp ← Ny * BlkLength 
Check If Hp < H Then 

Increment Ny by 1 
Set Hp ← Hp + BlkLength 

End If 
Decrement Ny by 1 
Set Hpm ← Hp – 1 
Set Hm ← H – 1 
Set Ly ← Hp – H 
Set Ty ← Hm div (Ly + 1) 
 
Set Img←Rng// Img is a temporary array of dimension Wpm*Hpm 
 
Check If Lx is larger than zero Then 

For all Y Do {where 0≤Y≤Hpm} 
Set St ← 0 
Set X1 ← -1 
Set X2 ← -1 Continue 
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For all Ix Do {where 1≤Ix≤Lx} 
Set Ed ← Tx * Ix 
For all X Do {where St≤X≤Ed} 

Increment X1 by 1 
Increment X2 by 1 
Set A(X2) ← Img(X1, Y) 

End For 
Increment X1 by 1 
Set St ← Ed + 1 

End For 
For all X Do {where St≤X≤Wm} 

Increment X1 by 1 
Increment X2 by 1 
Set A(X2) ← Img(X1, Y) 

End For 
For all X Do {where 0≤X≤Wm} 

Set Img(X, Y) ← A(X) 
End For 

End For 
End If 
Check If Ly is larger than zero Then 

For all X Do {where 0≤X≤Wm} 
Set St ← 0 
Set Y1 ← -1 
Set Y2 ← -1 
For all Iy Do {where 1≤Iy≤Ly} 

Set Ed ← Ty * Iy 
For all Y Do {where St≤X≤Ed} 

Increment Y1 by 1 
Increment Y2 by 1 
Set A(Y2) ← Img(X, Y1) 

End For 
Increment Y1 by 1 
Set St ← Ed + 1 

End For 
For all Y Do {where St≤X≤Hm} 

Increment Y1 by 1 
Increment Y2 by 1 
Set A(Y2) ← Img(X, Y1) 

End For 
For all Y Do {where 0≤Y≤Hm} 

Set Img(X, Y) ← A(Y) 
End For 

End For 
End If 

End If 
Set nRng←Img 

Step2: Return (nRng) 
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3.4.4 Up Sampling 
In this stage the reconstructed range pools of the chromatic bands (i.e., 

Cb and Cr) are up sampled (by 2) using nearest neighbor interpolation 

method. Algorithm (3.13) shows the steps taken to apply this stage. 

 

 

 

 

 

 

 

 

 

Algorithm (3.13) Up-Sampling Method 
Goal: Up sample the two bands Cb, and Cr 
Input:  

Wid// the width of the bands 
Hgt// the height of the bands 
sCb()// the down sampled Cb 
sCr()// the down sampled Cr 

Output: 
rCb(), rCr()// the reconstructed Cb and Cr 

Step1: Initialize some parameters 
Set Wm←Wid-1 
Set Whm←(Wid+1) div 2 -1 
Set Hm←Hgt-1 
Set Hhm←(Hgt+1) div 2 -1 

Step2: For all X,Y Do {where 0≤X≤Whm and 0≤Y≤Hhm} 
Set rCb(X*2, Y*2)←sCb(X,Y) 
Set rCr(X*2, Y*2)←sCr(X,Y) 
 
Check If (X*2+1)<Wid Then 

Set rCb(X*2+1, Y*2)←sCb(X,Y) 
Set rCr(X*2+1, Y*2)←sCr(X,Y) 

End If 
 
Check If (Y*2+1)<Wid Then 

Set rCb(X*2, Y*2+1)←sCb(X,Y) 
Set rCr(X*2, Y*2+1)←sCr(X,Y) 
Check If (X*2+1)<Wid Then 

Set rCb(X*2+1, Y*2+1)←sCb(X,Y) 
Set rCr(X*2+1, Y*2+1)←sCr(X,Y) 

End If 
End If 

End For 
Step3: Return(rCb, rCr) 
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3.4.5 Conversion from YCbCr to RGB 
As a last decoding stage the reconstructed bands (Y, Cb, Cr) are 

converted to RGB color representation, using equations (2.12), Algorithm 

(3.14) shows the implemented steps to make the color conversion. 

 

 Algorithm (3.14) Convert from YCbCr to RGB color space 
Goal: Extract RGB from the YCbCr 
Input:  

Yc()// the Y component 
Cb()// the Cb component 
Cr()// the Cr component 

Output: 
Red()// the red component 
Grn()// the green component 
Blu()// the blue component 

Step1: Determine the reconstructed values and check if they are acceptable 
Set A = Y + 1.58163 * Cr + 0.00131 * Cb 
Check If A <= 0 Then  

Set Red ← 0  
Else If A >= 255 Then 

Set Red ← 255  
Else 

Set Red ← A 
End If 
Set A ← Y + 1.86324 * Cb - 0.00018 * Cr 
Check If A <= 0 Then 

Set Blu ← 0 
Else If A >= 255 Then 

Set Blu ← 255 
Else 

Set Blu ← A 
End If 
 
Set A ← Y - 0.18817 * Cb - 0.46978 * Cr 
Check If A <= 0 Then 

Set Grn ← 0 
Else If A >= 255 Then 

Set Grn ← 255 
Else 

Set Grn ← A 
End If 
 

Step2: Return(Red, Grn, Blu). 
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The reconstructed red, green, and blue bands will be saved in a bitmap 

formatted file, as a decompressed image file, and it will have the same size 

as the original file. For testing purpose, the contents of the two images (i.e., 

original and decompressed images) are compared using some fidelity 

criteria (such as MAE, MSE, PSNR) in order to find how much error (i.e., 

difference) is introduced due to compression. 



