
 Republic of Iraq
 Ministry of Higher Education and Scientific Research
 Al-Nahrain University
 College of Science

Block Symmetry Predictor to Improve
Fractal Image Compression

A Thesis Submitted to the College of Science, AL-Nahrain
University In Partial Fulfillment of the Requirements for

The Degree of Master of Science in Computer Science

Submitted by:

Ruaa Abdullah Jaber

 (B.Sc. 2006)

 Supervised by:

Dr. Loay E. George

November 2008 Thu Alqeda 1429

 بسم االله الرحمن الرحيم

 ويسئلونك عن الروح قل الروح من أمر ربي

 وما أوتيتم من العلم إلا قليلا

 صدق االله العظيم
)85الآية (سورة الإسراء

Supervisor Certification

I certify that this thesis was prepared under our supervision at the

Department of Computer Science/College of Science/Al-Nahrain

University, by Ruaa Abdullah Jaber as partial fulfillment of the

requirements for the degree of Master of Science in Computer Science.

Supervisor

Signature:

Name : Dr. Loay E. George

Title : Senior Research

Date : / / 2008

The Head of the Department Certification

In view of the available recommendations, I forward this thesis for

debate by the examination committee.

Signature:

Name : Dr. Taha S. Bashaga

Title : Head of the department of Computer Science,

Al-Nahrain University.

Date : / / 2008

Certification of the Examination Committee

We certify that we have read this thesis and as an examining

committee, examined the student in its content and what is related to it,

and that in our opinion it meets the standard of a thesis for the degree of

Master of Science in Computer Science.

Signature:

Name: Dr. Abdul Monem S. Rahma
Title : Assistance Professor
Date : / / 2008

(Chairman)

Signature: Signature:

Name: Dr. Bushra Q. Al-Abudi Name: Dr. Haithem A. Al-Ani
Title : Assistant Professor Title : Lecturer
Date : / / 2008 Date : / / 2008

(Member) (Member)

Signature:

Name: Dr. Loay E. George
Title : Assistant Professor
Date : / / 2008

(Supervisor)

Approved by the Dean of the College of Science, Al-Nahrain University.

Signature:

Name: Dr. LAITH ABDUL AZIZ AL-ANI
Title: Assist. Prof.
Date: / / 2008

(Dean of College of Science)

DEDICATED TO MY

PARENTS…
SISTERS…
 AND BROTHERS…

To everyone
Taught me a letter

Ruaa

Tv~ÇÉãÄxwzÅxÇà
I would like to express my sincere appreciation to my

supervisor, Dr. Loay E. George, for giving me the major

steps to go on to explore the subject, sharing with me the

ideas in my research "Block Symmetry Predictor to

Improve Fractal Image Compression" and discuss the

points that I felt they are important.

Grateful thanks for the Head of Department of Computer

Science, Dr. Taha S. Bashaga.

Also, I wish to thank the staff of Computer Science

Department at Al-Nahrain University for their help.

I would like to say "thank you" to my faithful friends for

supporting and giving me advises.

Various compression methods have been proposed to achieve high

compression ratios and high image qualities in low computation time.

One of these methods is Fractal Image Compression. The basic idea of

fractal image compression is the partitioning of input image into non-

overlapping range blocks. For every range block a similar but larger

domain block is found. The set of coefficients of mapping the domain

blocks to the range block, using affain transform, is recorded as

compression data. The compressed image data set is called the Iterated

Function System (IFS) mapping set. Decoding process applies the

determined IFS transformations on any initial image, and the process is

repeated many times till reaching the attractor.

In this research work, four IFS coding schmes have been

established and tested. The first scheme is the traditional Fractal Image

Compression (FIC) method, it is implemented on color images after

transforming the (RGB) color components to (YCbCr) components. The

compression results led to encoding time=144.02 sec, compression

ratio=8.89 and PSNR=33.39.

The second scheme uses the FIC method with a predictor based on

centralized moment features, this predictor is introduced to predict the

type of symmetry operation required to set the domain block in a proper

state to best matches the range block. The use of this predictor helps in

reducing the number of trials of symmetry mappings from 8 trials to only

one symmetry case. The use of predictor had reduced the encoding to

approximately 14% in comparison with that of traditional method.

The third and fourth scheme implies the use of FIC method

enhanced by the use of moment descriptor (order-1) and (order-3),

respectively. Either of these descriptors is used to classify the domain and

range blocks into classes, each class is assigned by a class index whose

value is equal to moments descriptor value. For encoding each range

blocks only the domain blocks have similar descriptor values to that for

range block will be IFS-matched with it. In these schemes the symmetry

predictor, used in the second scheme, had been used to reduce the search

about the best available similar domain block. The attained encoding time

in both 3rd and 4th scheme is approximately 0.9% of that spend by a

traditional scheme.

List of Abbreviations

Abbreviation Meaning

BMP Bitmap

BR Bit Rate

Cr Compression Ratio

dB decibels

DPCM Differential Pulse Coding Modulation

FIC Fractal Image Compression

HV Horizontal Vertical

HVS Human Vision System

IFS Iterated Function System

ISM Improved Searching Mechanism

LCM Loosely Coupled Multiprocessing

MAD Mean Absolute Difference

MAE Mean Absolute Error

MSE Mean Square Error

NTSC National Television Systems Committee

PAL Phase Alternating Line

PIFS Partitioned Iterated Function System

PSNR Peak Signal to Noise Ratio

RGB Red, Green, Blue

RMSE Root Mean Square Error

SSD Sum of the Squared Difference

SSE Sum of the Squared Error

vi

Table of Contents

Chapter One: General Introduction

1.1 Preface --- 1

1.2 Image Compression -- 2

1.3 Fractal Image Compression --- 3

1.4 Partitioned Iterated Function System ---------------------------------- 3

1.5 Related Work --- 6

1.6 Aim of Thesis --- 10

1.7 Thesis Layout --- 11

Chapter Two: Fractal Image Compression

2.1 Introduction --- 12

2.2 Fractals -- 12

2.3 Self Similarity -- 13

2.4 Famous Fractal Shapes -- 14

2.5 Color Models --- 16

2.6 Image Fractal Coding -- 20

2.7 Iterated Function System for Zero-Mean Blocks -------------------- 22

2.8 Moment Descriptor -- 24

2.9 Moments Ratio Factor --- 25

2.10 Down Sampling Methods -- 26

2.11 Affine Transformation --- 28

2.12 Partition Schemes --- 30

2.13 Quantization --- 34

2.13.1 Scalar Quantization -- 34

2.14 DPCM (Differential Pulse Coding Modulation) -------------------- 35

2.15 The Test Measures -- 39

A. Fidelity Criteria --- 39

vii

B. Compression Compactness -- 42

2.16 Entropy --- 42

2.17 Huffman Coding -- 43

2.18 Arithmetic Coding -- 44

2.19 Shift Coding --- 45

Chapter Three: The Enhanced FIC-Scheme

3.1 Introduction --- 47

3.2 The System Model --- 48

3.3 Encoder Module -- 49

3.3.1 Load BMP Image -- 49

3.3.2 Conversion from RGB to YCbCr Color Space -------------- 51

3.3.3 Down Sampling -- 51

3.3.4 Resizing the Bands (Y, Cb, Cr) -------------------------------- 53

3.3.5 FIC Encoder -- 56

A. Range Pool Generation --------------------------------------- 56

B. Domain Pool Generation ------------------------------------- 58

C. Determination of Some Involved Coding Parameters ---- 58

D. Blocks Isometry State Assignment ------------------------- 59

E. Blocks Classification Using Moments-Based Descriptor 64

F. Sorting of Domain Blocks ------------------------------------ 65

G. Range Blocks Coding -- 67

3.3.6 Encoding the IFS Code -- 73

3.4 Decoder Module -- 76

3.4.1 Load and Decode the IFS Code -------------------------------- 76

3.4.2 FIC Decoder -- 77

A. Dequantization -- 79

B. Reconstruction of Range Pool ------------------------------- 79

viii

ix

3.4.3 Range Pool Resizing -- 80

3.4.4 Up Sampling -- 83

3.4.5 Conversion from YCbCr to RGB ------------------------------ 84

Chapter Four: Performance Test Results

4.1 Introduction -- 86

4.2 Image Test Material -- 87

4.3 Testing Strategy --- 88

4.4 Block Length Test -- 88

4.5 Jump Step Test -- 91

4.6 Maximum Scale Test --- 94

4.7 Scale Bits Test -- 97

4.8 Offset Bits Test --- 101

4.9 Minimum Error Test -- 104

4.10 Minimum Block Error Test -- 108

4.11 Number of Bins Test -- 112

4.12 Window Size Test --- 115

4.13 The Effect of Both No. of Bins and Window Size ---------------- 118

4.14 Implementing Dis1FIC on Different Images ---------------------- 120

4.15 Discussion -- 122

Chapter Five: Conclusions and Future Work

5.1 Conclusions -- 124

5.2 Future Works -- 125

References

1.1 Preface
The term fractal was first used by Benoit Mandelbrot to designate

objects that are self-similar at different scales. Such objects have details

at every scale [NeGa95].

Mandelbrot's fractal geometry provides both a description and a

mathematical model for many of the seemingly complex forms found in

nature. Shapes such as coastlines, mountains and clouds are not easily

described by traditional Euclidean geometry. Nevertheless, they often

possess a remarkable simplifying invariance under changes of

magnification. This statistical self-similarity is the essential quality of

fractals in nature [BDM88].

Fractals are ubiquitous in complex natural phenomena. They are

observed in the architecture of the mammalian lung, they determine the

inter-beat interval in human heartbeats and the variation in human strides,

they influence the information content of DNA sequences, and they

describe the branching of trees and the root systems in plants, as well as

the growth of bacterial colonies and many other biological systems. In

physical phenomena they are also seen everywhere, in viscous fingering,

dielectric breakdown, snowflake growth, and so on [WBG03].

Michael Barnsley and his coworkers at the Georgia institute of

technology were the first to recognize the potential interest of fractal

methods for image compression. Barnsley developed the theory of

Iterated Function Systems (IFS), which was introduced by J. Hutchinson

in 1981. After the publication of Barnsley’s book "Fractals Everywhere"

in 1988, and his paper in the January-1988 issue of BYTE magazine,

1

Chapter One General Introduction

fractal image compression (FIC) became a very fashionable subject. The

interest in this technique was aroused by the fantastic compression ratios

claimed by Barnsley (i.e. up to 10,000 to 1). Together with Alan Sloan,

Barnsley found Iterated Systems, Inc. and obtained US patent (4,941,193)

on image compression using IFS.

A breakthrough was made in 1988 by Arnaud Jacquin, one of

Barnsley’s Ph.D. students. Instead of trying to find an IFS for a complete

image, Jacquin brought the idea of partitioning the image into non-

overlapping ranges, and finding a local IFS for each range. Jacquin

developed the theory of Partitioned Iterated Function Systems (PIFS) and

implemented a version of his algorithm. The main difficulty of FIC

process is to find within the image reduced copies of the whole image.

Real-world images often contain some self-similarity, but only between

selected portions of the image. The breakthrough made by Jacquin was to

partition the input image, and to find a local IFS for each partition. With

this new method, it finally became possible to completely automate the

compression process and furthermore to do it in a reasonable amount of

time.

Yuval Fisher, Roger Boss, and Bill Jacobs were also among the first

pioneers to make public contributions to the theory of PIFS [NeGa95].

1.2 Image Compression
The fast development of multimedia computing has led to the

demand of using digital images. The manipulation, storage and

transmission of these images in their raw form is very expensive, it

significantly slows the transmission of the applications contain them and

makes their storage costly. However, digital image processing is

exploited in many diverse applications, but the size of these images

places excessive demands for storage and transmission technology. Image

2

Chapter One General Introduction

data compression is required to permit further use of digital image

processing, it is the process of reducing the number of bits required to

represent these images with lower bit rate, better quality and fast

implementation [KD98].

1.3 Fractal Image Compression

In fractal image compression the image to be coded is partitioned

into blocks called ranges. Each range is approximated by another part of

the image called domain [RHS97].

Fractal image compression is a block based image compression, it

detects and encodes the existing similarities between different regions in

the image. It allows interesting compression ratios; however it suffers

from long compression (encoding) time, whereas the decompression is

fast. The time consuming part of the encoding step is due to the search for

an appropriate domain block for each range block. Most of time required

in the fractal compression is spent in the matching of a large number of

blocks in the image. To speed up the fractal coding time, several methods

have been devised to accelerate the search and reduce the encoding

complexity, such as the Fisher classification method, or other methods

which some of them are based on using artificial intelligence techniques

(like, genetic algorithms and artificial neural networks) [Moha03].

1.4 Partitioned Iterated Function System
The theory of iterated function systems defines mathematically some

concepts of chaos and irregularity. The research done mainly by Barnsley

led to significant new methods for image understanding. Other

researchers have followed those ideas and focused on the special

characteristics of IFS fractals (such as, the measures over IFS attractors).

3

Chapter One General Introduction

IFS description provides a potential new method for researching the

image shape and texture. It forms, through a set of simple geometric

transformations, a basic set of tools for interactive image construction.

Iterated function systems are based on the mathematical foundations

laid by Hutchinson. IFS fractals have an elegant recursive definition: A

fractal is constructed from a collage of transformed copies of itself; it is

inherently self-similar and infinitely scalable.

The transformation is performed by a set of affine maps. An affine

mapping of the plane is a combination of a reflection, rotation, scaling,

sheer and translation (See Figure 1.1).

 Figure (1.1) Geometric transformations implemented in the IFS model [Niki07]

Partitioned iterated function systems (PIFSs) are utilized in fractal

image compression schemes. To solve the image encoding problem, it is

4

Chapter One General Introduction

important to find a PIFS such that its attractor is as close to the encoded

image as possible [Niki07].

The idea of fractal compression had reached the practical reality by

Jacquin when he introduced the partitioned IFS (PIFS); which differs

from an IFS in that each of the individual mappings operates on a subset

of the image, rather than the entire image. Since the image support is tiled

by "range blocks," each of which is mapped from one of the "domain

blocks", as depicted in Figure (1.2), the combined mappings constitute a

transform on the image as a whole. The transform that minimize the

collage error within this framework is constructed by individually

minimizing the collage error for each range block. This transform

requires locating the domain block which may be made closest to each

approximated range (using affain mapping). This transform is represented

by specifying, for each range block, the identity of the matching domain

block together with the block mapping parameters which minimizes the

collage error for that block. Distances are usually measured by the mean-

squared error (MSE) metric since optimization of the standard block

mappings is simple under this measure [WoJa99].

 Figure (1.2) One of the block mappings in a PIFS representation [WoJa99]

5

Chapter One General Introduction

1.5 Related Work
Many researchers have considered FIC as headlines in their work;

some of their published works are the following:

1. Wohlberg and Jager (1994) [WoJa94], they indicated that lossy image

coding by partitioned iterated function systems, popularly known as

fractal image compression, had become an active area of research. In

this scheme, an image is coded as a set of contractive transformations

in a complete metric space. As a result of a well known theorem in

metric space theory, the set of contractive transformations (subject to a

few constraints) is guaranteed to produce an approximation to the

original image, when iteratively applied to any initial image.

2. Rejeb and Anheier (1997) [ReAn97], proposed a time improved

fractal image coder with a reduced domain pool and optimal

luminance transform parameters calculation. This scheme is applicable

to the Fischer's (1994) classification method. The encoding process is

accelerated by reducing the domain pool, and then by minimizing the

number of operations for the similarity search; this reduction is based

on discarding the domains with nearly the same variance from each

class of the domain pool. This approach provided a greater speed loss

with a slight loss in the compression ratio and a slight improvement in

image quality. The results of the conducted experiments showed that

an acceleration of 6.7 for the image “Lena” is reached with a good

decoded image quality. For a speed up factor of 2, the compression

ratio is about 0.8% reduced and the image quality is about 0.23%

improved. In order to increase the compression ratio again Jaquin's

(1992) method was used, and some of the range blocks with shade

property have been removed from the search.

6

Chapter One General Introduction

3. Salih and Smith (1999) [SaSm99], presented a method of mapping

similar regions within an image by an approximation of the collage

error, this resulted in writing range blocks as a linear combination of

domain blocks. Also, they addressed the complexity of the encoder, by

proposing a new classification scheme based on the domain and range

blocks moments which reduced the encoding time by a factor of

hundreds with insubstantial loss in the image quality.

4. Chang and Kuo (2000) [ChKu00], they referred that the domain pool

design is one of the dominant issues which affect the coding

performance of fractal image compression. This paper employed the

LBG algorithm and proposed a block averaging method to design an

efficient domain pool based on a proposed iteration-free fractal image

codec. The redundancies between the generated domain blocks have

been reduced by the proposed methods. Therefore, the obtained

domain pool is more efficient than that generated in the conventional

fractal coding scheme, and thus the coding performance is improved.

On the other hand, the iteration process in the conventional fractal

coding scheme not only required a large size of memory and a high

computation complexity but also prolongs the decoding process. The

proposed iteration-free fractal codec can overcome the problems

mentioned above. By the conducted computer simulation, it was

noticed that both the LBG-based and block-averaging methods for the

domain pool design in the proposed iteration free scheme have

achieved excellent performances. For example, based on the proposed

block-averaging method, the decoded Lena image has at least a 0.5 dB

higher PSNR (under the same bit rate) and an eight-time faster

decoding speed than the conventional fractal coding schemes that

require iterations.

7

Chapter One General Introduction

5. Al-A'mri (2001) [Alam01], presented a hierarchical quad-tree scheme

for partitioning image, in FIC, in two different ways; fixed block size

and variable block size. In these methods the image is partitioned into

sub-squares called ranges. The domain blocks are obtained by shifting

a block of twice the range size over the original image. Although,

various kinds of criteria could be used for image partitioning; in this

study a uniformity criterion had been utilized to perform image

partitioning.

6. Tong and Wong (2002) [ToWo02], they referred that fractal image

encoding is a computationally intensive method of compression due to

its need to find the best match between image sub-blocks, this done by

repeatedly searching a large virtual codebook constructed from the

image under compression. One of the most innovative and promising

approaches to speed up the encoding is to convert the range-domain

block matching problem to a nearest neighbor search problem. This

paper presented an improved formulation of approximate nearest

neighbor search based on orthogonal projection and pre-quantization

of the fractal transform parameters. Furthermore, an optimal adaptive

scheme is derived for the approximate search parameter to further

enhance the performance of the new algorithm. Experimental results

showed that this new technique was able to improve both the fidelity

and compression ratio, while significantly reduce memory

requirement and encoding time.

7. Al-Dulaimy (2003) [Aldu03], the main purpose of his work is to

reduce the encoding time of fractal image compression method. He

proposed two approaches: the first is based on a new mathematical

approach, called Improved Searching Mechanism (ISM), which

determines IFS codes with less number of computation steps. While in

the second approach, called Loosely Coupled Multiprocessing (LCM),

8

Chapter One General Introduction

the encoding operations are executed using loosely coupled

multiprocessing system.

8. Yung-Gi (2005) [Yung05], in his work he proposed an algorithm to

improve the time-consuming encoding drawback by an adaptive

searching window, partial distortion elimination (PDE), and

characteristic exclusion algorithms. The proposed methods efficiently

had decreased the encoding time. In addition, the compression ratio is

also raised due to the reduced searching window. While conventional

full search fractal encoding to compress a 512×512 image needs to

search 247,009 domain blocks for every range block, this

experimental results showed that the proposed method only needs to

search 122 domain blocks, which is only 0.04939% compared to a

conventional fractal encoder, at a bit rate of 0.2706 bits per pixel (bpp)

while maintaining almost the same decoded quality in visual

evaluation.

9. Distasi, Nappi, and Riccio (2006) [DNR06], the proposed a method to

reduce the complexity of the image coding phase by classifying the

blocks according to an approximation error measure. It was formally

shown that postponing range/domain comparisons with respect to a

preset block, is possible and can reduce drastically the amount of

operations needed to encode each range. The proposed method had

been compared with three other fractal coding methods, showing

under which circumstances it performs better in terms of both bit rate

and/or computing time.

10. Al-Hilo (2007) [Alhi07], designed and implemented a color image

scheme using PIFS method. Since the main weak point in FIC is its

need for long encoding time, in this research project a new block

indexing method was suggested in order to reduce the long encoding

time. The idea of reducing the mapping search operation is based on

9

Chapter One General Introduction

making IFS matching between the range and domain blocks that have

similar block indexing values; this leads to significant reduction in the

encoding time. The proposed block indexing process is based on using

moments (m01, m10) to produce an invariant descriptor to classify

domain and range blocks. The utilization of this feature had

significantly reduced the number of matching trials to find the closest

domain block for each range block. The invariance of the proposed

descriptor against affine transforms was the main reason behind

reducing the number of range-domain comparisons which in turn led

to speeding-up the domain search task.

1.6 Aim of Thesis

The aim of this work is to design and implement a fractal image

compression system based on IFS-transform for zero-mean range-domain

blocks. Some improvements were performed on the IFS-matching stage,

these improvements implies the use of two moment based indexes as

criterion to reduce the number of range-domain matching trials. This first

moment based index is IFS-invariant, it is used to classify the range and

domain blocks, and then only the blocks have similar indexes are passed

through the domain-range matching test. While, the second index is

utilized to predict the type of isometric process needed to be applied on

the domain block to ensure the best IFS-matching state with the tested

range block. Some additional steps are proposed to improve the

performance of the improved FIC scheme, due to these additional steps

the range pool partition could be done for any chosen block size without

necessity for choosing block size as a divisible factor of both image width

and height.

10

Chapter One General Introduction

11

1.7 Thesis Layout
In addition to chapter one, the remaining parts of this thesis consists

of the following chapters:

Chapter Two: (Fractal Image Compression)

In this chapter some image compression methods beside to fractal

image compression technique are presented. Also, the relevant concepts

and theorems with partitioned iterated function system, block symmetry

predictor and moments descriptors are explained.

Chapter Three: (The Enhanced FIC-Scheme)

In this chapter, the proposed system design and implementation steps

are given. The encoding and decoding modules are described in details.

Chapter Four: (Performance Test Results)

This chapter is dedicated to present the results of the conducted tests

on the established coding system using different bitmap test images.

Chapter Five: (Conclusions and suggestions)

Some conclusion remarks that derived from the analysis of test

results are given in this chapter. Also, some suggestions for future work

are listed.

2.1 Introduction

This chapter introduces the definition of fractal, and the

classification of its models. Also some of the famous fractal shapes, and

some relevant concepts used in fractal image compression are presented.

The aspects and equations deal with fractal image compression are

described.

The concept of moments descriptor (which is used in this research

work), affine transformations, down sampling methods, fidelity criteria,

image partitioning schemes, quantization, Differential Pulse Coding

Modulation (DPCM), and some color models are also described in this

chapter.

2.2 Fractals
A good definition of the term fractal is elusive. Any particular

definition seems to either exclude sets that are thought of as fractals or to

include sets that are not thought of as fractals.

The definition of a "fractal" should be regarded in the same way as

the biologist regards the definition of "life." There is no hard and fast

definition, but just a list of properties characteristic of a living thing. In

the same way, it seems best to regard a fractal as a set that has properties

such as those listed below, rather than to look for a precise definition

which will almost certainly exclude some interesting cases [Fish95].

12

Chapter Two Fractal Image Compression

When referring to fractal objects, most researchers typically define

them as things that [Niki07]:

• Have a 'fine' structure, continual zoom in any region of a fractal

can lead to fascinating complex details.

