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 بسم الله الرحمن الرحيم
 

  خَلقََ الْْنِْسَانَ مِنْ عَلقَ    باِسْمِ رَبِِّكَ الَّذِي خَلقََ اقْرَأْ     

كْرَم   
  عَلَّمَ الِْْنْسَانَ مَا لَمْ يعَْلَمْ   الَّذِي عَلَّمَ باِلْقَلَمِ   اقْرَأْ وَرَبُّكَ الَْْ

جْعَىإِنَّ إِلَى رَبِِّكَ   أَنْ رَآَه  اسْتغَْنَى  كَلََّّ إِنَّ الِْْنْسَانَ لَيطَغَْى  الرُّ

 أَرَأَيْتَ إِنْ كَانَ عَلَى الْه دَى   عَبْدًا إِذَا صَلَّى  أَرَأَيْتَ الَّذِي يَنْهَى

َ يَرَى  أَرَأَيْتَ إِنْ كَذَّبَ وَتَوَلَّى  أَوْ أَمَرَ باِلتَّقْوَى    أَلَمْ يعَْلَمْ بأَِنَّ اللََّّ

 ناَصِيَة  كَاذِبَة  خَاطِئةَ    باِلنَّاصِيةَِ  كَلََّّ لَئنِْ لَمْ يَنْتهَِ لَنَسْفَعَنْ       

باَنِيةََ   فَلْيَدْع  ناَدِيهَ    دْ وَاقْتَرِبْ   سَنَدْع  الزَّ    كَلََّّ لََ ت طِعْه  وَاسْج 

صدق الله العظيم ()   
) سورة العلق(                                                                                                                            
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Abstract 

 

        In this thesis, Haar wavelet method is implemented efficiently in finding the 

numerical solution of Burger's Fisher equation. This method shows rather rapid 

convergence than other existing methods. Illustrative examples are implemented 

to show the efficiency and the powerful of Haar wavelet approach. The 

comparison among the numerical results and the exact solution, and the solutions 

obtained by using some traditional methods such as variational iteration method 

(VIM) shows that the suggested scheme is fairly accurate and viable for solving 

Burger's Fisher problem. 
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INTRODUCTION 

 

 

     Differential equations (DEs) play a major role in describing a wide range of 

natural phenomena undergoing change. (DEs) relate an unknown function to its 

derivatives. These functions usually represent physical quantities whereas the 

derivatives represent their rates of change.  

      Mathematical models involving evolutionary partial differential equations 

(PDEs) as well as ordinary differential equations (ODEs) arise in many diverse 

applications, such as fluid flow, mechanical systems, image processing, physics, 

earth sciences, relativity, and mathematical finance [1]. 

     The nature of these equations has been studied by mathematicians for hundreds 

of years and there are many well-developed solution techniques. The analytical 

solution for a given differential equation is always preferable. However, systems 

described by differential equations are often so complex or so large where a 

purely analytical solution to the equations is not tractable, or many of them cannot 

be solved exactly by using analytical methods.  

      In this case, the numerical methods are needed to be developed for solving 

differential equations. Methods for the numerical simulation of dynamic 

mathematical models have been the focus of intensive research. However, due to 

the increasing range of applications, there is a continuing demand today for better 

and more efficient methods [1]. 

     Recently, the study of nonlinear partial differential equations modeling 

physical Phenomena has become an important tool. Nonlinear phenomena are of 

fundamental importance in various fields of science and engineering.  
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    Most of nonlinear phenomena are models of our real life problems. The 

investigation of the travelling wave solutions plays an important role in nonlinear 

science.  A variety of powerful methods have been presented, such as the inverse 

scattering transform (ISM) [2], homotopy perturbation method (HPM) [3], 

homotopy analysis method (HAM) [4, 5], tanh function method (TFM) [6], 

variational iteration method (VIM) [7-9], the Adomian decomposition method 

(ADM) [10-12], and the wavelet-based transform(WBT) [13-16]. 

   The wavelet-based transform has been introduced by Chen and Hsiao [13] for 

solving differential equations where the highest derivatives appearing in the 

differential equations are first expanded into Haar series. The lower order 

derivatives and the solutions can then be obtained quite easily using the Haar 

operational matrices of integration. The derivation for Haar operational matrix of 

integration and other operational matrix of an orthogonal function can be derived 

from block pulse operational matrix [18]. 

   The ideas from Chen and Hsiao were later used by Maleknejad and Mirzaee[19], 

Razzaghi and Ordokhani[28], Lepik[14-15]  and Shi et al. [21] to solve other 

differential and integral equations.  

    Their ideas were also applied by Dai and Cochran [22] to solve variational and 

optimal control problems. Although, the method has been applied successfully for 

numerical solution of linear ordinary differential equations by Chang and 

Piau[23], nonlinear differential equations by Hariharanet al. [16], Lepik[14-15] 

and fractional order differential equations by Li and Hu [24] and Li and 

Weiwei[25], but Haar wavelets or rather piecewise constant functions in general, 

are not vastly used for the higher order of partial differential equations, because of 

the difficulty in determining the accuracy and stability of the solution (see [26]). 

Due to the successful application of Haar operational matrix in numerical solution  
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of first order PDEs was proposed by Wu [27] and nonlinear evolution equations 

with only one-dimensional  space  by Lepik[15], It is clear that many authors have 

been attracted to use  wavelets methods for solving differential equations.  

    

This thesis is organized as follows: 

    In chapter one, a brief review of basic definitions and concepts relate to the work 

are introduced. It includes an overview of differential equations and their types as 

well as a review of some traditional numerical techniques for solving ordinary 

differential equations and partial differential equations, for comparison with the 

Haar wavelet method used in this thesis.  

   Chapter two gives insight of wavelet analysis theory and its application for 

solving differential equations. It includes a methodology for applying Haar wavelet 

method with numerical examples for solving Burger's Fisher equation. 

    Finally, chapter three contains the implementation of Haar wavelet based 

transform for solving Burger's Fisher equation numerically. The results are shown 

and compared to the given exact solution as well as to the results obtained from 

traditional existing methods such as VIM. Conclusions and future suggestions are 

given.  
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CHAPTER ONE 

Basic Definitions and Concepts 

 

1.1 Introduction 

     This chapter includes some basic definitions and concepts related to the work in 

this thesis. An overview of differential equations and their types is introduced. In 

addition, we review some traditional numerical techniques such as VIM for solving 

ordinary differential equations and partial differential equations, for comparison 

with the Haar wavelet method used in this thesis.  

1.2 Overview Of  Differential Equation 

    Differential equations appear in all fields of engineering and science. They relate 

some function of one or more variables with its derivatives. Many real physical, 

engineering, chemical and biological phenomena are modeled mathematically by 

differential equations.  In general, most real engineering and science processes 

involve more than one independent variable, and the corresponding differential 

equations are called partial differential equations (PDEs). However, in many 

cases, simplifying assumptions are made which reduce the PDEs to ordinary 

differential equations (ODEs). An (ODE) is a differential equation for a function 

of a single variable.  

Several different types of PDEs exist. These types depend on application where 

each application has its own special governing equation or equations and its own 

peculiarities which must be considered individually. The first order PDEs may be 

classified as: linear equation, semi-linear equation, quasi-linear equation, and 

nonlinear equation. 

 

A first order PDE   (           )     is said to be linear, if it can be written as: 



 

 2 

 (   )    (   )    (   )   (   )                                       (   ) 

whereP, Q and Z are functions of x and y only and therefore, the PDE is linear in u.  

 

A first order PDE   (           )     is said to be semi-linear, if it is linear in 

   and     .  

A semi-linear first order PDE can be written as: 

 (   )    (   )    (     )                                                         (   ) 

whereP and Q are functions of x and y only and Z is non-linear in u. 

A first order PDE   (           )     is said to be quasi-linear, if it is linear in 

   and     and it can be written as: 

 (     )    (     )    (     )                                               (   ) 

where at least one of P or Q is non-linear in u. 

A first order PDE   (           )     is said to be nonlinear PDE if it does not 

come under the Eqs. (1.1) to (1.3). 

 

The general quasi-linear second-order nonhomogeneous PDE in two independent 

variables can be written as [28]: 

                                                              (   ) 

where the coefficients A to C may depend on x, y,  , and   ; the coefficients D to 

F may depend on x, y, and u; and the nonhomogeneous term G may depend on x 

and y. Eq. (1.4) is said to be: 

1) Elliptic if          . 

2) Parabolic if          . 

3) Hyperbolic if          . 
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    On the other hand, the PDE as the equation is supplemented by initial and / 0r 

boundary conditions. In order to find the solution, there are three types of boundary 

conditions: 

1) Dirichlet boundary condition: numerical values of the function are specific of 

the boundary of the region. 

2) Neumann boundary condition: specifies the values that the derivative of a 

solution to take on the boundary of the domain. 

3) Mixed boundary conditions: defines a boundary value problem in which the 

solution of the given equation is required to satisfy different boundary 

conditions on disjoint parts of the boundary of the domain where the condition 

is stated. In effect, in a mixed boundary value problem, the solution is required 

to satisfy the Dirichlet or Neumann boundary conditions in a mutually exclusive 

way on disjoint parts of the boundary. 

 

1.3 Analytical versus Numerical Methods 

   A solution to the set of equations is a mathematical model in order to understand 

its behavior by using simple mathematical techniques such a trigonometry or 

calculus is called the analytic solution, because the analysis is used to figure it out. 

This gives an exact solution of how the model will behave under any 

circumstances. It is also referred to as a closed form solution.   

For more complex models, the mathematical techniques become too much 

complicated. Then the numerical methods of solving the equations are the 

alternative.  

    For the differential equation that describes behavior over time, the numerical 

method starts with the initial values of the variables, and then use the equations to  
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figure out the changes in these variables over a short time period. It’s only an 

approximation, but it can be a very good approximation under certain 

circumstances. The best is when the exact solution can be found out using 

trigonometry, calculus and other techniques. An analytic solution is preferred 

because it provides us a lot about the behavior of the systems. 

    On the other hand, there are many problems for which it is not possible to find 

an analytical solution. These are models that have non-linear equations. For these 

models there are  methods such as Perturbation method which can be used to find 

an approximate analytical solution within a certain range.  

    For higher order or non-linear differential equations with complex coefficients, it 

becomes very difficult to find exact solution; therefore, the numerical methods for 

solving the equations are needed. There are several different numerical methods for 

solving PDEs, among these methods are: finite difference methods (FDM), finite 

element method (FEM), Adomain decomposition method (ADM), variational 

iterative method (VIM), and wavelet based method (WM). 

     

1.4 The Variational Iteration Method  

   The variational iteration method (VIM) is a scheme that in many instances 

gives rapidly convergent successive approximations of the exact solution if 

such a solution exists. This method was developed by He J.H. [8] for solving 

linear, nonlinear and boundary value problems. The obtained approximations by 

this method are usually of high accuracy when the convergence is assured even 

if some iterations are used. The obtained approximate solution is given in an 

infinite series which converge very rapidly to accurate solution. 

