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I 

 

Summary 

The phenomenon of Bose–Einstein condensation (BEC), which was 
predicted by Einstein in 1925 and experimentally realized in 1995, has been 
the subject of intensive research in the last decades. On the theoretical side, 
several approaches have been formulated. One of the important concerns of 
these approaches has been the conditions under which this phenomenon is 
realized. Among the known factors affecting this realization is the 
dimensionality of the bosons' confining medium. The main conclusions of 
previous studies are that BEC can occur in 3D and in 2D under a wide range 
of conditions. Among these conditions is the inhomogeneity of the Bose 
systems. But, to occur in 1D more stringent conditions are required, among 
them is the need for the treatment of a finite number of particles. Recently, 
there has been increased interest in BEC occurrence in media with fractional 
dimensions for two main reasons. The first is the experimental findings 
asserting the fractality of bosons' confining media. The second reason is the 
emergence of fractal geometry as a well–founded research discipline; whereas 
this emergence was indeed contemporary to the aforementioned experimental 
findings. However, the formulation of fractal models for the BEC 
phenomenon is still in its early stages. 

The present work is mainly devoted to the formulation of such a model 
and also to the investigation of its thermodynamic behavior through symbolic 

computation by using the MATHEMATICA® software package as a 
computational environment. The model formulated in the present work 
assumes that a finite number of ideal bosons are harmonically trapped in a 
fractal medium. It also assumes that the applicable statistical mechanics 
ensemble is the grand canonical. The fractality of the confining medium has 
been introduced in the formulation by two distinct methods. The first is by 
adopting an idea due to Rovenchack; which assumes that the degeneracy 
factors of the energy levels can be extended to fractal dimensions by converting 
the factorial functions appearing in the expressions for the degeneracy factors 
into gamma functions.  The second method is to use the well–established 
nonextensive Tsallis statistics; where the index of nonextensivity is related to 
the fractal dimension. It is important to mention here that both methods 
reduce to the standard case when dealing with the integer dimensions         
(1D, 2D and 3D). 



II 

To test the proposed MATHEMATICA® symbolic computational 
framework, computations of Bose–Einstein condensates for integer 1D, 2D 
and 3D were first carried out on the basis of the previously mentioned 
assumptions. The tests confirm the robustness of the computational scheme 
and the results obtained agree with previous ones.  

Due to the success of the tests, computations on the basis of the two 
models were carried out for bosons harmonically trapped in fractal media 
which are embedded in 2D and in 3D dimensions. In general, it is found that 
the condensation temperature in the model based on Tsallis thermostatistics is 
lower than that obtained on the basis of Boltzmann–Gibbs thermostatistics. It 
is found that this result agrees with Salasnich result and observations by and 
other workers in the field.  

In conclusion, the models presented in this thesis and the proposed 
symbolic computational scheme can be successfully used to treat the BEC 
phenomenon in fractal media and permit possible extension. 
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Chapter One: What is Bose-Einstein Condensation? 

 

2 
 

1.1 The Invention of Bose–Einstein Statistics 

In the second half of the 19th century, Maxwell and Boltzmann invented a 
statistical model to describe how ideal (non–interacting) classical particles 
(molecules) occupy energy levels in the state of thermodynamic equilibrium. 
This statistics was later on called Maxwell–Boltzmann statistics. In one of the 

most important papers in physics, entitled "Plancks Gesetz und 

Lichtquantenhypothese" whose English translation is "Planck's Law and the 

Quantum Hypothesis", Satyendra Nath Bose derived Planck's Law by regarding 
the electromagnetic radiation in the Black–Body Radiation cavity as an ideal 

(non–interacting) gas of photons (quanta of light) [1–3]. Because Philosophical 

Magazine, in 1923, rejected Bose's derivation, he wrote a letter to Albert 
Einstein to consult him about his derivation. Einstein, not only recognized 
the importance of Bose’s work but also translated it into German and got it 

published in Zeitschrift für Physik, in 1924, upon Bose's request [2,3]. Bose's 
derivation has shown that photons are identical (indistinguishable) particles 
[1] and emphasized that photons (bosons) do not obey MBS. In two famous 

treatises entitled "Quantentheorie des einatomigen idealen Gases" whose English 

translation is "Quantum Theory of the Ideal Monatomic Gas", Einstein 
introduced a theory for an ideal quantum gas when he extended Bose's work 
to particles which possess mass [1–3]. Bose and Einstein's theoretical work, 
which describes how non–interacting quantum particles of integer spin value 
occupy energy levels in the state of thermodynamic equilibrium, is known as 
Bose–Einstein statistics. Particles which obey Bose–Einstein statistics are 
called bosons. 

From the statistical point of view, the results obtained for the 
properties of an assembly of systems depend on whether the component 
systems are considered to obey classical or quantum mechanics. The 
differences in results will arise from the fundamental assumptions which are 
made regarding the behavior of the different types of systems [4]. The 
fundamental differences between Bose–Einstein statistics and Maxwell–
Boltzmann statistics are exactly the reason beyond Bose's conclusions 
concerning photons in the black–body radiation cavity. Photons (bosons) are 
quantum particles, so, there will be only certain discrete energy levels which 
are available to bosons rather than the continuous spectrum which is 
available to classical systems. Systems that obey classical mechanics are 
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considered completely distinguishable from other systems all belonging to 
the same species of particles, whilst two identical quantum systems must be 
taken as being completely indistinguishable unless they are considered to be 
localized in space, as in the case of atoms at particular sites in a crystal lattice 
[4]. Since bosons do not obey the Pauli exclusion principle, there is no 
restriction on the number of bosons that may occupy an energy state. 
 

1.2 Prediction of Bose-Einstein Condensation  

On the basis of the statistical description of photons enclosed in the black–
body radiation cavity invented by Bose [1], Einstein predicted the 
phenomenon of condensation in ideal Bose gases [1]. He defined this 
phenomenon as a phase transition whereby a system composed of  bosons 
will experience an abrupt avalanche into its ground state below a certain 
temperature  [1], i.e., bosons condense. Today, this phase transition is called 
Bose–Einstein condensation (BEC) and the corresponding phase is known 
as Bose–Einstein condensate. According to the de Broglie hypothesis, 
quantum systems possess the property of wave–particle duality. The wave 

properties of a particle of mass m at a certain temperature T are determined 

by the thermal de Broglie wavelength 22 /
T B

mk T  ; where B
k  is 

Boltzmann constant. When the temperature of the system is low enough, 

that T
  is comparable to the average spacing between the particles, their 

thermal (de Broglie) waves overlap and the atoms behave coherently as a 
single giant atom [5]. Since the condensate particles are in a macroscopic 
coherent state, BEC is considered as the origin of superfluidity and 
superconductivity phenomena [5,6], where particles travel with no internal 
resistance (viscosity and electrical resistance). For these reasons, BEC is 
considered as the macroscopic manifestation of quantum mechanics [6]. 
 

1.3 Milestones of BEC from the First Clue to the First  

      Experimental Realization   

It is important to mention here that the prediction of the phenomenon of 
BEC by Einstein in 1924 was even earlier than the quantum theory being 
thoroughly formalized. So, it had been considered as an illusion for the 

extremely low phase transition temperature (Tc) an ideal Bose gas confined 
in a 3D container requires to undergo condensation. Fermi thought it was 
impossible for this phenomenon to be realized because at such low 
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temperatures the interatomic interactions would suppress the phase 
transition. Even Einstein himself doubted about his prediction. In a private 
letter to Paul Ehrenfest he wondered if his prediction was true. He wrote 
"From a certain temperature on, the molecules condense without attractive 
forces, that they accumulate at the zero velocity. The theory is pretty, but is 
there also some truth to it?" [7]. 

In 1937, Jack Allen and Don Meisner, and independently Peter 
Kapitza, discovered that the viscosity of liquid helium vanishes suddenly 
below a certain temperature [8]. Independently, Fitzgerald London and 
Laszlo Tisza ascribed the disappearance of viscosity to a new phase transition 
of matter; an evidence for superfluidity [8]. In 1938, Fitzgerald London 
resurrected Einstein’s prediction when he interpreted this superfluid 
behavior as a manifestation of BEC [6]. Stimulated by Kapitza, Landau 
introduced a theory of helium II superfluidity in 1941 [8]. Motivated by 
London's phenomenological idea and Landau's theory of superfluidity, in 
1947 Bogoliubov introduced the first microscopic theory of superfluidity in 
weakly interacting Bose particles [9].  In 1950, Ginzburg and Landau 
introduced a theory for sperconductors on the basis of quantum field theory 
and they found that superconductivity was associated with a specific type of 
order [10]. In 1956, Oliver Penrose and Lars Onsager also found that such 
type of order is associated with the superfluidity of liquid helium [10]. 
Penrose and Onsager proved their theory on the basis of a generalized 
mathematical description of BEC for interacting particles [9]. In 1960, the 
specific type of order, which has been associated with Ginzburg–Landau's 
superconductivity and Penrose–Onsager superfluidity, was defined by 
London calling it long–range order of the average momentum [10]. In 1962, 
Yang succeeded in connecting both superfluidity and superconductivity to 
BEC by introducing the concept of Off–Diagonal Long–Range Order 
(ODLRO) in which BEC is the simplest form of ODLRO [11]. In 1995, 
BEC was experimentally proved by using neutron scattering as a probe to 
investigate the momentum distribution of liquid helium [12].  Sokol justified 
the ground state with zero momentum which was occupied by a macroscopic 
fraction of the total number of particles by the existence of BEC [12,13].  

The long–awaited achievement came up in 1995; BEC was 
experimentally realized with magnetically trapped dilute atomic gases of 
alkali atoms cooled by laser and evaporative cooling techniques [14–16]. For 
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this eminent achievement and also for their fundamental studies of the 
properties of these condensates, Wolfgang Ketterle of the MIT, and Carl 
Wieman and Eric Cornell of JILA, an interdisciplinary research centre in 
Boulder, Colorado, USA, were awarded the 2001 Nobel Prize in physics 
[17]. 