• Show some form of self-similarity, mostly approximate or

statistical. Fractals provide a repeated graphical content that is

easy to recognize and is visually appealing.

• Are too irregular to be described by the classic Euclidean

geometry, both globally and locally. The lack of tangents presents

a serious drawback for differential geometry-based analysis and

modeling.

• Usually have a non-integer 'dimension' (defined in some way).

Such a dimension is greater than the fractal topological

dimension. Unlike the widely known Euclidean dimension (0 for

a point, 1 for lines and curves, 2 for filled circles and 3 for cubes

and other volumetric objects), the fractal dimension is not

necessarily an integer.

• Are usually defined in a very simple way. Most fractals have

relatively simple models that exploit recursive or iterative

rendering schemes.

2.3 Self Similarity
A typical image does not contain the type of self-similarity found in

fractals. But, it contains a different sort of self-similarity. Figure (2.1)

shows regions of Lenna that are self-similar at different scales. A portion

of her shoulder overlaps a smaller region that is almost identical, and a

portion of the reflection of the hat in the mirror is similar to a smaller part

of her hat.

13

Chapter Two Fractal Image Compression

Figure (2.1) Lena image with self-similarity

The difference here is that the entire image is not self-similar, but

parts of the image is self-similar with properly transformed parts of itself.

Various studies indicated that most of the natural images contain this type

of self-similarity. It is the restricted redundancy type that fractal image

compression schemes attempt to eliminate [Sank98].

2.4 Famous Fractal Shapes
In general, fractals can be classified into two categories:

Deterministic and Random fractals. The first category represents a type of

fractals that are composed of several scaled down and rotated copies of

themselves (such as Sierpinski triangle, Von Koch curve, Hilbert curve,

Mandelbrot and Julia set). The second category represents natural

phenomena that are everywhere in nature (such as clouds, mountains,

coastlines, turbulence, roots, branches of tree, blood vessels, etc…)

[TaLo98].

Two popular shapes of deterministic fractals are described in the

following:

14

Chapter Two Fractal Image Compression

1. The Sierpinski Triangle

The Sierpinski triangle is named after the Polish mathematician

Waclaw Sierpinski, who described some of its interesting properties in

1916 [Mand04]. It is one of the simplest fractal shapes. It can be

generated by infinitely repeating a procedure of connecting the midpoints

of the three sides of triangle to form four separate triangles, and cutting

out the triangle in the center. Figure (2.2) illustrates the stages of

Sierpinski triangle construction [Lani04].

 Figure (2.2) Sierpinski triangle construction stages [Lani04]

2. Von Koch Curve

The curve of Von Koch is generated by a simple geometric

procedure, which can iterate an infinite number of times by dividing a

straight line segment into three equal parts and substituting the

intermediate part with two segments of the same length. Von Koch curve

is a very elementary example of fractal; it follows a simple rule of

construction. Figure (2.3) presents the stages of Von Koch construction

[Bour91].

Figure (2.3) Von Koch curve construction stages [Bour91]

15

Chapter Two Fractal Image Compression

2.5 Color Models
The purpose of a color model (also called color space or color

system) is to facilitate the specification of colors in some standard in

accepted way. In essence, a color model is a specification of a coordinate

system and a subspace within that system, where each color is

represented by a single point [Gonz02].

In the following some of the popular color models used in various

compression schemes are given:

1. RGB model

The red-green-blue (RGB) primary color system is the best known of

several color systems. This is due to the main feature of the human

perception of color. The color sensitive area in the Human Vision System

(HVS) consists of three different sets of cones and each set is sensitive to

the light of one of the three primary colors: red, green, and blue.

Consequently, any color sensed by the HVS can be considered as a

particular linear combination of the three primary colors [ShSu00].

Figure (2.4) shows the RGB color space, using a cube created by

three axes representing pure red, green, and blue color. A main property

of this color space is that the sum of all three basic colors, using

maximum intensity, is white. Gray-scale values follow the line from

black (the origin of the coordinate system) to white [Klin03].

The RGB model is used mainly in color image acquisition and

display systems. In color signal processing, including image and video

compression, the luminance-chrominance color system is more efficient

and, hence, widely used. This has something to do with the color

perception of the HVS. It is known that the HVS is more sensitive to

green than to red, and is least sensitive to blue. An equal representation of

red, green, and blue leads to inefficient data representation when the HVS

16

Chapter Two Fractal Image Compression

is the ultimate viewer. Allocating data only to the information that the

HVS can perceive can make video coding more efficient.

Luminance is concerned with the perceived brightness, while

chrominance is related to the perception of hue and saturation of color.

Roughly speaking, the luminance-chrominance representation agrees

more with the color perception of the HVS. This feature makes the

luminance-chrominance color models more suitable for color image

processing than RGB representation [ShSu00].

2. YUV model

The color space in Phase Alternating Line (PAL) TV-Standard

System is represented by YUV, where Y represents the luminance and U

and V represent the two color components [Ghan03]. The luminance Y

can be determined from the RGB model via the following relation:

Y= 0.299R+ 0.587G+ 0.114B ,…………………………………..(2.1)

(0,0,1)

(0,1,0)

(1,0,0)

Blue

Cyan

Green

Red

Yellow

Magenta

Black

White

Gray-scale Line

Figure (2.4) RGB Color Cube [Klin03]

17

Chapter Two Fractal Image Compression

It is noted that the three weights associated with the three primary

colors, R, G, and B, are not the same. Their different magnitudes reflect

the different responses of the HVS to different primary colors.

Instead of being directly related to hue and saturation, the other two

chrominance components, U and V, are defined as color differences, as

follows:

U =0.492(B- Y) ,..………………………………………………..(2.2)

V =0.877(R- Y) ,……...……………………………………….....(2.3)

In this way, the YUV model lowers computational complexity. It has

been used in Phase Alternating Line (PAL) video standard. Note that

PAL is an analog composite color TV standard and is used in most

European countries, some Asian countries, and Australia. In composite

systems, both the luminance and chrominance components of the TV

signals are multiplexed within the same channel. For completeness, the

transform equations from expression of RGB to YUV are listed below:

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−
−−=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

B
G
R

V
U
Y

100.0515.0615.0
436.0289.0147.0
114.0587.0299.0

 ,...………………………….(2.4)

3. YIQ model

This color space has been utilized in National Television Systems

Committee (NTSC) TV systems. NTSC is an analog composite color TV

standard and is used in North America and Japan [ShSu00].

The luminance information is still in Y, which represents the gray

scale information, while hue (I) and saturation (Q) carry the color

information [TiAj05].

18

Chapter Two Fractal Image Compression

The two equations below shows that the two chrominance

components (I, Q) are the linear transformation (i.e., rotation by 33o) of

the U and V components defined in the YUV model. Specifically,

I = -cos(33)U+ sin(33)V ,…………………………..………….(2.5)

Q = sin(33)U+ cos(33)V ,……………..…………………….....(2.6)

Substituting the U and V expressed in Equations (2.2) and (2.3) into

the above two equations, the YIQ could directly expressed in terms of

RGB. That is,

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−−=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

B
G
R

Q
I
Y

311.0523.0212.0
321.0275.0596.0

114.0587.0299.0
 ,...……………………………(2.7)

4. YDbDr

The YDbDr model is used in the Sequential Couleur a Memoire

(SECAM) TV system. SECAM is used in France, Russia, and some

eastern European countries. The relationship between YDbDr and RGB is

shown by the following expression:

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−
−−=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

B
G
R

Dr
Db
Y

217.0116.1333.1
333.1883.0450.0
114.0587.0299.0

 ,...………………………...(2.8)

That is,

Db = 3.059U ,..………………………………………………….(2.9)

Dr = -2.169V ,...………………………………………………..(2.10)

19

Chapter Two Fractal Image Compression

5. YCbCr model

From the above mentioned models, it can be seen that the U and V

chrominance components are the differences between the gamma-

corrected color B and the luminance Y, and the gamma-corrected R and

the luminance Y, respectively. The chrominance component pairs I and

Q, and Db and Dr are both linear transforms of U and V. Hence they are

very closely related to each other. It is noted that U and V may be

negative as well. So, in order to make chrominance components

nonnegative, the Y, U, and V are scaled and shifted to produce the

YCbCr model, which is used in the international coding standards JPEG

and MPEG [ShSu00], where Y is the luminous component while Cb and

Cr provide the color information [TiAj05, ShSu00]:

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−
−−=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

128
128
16

071.0368.0439.0
439.0291.0148.0
098.0504.0257.0

B
G
R

Cr
Cb
Y

 ,...……...................(2.11)

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−
−=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

Cr
Cb
Y

B
G
R

469.0188.01
0002.0863.11
582.1001.01

 ,………………………………(2.12)

2.6 Image Fractal Coding
PIFS image encoder consists of a set of transforms on regions of the

image. The set of regions (i.e., the domain blocks) from which the

transform domains are chosen are overlapped, while the regions (i.e., the

range blocks) forming the ranges of the transformation are tiled.

The set of transformations consist of a spatial contraction (e.g.,

averaging each 4 neighboring pixels) to construct a kxk blocks from a

2kx2k blocks, followed by one of the 8 square symmetry operations (4

rotations and 4 reflections), and followed by a contractive affine

transformation on the grey scale values (for a block with pixel values).

20

Chapter Two Fractal Image Compression

For a range block with pixel values (r0,r1,....,rm-1), and the domain

block (d0,d1,....,dm-1),the contractive affine approximation is,

iii osdr +=′ ,...………………………………………………...(2.12)

Where s (scale) and o (offset) are the affine transform coefficients, ri′ s

are the approximate (constructed) range values. The scale (s) and offset

(o) parameters are determined by applying the method of least sum of

square errors (χ2) between r' and r values [ToPi01]:

()

0;0
22

1

0

22

=
∂
∂

=
∂
∂

−′= ∑
−

=

os

rr
m

i
ii

χχ

χ
,...………………………………………......(2.13)

After straight forward manipulation to above equations, the following

expressions for scale (s) and offset (o) coefficients are obtained:

21

0

1

0

2

1

0

1

0

1

0

⎟
⎠

⎞
⎜
⎝

⎛
−

−
=

∑∑

∑∑∑
−

=

−

=

−

=

−

=

−

=

m

i
i

m

i
i

m

i
i

m

i
i

m

i
ii

ddm

rdrdm
s ,...……………………………………..(2.14)

21

0

1

0

2

1

0

1

0

1

0

1

0

2

⎟
⎠

⎞
⎜
⎝

⎛
−

−
=

∑∑

∑∑∑∑
−

=

−

=

−

=

−

=

−

=

−

=

m

i
i

m

i
i

m

i
ii

m

i
i

m

i
i

m

i
i

ddm

drdrd
o ,..………………….…………….…(2.15)

In each range-domain matching instance before determining the

value of , the scale (s) and offset (o) values should firstly imposed to

the clipping conditions (omin ≤ o ≤ omax) and (| s |≤ smax), where (omin,

omax) are the lower and upper boundaries of the permissible values of

offset, smax is the maximum permissible scale value. Secondly, they

should be quantized by using the following equations:

2χ

21

Chapter Two Fractal Image Compression

(⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= − 22 1

max

a
s s

sroundi) ,……………………………………....(2.16)

(⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−

= min
minmax

12 oo
oo

roundi
b

o) ,…………………………...…...(2.17)

saq i
s

s
22 1

max

−
=′ − ,………………………………………………...(2.18)

min
minmax

12
oi

oo
o obq +

−
−

=′ ,……………………………………...…(2.19)

Where, is and io are the quantization indices of scale and offset

coefficients. sq and oq are the quantized values of scale and offset

coefficients respectively. The quantized values of scale and offset

parameters should be used to construct the approximates r' and the sum of

errors (). 2χ

To asses the involved computational complexity; consider an nxn

image partitioned into non-overlapping range blocks, each clock has a

size (kxk). The number of tiled range blocks is n2/k2, while the number of

domain blocks is (n-2k-1)2. The computation of best match between a

range block and a domain block is O(k2). Considering k to be constant,

the computational complexity of an exhaustive search is O(n4).

The most direct and easy way to reduce the search complexity is by

monitoring the matching error; at any matching instance the IFS matching

error is checked. If it is below a pre-defined permissible level ε

(threshold) then the registered domain block is considered as the best

matched block and, then, the search across the domain blocks is stopped

[Geor06].

2.7 Iterated Function System for Zero-Mean Blocks
The traditional offset factor has dynamic range [-255,510], this may

cause large errors in some image regions (or points), especially those

22

Chapter Two Fractal Image Compression

points belong to high contrast area. Also, the traditional offset factors

require an additional bit (sign-bit). The results of some conducted tests

indicated that the offset values of adjacent range blocks doesn't show

significant correlation similar to that registered between the average

brightness values of the adjacent blocks. So, to handle this disadvantage a

change in the traditional IFS scheme was introduced, where the

contractive affain transform is changed to become [ToPi01]:

)(' ddsrr ii −=− ,…………………………………………….(2.20)

Where,

∑
−

=

=
1

0

1 m

i
irm

r ,………………………………………………….(2.21)

∑
−

=

=
1

0

1 m

i
id

m
d ,…………………………………………………(2.22)

To determine the scale (s) value, the method of least sum of

square errors (equations 2.13) is applied to get [Geor06],

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

>
−

=
∑
−

=

00

0

1

2

2
2

1

0

d

d
d

m

i
ii

if

if
rdrd

ms

σ

σ
σ

 ,……...…..……………..……...(2.23)

⎥
⎦

⎤
⎢
⎣

⎡
−++= ∑

−

=

1

0

222 22
m

i
iidr rd

m
rdss σσχ ,………………………..…(2.24)

Where,

2
1

0

22 1 dd
m

m

i
id −= ∑

−

=

σ ,…………………………………………..(2.25)

∑
−

=

−=
1

0

222 1 m

i
ir rr

m
σ ,……..………………..…………(2.26) [Geor06]

23

Chapter Two Fractal Image Compression

2.8 Moment Descriptor
In general, moments are set of parameters which describes the

distribution of material (in image processing it is equivalent to brightness)

relative to a reference point or an axis. The idea of using moments to

construct the image feature vectors is one of the most common methods

used today. Each moment order reflects different information for the

same image.

For a 2-D continuous function f(x,y), the moment of order (p+q) is

defined as :

∫ ∫
∞

∞−

∞

∞−

= dxdyyxfyxm qp
pq),(,...…………………………………….(2.27)

For p, q = 0, 1, 2, ….

A uniqueness theorem states that: if f(x,y) is piecewise continuous

and has nonzero values only in a finite part of the xy-plane, moments of

all orders exist, and the moment sequence (mpq) is uniquely determined

by f(x, y). Conversely, the set of moments {mpq} uniquely determines f(x,

y).

The central moments are defined as:

∫ ∫
∞

∞−

∞

∞−

−−= dxdyyxfyyxx q
c

p
cpq),()()(μ ,...…………………..…….(2.28)

Where

00

10

m
m

xc = and
00

01

m
m

yc =

For a 2-D discrete function f(x,y), the moment of order (p+q) about

the center point (xc, yc) is defined as [Gonz02]:

24

Chapter Two Fractal Image Compression

∑∑ −−=
y x

q
c

p
cpq yxfyyxx),()()(μ ,...………………………..….(2.29)

When this definition is applied to determine the first order moments

of the domain and range blocks the following expressions are obtained:

∑
−

=

−−=
1

0

))(()0,1(
m

i
icid ddkxM

∑
−

=

−−=
1

0

))(()1,0(
m

i
icid ddkyM

,…………………………….……...(2.30)

∑
−

=

−−=
1

0

))(()0,1(
m

i
icir rrkxM

∑
−

=

−−=
1

0

))(()1,0(
m

i
icir rrkyM

Where,

∑
−

=

=
1

0

1 m

i
id

m
d ,……………………………………………….……(2.31)

∑
−

=

=
1

0

1 m

i
irm

r ,……………………………………………….……(2.32)

2
1−

=
kkc ,………………………………………………..…….(2.33)

k is the block width (or height).

2.9 Moments Ratio Factor
Consider the following Moments-Ratio factor (R):

⎪
⎪
⎩

⎪⎪
⎨

⎧

>

≥
=

)0,1()1,0(
)1,0(
)0,1(

)1,0()0,1(
)0,1(
)1,0(

MMif
M
M

MMif
M
M

R ,……………………………….(2.34)

It is easily to prove that the magnitude of R factor is rotation and

reflection invariant. Also, by combining equations (2.34), (2.30) and

(2.20), we can easily prove that:

25

Chapter Two Fractal Image Compression

rd RR = ,………………………………………………………..(2.35)

This result implies that "if the range and domain blocks satisfy the

contractive affine transform, then their moments ratio factors (Rd and Rr)

should have similar magnitudes. This doesn't means that any two blocks

have similar R magnitudes are necessarily similar to each other".

This fact is utilized to improve (speed up) the range-domain search

task. Instead of comparing all domain blocks with each affine

transformed range block, only the domain blocks whose moments-ratio

factors (R) are similar to that of the tested range block should be passed

through the IFS-matching test [Geor06].

2.10 Down Sampling Methods
Down sampling is a process used for minification only. It may be

used to create thumbnail representations of an image. The basic idea

behind down sampling process is to represent a block of adjacent pixels

with one pixel. The type of down-sampling method depends on the speed

and quality requirements. The most popular down-sampling methods are

[Cran97]:

1. Median Representation

Median representation replaces a block of pixels with its median

value, see Figure (2.5) where an nxn window is passed over the image.

For each down sampled block, its pixels values are read and put into an

array, and then sorted in ascending order according to their values. The

middle value is then used to represent that block. This method requires

much computation time due to the number of comparisons needed to sort

the block of pixels.

26

Chapter Two Fractal Image Compression

2. Average Representation

Average representation also uses the nxn window (see Figure 2.6).

Each block of pixels is represented by the average of all pixels values.

This is not as slow as median representation.

Input image

 13 4 8

 2 9 6

7 25 16

 Ordered
pixels

2
4
6
7
8
9
13
16
25

Output image

 Figure (2.5) Minification by median representation

8 4 13

6 9 2

16 25 7

Input image

Average
pixels

10

Output image

 Figure (2.6) Minification by average representation

27

Chapter Two Fractal Image Compression

2.11 Affine Transformation
An affine transformation is the composition of a linear

transformation with translation. It can be written as:

)','(),(),(yxfdycxebyaxyxw =++++= ,…………………….….(2.36)

Where, w is the affine transformation, (a, b, c, d, e, and f) are real

numbers, (x,y) are the old coordinates of the transformed point, and (x',

y') are the new coordinates of the point.

This transformation is a two-dimensional affine transformation

[Colv96], it maps a plane to itself. In matrix form, the general equation of

an affine transformation is:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
f
e

y
x

dc
ba

y
x

w ,………………………………(2.37) [San97]

TAXXw +=)(,………………………………………….…..…(2.38)

Where, A is a (2×2) real matrix

e is the translation along x-direction

f is the translation along y-direction

(a, b, c, d) are the coefficients of combined isometric operations

(i.e., scaling, rotation, skew, reflection).

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

f
e

T is called the translation vector [Colv96]

Affine transformations can skew, rotate, scale and translate a

matrix [Sank98]. As a special case, a matrix A can be written in the form:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

θθ
θθ

cossin
sincos

21

21

rr
rr

dc
ba

A ,……………………………...(2.39)

Where, 22
1 car += is the scaling factor along x-direction.

28

Chapter Two Fractal Image Compression

22
2 dbr += is the scaling factor along y-direction.

a
c

=θtan is the angle of rotation around x-direction.

There are seven (simple) special cases of affine transformations;

Table (2.1) illustrates these cases [Ning97, BaHu93]:

Table (2.1) The special cases of affine transformations

29

Chapter Two Fractal Image Compression

Eight transformation matrices could be obtained from the processes

of rotation (0, 90, 180, 270) and reflection; these transformations matrices

are called the standard indexed spatial matrices. Table (2.2) illustrates the

effects of these 8 transformation matrices [Ning97]:

Table (2.2) The standard indexed spatial matrices [Ning97]

2.12 Partition Schemes

The first decision to be made when designing a fractal coding

scheme is the choice of the type of image partition used for the range

blocks. Since domain blocks must be transformed to cover range blocks,

this decision, together with the choice of block transformation, restricts

the possible sizes and shapes of the domain blocks. A wide variety of

partitions have been investigated, the majority being composed of

rectangular blocks.

30

Chapter Two Fractal Image Compression

 Figure (2.7) Right-angled range partition schemes. (a) Fixed block size,
(b) Quadtree, (c) Horizontal-vertical, (d) Irregular partition [WoJa99]

1. Fixed Size Square Blocks

The simplest possible range partition consists of fixed size square

blocks, as depicted in Figure (2.7a). This type of block partition is

successful in transform coding of individual image blocks since an

adaptive quantization mechanism is able to compensate for the varying

“activity” levels of different blocks, allocating few bits to blocks with

little detail and many to detailed blocks [WoJa99].

An image is partitioned into a set of nonoverlapped, equally spaced,

fixed size, small rectangular blocks. In such case the translation, rotation

and zooming can be made easily [ShSu00].

Fractal coding based on the standard block transform, is not capable

of such adaptation, representing a significant disadvantage of this type of

block partition for fractal coding. This deficiency may be addressed by

introducing adaptivity to the available block transforms, but the usual

31

Chapter Two Fractal Image Compression

solution is to introduce an adaptive partition with large blocks in low

detail regions and small blocks where there is significant detail. Of

course, there is a tradeoff between the lower distortion expected by

adapting the partition to the image content, and the additional bits

required to specify the partition details.

2. Quadtree

The quadtree partition, see Figure (2.7b), employs the well-known

image processing technique that based on a recursive splitting of selected

image quadrants [WoJa99]. An image is represented as a tree in which

each node, corresponding to a square portion of the image, contains four

subnodes, corresponding to the four quadrants of the square. The root of

the tree is the initial image [Fish95]. The usual top-down construction

starts by selecting an initial level in the tree, corresponding to some

maximum range block size, and recursively partitioning any block for

which a match better than some pre-selected threshold is not found. The

partitioning decision could depend of volume of details existing in the

block, the details could be measured using various homogeneity

measures. The alternative bottom-up construction begins with a uniform

partition using the smallest block size, and then proceeds to merge those

neighboring blocks for which a more efficient representation is provided

by the resulting larger block, which is one level up the quadtree. Compact

coding of partition details is possible by taking advantage of the tree

structure of the partition [WoJa99].

Jacquin’s original PIFS scheme used a variant of the quadtree

partition in which the block splitting was restricted to two levels. Instead

of automatically discarding the larger block prior to splitting it into four

sub-blocks if an error threshold was exceeded, it was retained if

32

Chapter Two Fractal Image Compression

additional transforms on up to two sub-blocks were sufficient to reduce

the error below the threshold [Fish95].

3. Horizontal-Vertical

The horizontal-vertical (HV) partition, see Figure (2.7c), like the

quadtree, produces a tree-structured partition of the image. Instead of

recursively splitting quadrants, however, each image block is split into

two sub-blocks by a horizontal or vertical line. Splitting positions may be

constructed so that boundaries tend to fall along prominent edges, or it is

based on the accuracy of approximation by constant pixel values in each

of the new blocks created by a particular split. Compact coding of the

partition details, similar to that utilized for the quadtree partition, is

possible [WoJa99].

4. Irregular Regions

A tiling of the image by right-angled irregular-shaped ranges may be

constructed by a variety of merging strategies on an initial fixed square

block, see Figure (2.7d), or quadtree partition. Chain codes allow the

range shapes to be coded efficiently [Fish95].