 

 

 

 

 

 

 

 

 
 

 



 
 

4.1 Introduction 
In this research project four FIC schemes have been applied. The 

first scheme is the traditional FIC scheme, denoted as "TradFIC" and 

established for comparison purpose with other three enhanced FIC 

schemes. The second scheme, denoted as "PredFIC", it is the enhanced 

version of FIC scheme, where the isometric (or symmetric) predictor is 

added to traditional FIC-scheme to reduce the number of domain block 

mapping trials from 8 to only 1. The index of the selected isometric 

mapping is assigned by the introduced moment-based predictor. The third 

established FIC-scheme is an improved version of PredIFS, where beside 

to using moment-based symmetry predictor a block descriptor, where 

based on first order moments, is used to more speed-up to FIC coding 

stage, this third scheme is denoted as "Dis1FIC". The fourth FIC scheme 

uses another blocks descriptor which is based on third order moments, 

instead of first order moments, and this scheme is denoted as "Dis3FIC". 

This chapter is devoted to present the results of the conducted tests 

to study the compression performance of the suggested fractal image 

compression schemes. Some of the famous fidelity measures (i.e. MSE, 

MAE, PSNR, CR) have been used to assess the quality of the 

reconstructed image. 

The effects of some involved coding parameters on the performance 

of the four applied IFS scheme (i.e., TradFIC, PredFIC, Dis1FIC, and 

Dis3FIC) have been investigated. 
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The developed systems have been established using Visual Basic 

(version 6.0) programming language, and they work under Microsoft 

windows XP Professional operating system. The tests have been 

conducted using laptop computer (Processor: mobile AMD AthlonTm XP-

M (LV) 2400+, MMX, 3DNow, ~1.8GHz; Memory: 480MB). 

 

4.2 Image Test Material 
Two bitmap images have been taken as test samples, each image 

consists of the same number of pixels (i.e., 256x256), and they have color 

resolution (24bpp), and size (192KB). Figure (4.1) shows these two 

images. 
 

         
a. Lena                                                     b. Girl 

Figure (4.1) The bitmap images used as test samples 
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4.3 Testing Strategy 
The testing operations have been applied on the above mentioned 

two image samples. The tests were conducted to explore the effectiveness 

of each involved parameter in the compression scheme on the 

compression performance parameters; including the three fidelity criteria 

(MAE, MSE, PSNR), compression ratio, bit rate, and the elapsed time of 

the compression process. The tested compression scheme parameters are: 

block length, jump step, maximum scale, scale bits, offset bits, minimum 

error, minimum block error, number of bins, window size. 

The test procedure followed to investigate the effectiveness of each 

parameter is "changing the value of this parameter, while the values of 

other parameters are set fixed at their default values". The adopted default 

values are described in table (4.1). 
 

Table (4.1) The default values of the relevant coding parameters 

Parameter Default 
Value 

Block Length 4 
Jump Step 1 
Maximum Scale Value 3 
Number of Scale Bits 6 
Number of Offset Bits 8 
Minimum Error 1.5 
Minimum Block Error 1 
Number of Bins 100 
Window Size 1 

 

4.4 Block Length Test 
In this set of tests the effects of block length on compression 

performance parameter are investigated. The tests have been conducted 

on Lena and Girl images. The tests results indicated that the performance 

parameters are significantly affected by the value of block length. Here, 

in this set of tests the value of block length was varied while the values of 
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other involved parameters are kept fixed at their default values. The 

noticed effects of the block length parameter are clarified in the following 

remarks: 

1. Table (4.2) shows the effects of the block length parameter on the 

compression performance parameters (MAE, MSE, PSNR, CR, BR, 

encoding time) when the Dis1FIC scheme is applied on Lena image. 
 

 Table (4.2) The effect of block length parameter of Dis1FIC scheme 

Over All Block 
Length MAE MSE PSNR

Compression 
Ratio 

Bit 
Rate 

Time in 
Seconds 

4 3.92 42.01 31.90 8.875 2.704 1.26 
5 4.73 63.61 30.10 13.453 1.784 1.32 
6 5.53 85.12 28.83 19.326 1.242 1.25 
7 6.19 106.20 27.87 26.117 0.919 1.26 
8 6.91 130.61 26.97 35.393 0.678 1.34 

 

2. Table (4.3) illustrates the effects of the block length on the 

compression performance parameters, when Dis3FIC scheme is 

applied on Lena image. 

 

 

Over All Block 
Length MAE MSE PSNR

Compression 
Ratio 

Bit 
Rate 

Time in 
Seconds 

4 3.91 42.05 31.89 8.863 2.708 1.21 
5 4.75 63.65 30.09 13.440 1.786 1.33 
6 5.61 86.96 28.74 19.334 1.241 1.27 
7 6.23 107.16 27.83 26.089 0.920 1.35 
8 6.91 130.24 26.98 35.368 0.679 1.38 

Table (4.3) The effect of block length parameter of Dis3FIC 
scheme 

 

 

3. Figure (4.2) illustrates the effects of block length variation 

compression performance parameters of the four FIC schemes. The 

test image was Lena image. 
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Figure (4.2) The effects of block length on the compression 

performance parameters, the test image was Lena  

 

4. Figure (4.3) shows the effects of block length variation on 

compression performance of the four FIC schemes. The test image 

was Girl image. 
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  Figure (4.3) The effects of block length on the compression 
performance parameters, when Girl image is used as test material  

 

4.5 Jump Step Test 
This set of conducted tests is dedicated to investigate the effects of 

jump step parameter on the compression performance parameters for the 

four FIC schemes. This set of tests was conducted on both images (Lena, 

Girl). The results of this set of tests indicated that the performance 

parameters are significantly affected by jump step values, which had been 

varied between 1 and 4. The values of other parameters were set fixed at 

their default values. The obtained results are described in the following: 
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1. Figure (4.4) shows some of the reconstructed Lena images, where 

the applied FIC scheme is Dis1FIC. 