To illustrate the basic concept of the VIM , the following nonlinear partial 

differential equation is considered. 
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       ( )                                                                                      (   ) 

whereL is a linear operator, N is a nonlinear operator and f is an inhomogeneous 

term which is an analytical function. According to VIM, we can construct a 

correction functional for Eq(1.5) as follows: 

    ( )    ( )  ∫ 

 

 

( )(   ( )    ̃ ( )   ( ))                   (   ) 

where   is a Lagrange multiplier which can be identified optimally via variational 

iteration method. The subscript n denote the nth approximation, ̃ is considered as 

a restricted variation i.e,    ̃   . 

It is obvious that the successive approximation         of the solution u will be 

obtained upon using the determined Lagrange multiplier and any selective function 

   . Method of integration such as integration by parts is used to compute   ( ) . 

∫ ( )   
 ( )    ( )  ( )  ∫  ( )  ( )                                                   (   ) 

∫ ( )   
  ( )    ( )  

 ( )    ( )  ( )  ∫   ( )  ( )                        (   ) 

And so on. Consequently, the solution is given by: 

                                                                                                                (   ) 

Furthermore, the selective function   ( ) should be selected using the initial 

conditions, for fast convergence, as follows: 

  ( )   ( )                            
                                           

  ( )   ( )     ( )                          
                         

  ( )   ( )     ( )  
 

  
     ( )                        

   

}                 (    ) 

     In the following, the derivation of useful formulas of iteration for certain types 

of the first order and higher order DEs as well as determine of the Lagrange 

multiplier  ( ) for each type will be given. 
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1) 8
    (    )   

    ( )    ( )  ∫ ,  
 ( )   (     

 )-  
 

 

                                                           (    ) 

 

2) 8
       (    )   

    ( )    ( )  ∫   (   ),  
 ( )     ( )   (     

 )-  
 

 

                         (    ) 

 

3) 8
     (        )   

    ( )    ( )  ∫ (   ),  
  ( )   (     

    
  )-  

 

 

                                      (    ) 

 

4) {
         (        )   

    ( )    ( )  
 

 
∫     (   ),  

  ( )      ( )   (     
    

  )-  
 

 

      (    ) 

 

5) 8
         (        )   

    ( )    ( )  
 

  
∫ ( (   )   (   )),  

  ( )      ( )   (     
    

  )-  
 

 

(    ) 

 

6) 8
      (             )   

    ( )    ( )  
 

 
∫ (   ) ,  

   ( )   (     
    

     
   )-  

 

 

                           (    ) 

7) {
 ( )   (               ( ))   

    ( )    ( )  
 

 
∫ (   ) 0  

( )( )   (     
    

     
      ( ))1   

 

 

             (    ) 

 )

{
 

 
 ( )   (                 ( ))                                                                                               (    )

    ( )    ( )  (  ) ∫
 

(   ) 
(   )   [  

( )( )   (     
    

     
      ( ))]  
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    In summary, the VIM can be applied to solve linear and non-linear problems. 

The main step in this method is to determine the Lagrange multipliers  ( ). The 

Lagrange multipliers  ( ) for certain types of DEs as in the above discussion may 

be summarized as: 

    (    )    ( )      ( )   ( )

     (        )    ( )       ( )   ( )     ( )

      (             )   
 

 ( )   
 

  
(   )

 

  ( )   ( )     ( )  
 

  
     ( )

 

  (    ) 

And the solution is given by                                                                                    (    ) 

    The selective function     can be chosen by using the initial values  

 (   )   (   ) [17]. 

The following examples illustrate the implementation of the VIM. 

 

Example 2.1: Consider the second order non-linear ordinary differential equation 

   ( )    ( )      ( )       ( )                                                  (    ) 

According to the above discussion, the Lagrange multiplier is  ( )  (   ). 

Using Eq(2.94), the iteration formula is given by 

    ( )    ( )  ∫(   ),(  )     (     
    

  )-  

 

 

                          (    ) 

By Taylor expansion and the initial conditions, we choose  

 

  ( )   ( )     ( )       

  ( )       ∫(   ),(  ( ))     
 ( )-  

 

 

                                      (    ) 
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  ( )    ( )  ∫(   ),(  ( ))     
 ( )-  

 

 

                                     (    ) 

Then, the solution is given by 

     
   

                                                                                                   (    ) 

 

Example 2.2: Consider the first order non-linear partial differential equation 

 

  
 (   )  

 

  
 (   )     (   )   (   )                                     (    ) 

Where a is constant. 

The Lagrange multiplier is ( )     , then 

    (   )    (   )  ∫ [
 

  
  (   )  

 

  
  (   )    

 (   )]   

 

 

     (    ) 

By Taylor expansion and the initial condition, we choose  

  (   )   (   )    

  (   )    ∫ [
 

  
  (   )  

 

  
  (   )    

 (   )]   

 

 

                     (    ) 

  (   )    (   )

  ∫ [
 

  
  (   )  

 

  
  (   )    

 (   )]   

 

 

                         (    ) 

Then, the solution is given by  

     
   

                                                                                             (    ) 

 

   In what follows, some concepts of wavelet theory are introduced. These concepts 

are useful in illustrating the usage of wavelet based transform as an efficient 

numerical method for solving differential equations. 
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CHAPTER TWO

 Wavelet Analysis 

 

2.1 Introduction 

    In this chapter we introduce the basic idea of the wavelet transform (WT) and its 

properties, as well as, its applications. Wavelet application for solving differential 

equations will be discussed so as to observe how wavelet is implemented 

efficiently as a numerical method to be applied to linear and non-linear problems in 

the process of approximation, and also how mathematical aspects of wavelet affect 

the approximate solution and the results of it. 

    The insights of how wavelets in mathematics are implemented in a way to fit the 

engineering and science models will be studied. Then the concept of 

Multiresolution Analysis (MRA) is explained. 

2.2 Wavelet Transform 

    The wavelets are mathematical functions defined over a finite interval and 

having an average value of zero that transform data into different frequency 

components, representing each component with a resolution matched to its scale 

[29]. It was first introduced by A. Grossmann and J. Morlet in 1984 [30]. The basic 

idea of the (WT) is to represent any arbitrary function  ( ) as a superposition of 

the set of such wavelets or basis functions. These basis functions are obtained from 

a single wavelet called mother wavelet  ( )because all other wavelet functions 

within the family are obtained by dilating and translating of   ( ) by amounts    

and   respectively as given bellow [31]: 

    ( )  { (
   

 
)    (   )      }                              (   ) 
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The process of changing the two parameters     and   that result in the basis 

functions are shown in Figure 2.1. 

 

Figure. 2.1: Effect of Time Dilation and Translation on the Mother Wavelet [31] 

(a) Mother wavelet  ( )                 (b) Wavelet     ( )           

(c) Wavelet     ( )                   (d) Wavelet       ( )                     

 

    These wavelets are distinguishing by compactly supported functions defined 

over a finite interval and having an average value of zero, and that leads to 

efficient implementation. The mother wavelet  ( ) is the function with zero 

translation and a dilation of one. 

    In wavelet transform the basis functions are wavelets. Wavelets tend to be 

irregular and symmetric. All wavelet functions,  (     ), are derived from a 

single mother wavelet,  ( ). This wavelet is a small wave or pulse, like the one 

shown in Figure 2.2. 
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Fig. 2.2: Mother Wavelet   ( ) [32] 

 

    Normally it starts at time t = 0 and ends at t = T. The shifted wavelet  (   ) 

starts at     and ends at      . The scaled wavelets  (   )  start at t = 0 and 

end at t = T/2s. Their graphs are  ( )  compressed by the factor of 2s as shown in 

Figure 2.3. For example, when s = 1, the wavelet is shown in Figure 2.3(a). If s = 2 

and 3, they are shown in (b) and (c), respectively [29]. 

 

Fig. 2.3: Scaling the Wavelets [32] 

    By a dilation we mean a scaling of the argument; so, given any function  ( ) 

and a parameter s  ,  (
   

 
) is a dilation of  ( ). Consequently, a dilation of a 

function corresponds to either a spreading out or contraction of the function. The 

factor 
 

√| |
 is introduced with     ( ) equation to keep the energy of the mother 

wavelets constant that it yields normalization necessary to have an orthonormal 

wavelet basis. 
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    The translation simply means a shift of the argument along the real axis, that is, 

given, the translation of  ( ) by  is  (   ). For any analyzing wavelet  ( ) we 

thus define a family of functions     ( ) by the dilations and translations of  ( ) 

as given by the Eq. (3.2): 

    ( )  {
 

√ 
 (

   

 
)            }                                  (   ) 

Each      is called a wavelet. 

Where,   ( )  is a mother wavelet, 

  is coefficient of expansions or scaling (dilation), 

   is a coefficient of translation. 

    The translation  and dilation s allow the wavelet transform to be localized in 

time and frequency. Also, wavelet basis functions can represent functions with 

discontinuities and spikes in a more compact way than sine and cosine [33]. 

    The wavelets are called orthogonal when their inner products are zero. The 

smaller the scaling factor is, the wider the wavelet is. Wide wavelets are 

comparable to the low-frequency sinusoids and narrow wavelets are comparable to 

high frequency sinusoids [29]. 

   The following are some important definitions which are related to the wavelet 

transform. 

 

Definitions 2.1: 

Translation 2.1.1 [34] : 

    Let       and y    , then the translation        , is an operator 

defined by 

   ( )   (   )                                                                      (   ) 
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t-Dilation 2.1.2 [34] : 

    Let       and      , then the t-dilation         is defined by 

  ( )  
 

 
 .

 

 
/                                                                            (   ) 

Orthogonally 2.1.3 [35] : 

    The expansion functions {    ( )} form an orthogonal of basis functions: 

〈    ( )       
( )〉  ∫    ( )      

( )   

                                      {
                
                

               (   ) 

Where,      ( ) : is a decomposition wavelet,  and   : are dilation 

(scaling) factors,  and   : are translating (shifting) factors. 

  

Compact Support 2.1.4 [36]: 

    We say that  ( ) has compact support on interval I, if it has zero values 

(vanish) outside this interval, so it is limited in time domain. 

 

 Admissibility Condition 2.1.5 [36] : 

    The inverse wavelet transform is held if the wavelet function is satisfied for 

any   ( ), then: 

  ∫
| ( )| 

| |

 

  

                                                               (   ) 

    Where  ( ) is the Fourier transform of the fundamental mother wavelet  ( ), 

 ( )  ∫  ( )
 

  
       , and c represents how closely correlated of the 

wavelet with this section of the signal, so the higher value of c is the more of  
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similarity. Then c is positive and finite, in most cases, this simply means that 

 ( )    and  ( )             fast enough to make    .  

    The requirement that c be positive and finite imposes another restriction of the 

choice of wavelet. 

Normalized 2.1.6 [35] : 

    A wavelet function is defined as a function with a zero average 

∫  ( )

 

  

           ‖ ( )‖                                                        (   ) 

It is normalized, and centered in the neighborhood for x = 0 

Series Expansion 2.1.7 [37] : 

    A function or signal f(x) can often be better analyzed as a linear combination of 

expansion function. 