5. Overlapped Blocks

Overlapping range blocks have been used to reduce blocking

artifacts, within a quadtree partition, and with multiple domain transforms

in a fixed block size partition. This overlapping step may not lead to a

corresponding improvement in mean square error. A more complex form

of block overlapping, but with a fixed block size range partition, provided

improved MSE and subjective quality. These techniques, while are

promising, have been overtaken to a large extent by developments in

wavelet domain fractal coding [WoJa99].

33

Chapter Two Fractal Image Compression

2.13 Quantization
The dictionary definition of the term “quantization” is “to restrict a

variable quantity to discrete values rather than to a continuous set of

values” [Salo07]. Any analog quantity that is to be processed by a digital

computer or digital system must be converted to an integer number

proportional to its amplitude. The conversion process between analog

samples and discrete-valued samples is called quantization [Prat01].

 In the field of data compression, quantization is used in two ways:

1. If the data to be compressed is in the form of large numbers,

quantization is used to convert it to small numbers. Small numbers

take less space than large ones, so quantization generates compression.

On the other hand, small numbers generally contain less information

than large ones, so quantization results in lossy compression.

2. If the data to be compressed is analog (e.g., a voltage that changes with

time) quantization is used to digitize it into small numbers. The

smaller the numbers the better the compression, but also the greater

the loss of information. This aspect of quantization is used by several

speech compression methods.

2.13.1 Scalar Quantization
Scalar quantization is an example of a lossy compression method,

where it is easy to control the trade-off between compression ratio and the

amount of loss. However, because it is so simple, its use is limited to

cases where much loss can be tolerated [Salo07].
The amplitude of an analog signal sample is compared to a set of

decision levels. If the sample amplitude falls between two decision levels,

it is quantized to a fixed reconstruction level lying in the quantization

34

Chapter Two Fractal Image Compression

band. In digital systems, each quantized sample is assigned a binary code

[Prat01].

2.14 DPCM (Differential Pulse Coding Modulation)

The DPCM system was developed at Bell Laboratories a few years

after World War II. It is most popular as a speech-encoding system, and it

is widely used in telephone communications [Sayo06].

The DPCM compression method is a member of the family of

differential encoding (compression) methods, which itself is a

generalization of the simple concept of relative encoding. It is based on

the well-known fact that neighboring pixels in an image (and also

adjacent samples in digitized sound) are correlated. Correlated values are

generally similar, so their differences are small which resulting in

compression. Table (2.3) lists 25 consecutive values of the function sin θ,

calculated for θ values from 0 to 360o in steps of 15o. The values

therefore range from −1 to +1, but the 24 differences sin θi+1−sin θi (also

listed in the table) are all in the range [−0.259, 0.259]. The average of the

25 values is zero, as is the average of the 24 differences. However, the

variance of the differences is small, since they are all closer to their

average.

Table (2.3) 25 Sine values and 24 Differences

Sin(t) 0 0.259 0.500 0.707 0.866 0.966 1.000 0.966

Diff _ 0.259 0.241 0.207 0.159 0.100 0.034 -0.034

Sin(t) 0.866 0.707 0.500 0.259 0 -0.259 -0.500 -0.707

Diff -0.100 -0.159 -0.207 -0.241 -0.259 -0.259 -0.241 -0.207

Sin(t) -0.866 -0.966 -1.000 -0.966 -0.866 -0.707 -0.500 -0.259 0

Diff -0.159 -0.100 -0.034 0.034 0.100 0.159 0.207 0.241 0.259

35

Chapter Two Fractal Image Compression

Figure (2.8a) shows the histogram of an image that consists of 8-bit

pixels. For each possible pixel value (between 0 and 255) there is a

different number of pixels. Figure (2.8b) shows the histogram of the

differences between consecutive pixels. It is easy to see that most of the

differences (which, in principle, can be in the range [-255, 255]) are

small; only a few are outside the range [−50, +50].

Figure (2.8) A Histogram of an image pixel values and of their

differences

Differential encoding methods calculate the differences di = ai − ai−1

between consecutive data items ai, and encode the di’s [Sayo06, Salo07].

The first data item, a0, is either encoded separately or is written on the

compressed stream in raw format. In either case the decoder can decode

and generate a0 in exact form. In principle, any suitable method, lossy or

lossless, can be used to encode the differences. In practice, quantization is

often used, resulting in lossy compression. The quantity encoded is not

the difference di but a similar, quantized number that is denoted by .

The difference between di and is the quantization error qi [Salo07].

id̂

id̂

It turns out that the lossy compression of differences introduces a

new problem, namely, the accumulation of errors. This is easy to see

36

Chapter Two Fractal Image Compression

when the operation of the decoder is considered. The decoder get (as

input) the encoded values of , decodes them, and uses them to generate

"reconstructed" values (where = +) instead of the original data

values ai. The decoder starts by reading and decoding a0. It then inputs

=d1+q1 and calculates = a0+ = a0+d1+q1 = a1+q1. The next step is

to input = d2+q2 and to calculate = + = a1 + q1 + d2 + q2 = a2 +

q1 + q2. The decoded value contains the sum of two quantization

errors. In general, the decoded value equals [Salo07]

id̂

â

iâ iâ

1d̂

1ˆ −ia

2 â

nˆ

id̂

d̂

1d̂ 1â

2d̂ â 1 2

2

a

∑
=

+=
n

i
inn qaa

1

ˆ ,……………………………………….(2.40) [ShSu00]

and it includes the sum of n quantization errors. Sometimes, the

errors qi are signed and tend to cancel each other out in the long run. In

general, however, this is a problem.

The solution is easy to understand once it is realized that the encoder

and the decoder operates on different pieces of data. The encoder

generates the exact differences di from the original data items ai, while

the decoder generates the reconstructed using only the quantized

differences . The solution is, therefore, to modify the encoder to

calculate differences of the form di = ai − . The difference di is

calculated by subtracting the most recent reconstructed value (which

both encoder and decoder have) from the current original item ai.

iâ

id̂

1ˆ −ia

1ˆ −ia

The decoder starts by reading and decoding a0. It then inputs

 and calculates . The next step is

to input and calculates . The

decoded value contains just the single quantization error . And, in

general, the decoded value equals

111
ˆ qdd +=

2d̂

11110101
ˆˆ qaqdadaa +=++=+=

21212 ˆˆˆˆ dadaa ++=+=

iâ ii qa

22 qd +=

2â

222 qaq +=

2q

+ , so it contains just

37

Chapter Two Fractal Image Compression

quantization error . The quantization noise in decoding equals the

noise generated when was quantized.

iq iâ

ia

Figure (2.9a) summarizes the operations of both encoder and

decoder. It shows how the current data item is saved in a storage unit

(a delay), to be used for encoding the next item .

ia

a 1+i

The next step in developing a general differential encoding method

is to take advantage of the fact that the data items being compressed are

correlated. This means that in general, an item depends on several of

its near neighbors, not just on the preceding item . Better prediction

(and, as a result, smaller differences) can therefore be obtained by using

N of the previously-seen neighbors to encode the current item (where

N is a parameter). Therefore, it would like to have a function pi = f(,

, ...,) to predict ai , see Figure (2.9b) [Salo07].

ia

1−ia

ia

1ˆ −ia

2ˆ −ia Nia −ˆ

Decoder Encoder

 a. Differential [Sayo06]

 b. DPCM

Encoder Decoder

Figure (2.9) A Differential and DPCM codecs

38

Chapter Two Fractal Image Compression

Notice that f has to be a function of the , not the , since the

decoder has to calculate the same f. Any method using such a predictor is

called differential pulse code modulation, or DPCM. In practice, DPCM

methods are used mostly for audio compression, but are illustrated here in

connection with image compression [Salo07].

jia −ˆ jia −

2.15 The Test Measures
A lot of key parameters were utilized in the literature to describe the

performance of various compression methods. In this research the fidelity

criteria (MAE, MSE, and PSNR) in addition to the compression ratio and

bit rate were used to describe the performance of the established four FIC

schemes at different coding conditions:

A. Fidelity Criteria

There are several types of matching criteria, among which the mean

square error (MSE) and mean absolute difference (MAD) are used most

often. It is noted that the sum of the squared difference (SSD) or the sum

of the squared error (SSE) is essentially same as MSE. The mean absolute

difference is sometimes referred to as the mean absolute error (MAE).

In the MSE matching criterion, the dissimilarity metric M(u,v) is

defined as [ShSu00]

M(u,v)=(u-v)2 ,…………………………………………………(2.41)

While, in the MAD,

M(u,v)=|u-v| ,…………………………………………………..(2.42)

Developers of lossy image compression methods need a standard

metric to measure the quality of reconstructed images compared with the

39

Chapter Two Fractal Image Compression

original ones. Well reconstructed image resembles the original one, and

the metric value should indicate this resemblance in proper way. Such a

metric is a dimensionless number, and that number should not be very

sensitive to small variations in the reconstructed image. The most

common measure used for this purpose is the peak signal to noise ratio

(PSNR). It is familiar to workers in the field, it is also simple to calculate,

but it has only a limited, approximate relationship with the perceived

errors noticed by the human visual system. This is why higher PSNR

values imply closer resemblance between the reconstructed and the

original images, but they do not provide a guarantee that viewers will like

the reconstructed image.

Denoting the pixels of the original image by Pi and the pixels of the

reconstructed image by Qi (where 1 ≤ i ≤ n), then the mean square error

(MSE) between the two images is defined as:

(∑
=

−=
n

i
ii QP

n
MSE

1

21) ,…………………………………………...(2.43)

It is the average of the square of the errors (pixels' differences) of the

two images. The root mean square error (RMSE) is defined as the square

root of the MSE [Salo07]. The Peak signal-to-noise ratio (PSNR) is

defined as [Fish95]:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

RMSE
P

PSNR iimax
log20 10 ,……………………………….….….(2.44)

The absolute value is normally not needed, since pixel values are

rarely negative. For a bi-level image, the numerator is 1. For a grayscale

image with eight bits per pixel, the numerator is 255.

Greater resemblance between the images implies smaller RMSE and,

as a result, larger PSNR. The PSNR is dimensionless, since the units of

40

Chapter Two Fractal Image Compression

both numerator and denominator are pixel values. However, because of

the use of the logarithm, it can be said that the PSNR value is expressed

in decibels (dB). The use of the logarithm also implies less sensitivity to

changes in the RMSE. The PSNR has no absolute meaning, it is

meaningless to say that a PSNR of, say, 25 is good. PSNR values are

used only to compare the performance of different lossy compression

methods, or to describe the effects of different parametric values on the

performance of an algorithm. The MPEG committee, for example, uses

an informal threshold of PSNR= 0.5 dB to decide whether to incorporate

a coding optimization, since they believe that an improvement of that

magnitude would be visible to the eye.

Typical PSNR values range between 20 and 40. Assuming pixel

values in the range [0, 255], a RMSE value of 25.5 results in a PSNR of

20, and a RMSE value of 2.55 results in a PSNR of 40. A RMSE of zero

(i.e., identical images) results in an infinite (more precisely, undefined)

PSNR. A RMSE of 255 results in a PSNR of zero, and RMSE values

greater than 255 yield negative PSNRs.

Some authors define the PSNR as

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

MSE
P

PSNR ii
2

10

max
log10 ,………………………………….….(2.45)

In order for the two formulations to produce the same result, the

logarithm is multiplied in this case by 10 instead of 20, since

log10(A2)=2log10(A). Either definition is useful, because only relative

PSNR values are used in practice [Salo07].

41

Chapter Two Fractal Image Compression

B. Compression Compactness
Various measures are used to describe the achieved reduction in data

size due to compression, in this research work the compression ration

(Cr) and bit rate were adopted as compression measures.

Compression ratio is used to refer to the degree of reduction of

image file (or data) size due to compression process. This measure is

defined as the ratio between the size of the original uncompressed image

file to the size of the overall compressed file [Umba98]:

sizefilencompressio
sizefileionuncompressCr = ,…………………………………….(2.46)

Bit rate (BR) refers to the average number of bits required to

represent the value of each image pixel, usually it is determined as the

ratio between the size of compressed file and the size of the original

image file:

()
()pixelsinsizefileimage

bitsinsizefilencompressioBR = ,……………………………….(2.47)

The above defined Cr and BR parameters have been used as

indicators for the compactness ability of the proposed compression

schemes in this research project.

2.16 Entropy
The entropy of a single symbol ai is defined as −Pi log2 Pi, where

Pi is the probability of occurrence of ai in the data. The entropy of ai is

the smallest number of bits needed, on average, to represent symbol ai.

Claude Shannon, the creator of information theory, coined the term

entropy in 1948, since this term is used in thermodynamics to indicate the

amount of disorder in a physical system.

42

Chapter Two Fractal Image Compression

Assume the H is the amount of information, in bits, sent by the

transmitter in one time unit. The amount of information contained in one

base-n symbol is thus H/s (because it takes time 1/s to transmit one

symbol), or . This quantity is called the entropy of the data

being transmitted. In analogy we can define the entropy of a single

symbol ai can be defined as −Pi log2 Pi. This is the smallest number of

bits needed, on average, to represent the symbol.

∑− n
ii PP

1 2log

The entropy of the data depends on the individual probabilities Pi,

and its largest value occurred when all n probabilities are equal [Salo04].

2.17 Huffman Coding

This technique was developed by David Huffman as part of a class

assignment; the class was the first ever in the area of information theory,

and was taught by Robert Fano at MIT. The codes generated using this

technique or procedure are called Huffman codes. These codes are prefix

codes and are optimum for a given model (set of probabilities).

The Huffman procedure is based on two observations regarding

optimum prefix codes [Sayo06].

1. The more frequently occurring symbols can be allocated with shorter

codewords than the less frequently occurring symbols .

2. The two least frequently occurring symbols will have codewords of the

same length, and they differ only in the least significant bit [TiAj05].

It is easy to see that the first observation is logical and correct. If

symbols that occur more often had longer codewords than the codewords

for symbols that occurred less often, the average number of bits per

symbol would be larger than that obtained when the conditions were

43

Chapter Two Fractal Image Compression

reversed. Therefore, a code that assigns longer codewords to symbols that

occur more frequently cannot be optimum.

A simple application of Huffman coding to image compression

would be to generate a Huffman code for the set of values that any pixel

may take. For monochrome images, this set usually consists of integers

from 0 to 255 [Sayo06].

Huffman coding is a popular method for data compression. It

serves as the basis for several popular programs run on various platforms.

Some programs use just the Huffman method, while others use it as one

step in a multistep compression process. It generally, it produces better

codes. It produces the best code when the probabilities of the symbols are

negative powers of 2. Huffman constructs a code tree from the bottom up

(builds the codes from right to left). Since its development, in 1952, this

method has been the subject of intensive research into data compression.

The algorithm starts by building a list of all the alphabet symbols

in descending order of their probabilities. It then constructs a tree, with a

symbol at every leaf, from the bottom up. This is done in steps, where at

each step the two symbols with smallest probabilities are selected, added

to the top of the partial tree, deleted from the list, and replaced with an

auxiliary symbol representing the two original symbols. When the list is

reduced to just one auxiliary symbol (representing the entire alphabet),

the tree is complete. The tree is then traversed to determine the codes of

the symbols [Salo07].

2.18 Arithmetic Coding
The method of generating variable-length codes called arithmetic

coding. Arithmetic coding is especially useful when dealing with sources

with small alphabets, such as binary sources, and alphabets with highly

skewed probabilities. It is also a very useful approach when, for various

44

Chapter Two Fractal Image Compression

reasons, the modeling and coding aspects of lossless compression are to

be kept separate [Sayo06].

The Huffman method is simple, efficient, and produces the best

codes for the individual data symbols. However, the only case where it

produces ideal variable-size codes (codes whose average size equals the

entropy) is when the symbols have probabilities of occurrence that are

negative powers of 2 (i.e., numbers such as 1/2, 1/4, or 1/8). This is

because the Huffman method assigns a code with an integral number of

bits to each symbol in the alphabet. Information theory shows that a

symbol with probability 0.4 should ideally be assigned a 1.32-bit code,

since −log2 0.4 ≈ 1.32. The Huffman method, however, normally assigns

such a symbol a code of 1 or 2 bits.

Arithmetic coding overcomes the problem of assigning integer

codes to the individual symbols by assigning one (normally long) code to

the entire input data. The method starts with a certain interval, it reads the

input file symbol by symbol, and it uses the probability of each symbol to

narrow the interval. Specifying a narrower interval requires more bits, so

the number constructed by the algorithm grows continuously. To achieve

compression, the algorithm is designed such that [Salo07] more probable

symbols reduce the interval less than the less probable symbols and hence

add fewer bits in the encoded message [TiAj05], with the result that high-

probability symbols contribute fewer bits to the output [Salo07].

2.19 Shift Coding
The idea of this method is to encode the sequence of numbers by

codewords whose bit length is less than the bit length required to

represent the maximum value of the sequence of numbers to be coded.

The numbers whose values are large may splitted into a sequence of

codewords, by using the following formula:

45

Chapter Two Fractal Image Compression

46

X = nWm+Wr ,………………………………………………..(2.48)

Where:

X is the number to be coded.

n is the number of codewords that used to encode the number X.

Wm is the lowest value which cannot be coded by using a single

codeword.

Wr is the value of the last codeword used to encode X.

The values of Wm, Wr, and n are determined by using the following

equations

Wm = 2b – 1 ,…………………………………………..……(2.49)

Wr = X mod Wm ,…………………………….……………..(2.50)

n = X div Wm ,……………………………………………...(2.51)

Where b is the number of bits used to represent each single shift

codeword.

The performance of Huffman coding and shift coding are better

when the sequence of numbers has a histogram whose shape is highly

peaked. The performance of shift coding is better than Huffman and

arithmetic coding when the histograms have long tails [Mahm07,

Gonz02].

3.1 Introduction
This chapter is dedicated to present the design considerations and

implementation requirements, which were taken into consideration

throughout the design stage of the proposed enhanced fractal image

compression scheme, that has some additional stages to speed-up the

compression task in comparison with the traditional scheme.

In this research project, two major enhancement steps have been

introduced to significantly reduce the time of the elapsed encoding process,

without making significant reduction in image quality. The first

enhancement step is using the developed moment based predictor to reduce

the number of isometric mapping trials, applied on each domain block,

from 8 to 1 trial; in other words, the introduced predictor can assign the

proper isometric mapping that required to set the domain block in closest

form to the matched domain block. The second enhancement step implies

using the moment based descriptor to classify the domain and range blocks

into classes, and instead of testing all domain blocks belong to domain pool

to find out the block the best matches the coded range block (using IFS-

mapping), only the domain blocks that have similar class index to that of

range block will be passed through the IFS-matching test.

The two main modules of the established FIC-schemes are: encoding

and decoding modules. The structure of the established system and the

functionality of its modules will be discussed in details in the next sections.

47

Chapter Three The Enhanced FIC Scheme

48

3.2 The System Model
The general structure of the proposed system is illustrated in figure

(3.1). It consists of two basic modules: encoding and decoding modules.

The input to the encoder module is a BMP (Bitmap) image file. The data of

this image is passed through the encoding stages, and subjected to various

operations to produce the compressed file. This compressed file could be

passed through decoding stages, and subjected to a sequence of operations,

to reconstruct the bitmap image.

Each module (i.e. encoder and decoder) implies several operations,

working systematically to lead to the final result.

Bitmap
color image

file

Load
Bitmap image

file data
R,G,B

Color
transform

from RGB to
YCbCr

Down
sample

by 2

Cb,Cr

Y

Resize the Y, Cb', Cr' bands

Y',Cb",Cr"

FIC encoder
(applied on each

component,
separately)

DPCM (for
offset

quantization
indexed only)

Mapping to Positive
(Scale coefficients and

offset codewords)

IFS()-Code
set

Shift Encoder
(Scale and offset

codewords

Compression
Stream

Codewords

a. Encoding Module
Figure (3.1) The System Model

Chapter Three The Enhanced FIC Scheme

3.3 Encoder Module
As shown in figure (3.1a) the main stages of the encoder are started

from loading image data, and passed through color transform,

downsampling, FIC encoding, DPCM, and, as a final stage, shift encoding.

The output of the last stage (i.e., codewords) are saved in compressed file.

3.3.1 Load BMP Image
The input to this system is a BMP image file; in the established

system, the BMP image file was used as an input to the system. The

considered color resolution of the images is either 24 or 8 bit/pixel. The

image data is loaded and used to fill-up the Red, Green, and Blue arrays,

each array is assigned for one primary color, as illustrated in Algorithm

(3.1).

Compression
Stream

Load the
codewords

from the file

Mapping Positive
to

Positive/Negative
(Scale and offset

coefficients

Shift Decoding
(Scale and offset

coefficients

Differential Pulse
Decoder (offset

coefficients)

IFS()
FIC Decoder (to

establish each
component,
individually)

Resize the
reconstructed
bands to their
original size

Cb,Cr
Y,Cb,Cr

Up
sampling

by 2
Y

Cb,Cr

Color Transform
from YCbCr to RGB

R,G,B
Reconstructed
Color image

file
Save as

bitmap image

b. Decoding Module
Figure (3.1) Continue

49

Chapter Three The Enhanced FIC Scheme

Algorithm (3.1) Read BMP Image
Goal: Read 24 or 8 bit/pixel BMP image file
Input:

 ImgFileName// image file name
Output:

Wid, Hgt// image width and height
Red(0 to Wid-1, 0 to Hgt-1)// Red component of image
Grn(0 to Wid-1, 0 to Hgt-1)// Green component of image
Blu(0 to Wid-1, 0 to Hgt-1)// Blue component of image

Step1: Get from ImgFileName the BMPH // BMPH is the BMP Header
Get image's width and height values from its header
Set Wid ← BMPH.Wid
Set Hgt ← BMPH.Hgt

Step2: Check image pixel resolution
If BMPH.BitPlane = 24 Then

Set DataSize← BMPH.FileSize-BMPHSize
Get ImgFileName, Img(DataSize-1) //Img contains the image's data
Set I←0
For all X, Y Do {where 0≤X≤Wid-1, 0≤Y≤Hgt-1}

Set Red(X,Y)←Img(I)
Set Grn(X,Y)←Img(I+1)
Set Blu(X,Y)←Img(I+2)
Increment I by 3

End For
Else if BMPH.BitPlane = 8 Then

Set NoColor← (BMPH.OffsetPosition –54) div 4
Get ImgFileName, RGBrecord(NoColor-1) // RGBrecord contains 4

cells Red , Green, Blue, and A is a reserved byte for BMP
images of 8 bit/pixel resolution

Set DataSize← BMPH.FileSize – BMPHSize – NoColor
Get ImgFileName, Img(DataSize–1)
Set I←0
For all X, Y Do {where 0≤X≤Wid-1, 0≤Y≤Hgt-1}

Set Red(X,Y)←RGBrecord(Img(X)).Red
Set Grn(X,Y)←RGBrecord(Img(X)).Green
Set Blu(X,Y)←RGBrecord(Img(X)).Blue

End For
Return (Wid, Hgt, Red, Grn, Blu)

Else
Display Message "The Sellected Image's BitPlane is neither 24 nor 8"

End If
Step3: End.

50

Chapter Three The Enhanced FIC Scheme

3.3.2 Conversion from RGB to YCbCr Color Space
In this stage the three obtained basic colors (Red, Green, and Blue) are

converted into the YCbCr color representation. This stage is important to

make the image data representation more suitable for compression. This

conversion is made using equation (2.11). Algorithm (3.2) shows the

implemented steps to make this color conversion.