 

    
 

 

 

 

Jump Step=1 
MAE=3.92 
MSE=42.01 
PSNR=31.90 

CR=8.875  
BR=2.704 
Time=1.18 

Jump Step=2 
MAE=4.30 
MSE=52.38 
PSNR=30.94 

CR=9.532  
BR=2.518 
Time=0.41 

Jump Step=3 
MAE=4.72 
MSE=64.31 
PSNR=30.05 

CR=9.881  
BR=2.429 
Time=0.27 

Jump Step=4 
MAE=4.91 
MSE=70.58 
PSNR=29.64 
CR=10.268  
BR=2.337 
Time=0.23 

Figure (4.4) Samples of the reconstructed Lena images when 
Dis1FIC scheme is applied  

 

2. Figure (4.5) shows the samples of jump step test set for Dis3FIC 

scheme applied on Lena image. 

 

    
 

 

 

 

 

3. Figure (4.6) shows the effects of jump step parameter value on the 

compression performance parameters of the four FIC schemes when 

they applied on Lena image. 

Figure (4.5) The jump step test results for Dis3FIC scheme 

Jump Step=1 
MAE=3.91 
MSE=42.05 
PSNR=31.89 

CR=8.863  
BR=2.708 
Time=1.24 

Jump Step=2 
MAE=4.31 
MSE=52.08 
PSNR=30.96 

CR=9.525  
BR=2.520 
Time=0.43 

Jump Step=3 
MAE=4.72 
MSE=63.97 
PSNR=30.07 

CR=9.886  
BR=2.428 
Time=0.37 

Jump Step=4 
MAE=4.93 
MSE=71.46 
PSNR=29.59 
CR=10.258  
BR=2.340 
Time=0.31 
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Figure (4.6) The effect of jump step parameter on the performance 
of the four FIC schemes, for the case of Lena image 

 

4. Figure (4.7) shows the difference between the four FIC schemes 

when they implemented on Girl image using same coding 

parameters: 
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Figure (4.7) The effect of jump step of the four FIC schemes when 

they applied on Girl image 
 

 
4.6 Maximum Scale Test 

In this set of tests the effect of maximum scale parameter is studied 

for the four established IFS- schemes. In this set of tests the value of 

maximum scale parameter was varied within the range [1, 5]. The values 

of other parameters were fixed at their default values. The results of this 

set are summarized in the following tables and figures: 
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1. Table (4.4) shows the effects of maximum scale parameter on the 

compression performance of Dis1FIC scheme, applied on Lena 

image. 

 
 

Over All Max 
Scale MAE MSE PSNR

Compression 
Ratio 

Bit 
Rate 

Time in 
Seconds 

1 4.04 46.23 31.48 8.786 2.732 1.14 
2 3.92 42.35 31.86 8.786 2.732 1.24 
3 3.92 42.01 31.90 8.875 2.704 1.26 
4 3.92 41.85 31.91 8.929 2.688 1.16 
5 3.94 42.13 31.92 8.993 2.669 1.19 

Table (4.4) The results of maximum scale test of Dis1FIC 
scheme 

 

2. Table (4.5) shows the effects of maximum scale parameter on the 

compression performance of Dis3FIC scheme, applied on Lena 

image. 

 
Table (4.5) The results of maximum scale test of Dis3FIC 

scheme  

Over All Max 
Scale MAE MSE PSNR

Compression 
Ratio 

Bit 
Rate 

Time in 
Seconds 

1 4.04 46.82 31.43 8.786 2.732 1.24 
2 3.92 42.37 31.86 8.786 2.732 1.22 
3 3.91 42.05 31.89 8.863 2.708 1.26 
4 3.93 42.07 31.89 8.934 2.686 1.20 
5 3.93 42.02 31.90 8.991 2.669 1.21 

 

3. Figure (4.8) illustrates the effects of maximum scale parameter on 

the performance parameters of the four FIC schemes, the Lena 

image was used as test material. 
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 Figure (4.8) The effect of maximum scale parameter on the performance 

parameters of the four FIC-schemes, when they applied on Lena image 
 

4. Figure (4.9) shows the effects of maximum scale parameter of the 

four FIC schemes when they applied on Girl image. 
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Figure (4.9) The effect of maximum scale on the performance of the 

four FIC schemes, when they applied on Girl image 
 

 

4.7 Scale Bits Test 
In this section the result of some tests made on both images (Lena 

and Girl) are shown to investigate the effects of changing the number of 

bits used to represent the value of scale coefficients. In this set of tests 

the value of scale bits parameter was varied from 2 to 8. The values of 

other parameters were fixed at their default values. The following figures 

illustrate the obtained results: 
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1. Figure (4.10) shows the effect of the scale bits parameter on the 

performance of Dis1FIC scheme, the test image was "Girl". 
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Figure (4.10) Some samples of reconstructed Girl images when it 
is compressed by Dis1FIC using different values of scale bit 

parameter 
 

2. Figure (4.11) describes the results of applying Dis3FIC scheme on 

Girl image, the number of scale bits was varied. 
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Figure (4.11) Some samples of reconstructed Girl images when it 
is compressed by Dis3FIC scheme using different values of scale 

bit parameter 

 