 ( )  ∑    ( )

 

                                                                   (   ) 

    Where,  k   is an integer index of the finite or infinite sum,   are real valued 

expansion coefficients,    ( )are real valued expansion functions and called (basis 

functions). 

 

    The expressible functions form a function space that is referred to as the closed 

span of the expansion set, denoted by: 

      *  ( )+̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅                                                                                                           (   ) 

 

Scaling Functions 2.1.8 [37] : 

    The set of expansion functions composed of the integer translations and binary 

scaling of the real, square integrable function  ( ); is the set {    ( )}  
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where  

    ( )     ⁄  (     )             ( )    ( )            (    ) 

Where,      :    is      ( )’s width, how broad or narrow it is along x-axis, 

  :   is the position of      ( ) along the x-axis, 

 
 
 :   is controls      ( )’s height or amplitude.  

 

    Because the shape of     ( ) changes with s,  ( ) is called a scaling 

function. By Eq. (   ), we will denote the subspaces spanned over  for any s 

as, 

        {    ( )}
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅                                                                            (    ) 

A     sequence of nested closed subspaces functions spanned by       over τ for 

any s; by Eq. (   ), if   ( )     then, it can be written as 

 ( )  ∑      ( )

 

                                                                         (    ) 

     It is noted that increasing s increases the size of    , which implies that 

functions with smaller variations will be included in the subspace. This is 

because when s is increasing, the set {    ( )} becomes narrower and separated 

by smaller changes in x, as will be seen in the following example: 

 

Example 2.1 [37]: Consider the unit-height, unit-width scaling function  ( ), 

which is called Haar scaling function, where; 

 ( )  2
      
          

                                                         (    ) 

 

    Figures 2.4 (a)-(d) depicts some of the many expansion functions by substituting 

the given scaling function into Eq. (2.10). 
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    Note that the expansion functions for s = 1 in Figures 2.4(c) and (d) are half as 

wide as those for s = 0 in Figures 2.4(a) and (b). In addition, it can be defined 

twice as many    scaling functions as     scaling functions (for example:      and 

      of      versus       of    for   ,   ). 

    Figure 2.4(e) shows a member of subspace    . This function does not belong to 

    because the     expansion functions in Figures 2.4(a) and (b) are too coarse to 

represent it. Higher resolution functions like those in Figures 2.4(c) and (d) are 

required. They can be used, as shown in (e), to represent the function by the 

expansion 

 ( )  
 

 
    ( )      ( )  

 

 
    ( )                                             (    ) 

    Also, the decomposition of     ( ) as a sum of     expansion functions is 

included in Figure 2.4(f). Similarly, any     expansion function can be 

decomposed using the following relation: 

    ( )  
 

√ 
     ( )  

 

√ 
       ( )                                                 (    ) 

Thus, if   ( )    then   ( )    . This means        . 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

Fig. 2.4 : Some Haar Scaling Functions [37] 
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Wavelet Function 2.1.9 [37] : 

    A wavelet function     ( )  can be defined as spans for the difference between 

any two adjacent scaling subspaces,   and     . 

    The set     ( ) of wavelets can be defined as a basis wavelet from the mother 

function  ( ) such as: 

    ( )   
 
  (     )                                                                        (    ) 

Where       and  ( )    ( ) that spans the     spaces as 

        {    ( )}
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅                                                                     (    ) 

Where    is a sequence of closed subspaces of functions spanned by     ( ) over 

τ for any s, by Eq. (   ), if  ( )     then, it can be written as 

 ( )  ∑      ( )

 

                                                                       (    ) 

 

►Remark 2.1 [37]: 

The subspaces spanned by the scaling function at low scales are nested within 

those spanned at higher scales. So, the subspaces containing high-resolution 

function must also contain all lower resolution functions, that is, 

                          ( )                           (    ) 

Figure 3.5 explains this remark. 
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Figure. 2.5: The Nested Function Spaces Spanned  

By a Scaling Function [37]. 

 

 

► Remark 2.2 [37]: 

The scaling and wavelet functions subspace are related by  

                  
 ( )                                             (    ) 

Where   denotes the union of spaces (like the union of sets) and     . 

 

    For constructing orthogonal wavelets, the theory of multiresolution analysis 

(MRA) explained a systematic method to achieve this task. The first basic concept 

of (MRA) was introduced by Mallat [38]. This concept is the material of the 

following section. 
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2.3 Multiresolution Analysis 

    The (MRA) is related to the representation and analysis of signals at more than 

one resolution. It is to approximate a function f(x) at various levels of resolution by 

analyzing a function at different scales [37]. In (MRA), two functions are taking 

into consideration: the scaling function  ( ) which structures, using Eq.(2.10), a 

number of scaling functions     ( ) by the dilated (scaled) and translated (shifted); 

and the mother wavelet  ( ), which structures, using Eq.(2.16), a number of 

orthogonal wavelet basis functions     ( ). 

‖    ‖  
 

 ‖ ‖  
  , because if we let  (     ) , we obtain  

‖    ‖  
 

 ∫ |   ⁄  (     )|
 

 

   ∫   | (     )| 

 

   

∫ | ( )| 
 

   ‖ ‖  
  . 

Similarly, ‖    ‖  
 

 ‖ ‖  
  . In fact, ‖    ‖  

 
 ‖    ‖  

 
         . 

   To design a multiresolution analysis, we need a set of nested spaces, by selecting 

the functions              ; we determine the nested spaces           . For 

fixed s , the set of scaling functions      are orthonormal. 

     Now consider      to be the vector spaces corresponding to spanning set 

{    ( )}, assuming that the resolution increases with decreasing s, and 

these vector spaces characterize successive approximation vector spaces, ( 

i.e, each space      is contained in the next resolution space     ), this is 

depicted in Figure 2.5 and each with resolution    such as in Eq.(2.19) [38]. 
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To say that  ( )    means that f(x) belongs to the closed span of     ( ) 

and can be written in the form of Eq.(2.12). 

Thus, a (MRA) with scaling function    consists of a sequence of closed 

subspaces  *          +   of     ( ) which have the following properties [37]: 

1.              . (Nested) 

2. ⋃      
̅̅ ̅̅ ̅̅ ̅̅ ̅    ( ) . (Density) 

3. ⋂       * + . (Trivial intersection) 

4. The following scale relations exist: 

 ( )      (  )        . (Scaling invariance property) 

 ( )      (   )           . (Scaling invariance property) 

5.  There exists a scaling function      such that its integer translates,  

* (   )+ is an orthonormal basis of   , where     ( ) as in Eq.(2.10). 

    This means that the basic rule of multiresolution analysis is that whenever 

the above properties are satisfied, there exists an orthonormal wavelet basis 

and scaling basis such that any  ( )    ( ) can be expanded as a linear 

combination of both the scaling basis function    ( ) and the wavelet basis 

functions    ( ) . 

In a (MRA), since  ( )        and *    ( )    + is an orthonormal 

basis of   , there exists some set of coefficients *       + such that the 

function  ( )     can be represented as a linear combination of the 

functions from     and so [37], 
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 ( )  ∑  

 

 (    )                                                                    (    ) 

Alternatively, if we consider property (4: Scaling invariance property) of 

(MRA) written as a linear combination of  ( )  in the scaled form defined in 

Eq.(2.3.1), the recursion for  ( ) can be written in terms of a new set of 

coefficients *  +  as:  

 ( )  √ ∑  

 

 (    )                                                                   (    ) 

where, 

∑  

 

 √ ∑  

 

                                                                                      (    ) 

For some coefficients *       +, using the fact that *    ( )+ are 

orthonormal. The coefficients *       +  can be obtained by computing the 

inner product: 

   √ ∫  ( )

 

  

 (    )                                                   (    ) 

Where the function   ( )  is the scaling function. 

    It is interesting to notice that the scaling function  ( ) can be recursively 

generated by scaled (shrunk to half) and shifted versions of itself, as it is 

described by Eq. (2.21). This means that the scaling function  ( )  has the 

self similarity property. 

For each (MRA), it is also possible to define a mother wavelet, ( ) , which 

will explain the detail at each level s . Assume     to be the orthogonal  
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complement of      in       ; that is     is the difference between the function 

space       spanned by scaling functions        ( ) ; and the function space 

   spanned by      ( )  , so that 

                                                                                                              (    ) 

Where   represents the union of the two spaces. The space     is composed 

of all functions representable in      but not representable in    . This can be 

carried out recursively to get: 

  ( )                                   (    ) 

    Similar to a function space   spanned by the scaling functions    ( ), the 

functionspace      is also spanned by a set of basis function, called the 

wavelet functions. Then the fundamental result is that* (   )       +  

forms an orthonormal basis for     , and      , orthogonal to all functions 

in    , where     ( ) is defined as in Eq. (2.16). 

The wavelet functions    ( )  can be expanded in the space        as: 

    ( )  ∑  

 

      ( )  ∑  

 

 (   )  ⁄  (       )                   (    ) 

Where    are the expansion coefficients. Usually we let      and drop the 

subscripts    and    to indicate that any wavelet function    ( )      can be 

expressed as a linear combination of the basis scaling functions      of the 

functions from    ; 

 ( )  √ ∑  

 

 (    )                                                  (    ) 
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This is in the same form for the scaling functions Eq.( 2.22).  

Eq. (2.28) can be expressed as: 

 ( )  ∑(  ) 

 

     (    )                                           (    ) 

Where, 

   (  )     ⁄                                                                  (    ) 

The coefficients *  + can be obtained by computing the inner product: 

   √ ∫  ( )

 

  

 (    )                                               (    ) 

These coefficients are called coefficients of highpass filter. Coefficients of  

highpass filter can be calculated from coefficients of lowpass filter using this 

Equation [37]: 

   (  )                                                                             (    ) 

 

Remark 2.3: The scaling function in example (2.1) satisfies the requirements 

of (MRA). 

Example 2.2: The Haar scaling coefficients was defined with the boundary 

conditions: 

  ( )    ( )  
 

√ 
   Using Eq.( 2.32), the coefficients for the wavelet 

function are: 
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   (  )         
 

√ 
  and    (  )           

 

√ 
  

Substituting these values into Eq.(2.28), we obtained the wavelet functions 

as: 

 ( )  √ ∑  

 

 (    )  √ 
 

√ 
 (  )  √ 

 

√ 
 (    ) 

             (  )   (    ) . 