To explain Bose–Einstein condensation comprehensively, one needs 
to understand the physical conditions, the required technology necessary to 
produce the physical phenomena related to its very special characteristics 
and features and its prospective aspects as a novel state of matter.  
 

1.4 The Fifth State of Matter: Bose-Einstein Condensate  

In our daily life we experience three phases of matter:  solid, liquid and gas. 
Solids have fixed volumes and shapes, liquids have fixed volumes and 
varying shapes and gases have neither. This is ascribed to the differences in 
the strength of the intermolecular bonds. Solids have intermolecular bonds 
stronger than liquids which have intermolecular bonds stronger than gases. 
In terms of energy levels, solids possess the lowest energy levels, while liquids 
and gases possess higher energy levels. The state of matter that possesses the 
top of the energy levels is the fourth state of matter; plasma. It occurs when 
gases are exposed to extremely high temperatures, as in the case of fire flames 
or stars. The state of matter which is contradictory to the fourth state of 
matter is the fifth state of matter; the Bose–Einstein condensate. It occurs 
when gases are under extremely low temperatures.  Phase transition of a gas 
into a liquid or into a solid is an ordinary condensation that takes place in 
the coordinate space while in BEC the condensation takes place in the 
momentum space [4]. So, a Bose–Einstein condensate is the state of matter 
with the lowest energy levels. 
 

1.5 Physical Conditions to Produce BEC in Alkali Vapors 

Bose–Einstein condensates in dilute atomic gases, first realized in 1995 for 
Rb [14], Li [15], and Na [16] vapors, differ from ordinary gases, liquids, and 
solids in a number of aspects. The densities of nucleons in atomic nuclei, 
liquids and solids, and molecules in air at room temperature and 
atmospheric pressure are, respectively, about 1038cm−3, 1022cm−3 and 
1019cm−3, while the particle (number) density at the center of a Bose–
Einstein condensed atomic cloud is typically 1013–1015cm−3 [13]. This low 
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number density, of this order, is indeed necessary to prevent phase transition 
into liquid or solid phases [13]. Therefore, contrast in the densities of the 
aforementioned systems is responsible for observing quantum phenomena in 
degeneracy temperatures of different orders. The effects of quantum 
degeneracy set in when the thermal de Broglie wavelength is comparable to 
the inter–particle separation. 

To observe quantum phenomena in BEC atomic clouds, the 
temperature must be of order 10−5K or less. For the helium liquids, the 
temperatures required for observing quantum phenomena are of order 1K. 
In solids, quantum effects can be observed for phonons below the Debye 
temperature, which is typically of order 102K, and these effects become 
strong for electrons in metals below the Fermi temperature, which is typically           
104–105K. For the high particle density in atomic nuclei, the degeneracy 
temperature is about 1011K [13]. 
 

1.6 How to Produce BEC Clouds 

It was a long journey until the technology needed to realize BEC was 
developed.  Methods for cooling alkali vapors by using lasers have been 
exploited since the mid–1970s [13]. Although the lasers used were powerful 
for producing and manipulating cold atomic vapors, however, laser cooling 
alone was not sufficient enough to realize the condensation temperatures. 
Therefore, it was followed by another technique of cooling [13]. This was the 
evaporative cooling in which the more energetic atoms are removed from the 
trap, thereby cooling the remaining atoms [13]. The following paragraph 
describes briefly the process involved in producing BEC clouds first realized 
in the mid–1990s [13]:  

"A beam of sodium atoms emerges from an oven at a temperature of 
about 600 K, corresponding to a speed of about 800 m.s−1, and is then 
passed through a so–called Zeeman slower, in which the velocity of the 
atoms is reduced to about 30 m.s−1 corresponding to a temperature of about 
1K.  In this slower, Zeeman interaction arises due to the magnetic moments 
of the electron and the nucleus with the external magnetic field.  Also, in 
this slower, a laser beam propagates in the direction opposite to that of the 
atomic beam in order to retards the atoms by the radiation force resulting 
from absorption of photons. On emerging from the Zeeman slower, the 
atoms are slow enough to be captured by a magneto–optical trap, where they 
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are further cooled by interactions with laser light to temperatures of order 
100μK. The final step in achieving Bose–Einstein condensation is 
evaporative cooling; in which relatively energetic atoms leave the system, 
thereby lowering the average energy of the remaining atoms ". 
 

1.7 Characteristics and Importance of BEC in Alkali Vapors  

The BEC phenomenon can be viewed as the field where physics disciplines 
entangle. Concepts of statistical mechanics, atomic physics, nuclear physics 
and condensed matter physics are necessary to understand BEC qualitatively 
and quantitatively. Quantum statistics explains BEC as more than one atom 
sharing a phase space cell and how these atoms condense to the ground 
state. The thermodynamics point of view is that BEC occurs as a phase 
transition from gas to a new state of matter, while in quantum field theory 
BEC is commonly related to spontaneous symmetry breaking. Quantum 
mechanics views BEC as a matter–wave coherence arising from overlapping 
de Broglie waves of the atoms and draws an analogy between conventional 
and atom lasers. Without the use of novel low–temperature physics 
techniques, laser and optical instrumentation and the dexterous use of fluid 
dynamics and magnetism, BEC wouldn’t be produced [5,18,19].  
 Despite the fact that BEC is essentially a microscopic (quantum) 
property, it is macroscopically manifested; superfliudity, superconductivity, 
nucleation of quantized vortices when the system is set in rotation and 
interference patterns of overlapping coherent matter waves are examples of 
BEC macroscopic phenomenological manifestations.  These macroscopic 
phenomena emphasize the existence of a macroscopic wavefunction           
[5, 18, 19]. BEC of alkali vapors as a new state of matter has remarkably new 
physical features. The production of new physical systems requires number 
densities between 1014 cm−3 and 1015 cm−3 within a temperature range     
2μK–0.5μK at pressure of order 10−11 torr [9, 13]. These condensates display 
coherent matter waves with well–defined amplitude and phase represented 
by a single wavefunction [18]. This fact makes the idea of matter waves with 
constructive/destructive interference possible [18]. These condensates have 
been shown to be an optically dense material where the measured speed of 
light is 17 m.s−1 [20]. The speed of sound in these vapor condensates was 
shown to be a function of the number density, atomic mass and the trapping 
potential [21].  A recent estimation of the speed of sound in these vapor 
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condensates pointed out that it is of order 10−7m.s−1 [22]; which is very small 
in comparison with that in air under standard conditions (≈340 m.s−1). 
From a phenomenological point of view, and due to the modification in the 
dispersion relation of microscopic particles, BEC with atomic vapors can be 
a promising laboratory means to test and explore many important theoretical 
issues such as quantum–gravity manifestation and space–time quantization 
[19,22].  

Besides the aforementioned characteristics, there are other interesting 
aspects of BEC: the possibilities of producing molecular Bose–Einstein 
condensates [19] and constructing atom lasers, amplification of matter waves 
[23] and the possibility of creating dibaryon lasers since in dense nuclear 
matter the Bose condensation of dibaryons can take place [19]. So, physicists 
have a lot of theoretical and experimental investigations to do; e.g. the 
proper type of cavities, mirrors, or lenses for these new types of lasers.  Also, 
optical quantities such as refractive index and directionality, and optical 
relations and formulas such as Rayleigh scattering, Braggs' law, dispersion 
relations and others need to be investigated for BEC condensates. So, one 
can imagine how much BEC is a fertile field to explore and one can also 
imagine the significant role and importance of BEC in developing physical 
concepts for totally new state of matter. 
 

1.8 The Aims of the Thesis 

1) The aim of this thesis is to formulate a statistical mechanics model for the 
BEC phenomenon in fractal media and constructing a programming code 
for the main equations of the model using the software package 

MATHEMATICA®.  
2) It also aims to investigate the thermodynamic behavior of the            
Bose–Einstein condensate properties in selected fractal geometries via 
evaluating the condensation temperature and the temperature dependence 
of the properties such as the fugacity, the condensate fraction, the internal 
energy and the heat capacity in these geometries.  

3) The use of MATHEMATICA® as a computational environment, indeed, 
represents an aim by itself for the feature of symbolic computation; 
computing a sum over its terms is intended. The following chart exhibits a 
road map to realize the thesis aims.  
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1.9 Thesis Layout  

This thesis is organized as follows. Chapter two is divided into two main 
parts. Part I reviews historically the development of the theory of BEC 
formation in Bose gases in such a way that generally reflects the influence of 
spatial dimension on BEC formation. Part II reviews how to analytically 
evaluate the thermodynamic properties of the condensate.  

Chapter three is mainly devoted to the discussion of the symbolic 
computation in statistical mechanics problems. This utility is represented in 
a twofold way. The first is the correction of the condensation temperature     
(
c
T ) relative to the corresponding analytical expressions for a condensate in 

1D, 2D and 3D harmonic traps. The second aspect is the evaluation of the 
condensate thermodynamic properties for the aforementioned systems. 

Chapter four is mainly devoted to evaluate numerically (by symbolic 
computation) those condensate thermodynamic properties under 
investigation, for harmonically trapped bosons in fractal media. These 
properties are evaluated on the basis of two distinct types of thermostatistics; 
Boltzmann–Gibbs extensive thermostatistics and the Tsallis non–extensive 
thermostatistics.  

Finally, chapter five gives the main conclusions and also gives suggestions 
for further work. 
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This chapter is divided into two main parts. Part I reviews historically the 
development of the BEC theory in such a way that generally reflects the 
influence of spatial dimension. Part II reviews the analytic evaluation of the 
thermodynamic properties of the Bose–Einstein condensates in two separate 
sections. Properties when the thermodynamic limit is satisfied; i.e., when the 
Bose gas consists of a huge number of particles are discussed in § (2.5).  The 
same properties when the Bose gas consists of a finite number of particles are 
discussed in § (2.6). The thermodynamic properties under investigation are 
the condensation temperature, the condensate fraction, the total energy and 
the heat capacity.  
 