3. Figure (4.12) shows the effect of scale bits parameter on the 

performance of the four FIC schemes, when they applied on Lena 

image. 
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Figure (4.12) The effect of scale bits parameter on the 

performance of the four FIC schemes, when they applied on 
Lena image 

 

 
 

4. Figure (4.13) shows the effect of scale bits parameter on the 

compression performance parameters of the four FIC-schemes, 

applied on Girl image. 
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Figure (4.13) The effect of scale bits parameter on the 
performance parameters of the four FIC schemes, when they 

applied on Girl image 
 

4.8 Offset Bits Test 
This set of conducted tests is to investigate the effects of the 

parameter "number of offset bits" on the performance parameters of the 

established FIC schemes. The value of the offset bits parameter was 

varied between 4 to 8. While, the values of other parameters were set 

fixed to have their default values. The results of this set of tests is 

described in the following tables and figures: 
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1. Table (4.6) presents the effect of offset bits parameter on the 

performance of  Dis1FIC, when it is applied on Girl image. 

 

 

Over All Offset 
Bits MAE MSE PSNR

Compression 
Ratio 

Bit 
Rate 

Time in 
Seconds 

4 8.74 134.46 26.84 10.504 2.285 1.51 
5 4.90 46.99 31.41 10.163 2.361 1.42 
6 3.19 24.43 34.25 9.846 2.438 1.31 
7 2.56 18.63 35.43 9.491 2.529 0.99 
8 2.33 17.39 35.73 9.126 2.630 0.93 

Table (4.6) The results of offset bits tests of Dis1FIC scheme, 
applied on Girl image 

 

2. Table (4.7) lists the tests results of Dis3FIC scheme, when it is 

applied on Girl image with different values of offset bits parameter. 

 

 
 

Table (4.7) The results of offset bits test of Dis3FICscheme, 
applied on Girl Image 

Over All Offset 
Bits MAE MSE PSNR

Compression 
Ratio 

Bit 
Rate 

Time in 
Seconds 

4 8.73 133.63 26.87 10.498 2.286 1.42 
5 4.90 47.45 31.37 10.164 2.361 1.34 
6 3.17 24.17 34.30 9.844 2.438 1.30 
7 2.56 18.69 35.41 9.483 2.531 1.02 
8 2.33 17.55 35.69 9.123 2.631 0.81 

 

3. Figure (4.14) shows the effect of offset bits parameter when Lena 

image is used as test material. 
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Figure (4.14) The effect of the parameter "offset bits" on the 
compression performance, when Lena image is used as test 

object 

 

 

 

4. Figure (4.15) illustrates the performance behavior of the four FIC-

schemes when the value of scale bits parameter is varied. This test 

was conducted using Girl image. 
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Figure (4.15) The effect of the parameter "offset bits" on the 
performance of the four FIC schemes, when Girl image is used 

as test object 

 

 

 
 

4.9 Minimum Error Test 
In this set of tests the effects of the parameter "Minimum Error" are 

investigated for the four established FIC schemes. The value of minimum 

error parameter was varied from 1 to 15. The values of other coding 

parameters were set fixed at their default values. The results of this set of 

tests are summarized in the following: 
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1. Figure (4.16) shows some samples of the reconstructed Lena images. 

When it compressed by Dis1FIC using different values of minimum 

error parameter. 
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Figure (4.16) Samples of the reconstructed Lena image when it is 

compressed by Dis1FIC scheme using different values of minimum 
error 

 
2. Figure (4.17) presents some of the reconstructed Lena images. When 

it is compressed using Dis3FIC scheme with different values of 

minimum error parameter. 
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3. Figure (4.18) illustrates the effectiveness of minimum error 

parameter on the performance behavior of the four established FIC 

schemes. These compression schemes were applied on Lena image. 
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Figure (4.17) Some samples of the reconstructed Lena image 
compressed by Dis3FIC scheme using different values of parameter 

"minimum error" 
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Figure (4.18) The effect of minimum error parameter on the 
performance of the four FIC-schemes applied on Lena image  

 
 

4. Figure (4.19) shows the differences in performance behavior of the 

four FIC-schemes, when they applied on Girl image using different 

values of minimum error parameter. 
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Figure (4.19) The effect of minimum error parameter on the 
performance parameters of the four FIC-schemes when they 

applied on Girl image 

 

 

 

4.10 Minimum Block Error Test 
The minimum block error coding parameter belongs, exclusively, to 

both Dis1FIC and Dis3FIC. In this set of tests the effects of this 

parameter on the performance of the two enhanced FIC schemes are 

investigated. 

The listed figures in this section illustrates the effectiveness of 

minimum block error on the parameters MAE, MSE, PSNR, compression 
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ratio (CR), bit rate (BR), and encoding time. The value of minimum 

block error parameter was varied to have values from 1 to 19, and it is 

important to mention that the value of this parameter should be higher 

than or equal to the value of minimum error parameter. In this set of tests 

the values of other coding parameter were set fixed to have their default 

values. The results of this set of tests are summarized as follows: 

1. Figure (4.20) shows samples of the reconstructed Girl image when it 

was compressed by Dis1FIC scheme using different values of 

minimum block error parameter. 
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Figure (4.20) Some samples of the reconstructed Girl image when it 
is compressed by Dis1FIC using different values of the parameter 

"minimum block error" 
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2. Figure (4.21) illustrates the effect of minimum block error parameter 

on the compression performance of Dis3FIC scheme, when it is 

applied on Girl image. 