Which is plotted in Figure 2.6(a), thus, the Haar wavelet function is 

 

 ( )  {
        
         
          

 

 

    Using Eq. (2.16), we can generate the universe of scaled and translated 

Haar.Figure 2.6(a) explains     ( )     (     )   ( ), and two such 

wavelets     ( ) and     ( ) are plotted in Figure 2.6(b) and Figure 2.6(c) 

respectively, where; 

    ( )     (     )   (   ) 

    ( )   
 

  (   )  √  (  ) 

    Finally, Figure 2.6(d) shows a function of space   that is not in the 

subspace    . However, Eq.( 2.25)  indicates that it can be expanded using    

and      expansion functions as: 

 ( )    ( )    ( )                                                               (    ) 
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Where, 

  ( )  
 √ 

 
    ( )  

√ 

 
    ( ) 

and  

                                    ( )  
 √ 

 
    ( )  

√ 

 
    ( )  

 

    Here,   ( )is an approximation of  ( )using    scaling functions, while 

  ( ) is the difference  ( )    ( ) as a sum of    wavelets. The two 

expansions are shown in Figures 2.6(e) and (f) [37]. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
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(e) 

 

(f) 

 

Figure. 2.6: Haar Wavelet Functions in 
0W  and 1W  [37] 

   The wavelet transform has two types of transforms that are explained in the 

following section. 

2.4 Wavelet Transform Types 

    There are two types of wavelet transform: The continuous wavelets 

transform (CWT), and the discrete wavelets transform (DWT). 

2.4.1 The continuous wavelets transform (CWT): 

    The CWT of a function      ( ) , includes a mother wavelet   ( ). The 

mother wavelet can be any continuous function, real or complex, that satisfies 

the following properties [36]: 

1.  The total area under the curve of the function is zero, such that : 

∫  ( )    

 

  

                                                                                       (    ) 
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2.  The total area of | ( )|  is finite , such that  

∫| ( )| 
 

  

                                                                                                  (    ) 

 

The CWT in 1-D of a square integrable function f(x) with respect to the 

wavelet  ( )  is a function    (   )  of two variables      , and defined as: 

  (   )  ∫  ( )    ( )  

 

  

                                                                       (    ) 

Where,  

    ( )   
 

√ 
 .

   

 
/                                                                 (    ) 

  (   ) : is the wavelet coefficient of the function f(x). 

      : is the scale parameter. 

      : is the position parameter. 

    The quantity 
 

√ 
 is a normalizing factor that guarantees the energy of  ( ) 

remains independent of s and  , such that [36]: 

∫|    ( )|
 
    ∫| ( )|    

 

  

 

  

                                                              (    ) 
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    For any s,     ( ) is a copy of     ( ) shifted   along the time axis. 

Setting     ,    is said to be translation parameter, such that : 

    ( )  
 

√ 
 .

 

 
/                                                                                (    ) 

The parameter s is said to be a scaling (dilation) parameter. 

If     stretch the wavelet, while         shrink the wavelet, as shown 

in Figure 2.7 [36]. 

 

Figure. 2.7: Typical Wavelet Family in Time and 

Frequency Domains 

 

 

The inverse continuous wavelet transformation of the function f(x) is given by 

the formula: 
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 ( )   
 

  
∫ ∫

 

  
  (   )    ( )     

 

  

 

 

                       (    ) 

Where, 

  (   ): is a given wavelet coefficient  

    ( )     is Wavelet function. 

           :  is defined as 

   ∫
| ( )| 

| |
  

 

  

                                                              (    ) 

And  ( ) is the Fourier transform of  ( )  such that: 

 ( )  ∫  ( )       

 

  

                                                     (    ) 

    The inverse CWT exists if    is positive and finite. Since    is defined by 

means of Ψ, which itself is defined by means of the wavelet  ( ), the 

requirement that    be positive and finite imposes another restriction, called 

the admissibility condition, on the choice of wavelet. So the wavelet is called 

admissible if      [36]. 

 

    In many applications in engineering and science, the sampled data are 

discrete in time. Thus, a discrete representation of time and frequency is 

needed, which is called the Discrete Wavelet Transform (DWT). Before 

giving the definition of DWT, we need to explain the concept of wavelet 

series expansion. 
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2.4.2 Wavelet Series Expansion[37]: 

For a specific value       , by means of these subspaces, the Eq. (2.25) 

discussed in section (2.3) can be decomposed as  

  ( )                                          (    ) 

This is shown in Figure 2.8. 

 

Fig. 2.8: The Relationship Between Scaling and  

Wavelet Function Space  

    It indicates that any square-integrable function  ( )    ( )  can be 

expanded as a linear combination of both the scaling basis functions       
( )  

and the wavelet basis functions     ( ) ,             . That is, each 

function   ( )    ( )  can be represented in its wavelet series expansion: 

 ( )  ∑          ( )

 

 ∑ ∑    

 

 

    

    ( )                           (    ) 

where         is called approximation coefficient or scaling coefficients 

defined as: 
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     ( )  〈 ( )      ( )〉  ∫ ( )     ( )                              (    ) 

and        is called detail coefficient or wavelet coefficients defined as: 

    ( )  〈 ( )     ( )〉  ∫ ( )    ( )                                (    ) 

    The first term contained in the wavelet expansion of the function  ( ) Eq. 

(2.44) represents the approximation of the function at scale level     by the 

linear combination of the scaling functions      ( )  , and the summation 

with index s in the second term in the expansion is for the details of different 

levels contained in the function  ( )  approximated by the linear 

combination of the wavelet functions of progressively higher scales    

        . . 

 

Example 2.3: Consider a continuous function  ( ), which is defined over the 

period       : 

 ( )  2 
      
          

 

As shown in Figure 3.9. Using Harr wavelet and a starting scale      , each 

individual space              is spanned by different number of basis 

functions. Eqs. (2.45) and (2.46)can be used to compute the expansion 

coefficients: 

Since     ( )  ∫ ( )      ( )    , then; 
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  ( )  ∫  

 

 

    ( )   ∫  

 

 

   
 

 
 

  ( )  ∫  

 

 

    ( )   ∫  

 

 

 

     ∫  

 

 

 

     
 

 
 

  ( )  ∫  

 

 

    ( )   ∫  

 

 

 

√       ∫  

 

 

 

 

√       
√ 

  
 

  ( )  ∫  

 

 

    ( )   ∫  

 

 

 

√       ∫  

 

 

 

√       
 √ 

  
 

Substituting these values into Eq. (3.44), we get the wavelet series expansion 

 ( )    
 

 
    ( )⏟      

  

 [ 
 

 
    ( )]⏟        
  ⏟                

        

 6 
√ 

  
    ( )   

 √ 

  
    ( )7

⏟                    
  

⏟                                      
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Figure. 2.9:Wavelet Series Expansion of f(x)=x
2
 Using Haar Wavelets [37] 

 

    The first term in this expansion uses   ( ) to generate a subspace    

approximation of the function being expanded. This approximation is shown 

in Figure 2.9(b) and is the average value of the original function. The second 

term uses   ( )   to refine the approximation by adding a level of detail from 

subspace   . The added detail and resulting     approximation are shown in 

Figures 2.9(c) and (d), respectively. Another level of detail is added by the 

subspace    cofficients   ( ) and    ( ) . This additional detail is shown in 

Figure 2.9(e) and the resulting    approximation is depicted in Figure 2.9(f). 

 

   In summary, the series expansion of a function in terms of a given set of 

simple function *  +   
  , under certain conditions, is given by 
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 ( )  ∑    ( )

 

   

 

    These conditions are differ and depending on the function   ( ) and the set 

*  +   
 , and they enable us finding the coefficients      . For example, 

Fourier series expands a square integrable function using the orthogonal 

trigonometric system 2   .
   

 
/     .

   

 
/3 where L is the function’s 

period. The orthogonality of such system on ,    - enable us to determine 

the coefficients    . On the other hand, the Taylor series expands a periodic 

function of period L that is analytic at point    using the orthogonal system 

*(    )
 +   

  . 

 

 

2.4.3 The Discrete Wavelet Transform: 

    The DWT was proposed by Mallat (1989) [38], is an efficient algorithm for 

calculating the coefficients of the wavelet transform of a discrete series. It is 

like the Fourier series expansion, the wavelet series expansion of the previous 

section maps the function of a continuous variable into a sequence of 

coefficients. If the function being expanded is discrete, the resulting 

coefficients are called the DWT [37]. 

The DWT in one – dimension (1-D) is given by: 

  (    )  
 

√ 
∑ ( )     ( )

 

                                                     (    ) 

called the approximation or scaling coefficients, and 
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  (   )  
 

√ 
∑ ( )    ( )

 

                                            (    ) 

called the detail or wavelet coefficients. 

The inverse of DWT in (1-D) is given by:  

 ( )  
 

√ 
∑  (    )     

( )  
 

√ 
∑ ∑  (   )    ( )

 

 

     

      (    ) 

Here   ( )      
( ), and     ( ) are functions of discrete variable x, for 

example  

 ( )   (      )and              . The factor 
 

√ 
 is normalizing 

factor. 

    Normally, we let        and select M to be a power of 2 (i.e.     ) so 

that the summations are performed over                 

            and                [37]. 

    The transform itself is a composed of M coefficients, the minimum scale is 

0 and the maximum scale is (s – 1). 

The   (    )  and    (   )of Eqs.(2.47) and (2.48) correspond to the 

   ( ) 's and   ( ) 's of the wavelet series expansion that explained in the 

previous section, that is Eqs. (2.45) and (2.46). 

 

Example 2.4: To compute the 1-D DWT coefficients, consider the discrete 

function of four points: f(0) = 1, f(1) = 4, f(2) = -3 and f(3) = 0. M = 4, s = 2 
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and     . The summations are performed over x = 0,1,2,3 ;s = 0,1 and   = 0 

for s = 0 or   =0,1 for s = 1. We will use the Haar scaling and wavelet 

functions and assume that the four sampling of  ( )are distributed over the 

support of the basis functions, which is 1. Substituting the four samples into 

Eqs. (2.47) and (2.48), we find : 

  (   )  
 

 
∑ ( )    ( )

 

   

 

        
 

 
,               -    (since     ( )    for          ) 

  (   )  
 

√ 
∑ ( )    ( )

 

 

  (   )  
 

 
,          (  )    (  )-     

  (   )  
 

 
[  √    ( √ )         ]      √  

  (   )  
 

 
[          √    ( √ )]      √  

 

Thus, the DWT of the given four sample function relative to the Haar wavelet 

and scaling function is [1,4,     √      √ ], where the transform 

coefficients have been arranged in the order in which they were calculated. 

To reconstruct the original function from its transform, using the 

Eq.(2.49): 
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 ( )  
 

√ 
∑  (    )     

( )  
 

√ 
∑ ∑  (   )    ( )

 

 

     

 

Then; 

 ( )  
 

 
[  (   )    ( )    (   )    ( )    (   )    ( )

   (   )    ( )] 

For x = 0,1,2,3. If x = 0, 

 ( )  
 

 
[        (   √ ) (√ )  (   √ )  ]    . 

 

   The one dimensional transforms (1-D) are extended easily to two 

dimensional transform (2-D) by using a 2-D scaling function  (   ), and 

three 2-D wavelets,   (   )   (   )       (   ), so to reconstruct the 

signal  (   ) of size     in form the 2-D discrete wavelet 

coefficient.  (     )/, we found 2-D DWT pair becomes as [37]: 

  (      )  
 

√  
∑ ∑  (   )       (   )

   

   

   

   

                    (    ) 

  
 (     )  

 

√  
∑ ∑  (   )      

 (   )

   

   

   

   

                     (    ) 

where,  

       (   )   
  
  (             )                         (    ) 
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 (   )   

 
   (           )                             (    ) 

For      and     *     + . 