Part I:  
Theory of BEC Formation in Integer Dimensions 

 

2.1   Factors Affecting BEC Formation 

In this section, the emphasis is on the roles of dimensionality, trapping 
potentials and the finiteness of the number of particles in BEC formation.  
Peierls was the first to notice that the properties of collective physical 
phenomena in an environment with a reduced number of dimensions could 
be dramatically changed with respect to our experience in three dimensions 
[24]. Since BEC is an eminent example of a collective physical behavior, 
dimensionality plays a very effective role in changing BEC properties. It was 
found that in low–dimensional systems, the number of spatial degrees of 
freedom affects the properties of the phase transitions and collective 
oscillations [25]. 

Einstein's prediction of BEC with non–interacting (ideal or perfect) 
free Bose gas (homogeneous or uniform system) in the thermodynamic limit, 

where both N and V→∞ but (N /V) is constant, was indeed for a system 
confined in a 3D container [1].  

In 1966 and 1967, the idea of expecting the occurrence of the BEC 
phenomenon in 2D and 1D structures clashed with a proven statistical 
mechanics theorem (Mermin–Wagner–Hohenberg theorem [10,26]) for the 
absence of the long–range order which was previously observed in 
superconductivity (Ginzburg–Landau [10]) and superfluidity (Penrose–
Onsagar [9]). It also clashed with the general result of BEC occurrence in an 

ideal Bose gas confined in dimensions D ≤ 2 [27].  The same result was also 
observed on the basis of quantum field theory when Coleman found that 
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there is no spontaneous symmetry breaking for an ideal homogeneous Bose 
system confined in 2D structure [28]. This means that BEC does not occur 
with homogeneous systems in 2D and 1D. In 1968, Widom [29] proved 
theoretically that the BEC phase transition is attainable in 2D and 1D 
provided that the Bose system is inhomogeneous (non–uniform system). 
Widom theoretical verification was based on investigating the BEC 
phenomenon in the presence of (i) external field (gravitational) and (ii) in 
rotational motion of an ideal Bose liquid [29].  

Theoretical works that considered the ideal Bose gas as trapped in 
power–law potentials [30–32] and lower–dimensional systems [32–35] led to 
the conclusion that if the Bose gas is confined by a spatially varying potential 
(inhomogeneous system), BEC can occur for a sufficiently confining 
potential. It was shown that in a harmonically trapped ideal 2D Bose gas, 
occupation of the ground state becomes macroscopic below a critical 
temperature which depends on the number of particles and trap frequencies 
[31].  

The realization of BEC with dilute gases by means of evaporative 
cooling and laser trapping of alkali atoms [14–16] renewed the interest in 
studying different external potentials confining ideal quantum gases and the 
dimensions of the trapping potentials as well. Theoretically, BEC was 
examined in the presence of typical external potentials, for example, 
harmonic potential, toroidal potential and double–well potential [35]. These 
works confirmed that the trapping potential plays an essential role in 
condensation realization of for a given amount of a Bose gas. In this 
connection, a very important result concerning the types of external 
potentials confining ideal bosons and the dimensions of these trapping 
potentials, in the thermodynamic limit, was the one obtained by Salasnich 
[35].  Indeed, this result is a condition for BEC occurrence, whereas BEC 
can set up if and only if [( / 2) ( / )] 1 D D , where D  is a                                       

D–dimensional space and   is the power–law exponent of the generic 

external potential involved [35]. From this review it becomes clear that, in 
the thermodynamic limit, the occurrence of BEC with dilute atomic gases in 
3D is attainable with homogeneous ideal Bose gases and it is also attainable 
in 2D but for inhomogeneous systems, i.e., Bose gases in sufficient confining 
potentials.   
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With the realization of BEC in experiments with dilute gases of alkali 

atoms [14−16], the two terms finite size and finite number of particles acquired 
an important interest. This is due to the fact that the number of particles 
and, hence, the size of the Bose systems in these experiments are indeed 
finite. Stimulated by this regard, a remarkable theoretical works that dealt 
with ideal Bose gas were confined to the case of finite number of particles     
[25,36–45]. The adoption of the treatment of finite number of particles has 
led to the prediction of BEC occurrence in 1D [25]. Prior to this adoption, 
the possibility of BEC occurrence in 1D was thought to be impossible even 
for harmonically trapped bosons [32]. The impossibility of expecting the 
BEC occurrence in 1D harmonic trap was ascribed [25] to the use of the 
semi–classical approach the work of Ref. [32] adopted. The occurrence of 
BEC with dilute gases in 1D was predicted to occur in a highly anisotropic 
harmonic potential [46]. Using highly anisotropic potentials enabled 
observing a crossover of BEC in 3D confinement into BEC in 2D or 1D 
confinement with varying condensation temperatures and other 
thermodynamic properties [47].  
 

2.2   The Free Ideal Bose Gas: BEC Formation in 3D  

The total number of particles in the system N is governed by the constraint 
[25]: 

    
0

(1.2)


 i

i

N n

where 
in is the number of particles in the ith state (the occupation number). 

For Bose–Einstein statistics, the occupation number is defined as [48]: 

      1
( ) (2.2)

exp[ ( )] 1


  
 

 
i i

i

n n

where 1/ ( )  Bk T , i is the single particle energy in state i and   is the 

chemical potential. The chemical potential should always be less than or 
equal to the ground state energy 0( )  to ensure that the occupation 

numbers be all positive. As the system temperature drops, the inverse 
temperature β becomes larger and the chemical potential ( ) must 

correspondingly increase to prevent the occupation number, Eqn. (2.2), 
from being negative. Since the ground state energy is conveniently taken zero 
( 0 0  ), therefore,   is generally negative [25].    
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The classical gas theory is fully understood and described in the context 
of thermodynamics where the condition of the thermodynamic limit is 
satisfied [48].  For this condition, the molecules (classical particles) are 
distributed over energy states whose energy spacing is infinitesimal, i.e.  
  d , and, hence, the energy spectrum for this system is continuous. 

Consequently, the evaluation of the thermodynamic quantities in classical 
gas theory was completely expressed in the notation of integrals instead of 
the notation of sums [48].  

The quantum gas theory introduced by Einstein [1–3] was for an ideal 
free (homogeneous) Bose gas in the thermodynamic limit. This requires that 
the thermodynamic quantities of the quantum gas, which are evaluated on 
the basis of this theory, are in the notation of integrals. This is ascribed to 
the fact that when the discreteness of the energy levels is neglected, the sum 
of Eqn. (2.1) can be replaced by an integral. This is justified when the energy 
levels spacing is microscopic in comparison with the mean energy; and such 

a treatment is called the semi–classical approach [32].  Hence, when N→∞, 
the total number of particles, Eqn. (2.1), can be expressed as [48]:  

                    
0

2 3



  ( ) ( . )N n p dp  

where ( )n p is the particles distribution function in the momentum–space.  

For an ideal free gas in a 3D box, the Hamiltonian is given by 
2 2 2 2/ 2 ( ) / 2    x y zp m p p p m , and equation (2.3) can be written as [49]: 

                             
2

3 2

0

4
2 4

2 2 1
( . )

( ) exp[ ( / ) ]

V p dp
N

p m



  




   

Substituting 2 / 2x p m , gives [49]: 

  
3 2 1 2

3

0

2 2
2 5

12



 


 

  
  


/ /

( . )
exp[ ]( )

V m x dx
N

x
 

By using de Broglie thermal wavelength, TmkBT /2 2  , and the Bose 

function 

( )B z which is a function of the fugacity ( z e ), whose definition 

and properties are given in Appendix A, one can obtain the number density 
[49]:   

                              3 2

3
2 6




  

/
( )

( . )
T

B eN

V
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Eqn. (2.6) can be used to introduce Einstein's condensation criterion; the 
phase–space density   that quantifies the creation of BEC [49] is:     

                  3

3 2
2 7   

/
( ) ( . )

T
B e  

For the case of BEC, at some critical temperature Tc when 0  ( 1z  (, 

Eqn. (2.7) becomes [49]:  

       3

3 2
1 2 8   

/
( ) ( . )

cc c T
B  

where the subscript c indicates the parameters at the critical temperature. 

From the properties of the Bose function, one has 1


 ( ) ( )B  for ν >1; where

( )  is the Riemann zeta function. Then, Einstein's criterion for 

condensation is expressed as [49]:  
3 2

2

3 2

2
3 2 2 612 2 9




  
  

 

/

/
( / ) . ( . )c

B c
mk T

 

From Eqns. (2.8) and (2.9), both c
  and c

T  define the onset of the 

condensation of particles into the ground state.  It is obvious that the right-
hand side of equation (2.9) is definite. Since there is no theoretical reason 
that prevents the system temperature to drop below the critical temperature,

c
T , therefore the critical number density, c , must necessarily be increasing 

by adding particles. An inconsistency then arises: there is nothing that 
prevents increasing the number of particles whilst total number of particles 

of the system N is governed by Eqn. (2.1); in other words where do the 
surplus particles go? Einstein resolved the problem by proposing that any 
surplus particles would occupy the ground state which had been ignored due 
to the use of the semi–classical approximation; Eqn. (2.4). Then, the critical 
temperature can be obtained from Eqn. (2.9) as [49]: 

                               

2 3

2
2 10

3 2





 
  

 

/

( . )
( / )
c

c

B

T
mk

 

From the properties of the Riemann zeta function, Eqn. (2.10) emphasizes 
that BEC for a perfect (ideal) free gas is attainable in a Bose gas in any 
dimension  2D  . It is clear that for an ideal free Bose gas confined in a 3D 
container the phase–space density and the critical temperature are both 
definite. It is also observed that in a 3D container, the single particle 

Hamiltonian of a free gas ( 2 2 2 2/ 2 ( ) / 2    x y zp m p p p m ) is what led the 

analysis of Eqns. (2.9) and (2.10) to be expressed in terms of the Riemann 
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zeta function, i.e., 2 ( / )D . This observation about the single particle 