Algorithm (3.2) YCbCr color model transformation
Goal: Convert the image from RGB to YCbCr color model
Input:

Wid, Higt
Red(0 to Wid-1, 0 to Hgt-1)
Grn(0 to Wid-1, 0 to Hgt-1)
Blu(0 to Wid-1, 0 to Hgt-1)

Output:
 Yc(0 to Wid-1, 0 to Hgt-1)// Y component of the image
Cb(0 to Wid-1, 0 to Hgt-1)// Cb component of the image
Cr(0 to Wid-1, 0 to Hgt-1)// Cr component of the image

Step1: Convert each RGB pixel value into its corresponding YCbCr value
For all X, Y Do {where 0≤X≤Wid-1, 0≤Y≤Hgt-1}

Set Yc(X,Y)←0.257*Red(X,Y)+0.504*Grn(X,Y)+0.098*Blu(X,Y)+16
Set Cb(X,Y)←–0.148*Red(X,Y)–0.291*Grn(X,Y)+0.439*Blu(X,Y)+128
Set Cr(X,Y)← 0.439*Red(X,Y) –0.368*Grn(X,Y) –0.071*Blu(X,Y)+128

End For
Step2: Return (Yc, Cb, Cr).

3.3.3 Down Sampling
The three color components of YCbCr model are: Y-component

which represents the luminance, and (Cb, Cr) components which represent

the chrominance components of the color image. Most of the data energy is

concentrated in Y component, while the components Cb, Cr convey little

part of the image information energy. Beside to that the Human Vision

System (HVS) doesn't show high spatial discrimination for the

chrominance components (Cb, Cr), while it has high discrimination power

against the contents of Y-component. So, the chrominance components are

51

Chapter Three The Enhanced FIC Scheme

52

down-sampled by 2 using the averaging method, see section (2.10), which

is depicted in algorithm (3.3).

Algorithm (3.3) Down-Sampling by Averaging
Goal: Down-sampling Cb and Cr by 2
Input:

Wid, Hgt
Cb(0 to Wid-1, 0 to Higt-1)
Cr(0 to Wid-1, 0 to Higt-1)

Output:
nWid, nHgt// new width and height after down-sampling
Cb'(0 to Wid/2-1, 0 to Higt/2-1)// Cb component of the image after down-

sampling
Cr'(0 to Wid/2-1, 0 to Higt/2-1)// Cr component of the image after down-

sampling
Step1: Convert the width and height into its corresponding down-sampled ones

Set Wh←Wid div 2-1
Set Hh←Hgt div 2-1
If Wid is even number then Set nWid←Wh else Set nWid←Wh+1
If Hgt is even number then Set nHgt←Hh else Set nHgt←Hh+1

Step2: Convert Cb and Cr into Cb' and Cr' by down-sampling
For all X, Y Do {where 0≤X≤Wh, 0≤Y≤nHgt-1}

Set Cb'(X,Y)←(Cb(X*2,Y*2) + Cb(X*2+1,Y*2) + Cb(X*2,Y*2+1) +
Cb(X*2+1,Y*2+1))/4

Set Cr'(X,Y)← (Cr(X*2,Y*2) + Cr(X*2+1,Y*2) + Cr(X*2,Y*2+1) +
Cr(X*2+1,Y*2+1))/4

End For
Step3: Check if there are un-computed pixels in rows or colums

If Wid is an odd number of columns then
Set Wm←Wid-1
For all Y Do{where 0≤Y≤Hh}

Set Cb'(nWid,Y)←(Cb(nWid,Y*2)+Cb(nWid,Y*2+1))/2
Set Cr'(nWid,Y)← (Cr(nWid,Y*2)+Cr(nWid,Y*2+1))/2

End For
End If
If Hgt is an odd number of rows then

Set Hm←Hgt-1
For all X Do{where 0≤X≤Wh}

Set Cb'(X,nHgt)←(Cb(X*2,nHgt)+Cb(X*2+1,nHgt))/2
Set Cr'(X,nHgt)← (Cr(X*2,nHgt)+Cr(X*2+1,nHgt))/2

End For
End If
If both Wid and Hgt are odd numbers Then

Set Cb'(nWid,nHgt)←Cb(Wm,Hm)
Set Cr'(nWid,nHgt)←Cr(Wm,Hm)

End If
Step4: Return (Cb', Cr', nWid, nHgt).

Chapter Three The Enhanced FIC Scheme

Beside to the manipulation of down-sampling, by applying the

averaging method, some additional steps taken to handle the problem of the

odd numbers of columns and rows, because the averaging method requires

that the numbers of columns and rows should be even.

3.3.4 Resizing the Bands (Y, Cb, Cr)

In this step the bands sizes (i.e., width and height) are adjusted before

partitioning each band into range blocks.

The image will loose some of its pixels if the block length is not

suitable relative to the width and height of each band. This problem is

solved by resizing the three bands (Y, Cb, and Cr) to set their dimensions

as multiples of the block length. The bilinear interpolation method was

used to create the additional columns and rows. The maximum number of

columns or rows that may required to be generated depends on the block

size. The number of additional columns or rows is determined using the

following equation:

S
b
Sbn −⎥⎥
⎤

⎢⎢
⎡= ,……………………………………………………....(3.1)

Where:

S is the width or height of the image.

b is the block size.

n is the number of additional columns or rows.

⎡ ⎤x is the lowest integer number higher than or equal to x.

Algorithm (3.4) shows the steps taken to perform the bands resizing

task.

53

Chapter Three The Enhanced FIC Scheme

54

Algorithm (3.4) Resize the Three Bands
Goal: Resize the bands Y, Cb, and Cr
Input:

Bnd()// one of these bands Y, Cb, or Cr
W// width of the band
H// height of the band
BlkLength// the block length

Output:
nBnd// the new band after resizing
nW// the new width
nH// the new height

Step1:Check if the width and the height are accept the division by the block length
without any rest

Check If (W mod BlkLength) not zero Or (H mod BlkLength) not zero Then
Set Nx←W div BlkLength
Set Wp←Nx * BlkLength
Check If Wp < W Then

Increment Nx by 1
Set Wp ← Wp + BlkLength

End If
Decrement Nx by 1
Set Wpm←Wm-1
Set Wm ←W-1
Set Lx ← Wp – W
Set Tx ← Wm / (Lx + 1)//These statements were set to solve the width

problem
Set Ny ← H Div BlkLength
Set Hp ← Ny * BlkLength
Check If Hp < H Then

Increment Ny by 1
Set Hp ← Hp + BlkLength

End If
Decrement Ny by 1
Set Hpm ← Hp – 1
Set Hm ← H - 1
Set Ly ← Hp – H
Set Ty ← Hm / (Ly + 1)

Set Img←Bnd// where the size of Img is the new size Wpm*Hpm
Check If Lx is a larger than zero Then

For all Y Do {where 0≤Y≤Hm}
Set St←0
Set Xx←-1
For all Ix Do {where 1≤Ix≤Lx}

Set Ed←Tx*Lx
For all X Do {where St≤X≤Ed}

Increment Xx by 1
Set A(Xx)←Img(X,Y)

End For Continue

Chapter Three The Enhanced FIC Scheme

Increment Xx by 1
Set A(Xx)←(Img(Ed,Y)+Img(Ed+1,Y))/2
Set St←Ed+1

End For

For all X Do {where St≤X≤Wm}
Increment Xx by 1
Set A(Xx)←Img(X,Y)

End For
For all X Do {where 0≤X≤Wpm}

Set Img(X,Y)←A(X)
End For

End For
End If

Check If Ly is a larger than zero Then

For all X Do {where 0≤X≤Wpm}
Set St←0
Set Yy←-1
For all Iy Do {where 1≤Iy≤Ly}

Set Ed←Ty*Ly
For all Y Do {where St≤Y≤Ed}

Increment Yy by 1
Set A(Yy)←Img(X,Y)

End For
Increment Yy by 1
Set A(Yy)←(Img(X,Ed)+Img(X,Ed+1))/2
Set St←Ed+1

End For
For all Y Do {where St≤Y≤Hm}

Increment Yy by 1
Set A(Yy)←Img(X,Y)

End For
For all Y Do {where 0≤Y≤Hpm}

Set Img(X,Y)←A(Y)
End For

End For
End If
Set nW←Wp
Set nH←Hm

Set nBnd←Img

End If
Step2: Return(nBnd, nW, nH).

55

Chapter Three The Enhanced FIC Scheme

The above algorithm describes the resizing steps applied on one band,

so this algorithm is implemented on the three bands (i.e., Y, Cb, Cr)

individually, one after the other.

3.3.5 FIC Encoder
The inputs to this module are: (1) the block length (BlkLength), which

is the width and height of the square block, (2) jump step (JmpStp), it is the

distance between any two adjacent domain blocks, (3) minimum allowed

block error (MinBErr) between any two IFS matched blocks (i.e., domain

and range block) which have same moment descriptor value, (4) the

allowed error (MinErr) between the matched range and domain blocks, (5)

maximum allowed scale value (MaxScl), (6) the no. of bits used to encode

the offset (i.e., oNoBits) and scale (i.e., sNoBits) coefficients, (7) the

number of bins (NoBins), it is the number of uniform quantization bins of

the blocks moment descriptor, (8) window size (WinSiz), it is used to set

the search space according to the blocks moment descriptor, (9) width

(nWid) and height (nHgt) of the coded resized band.

The three bands (Yc, Cb', Cr') are passed sequentially in FIC encoder

in order to be encoded individually (i.e. this module will be applied three

times, once for every band). Figure (3.2) illustrates the main stages of the

FIC encoder. In the following subsections the involved stages of this

module are described.

A. Range Pool Generation

The first step in FIC stage is the generation of range pool. In this

generator the resized Y-component, and the resized-downsampled bands

(Cb, Cr) are partitioned into non-overlapped blocks, and each block is

considered as a range block belong to the range pool array.

56

Chapter Three The Enhanced FIC Scheme

57

Start

Load the
Band array

Down sampling
to generate

Domain Pool

Determination of
some coding
parameters

Range Pool
Generation

Determination of
isometric index
of each domain

block (Id)

Determination the
moments

descriptor of each
domain block

Sort the domain
block list according

to their moment
descriptor value

Determination of
isometric index

of the range
block (Ir)

Determine some of
the range block

parameters

Load the
range block

Set very large number 2
minχ

Load the domain
block has similar
descriptor index,
i.e., wIdIr ≤−

Apply symmetry
predictor using Id

and Ir to find out the
required symmetry

transform

Apply symmetry operation

Apply IFS mapping
to determine (sr ,)

Apply the condition
|s|≤max scale

Quantize (sr ,) to get the
quantization indices (Ir,Is)

Determine 2χ

2
min

2 χχ < Yes

Register (r,s) as
optimal affain

coefficients, and set
 22

min χχ =

No

MinErr<2χ Output IFS
code set

Yes

No

Other domain
block

No

Other range
block exist

Yes

No
Yes

End

Figure (3.2) The FIC Encoder

Chapter Three The Enhanced FIC Scheme

B. Domain Pool Generation
The second step is down sampling (by 2) the components Y and the

down sampled Cb and Cr. Then, the domain pool is generated by

partitioning the downsampled bands into overlapped blocks using moving

window method. The overlapping space depends on the jump step of the

moving window.

C. Determination of Some Involved Coding Parameters
Some parameters are used in the encoding phase, such as:

1. The quantization step of scale coefficients, which is computed using

equation (2.16).

2. The quantization step of offset coefficient which is computed using

equation (2.17).

3. The number of range blocks in horizontal and vertical directions

(NxR and NyR) in the range pool.

4. The number of domain blocks in the horizontal and vertical

directions (NxD, NyD) in the domain pool.

5. The number of blocks in domain pool (NoD).

()
255

12 −
=

tsOffsetNoBi

rQstpeptizationStOffsetQuan ,………………………...(3.2)

()
leMaximumSca

sQstppizationSteScaleQuant
sScaleNoBit 12 1 −

=
−

 ,……………………...(3.3)

1−= hBlockLengtdivnWidNxR ,…………………………………….(3.4)

1−= hBlockLengtdivnHgtNyR ,……………………………………..(3.5)

() JumpStepdivhBlockLengtdWiNxD −′′= ,…………………………...(3.6)

() JumpStepdivhBlockLengttHgNyD −′′= ,…………………………...(3.7)

NyDNxDNyDNxdNoD ++= * ,…………………………………….(3.8)

58

Chapter Three The Enhanced FIC Scheme

D. Blocks Isometry State Assignment
Table (3.1) shows the mapping equations of the following considered

eight transforms (i.e., isometric or symmetry mappings):

1. No operations,

2. Rotation-90,

3. Rotation-180,

4. Rotation-270,

5. Reflection around Y-axis,

6. Reflection with rotation-90,

7. Reflection with rotation-180,

8. Reflection with rotation-270.

In table (3.1) the symbol c denotes the coordinates of the center point

of the mapped square block (whose size is mxm).

Table (3.1) The considered isometric mappings

ID Transform Mapping Equations

0 No operation x' = x
y' = y

1 Rotation_90 x'=(x-c)cos(90)+(y-c)sin(90)+c=y
y'=-(x-c)sin(90)+(y-c)cos(90)+c=2c-x

2 Rotation_180 x'=(x-c)cos(180)+(y-c)sin(180)+c=2c-x
y'=-(x-c)sin(180)+(y-c)cos(180)+c=2c-y

3 Rotation_270 x'=(x-c)cos(270)+(y-c)sin(270)+c=2c-y
y'=-(x-c)sin(270)+(y-c)cos(270)+c=x

4 Reflection x'=2c-x
y'=y

5 Reflection with
rotation_90

x'=(-x-c)cos(90)+(y-c)sin(90)+c=y
y'=-(-x-c)sin(90)+(y-c)cos(90)+c=x

6 Reflection with
rotation_180

x'=(-x-c)cos(180)+(y-c)sin(180)+c=x
y'=-(-x-c)sin(180)+(y-c)cos(180)+c=2c-y

7 Reflection with
rotation_270

x'=(-x-c)cos(270)+(y-c)sin(270)+c=2c-y
y'=-(-x-c)sin(270)+(y-c)cos(270)+c=-x

Where, c=(m-1)/2

59

Chapter Three The Enhanced FIC Scheme

For an image block I(x,y) {x,y| 0,1,.....,m-1}, its first order centralized

moments are defined as:

∑∑
−

=

−

=

−=
1

0

1

0
10))(,(

m

y

m

x
cxyxIM ,…...…………………………………...(3.9)

∑∑
−

=

−

=

−=
1

0

1

0
01))(,(

m

y

m

x
cyyxIM ,………………………………………(3.10)

By combining both equations (3.9) and (3.10) with the equations

listed in table (3.1), the relationship between the new moments values

(M'10, M'01) of the mapped block (using isometric mappings) with its old

moments values (M10, M01) could determined, table (3.2) lists these

relationships.

Table (3.2) The relationship between moments before and after
the transform

Transform
ID Transform Relationship

0 No operation M'10=M10 M'01=M01
1 Rotation_90 M'10=M01 M'01=M10
2 Rotation_180 M'10=-M10 M'01=-M01
3 Rotation_270 M'10=-M01 M'01=M10

4 Reflection M'10=-M10 M'01=-M01
5 Reflection + rotation_90 M'10=M01 M'01=M10
6 Reflection + rotation_180 M'10=M10 M'01=-M01
7 Reflection + rotation_270 M'10=-M01 M'01=-M10

In this section, a new method for block classification according to its

isometric state is described; the classification is based on applying three

Boolean criteria, they depends on the status of its first order moments (i.e.,

M10, M01). These used criteria are:

60

Chapter Three The Enhanced FIC Scheme

1. Is |M10| ≥ |M01| or not ?

2. Is |M10| ≥ 0 or not ?

3. Is |M01| ≥ 0 or not ?

The use of these three Boolean criteria on any block leads to eight

block states, as shown in table (3.3).

Table (3.3) The truth table for the eight blocks states

Boolean Criteria Block's
Class
Index |M10| ≥ |M01| |M10| ≥ 0 |M01| ≥ 0

0 T T T

1 T T F

2 T F T

3 T F F

4 F T T

5 F T F

6 F F T

7 F F F

Now, if the relationship between the new and old moment values is

taken into consideration when the block is mapped by one of the

considered isometric mapping (see table 3.2), then the relationship between

the indexes of block could be established (see table 3.4).

61

Chapter Three The Enhanced FIC Scheme

Table (3.4) The Block's state indexes before and after isometric
mappings

New Class Index Old Class
Index
(Nop) R90 R180 R270 M M+R90 M+R180 M+R270

0(TTT) 6(FTF) 3(TFF) 5(FFT) 2(TFT) 4(FTT) 1(TTF) 7(FFF)
1(TTF) 4(FTT) 2(TFT) 7(FFF) 3(TFF) 6(FTF) 0(TTT) 5(FFT)
2(TFT) 7(FFF) 1(TTF) 4(FTT) 0(TTT) 5(FFT) 3(TFF) 6(FTF)
3(TFF) 5(FFT) 0(TTT) 6(FTF) 1(TTF) 7(FFF) 2(TFT) 4(FTT)
4(FTT) 1(TTF) 7(FFF) 2(TFT) 5(FFT) 0(TTT) 6(FTF) 3(TFF)
5(FFT) 3(TFF) 6(FTF) 0(TTT) 4(FTT) 2(TFT) 7(FFF) 1(TTF)
6(FTF) 0(TTT) 5(FFT) 3(TFF) 7(FFF) 1(TTF) 4(FTT) 2(TFT)
7(FFF) 2(TFT) 4(FTT) 1(TTF) 6(FTF) 3(TFF) 5(FFT) 0(TTT)

R90≡ Rotation_90; R180≡ Rotation_180; R270≡ Rotation_270;
M≡ Mirror or Reflection;

The arrangement of the contents of table (3.4) could be inverted such

that the type of transform needed to map the block from certain isometric

state to other state is assigned, see table (3.5).

Table (3.5) The required isometric operation to
convert the block state

New Block State Index
0 1 2 3 4 5 6 7

0 0 6 4 2 5 3 1 7
1 6 0 2 4 1 7 5 3
2 4 2 0 6 3 5 7 1
3 2 4 6 0 7 1 3 5
4 5 1 3 7 0 4 6 2
5 3 7 5 1 4 0 2 6
6 1 5 7 3 6 2 0 4

Old
Block
State
Index

7 7 3 1 5 2 6 4 0
0≡ No Operation; 1≡ Rotation_90;
2≡ Rotation_180; 3≡ Rotation_270;
4≡ Reflection; 5≡ Reflection+Rotation_90;
6≡ Reflection+Rotation_180;
7≡ Reflection+Rotation_270;

62

Chapter Three The Enhanced FIC Scheme

Algorithm (3.5) lists the steps taken to find the index of block

symmetry state, it uses the determined two moments (Mx, My) of a block to

find its moment index.

Algorithm (3.5) Get Block Index
Goal: Using block moments to get the block index
Input:

Mx //Moment which its q=0
My // Moment which its p=0

Output:
Index //Block Index

Step1: Check the moment value
If |Mx|>|My| Then

Check if Mx>0 Then
Check if My>=0 Then

Set Index←0
Else

Set Index←6
Else

Check If My>=0 Then
Set Index←4

Else
Set Index←2

End If
Else

Check If Mx>=0 Then
Check If My>=0 Then

Set Index←7
Else

Set Index←1
Else

Check If My>=0 Then
Set Index←3

Else
Set Index←5

End If
End If

Step2: Return(Index)

63

Chapter Three The Enhanced FIC Scheme

E. Blocks Classification Using Moments-Based
Descriptor

Beside to using moments to index the isometric (symmetry) state of

each range and domain block, and these isometric state indices will be used

to assess the type of symmetry operation required to make the matched

domain block in its best isometric state before trying to determine its best

IFS- mapping coefficients. This step should reduce the elapsed encoding

time around 7-8 times.

In order to gain more decrease in encoding time an additional

descriptor, based also on the centralized moments, had been used. This

descriptor is used to classify the domain and range block into classes, and

each class is given an index. So when trying to find out the domain block

that shows best IFS-match with the tested range block, then only those

domain blocks belong to classes have similar index number to the class

index of the range block will subjected to IFS-matching test.

In this research work the first-order centralized moments (M10, M01)

or the third-order centralized moments (M30, M03) have been used to

determine the moment descriptor, using equations (2.29), (2.30) and (2.34).

The moment descriptor (MomIdx) values have been determined for all

domain and range blocks.

For the purpose of reducing the computational redundancy the

moment descriptors of the domain blocks are precomputed and registered

in memory beside to other parameters and terms, which have been

predetermined and saved in an array of records. This array includes the

moment descriptors (i.e., MomIdx) in addition to the following parameters:

(1) the position of the domain block (i.e., Xd, Yd), (2) the average (AvgD)

of the domain blocks (using equation 2.31), (3) the variance (mVarD) of

the domain blocks (using equation 2.25), and (4) the symmetry (or

64

Chapter Three The Enhanced FIC Scheme

isometric) state indexes of the domain blocks, which are determined using

algorithm (3.5).

F. Sorting of Domain Blocks
The above mentioned array of records (i.e., DomIdx) has to be sorted

in ascending order according to the value of moment descriptor (i.e.,

MomIdx), the steps of the applied sorting algorithm are described in

algorithm (3.6).

Algorithm (3.6) Sorting Algorithm
Goal: Sort the array DomIdx in ascending order according to MomIdx
Input:

DomIdx()// unsorted array of record of 6 cells
NoD// the number of domain blocks
NoBin// the number of bins of the MomIdx values

Output:
DomIdx()// sorted array of record of 6 cells

Step1: Sort the array
Set M←0
Set K←0
For all I Do {where 0≤I≤(NoBin-1)}

For all J Do {where K≤J≤NoD}
Check If DomIdx(J).MomIdx=I Then

Check If not(J=M) Then
Swap(DomIdx(J),DomIdx(M))
Decrement J by 1

End If
Increment M by 1

End If
End For
Set K←M

End For

Step2: Return(DomIdx)

To more simplify the search task in the sorted array of records an

array of pointers is used to point out to the boundaries (i.e., start index and

65

Chapter Three The Enhanced FIC Scheme

end index) of each set of sequential records have same moment descriptor

values. The involved steps of this stage are depicted in algorithm (3.7).

Algorithm (3.7) Finding Limits
Goal: Find the limits of each moment class
Input:

DomIdx()// sorted array of record of 6 cells
NoD// the number of domain blocks
NoBin// the number of bins of the MomIdx values

Output:
St(NoBin)// array of start limits of each moment index
Ed(NoBin)// array of end limits of each moment index

Step1: Find the limits
Set K←0
For all I Do {where 0≤I≤NoBin}

Check If DomIdx(K).MomIdx>I Then
Set St(I)←-1
Set Ed(I)←-2

Else
Set St(I)←K
Set Ed(I)←-1
For all L Do {where (K+1)≤L≤NoD}

Check If DomIdx(L).MomIdx>I Then
Set Ed(I)←L-1
Set K←L
Set L←NoD// End the loop of L

End If
End For
Check If Ed(I)=-1 Then

Set Ed(I)←NoD
For all J Do {where (I+!)≤J≤NoBin}

Set St(J)←-1
Set Ed(J)←-2

End For
Set I←NoBin// Ending the loop of I

End If
End If

End For

Step2: Return(St, Ed).

Now the array of records of the domain blocks is ready to be searched

to find the most available similar domain block for each tested range block.

66

Chapter Three The Enhanced FIC Scheme

G. Range Blocks Coding
As a first step in this stage, some of the range blocks parameters must

be precomputed. These parameters are:

1. The average (AvgR) of the range block which is computed by

equation (2.21).