 

    As in 1-D case,    is an arbitrary starting scale and the  (      ) 

coefficients define an approximation of  (   ) at scale   . The   
 (     ) 

coefficients add horizontal, vertical, and diagonal details for scales      . 

Usually, let      and        so that s            and     

            . The inverse discrete wavelet ransform IDWT for 2-D is 

given by [37] : 

 (   )  
 

√  
∑∑  (      )       (   )

  

 
 

√  
∑ ∑ ∑∑  

 (     )      
 (   )

  

 

           

           (    ) 

 

2.4.4 How the Wavelets Transform Works: 

   In order to explain how the wavelets transform works, we take the Haar 

wavelet transform, which is one of the simplest and basic transformations 

from the space domain to a local frequency domain.  

The Haar wavelet becomes an efficient method for solving many problems in 

engineering and science due to its simplicity. Therefore, we will use this 

technique for solving differential equations in the next chapter.  
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     A Haar transform decomposes each signal into two components, one is 

called average (approximation) and the other is known as difference (detail) 

[36]. The following steps illustrate how the Haar transform can be used to 

calculate of a matrix of       size. 

 

Step 1: Find the average of each pair of elements. 

Step 2: Find the difference between each average and the elements it was 

calculated from. 

Step 3: Fill the first half of the matrix with averages. 

Step 4: Fill the second half of the matrix with differences. 

Step 5: Repeat the process on the first half of the matrix. 

Step 6: If the dimension is odd number, we can add row (coulum) of zero 

elements. 

 

In order to give an idea of its implementation, the procedure of its application 

may be explained with the help of a simple example as shown below. 
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Example 2.5: Consider the 8x8 matrix , 



































163624559588

5610115352141549

4818194544222341

2539382829353432

3331303637272640

2442432120464717

165051131254559

577660613264

M
 

We start with an arbitrary vector representing one row of an 88  matrix. 

 

 

Step 1: Average 

           577660613264y  

 32333233B        
2

577
   

2

660
    

2

613
   

2

264
 


 

Where B is called approximation coefficients, and the results become the 

first four entries of our modified string     .  

Differencing 

 25272931C         32-7       33-60         32-3       33-64   

WhereC  is called detail coefficients, and the results become the last four 

entries of      . 
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 25272931323332331

1





y

CBy
 

 

Step 2: Average 

 252729311  32333233y  

 5.325.32B            
2

3233
     

2

3233
         


 

Differencing  

 5.05.0C          32.5-33     32.5-33          

 

 252729315.05.02  32.532.5y  

 

Step 3: Average 

 252729315.05.02  32.532.5y  

 5.32B                
2

5.325.32
         


 

Differencing  

 0C                  32.5-32.5          

 252729315.05.03  032.5y  
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     The Haar wavelet does this transformation to each row of the matrix, and 

then again to every column in the matrix. The resulting matrix is known as 

the Haar wavelet transform of the original matrix. It is important to note at 

this point that this process is completely reversible. It is this fact that makes it 

possible to retrieve the original matrix from the Haar wavelet transform of the 

matrix. 

Apply average and differencing to the entire matrixM: 

 

First: the rows of matrixM is: 

  

[
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Second: The columns of matrix M is: 
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=N 
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    A matrix   can be represented as a more concise manner, with one overall 

average in the upper left-hand corner of the matrix is called approximation 

coefficients. The remaining components are all detail coefficients that now 

represent the amount of detail in that area of the matrix. Because we know 

this, we can eliminate some information from the given matrix and still be 

capable of attaining a fairly good approximation of the original matrix. Doing 

this it can choose some number   and set equal to zero all elements with a 

magnitude less than  .  

Choosing    , then eighteen of the detail coefficients (bold) are eliminated. 

[
 
 
 
 
 
 
 
    
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

    
    
    
    
    
    
    
    

   
    
    
    
    
    
    
    

    
    
   
   

      
    
     
      

    
    
    
    
   
     
     
    

    
    
    
    
     
  
  
      

   
    
    
    
   
    
      
    ]

 
 
 
 
 
 
 

 

 

Remark 2.4: 

    The averaging and differencing method that we just discussed is very 

effective. Using linear algebra, we can use three matrices (        )  that 

perform each of the three steps of the averaging anddifferencing process. In 

our previous Example (2.5), the transformation of   to    can describe as 
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 ,                                 -

[
 
 
 
 
 
 
 
  ⁄

  ⁄
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  ⁄
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  ⁄
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  ⁄

  ⁄

   ⁄
 
 
 
 
 
 

 
 

  ⁄

   ⁄
 
 
 
 

 
 
 
 

  ⁄
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  ⁄

   ⁄ ]
 
 
 
 
 
 
 

 

 ,                                 - 

 

It can next be shown that the transformation from    to    can be written as 

        

 ,                                 -

[
 
 
 
 
 
 
 
  ⁄

  ⁄
 
 
 
 
 
 

 
 

  ⁄

  ⁄
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   ⁄
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  ⁄

  ⁄

 
 
 
 
 
 
 
 

 
 
 
  
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 ]
 
 
 
 
 
 
 

 

 ,                                       - 

 

and lastly we can show that         



CHAPTER TWO                                                                                                 Wavelet Analysis 

 46 

 ,                                     -

[
 
 
 
 
 
 
 
  ⁄

  ⁄
 
 
 
 
 
 

     ⁄

   ⁄
 
 
 
 
 
 

  
 
 
 
 
 
 
 

   
 
 
 
 
 
 
 

   
 
 
 
 
 
 
 

   
 
 
 
 
 
 
 

   
 
 
 
 
 
 
 

   
 
 
 
 
 
 
 ]
 
 
 
 
 
 
 

 

 ,                                        - 

 

    This whole transformation can be done in one step by multiplying these 

three matrices together to obtain a single transform matrix W         . We 

can now multiply the original string by just one transform matrix to go 

directly from the original string to the final results of step 3.where   is, 

 

 

















































2/10004/108/18/1

2/10004/108/18/1

02/1004/108/18/1

02/1004/108/18/1

002/1004/18/18/1

002/1004/18/18/1

0002/104/18/18/1

0002/104/18/18/1

577660613264W

 

 ,                                    - 
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The following equations simplify this process of matrix multiplication of the 

averaging and differencing. 

  ((  )  )  

  (     )  

    (  ) (  )  

       

It is also important to note that the since every column of the individual 

matrices that comprise   is orthogonal to every other column, the matrices 

are invertible. Thus, 

      
    

    
  ,  then 

       

  (  )       

Where, M is original matrix 

W is transforming matrix 

N is compressed matrix (approximate matrix) 

  

2.5 Wavelet Collocation Method: 

Collocation method [39] is used in numerical solution of DEs. It involves 

numerical operators doing in point values (collocation points) in the physical 

space or dividing the domain as a number of points and determines the  
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solution about it. By chosen a wavelet and some types of grid structure that 

will be computational adapted, wavelet collocation methods may be created. 

2.6 Haar Wavelets and Its Integration: 

The Haar Wavelet family for   ,   )is defined by 

  ( )   
 

  (     )  {
       ,     )

         ,     )
          

                    (    ) 

Where 

   
 

 
             

     

 
              

   

 
 

And 

                                        

j indicates the level of wavelet, or the dilation parameter, k denotes 

translation parameter, J denotes the maximum level of resolution.  

The index i in   ( ) is computed by i = m + k + 1.  

In the case of minimum values m = 1,  k = 0, we have i = 2.  

The maximum value of I is          . 

For i = 1, the function   ( ) is the scaling function for the family of the Haar 

wavelets which is defined as 

  ( )  2
       ,   )
          

                                                          (    ) 
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For i = 2, the function   ( )  is the mother wavelet for the family of the Haar 

wavelet which is defined as 

  ( )  

{
 
 

 
        ,  

 

 
)

         ,
 

 
  )

          

                                 (    ) 

For i = 3, the function   ( ) is defined as 

 

  ( )  

{
 
 

 
        ,  

 

 
)

         ,
 

 
 
 

 
)

          

                                 (    ) 

 

For i = 4, the function   ( ) is defined as 

  ( )  

{
 
 

 
        ,

 

 
 
 

 
)

         ,
 

 
  )

          

                                 (    ) 

    The collocation points     
     

  
                are obtained by 

discretizing Haar function   ( )  by dividing the interval [0,1] into 2m parts 

of equal length     
 

  
to get coefficient matrix H of order       . 
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  [

               
 
 
 

     
   
     

  
    
    

  
    
  

] 

The Haar wavelets are orthogonal.  

That is, 

∫  ( )  ( )  

 

 

 {
 

  
   

    

 

Let 

  ( )  ∫  ( )

 

 

                                   ( )  ∫  

 

 

( )   

When      

  ( )  2
       ,   )
          

 

  ( )  2
       ,   )
          

 

  ( )  {

 

 
      ,   )

          

 

else 

  ( )  {
       ,     )

         ,     )
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  ( )  {
(    )       ,     )

           ,     )
          

 

 

  ( )  

{
 
 
 

 
 
 

(    )
 

 
      ,     )

(     )
  (     )

  (    ) 

 
       ,     )

(     )
  (     )

 

 
 

       ,    )
         

 

 

    It is usually needed to perform integrations in studying differential 

equation models of dynamic systems in order to get the solution of dynamic 

problem. Chen and Hsiao introduced an efficient method to integrate 

differential equations [13].  

    The following integrals have to evaluate: 

The operational matrix P which is a 2m square matrix is defined by 

     ∫  ( )  

 

 

                                                      (    ) 

Often, we need the integrals 

    ( )  ∫∫   ∫   ( )  
 

 

 

 

 

 

 ⏟            
      

 
 

(   ) 
∫(   )   

 

 

  ( )                 (    ) 
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Where            and              . 

The case    corresponds to function    ( ) . Taking into account Eq 

(2.55), these integrals can be calculated analytically and we obtain 

    ( )  

{
 
 
 

 
 
 

     

 

  
,    -

   ,     -

 

  
,    -

   ,    -
 

 

  
,    -

   ,    -
  ,    -

 

  ,     -

    

         (    ) 

These formulas hold for i> 1. 

In case      we have               ,    ,   -   and      ( )  

 

  
,   - . 