 

    
 

 

 

 

   
 

 

 

 
 

 

 

3. Figure (4.22) shows the effect of minimum block error parameter of 

Dis1FIC and Dis3FIC schemes when they applied on Lena image. 
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Figure (4.21) Some samples of reconstructed Girl image compressed 
by Dis3FIC scheme using various values of the parameter 

"minimum block error" 
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Figure (4.22) The effect of minimum block error parameter on the 
performance of Dis1FIC and Dis3FIC, when they applied on Lena 

image 

 

 

 

4. Figure (4.23) shows the difference in behaviors of the performance 

parameters of the two enhanced FIC-schemes (i.e., Dis1FIC and 

Dis3FIC) when the value of parameter "minimum block error" was 

varied. 

 

111  



Chapter Four                                                                                                     Performance Test Results 

(1) Mean Absolute Error

2

3

4

5

6

7

8

9

10

1 4 7 10 13 16 19
Minimum Block Error

M
AE

Desc.1
Desc.3

(2) Mean Square Error

11

26

41

56

71

86

101

116

131

146

1 4 7 10 13 16 1
Minimum Block Error

M
SE

9

Desc.1

Desc.3

 

(3) Peak Signal to Noise Ratio

26
27
28
29
30
31
32
33
34
35
36
37
38

1 4 7 10 13 16 19

(4) Compression Ratio

8

12

16

20

24

28

32

36

40

1 4 7 10 13 16 1
Minimum Block Error

C
R

9

Desc.1

Desc.3

 Minimum Block Error

PS
N

R

Desc.1

Desc.3

(5) Bit Rate

0

0.5

1

1.5

2

2.5

3

1 4 7 10 13 16 19

(6) Time

0

0.5

1

1.5

2

2.5

3

1 4 7 10 13 16 1
Minimum Block Error

Ti
m

e 
in

 S
ec

on
ds

9

Desc.1

Desc.3

Minimum Block Error

B
R

Desc.1

Desc.3

 
Figure (4.23) The effect of minimum block error parameter on the 
performance of Dis1FIC and Dis3FIC schemes when they applied 

on Girl image 

 

 

 

4.11 Number of Bins Test 
This set of conducted tests was applied on the two enhanced FIC-

schemes (i.e., Dis1FIC and Dis3FIC), because this coding parameter 

belongs to these two schemes only. In this set of tests the value of this 

parameter was varied to investigate its effectiveness on the performance 

parameters of the two enhanced FIC-schemes. The values of other coding 
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parameters were fixed to have their default values. The tests results are 

summarized as follows: 

1. Table (4.8) lists the values of compression performance parameters 

of Dis1FIC scheme, when it is applied on Lena image using 

different values of the parameter "no. of bins". 
 

 

 
Table (4.8) The effect of number of bins parameter on the 

performance of Dis1FIC scheme, when it is applied on Lena image 

Over All No. of 
Bins MAE MSE PSNR

Compression 
Ratio 

Bit 
Rate 

Time in 
Seconds 

100 3.91 41.93 31.91 8.872 2.705 1.29 
250 4.15 48.14 31.31 8.867 2.707 0.62 
400 4.33 53.29 30.86 8.868 2.706 0.45 
550 4.46 56.91 30.58 8.864 2.707 0.41 
700 4.58 60.58 30.31 8.866 2.707 0.41 
850 4.67 63.09 30.13 8.860 2.709 0.41 
1000 4.76 66.14 29.93 8.857 2.710 0.36 

 

2. Table (4.9) shows the values of compression performance 

parameters of Dis3FIC scheme, when it is applied on Lena image 

using various values of the parameter "no. of bins". 

 

 
Table (4.9) The effect of number of bins parameter on the 
performance of Dis3FIC scheme, applied on Lena image 

Over All No. of 
Bins MAE MSE PSNR

Compression 
Ratio 

Bit 
Rate 

Time in 
Seconds 

100 3.91 42.03 31.90 8.859 2.709 1.26 
250 4.17 48.54 31.27 8.870 2.706 0.67 
400 4.31 52.12 30.96 8.869 2.706 0.55 
550 4.44 55.79 30.66 8.866 2.707 0.43 
700 4.54 58.58 30.45 8.865 2.707 0.39 
850 4.62 61.09 30.27 8.862 2.708 0.38 
1000 4.70 63.61 30.10 8.865 2.708 0.38 
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3. Figure (4.24) shows the difference in behavior of the performance 

parameters of the two enhanced FIC-schemes, when they applied on 

Lena image using different values of the parameter "no. of bins". 
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Figure (4.24) The effect of number of bins parameter on the 
performance of the two enhanced FIC-schemes, applied on 

Lena image 

4. Figure (4.25) presents the difference in performance behavior of the 

two enhanced FIC-schemes (i.e., Dis1FIC and Dis3FIC), when they 

applied on Girl image using different values of the parameter "no. of 

bins". 