Hamiltonian will be used, from now on to analyze the BEC formation of a 
perfect Bose gas in integer dimensions and in harmonic potentials as well. 
To obtain similar expressions for the phase-space density and the critical 
temperature for an ideal free Bose gas confined in a 2D structure, the above 
analysis should be repeated with a single particle Hamiltonian which is 

defined by 2 2 2/ 2 ( ) / 2   x yp m p p m . The previous analysis would lead to 

obtain expressions in terms of 2 2 1( / ) ( )  . From such analysis, a more 

general rule can be deduced: the critical phase–space density for a free ideal 
Bose gas (homogeneous system) confined in a container of spatial dimension 

D is: 
                             2 2 2 11( ) ( / ), ( . )

c
D D D    

Mathematically, Eqn. (2.11) reads that when D ≤ 2, the phase–space density 
and, consequently, the critical temperature are both indefinite; because the 
Riemann zeta function ( )  is only defined for ν >1. Physically, this means 

that for an ideal free Bose gas (homogeneous system) confined in structures 

with dimensions D ≤ 2, BEC does not occur.  This result completely agrees 
with Mermin–Wagner–Hohenberg theorem [10,26], which is mentioned in 
§ (2.1) in connection with the absence of the long–range order observed 
previously in superconductivity.  From Eqn. (2.11), now, it is clear that the 

critical phase–space density ( c
 ), responsible for BEC formation, is 

influenced by the spatial dimensions of the medium containing the Bose gas.  
 

2.3   Ideal Bose Gas in Harmonic Traps: BEC Formation in 2D 

Theoretically, the isotropic harmonic potential ( )x y z     is the simplest 

model to demonstrate the effect of external potentials on physical systems. 
The single particle Hamiltonian is 2 2 2[( / 2 ) ( / 2)]p m m r   , where 

2 2 2 2( )x y zp p p p    and 2 2 2 2 2 2 2 2( )x y zr x y z      . Substituting the 

Hamiltonian into Eqn. (2.4), one gets [49]: 
3

2
3

33 2 2 2
0

1 4
2 12

2
1

2 2



 
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
 

   
    

    
  

  ( ) ( . )
( )

exp

B
k Tp dp

N d x B e
p m r

m

Using the approach used to obtain Eqn. (2.7) from Eqn. (2.4), the       
phase–space density can be expressed as [49]:  
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2 23 2

3
2 13     ( / )( ) ( ) ( . )m r

T
r B e  

Eqn. (2.13) emphasizes that the phase–space density of the Bose gas in 

trapping potentials depends on the position "r".  That is why Bose gases in 
external fields are denoted as inhomogeneous (non–uniform systems); for 
their densities are spatially dependent. Evaluating Eqn. (2.13) for 

2 2 2

3 2

  ( / )

/
( )m rB e at r = 0, recovers Einstein's criterion for free gas (Eqn. (2.9)). 

This means that the role of spatially varying potentials (harmonic potential 
in this case) is merely to concentrate the particles to the density at which 
BEC commences [32]. When the BEC condition ( 0 0N   ) is applied, 

Eqn. (2.13) gives the critical temperature as [25,36–39,42]:  

       
1 3

3

0
2 14

3

/

( . )
( )

D

B

N
T

k





 
  

 
 

The subscript "0" indicates that the thermodynamic limit condition is 
satisfied while the superscript indicates the spatial dimension of the trapping 
potential. It becomes clear that for an ideal Bose gas (in the thermodynamic 
limit) trapped in a 3D harmonic potential, the analysis leads 

cT to be 

expressed in terms of 3 ( ) ( )D . An analogous analysis for a Bose gas with 

infinite number of particles trapped in an isotropic 2D harmonic trap, 

whose Hamiltonian is 2 2 2[( / 2 ) ( / 2)]  p m m r , where 2 2 2( ) x yp p p     

and 2 2 2 2 2 2( )   x yr x y , would lead the analysis to a critical temperature 

expressed in terms of 2( ) . Then, the critical temperature is given as     

[40,42]:  

                                 
1 2

2

0
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/

( . )
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D

B

N
T

k





 
  

 
 

It is noticeable from Eqn. (2.15) that, in the thermodynamic limit, BEC is 
attainable in a 2D trap while BEC occurrence in 2D was impossible in the 
case of free ideal Bose gas (homogeneous system) confined in a 2D structure 
[32]; as mentioned in § (2.1). This means that BEC occurrence for a Bose 
gas with infinite number of particles (thermodynamic limit) is attainable in 
2D provided that the system is inhomogeneous; which agrees with       
Widom [29] for BEC occurrence in 2D with inhomogeneous ideal Bose 
liquid. So, this illustrates exactly the role of spatially varying potential 
(harmonic potential in the case of Eqn. (2.15)).   
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2.4 Ideal Bose Gas with Finite Number of Particles: BEC Formation in 1D 

 

From Eqns. (2.14) and (2.15), one might set a generalization for the 
expression of the condensation temperature for an ideal gas (in the 

thermodynamic limit) in a D–dimensional harmonic potential as [39]: 

                               
1

0 (2.16)
( )





 
  

 

D

D

B

N
T

k D

Theoretically, the case of 1D system is a special one for which there is no 
condensation in the thermodynamic limit [39], i.e., in the semi–classical 
approach. In this case, the condensation temperature becomes indefinite 
because of the Riemann zeta function dependence, i.e., BEC is not 
attainable for ideal Bose gases even in the presence of the harmonic 
confinement when the thermodynamic limit condition is satisfied. The 
result of the aforementioned system was first predicted by Bagnato and 
Kleppner [32]. So, to investigate the possibility of BEC occurrence in a 1D 
harmonic trap, the semi–classical approximation is not proper anymore, i.e., 
the thermodynamic limit should be avoided. This requires that the total 
number of particles of Eqn. (2.3) has to be replaced by Eqn. (2.1). 

In this section, the theoretical approach used in Ref. [25] to prove the 
possibility of BEC occurrence in 1D harmonic trap, will be reviewed. As a 
starting point, the occupation number of BEC given by Eqn. (2.2) reads [25]: 

          
( ) 1

1 1
( ) (2.17)

1 1 1
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ze
n

e z e ze
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 
  

  
 

The energy of the ground state has been taken to be zero. The fugacity ( z ) 
can be determined by the total number of particles in the system, i.e.      
Eqn. (2.1). The degeneracy factors were avoided by accounting for 
degenerate states individually and the total number of particle is, then, given 
as [25]: 

0 1

exp( ) (2.18)
 

 

  j

i

i j

N z j  

For the case of 1D harmonic trap, Eqn. (2.18) is expressed as [25]: 

          
1

exp( )
(2.19)

1 [1 exp( )]










 

  
 j i

j i

z j
N z

z j
 

where / (1 )z z  = N0 is the ground state population.  For ( / )  Bk T <<1, 

Eqn. (2.19) is approximated by /2[ / (1 )] [ / ]j j je e e j        to give [25]:    
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Applying the critical temperature condition, the total number of particles 
reads [25]: 

2
ln (2.22)

 

 
  

 

B Bk T k T
N  

And, therefore, the critical temperature is expressed as [25, 39]: 

          
1 2 23

2
( . )

ln( )

D B
c

k T N
T

N
  

An alternative expression for 1D

c
T is given by [40]:  

1 (2.24)
ln( )


D

c

B

N
T

k N
 

From Eqns. (2.14), (2.15) and (2.24), it is obvious that, for a harmonically 

trapped Bose gas having the same total number of particles , N, and the same 
trapping frequency, ω, the critical temperature increases with the reduction 
in the spatial dimension. Consequently, the condensate thermodynamic 

properties vary as 3 1 3

0

/DT N , 2 1 2

0

/DT N and 1 2[ / ln( )]D

c
T N N , i.e., the tighter 

the confinement, the higher the transition temperature [25].  

 
Part II: Thermodynamic Properties of  

Harmonically Trapped Ideal Bose-Einstein Condensate 

 
2.5 Thermodynamic Properties in the Thermodynamic Limit  
 

In this section, the computation of the condensation temperature, Tc, and 
other thermodynamic properties will be reviewed for a perfect Bose gas 
trapped in a harmonic trap in the semi–classical approach, i.e., when the 
thermodynamic limit condition is satisfied. These properties represent the 
temperature dependence of the condensate fraction, the internal energy and 
the heat capacity. For non–interacting (ideal) bosons in thermodynamic 
equilibrium, the occupation number of is Eqn. (2.2)  

     
( )

1
( ) (2.25)

1  





i
in

e
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where 𝜀𝑖 denotes the single–particle energy of the state i  for the particular 
trapping potential under consideration. When the gas is trapped in a 3D 
harmonic potential, the single particle energy levels are expressed as [13]: 

1 2 3 1 1 2 2 3 3

1 1 1
( , , ) ( ) ( ) ( ) (2.26)

2 2 2

0, 1, 2,...

   
 

      
 

i

n n n n n n

n
 

When the thermodynamic limit condition is satisfied, the total number of 
particles, Eqn. (2.1), is evaluated as [13]:   

       
0

( ) ( ) (2.27)  


 N n g d  

where ( )g  is the density of states. For the case of a 3D harmonic trap, ( )g is 

given by [13]: 

       
2

3

1 2 3

( ) (2.28)
2




 
g  

For a D–dimensional harmonic potential with frequencies  i , a 

generalization of Eqn. (2.28) can be expressed as [13]:    

                
1

( ) (2.29)
( 1)!









 

D

i i

g
D

 

from which it is clear that the density of states varies as the power of the 
energy. 
 