    Carrying out these integrals, the following integrals are used in the Haar 

wavelet method: 

     ∫  ( )  

 

 

                                                                         (    ) 

    ( )  {
(    )       ,     )

           ,     )
          

                                (    ) 

       ∫    ( )  

 

 

                                           (    ) 
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Therefore, 

    ( )  

{
 
 
 

 
 
 

   ,    )

(    )
 

 
  ,     )

 

   
 

(    ) 

 
 

   

   ,     )

   ,    )

                       (    ) 

 

    ( )  
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   ,    )

(    )
 

 
  ,     )

(    )

   
 

(    ) 

 
    

   

   ,     )

   ,    )

                (    ) 

 

    ( )  

{
 
 
 

 
 
 

   ,    )

(    )
 

  
  ,     )
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(    ) 

  
 

 

     

    

   
 

 

     

   ,     )

   ,    )

              (    ) 

 

Similarly we can evaluate      ( )  for           
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The Haar Matrix        which is the coefficient matrix at the collocation 

points may be defined as 

 ( )(   )    (  )                                                                             (    ) 

To evaluate H, we define a vector of Haar functions 

 ( )( )  ,  ( )   ( )   ( )        ( )-
                          (    ) 

where m is the dimension of the vector. The vectors are used to compute 

each column of the Haar matrix as 

 ( )  6 ( ) (
 

  
)   ( ) (

 

  
)     ( ) 4

(    )

  
57

 

                     (    ) 

The integral matrices have the same elements   (   )      ( ). 

 

Chen and Hsiao[13]  calculated  ( ) from the equation 

∫ ( )( )  

 

 

  ( ) ( )( )       ,   )                                       (    ) 

 

    This results in the square operational matrix  ( )   (   ) of 

integration. The following recursive formula satisfies: 

 

 ( )  
 

  
[
   (

 

 
 

 

 
)   (

 

 
 

 

 
)

   
(
 

 
 

 

 
)  (

 

 
 

 

 
)

]                                                        (    ) 
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where   (
 

 
 

 

 
) is a null matrix. 

 ( )  [ ( )(  )  ( )(  )    ( )(    ) ]
 
                                       (    ) 

Where 

 

 
    

   

 
        

.
 

 
 

 

 
/
 

 

 
  

(   )    ( ) 

    The calculation for  ( ) and  ( ) have to be carried out only once. Since 

  and     contain many zeros, this makes the Haar wavelet series converges 

rapidly.  

 

2.7 The Method of Function Approximation: 

    Any square integrable function   ( ) over [0,1) can be expanded into Haar 

wavelets series since Haar wavelets are orthogonal as [40]: 

 ( )  ∑  

 

   

  ( )                                                                         (    ) 

where    
   are Haar wavelet coefficients which are determined as 

 

   ∫ ( )

 

 

  ( )               ∫ ( )

 

 

  ( )                   

        ,   ) 

 

Such that the following error norm is minimized. 
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  ∫[ ( )  ∑     ( )

   

   

]

  

 

                                  (    ) 

    The series expansion of y(x) is usually containing infinite number of 

terms. If y(x) be piecewise constant, then the sum can be terminated to finite 

number of terms, that is 

 (  )  ∑    (  )     

  

   

   ,           -        *  ( )   ( )      ( )+ 

            (    ) 

 

2.8 Convergence Analysis of Haar Wavelets: 

    Suppose that u(x) is a differentiable function such that  

| ( )|      (   ) |  ( )|    

                             

Then Haar wavelet approximation for the function u(x) is given by 

  ( )  ∑    ( )

  

   

                                                                       (    ) 

The square of the error norm of the wavelet approximation is given by [41]: 

‖ ( )    ( )‖  
  

    
                         (    ) 

That is ‖ ( )    ( )‖   (
 

 
). 
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The maximum absolute error and the maximum relative error are given 

respectively as 

       |  
      

   
|

     
  

|  
   |

                     (    ) 

where  
     and    

   
 are the exact and Haar solution respectively at the     

collocation points   , and             . 

 

Example 3.6:If   
 

 
 and       ; the first two Haar function vectors can be 

written as 

 ( ) (
 

 
)  [  (

 

 
)    (

 

 
)]

 

 ,  -  

 

 ( ) (
 

 
)  [  (

 

 
)    (

 

 
)]

 

 ,   -  

In matrix form  ( ), the Haar matrix of order two can be expressed as  

 ( )  [ ( ) (
 

 
)   ( ) (

 

 
)]

 

 0
  
   

1 

 

The Haar matrix of order four can be generated from the four Haar function 

vectors with    
 

 
and           as 
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 ( ) (
 

 
)  [  (
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)]

 

 ,    -  

 ( ) (
 

 
)  [  (

 

 
)    (

 

 
)    (

 

 
)    (

 

 
)]
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 ( ) (
 

 
)  [  (
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)]

 

 ,     -  

 ( ) (
 

 
)  [  (
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)]

 

 ,      -  

Then 

 ( )  [  (
 

 
)    (

 

 
)    (

 

 
)    (

 

 
)]

 

 [

               
 
 
 

     
   
     

  
    
    

  
    
  

] 

Similarly, The Haar matrix of order eight can be written as  

 

 ( )  
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Example 3.7: The operational matrices of integration with different order and 

ranks are: 

1) The operational matrix of order one is  ( )  0
 

 
1 . 

2) By recursive formula, The operational matrix of order two is obtained, 

and 

The operational matrix of rank one is defined as 

 ( )  
 

 
0
   
     

1 

3) By recursive formula, The operational matrix of order four is obtained, 

and the operational matrix of rank two is defined as 

 ( )  
 

  
*

       
 
 
 

    
    
   

  
   
   

    
    
    

+ 

 

4) By recursive formula, The operational matrix of order eight is 

obtained, 

and the operational matrix of rank four is defined as 

 ( )  
 

  

[
 
 
 
 
 
 
 
  
  
 
 
 
 
 
 

   
 
 
 
 
 
  
  

  
  
    
 
 
  
 
 

  
   
     
    
 
   
 
  

  
  
  
  
    
 
 
 

  
  
    
   
 
   
 
 

  
 
 
 
 
 
    
    

  
 
 
 
 
 
 
    ]

 
 
 
 
 
 
 

 

 

 

 



CHAPTER TWO                                                                                                 Wavelet Analysis 

 60 

 

2.9 Application of Wavelet Method for Differential Equations: 

      Unlike the power series method which starts with the expansion of the 

solution then the expansion of the derivatives obtain through the 

differentiation; the Haar wavelet method begins with the wavelet expansion 

of the highest derivative to obtain the wavelet expansion of the lower order 

derivatives and the solution itself through integration. 

Consider the     order linear differential equation: 

  ( )   ( )                                               (    ) 

 

Step 1: 

  ( )  ∑    ( )

  

   

                                                        (    ) 

 

Step 2: For     

  ( )  ∑        ( )

  

   

 ∑
 

  

     

   

(   )   
   

                       (    ) 

Step 3: Put the obtained derivatives from steps (1) and (2) into eq.(2.75). 

This step provides us with the expansion of the solution  ( ) and all of its 

derivatives that appear in the equation.  
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Step 4: Put the expansion of the solution and all its derivatives obtained in 

the above steps into the given equation and compute at the collocation points 

   
    

  
 or     

     

  
  ,                      for a given resolution M. We 

get system of algebraic equations.  

Step 5: The wavelets coefficients   
   are obtained by solving the system of 

algebraic equations obtained in step (4). 

Step 6: Substitute the coefficients   
   in the expansion of the solution to get 

the numerical solution with resolution M. 

    As it is mentioned above, according to the property of Haar wavelet 

transform, the function    ( ) which is a function of x can be approximated 

by the Haar wavelet function as 

   ( )  ∑    

  

   

( )                                                                (    ) 

Integrating Eq(3.85) we obtain 

  ( )  ∫   ( )    ∫[∑    

  

   

( )]     ∑∫    ( )

  

   

                (    ) 

Then 

 ( )  ∫  ( )    ∫∫[∑    ( )

  

   

]     

 ∑∫∫    ( )

  

   

                                                               (    ) 
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2.10 Solution Methodology for Initial Value Problem: 

Consider the second order initial value problem as 

   ( )   (      )                                                                (    ) 

with initial conditions  ( )         ( )     . 

The following cases are discussed: 

Case 1: if    ,   ) , then 

   ( )  ∑    

  

   

( )                                                           (    ) 

  ( )    ( )  ∫∑    

  

   

( )    

 

 

 ∑    

  

   

( )  ∫∑    

  

   

( )  

 

 

                                        (    ) 

 ( )   ( )  ∫∑    

  

   

( )    

 

 

 (   )  ( )  ∑    

  

   

( ) 

 ∫∑    

  

   

( )  

 

 

 (   )                ∫∑    

  

   

( )    

 

 

      (    ) 

When      ,  
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  ( )    ( )  ∑    

  

   

( )                                            (    ) 

 ( )   ( )     ( )  ∑    

  

   

( )                                              (    ) 

    In order to obtain  ( ) , the unknown   
 s have to be first determined by 

solving the system of 2M equations. That is, 

   ( )   (      ) at   
   which are the collocation points;             

Putting Eq(3.89), Eq(2.92) and Eq(2.93) in Eq(2.88), we obtain 

∑     
  
   ( )   (    ( )  (   )  ( )  ∑     

  
   (  )  

∫ ∑     
  
   (  )  

 

 
 (    )    ( )  ∑     

  
   (  )  

∫ ∑     
  
   (  )    

 

 
)                                                                                        (    ) 

 

Case 2: if    (    )⋃,   ) , then  ( ) and   ( ) can be found by 

integrating    ( ) from a to t using interval summation rule of integration.

Example 2.8: Consider the second order initial value linear ordinary 

differential equation 

   ( )   ( )   ( )  ( )    ( )      ,   -                        (    ) 

The exact solution of the given equation is  ( )       ( ). 

    Now we want to find the numerical solution of Eq(2.95) using wavelet 

method. We shall take only four collocation points and hence      and  
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    . Therefore, we are going to define    ( )    ( )    ( )  for  

          .  

        , when     then        . 

  ( )  2
   ,   )
          

 

  ( )  2
   ,   )
          

 

  ( )  {
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{
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when     then         ; then           
 

 
     

 

 
 and hence 
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  ( )  

{
  
 

 
 
 

        

 
  ,

 

 
 
 

 
)

          

  
  ,

 

 
  )

 

  
 

   
         

 

If   ( )    in the given problem, eq.(2.95) becomes 

   ( )   ( )                                                                  (    ) 

   ( )   (      )     ( )                                      (    ) 

By Eq.(3.94) and Eq.(3.97) , we obtain 

 (      )    

[
 
 
 
 ( )  (    )  ( )  ∑    

 

   

(  )  ∫
∑    

 

   

(  )   

(    ) 

 

 ]
 
 
 
 

Now     is given, then 

 (      )    [ ( )  (    )  ( )  ∑    

 

   

(  )] 

∑    

 

   

(  )    ∑    

 

   

(  ) 

∑    

 

   

(  )  ∑    

 

   

(  )    

∑  (  

 

   

(  )    (  ))                                                                              (    ) 
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Substitute the values of    
    and    

   in Eq.(2.98) for             and if  

       , then 

                  

when           , then 

                          

when           , then 

                                               

when           , then 

                                               

Solving above equations we obtain the values of                  as 

                                

                                

Substitute the obtained values of   
   in the relation  

 ( )   ( )     ( )  ∑    

 

   

( ) 

We obtain 

 ( )  ∑    

  

   

( ) 
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 ( )             4
  

 
5             4

        

 
5 

              (
 

  
)              4

         

  
5 

Table 2.1 shows the exact and the approximate solutions at different points 

   Exact sol. Haar sol. Error 

0.1 0.00499583 0.00496124 0.00003459 

0.2 0.01984495998 0.01984495998 0.000088462 

0.3 0.0446635 0.04457424 0.000089269 

0.4 0.07868757 0.07868757 0.00000000 

 

 

2.11 Solution Methodology for Boundary Value Problem: 

We shall discuss the solution methodology of Haar wavelet method for 

solving boundary value problems (BVBs) appearing in the mathematical 

modeling of various engineering applications. There are different types of 

boundary conditions. 