114  



Chapter Four                                                                                                     Performance Test Results 

(1) Mean Absolute Error

2

3

4

5

6

7

8

9

10

100 250 400 550 700 850 1000
No. of Bins

M
AE

Desc.1
Desc.3

(2) Mean Square Error

11

26

41

56

71

86

101

116

131

146

100 250 400 550 700 850 1000
No. of Bins

M
SE

Desc.1

Desc.3

 

(3) Peak Signal to Noise Ratio

26
27
28
29
30
31
32
33
34
35
36
37
38

100 250 400 550 700 850 1000
No. of Bins

PS
NR

Desc.1

Desc.3

(4) Compression Ratio

8

12

16

20

24

28

32

36

40

100 250 400 550 700 850 1000
No. of Bins

CR

Desc.1

Desc.3

 

(5) Bit Rate
0

0.5

1

1.5

2

2.5

3

100 250 400 550 700 850 1000
No. of Bins

BR

Desc.1

Desc.3

(6) Time

0

0.5

1

1.5

2

2.5

3

100 250 400 550 700 850 1000
No. of Bins

Ti
m

e 
in

 S
ec

on
ds

Desc.1

Desc.3

 
Figure (4.25) The effect of number of bins parameter on the 
performance of the two enhanced FIC-schemes, when they 

applied on Girl image 

 

 
 
4.12 Window Size Test 

In this set of tests, the effects of window size parameter on the 

performance of the two enhanced FIC-schemes (i.e., Dis1FIC and 

Dis3FIC) were explored, taking into consideration the window size 

parameter belongs to these two FIC-schemes only. In this set of tests, the 

value of window size was varied to have different integer values which 
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lay within the range [1, 5]. The values of other parameters were fix at 

their default values. The tests results are summarized as follows: 

1. Table (4.10) lists the values of performance parameters of Dis1FIC 

scheme, when it is applied on Lena image using different values of 

window size. 

 

 
Table (4.10) The effect of window size parameter on the 

performance of Dis1FIC scheme 

Over All Window 
Size MAE MSE PSNR

Compression 
Ratio 

Bit 
Rate 

Time in 
Seconds 

1 3.91 41.93 31.91 8.872 2.705 1.21 
2 3.78 38.46 32.28 8.874 2.704 2.01 
3 3.70 36.54 32.50 8.870 2.706 2.51 
4 3.65 35.55 32.62 8.867 2.706 3.21 
5 3.62 34.93 32.70 8.869 2.706 3.72 

 

2. Table (4.11) lists the performance parameters of Dis3FIC scheme, 

when it is applied on Lena image using different values of the 

parameter "window size". 

 

 
Table (4.11) The effect of window size parameter on 

performance parameters of Dis3FIC scheme  
Over All Window 

Size MAE MSE PSNR

Compression 
Ratio 

Bit 
Rate 

Time in 
Seconds 

1 3.91 42.03 31.90 8.859 2.709 1.21 
2 3.78 38.83 32.24 8.866 2.707 1.93 
3 3.71 36.90 32.46 8.866 2.707 2.53 
4 3.67 35.74 32.60 8.870 2.706 3.37 
5 3.64 35.00 32.69 8.868 2.706 3.85 

 

3. Figure (4.26) shows the difference between the behaviors of the two 

FIC-schemes when they applied to compress Lena image, using 

different values of the parameter "window size". 
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Figure (4.26) The effect of window size parameter on 
performance of the two enhanced FIC-methods, when they 

applied on Lena image 

 

 

 

4. Figure (4.27) shows the difference between the performance of two 

enhanced FIC-schemes when they applied on Girl image, using 

different window size values. 
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Figure (4.27) The effect of window size on the performance of 
the two enhanced FIC-schemes, when they applied on Girl 

image 

 

 

 

4.13 The Effect of Both No. of Bins and Window Size 
Table (4.12) lists the values of performance parameters of Dis1FIC 

scheme, when it is applied on Lena image using different values of both 

no. of bins and window size parameters. 
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Table (4.12) The effect of both no. of bins and window size 

parameters on performance parameters of Dis1FIC scheme  

Over All No. of 
Bins 

Window 
Size MAE MSE PSNR 

Compression 
Ratio 

Bit 
Rate 

Time in 
Seconds 

1 3.92 42.01 31.90 8.875 2.704 1.32 
2 3.79 38.54 32.27 8.877 2.703 1.70 
3 3.71 36.68 32.49 8.874 2.705 2.16 
4 3.67 35.69 32.61 8.871 2.705 2.82 

100 

5 3.64 35.05 32.68 8.873 2.705 3.10 
1 4.17 48.25 31.30 8.865 2.707 0.57 
2 4.03 44.71 31.63 8.869 2.706 0.95 
3 3.94 42.16 31.88 8.869 2.706 1.07 
4 3.87 40.57 32.05 8.872 2.705 1.45 

250 

5 3.82 39.40 32.18 8.873 2.705 1.45 
1 4.34 53.40 30.86 8.867 2.707 0.53 
2 4.16 48.09 31.31 8.870 2.706 0.64 
3 4.06 45.45 31.56 8.870 2.706 0.73 
4 4.06 45.45 31.56 8.870 2.706 0.94 

400 

5 3.95 42.40 31.86 8.870 2.706 1.01 
1 4.47 57.02 30.57 8.864 2.708 0.42 
2 4.27 51.21 31.04 8.866 2.707 0.48 
3 4.16 48.03 31.32 8.871 2.705 0.62 
4 4.09 46.18 31.49 8.872 2.705 0.68 

550 

5 4.04 44.70 31.63 8.870 2.706 0.80 
1 4.59 60.67 30.30 8.866 2.707 0.41 
2 4.36 53.59 30.84 8.867 2.707 0.47 
3 4.23 50.16 31.13 8.867 2.707 0.62 
4 4.16 48.03 31.32 8.869 2.706 0.70 