2. The mean variance (mVarR) of the range block (equation 2.26).

3. The first moments (M10, M01), or equivalently, the third order

moments (M30, M03), of the range block (equation 2.29), and then

using these moments to determine moment descriptor, (i.e., moments

ratio factor) (MomIdxR) for each range block (using equations 2.34).

4. The isometric state index of the range block, the value of this

parameter depends on two moments values (as illustrated in

algorithm 3.4).

5. The offset quantization index, which is determined using the

quantization step value (rQstp).

As a next step the blocks of domain pool are searched to find out the

domain block that can best matches the range block using IFS-mapping.

This searching process should be repeated as long as there is still range

block, in range pool need to be coded. Since, there is large number of range

blocks and domain blocks, repeating the exhaustive search within domain

pool causes a huge number of blocks matchings, and in such case the

computational complexity of the encoding process become too high. To

handle this problem, the moments based descriptor is used as classifier

index, such that only the domain blocks that have similar descriptor values

to that of range block are imposed to IFS-mapping tests. The implemented

steps to handle the range block coding stage are illustrated in algorithm

(3.8).

67

Chapter Three The Enhanced FIC Scheme

 Algorithm (3.8) Search within Domain Blocks
Goal: Find the nearest similar domain block for each range block
Input:

JmpStp// number of pixels to jump between two domain blocks
NxR// the number of blocks in the width of the range pool
NyR// the number of blocks in the height of the range pool
WinSiz// the interval of the domain blocks classes
NoBin// the number of bins of the MomIdx values
St()// array of start limits of each moment index
Ed()// array of end limits of each moment index
DomIdx()// array of record of 6 cells
Tbl()// array of symmetry operation to convert the block's moment status

using table (3.5)
Y" or Cb" or Cr" as Dom()// is the domain pool
NoD// the number of domain blocks
MinChi// The minimum value of the Chi squared {where MinChi=0}

Output:
IFSr()// array of record of 4 cells (Ip, Sym, Irng, and Isc).

Step1:For all Ix, Iy Do (For all range block compute (AvgR, mVarR, Mx, My,
MomIdxR, SymR, Ir) as mentioned above){where 0≤Ix≤NxR and
0≤Iy≤NyR}

Step2: Search the domain blocks
Set Flag←0
For all Iwin Do {where 0≤I≤WinSiz}

Check If Iwin>0 Then
Set M←1

Else
Set M←0

End If
For all J Do {where 0≤J≤M}

Case J
0: Set K←MomIdxR+I
1: Set K←MomIdx-I

End Case
Check If K value is between 0 and NoBin Then

Check If St(K)≥0 and Ed(K)≤NoBin Then
For all L Do {where St(K)≤L≤Ed(K)} Continue

68

Chapter Three The Enhanced FIC Scheme

69

Set Xd←DomIdx(L).Xd
Set Yd←DomIdx(L).Yd
Check If DomIdx(L).mVarD is not 0 Then

Step3://Predict and Perform the symmetry operation
Set I←Tbl(SymR, DomIdx(L).SymIdx)
Case I

0:// Symmetry=0 (Identity)
For all X,Y Do {where 0≤(X,Y)≤BlkLength-1}

Set D2(X,Y)←Dom(X',Y')
//where X', Y' is computed in table (3.1)
when ID=0

End For

1://Symmetry=1 (Rotation 90o)

For all X,Y Do {where 0≤(X,Y)≤BlkLength-1}
Set D2(X,Y)←Dom(X',Y')
//where X', Y' is computed in table (3.1)
when ID=1

End For
2://Symmetry=2 (Rotation 180o)

For all X,Y Do {where 0≤(X,Y)≤BlkLength-1}
Set D2(X,Y)←Dom(X',Y')
//where X', Y' is computed in table (3.1)
when ID=2

End For
3://Symmetry=3 (Rotation 270o)

For all X,Y Do {where 0≤(X,Y)≤BlkLength-1}
Set D2(X,Y)←Dom(X',Y')
//where X', Y' is computed in table (3.1)
when ID=3

End For
4://Symmetry=4 (Reflection)

For all X,Y Do {where 0≤(X,Y)≤BlkLength-1}
Set D2(X,Y)←Dom(X',Y')
//where X', Y' is computed in table (3.1)
when ID=4

End For
5://Symmetry=5 (Reflection with Rotation 90o)

For all X,Y Do {where 0≤(X,Y)≤BlkLength-1}
Set D2(X,Y)←Dom(X',Y')
//where X', Y' is computed in table (3.1)
when ID=5

End For
6://Symmetry=6 (Reflection with Rotation 180o)

For all X,Y Do {where 0≤(X,Y)≤BlkLength-1}
Set D2(X,Y)←Dom(X',Y')
//where X', Y' is computed in table (3.1)
when ID=6

End For
Continue

Chapter Three The Enhanced FIC Scheme

70

7: //Symmetry=7 (Reflection with Rotation 270o)
For all X,Y Do {where 0≤(X,Y)≤BlkLength-1}

Set D2(X,Y)←Dom(X',Y')
//where X', Y' is computed in table (3.1)
when ID=7

End For
End Case

Step4:// Determine Scale Coefficients and Bound the value, finaly Quantize
//Determine the Scale coefficient (Scl) using
equation(2.23)

Check If Scl>MaxScl Then

Set Scl←MaxScl
Else If Scl<-MaxScl Then

Set Scl←-MaxScl
End If

//Then quantize this Scl coefficient using sQstp to be

Isc coefficient (i.e. Isc is the quantized scale)

Step5://Determine the Chi Square coefficient using equation(2.24)

Step6:// Compare Chi and Register the Optimal Chi-Case

Check If Flag=0 Or Flag=1 And Chi<MinChi Then
Set MinChi←Chi
Set OptSym←I
Set OptIsc←Isc
Set OptXd←Xd
Set OptYd←Yd
Check If (MinChi<MinBErr And Iwin=0) Or

(MinChi<MinErr And Iwin>0) Then
//End Loops L, J, Iwin

End If
End If
Set Flag←1

Else
Step7://Handle the Case Dom(L).mVarD=0 for all domain values

Set Isc←0
Set Scl←0
Set Chi←mVarR
//Compare Chi and Register the Optimal Chi-Case as
in (Step6)

End If

End For
End If Continue

Chapter Three The Enhanced FIC Scheme

End If
End For

End For

Step8://Compare the Optimal quantized scale coefficient

Check If OptIsc>0 Then
Set OptIsc←OptIsc+OptIsc

ElseIf OptIsc<0 Then
Set OptIsc←-OptIsc-OptIsc-1

End If

Step9://Register the optimal IFS coefficients and save them in IFSr()

Set OptX←OptX / JmpStp
Set OptY←OptY / JmpStp
Set IFSr(Ix,Iy).Ip←(NxD+1)*OptY+OptX //The optimal position of the

most similar domain block
Set IFSr(Ix,Iy).Irng←Ir //The optimal quantized offset coefficient of this

domain block
Set IFSr(Ix,Iy).Isc←OptIsc //The optimal quantized scale coefficient of this

domain block
Set IFSr(Ix,Iy).sym←OptSym //The optimal symmetry index of this domain

block
End For

Step10: Return(IFSr)

The steps of the above listed algorithm requires less computation time

in comparison with traditional algorithm because there is a reduction in

both the number of tested domain blocks for each range block, and in the

number of isometric mappings trials (i.e., instead of the 8 trials only one

isometric mapping case is tested). Also, the use of sorted array of records

of the domain block with pointers refer to the boundaries of each domain

class will be useful to reduce the search space with the domain pool.

In this project the applied similarity condition the coded range block

and any domain block listed in the domain pool is the following:

wFF rd <− then the range and domain block are similar

Otherwise they are dissimilar

71

Chapter Three The Enhanced FIC Scheme

In the above condition, the symbols Fd and Fr denote the index of the

moment descriptor of domain and range blocks, respectively.

The symbol (w) denotes the permissible similarity margin (called

window size) between the moment descriptor indexes of the two matched

block.

The main steps of any IFS matching instance between any pair of

domain and range blocks are the following steps:

1. Computing the scale coefficient value using equation (2.23).

2. Applying the bounding condition on the determined scale coefficient,

i.e.,

ScalesthenScalesifelse
ScalesthenScalesif

maxmax
maxmax
=>
−=−<

3. Quantize the determined values of scale and offset coefficients using

the following equations:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

sQstp
sroundSI ,………………………………………….(3.11)

sQstpSS Iq *= ,………………………………………………(3.12)

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

rQstp
rroundOI ,………………………………………….(3.13)

rQstpOO Iq *= ,……………………………………………...(3.14)

Where: sQstp, rQstp are the quantization steps of scale and offset

coefficients, respectively (see equations 3.2 and 3.3).

SI, Sq are the quantization index and the quantized value,

respectively, of the scale coefficient.

OI, Oq are the quantization index and the quantized value,

respectively, of the offset coefficient.

4. Determining the mean square error (2χ) between the actual values of

the range block elements are the corresponding approximate values

due to IFS-mapping of the domain block.

72

Chapter Three The Enhanced FIC Scheme

5. Comparing the value of error (2χ) with lowest value registered error

(2
minχ) attained through the previous matching trials between the range

block and other pre-tested domain blocks.

3.3.6 Encoding the IFS Code
To increase the attained compression ratio, the determined IFS

coefficients in the system are coded using both DPCM and shift coding,

and the output (i.e., codewords) of the shift encoder are saved in the

compressed file, to be restored later for decoding purpose.

At first the file must be prepared to save the shift encoder codewords

in it. Some overhead information (i.e., width and height of the image, the

block length, the jump step, the number of offset bits, the number of scale

bits, the maximum scale value) must be saved at the beginning of the file,

these parameters are considered as a part of the header of the compressed

file, and their registration in the file is necessary for decoding operations.

After the header section, the binary codewords, produced by applying

shift encoder on IFSr() coefficients, are saved in the file. Algorithm (3.9)

shows the implemented steps to shift encoding the IFS coefficients, taking

into consideration the following three remarks:

A. The offset coefficients had been first coded using DPCM and the

output of this encoder was shift coded.

B. Before applying shift coding the scale and offset coefficients have

been mapped using the following function:

⎩
⎨
⎧

−
≥

=′
otherwisec

cifc
c

12
02

 ,……………………………………...(3.15)

73

Chapter Three The Enhanced FIC Scheme

Where c′ is the original value of scale index or of the DPCM

output of the offset coefficient. The value of c′ is always positive,

which is a necessary condition to conduct shift encoding.

C. Before applying shift encoding the proper size of its codewords

should be determined, so in algorithm (3.9) a simple optimization

technique is implemented, it is based on testing all possible

codeword sizes to find out the best size that lead to lowest

consumption in bits (i.e., lowest output size).

Algorithm (3.9) Encode IFS Code
Goal: Encode The IFSr() components
Input:

NxR// number of blocks in the width of the range pool
NyR// number of blocks in the height of the range pool
IFSr()// array of record of 4 cells (Ip, Sym, Irng, Isc)

Output:
Compressed File

Step1: Get the component from IFSr() array
Set N←Nxr*NyR+NxR+NyR
Set I←-1
For all Iy Do {where 0≤Iy≤NyR}

For all Ix Do {where 0≤Ix≤NxR}
Increment I by 1
Set Z(I)←IFSr(Ix,Iy).component

End For
Check If Iy<NyR Then

Increment Iy by 1
For all Ix Do {where NxR≥Ix≥0}

Increment I by 1
Set Z(I)←IFSr(Ix,Iy).component

End For
End If

End For

Step2: DPCM Encoding the IFS component
For all I Do {where N≥I≥1}

Set Zz(I)←Z(I)-Z(I-1)
End For

Step3: Mapping to Positive values the component
Set Max1←0
For all I Do {where 1≤I≤N}

Check If Zz(I) > 0 Then Continue

74

Chapter Three The Enhanced FIC Scheme

75

Set Zz(I)←Zz(I) + Zz(I)
Else Check If Zz(I) < 0 Then

Set Zz(I)← -Zz(I) - Zz(I) - 1
End If
Check If Max1 < Zz(I) Then

Set Max1←Zz(I)
End If

End For
Step4: Shift-Code Optimizer for the component

For all I Do 1 To N
Set J←Zz(I)
Set His(J)←His(J) + 1 // histogram of each component

End For
Set Tot1←N + 1
Set oSm←rNoBit * Tot1
Set I←1
Set Bt2←1

Step5:Check If I < Max1Then
Set I←I * 2 + 1
Set Bt2←Bt2 + 1
Goto Step 5

End If
Set Bt1←Bt2 – 4
Check If Bt1 < 1 Then

Set Bt1←1
End If
For all Bt Do {where Bt1≤Bt≤Bt2}

Set Rg←2Bt – 1
Set Max2←Max1 - Rg
Set I←1
Set Btt←1

Step6: Check If I < Max2 Then
Set I←I * 2 + 1
Set Btt←Btt + 1
Goto Step6

End If
Set Sm←0
For all I Do {where Rg≤I≤Max1}

Set Sm←Sm + His(I)
End For
Set Tot←Tot1 * Bt + Sm * Btt
Check If Bt = Bt1 Or (Bt > Bt1 And Tot < OptTot) Then

Set OptTot←Tot
Set OptBt1←Bt
Set OptBt2←Btt

End If
End For Continue

Chapter Three The Enhanced FIC Scheme

Step7: Encoding the component using the shift encoding
Check If (OptTot + 8) < oSm Then

PutBit 1 //on the compressed file
PutWord OptBt1, 4 //on the compressed file
PutWord OptBt2, 4
Set Rg = 2OptBt1 – 1
PutWord Z(0), NoBit
For all I Do {where 1≤I≤N}

Check If Zz(I) < Rg Then
PutWord Zz(I), OptBt1

Else
PutWord Rg, OptBt1
PutWord Zz(I) - Rg, OptBt2

End If
End For

Else
Step8: Fix Length Encoding the component Indicies

PutBit 0
For all I Do {where 0≤I≤N}

PutWord Z(I), NoBit
End For

End If

Step9:End.

3.4 Decoder Module

Figure (3.1b) illustrates the main stages of the decoding module, it is

obvious that the sequence of its stages takes the inverse order of the

encoding module sequence. Also, the functionality of decoding module

would mainly be the reverse of the functionality of the corresponding stage

in encoder module.

In the following subsections the main stage of the decoder module are

described.

3.4.1 Load and Decode the IFS Code
These two stages are the first two stages in decoding module. The

decoding process begins with loading the data of the compressed file

(ComFileName). At first, the contents of header section must be extracted

76

Chapter Three The Enhanced FIC Scheme

because they are necessary to setup some parameters of the decoding

modules, and to make the decoder capable to load the registered codewords

in the compression file. As a second stage the shift decoding and DPCM

are implemented to decode the scale and offset coefficients. Also, in this

stage the inverse mapping process (from positive to negative-positive) is

applied, using the following equation:

()()⎩
⎨
⎧

′+′−

′′
=

oddiscifdivc
eveniscifdivc

c
21

2 ,………………………………..(3.16)

This process will retrieve the decoded offset and scale coefficients to

their original values. The output from this stage is an array, nIFSr(), of IFS-

coefficients.

3.4.2 FIC Decoder
In this stage, the steps of decoding the IFS code are implemented to

establish the compressed image. This stage consist of two main processes:

1. Dequantization of IFS coefficients.

2. IFS mapping to reconstruct YCbCr bands.

Algorithm (3.10) Loading and Shift Decoding
Goal: Decode The IFS code
Input:

Compressed File
Output:

NxR// number of blocks in the width of the range pool
NyR// number of blocks in the height of the range pool
IFSr()// array of record of 4 cells (Ip, Sym, Irng, Isc)

Step1:// Get all parameters from the compressed file
Step2:// Decode the component of IFS code

Set N←NxR*NyR+NxR+NyR
Check If GetBit=1 Then

Step3:// Shift decode the component
Set Bt1←GetWord(4)
Set Bt2←GetWord(4)
Set Rg←2Bt1 – 1 Continue

77

Chapter Three The Enhanced FIC Scheme

78

Set Z(0)←GetWord(NoBit)
For all I Do {where 1≤I≤N}

Set Z(I)←GetWord(Bt1)
Check If Z(I) = Rg Then

Set Z(I)←Rg + GetWord(Bt2)
End If

End For
Step4:// Mapping to Negative/Psitive the values of the component

For all I Do {where 1≤I≤ N}
Check If not(Z(I) = 0) Then

Check If (Z(I) And 1) = 0 Then
Set Z(I)←Z(I) \ 2

Else
Set Z(I)← -((Z(I) + 1) \ 2)

End If
End If

End For
Step5:// DPCM Decoding of the component

For all I Do {where 1≤I≤N}
Set Z(I)←Z(I) + Z(I - 1)

End For

Else

Step6:// Fix Length Decoding of the IFS component
For all I Do {where 0≤I≤N}

Set Z(I)←GetWord(NoBit)
End For

End If

Step7:// Put the Component Indicies in IFSr Array

Set I←-1
For all Iy Do {where 0≤Iy≤NyR}

For all IxDo {where 0≤Ix≤NxR}
Increment I by 1
Set IFSr(Ix, Iy).component←Z(I)

End For
Check If Iy < NyR Then

Increment Iy by 1
For all Ix Do {where NxR≥Ix≥ 0}

Increment I by 1
Set IFSr(Ix, Iy).component←Z(I)

End For
End If

End For
Step8:// Return (IFSr).

Chapter Three The Enhanced FIC Scheme

A. Dequantization
After shift decoding and inverse mapping (from positive to

positive/negative) to retrieve the IFS() coefficients, the values of scale and

offset coefficients need to be dequantized because the stored values of both

coefficients are their quantization indices (i.e., sI, oI) and not their quantized

values (i.e., sq, oq). Algorithm (3.11) shows the steps taken to dequantize

the IFS() coefficients.

Algorithm (3.11) Dequantization
Goal: Dequantize the IFSr() components
Input:

JmpStp// the jump step between each two domain blocks
Nxd// the width of the domain pool
nIFSr()//array of record of 4 cells (Ip, Sym, Irng, and Isc).

Output:
oIFSr()// dequantized array of record of 5 cells (Xd, Yd, Sym, Irng, and

Isc).
Step1: Dequantize all the components

For all Ix,Iy Do {where 0≤Ix≤NxR and 0≤Iy≤NyR}
Set oIFSr(Ix,Iy).Xd←(nIFSr(Ix,Iy).Ip mod (Nxd+1))*JmpStp
Set oIFSr(Ix,Iy).Yd←(nIFSr(Ix,Iy).Ip div (Nxd+1))*JmpStp
Set oIFSr(Ix,Iy).Sym←nIFSr(Ix,Iy).Sym
Set oIFSr(Ix,Iy).Irng←nIFSr(Ix,Iy).Irng*rQstp
Set oIFSr(Ix,Iy).Isc←nIFSr(Ix,Iy).Isc*sQstp

End For
Step2: Return(oIFSr)

B. Reconstruction of Range Pool
This stage is initialized by generating a domain pool whose elements

values are assigned in arbitrary way. In the established system the elements

of the domain pool have given same value (i.e., zero value). The

dequantized values of IFS() coefficients are used to map the domain blocks

to produce the range blocks approximates. Then, each generated range

block is set in its position in the empty range pool.

79

Chapter Three The Enhanced FIC Scheme

After the complete generation of all range blocks of the range pool,

then the contents of this pool are down sampled (by 2), using averaging

method, to regenerate the domain pool. This newly generated domain pool

is used again with the IFS() code set to regenerate the range pool. This

sequence (i.e., domain pool generation, IFS mapping, and range pool

generation) is repeated till the reconstructed range pool reaches the

attractor state. The range pool reconstruction is performed three time to

reconstruct the three color bands (i.e., Y-component, downsampled Cb and

Cr components).

3.4.3 Range Pool Resizing

In this stage the sizes of the three reconstructed range pools are

adjusted to be equal to their original size. As mentioned in paragraph

(3.2.5.2), the resizing step is done to make the range pool dimensions (i.e.,

width and height) multiples of range block length. The rows and columns

decimation method was used to adjust the size of range pools to its original

size. Algorithm (3.12) lists the implemented steps to adjust the size of one

range pool.

80

Chapter Three The Enhanced FIC Scheme

Algorithm (3.12) Resize the Range Pool to Its Original Size
Goal: Resize the range pool after reconstruction
Input:

W// the width of the range pool
H// the height of the range pool
BlkLength// the block length
Rng()// the range pool

Output:
nRng()// the new range pool

Step1: Check if the height and width value are accepted to division by the block
length without any rest
Check If (W mod BlkLength) is not zero Or (H mod BlkLength) is not zero
Then

Set Nx ← W div BlkLength
Set Wp ← Nx * BlkLength
Check If Wp < W Then

Increment Nx by 1
Set Wp ← Wp + BlkLength

End If
Decrement Nx by 1
Set Wpm ← Wp – 1
Set Wm ← W – 1
Set Lx ← Wp – W
Set Tx ← Wm div (Lx + 1)

End If

Set Ny ← H div BlkLength
Set Hp ← Ny * BlkLength
Check If Hp < H Then

Increment Ny by 1
Set Hp ← Hp + BlkLength

End If
Decrement Ny by 1
Set Hpm ← Hp – 1
Set Hm ← H – 1
Set Ly ← Hp – H
Set Ty ← Hm div (Ly + 1)

Set Img←Rng// Img is a temporary array of dimension Wpm*Hpm

Check If Lx is larger than zero Then

For all Y Do {where 0≤Y≤Hpm}
Set St ← 0
Set X1 ← -1
Set X2 ← -1 Continue

81

Chapter Three The Enhanced FIC Scheme

82

For all Ix Do {where 1≤Ix≤Lx}
Set Ed ← Tx * Ix
For all X Do {where St≤X≤Ed}

Increment X1 by 1
Increment X2 by 1
Set A(X2) ← Img(X1, Y)

End For
Increment X1 by 1
Set St ← Ed + 1

End For
For all X Do {where St≤X≤Wm}

Increment X1 by 1
Increment X2 by 1
Set A(X2) ← Img(X1, Y)

End For
For all X Do {where 0≤X≤Wm}

Set Img(X, Y) ← A(X)
End For

End For
End If
Check If Ly is larger than zero Then

For all X Do {where 0≤X≤Wm}
Set St ← 0
Set Y1 ← -1
Set Y2 ← -1
For all Iy Do {where 1≤Iy≤Ly}

Set Ed ← Ty * Iy
For all Y Do {where St≤X≤Ed}

Increment Y1 by 1
Increment Y2 by 1
Set A(Y2) ← Img(X, Y1)

End For
Increment Y1 by 1
Set St ← Ed + 1

End For
For all Y Do {where St≤X≤Hm}

Increment Y1 by 1
Increment Y2 by 1
Set A(Y2) ← Img(X, Y1)

End For
For all Y Do {where 0≤Y≤Hm}

Set Img(X, Y) ← A(Y)
End For

End For
End If

End If
Set nRng←Img

Step2: Return (nRng)

Chapter Three The Enhanced FIC Scheme

3.4.4 Up Sampling
In this stage the reconstructed range pools of the chromatic bands (i.e.,

Cb and Cr) are up sampled (by 2) using nearest neighbor interpolation

method. Algorithm (3.13) shows the steps taken to apply this stage.