Case1: 

   ( )   (      )  

  ( )       ( )                                                                 (    ) 

   ( )  ∑    

  

   

( )                                                                                      (     ) 

By Integrating Eq.(3.100) from 0 to t, one can obtain 
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  ( )    ( )  ∑      

  

   

( ) 

  ( )    ∑      

  

   

( )                                                                            (     ) 

Now, integrate Eq.(3.100) from x to 1, we obtain 

∫   ( )

 

 

   ∫∑    

  

   

( )

 

 

   ∑*∫    ( )   ∫    ( )  

 

 

 

 

+

  

   

 

  ( )    ( )     ∑      

  

   

( ) 

    ( )     ∑      

  

   

( )                                                                   (     ) 

From Eq.(2.101) and Eq.(2.102) we get 

       

   ( )      ( )  ∑    

  

   

( ) 

Thus, the corresponding approximations are 

   ( )  (   )  ( )  ∑    

  

   

( )                                                       (     ) 

By integrating Eq.(2.103) from 0 to x, we obtain 
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  ( )    ∑      

  

   

( ) 

  ( )           ∑      

  

   

( ) 

  ( )    (   )     ∑      

  

   

( )                                         (     ) 

By integrating Eq(2.104) from 0 to x, we get 

∫  ( )

 

 

   ∫ 

 

 

   ∫(   )    ( )

 

 

   ∫∑      

  

   

( )

 

 

   

 ( )   ( )     (   )    ( )  ∑      

  

   

( )                           (     ) 

 ( )   ( )     (   )  ( )  ∑    

  

   

( )                                 (     ) 

Now, substituting the values of  ( ),   ( ), and    ( ) in the given DE we 

get system of equations, simplifying and computing at the collocation points 
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(   )  (  )  ∑    

  

   

(  )

  

(

 
 
 
    ( )      (   )    (  )  ∑      

  

   

( ) 

  (   )    (  )  ∑      

  

   

(  )
)

 
 
 

 

(   )  (  )  ∑    

  

  

(  )

  

(

 
 
 
    ( )      (   )  (  )  ∑    

  

   

(  ) 

  (   )  (  )  ∑    

  

   

(  )
)

 
 
 

 

Solve the above system m terms of unknowns  ( ) and    
   for     to get 

the numerical solution for Eq.(2.99). 

 

Case2: 

   ( )   (      )  

 ( )      ( )                                   (     ) 

   ( )  ∑    

  

   

( )                                                                                     (     ) 

By Integrating Eq.(2.108) from 0 to x, we obtain 
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  ( )    ( )  ∑      

  

   

( )                                                        (     )   

Now, integrate Eq.(2.109) from 0 to x, we obtain 

 ( )   ( )     ( )  ∑      

  

   

( )                                         (     )   

 

Putting     in Eq.(3.110), we get 

 ( )   ( )    ( )  ∑      

  

   

( )                                          (     )   

      ( )  ∑      

  

   

( )                                            (     ) 

  ( )       ∑      

  

   

( )                                                         (     ) 

 ( )     (    ∑      

  

   

( ))  ∑      

  

   

( )           (     )   

 ( )           ∑      

  

   

( )  ∑      

  

   

( )            (     )   
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  ( )      ∑      

  

   

( )  ∑      

  

   

( )                     (     )   

Now, substituting Eqs(2.115), (2.116) and (2.108) in the given DE we get 

system of equations, simplifying and computing at the collocation points 

   
     

  
           

∑    

  

   

(  )

  

(

 
 
 
               ∑      

  

   

( )  ∑      

  

   

(  ) 

    ∑      

  

   

( )  ∑      

  

   

(  ) 
)

 
 
 
        (     ) 

Solving the above system for unknowns   
   to get the numerical solution for 

Eq.(2.107). 

Example 2.9: Consider the second order boundary value ordinary 

differential equation  

   ( )     ( )     ( )      ( )      (   )               (     ) 

The exact solution is 

 ( )  
      

    
                                  

If the levels of Haar wavelet are taken to be 3 (J = 3), then 

   ( )  ∑    

  

   

( )                                                  (     ) 
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By integrating Eq.(2.119) from 0 to x, we obtain 

∫   ( )

 

 

   ∫∑    

  

   

( )

 

 

                                                  (     ) 

  ( )    ( )  ∑  

  

   

 ∫   

 

 

( )                                                (     )  

  ( )    ( )  ∑      

  

   

( )                                      (     )  

Now, integrate Eq.(2.122) from 0 to x, we get 

 ( )   ( )     ( )  ∑      

  

   

( )                                     (     )  

Using the value of  ( ), we can compute   ( ), that is, if x = 1, 

 ( )   ( )    ( )  ∑      

  

   

( )                                        (     )  

  ( )     ∑      

  

   

( )                                                           (     ) 

Therefore, 

 ( )   ( )     ∑      

  

   

( )  ∑      

  

   

( )                        (     )  

 ( )       ∑      

  

   

( )  ∑      

  

   

( )                              (     )  

By substituting   ( ) and    ( )   in the given equation Eq(2.118), we 

obtain 
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∑  [  (  )       ( )       (  )]

  

   

      

                                                                                      (     ) 

    After evaluating at the collocation points    and solving the system of 

linear equations for the wavelets coefficients     , we substitute the obtained 

coefficients in Eq(2.127) to get the solution. 

 

Table 2.2 shows the exact and the approximate solutions at different points 

 
  ⁄  Exact Solution Approximate Solution Error 

1 0.99885276 0.99885507 0.00000231 

3 0.99594341 0.99595121 0.00000780 

5 0.99196679 0.99198147 0.00001468 

7 0.98653140 0.98655462 0.00002322 

9 0.97910211 0.97913582 0.00003371 

11 0.96894747 0.96899391 0.00004644 

13 0.95506772 0.95512935 0.00006163 

15 0.93609635 0.93617573 0.00007938 

17 0.91016556 0.91026508 0.00009952 

19 0.87422238 0.87484378 0.00012141 

21 0.82627729 0.82642091 0.00014362 

23 0.76006071 0.76022417 0.00016346 

25 0.66955337 0.66972955 0.00017617 

27 0.54584451 0.54601839 0.00017388 

29 0.37675454 0.37689837 0.00014383 

31 0.14563596 0.14570195 0.00006598 
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Remark 2.1: The same procedure may be followed for other cases of 

boundary conditions such as (  ( )      ( )   ) and ( ( )  

     ( )   ). 
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CHAPTER THREE 

 Haar Wavelet Method for Solving Burger's Fisher Equation 

 

3.1 Introduction 

     In this chapter, the method of Haar wavelet [15] for solving partial differential 

equations is introduced. We investigate the Haar wavelets method for the 

approximation solution of nonlinear evolution (hyperbolic- parabolic) problem. 

    The method is applied in the case of Burger's Fisher equation. The numerical 

solutions of nonlinear partial differential equations (NPDEs), such as the Burger’s-

Fisher equation, have attracted much attention due to their potential applications in 

various fields of fluid dynamics, heat conduction, gas dynamic, traffic flow, 

applied mathematics and some other fields of science [42-44]. 

   The Burger-Fisher equation is a mixed hyperbolic-parabolic type of NPDEs   

which describes the interaction between the reaction mechanism, convection effect, 

and diffusion transport [45] is considered in this thesis. Many numerical schemes 

have been proposed for obtaining approximate solutions of the Burger’s-Fisher 

equation [46-49]. 

    The wavelets method shows rather rapid convergence than other existing 

methods. Illustrative examples suggest that using wavelet based method providing 

a powerful approach to find numerical solutions of Burger's Fisher equation. 

    The comparison of numerical results with the exact solutions, and the solutions 

obtained using some traditional methods such as variational iteration method 

(VIM) [49] show that the suggested scheme is fairly accurate and viable for 

solving such problems.  

    All results are obtained by using MATLAB software. 
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3.2 Problem formulation and solution 

Let us consider the Burgers's Fisher equation [48] is as follows:- 

               (    )      ,   -                       (   ) 

Where α, β     and        are given constants. If   = 1, Eq(3.1) is called the 

Burger's Fisher equation. When α =0,   = 1, Eq(3.1) is reduced to the Huxley 

equation which describes nerve pulse propagation in nerve fibre and wall motion in 

liquid crystals [50]. Generalized Burger’s equation will be obtained when β =0. 

This equation when β = 0, has been used to investigate sound waves in a viscous 

medium by Lighthill [51]. However, it was originally introduced by Burger [52] to 

model one-dimensional turbulence. 

 

Exact Solution 3.2.1  

 In [53 ], The authors found the exact solution to Burger's Fisher equation via 

using new expansion method, as discussed briefly below: 

consider the Burger's Fisher equation [48] as in eq.(3.1): 

               (    )                            (   ) 

The traveling wave variable 

u(x, t) = u(ξ), ξ = x − ct,                                              (3.3) 

permits us converting Eq. (3.2) into the following ODE: 

-c                                                      (   ) 

Consider the homogeneous balance between     and      in (3.2) we get m = 
 

 
 . 

It should be noted that m is not a positive integer. However, with reference 

to [54] we may still choose the solution of Eq. (3.4) in the form. 
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 ( )      (
  

 
)
 

                                                       (   ) 

        

where A is a constant to be determined and G satisfies the following equation, 

G''+λG'+ μG = 0 

 Substituting (3.5) into (3.4) we obtain the polynomial 

,           (   )-(
  

 
)
   

  ,                    -(
  

 
)
   

  

 + ,         (   )          -(
  

 
)
    

  ,     (   )          

        -(
  

 
)
    

  ,       -(
  

 
)
    

  ,     (   )-(
  

 
)
 

                (3.6) 

On equating the coefficients of the polynomial (3.6) to be zero, we get a 

system of algebraic equations, which can be solved by Mathematica to obtain 

the following results: 

    
 

       
  (   )

  (   )
             

   

  (    )
   0               (3.7) 

From eq.(3.5) and (3.7) the exact traveling wave solution can obtained 

 (   )  4
 

 
 

 

 
    (

   

 (   )
4  4

 

   
 

 (   )

 
5  5)5

 

 

             (   ) 

       For computational and simplicity point of view, we have taken the initial as 

well as the boundary conditions of Burger's Fisher equation from the exact solution 

to study the comparison between the suggestion approach and the exact solution 

[47-48]. 

 with the initial condition given by: 
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 (   )  (
 

 
 

 

 
    (

  

 (   )
 ))

 

                                                              (   ) 

and the boundary conditions: 

 (   )  4
 

 
 

 

 
    4

  

 (   )
4

 

   
 

 (   )

 
5  5)

 

 

     

 (   )  4
 

 
 

 

 
    6

   

 (   )
4  4

 

   
 

 (   )

 
5  575

 

 

       
}
 
 

 
 

(    ) 

 

      The Haar wavelet family for   ,   ) and its integration is defined in section 

(2.6). Now, consider an initial boundary value problem (IBVP) for the 

nonhomogeneous Burger’s-Fisher equation (3.1) with the initial and boundary 

conditions: 

 (   )   ( )   ,   -                                                                                 (    ) 

 (   )    ( )                                                                                           (    ) 

 (   )    ( )                                                                                           (    ) 

It showed be noted that, the computability of first order may be suggested as: 

 ( )     ( )      ( )    ( ) 

Let us divide the interval  ,   - into N equal parts of length     
 

 
  and denote 

   (   )            . One can assume that a Haar wavelet solution for 

eq.(3.1) in the form: 

 ̇ (   )  ∑  

  

   

( )  ( )                                              (    ) 
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      Where the dot and prime denote the differentiation with respect to t and x 

respectively, the row vector    is constant in the sub-interval   ,       -.  