2.5.1 Condensation Temperature 

The transition or condensation temperature, Tc, is defined as the highest 
temperature at which the macroscopic occupation of the lowest–energy state 

appears. When the number of particles, N, is sufficiently large, the zero–
point energy in Eqn. (2.26) might be neglected and, thus, one can equate the 
lowest energy to zero [13]. Corrections to the transition temperature arising 
from the zero–point energy will be discussed in § (2.6). The number of 
particles in the excited states is given by [13]: 

       
0

( ) ( ) (2.30)  


 exN n g d  

The condensation temperature, Tc , is determined by the condition that the 
total number of particles can be accommodated in the excited states (when 
µ=0) that is [13]: 

0

( )
(2.31)

1
ex

g
N N d

e 






 
  
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Eqn. (2.29) can be expressed in terms of the dimension of the harmonic 

potential (D) as [13]:     
           1( ) (2.32)   D

Dg c  

In the case of an isotropic 3D harmonic potential, 3

3 1 2 31/ (2 ) c  and 

the geometric mean of the frequencies 1/3( )    x y z  replaces the  i  

frequencies. Writing Eqn. (2.31) in terms of the dimensionless variable
/ B cx k T , this equation  becomes [13]: 

            
1

0

( ) ( ) ( ) ( ) (2.33)
1

 
 

  


D
D

D B c D B cx

x
N c k T dx c k T D D

e
 

where ( ) is the gamma function  of order  and 

            
1

0
( ) ( ) (2.34)

1



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 


D

x

x
dx D D

e
 

From Eqn. (2.33), the transition temperature is [13]: 

            
1/

(2.35)
( ) ( )

 
  

 

D

B c

D

N
k T

c D D
 

Eqns. (2.14) and (2.15) are recovered when D
c  of the isotropic case is used in 

Eqn. (2.35).  
 

2.5.2  The Condensate Fraction 

Below the transition temperature (when μ = 0), the number of particles in 

the excited states, Nex, is given by [13]:          

         
1

/0
( ) (2.36)

1B

D

ex D k T
N T c d

e 








  

The evaluation of Eqn. (2.36) is similar to that for evaluating Eqn. (2.30); 
which gives [13]:  

    ( ) ( ) ( ) (2.37)D

ex D BN c k T D D   

It is observed that the latter equation is independent of the total number of 
particles. Making use of Eqn. (2.35), Eqn. (2.37) becomes:     

                                  (2.38)

D

ex

c

T
N N

T

 
  

 
 

The number of particles in the ground state is then given by:  
   

0( ) ( ) (2.39)  exN T N N T  
and the condensate fraction is [13]:  
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  0 1 (2.40)

D

c

N T

N T

  
    

   
 

For a 3D potential, 3D and the latter equation reads: 

  
3

0 1 (2.41)
  

    
   c

N T

N T
   

 

2.5.3 The Total Internal Energy and the Heat Capacity 

The energy of the macroscopically occupied state (the ground state) is taken 
to be zero and, therefore, only the excited states contribute to the total 

energy of the system. Below Tc, the chemical potential vanishes. By using the 
result of integral in Eqn. (2.33), the internal energy is given by [13]:   

            1 1

/0
( 1) ( 1)( ) (2.42)

1B

D D

D D B ck T
U c d c D D k T

e 


  


     

  

The heat capacity /C U T   is, therefore, given by [13]:   

( 1) (2.43)
U

C D
T

 

 

Both Eqns. (2.42) and (2.43) do not depend on the total number of 
particles. Using the integral of Eqn. (2.34), Eqns. (2.42) and (2.43) are 
rewritten as [13]: 
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For a 3D harmonic potential, the latter equations can be written as: 

     

4

3

3

(4)
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2.6 Thermodynamic Properties for a Finite Number of Particles 

In this section, the effect of a finite number of particles on Tc and on 
thermodynamic properties (the condensate fraction, the total energy and the 
heat capacity) will be reviewed for a Bose gas trapped in a 3D harmonic 
potential. Realization of BEC in dilute gases of alkali atoms [14–16] has 
disclosed that the semi–classical approach, which was commonly used prior 
to the BEC realization, e.g. [31,32], is an imprecise approach to treat the 
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statistical problem of the BEC phenomena. This is because the semi–
classical approach is only valid when the thermodynamic limit condition is 
satisfied. This is due to the fact that the number of particles and, hence, the 
size of the Bose gas are indeed finite in these experiments. In this respect, 
the pioneering works [25,36–39] pointed out that the condensation 
temperature for ideal Bose gases in a 3D harmonic trap witnesses a 
downward shift compared with that evaluated on the basis of the 
thermodynamic limit. Now and then, the condensation temperature when 

the thermodynamic limit condition is satisfied will be denoted by ( 0

cT ). This 

downward shift was shown to be proportional to 3/1N [25,36–39]. This is 
known as the first order shift of the critical temperature or the first order 
correction. Treatments of ideal Bose gases with finite number of particles in 
harmonic traps required making corrections to the condensation 
temperature and other thermodynamic properties (condensate fraction, 
internal energy, heat capacity, etc.) relative to those at the thermodynamic 
limit [25,36–39]. As a result, in an isotropic 3D harmonic trap when 

N=1000, the relative correction is found to be 0( / ) 7.3%c cT T   [25,36–38].  

For a gas trapped in a 3D harmonic potential, the single particle 
energy spectrum is given by Eqn. (2.26). Using the latter equation and     
Eqn. (2.25), the total number of particles reads [36]:         

1, 2, 3 1 1 2 2 3 3 0

1
(2.48)

exp[ ( ) ( )] 1n n n

N
n n n      


    


 

where
0 1 2 3

2( )/       is the zero–point energy.  To evaluate Eqn. (2.48), 

the sum over the energy states has been replaced by integration over density 
of states and the density of states was parameterized as [36]:  

   
2

3 2

1
( ) (2.49)

2 ( ) ( )
g

 
 

 
   

where 1 3

1 2 3
   /( ) is the geometric mean frequency and   is a coefficient 

that depends on the individual oscillator frequency. For isotropic harmonic 
potential 3 2/   and for anisotropic potentials   would be evaluated 

numerically [36]. After substituting the density of states, Eqn. (2.49), to 
convert the triple sum of Eqn. (2.48) into an integral, the total number of 
particles reads [36]: 

3 2

3 2(z) ( ) (2.50)
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The works [25,37,39] also obtained the same result, Eqn. (2.50), by 
converting the sum of Eqn. (2.48) into an integral by using approximation 
techniques such as Euler–Maclaurian summation formula [39] or        
Mellin–Barnes integral representation [37].  

Setting 1z and the ground state population 0[ / (1 )] 0z z N   , the 

Bose functions are bounded by the Riemann zeta function and the 
condensation temperature is obtained as [36]: 

               
1/3

2/3 1/3
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For a large number of particles, 1 3/N   becomes much smaller than unity and 
the condensation temperature of Eqn. (2.14) is recovered.  When the 

particles number is small, the downward shift of Tc of order 1 3/N  , should be 
taken into account. The first order shift of the critical temperature in 
isotropic potential is [25, 36]: 

0 3 2 3

1 3 1 32 3
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Consequently, thermodynamic properties have to be corrected for finite 
number of particles. The condensate fraction and the total energy, given in 
Eqns. (2.41) and (2.46), were then corrected for finite number of particles as 
[36]: 

3 2
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The heat capacity expression in the semi–classical approximation,            
Eqn. (2.47), was also corrected by two distinct expressions as [36]:  
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where 

 

 
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3 0 20

1/3

2 0 1

( ) (2 / 3 ) (3) / ( )3
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Eqn. (2.55) expresses the heat capacity per particle below the condensation 

temperature (T<T0) while Eqn. (2.56) expresses the heat capacity per particle 

above the condensation temperature (T>T0). For a very large number of 
trapped particles, Eqn. (2.54) recovers the expression for the heat capacity in 
the thermodynamic limit given in Eqn. (2.46), while the expression of     
Eqn. (2.55) becomes [36]: 

0
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The superscript " ∞ " denotes the case of very large N . Remarkably, for 

very large N, the heat capacity becomes discontinuous at T0 [36]. The 
magnitude of the jump is quite significant [36]: 
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This chapter brings out the utility of using MATHEMATICA® as a tool for 
statistical mechanics problems, especially those concerning the BEC 
phenomenon.  This aim is exhibited by using the symbolic computation, 

MATHEMATICA® provides. This utility is represented by two main points. 
The first point is the correction of the condensation temperature ( cT )

relative to the corresponding analytical expressions for a BEC in 1D, 2D and 
3D harmonic trap. This aspect is dealt with in § (3.4.1), § (3.4.2) and 
§ (3.4.3), while § (3.4) illustrates how to evaluate by symbolic computation
the condensation temperature in these traps. The second point is the 
evaluation of the aforementioned BEC thermodynamic properties, which is 
given in § (3.5). The stimulus that led to bring out the utility of using 
symbolic computation in the two previous points was the investigation of the 
various correction orders contributions to cT  in a 3D harmonic potential.

This investigation is discussed in § (3.3). The latter was motivated by the 
discrepancy concerning the accurate cT  determination in a 3D harmonic

potential for the case of finite number of atoms (particles). This discrepancy 
is discussed in § (3.2).  

3.1 Symbolic Computation 

MATHEMATICA® as a general computing environment was first released in 
1988 [50]. It was originally conceived by Stephen Wolfram and developed by 
a team of specialists that he assembled and led. Besides its capability to 
perform numeric computations,  as many conventional programming 

languages do, one of MATHEMATICA's advantages over the conventional 
computational approaches is its capability of symbolic computation 
(algebraic computation) [50]. The term symbolic computation relates to the 
use of computers to manipulate mathematical equations and expressions in a 
symbolic form, as opposed to manipulating the approximations of specific 
numerical quantities represented by those symbols. Thus, symbolic 
computation includes all of numerical calculation plus expressions; i.e., 
using variables and having variables in the outputs. Also, there are many 
symbolic equation solvers, for nearly all types of equations, linear, nonlinear, 
and differential equations included [50].  