700 

5 4.10 46.49 31.46 8.872 2.705 0.66 
1 4.68 63.18 30.13 8.859 2.709 0.42 
2 4.45 56.57 30.60 8.871 2.706 0.54 
3 4.31 52.07 30.96 8.864 2.708 0.46 
4 4.22 49.74 31.16 8.867 2.707 0.64 

850 

5 4.15 47.62 31.35 8.870 2.706 0.75 
1 4.77 66.21 29.92 8.858 2.709 0.38 
2 4.51 58.39 30.47 8.864 2.708 0.41 
3 4.38 54.58 30.76 8.864 2.708 0.42 
4 4.27 51.15 31.04 8.867 2.707 0.65 

1000 

5 4.21 49.38 31.20 8.870 2.706 0.55 
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4.14 Implementing Dis1FIC on Different Images 
1. Figure (4.28) shows the effect of Dis1FIC scheme when it 

implemented on Baboon image. The results were: (MAE=3.92, 

MSE=31.98, PSNR=33.08, CR=8.998, BR=2.667, Time in 

seconds=1.30). 

 

 
a. Original Baboon                         b. Reconstructed Baboon  

 
 Figure (4.28) The performance of the enhanced FIC-scheme 

Dis1FIC, when it applied on Baboon image  
 

2. Figure (4.29) shows the original and reconstructed Bird image when 

applying Dis1FIC scheme. The results were: (MAE=7.15, 

MSE=202.46, PSNR=25.07, CR=8.786, BR=2.731, Time in 

seconds=0.81). 
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a. Original Bird             b. Reconstructed Bird 
 

Figure (4.29) The performance of the enhanced FIC-scheme 
Dis1FIC, when it applied on Bird image 

 
 
3. Figure (4.30) shows the performance of Dis1FIC scheme when it 

applied on House image. The results were: (MAE= 18.91, 

MSE=701.34, PSNR=19.67, CR=8.625, BR=2.782, Time in 

seconds=0.78). 

 

 
a. Original House             b. Reconstructed House   

 Figure (4.30) The performance of the enhanced FIC-scheme 
Dis1FIC, when it applied on House image  

 
4. Figure (4.31) shows original and reconstructed images of Parrot when 

implementing Dis1FIC scheme on it. The results were: (MAE=6.49, 
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MSE=135.81, PSNR= 26.80, CR=8.526, BR=2.815, Time in 

seconds=0.93). 

 

 
a. Original Parrot                   b. Reconstructed Parrot  

 
 Figure (4.31) The performance of the enhanced FIC-scheme 

Dis1FIC, when it applied on Parrot image 
 
 
4.15 Discussion 

1. The increase in the block length parameter causes an increase in 

Cr and a decrease in PSNR. 

2. The increase in jump step causes a decrease in PSNR and elapsed 

encoding time, and an increase in Cr value. 

3. The increase in maximum scale causes little increase in 

compression ratio value, and a decrease in PSNR. 

4. The increase in the number of bits used to encode the scale and 

offset coefficients causes a decrease in the value of Cr and an 

increase in PSNR value of the decompressed image. 

5. The increase in the value of minimum error and minimum block 

error parameters causes a little increase in Cr value, and a 

decrease in PSNR value and encoding time. 
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6. The increase in the number of bins values causes a decrease in 

encoding time, and PSNR, and a little decrease in Cr value. 

7. The increase in window size parameter causes an increase in time 

and PSNR, and a small decrease in compression ratio. 

8. In general, the two enhanced FIC-schemes (i.e., Dis1FIC and 

Dis3FIC) have encoding time much less than that spend by the 

traditional FIC-scheme (i.e., TradFIC) and by the enhanced 

scheme (i.e., PredFIC) which is based on using the symmetry 

predictor only. 



 

 

 

 

 

 

 

 

 
 

 
 



 
 

5.1 Conclusions 
From the test results presented in previous chapter, some remarks 

related to the behavior and performance of the investigated FIC schemes 

are stimulated. Among these remarks are the followings: 

1. The use of symmetry predictor causes a speed-up in encoding 

process, and the use of moment description causes more 

significant speeding-up in encoding process. But, the image 

quality had little degraded in comparison with its level when the 

traditional method is applied. 

2. The block length parameter mainly affects on the (MAE, MSE, 

PSNR, Cr, BR, and time). It was found that the suitable values 

are (4, 5) which led to good PSNR (less distortion) and Cr. 

3. When the jump step is taken small then the schemes have better 

performance in terms of image quality and compression ratio. 

But if the jump step is set large, the encoding process become 

faster. The best values of jump step are (1, 2, 3). 

4. The use of maximum scale parameter value within the range [2.5, 

3] will nearly preserve the image quality but with a little bit 

degradation. The encoding time is little affected with the 

variation of maximum scale values. 

5. The value of the parameters (scale bits and offset bits) affects the 

performance of the FIC scheme, where the increase in the 

number of encoding bits leads to less error and good quality but a 

little bit decrease in compression ratio. But the compression time 
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will little affected. The suitable values of these parameters are (7, 

8). 

6. The minimum error and minimum block error approximately have 

little effect on compression ratio, while they have significant 

effect on PSNR and encoding time. When they are increased, the 

PSNR value is decreased, it has a suitable value if these 

parameters' values are set (from 1 to 5) in case of using descriptor 

order-1, but these values could be expanded to 7 in case of 

descriptor order-3. 

7. The use of large no. of bins with larger window size will lead to 

suitable compression ratio and PSNR, and it speeds up the 

compression time significantly. 