Integrating equation (3.14) with respect to t in the limits [  ,t] then by integrating 

the resultant equation with respect to x in the limits [0, x] , and the resultant 

equation is again integrating with respect to x in the limits [0,x] and differentiating 

the resultant equation with respect to t , the following equations are obtained 

respectively. 

   (   )  (    )∑  

  

   

( )  ( )     (    )                                                     (    ) 

  (   )  (    )∑  

  

   

( )  ( )    (    )    (    )    (   )               (    ) 

 (   )  (    )∑  

  

   

( )  ( )   (    )   (    )   (   ) 

  ,  (   )    (    )-                                                                               (    ) 

 (̇    )  ∑  ( )  ( )   ̇

  

   

(   )    ̇ (   )                                                    (    ) 

One can use the boundary conditions 

 (    )    (  )           (    )    (  )                                                                 (    )  

 ̇(   )    ̇( )               ̇(   )    ̇( )                                                                   (    )  

Putting       in equations (3.15) and (3.16) and using the conditions in (3.17) 

and (3.18) one can obtain, 
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  (   )    (    )   (    )∑  

  

   

( )  ( )    ( )    ( )    (  ) 

      (  )                                                                                   (    )  

 ̇ (   )   ∑  ( )  ( )   ̇ ( )   ̇ ( )

  

   

                                                        (    ) 

The wavelet collocation points are defined as: 

   
     

  
                                                                 (    ) 

 

Substituting equations (3.17) - (3.20) in equations (3.13 - 3.16) and taking  
     
     

       , one can get. 

  (       )    ∑   ( )  ( )    (     )
  
                                                        (    )  

  (       )    ∑  ( )

  

   

,  (  )    ( )-    (     )    (    ) 

   (    )    (  )    (  )                                                           (    ) 

 (       )    ∑  ( )

  

   

,  (  )      ( )-   (     )    ,  (    )    (  )- 

 (    ),  (    )    (  )-                                                              (    ) 

 ̇(       )  ∑  ( ),  (  )      ( )-  

  

   

  ̇(    )    , ̇ (    )

   ̇(    )-                                                                                             (    ) 
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Now will have the following scheme, 

 ̇(       )    (       )   (       ) 
 (       )

  (       ),   (       )-                                                            (    ) 

This leads us from the time layer     to       . 

Taking the collocation points      into Eq.(3.28) and using Eqs (3.23) to (3.27), 

one gets. 

∑  ( ),  (  )      ( )-  

  

   

  ̇(    )    , ̇ (    )    ̇(    ) 

   (       )   (       ) 
 (       )   (       ),   (       )-    (    ) 

    The wavelet coefficients   ( )              can be successively calculated 

from Eq(3.29). This process is started with the initial condition (3.11). These 

coefficients are then substituted into Eqs (3.24 - 3.26) to obtain the approximate 

solutions at different time levels. 

 

3.3 Illustration 

   In this section, two examples are considered to check the efficiency and accuracy 

of the Haar wavelet method. The entire computational work has been done with the 

help of MATLAB software. 

Example 3.1:  

    Let's consider the Burger's Fisher equation (3.1), for                  and 

    with the initial and boundary conditions in Eqs (3.2) and (3.3) respectively; 

and the exact solution given in Eq.(3.4). 
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   Table (3.1) shows a comparison between the absolute error of the solution by the 

proposed method and the absolute error by using the (VIM) [50]. The figure (3.1) 

shows the Comparison of the absolute errors of the proposed method with the 

VIM, whereas for different values of x and t. 

x T Exact Sol. Haar Sol. Haar Err. VIM Err. 

0.01 0.02 0.500015019999996 0.499132084264304 0.000882935735692 0.0025031102 

 0.04 0.500035039999943 0.498697734403682 0.001337305596261 0.0025081138 

 0.06 0.50005509999777 0.498312881454306 0.001742218543464 0.0025131170 

 0.08 0.500075079999436 0.497977989064286 0.00209709093515 0.0025181206 

0.04 0.02 0.500000020000000 0.509811685266022 0.009811665266022 0.0099961959 

 0.04 0.500020039999989 0.509360739108795 0.009340699108806 0.0100011899 

 0.06 0.500040059999914 0.508960366604204 0.00892030660429 0.0100061907 

 0.08 0.500060079999711 0.508611049610424 0.008550969610713 0.0100111915 

Table (3.1): Numerical Results of the nonlinear Burger's Fisher equation.  

 

Example 3.2: 

    Consider the Burger's Fisher equation (3.1), for                and     

with the initial and boundary conditions in Eqs (3.2) and (3.3) respectively; and the 

exact solution given in Eq (3.4). 

    Table (3.2) shows the approximate solution of the given equation using the 

proposed method against the exact solution, and figure (3.2) shows Comparison 

between the proposed method and the Exact solution.. whereas for different values 

of x and t. 
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Absolute Error Haar solution Exact solution T X 

0.000905540735625320 0.499132084264304 0.500037624999929 0.02 0.01 

0.002866884223452 0.502892009223431 0.500025124999979  0.02 

0.006432854270580 0.506445479270577 0.500012624999997  0.03 

0.009811560266022 0.509811685266022 0.500000125000000  0.04 

0.013020256958881 0.513007881958884 0.499987625000003  0.05 

0.001623332923248 0.498439354576423 0.500062687499672 0.03 0.01 

0.002328432499075 0.502378619998906 0.500050187499831  0.02 

0.006063478099676 0.506101165599605 0.500037687499929  0.03 

0.009601872089451 0.509627059589430 0.500025187499979  0.04 

0.012961653969137 0.512974341469135 0.500012687499997  0.05 

0.003012316929188 0.497075433069911 0.500087749999099 0.04 0.01 

0.001066633180385 0.501141883179817 0.500075249999432  0.02 

0.004921748854205 0.50498498853876 0.500062749999671  0.03 

0.008573706709329 0.508623956709160 0.500050249999831  0.04 

0.012041090448675 0.512078840448603 0.500037749999928  0.05 

0.005038168180040 0.495074644318046 0.500112812498086 0.05 0.01 

0.000888087790369 0.499212224708285 0.500100312498654  0.02 

0.003034417846364 0.503122230345461 0.500087812499097  0.03 

0.006750345817576 0.506825658317006 0.500075312499430  0.04 

0.010278566500841 0.510341379000510 0.500062812499670  0.05 

0.007645867024053 0.492492007972452 0.500137874996505 0.06 0.01 

0.003482981191243 0.496642393806129 0.500125374997372  0.02 

0.000452089435537 0.500564964433619 0.500112874998083  0.03 

0.004180363885715 0.504280738884366 0.500100374998652  0.04 

0.007720732217693 0.507808607216788 0.500087874999095  0.05 

0.010763209895119 0.489399727599114 0.500162937494232 0.07 0.01 

0.006646339629915 0.493504097865546 0.500150437495461  0.02 

0.002754006110783 0.497383931385718 0.500137937496501  0.03 

0.000934531593517 0.501059969090885 0.500125437497386  0.04 

0.004437914883276 0.504550852381356 0.500112937498079  0.05 

0.014305340888266 0.485882659102875 0.500187999991140 0.08 0.01 

0.010291995760542 0.489883504232251 0.500175499992793  0.02 

0.006496478803706 0.493666521190520 0.500162999994226  0.03 

0.002898619549966 0.497251880445489 0.500150499995455  0.04 

0.000519713274444 0.500657713270939 0.500137999996496  0.05 

Table (3.2): Numerical Results of the nonlinear Burger's Fisher equation.  
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Figure. 3.1: Comparison between the absolute errors of the proposed method with 

the VIM. 

 

     

Figure. 3.2: Comparison between the proposed method and the Exact solution. 
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Conclusions and Future Work 

 

1. The Burger's Fisher equation has been analyzed using the Haar wavelet 

method, and the results of this method have been compared with the 

variational iteration method. The proposed method shows that it is in good 

agreement with the exact solution and it is better than variational iteration 

method. The experimental results show that the Haar wavelet method is 

computationally efficient for solving evolution problems and can easily be 

implemented on computer.  

2. The fast convergence and simple applicability of this method provides 

excellent foundation for using these functions in numerical approximation of 

variety problems. 

3. On the other hand, the Haar wavelet method has distinctive property in terms 

of its ability of dealing with the IVPs and BVPs without transformation the 

BVPs into IVPs as needed in some numerical methods. 

 

      Based on the results of the proposed method and its illustrative, the 

following future work may be suggested. 

1. One can use multiwavelets methods for solving highly nonlinear partial 

differential equations. 

2. One can use a hybrid method to improve the scheme of numerical 

approximation methods for solving differential equations. 
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 انًهخص
 

 

 بشغش نًعادنت انعذدٌ انحم إَجاد فٍ بكفاءة يىَجاث هاس طشَمت تطبُك تى ،انشسانت هزِ فٍ    

 انتىضُحُت الأيثهت وتشُش. الأخشي ائكانطش بانُسبت انً تماسباً سشَعا انطشَمت ِهز اظهشث. فُشش

. فُشش بشغش ًعادنتتضود بطشَمت لىَت لاَجاد انحهىل انعذدَت ن انًىَجاث طشَمت استخذاو أٌ إنً

 بعض باستخذاو عهُها انحصىل تى انتٍ وانحهىل انتاو وانحم انعذدَت انُتائج بٍُ انًماسَت أظهشث

 إنً تدلُم ت تعطٍ َتائج انًمتشحانطشَمت  أٌ ،(VIM)انتباٍَُ  انتكشاس طشَمت يثم انتمهُذَت انطشق

 .يسأنت بشجش فُشش نحم يا حذ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 جًهــىسَت انعــشاق

                        وصاسة انتعهُى انعانٍ وانبحث انعهًٍ

انُــهشٍَجـايعـت   

 كهُـــت انعهىو

 لسى انشَاضُاث وتطبُماث انحاسىب
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