The first software program that facilitates symbolic mathematics was a 
special system known as computer algebra system [50].  The core 
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functionality of this system is the manipulation of mathematical expressions 
in symbolic form. The expressions manipulated by the computer algebra 
system typically include polynomials in multiple variables, standard 
functions of expressions (trigonometric, exponential, etc.), various special 
functions Γ (gamma function), ζ (Riemann zeta function), error function, 
Bessel functions, etc., arbitrary functions of expressions, derivatives, 
integrals, simplifications, sums, products of expressions, and expressions of 

matrices [50].  In short, everything in MATHEMATICA® is represented 
symbolically.  

The work achieved in this thesis is based on the feature of symbolic 

computation MATHEMATICA® provides. The evaluation of the 
condensation temperature and some thermodynamic properties for 
harmonically trapped bosons in this thesis are basically performed in 
symbolic form. The main symbolic manipulations involved in this work are 
the standard exponential function, the special functions Γ and ζ, sums, and 
the sums and products of these expressions. There has been a preliminary 
attempt in this direction [51]; and the adoption of symbolic computation in 
this chapter reveals an important observation that is clarified in more details. 

3.2 Condensation Temperature in a 3D Harmonic Potential 

The effect of finite particle number on the BEC phenomenon, discussed in 
§ (2.6), showed that the first order relative correction to the condensation
temperature in a 3D isotropic harmonic potential [25,36–38] is

0 7 3( / ) . %
c c
T T   . In this regard, the condensate thermodynamic properties 

were corrected with respect to the shift in the condensation temperature, as 
mentioned in § (2.6). Subsequently, it has been claimed that the first order 
correction, whose relative value is approximately 7.3% , is inaccurate for 

atoms number N < 105 [52].  This result was justified by observing that, 
beyond the first order correction, the next order is not a second order 

correction, which would be proportional to 2/3N  , but rather a correction 
proportional to 1/2N   [52].  Accordingly, the next order correction should be 
included for an accurate estimation of finite size corrections to cT  when     

N ≤ 105 [52]. Due to this inclusion of the next order correction for 1000N  , 
the relative correction was found to be 0( / ) 3.8 % c cT T  [52]. 
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Motivated by this discrepancy, an attempt is made, in this chapter, to 
study mainly three aspects. The first aspect is to examine the correction 
orders contributions, derived in Ref. [52], to cT for an ideal Bose gas in a 3D 

harmonic potential. This aspect is discussed in § (3.2). The second aspect to 
be examined in § (3.3) is the validity of the first order correction; the 
correction on which the works of Refs. [25,36–38] relied on to determine 
the condensation temperature and other thermodynamic properties in the 
aforementioned Bose systems.  

Despite the fact that results of the works [25,36–38] are indeed 
precise, the treatments used to determine the condensation temperature are 
still not the most precise statistical treatments for a finite number of 
particles. This is because the core idea in these works is, in general, to 
convert the sum into an integral as in the case of the thermodynamic limit 
treatment but by using a more accurate density of states and proper 
integration limits. Hence, the third aspect is the one which relied on 
evaluating the condensation temperature for harmonically trapped ideal 
bosons in 3D, 2D and 1D harmonic potentials by symbolic computation. 
This aspect is to be discussed in § (3.4). In the present work, the problem of 
the precise statistical evaluation is approached by using the key idea of 
computing the sum over all the energy states with no truncation or 
approximation. This goal is achieved by using the symbolic computation 

capability of MATHEMATICA® which enables computing a sum over its 
terms [50]. 

3.3 Correction Orders Contribution in a 3D Harmonic Potential 

An expression for the relative correction for a finite number of ideal Bose 
particles in a power-law potential was derived in Ref. [52]. For the case of the 
harmonic potential, the relative correction was expanded in powers of 0x , 

where 0 0 / B cx k T , and the truncation was limited to second order in 0x

for 0 0.1x  to give [52]: 
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In terms of the atoms number, Eqn. (3.2) was expressed as [52]: 
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where 
m

  and   are respectively the arithmetic and geometric mean 

frequencies of the harmonic oscillator, and 
m

   for an isotropic harmonic 

potential.  It is obvious that the expression for 0x in terms of atoms number 

is: 

   
1/3 1/3

0

3
(3) (3.5)

2
x N

It is also clear that the coefficient of third term in Eqn. (3.1), i.e., Eqn. (3.2), 
has been truncated in Eqn. (3.3). Eqn. (3.1) shows that the next correction 
term is not the second order correction, and from the present point of view, 
this result is beyond dispute.  Based on this result, the first order correction 
has been considered as an inaccurate correction and it was suggested that the 
next term correction should be included [52]. Therefore, the correction up 
to 1 2/N  , Eqn. (3.3), was considered as the accurate relative correction for 
non–interacting bosons harmonically confined in 3D [51]. It is argued here 
that the third term of Eqn. (3.2) should not be ignored because the 
expansion of the shift in powers of 0x , Eqn. (3.1), already involves the third 

term.  In this view, the third term, which involves the second order, is also 
significant and it should be included for more accurate estimation of  cT .  

By substituting Eqn. (3.5) in Eqns. (3.1) and (3.2), a more accurate relative 

correction for Tc as a function of the atoms number N in a 3D harmonic 
potential can be expressed as: 

3 2 2

1 3 1 2 1 3 2 3
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c

T
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Fig. (3.1) shows that when 1000N  ,  the corrections up to the orders 
21N , 3/2N and 31N respectively give %8.3)/( 0  cc TT , %5)/( 0  cc TT and

%3.7)/( 0  cc TT . This illustrates that the contribution of the second order 

correction, the third term of Eqn. (3.5), which is proportional to 3/2N , is 
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Fig. (3.1): The relative correction 0( / )c cT T  in an isotropic 3D 

harmonic potential as a function of atoms number 10
3 
≤ N ≤ 10

5
. 

also significant and it should not be neglected for an accurate determination 
of the condensation temperature when 510N . 

Fig. (3.2) shows that extrapolating the behavior of )/( 0
cc TT  for atoms 

number 1000N  , results in an expected reduction when N decreases for the  
first order correction and for the correction of order up to 2 3/N  . The insert, 

which exhibits the relative correction up to N −1/2, shows an anomalous 

physical behavior because it becomes positive when N ≤ 10; which means 
that the condensation temperature is greater than that for the 
thermodynamic limit; i.e., 0

c c
T T . This behavior indicates that the correction 

up to 2/1N is not only an imprecise correction but it is also, physically, an 
improper correction for finite atoms number. 

 It is important to stress here that despite the fact that correction up to 

N
 −2/3

 is more accurate than that up to N
 −1/2, it (the correction up to N

 −2/3 ) is 
still not the precise correction for atom numbers N<10

5
. Thanks to the 

relative correction shift derivation of the work [52], it is clear that the first 
order and the second order corrections are respectively proportional to 0x

and 2
0x , and the next order correction is proportional to 23

0x . Thus, it is 

concluded that the successive change in the sign of the correction orders, 

given by [52], would lead the relative correction )/( 0
cc TT to approach the first 

order relative correction as the order of the corrections increases.  This is 
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Fig. (3.2): The relative correction 0( / )c cT T  in an isotropic 3D harmonic potential 

as a function of atoms number 10 ≤ N ≤ 10
5
.  The insert exhibits that the correction 

up to 1 2/N  gives Tc > Tc
0
 when N <10.

reflected in the reduction of relative correction from 0 3 8  ( / ) . %
c c
T T  given 

by Eqn. (3.7) to 0 5( / ) %
c c
T T    given by Eqn. (3.9). In our opinion the first 

order correction 
1 3

0 7275[ . ( / )]
m

N 


  is still the most precise correction. 

The question that needs to be answered is: for which number of atoms the 
first order correction remains valid. 

3.4   Evaluation of the Precise Condensation Temperature in 
Harmonic Potentials

On the basis of the grand canonical ensemble, the total atoms number for 
an ideal Bose gas confined in an isotropic harmonic potential is expressed as 
[40]: 
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where the 
n
g 's are the harmonic oscillator potential degeneracy factors 
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To evaluate the critical temperature, cT , in ( / )
B
k units for the

aforementioned systems, Eqn. (3.7) is symbolically solved for T after setting 

0
0N  and 1z   for a given N. In computations, the upper limit of the sum 

in Eqn. (3.7) is indeed the integer at which the temperature T converges. 

The converged value of T  is the condensation temperature cT . In the

following subsections, the relative corrections for the condensation 
temperature in harmonic traps will be evaluated.  

3.4.1 The Relative Correction in a 3D Confinement

The 3

0

DT  obtained from Eqn. (2.14) and cT  evaluated by solving Eqn. (3.7)

are used in in the form 3 3

0 0
[( )/ ]D D

c
T T T  to evaluate the relative correction 

denoted by "present work". For this case, the used degeneracy is 
2 1 2( )( )/

n
g n n   . The obtained relative correction is then compared with 

the relative correction up to 2/3N   and with the first order relative correction 

namely  3/13
0 7275.0)/(  NTT D

c  [25,41]. 

Fig.(3.3) shows that the first order relative correction, 
3 1 3

0
7 275 /( / ) .D

c
T T N    , is in excellent agreement with the obtained relative 

correction (present work) for 3 510 10N  . It also shows that when N=103, 

the numerical value of the obtained relative correction is approximately

7. 347% . Hence, the first order correction makes a percentage difference 

of merely +0.98% in comparison with the obtained relative correction 
(present work).

Fig.(3.4) shows that extrapolating the behavior of )/( 3
0

D
c TT for N < 103, 

the first order relative correction exhibits an excellent agreement with the 

obtained relative (present wok) correction even for atoms number N >100. It 
is also obvious that the obtained relative correction becomes higher than 

that of the first order when N<100. This means that the symbolically 
evaluated values of  cT are higher than those predicted by the first order 

correction. Also, this figure represents a correction to the first order 

correction for N < 100.  Figures (3.3) and (3.4) also show that the correction 

up to N −2/3 is far from the results for the obtained relative correction. 
Accordingly, this asserts the prediction in § (3.2) which indicates that the 

relative correction up to N −2/3 is an imprecise relative correction for N<105.  
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Fig.(3.3):  The relative correction 3

0( / ) D

cT T in an isotropic 3D 

harmonic potential as a function of atoms number 10
3
 ≤ N ≤ 10

5
  .