Algorithm (3.13) Up-Sampling Method
Goal: Up sample the two bands Cb, and Cr
Input:

Wid// the width of the bands
Hgt// the height of the bands
sCb()// the down sampled Cb
sCr()// the down sampled Cr

Output:
rCb(), rCr()// the reconstructed Cb and Cr

Step1: Initialize some parameters
Set Wm←Wid-1
Set Whm←(Wid+1) div 2 -1
Set Hm←Hgt-1
Set Hhm←(Hgt+1) div 2 -1

Step2: For all X,Y Do {where 0≤X≤Whm and 0≤Y≤Hhm}
Set rCb(X*2, Y*2)←sCb(X,Y)
Set rCr(X*2, Y*2)←sCr(X,Y)

Check If (X*2+1)<Wid Then

Set rCb(X*2+1, Y*2)←sCb(X,Y)
Set rCr(X*2+1, Y*2)←sCr(X,Y)

End If

Check If (Y*2+1)<Wid Then

Set rCb(X*2, Y*2+1)←sCb(X,Y)
Set rCr(X*2, Y*2+1)←sCr(X,Y)
Check If (X*2+1)<Wid Then

Set rCb(X*2+1, Y*2+1)←sCb(X,Y)
Set rCr(X*2+1, Y*2+1)←sCr(X,Y)

End If
End If

End For
Step3: Return(rCb, rCr)

83

Chapter Three The Enhanced FIC Scheme

3.4.5 Conversion from YCbCr to RGB
As a last decoding stage the reconstructed bands (Y, Cb, Cr) are

converted to RGB color representation, using equations (2.12), Algorithm

(3.14) shows the implemented steps to make the color conversion.

 Algorithm (3.14) Convert from YCbCr to RGB color space
Goal: Extract RGB from the YCbCr
Input:

Yc()// the Y component
Cb()// the Cb component
Cr()// the Cr component

Output:
Red()// the red component
Grn()// the green component
Blu()// the blue component

Step1: Determine the reconstructed values and check if they are acceptable
Set A = Y + 1.58163 * Cr + 0.00131 * Cb
Check If A <= 0 Then

Set Red ← 0
Else If A >= 255 Then

Set Red ← 255
Else

Set Red ← A
End If
Set A ← Y + 1.86324 * Cb - 0.00018 * Cr
Check If A <= 0 Then

Set Blu ← 0
Else If A >= 255 Then

Set Blu ← 255
Else

Set Blu ← A
End If

Set A ← Y - 0.18817 * Cb - 0.46978 * Cr
Check If A <= 0 Then

Set Grn ← 0
Else If A >= 255 Then

Set Grn ← 255
Else

Set Grn ← A
End If

Step2: Return(Red, Grn, Blu).

84

Chapter Three The Enhanced FIC Scheme

85

The reconstructed red, green, and blue bands will be saved in a bitmap

formatted file, as a decompressed image file, and it will have the same size

as the original file. For testing purpose, the contents of the two images (i.e.,

original and decompressed images) are compared using some fidelity

criteria (such as MAE, MSE, PSNR) in order to find how much error (i.e.,

difference) is introduced due to compression.

4.1 Introduction
In this research project four FIC schemes have been applied. The

first scheme is the traditional FIC scheme, denoted as "TradFIC" and

established for comparison purpose with other three enhanced FIC

schemes. The second scheme, denoted as "PredFIC", it is the enhanced

version of FIC scheme, where the isometric (or symmetric) predictor is

added to traditional FIC-scheme to reduce the number of domain block

mapping trials from 8 to only 1. The index of the selected isometric

mapping is assigned by the introduced moment-based predictor. The third

established FIC-scheme is an improved version of PredIFS, where beside

to using moment-based symmetry predictor a block descriptor, where

based on first order moments, is used to more speed-up to FIC coding

stage, this third scheme is denoted as "Dis1FIC". The fourth FIC scheme

uses another blocks descriptor which is based on third order moments,

instead of first order moments, and this scheme is denoted as "Dis3FIC".

This chapter is devoted to present the results of the conducted tests

to study the compression performance of the suggested fractal image

compression schemes. Some of the famous fidelity measures (i.e. MSE,

MAE, PSNR, CR) have been used to assess the quality of the

reconstructed image.

The effects of some involved coding parameters on the performance

of the four applied IFS scheme (i.e., TradFIC, PredFIC, Dis1FIC, and

Dis3FIC) have been investigated.

86

Chapter Four Performance Test Results

The developed systems have been established using Visual Basic

(version 6.0) programming language, and they work under Microsoft

windows XP Professional operating system. The tests have been

conducted using laptop computer (Processor: mobile AMD AthlonTm XP-

M (LV) 2400+, MMX, 3DNow, ~1.8GHz; Memory: 480MB).

4.2 Image Test Material
Two bitmap images have been taken as test samples, each image

consists of the same number of pixels (i.e., 256x256), and they have color

resolution (24bpp), and size (192KB). Figure (4.1) shows these two

images.

a. Lena b. Girl

Figure (4.1) The bitmap images used as test samples

87

Chapter Four Performance Test Results

4.3 Testing Strategy
The testing operations have been applied on the above mentioned

two image samples. The tests were conducted to explore the effectiveness

of each involved parameter in the compression scheme on the

compression performance parameters; including the three fidelity criteria

(MAE, MSE, PSNR), compression ratio, bit rate, and the elapsed time of

the compression process. The tested compression scheme parameters are:

block length, jump step, maximum scale, scale bits, offset bits, minimum

error, minimum block error, number of bins, window size.

The test procedure followed to investigate the effectiveness of each

parameter is "changing the value of this parameter, while the values of

other parameters are set fixed at their default values". The adopted default

values are described in table (4.1).

Table (4.1) The default values of the relevant coding parameters

Parameter Default
Value

Block Length 4
Jump Step 1
Maximum Scale Value 3
Number of Scale Bits 6
Number of Offset Bits 8
Minimum Error 1.5
Minimum Block Error 1
Number of Bins 100
Window Size 1

4.4 Block Length Test
In this set of tests the effects of block length on compression

performance parameter are investigated. The tests have been conducted

on Lena and Girl images. The tests results indicated that the performance

parameters are significantly affected by the value of block length. Here,

in this set of tests the value of block length was varied while the values of

88

Chapter Four Performance Test Results

other involved parameters are kept fixed at their default values. The

noticed effects of the block length parameter are clarified in the following

remarks:

1. Table (4.2) shows the effects of the block length parameter on the

compression performance parameters (MAE, MSE, PSNR, CR, BR,

encoding time) when the Dis1FIC scheme is applied on Lena image.

 Table (4.2) The effect of block length parameter of Dis1FIC scheme

Over All Block
Length MAE MSE PSNR

Compression
Ratio

Bit
Rate

Time in
Seconds

4 3.92 42.01 31.90 8.875 2.704 1.26
5 4.73 63.61 30.10 13.453 1.784 1.32
6 5.53 85.12 28.83 19.326 1.242 1.25
7 6.19 106.20 27.87 26.117 0.919 1.26
8 6.91 130.61 26.97 35.393 0.678 1.34

2. Table (4.3) illustrates the effects of the block length on the

compression performance parameters, when Dis3FIC scheme is

applied on Lena image.

Over All Block
Length MAE MSE PSNR

Compression
Ratio

Bit
Rate

Time in
Seconds

4 3.91 42.05 31.89 8.863 2.708 1.21
5 4.75 63.65 30.09 13.440 1.786 1.33
6 5.61 86.96 28.74 19.334 1.241 1.27
7 6.23 107.16 27.83 26.089 0.920 1.35
8 6.91 130.24 26.98 35.368 0.679 1.38

Table (4.3) The effect of block length parameter of Dis3FIC
scheme

3. Figure (4.2) illustrates the effects of block length variation

compression performance parameters of the four FIC schemes. The

test image was Lena image.

89

Chapter Four Performance Test Results

(1) Mean Absolute Error

3

4

5

6

7

8

9

10

11

4 5 6 7 8
Block Length

M
AE

Trad.
Pred.
Desc.1
Desc.3

(2) Mean Square Error
28
43
58
73
88

103
118
133
148
163
178
193

4 5 6 7 8
Block Length

M
SE

Trad.
Pred.
Desc.1
Desc.3

(3) Peak Signal to Noise Ratio

25
26

27
28

29
30

31
32

33
34

4 5 6 7 8

(4) Compression Ratio
8

12

16

20

24

28

32

36

4 5 6 7
Block Length

CR

8

Trad.
Pred.
Desc.1
Desc.3

 Block Length

P
SN

R

Trad.
Pred.
Desc.1
Desc.3

(5) Bit Rate

0

0.5

1

1.5

2

2.5

3

4 5 6 7 8
Block Length

BR

Trad.
Pred.
Desc.1
Desc.3

(6) Time

0
30
60
90

120
150
180
210
240
270
300

4 5 6 7 8
Block Length

Ti
m

e
in

 S
ec

on
ds

Trad.
Pred.
Desc.1
Desc.3

Figure (4.2) The effects of block length on the compression

performance parameters, the test image was Lena

4. Figure (4.3) shows the effects of block length variation on

compression performance of the four FIC schemes. The test image

was Girl image.

90

Chapter Four Performance Test Results

(1) Mean Absolute Error

2

3

4

5

6

7

8

9

10

4 5 6 7 8
Block Length

M
AE

Trad.
Pred.
Desc.1
Desc.3

(2) Mean Square Error
11

26
41

56

71
86

101

116
131

146

4 5 6 7 8
Block Length

M
SE

Trad.
Pred.
Desc.1
Desc.3

(3) Peak Signal to Noise Ratio

26
27
28
29
30
31
32
33
34
35
36
37
38

4 5 6 7 8

(4) Compression Ratio
8

12

16

20

24

28

32

36

40

4 5 6 7
Block Length

CR

8

Trad.
Pred.
Desc.1
Desc.3

 Block Length

P
SN

R

Trad.
Pred.
Desc.1
Desc.3

(5) Bit Rate

0

0.5

1

1.5

2

2.5

3

4 5 6 7 8
Block Length

BR

Trad.
Pred.
Desc.1
Desc.3

(6) Time

0
30
60
90

120
150
180
210
240
270
300

4 5 6 7
Block Length

Ti
m

e
in

 S
ec

on
ds

8

Trad.
Pred.
Desc.1
Desc.3

 Figure (4.3) The effects of block length on the compression
performance parameters, when Girl image is used as test material

4.5 Jump Step Test
This set of conducted tests is dedicated to investigate the effects of

jump step parameter on the compression performance parameters for the

four FIC schemes. This set of tests was conducted on both images (Lena,

Girl). The results of this set of tests indicated that the performance

parameters are significantly affected by jump step values, which had been

varied between 1 and 4. The values of other parameters were set fixed at

their default values. The obtained results are described in the following:

91

Chapter Four Performance Test Results

1. Figure (4.4) shows some of the reconstructed Lena images, where

the applied FIC scheme is Dis1FIC.

Jump Step=1
MAE=3.92
MSE=42.01
PSNR=31.90

CR=8.875
BR=2.704
Time=1.18

Jump Step=2
MAE=4.30
MSE=52.38
PSNR=30.94

CR=9.532
BR=2.518
Time=0.41

Jump Step=3
MAE=4.72
MSE=64.31
PSNR=30.05

CR=9.881
BR=2.429
Time=0.27

Jump Step=4
MAE=4.91
MSE=70.58
PSNR=29.64
CR=10.268
BR=2.337
Time=0.23

Figure (4.4) Samples of the reconstructed Lena images when
Dis1FIC scheme is applied

2. Figure (4.5) shows the samples of jump step test set for Dis3FIC

scheme applied on Lena image.

3. Figure (4.6) shows the effects of jump step parameter value on the

compression performance parameters of the four FIC schemes when

they applied on Lena image.

Figure (4.5) The jump step test results for Dis3FIC scheme

Jump Step=1
MAE=3.91
MSE=42.05
PSNR=31.89

CR=8.863
BR=2.708
Time=1.24

Jump Step=2
MAE=4.31
MSE=52.08
PSNR=30.96

CR=9.525
BR=2.520
Time=0.43

Jump Step=3
MAE=4.72
MSE=63.97
PSNR=30.07

CR=9.886
BR=2.428
Time=0.37

Jump Step=4
MAE=4.93
MSE=71.46
PSNR=29.59
CR=10.258
BR=2.340
Time=0.31

92

Chapter Four Performance Test Results

(1) Mean Absolute Error

3

4

5

6

7

8

9

10

11

1 2 3 4
Jump Step

M
A

E

Trad.
Pred.
Desc.1
Desc.3

(2) Mean Square Error

28
43
58
73
88

103
118
133
148
163
178
193

1 2 3
Jump Step

M
SE

4

Trad.
Pred.
Desc.1
Desc.3

(3) Peak Signal to Noise Ratio
25

26
27

28
29

30
31

32
33

34

1 2 3 4
Jump Step

PS
NR

Trad.
Pred.
Desc.1
Desc.3

(4) Compression Ratio

8

12

16

20

24

28

32

36

1 2 3
Jump Step

C
R

4

Trad.
Pred.
Desc.1
Desc.3

(5) Bit Rate

0

0.5

1

1.5

2

2.5

3

1 2 3 4
Jump Step

BR

Trad.
Pred.
Desc.1
Desc.3

(6) Time

0
30
60
90

120
150
180
210
240
270
300

1 2 3 4
Jump Step

Ti
m

e
in

 S
ec

on
ds

Trad.
Pred.
Desc.1
Desc.3

Figure (4.6) The effect of jump step parameter on the performance
of the four FIC schemes, for the case of Lena image

4. Figure (4.7) shows the difference between the four FIC schemes

when they implemented on Girl image using same coding

parameters:

93

Chapter Four Performance Test Results

(1) Mean Absolute Error

2

3

4

5

6

7

8

9

10

1 2 3 4
Jump Step

M
A

E

Trad.
Pred.
Desc.1
Desc.3

(2) Mean Square Error

11

26

41

56

71
86

101

116

131

146

1 2 3 4
Jump Step

M
SE

Trad.
Pred.
Desc.1
Desc.3

(3) Peak Signal to Noise Ratio
26
27
28
29
30
31
32
33
34
35
36
37
38

1 2 3 4
Jump Step

P
SN

R

Trad.
Pred.
Desc.1
Desc.3

(4) Compression Ratio

8

12

16

20

24

28

32

36

40

1 2 3
Jump Step

CR

4

Trad.
Pred.
Desc.1
Desc.3

(5) Bit Rate
0

0.5

1

1.5

2

2.5

3

1 2 3 4
Jump Step

BR

Trad.
Pred.
Desc.1
Desc.3

(6) Time

0
30
60
90

120
150
180
210
240
270
300

1 2 3 4
Jump Step

Ti
m

e
in

 S
ec

on
ds

Trad.
Pred.
Desc.1
Desc.3

Figure (4.7) The effect of jump step of the four FIC schemes when

they applied on Girl image

4.6 Maximum Scale Test

In this set of tests the effect of maximum scale parameter is studied

for the four established IFS- schemes. In this set of tests the value of

maximum scale parameter was varied within the range [1, 5]. The values

of other parameters were fixed at their default values. The results of this

set are summarized in the following tables and figures:

94

Chapter Four Performance Test Results

1. Table (4.4) shows the effects of maximum scale parameter on the

compression performance of Dis1FIC scheme, applied on Lena

image.

Over All Max
Scale MAE MSE PSNR

Compression
Ratio

Bit
Rate

Time in
Seconds

1 4.04 46.23 31.48 8.786 2.732 1.14
2 3.92 42.35 31.86 8.786 2.732 1.24
3 3.92 42.01 31.90 8.875 2.704 1.26
4 3.92 41.85 31.91 8.929 2.688 1.16
5 3.94 42.13 31.92 8.993 2.669 1.19

Table (4.4) The results of maximum scale test of Dis1FIC
scheme

2. Table (4.5) shows the effects of maximum scale parameter on the

compression performance of Dis3FIC scheme, applied on Lena

image.

Table (4.5) The results of maximum scale test of Dis3FIC

scheme

Over All Max
Scale MAE MSE PSNR

Compression
Ratio

Bit
Rate

Time in
Seconds

1 4.04 46.82 31.43 8.786 2.732 1.24
2 3.92 42.37 31.86 8.786 2.732 1.22
3 3.91 42.05 31.89 8.863 2.708 1.26
4 3.93 42.07 31.89 8.934 2.686 1.20
5 3.93 42.02 31.90 8.991 2.669 1.21

3. Figure (4.8) illustrates the effects of maximum scale parameter on

the performance parameters of the four FIC schemes, the Lena

image was used as test material.

95

Chapter Four Performance Test Results

(1) Mean Absolute Error

3

4

5

6

7

8

9

10

11

1 2 3 4 5
Maximum Scale

M
A

E

Trad.
Pred.
Desc.1
Desc.3

(2) Mean Square Error

28
43
58
73
88

103
118
133
148
163
178
193

1 2 3 4 5
Maximum Scale

M
SE

Trad.
Pred.
Desc.1
Desc.3

(3) Peak Signal to Noise Ratio
25

26
27

28

29
30

31

32
33

34

1 2 3 4 5
Maximum Scale

P
SN

R

Trad.
Pred.
Desc.1
Desc.3

(4) Compression Ratio

8

12

16

20

24

28

32

36

1 2 3 4
Maximum Scale

CR

5

Trad.
Pred.
Desc.1
Desc.3

(5) Bit Rate

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5
Maximum Scale

BR

Trad.
Pred.
Desc.1
Desc.3

(6) Time

0
30
60
90

120
150
180
210
240
270
300

1 2 3 4
Maximum Scale

Ti
m

e
in

 S
ec

on
ds

5

Trad.
Pred.
Desc.1
Desc.3

 Figure (4.8) The effect of maximum scale parameter on the performance

parameters of the four FIC-schemes, when they applied on Lena image

4. Figure (4.9) shows the effects of maximum scale parameter of the

four FIC schemes when they applied on Girl image.

96

Chapter Four Performance Test Results

(1) Mean Absolute Error

2

3

4

5

6

7

8

9

10

1 2 3 4 5
Maximum Scale

M
A

E

Trad.
Pred.
Desc.1
Desc.3

(2) Mean Square Error

11
26
41
56
71
86

101
116
131
146

1 2 3 4
Maximum Scale

M
SE

5

Trad.
Pred.
Desc.1
Desc.3

(3) Peak Signal to Noise Ratio
26
27
28
29
30
31
32
33
34
35
36
37
38

1 2 3 4 5

(4) Compression Ratio

8

12

16

20

24

28

32

36

40

1 2 3 4
Maximum Scale

CR

5

Trad.
Pred.
Desc.1
Desc.3

 Maximum Scale

PS
NR

Trad.
Pred.
Desc.1
Desc.3

(5) Bit Rate
0

0.5

1

1.5

2

2.5

3

1 2 3 4 5
Maximum Scale

BR

Trad.
Pred.
Desc.1
Desc.3

(6) Time

0
30
60
90

120
150
180
210
240
270
300

1 2 3 4 5
Maximum Scale

Ti
m

e
in

 S
ec

on
ds

Trad.
Pred.
Desc.1
Desc.3

Figure (4.9) The effect of maximum scale on the performance of the

four FIC schemes, when they applied on Girl image

4.7 Scale Bits Test
In this section the result of some tests made on both images (Lena

and Girl) are shown to investigate the effects of changing the number of

bits used to represent the value of scale coefficients. In this set of tests

the value of scale bits parameter was varied from 2 to 8. The values of

other parameters were fixed at their default values. The following figures

illustrate the obtained results:

97

Chapter Four Performance Test Results

1. Figure (4.10) shows the effect of the scale bits parameter on the

performance of Dis1FIC scheme, the test image was "Girl".

Scale Bits=2
MAE=3.44
MSE=31.51
PSNR=33.15
CR=10.685
BR=2.246
Time=1.25

Scale Bits=3
MAE=2.66
MSE=20.95
PSNR=34.92
CR=10.284
BR=2.334
Time=0.96

Scale Bits=4
MAE=2.46
MSE=18.65
PSNR=35.42

CR=9.882
BR=2.429
Time=0.94

Scale Bits=5
MAE=2.37
MSE=17.69
PSNR=35.65

CR=9.506
BR=2.525
Time=0.84

Scale Bits=6
MAE=2.33
MSE=17.39
PSNR=35.73

CR=9.126
BR=2.630
Time=0.82

Scale Bits=7
MAE=2.31
MSE=17.24
PSNR=35.77

CR=8.778
BR=2.734
Time=0.81

Scale Bits=8
MAE=2.31
MSE=17.20
PSNR=35.77

CR=8.477
BR=2.831
Time=0.79

Figure (4.10) Some samples of reconstructed Girl images when it
is compressed by Dis1FIC using different values of scale bit

parameter

2. Figure (4.11) describes the results of applying Dis3FIC scheme on

Girl image, the number of scale bits was varied.

98

Chapter Four Performance Test Results

Scale Bits=2
MAE=3.45
MSE=31.56
PSNR=33.14
CR=10.681
BR=2.247
Time=1.11

Scale Bits=3
MAE=2.68
MSE=21.22
PSNR=34.86
CR=10.289
BR=2.333
Time=0.91

Scale Bits=4
MAE=2.45
MSE=18.75
PSNR=35.40

CR=9.881
BR=2.429
Time=0.84

Scale Bits=5
MAE=2.37
MSE=17.75
PSNR=35.64

CR=9.513
BR=2.523
Time=0.84

Scale Bits=6
MAE=2.33
MSE=17.55
PSNR=35.69

CR=9.123
BR=2.631
Time=0.83

Scale Bits=7
MAE=2.31
MSE=17.22
PSNR=35.77

CR=8.775
BR=2.735
Time=0.79

Scale Bits=8
MAE=2.31
MSE=17.31
PSNR=35.75

CR=8.473
BR=2.832
Time=0.77

Figure (4.11) Some samples of reconstructed Girl images when it
is compressed by Dis3FIC scheme using different values of scale

bit parameter

3. Figure (4.12) shows the effect of scale bits parameter on the

performance of the four FIC schemes, when they applied on Lena

image.

99

Chapter Four Performance Test Results

(1) Mean Absolute Error

3

4

5

6

7

8

9

10

11

2 3 4 5 6 7 8
Scale Bits

M
A

E

Trad.
Pred.
Desc.1
Desc.3

(2) Mean Square Error

28
43
58
73
88

103
118
133
148
163
178
193

2 3 4 5 6 7 8
Scale Bits

M
SE

Trad.
Pred.
Desc.1
Desc.3

(3) Peak Signal to Noise Ratio
25

26

27
28

29

30

31
32

33

34

2 3 4 5 6 7 8

(4) Compression Ratio

8

12

16

20

24

28

32

36

2 3 4 5 6 7
Scale Bits

CR

8

Trad.
Pred.
Desc.1
Desc.3

 Scale Bits

PS
NR

Trad.
Pred.
Desc.1
Desc.3

(5) Bit Rate

0

0.5

1

1.5

2

2.5

3

2 3 4 5 6 7 8
Scale Bits

BR

Trad.
Pred.
Desc.1
Desc.3

(6) Time

0
30
60
90

120
150
180
210
240
270
300

2 3 4 5 6 7 8
Scale Bits

Ti
m

e
in

 S
ec

on
ds

Trad.
Pred.
Desc.1
Desc.3

Figure (4.12) The effect of scale bits parameter on the

performance of the four FIC schemes, when they applied on
Lena image

4. Figure (4.13) shows the effect of scale bits parameter on the

compression performance parameters of the four FIC-schemes,

applied on Girl image.