 
5.2 Future Works 

1. Other advanced partitioning schemes (such as HV, quadtree) can 

be implemented to enhance the compression performance 

parameter.  

2. Using another window size scheme, like making it local adaptive 

according to the population of each bin and its surrounding 

neighbors. 

3. Speeding up the descriptors using double blocks descriptors 

instead of single descriptor. 
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  خلاصةال
  

 الغ رض منھ ا   ، وك ان  مختلف ة ان ات استحدثت طرائق عدیدة لضغط ال صور باس تخدام تق    لقد  

غوطة وانجاز الضغط بأقل وقت تحقیق نسبة ضغط عالیة مع المحافظة على جودة الصورة المض

لضغط الصور تعتمد ھي إحدى ھذه الطرق وھي تقنیة حدیثة  إن طریقة الضغط الكسوري. ممكن

  .في الصورشابھ الذاتي على مبدأ الت

وھو یتكون من مرحلتین أساسیتین، . إن البحث الحالي یھتم بتطویر نظام الضغط الكسوري

في مرحلة التشفیر تجزأ الصورة الأص لیة  . والثانیة مرحلة فك التشفیرالأولى ھي مرحلة التشفیر  

، والثانی ة ت دعى    غی ر متداخل ة  مق اطع  الم دى وھ ي   مق اطع ، الأولى ت دعى  مقاطعإلى نوعین من ال  

  .ومن الممكن أن تكون متداخلة المنطلق مقاطع

ف ضل بل وك   ت المتساویة الحجم وبعد ذلك یتم إیجاد أتجزأ الصورة باستخدام طریقة البلوكا    

تنتھ  ي مرحل  ة الت  شفیر بخ  زن . تحوی  ل أف  ینوذل  ك بتطبی ق  منطل ق لك  ل بل  وك م  ن بلوك  ات الم  دى  

إن عملیة إیجاد البلوكات المتشابھة تتطلب عملی ة  . مدى لكل بلوك من بلوكات ال  معاملات التحویل 

أما مرحلة فك الت شفیر  . حسابیة معقدة تستغرق وقتا طویلا وھذه إحدى سلبیات الضغط الكسوري    

 وقت  ا ی  ستغرقفتطب  ق عل  ى أي ص  ورة ابتدائی  ة حت  ى نح  صل عل  ى ال  صورة الم  سترجعة، وھ  ذا     

  .قصیرا

ج لتح سین مراح ل الت شفیر لل صور الملون ة      في ھذا البح ث ت م ت صمیم وتطبی ق أربع ة نم اذ            

ت م تطبی ق طریق ة ال ضغط الك سوري التقلیدی ة عل ى         الأول   الھیك ل في  . واختزال الوقت المستغرق  

وقد اس تغرقت عملی ة ال ضغط    ). YCbCr(إلى ) RGB(الصور الملونة وذلك بتحویل المركبات    

 33.39 ح  واليج  ودة ال  صورة  بلغ  ت ، و8.89 المتحقق  ةن  سبة ال  ضغط  كان  ت  ثانی  ة، و144.02

  .دیسبل

 اس  تخدام متنب  يء التحوی  ل  م  ع طریق  ة ال  ضغط الك  سوري لل  صور ھ  و  الث  اني ف  ي الھیك  ل

إن اس  تخدام . التن  اظري، ویعتم  د المتنب  يء أساس  اً عل  ى ق  یم الع  زوم للمق  اطع الت  ي س  یتم مطابقتھ  ا   

ریق ة التقلیدی ة لیجعلھ  ا    ف  ي الطت ستخدم  الت ي  )الثمانی  ة(عملی ات التن اظر   المتنب يء س یقلل م ن ع  دد    

م ن وق ت   % 14 وق ت ال ضغط لی صبح ح والي     أدت إل ى تقلی ل  عملیة تناظر واحدة وھذه الطریق ة      

  .الضغط للطریقة التقلیدیة



مح سنة م ن خ لال     غط الك سوري لل صور  ض طریق ة ال   استحدثت الثالث والرابع    في الھیكل 

 لوص ف  فق د اس تخدمت   ،لثالث ة  العزوم من الدرج ة الأول ى وا    استخدام واصف للمقاطع یعتمد على    

 البح  ث ع  ن أف  ضل بل  وك  وبالنتیج  ة لیخت  زل مع  ادلات ، فھرس  ة لبلوك  ات المنطل  قالمق  اطع لعم  ل

إن نت ائج فح ص ھ ذین الھیكل ین أش ارت إل ى ح صول         .ق شبیھ لكل بلوك م ن بلوك ات الم دى    منطل

م ن وق ت   % 0.9 وقت الضغط لیصل إل ى  أدى إلى نقصانوبالتالي اختزال كبیر في وقت البحث    

  .الضغط بالطریقة التقلیدیة



 
 
 
 
 
 
 
 
 
 
 
 

 لتحسین ضغط الصور بلوكمتنبيء تناظر ال

 الكسوري
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

  جمھوریة العراق
  وزارة التعلیم العالي والبحث العلمي

  جامعة النھرین
 كلیة العلوم

  رسالھ
  مقدمھ إلى كلیة العلوم في جامعة النھرین كجزء من
 متطلبات نیل درجة الماجستیر في علوم الحاسبات

  من قبل

  رؤى عبداالله جابر

 )2006بكالوریوس جامعة النھرین (

  

  إشراف

 لؤي أدور جورج. د

 1429 ذو القعدة 2008 تشرین الثاني
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