Fig. (3.4):  The relative correction 3

0
( / )D

cT T  an isotropic 3D

harmonic potential as a function of atoms number 1 ≤ N ≤ 1000. 
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Figs. (3.3) and (3.4) emphasize that the first order relative correction 
3 1 3

0
0 7275 /( / ) . ( / )D

c mT T N      is the most accurate correction for cT ; as it is 

clear from the excellent agreement with the obtained numerical  relative 

correction (present work) for atoms number N >100. In order to precisely 

determine the condensation temperature, Tc, for ideal Bose gases 

harmonically confined in 2D and 1D, the use of symbolic evaluation for Tc 
in these bosonic systems is extended in the following subsections. 
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Fig. (3.5):The condensation temperature in an isotropic 2D harmonic potential as a 

function of atoms number 1 < N  ≤ 1000. The insert extrapolates  Tc for    1< N < 10
5
.

1 10 100 1000 104 105
1
2
5

10
20
50

100
200

To
2 D

present work

1 5 10 50 100 500 1000

1.0

10.0

5.0

2.0

20.0

3.0

1.5

15.0

7.0

N

3.4.2 The Relative Correction in a 2D Confinement 

The condensation temperature for a bosonic gas with infinite number of 
atoms in a 2D harmonic trap 2

0

DT , given by Eqn. (2.15), and the cT  obtained

symbolically from Eqn. (3.7), are plotted in Fig. (3.5). The used degeneracy 
for this case is 1 ( )ng n . Fig. (3.5) and its insert both show that evaluated

condensation temperature denoted by "present work" is always less than that 
evaluated on the basis of the thermodynamic limit given by Eqn. (2.15).  

The evaluated relative correction for this case is obtained by a similar 
manner to that for the 3D harmonic potential, i.e. by using the two 
aforementioned condensation temperatures in the form 2 2

0 0[( ) / ] D D

cT T T .

Fig. (3.6) exhibits the obtained relative correction as a function of atoms 
number and it also gives the precise 

cT as a correction to Eqn. (2.15).

T c
(ħ
ω
/k
B)
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Fig. (3.6): The relative correction 2

0
( / )D

c
T T  in an isotropic 2D 

harmonic potential as a function of atoms number 1< N < 10
5
. 
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3.4.3 The Correction Factor in a 1D Confinement 

For a Bose gas confined in 1D harmonic potential, the correction factor 

defined by )/( 1D
cc TT  is adopted to correct the cT  which Eqn. (2.23) gives. This 

is because in 1D harmonic potential, theoretically there is no BEC when the 
thermodynamic limit condition is satisfied [25]. The evaluation in the 
thermodynamic limit of the condensation temperature needs special 

manipulation because the Riemann zeta function is not defined when D =1. 
For this case, the works [25,39] proposed two similar expressions given by 
Eqns. (2.23) and (2.24).  The 1D

cT  given by Eqns. (2.23) and (2.24) and the 

results obtained for cT by solving Eqn. (3.7), for T where the degeneracy 

factors 1
n
g  , are plotted as functions of atoms number in  Fig. (3.7). The 

symbolically evaluated condensation temperature is denoted by "present 
work 

cT ". This figure clarifies that the symbolically evaluated cT  is 

remarkably higher than those predicted by Refs. [39] and [25].  The values of  

c
T  in (ħω/kB) units which are evaluated by solving Eqn. (3.7) symbolically, 

and by Eqns. (2.23) and (2.24) are approximately 1300, 1100 and 1000 

respectively for N=10000. For this case, the correction factor )/( 1D
cc TT  for cT

as a function of N is plotted in Fig.(3.8), where c
T  is obtained from Eqn. 

(3.7), and 1D

c
T  is the condensation temperature given by Eqn. (2.23). 
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Fig. (3.7):  The condensation temperature in a 1D harmonic 

trap as a function of atoms number 10
3
< N ≤ 10

4
.   

Fig. (3.8):  The correction factor 1( / )D
c c
T T  in a 1D harmonic potential as a 

function of atoms number 100 < N < 10
4
. The insert is 1( / )D

c c
T T for  N <100. 

1 2 5 10 20 50 100
1.15

1.20

1.25

1.30

1.35

1.40

100 200 500 1000 2000 5000 1 104
1.28

1.30

1.32

1.34

1.36

1.38

N

1000 1000050002000 30001500 7000

1000

500

200

300

150

700

N

T c
(ħ
ω
/k
B)

T c
 / 

T c
1D

present  work



Chapter Three: Condensation Temperature in Harmonic Traps of an Ideal Bose Gas 
with Finite Number of Particles 

38

3.5 Thermodynamic Properties Evaluation for Harmonically 
      Trapped Bosons in Integer Dimensions 

The evaluation of the temperature dependence of these properties is in the 
framework of the procedure given in Ref. [25]. The phenomenon of BEC for 
non–interacting particles is fully described by the occupation number and 
the total number of particles [25], namely; Eqns. (2.1) and (2.2). For the case 
of harmonically trapped Bose gas, the total number of particles is given by 
Eqn. (3.7). The nontrivial aspect in the evaluation of thermodynamic 
properties is the determination of the chemical potential µ [25]. Once µ is 
known, all the thermodynamic properties like condensate fraction, total 
energy and heat capacity follow directly from sums over the energy levels 
involving the occupation numbers [25]. In this framework, the condensation 
temperature and thermodynamic properties of a Bose–Einstein condensate 
in 3D, 2D and 1D harmonic potentials will be evaluated by means of 
symbolic computation. The condensation temperature and temperature 
dependence of these properties in the aforementioned harmonic traps for a 

given total atoms number N can be evaluated by using the harmonic 
oscillator degeneracy factors in Eqn. (3.7).  

The evaluation of the thermodynamic properties requires, in the first 
step, the determination of the temperature dependence of the chemical 
potential,  ( )T . This temperature dependence is evaluated from the 

temperature dependence of the fugacity ( ) exp( )z T  . The latter is evaluated 

by solving Eqn. (3.7) for z  taking into account the condensation 

temperature Tc, which is evaluated by symbolic computation. Hence, the 
temperature dependence of the condensate fraction 0

( / )N N  and the internal 

energy U can be evaluated from: 
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The temperature dependence of the heat capacity, ( )C T , is determined, by 
using the general definition of derivative, as:  
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The following chart may summarize the steps to evaluate the BEC 
thermodynamic properties. 

 

The validity of symbolic computation adopted in this thesis for the 
evaluation of the thermodynamic properties for ideal bosons is verified in 
Figs. (3.9) and (3.10). It is necessary to indicate that the numerical results 
obtained in the latter figures were evaluated using the degeneracy factors

2 1 2( )( )/
n
g n n   . These figures illustrate that the symbolically evaluated 

results are in excellent agreement with the corresponding analytical 

expressions. Fig. (3.9) exhibits the condensate fraction (N0/N) evaluated by 

symbolic computation of Eqn. (3.8) for N=1000, denoted by "present work", 
which agrees excellently with the analytical result, Eqn. (2.53), for the 
treatment of finite number of particles. This figure also exhibits the 
downward shift in cT compared with previous results for the condensate

fraction in the thermodynamic limit, Eqn. (2.41), when N= 1000. Fig. (3.10) 

exhibits the temperature dependence of the condensate fraction (N0/N) for 

N=100. The symbolically evaluated condensate fraction denoted by "present 
work" is compared with the analytical results obtained from the treatment of 
finite number of particles, Eqn. (2.53), and with that result obtained from 
the thermodynamic limit given by Eqn. (2.41). This figure asserts the 
downward shift in cT  when compared with the result for the

thermodynamic limit. It also shows that the symbolically obtained result 
agrees excellently with the analytical result obtained from the treatment of 
finite number of particles, Eqn. (2.53), apart from a small elevation in cT .

This elevation is because cT is appreciably higher than that which Eqn. (2.53)

yields for N ≤ 100; as discussed in § (3.3.1).  

Total  number of 

particles Eqn. 

Evaluation of Thermodynamic Properties 

Determining the Fugacity 

temperature dependence.  

Solving the Eqn. of total 

No. of particles for z for 

Tc<T, where z=1 for Tc>T. 

Tc –determination. 

Setting (N0=0 and z=1) and 

solving the Eqn. of total 

No. of particles for T 



Chapter Three: Condensation Temperature in Harmonic Traps of an Ideal Bose Gas 
with Finite Number of Particles 

40

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

Temp.

analytical

present work

Thermody.Limit

N 100

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

Temp.

analytical

present work

Thermody.Limit

N 1000

 

The following subsections exhibit comparisons for the condensation 

temperature and also for the thermodynamic properties (fugacity z, the total 

internal energy U, the c heat capacity V
C  and the condensate fraction (No/N) 

for ideal bosons trapped harmonically in spatial dimensions in 1D, 2D and 
3D. These results are evaluated symbolically and obtained by making use of 
the degeneracy factors in Eqns.(3.7), (3.8), (3.9) and (3.10) (for the 
aforementioned bosonic systems) for a fixed total number of particles 

N=100.

Fig. (3.9):  The condensate fraction in a 3D isotropic harmonic potential for N =1000. The solid, dashed 

and dotted lines are respectively representing the thermodynamic limit, analytical treatment for finite 

number of particles and symbolic computations (present work). 