100

Chapter Four Performance Test Results

(1) Mean Absolute Error

2

3

4

5

6

7

8

9

10

2 3 4 5 6 7 8
Scale Bits

M
A

E

Trad.
Pred.
Desc.1
Desc.3

(2) Mean Square Error

11
26
41
56
71
86

101
116
131
146

2 3 4 5 6 7
Scale Bits

M
SE

8

Trad.
Pred.
Desc.1
Desc.3

(3) Peak Signal to Noise Ratio
26
27
28
29
30
31
32
33
34
35
36
37
38

2 3 4 5 6 7 8
Scale Bits

PS
N

R

Trad.
Pred.
Desc.1
Desc.3

(4) Compression Ratio

8

12

16

20

24

28

32

36

40

2 3 4 5 6 7
Scale Bits

C
R

8

Trad.
Pred.
Desc.1
Desc.3

(5) Bit Rate
0

0.5

1

1.5

2

2.5

3

2 3 4 5 6 7 8
Scale Bits

B
R

Trad.
Pred.
Desc.1
Desc.3

(6) Time

0
30
60
90

120
150
180
210
240
270
300

2 3 4 5 6 7 8
Scale Bits

Ti
m

e
in

 S
ec

on
ds

Trad.
Pred.
Desc.1
Desc.3

Figure (4.13) The effect of scale bits parameter on the
performance parameters of the four FIC schemes, when they

applied on Girl image

4.8 Offset Bits Test
This set of conducted tests is to investigate the effects of the

parameter "number of offset bits" on the performance parameters of the

established FIC schemes. The value of the offset bits parameter was

varied between 4 to 8. While, the values of other parameters were set

fixed to have their default values. The results of this set of tests is

described in the following tables and figures:

101

Chapter Four Performance Test Results

1. Table (4.6) presents the effect of offset bits parameter on the

performance of Dis1FIC, when it is applied on Girl image.

Over All Offset
Bits MAE MSE PSNR

Compression
Ratio

Bit
Rate

Time in
Seconds

4 8.74 134.46 26.84 10.504 2.285 1.51
5 4.90 46.99 31.41 10.163 2.361 1.42
6 3.19 24.43 34.25 9.846 2.438 1.31
7 2.56 18.63 35.43 9.491 2.529 0.99
8 2.33 17.39 35.73 9.126 2.630 0.93

Table (4.6) The results of offset bits tests of Dis1FIC scheme,
applied on Girl image

2. Table (4.7) lists the tests results of Dis3FIC scheme, when it is

applied on Girl image with different values of offset bits parameter.

Table (4.7) The results of offset bits test of Dis3FICscheme,
applied on Girl Image

Over All Offset
Bits MAE MSE PSNR

Compression
Ratio

Bit
Rate

Time in
Seconds

4 8.73 133.63 26.87 10.498 2.286 1.42
5 4.90 47.45 31.37 10.164 2.361 1.34
6 3.17 24.17 34.30 9.844 2.438 1.30
7 2.56 18.69 35.41 9.483 2.531 1.02
8 2.33 17.55 35.69 9.123 2.631 0.81

3. Figure (4.14) shows the effect of offset bits parameter when Lena

image is used as test material.

102

Chapter Four Performance Test Results

(1) Mean Absolute Error

3

4

5

6

7

8

9

10

11

4 5 6 7 8
Offset Bits

M
A

E
Trad.
Pred.
Desc.1
Desc.3

(2) Mean Square Error

28
43
58
73
88

103
118
133
148
163
178
193

4 5 6 7 8
Offset Bits

M
SE

Trad.
Pred.
Desc.1
Desc.3

(3) Peak Signal to Noise Ratio

25
26
27
28
29
30
31
32
33
34

4 5 6 7 8
Offset Bits

PS
N

R

Trad.
Pred.
Desc.1
Desc.3

(4) Compression Ratio

8

12

16

20

24

28

32

36

4 5 6 7
Offset Bits

C
R

8

Trad.
Pred.
Desc.1
Desc.3

(5) Bit Rate

0

0.5

1

1.5

2

2.5

3

4 5 6 7 8

(6) Time

0
30
60
90

120
150
180
210
240
270
300

4 5 6 7 8
Offset Bits

Ti
m

e
in

 S
ec

on
ds

Trad.
Pred.
Desc.1
Desc.3

 Offset Bits

B
R

Trad.
Pred.
Desc.1
Desc.3

Figure (4.14) The effect of the parameter "offset bits" on the
compression performance, when Lena image is used as test

object

4. Figure (4.15) illustrates the performance behavior of the four FIC-

schemes when the value of scale bits parameter is varied. This test

was conducted using Girl image.

103

Chapter Four Performance Test Results

(1) Mean Absolute Error

2

3

4

5

6

7

8

9

10

4 5 6 7 8
Offset Bits

M
A

E

Trad.
Pred.
Desc.1
Desc.3

(2) Mean Square Error

11
26
41
56
71
86

101
116
131
146

4 5 6 7
Offset Bits

M
SE

8

Trad.
Pred.
Desc.1
Desc.3

(3) Peak Signal to Noise Ratio

26
27
28
29
30
31
32
33
34
35
36
37
38

4 5 6 7 8
Offset Bits

PS
N

R

Trad.
Pred.
Desc.1
Desc.3

(4) Compression Ratio

8

12

16

20

24

28

32

36

40

4 5 6 7 8
Offset Bits

C
R

Trad.
Pred.
Desc.1
Desc.3

(5) Bit Rate
0

0.5

1

1.5

2

2.5

3

4 5 6 7 8

(6) Time

0
30
60
90

120
150
180
210
240
270
300

4 5 6 7 8
Offset Bits

Ti
m

e
in

 S
ec

on
ds Trad.

Pred.
Desc.1
Desc.3

 Offset Bits

BR

Trad.
Pred.
Desc.1
Desc.3

Figure (4.15) The effect of the parameter "offset bits" on the
performance of the four FIC schemes, when Girl image is used

as test object

4.9 Minimum Error Test
In this set of tests the effects of the parameter "Minimum Error" are

investigated for the four established FIC schemes. The value of minimum

error parameter was varied from 1 to 15. The values of other coding

parameters were set fixed at their default values. The results of this set of

tests are summarized in the following:

104

Chapter Four Performance Test Results

1. Figure (4.16) shows some samples of the reconstructed Lena images.

When it compressed by Dis1FIC using different values of minimum

error parameter.

Min Error=1
MAE=3.91
MSE=41.93
PSNR=31.91

CR=8.872
BR=2.705
Time=1.25

Min Error=3
MAE=3.99
MSE=43.24
PSNR=31.77

CR=8.875
BR=2.704
Time=1.16

Min Error=5
MAE=4.37
MSE=51.61
PSNR=31.00

CR=8.876
BR=2.704
Time=1.06

Min Error=7
MAE=4.38
MSE=51.72
PSNR=30.99

CR=8.874
BR=2.705
Time=0.98

Min Error=9
MAE=4.52
MSE=55.64
PSNR=30.68

CR=8.875
BR=2.704
Time=0.93

Min Error=11
MAE=4.53
MSE=56.13
PSNR=30.65

CR=8.872
BR=2.705
Time=0.92

Min Error=13
MAE=4.53
MSE=56.01
PSNR=30.65

CR=8.873
BR=2.705
Time=0.90

Min Error=15
MAE=6.16

MSE=114.24
PSNR=27.55

CR=8.869
BR=2.706
Time=0.90

Figure (4.16) Samples of the reconstructed Lena image when it is

compressed by Dis1FIC scheme using different values of minimum
error

2. Figure (4.17) presents some of the reconstructed Lena images. When

it is compressed using Dis3FIC scheme with different values of

minimum error parameter.

105

Chapter Four Performance Test Results

3. Figure (4.18) illustrates the effectiveness of minimum error

parameter on the performance behavior of the four established FIC

schemes. These compression schemes were applied on Lena image.

Min Error=1
MAE=3.91
MSE=42.03
PSNR=31.90

CR=8.859
BR=2.709
Time=1.31

Min Error=7
MAE=4.37
MSE=51.43
PSNR=31.02

CR=8.864
BR=2.708
Time=0.96

Min Error=3
MAE=3.98
MSE=43.18
PSNR=31.78

CR=8.859
BR=2.709
Time=1.02

Min Error=5
MAE=4.35
MSE=50.95
PSNR=31.06

CR=8.864
BR=2.708
Time=0.97

Min Error=9
MAE=4.53
MSE=56.29
PSNR=30.63

CR=8.865
BR=2.707
Time=0.95

Min Error=15
MAE=6.16

MSE=115.34
PSNR=27.51

CR=8.863
BR=2.708
Time=0.93

Min Error=11
MAE=4.53
MSE=56.33
PSNR=30.62

CR=8.866
BR=2.707
Time=0.94

Min Error=13
MAE=4.54
MSE=56.66
PSNR=30.60

CR=8.865
BR=2.707
Time=0.94

Figure (4.17) Some samples of the reconstructed Lena image
compressed by Dis3FIC scheme using different values of parameter

"minimum error"

106

Chapter Four Performance Test Results

(1) Mean Absolute Error

3

4

5

6

7

8

9

10

11

1 3 5 7 9 11 13 15
Minimum Error

M
A

E

Trad.
Pred.
Desc.1
Desc.3

(2) Mean Square Error

28
43
58
73
88

103
118
133
148
163
178
193

1 3 5 7 9 11 13 15
Minimum Error

M
SE

Trad.
Pred.
Desc.1
Desc.3

(3) Peak Signal to Noise Ratio

25
26
27
28
29
30
31
32
33
34

1 3 5 7 9 11 13 15
Minimum Error

PS
N

R

Trad.
Pred.
Desc.1
Desc.3

(4) Compression Ratio

8

12

16

20

24

28

32

36

1 3 5 7 9 11 13 15
Minimum Error

C
R

Trad.
Pred.
Desc.1
Desc.3

(5) Bit Rate

0

0.5

1

1.5

2

2.5

3

1 3 5 7 9 11 13 15

(6) Time

0
30
60
90

120
150
180
210
240
270
300

1 3 5 7 9 11 13 1
Minimum Error

Ti
m

e
in

 S
ec

on
ds

5

Trad.
Pred.
Desc.1
Desc.3

 Minimum Error

B
R

Trad.
Pred.
Desc.1
Desc.3

Figure (4.18) The effect of minimum error parameter on the
performance of the four FIC-schemes applied on Lena image

4. Figure (4.19) shows the differences in performance behavior of the

four FIC-schemes, when they applied on Girl image using different

values of minimum error parameter.

107

Chapter Four Performance Test Results

(1) Mean Absolute Error

2

3

4

5

6

7

8

9

10

1 3 5 7 9 11 13 15
Minimum Error

M
A

E

Trad.
Pred.
Desc.1
Desc.3

(2) Mean Square Error

11
26
41
56
71
86

101
116
131
146

1 3 5 7 9 11 13 15
Minimum Error

M
SE

Trad.
Pred.
Desc.1
Desc.3

(3) Peak Signal to Noise Ratio

26
27
28
29
30
31
32
33
34
35
36
37
38

1 3 5 7 9 11 13 15
Minimum Error

PS
N

R

Trad.
Pred.
Desc.1
Desc.3

(4) Compression Ratio

8

12

16

20

24

28

32

36

40

1 3 5 7 9 11 13 15
Minimum Error

C
R

Trad.
Pred.
Desc.1
Desc.3

(5) Bit Rate
0

0.5

1

1.5

2

2.5

3

1 3 5 7 9 11 13 15

(6) Time

0
30
60
90

120
150
180
210
240
270
300

1 3 5 7 9 11 13 1
Minimum Error

Ti
m

e
in

 S
ec

on
ds

5

Trad.
Pred.
Desc.1
Desc.3

 Minimum Error

BR

Trad.
Pred.
Desc.1
Desc.3

Figure (4.19) The effect of minimum error parameter on the
performance parameters of the four FIC-schemes when they

applied on Girl image

4.10 Minimum Block Error Test
The minimum block error coding parameter belongs, exclusively, to

both Dis1FIC and Dis3FIC. In this set of tests the effects of this

parameter on the performance of the two enhanced FIC schemes are

investigated.

The listed figures in this section illustrates the effectiveness of

minimum block error on the parameters MAE, MSE, PSNR, compression

108

Chapter Four Performance Test Results

ratio (CR), bit rate (BR), and encoding time. The value of minimum

block error parameter was varied to have values from 1 to 19, and it is

important to mention that the value of this parameter should be higher

than or equal to the value of minimum error parameter. In this set of tests

the values of other coding parameter were set fixed to have their default

values. The results of this set of tests are summarized as follows:

1. Figure (4.20) shows samples of the reconstructed Girl image when it

was compressed by Dis1FIC scheme using different values of

minimum block error parameter.

Min Block Error=1
MAE=2.32
MSE=17.25
PSNR=35.76

CR=9.127
BR=2.630
Time=0.90

Min Block Error=10
MAE=4.04
MSE=42.38
PSNR=31.86

CR=9.106
BR=2.636
Time=0.25

Min Block Error=4
MAE=3.11
MSE=24.70
PSNR=34.20

CR=9.106
BR=2.636
Time=0.42

Min Block Error=7
MAE=3.68
MSE=33.98
PSNR=32.82

CR=9.103
BR=2.636
Time=0.27

Min Block Error=13
MAE=4.30
MSE=49.76
PSNR=31.16

CR=9.098
BR=2.638
Time=0.25

Min Block Error=16
MAE=4.49
MSE=56.50
PSNR=30.61

CR=9.098
BR=2.638
Time=0.20

Min Block Error=19
MAE=4.62
MSE=61.51
PSNR=30.24

CR=9.101
BR=2.637
Time=0.18

Figure (4.20) Some samples of the reconstructed Girl image when it
is compressed by Dis1FIC using different values of the parameter

"minimum block error"

109

Chapter Four Performance Test Results

2. Figure (4.21) illustrates the effect of minimum block error parameter

on the compression performance of Dis3FIC scheme, when it is

applied on Girl image.

3. Figure (4.22) shows the effect of minimum block error parameter of

Dis1FIC and Dis3FIC schemes when they applied on Lena image.

Min Block Error=1
MAE=2.32
MSE=17.33
PSNR=35.74

CR=9.122
BR=2.631
Time=1.21

Min Block Error=10
MAE=3.98
MSE=41.56
PSNR=31.94

CR=9.136
BR=2.627
Time=0.33

Min Block Error=4
MAE=3.11
MSE=24.92
PSNR=34.16

CR=9.130
BR=2.629
Time=0.41

Min Block Error=7
MAE=3.62
MSE=33.39
PSNR=32.89

CR=9.133
BR=2.628
Time=0.35

Min Block Error=13
MAE=4.21
MSE=47.98
PSNR=31.32

CR=9.138
BR=2.626
Time=0.16

Min Block Error=16
MAE=4.40
MSE=54.86
PSNR=30.74

CR=9.139
BR=2.626
Time=0.16

Min Block Error=19
MAE=4.51
MSE=59.03
PSNR=30.42

CR=9.142
BR=2.625
Time=0.16

Figure (4.21) Some samples of reconstructed Girl image compressed
by Dis3FIC scheme using various values of the parameter

"minimum block error"

110

Chapter Four Performance Test Results

(1) Mean Absolute Error

3

4

5

6

7

8

9

10

11

1 4 7 10 13 16 19
Minimum Block Error

M
AE

Desc.1
Desc.3

(2) Mean Square Error

28
43
58
73
88

103
118
133
148
163
178
193

1 4 7 10 13 16 1
Minimum Block Error

M
SE

9

Desc.1

Desc.3

(3) Peak Signal to Noise Ratio

25

26

27

28

29

30

31

32

33

34

1 4 7 10 13 16 19

(4) Compression Ratio

8

12

16

20

24

28

32

36

1 4 7 10 13 16 1
Minimum Block Error

C
R

9

Desc.1

Desc.3

 Minimum Block Error

PS
N

R

Desc.1

Desc.3

(5) Bit Rate

0

0.5

1

1.5

2

2.5

3

1 4 7 10 13 16 19

(6) Time

0

0.5

1

1.5

2

2.5

3

3.5

4

1 4 7 10 13 16 1
Minimum Block Error

Ti
m

e
in

 S
ec

on
ds

9

Desc.1

Desc.3

Minimum Block Error

B
R

Desc.1

Desc.3

Figure (4.22) The effect of minimum block error parameter on the
performance of Dis1FIC and Dis3FIC, when they applied on Lena

image

4. Figure (4.23) shows the difference in behaviors of the performance

parameters of the two enhanced FIC-schemes (i.e., Dis1FIC and

Dis3FIC) when the value of parameter "minimum block error" was

varied.

111

Chapter Four Performance Test Results

(1) Mean Absolute Error

2

3

4

5

6

7

8

9

10

1 4 7 10 13 16 19
Minimum Block Error

M
AE

Desc.1
Desc.3

(2) Mean Square Error

11

26

41

56

71

86

101

116

131

146

1 4 7 10 13 16 1
Minimum Block Error

M
SE

9

Desc.1

Desc.3

(3) Peak Signal to Noise Ratio

26
27
28
29
30
31
32
33
34
35
36
37
38

1 4 7 10 13 16 19

(4) Compression Ratio

8

12

16

20

24

28

32

36

40

1 4 7 10 13 16 1
Minimum Block Error

C
R

9

Desc.1

Desc.3

 Minimum Block Error

PS
N

R

Desc.1

Desc.3

(5) Bit Rate

0

0.5

1

1.5

2

2.5

3

1 4 7 10 13 16 19

(6) Time

0

0.5

1

1.5

2

2.5

3

1 4 7 10 13 16 1
Minimum Block Error

Ti
m

e
in

 S
ec

on
ds

9

Desc.1

Desc.3

Minimum Block Error

B
R

Desc.1

Desc.3

Figure (4.23) The effect of minimum block error parameter on the
performance of Dis1FIC and Dis3FIC schemes when they applied

on Girl image

4.11 Number of Bins Test
This set of conducted tests was applied on the two enhanced FIC-

schemes (i.e., Dis1FIC and Dis3FIC), because this coding parameter

belongs to these two schemes only. In this set of tests the value of this

parameter was varied to investigate its effectiveness on the performance

parameters of the two enhanced FIC-schemes. The values of other coding

112

Chapter Four Performance Test Results

parameters were fixed to have their default values. The tests results are

summarized as follows:

1. Table (4.8) lists the values of compression performance parameters

of Dis1FIC scheme, when it is applied on Lena image using

different values of the parameter "no. of bins".

Table (4.8) The effect of number of bins parameter on the

performance of Dis1FIC scheme, when it is applied on Lena image

Over All No. of
Bins MAE MSE PSNR

Compression
Ratio

Bit
Rate

Time in
Seconds

100 3.91 41.93 31.91 8.872 2.705 1.29
250 4.15 48.14 31.31 8.867 2.707 0.62
400 4.33 53.29 30.86 8.868 2.706 0.45
550 4.46 56.91 30.58 8.864 2.707 0.41
700 4.58 60.58 30.31 8.866 2.707 0.41
850 4.67 63.09 30.13 8.860 2.709 0.41
1000 4.76 66.14 29.93 8.857 2.710 0.36

2. Table (4.9) shows the values of compression performance

parameters of Dis3FIC scheme, when it is applied on Lena image

using various values of the parameter "no. of bins".

Table (4.9) The effect of number of bins parameter on the
performance of Dis3FIC scheme, applied on Lena image

Over All No. of
Bins MAE MSE PSNR

Compression
Ratio

Bit
Rate

Time in
Seconds

100 3.91 42.03 31.90 8.859 2.709 1.26
250 4.17 48.54 31.27 8.870 2.706 0.67
400 4.31 52.12 30.96 8.869 2.706 0.55
550 4.44 55.79 30.66 8.866 2.707 0.43
700 4.54 58.58 30.45 8.865 2.707 0.39
850 4.62 61.09 30.27 8.862 2.708 0.38
1000 4.70 63.61 30.10 8.865 2.708 0.38

113

Chapter Four Performance Test Results

3. Figure (4.24) shows the difference in behavior of the performance

parameters of the two enhanced FIC-schemes, when they applied on

Lena image using different values of the parameter "no. of bins".

(1) Mean Absolute Error

3

4

5

6

7

8

9

10

11

100 250 400 550 700 850 1000
No. of Bins

M
AE

Desc.1

Desc.3
(2) Mean Square Error

28
43
58
73
88

103
118
133
148
163
178
193

100 250 400 550 700 850 1000
No. of Bins

M
SE

Desc.1

Desc.3

(3) Peak Signal to Noise Ratio

25

26

27

28

29

30

31

32

33

34

100 250 400 550 700 850 1000
No. of Bins

PS
N

R

Desc.1

Desc.3

(4) Compression Ratio

8

12

16

20

24

28

32

36

100 250 400 550 700 850 1000
No. of Bins

C
R

Desc.1

Desc.3

(5) Bit Rate

0

0.5

1

1.5

2

2.5

3

100 250 400 550 700 850 1000
No. of Bins

BR

Desc.1

Desc.3

(6) Time

0

0.5

1

1.5

2

2.5

3

3.5

4

100 250 400 550 700 850 1000
No. of Bins

Ti
m

e
in

 S
ec

on
ds

Desc.1

Desc.3

Figure (4.24) The effect of number of bins parameter on the
performance of the two enhanced FIC-schemes, applied on

Lena image

4. Figure (4.25) presents the difference in performance behavior of the

two enhanced FIC-schemes (i.e., Dis1FIC and Dis3FIC), when they

applied on Girl image using different values of the parameter "no. of

bins".

114

Chapter Four Performance Test Results

(1) Mean Absolute Error

2

3

4

5

6

7

8

9

10

100 250 400 550 700 850 1000
No. of Bins

M
AE

Desc.1
Desc.3

(2) Mean Square Error

11

26

41

56

71

86

101

116

131

146

100 250 400 550 700 850 1000
No. of Bins

M
SE

Desc.1

Desc.3

(3) Peak Signal to Noise Ratio

26
27
28
29
30
31
32
33
34
35
36
37
38

100 250 400 550 700 850 1000
No. of Bins

PS
NR

Desc.1

Desc.3

(4) Compression Ratio

8

12

16

20

24

28

32

36

40

100 250 400 550 700 850 1000
No. of Bins

CR

Desc.1

Desc.3

(5) Bit Rate
0

0.5

1

1.5

2

2.5

3

100 250 400 550 700 850 1000
No. of Bins

BR

Desc.1

Desc.3

(6) Time

0

0.5

1

1.5

2

2.5

3

100 250 400 550 700 850 1000
No. of Bins

Ti
m

e
in

 S
ec

on
ds

Desc.1

Desc.3

Figure (4.25) The effect of number of bins parameter on the
performance of the two enhanced FIC-schemes, when they

applied on Girl image

4.12 Window Size Test

In this set of tests, the effects of window size parameter on the

performance of the two enhanced FIC-schemes (i.e., Dis1FIC and

Dis3FIC) were explored, taking into consideration the window size

parameter belongs to these two FIC-schemes only. In this set of tests, the

value of window size was varied to have different integer values which

115

Chapter Four Performance Test Results

lay within the range [1, 5]. The values of other parameters were fix at

their default values. The tests results are summarized as follows:

1. Table (4.10) lists the values of performance parameters of Dis1FIC

scheme, when it is applied on Lena image using different values of

window size.

Table (4.10) The effect of window size parameter on the

performance of Dis1FIC scheme

Over All Window
Size MAE MSE PSNR

Compression
Ratio

Bit
Rate

Time in
Seconds

1 3.91 41.93 31.91 8.872 2.705 1.21
2 3.78 38.46 32.28 8.874 2.704 2.01
3 3.70 36.54 32.50 8.870 2.706 2.51
4 3.65 35.55 32.62 8.867 2.706 3.21
5 3.62 34.93 32.70 8.869 2.706 3.72

2. Table (4.11) lists the performance parameters of Dis3FIC scheme,

when it is applied on Lena image using different values of the

parameter "window size".

Table (4.11) The effect of window size parameter on

performance parameters of Dis3FIC scheme
Over All Window

Size MAE MSE PSNR

Compression
Ratio

Bit
Rate

Time in
Seconds

1 3.91 42.03 31.90 8.859 2.709 1.21
2 3.78 38.83 32.24 8.866 2.707 1.93
3 3.71 36.90 32.46 8.866 2.707 2.53
4 3.67 35.74 32.60 8.870 2.706 3.37
5 3.64 35.00 32.69 8.868 2.706 3.85

3. Figure (4.26) shows the difference between the behaviors of the two

FIC-schemes when they applied to compress Lena image, using

different values of the parameter "window size".

116

Chapter Four Performance Test Results

(1) Mean Absolute Error

3

4

5

6

7

8

9

10

11

1 2 3 4 5

(2) Mean Square Error

28
43
58
73
88

103
118
133
148
163
178
193

1 2 3 4 5
Window Size

M
SE

Desc.1

Desc.3

Desc.1
Desc.3

Window Size

M
AE

(3) Peak Signal to Noise Ratio
25

26

27

28

29

30

31

32

33

34

1 2 3 4 5
Window Size

PS
NR

Desc.1

Desc.3

(4) Compression Ratio

8

12

16

20

24

28

32

36

1 2 3 4
Window Size

CR

5

Desc.1

Desc.3

(5) Bit Rate

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5

(6) Time

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5
Window Size

Ti
m

e
in

 S
ec

on
ds

Desc.1

Desc.3

 Window Size

BR

Desc.1

Desc.3

Figure (4.26) The effect of window size parameter on
performance of the two enhanced FIC-methods, when they

applied on Lena image

4. Figure (4.27) shows the difference between the performance of two

enhanced FIC-schemes when they applied on Girl image, using

different window size values.

117

Chapter Four Performance Test Results

(1) Mean Absolute Error

2

3

4

5

6

7

8

9

10

1 2 3 4 5

(2) Mean Square Error

11

26

41

56

71

86

101

116

131

146

1 2 3 4 5
Window Size

M
SE

Desc.1

Desc.3

Desc.1
Desc.3

Window Size

M
AE

(3) Peak Signal to Noise Ratio
26
27
28
29
30
31
32
33
34
35
36
37
38

1 2 3 4 5
Window Size

PS
NR

Desc.1

Desc.3

(4) Compression Ratio

8

12

16

20

24

28

32

36

40

1 2 3 4
Window Size

CR

5

Desc.1

Desc.3

(5) Bit Rate
0

0.5

1

1.5

2

2.5

3

1 2 3 4 5

(6) Time

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5
Window Size

Ti
m

e
in

 S
ec

on
ds

Desc.1

Desc.3

 Window Size

BR

Desc.1

Desc.3

Figure (4.27) The effect of window size on the performance of
the two enhanced FIC-schemes, when they applied on Girl

image

4.13 The Effect of Both No. of Bins and Window Size
Table (4.12) lists the values of performance parameters of Dis1FIC

scheme, when it is applied on Lena image using different values of both

no. of bins and window size parameters.

118

Chapter Four Performance Test Results

Table (4.12) The effect of both no. of bins and window size

parameters on performance parameters of Dis1FIC scheme

Over All No. of
Bins

Window
Size MAE MSE PSNR

Compression
Ratio

Bit
Rate

Time in
Seconds

1 3.92 42.01 31.90 8.875 2.704 1.32
2 3.79 38.54 32.27 8.877 2.703 1.70
3 3.71 36.68 32.49 8.874 2.705 2.16
4 3.67 35.69 32.61 8.871 2.705 2.82

100

5 3.64 35.05 32.68 8.873 2.705 3.10
1 4.17 48.25 31.30 8.865 2.707 0.57
2 4.03 44.71 31.63 8.869 2.706 0.95
3 3.94 42.16 31.88 8.869 2.706 1.07
4 3.87 40.57 32.05 8.872 2.705 1.45

250

5 3.82 39.40 32.18 8.873 2.705 1.45
1 4.34 53.40 30.86 8.867 2.707 0.53
2 4.16 48.09 31.31 8.870 2.706 0.64
3 4.06 45.45 31.56 8.870 2.706 0.73
4 4.06 45.45 31.56 8.870 2.706 0.94

400

5 3.95 42.40 31.86 8.870 2.706 1.01
1 4.47 57.02 30.57 8.864 2.708 0.42
2 4.27 51.21 31.04 8.866 2.707 0.48
3 4.16 48.03 31.32 8.871 2.705 0.62
4 4.09 46.18 31.49 8.872 2.705 0.68

550

5 4.04 44.70 31.63 8.870 2.706 0.80
1 4.59 60.67 30.30 8.866 2.707 0.41
2 4.36 53.59 30.84 8.867 2.707 0.47
3 4.23 50.16 31.13 8.867 2.707 0.62
4 4.16 48.03 31.32 8.869 2.706 0.70

700

5 4.10 46.49 31.46 8.872 2.705 0.66
1 4.68 63.18 30.13 8.859 2.709 0.42
2 4.45 56.57 30.60 8.871 2.706 0.54
3 4.31 52.07 30.96 8.864 2.708 0.46
4 4.22 49.74 31.16 8.867 2.707 0.64

850

5 4.15 47.62 31.35 8.870 2.706 0.75
1 4.77 66.21 29.92 8.858 2.709 0.38
2 4.51 58.39 30.47 8.864 2.708 0.41
3 4.38 54.58 30.76 8.864 2.708 0.42
4 4.27 51.15 31.04 8.867 2.707 0.65

1000

5 4.21 49.38 31.20 8.870 2.706 0.55

119

Chapter Four Performance Test Results

4.14 Implementing Dis1FIC on Different Images
1. Figure (4.28) shows the effect of Dis1FIC scheme when it

implemented on Baboon image. The results were: (MAE=3.92,

MSE=31.98, PSNR=33.08, CR=8.998, BR=2.667, Time in

seconds=1.30).

a. Original Baboon b. Reconstructed Baboon

 Figure (4.28) The performance of the enhanced FIC-scheme

Dis1FIC, when it applied on Baboon image

2. Figure (4.29) shows the original and reconstructed Bird image when

applying Dis1FIC scheme. The results were: (MAE=7.15,

MSE=202.46, PSNR=25.07, CR=8.786, BR=2.731, Time in

seconds=0.81).

120

Chapter Four Performance Test Results

a. Original Bird b. Reconstructed Bird

Figure (4.29) The performance of the enhanced FIC-scheme
Dis1FIC, when it applied on Bird image

3. Figure (4.30) shows the performance of Dis1FIC scheme when it

applied on House image. The results were: (MAE= 18.91,

MSE=701.34, PSNR=19.67, CR=8.625, BR=2.782, Time in

seconds=0.78).

a. Original House b. Reconstructed House

 Figure (4.30) The performance of the enhanced FIC-scheme
Dis1FIC, when it applied on House image

4. Figure (4.31) shows original and reconstructed images of Parrot when

implementing Dis1FIC scheme on it. The results were: (MAE=6.49,

121

Chapter Four Performance Test Results

MSE=135.81, PSNR= 26.80, CR=8.526, BR=2.815, Time in

seconds=0.93).

a. Original Parrot b. Reconstructed Parrot

 Figure (4.31) The performance of the enhanced FIC-scheme

Dis1FIC, when it applied on Parrot image

4.15 Discussion

1. The increase in the block length parameter causes an increase in

Cr and a decrease in PSNR.

2. The increase in jump step causes a decrease in PSNR and elapsed

encoding time, and an increase in Cr value.

3. The increase in maximum scale causes little increase in

compression ratio value, and a decrease in PSNR.

4. The increase in the number of bits used to encode the scale and

offset coefficients causes a decrease in the value of Cr and an

increase in PSNR value of the decompressed image.

5. The increase in the value of minimum error and minimum block

error parameters causes a little increase in Cr value, and a

decrease in PSNR value and encoding time.

122

Chapter Four Performance Test Results

123

6. The increase in the number of bins values causes a decrease in

encoding time, and PSNR, and a little decrease in Cr value.

7. The increase in window size parameter causes an increase in time

and PSNR, and a small decrease in compression ratio.

8. In general, the two enhanced FIC-schemes (i.e., Dis1FIC and

Dis3FIC) have encoding time much less than that spend by the

traditional FIC-scheme (i.e., TradFIC) and by the enhanced

scheme (i.e., PredFIC) which is based on using the symmetry

predictor only.

5.1 Conclusions
From the test results presented in previous chapter, some remarks

related to the behavior and performance of the investigated FIC schemes

are stimulated. Among these remarks are the followings:

1. The use of symmetry predictor causes a speed-up in encoding

process, and the use of moment description causes more

significant speeding-up in encoding process. But, the image

quality had little degraded in comparison with its level when the

traditional method is applied.

2. The block length parameter mainly affects on the (MAE, MSE,

PSNR, Cr, BR, and time). It was found that the suitable values

are (4, 5) which led to good PSNR (less distortion) and Cr.

3. When the jump step is taken small then the schemes have better

performance in terms of image quality and compression ratio.

But if the jump step is set large, the encoding process become

faster. The best values of jump step are (1, 2, 3).

4. The use of maximum scale parameter value within the range [2.5,

3] will nearly preserve the image quality but with a little bit

degradation. The encoding time is little affected with the

variation of maximum scale values.

5. The value of the parameters (scale bits and offset bits) affects the

performance of the FIC scheme, where the increase in the

number of encoding bits leads to less error and good quality but a

little bit decrease in compression ratio. But the compression time

124

Chapter Five Conclusions and Future Works

125

will little affected. The suitable values of these parameters are (7,

8).

6. The minimum error and minimum block error approximately have

little effect on compression ratio, while they have significant

effect on PSNR and encoding time. When they are increased, the

PSNR value is decreased, it has a suitable value if these

parameters' values are set (from 1 to 5) in case of using descriptor

order-1, but these values could be expanded to 7 in case of

descriptor order-3.

7. The use of large no. of bins with larger window size will lead to

suitable compression ratio and PSNR, and it speeds up the

compression time significantly.

5.2 Future Works

1. Other advanced partitioning schemes (such as HV, quadtree) can

be implemented to enhance the compression performance

parameter.

2. Using another window size scheme, like making it local adaptive

according to the population of each bin and its surrounding

neighbors.

3. Speeding up the descriptors using double blocks descriptors

instead of single descriptor.

[Acha05]

Acharya, T. and Ray, A. K.; "Image Processing Principles and

Applications"; Wiley-Interscience; United States of America;

2005.

[Alam01]

Al-A'mri, J. H.; "Fractal Image Compression"; Ph.D. Thesis;

Baghdad University; College of Science; 2001.

[Aldu03]

Al-Dulaimy, A. A.; "Fractal Image Compression with Fasting

Approaches"; M.Sc. Thesis; Al-Nahrain (Saddam) University;

College of Science; 2003.

[Alhi07]

Al-Hilo, E. A.; "Speeding-up Fractal Colored Image Compression

Using Moments Features"; Ph.D. Thesis; Al-Mustansiriyah

University; College of Science; 2007.

[BaHu93]

Barnsley, M., and Hurd, L.; "Fractal Image Compression";

Wellesley; Massachusetts: AK Peter. Ltd.; 1993.

[BDM88]

Barnsley, M. F., Devaney, R. L., Mandelbrot, B. B., Peitgen, H. O.,

Saupe, D., Voss, R. F., Fisher, Y., and McGuire, M.; "The Science

of Fractal Images"; Springer-Verlag; New York; 1988.

i

References .

[Bour91]

Bourke, P., “An Introduction to Fractals”, Internet paper, 1991,

http://astronomy.swin.edu.au/~pbourke/fractals/fracintro/.

[ChKu00]

Chang, H.T., and Kuo, C.J.; "Iteration-free fractal image coding

based on efficient domain pool design"; Dept. of Inf. Manage.,

Chao Yang Univ. of Technol., Taichung; IEEE Transactions on

Image Processing; vol. 9; pp. 329-339; 2000.

[Colv96]

Colvin, J.; "Iterated Function Systems and Fractal Image

Compression"; 1996; kd4syw@usit.net.

[Cran97]

Crane, R.; "A Simplified Approach to Image Processing"; United

States of America; New Jersey; Hewlett-Packard Company; 1997.

[DNR06]

Distasi, R., Nappi, M., and Riccio, D.; "A Range/Domain

Approximation Error-Based Approach for Fractal Image

Compression"; IEEE Transactions on Image Processing; vol. 15;

pp. 89- 97; 2006.

[Fish95]

Fisher, Y.; "Fractal Image Compression"; Springer-Verlag; United

States of America; New York; 1995.

[Geor06]

George, L. E.; "IFS Coding for Zero-Mean Image Blocks";

University of Baghdad; College of Science; Iraqi Journal of

Science; vol.47; no.1; 2006.

ii

http://astronomy.swin.edu.au/%7Epbourke/fractals/fracintro/

References .

[Ghan03]

Ghanbari, M.; "Standard Codecs: Image Compression to Advanced

Video Coding"; Magazine of the Institution of Electrical

Engineers; London; United Kingdom; 2003.

[Gonz02]

Gonzalez, R., and Woods, R.; " Digital Image Processing"; Pearson

Education International; Prentice Hall; Inc.; 2nd Edition; New

Jersey; 2002.

[Klin03]

Klinger, T.; "Image Processing with LabVIEW and IMAQ Vision";

Prentice Hall PTR; United States of America; 2003.

[Lani04]

Lanins, C., “Fractals”, A Fractal Unit for Elementary and Middle

School Unit, 2004, http://math.rice.edu/~Lanins/fractals/self.html.

[Mahm07]

Mhamood, R. F.; "Improved Once-Time-Search Method Based on

Inter-Block Correlation"; M.Sc. Thesis; Al-Nahrain University;

College of Science; 2007.

[Mand04]

Mandelbrot, B.,”Fractal”, Internet paper, Microsoft ® Encarta ®

online Encyclopedia, 2004, http://Encarta.msn.com.

[Moha03]

Mohamed, M.; "Optimization of Fractal Image Compression Based

on Kohonen Neural Networks"; EEDIS Laboratory, Engineering

Faculty, University of SBA; mohamedmokht@yahoo.fr; Internet

paper; http://www.eurasip.org/Proceedings/Ext/ISCCSP2006/defev

ent/papers/cr1051.pdf; 2003.

iii

http://math.rice.edu/%7ELanins/fractals/self.html
http://encarta.msn.com/
mailto:mohamedmokht@yahoo.fr
http://www.eurasip.org/Proceedings/Ext/ISCCSP2006/defev%20ent/papers/cr1051.pdf
http://www.eurasip.org/Proceedings/Ext/ISCCSP2006/defev%20ent/papers/cr1051.pdf

References .

[NeGa95]

Nelson, M. and Gailly, J. L.; "The Data Compression Book";

Prentice-Hall; Second Edition; England; 1995.

[Niki07]

Nikiel, S.; "Iterated Function Systems for Real-Time Image

Synthesis"; Springer; Poland; 2007.

[Ning97]

Ning, L.; "Fractal Imaging"; Academic Press; 1997.

[Prat01]

Pratt, W. K.; "Digital Image Processing"; 3rd Edition; John Wiley

and Sons; New York; 2001.

[ReAn97]

Rejeb, B., and Anheier, W.; "A New Approach for the Speed Up of

Fractal Image Coding"; 13th International Conference on Digital

Signal Processing Proceedings; vol.2; pp. 853-856; 1997.

[RHS97]

Ruhl, M., Hartenstein, H. and Saupe, D.; "Adaptive Partitionings

for Fractal Image Compression"; IEEE International Conference on

Image Processing (ICIP’97); Santa Barbara; ruhl, hartenst,

saupe@informatik.uni-freiburg.de; 1997.

[Salo04]

Salomon, D.; "Data Compression"; Springer-Verlag; United States

of America; New York; 3rd Edition; 2004.

[Salo07]

Salomon, D.; "Data Compression"; Springer; United Kingdom;

London; 4th Edition; 2007.

[Sank98]

Sankaranarayanan, V.; "Fractal Image Compression Literature

Survey"; Internet Paper; 1998.

iv

mailto:saupe@informatik.uni-freiburg.de

References .

[SaSm99]

Salih, I. and Smith, S. H.; "Encoding Time Reduction in Fractal

Image Compression"; IEEE Computer Society; Washington, DC,

USA; 1999.

[Sayo06]

Sayood, K.; "Introduction to Data Compression"; 3rd Edition;

United States of America; Elsevier; 2006.

[ShSu00]

Shi, Y. Q., and Sun, H.; "Image and Video Compression for

Multimedia Engineering"; CRC Press LLC; United States of

America; 2000.

[TaLo98]

Taylor, M., and Louret, J.; "Scientific Fractals FAQ", 1998,

http://www.mta.ca/~mctaylor/sci.fractals-faq/.

[ToPi01]

Tong, C. S., and Pi, M.; "Fast Fractal Image Encoding Based on

Adaptive Search". IEEE Transactions on Image Processing; vol.

10; no. 9; pp. 1269-1277; 2001.

[ToWo02]

Tong, C. S., and Wong, M.; "Adaptive Approximate Nearest

Neighbor Search for Fractal Image Compression"; Dept. of Math.,

Hong Kong Baptist Univ., Kowloon; IEEE Transactions on Image

Processing; vol. 11; pp. 605-615; 2002.

[Umba98]

Umbaugh, S. E.; "Computer Vision and Image Processing: A

Practical Approach using CVIP Tools"; Prentice Hall, Inc.; 1998.

[WBG03]

West, B. J., Bologna, M., and Grigolini, P.; "Physics of Fractal

Operators"; Springer-Verlag; New York; 2003.

v

http://www.mta.ca/%7Emctaylor/sci.fractals-faq/

References .

vi

[WoJa94]

Wohlberg, B., and Jager, G.; "On the Reduction of Fractal Image

Compression Encoding Time"; IEEE South African Symposium on

Communications and Signal Processing (COMSIG '94); pp. 158-

161; 1994.

[WoJa99]

Wohlberg, B. and Jager, G.; "A Review of the Fractal Image

Coding Literature"; IEEE Transactions on Image Processing; vol.

8, no. 12; pp. 1716-1729; 1999.

[Yung05]

Yung-Gi Wu; "Fast and Low Bit Rate Fractal Image Encoding";

Journal Paper; SPIE Digital Library © 2008; Optical Engineering

vol. 44; no. 11; 2005.

 خلاصةال

 الغ رض منھ ا ، وك ان مختلف ة ان ات استحدثت طرائق عدیدة لضغط ال صور باس تخدام تق لقد

غوطة وانجاز الضغط بأقل وقت تحقیق نسبة ضغط عالیة مع المحافظة على جودة الصورة المض

لضغط الصور تعتمد ھي إحدى ھذه الطرق وھي تقنیة حدیثة إن طریقة الضغط الكسوري. ممكن

 .في الصورشابھ الذاتي على مبدأ الت

وھو یتكون من مرحلتین أساسیتین، . إن البحث الحالي یھتم بتطویر نظام الضغط الكسوري

في مرحلة التشفیر تجزأ الصورة الأص لیة . والثانیة مرحلة فك التشفیرالأولى ھي مرحلة التشفیر

، والثانی ة ت دعى غی ر متداخل ة مق اطع الم دى وھ ي مق اطع ، الأولى ت دعى مقاطعإلى نوعین من ال

 .ومن الممكن أن تكون متداخلة المنطلق مقاطع

ف ضل بل وك ت المتساویة الحجم وبعد ذلك یتم إیجاد أتجزأ الصورة باستخدام طریقة البلوكا

تنتھ ي مرحل ة الت شفیر بخ زن . تحوی ل أف ینوذل ك بتطبی ق منطل ق لك ل بل وك م ن بلوك ات الم دى

إن عملیة إیجاد البلوكات المتشابھة تتطلب عملی ة . مدى لكل بلوك من بلوكات ال معاملات التحویل

أما مرحلة فك الت شفیر . حسابیة معقدة تستغرق وقتا طویلا وھذه إحدى سلبیات الضغط الكسوري

 وقت ا ی ستغرقفتطب ق عل ى أي ص ورة ابتدائی ة حت ى نح صل عل ى ال صورة الم سترجعة، وھ ذا

 .قصیرا

ج لتح سین مراح ل الت شفیر لل صور الملون ة في ھذا البح ث ت م ت صمیم وتطبی ق أربع ة نم اذ

ت م تطبی ق طریق ة ال ضغط الك سوري التقلیدی ة عل ى الأول الھیك ل في . واختزال الوقت المستغرق

وقد اس تغرقت عملی ة ال ضغط). YCbCr(إلى) RGB(الصور الملونة وذلك بتحویل المركبات

 33.39 ح واليج ودة ال صورة بلغ ت ، و8.89 المتحقق ةن سبة ال ضغط كان ت ثانی ة، و144.02

 .دیسبل

 اس تخدام متنب يء التحوی ل م ع طریق ة ال ضغط الك سوري لل صور ھ و الث اني ف ي الھیك ل

إن اس تخدام . التن اظري، ویعتم د المتنب يء أساس اً عل ى ق یم الع زوم للمق اطع الت ي س یتم مطابقتھ ا

ریق ة التقلیدی ة لیجعلھ ا ف ي الطت ستخدم الت ي)الثمانی ة(عملی ات التن اظر المتنب يء س یقلل م ن ع دد

م ن وق ت % 14 وق ت ال ضغط لی صبح ح والي أدت إل ى تقلی ل عملیة تناظر واحدة وھذه الطریق ة

 .الضغط للطریقة التقلیدیة

مح سنة م ن خ لال غط الك سوري لل صور ض طریق ة ال استحدثت الثالث والرابع في الھیكل

 لوص ف فق د اس تخدمت ،لثالث ة العزوم من الدرج ة الأول ى وا استخدام واصف للمقاطع یعتمد على

 البح ث ع ن أف ضل بل وك وبالنتیج ة لیخت زل مع ادلات ، فھرس ة لبلوك ات المنطل قالمق اطع لعم ل

إن نت ائج فح ص ھ ذین الھیكل ین أش ارت إل ى ح صول .ق شبیھ لكل بلوك م ن بلوك ات الم دى منطل

م ن وق ت % 0.9 وقت الضغط لیصل إل ى أدى إلى نقصانوبالتالي اختزال كبیر في وقت البحث

 .الضغط بالطریقة التقلیدیة

 لتحسین ضغط الصور بلوكمتنبيء تناظر ال

 الكسوري

 جمھوریة العراق
 وزارة التعلیم العالي والبحث العلمي

 جامعة النھرین
 كلیة العلوم

 رسالھ
 مقدمھ إلى كلیة العلوم في جامعة النھرین كجزء من
 متطلبات نیل درجة الماجستیر في علوم الحاسبات

 من قبل

 رؤى عبداالله جابر

)2006بكالوریوس جامعة النھرین (

 إشراف

 لؤي أدور جورج. د

 1429 ذو القعدة 2008 تشرین الثاني

	Binder1
	Cover
	Aya
	certification1
	dedication
	Acknowledgment
	Abstract
	List of Abbreviations
	table of contents2
	chapter1_interface
	Chapter1
	chapter2_interface
	Chapter2
	chapter3_interface
	Chapter3
	chapter4_interface
	Chapter4
	chapter5_interface
	Chapter5
	references_interface
	References

	Abstract Arabic
	Cover2