Fig. (3.10):  The condensate fraction in a 3D isotropic harmonic potential for N =100. The solid, dashed 

and dotted lines are respectively representing the thermodynamic limit, analytical treatment for finite 

number of particles and symbolic computations (present work). 
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3.5.1 Condensation Temperature 

The condensation temperatures for atoms number N < 500 in 1D, 2D and 
3D harmonic traps are plotted in Fig. (3.11). This figure shows that the 
condensation temperature for a given atoms number increases remarkably 
with the reduction in spatial dimensions for the aforementioned traps. The 

increase in Tc with the decrease in in the dimension of trapping potential is 
ascribed to freezing (reducing) the degrees of freedom and this result agrees 
with that of Ref. [25]. This figure also exhibits results similar to the 
theoretical predictions, indicated in § (2.4), whereas the condensation 
temperature varies as 1 2( / ln )D

c
T N N , 2 1 2/D

c
T N and  3 1 3/D

c
T N  .  

3.5.2 Temperature Dependence of the Fugacity 

Since thermodynamic properties are temperature dependent and fugacity 
dependent, then determining the temperature dependence of fugacity, z(T), 
comes in the first place after Tc is determined. If the temperature 
dependence of fugacity is determined, the temperature dependence of all 
thermodynamic quantities is attainable [25].  Figs. (3.12) and (3.13) exhibit 
temperature dependence of fugacity for ideal bosons trapped in 1D, 2D, and 
3D harmonic traps for a given total number of particles N =100.  These 
results are evaluated by making use of the corresponding degeneracy factors 
and solving Eqn. (3.7) for z(T).  Figs. (3.12) and (3.13) compare the effect of 
dimensionality on fugacity for harmonically trapped bosons.  The advantage 
of these figures is not only because of their importance to exhibit the 
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Fig. (3.11):  The condensation temperature in 3D, 2D and 1D 

harmonic potentials as a function of atoms number N <500. 

T c
(ħ
ω
/k
B)



Chapter Three: Condensation Temperature in Harmonic Traps of an Ideal Bose Gas 
with Finite Number of Particles 

42

0 5 10 15 20 25 30

0.0

0.2

0.4

0.6

0.8

1.0

Temp.

F
u
g
ac

it
y

3D

2D

N 100

0 20 40 60 80 100 120 140
0.5

0.6

0.7

0.8

0.9

1.0

1.1

Temp.

F
u
g
ac

it
y

1D

N 100

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

Temp.

3D

2D

1D

N 100

implicit dependence of thermodynamic properties on the fugacity but also in 
the determination of the chemical potential for these systems directly from 
the relationship z e , i.e. ( ) [ln ( )]  BT k T z T . Since the chemical potential 
value is constrained by 0  , where 0  is conventionally assumed to be 
equal to zero, hence the fugacity range is 0 1 z . Thus, the temperature 
when the fugacity, z,  becomes a unity indicates Tc.  

3.5.3 Temperature Dependence of the Condensate Fraction 

Fig. (3.14) exhibits the influence of the degrees of freedom of the harmonic 
traps on the condensate fraction; whereas the harmonic trap with higher 
integer dimension possesses a higher condensate fraction at any temperature 

below the corresponding Tc.

Fig. (3.13):  Temperature dependence of 

fugacity for a Bose-Einstein condensate 

trapped in 3D and 2D harmonic potentials. 

Fig. (3.12): Temperature dependence of 

fugacity for a Bose-Einstein  condensate 

trapped in 1D harmonic potential. 

Fig. (3.14):  Temperature dependence of the condensate fractions of 

Bose-Einstein condensates harmonically trapped in integer dimensions. 
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3.5.4 The Temperature Dependence of the Internal Energy 
and the Heat Capacity 

The comparison between the figures (3.15), (3.16) and (3.17) exhibits the 
influence of dimensionality on total internal energy. This comparison shows 
that in a 3D harmonic trap, the drop in the internal energy for temperatures 
below the condensation temperature is deeper than the corresponding drop 
for a 2D harmonic trap and the drop in the latter is higher than that for a 
1D harmonic trap. Consequently, the jumps in the values of the heat at the 
condensation temperature for the aforementioned traps, shown in 
Figs.(3.18) and (3.19), are remarkably influenced by dimensionality. The 
harmonic trap with higher dimension has the higher jump in the heat 
capacity.  This is due to the fact that the higher dimensional trap has higher 
degrees of freedom. 

 Fig. (3.16): Temperature dependence of the total internal energy of

.Bose-Einstein condensate trapped in a 2D harmonic potential
and 2D harmonic traps and 1D harmonic trap.

Fig. (3.15): Temperature dependence of the total internal energy 

of Bose-Einstein condensate trapped in a 1D harmonic potential. 
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Fig. (3.18):  Temperature dependence of the heat capacity of Bose-Einstein 

condensate trapped in a 1D harmonic potential. 

and 2D harmonic traps and 1D harmonic trap.

Fig. (3.17): Temperature dependence of the total internal energy of 

Bose-Einstein condensate trapped in a 3D harmonic potential. 

and 2D harmonic traps and 1D harmonic trap.

Fig. (3.19):  Temperature dependence of the specific heat of Bose-Einstein 

condensate trapped in 2D and 3D isotropic harmonic potentials. 

and 2D harmonic traps and 1D harmonic trap.
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This chapter is mainly devoted to introduce a theoretical model for the BEC 
phenomenon in fractal media and to investigate its thermodynamic behavior 

via evaluating the condensation temperature ( cT ) and the BEC 

thermodynamic properties under investigation, fugacity, condensate fraction, 
internal energy and the heat capacity. This investigation has been carried out 
by symbolic computation for bosons harmonically trapped in fractal media 
for two different models. The first belongs to Boltzmann–Gibbs (BG) 
extensive statistical mechanics and the second belongs to the Tsallis 
(nonextensive) statistical mechanics. Therefore, the evaluated condensate 
properties for theses two models belong to two different thermostatistics. 
These two models are demonstrated in §(4.9) and §(4.12). The 
thermodynamic behaviors for these two thermostatistics are compared and 
exhibited in § (4.13) and § (4.14).   

The term fractal media is briefly discussed in § (4.1). Experimental 
evidences related to bosons confined in fractal media are reviewed in § (4.2). 
Theoretical approaches which have been used to treat these systems are 
discussed in § (4.3). The two types of thermostatistics used in this work are 
formalized upon two different types of entropies. The sort and the domain 
of applications for these two types of entropies are reviewed in § (4.4), § 
(4.5), and § (4.6). The literature related to the BEC phenomenon for the two 
types of thermostatistics is reviewed separately in § (4.7) and § (4.10). The 
importance of using the symbolic computation for treating bosons confined 
in fractal medium is discussed in § (4.8).  

4.1 Fractal Media 

This term refers to structures (media) whose dimensions strictly exceed their 
topological dimensions. Topological dimension, for the present purpose, can 
be defined as the whole numbers 0, 1, 2 or 3 which, respectively, define the 
dimension of points, curves, surfaces and volumes in Euclidean geometry.  

Mandelbrot's geometrical analysis of shapes, structures or patterns that 
are fragmented or irregular (rough), which cannot be described in terms of 
Euclidean geometry, led him to discover, in 1975, a novel sort of geometry 
[53]. This novel geometry which represents a generalization of Euclidean 
geometry is Fractal Geometry. It originated from Mandelbrot's work in 1967 
on roughness (density of points on a certain set) in his endeavor to measure 
the length of a coastline [53]. Fractal geometry not only succeeded in 
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describing these non–Euclidean structures, but it also succeeded in 
simulating natural phenomena in such a way that was previously impossible 
with Euclidean geometry [53]. 

In his fractal geometry, Mandelbrot introduced in 1975 the term 

fractal to refer to those objects which have the property of fractional 
dimensions and can be described by means of the rules of fractal geometry 
[53]. Besides the property of fractional dimension, the major mathematical 
feature of fractals is that they are non–differentiable although they are 
continuous [53]. Although the semblance of fractal objects is fragmented or 
irregular, it has common geometric characteristic properties. Mainly, the 
basic geometric characterization of fractals is the self–similarities on all scales 
of observation. This term means that the shape is made of smaller copies of 
itself. The copies are similar to the whole and the shape repeats but in a 

different size [53,54]; therefore, the fractal dimension, as a numerical measure, 
is preserved across the scales.  In fractal geometry, there is no unique 
definition of fractal dimension [53]. 

The definition which is relevant to this work is based on the 
construction of fractal shape by the subsequent divisions of an original 
Euclidean shape. Thus, in general, if one starts with a regular shape of a 

linear size equal to L embedded in a space of Euclidean dimension E
D and 

then reduce its linear size by factor (1/L) in each spatial direction, it is easy 

to notice that it takes DLN number of self–similar objects to fill the 
original object (or regular shape). Hence, the fractal dimension is given in 
terms of a logarithmic function of any base by [53–55]:  

      4 1
( )

( . )
Log L

D
Log L


N

 

Applying Eqn. (4.1) to a fractal structure, one can obtain the dimension of 
the structure, or fractal (Hausdorff) dimension as [54]:  

0

( )
(4.2)

(1 / )
f

Log
D Lim

Log


N e

e

where ( )N e  is the number of self–similar structures of size e  necessary to 

fill the fractal structure. It is found that the fractal dimension fD  is, in 

general,  greater than the topological dimension 
T
D of the fractal object and 

less than its Euclidean dimension E
D  [54].  The following figures are two 
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well–known fractals; the Sierpinski carpet and the Menger sponge. The first 
is a fractal which covers an area and the second one is a fractal which fills a 
volume. 

For the Sierpinski carpet, there are 8 identical punched squares each of 
which has a linear size of one–third of the linear size of the entire shape of 
the object. According to Eqn. (4.2), the fractal dimension of the Sierpinski 
carpet which is embedded in 2D  [53] is: 

0

( )

(1 / )

8 8 ln8
1.8928... (4.3)

3 3 ln3

Sierpinski

f

k

kk

Log
D Lim

Log

Log Log
Lim

Log Log







   

N e

e

For the Menger sponge, there are 20 identical punched cubes each of which 
has a linear size of one–third of the linear size of entire shape of the object; 
the fractal dimension which is embedded in 3D is [53]: 

0

( )

(1 / )

20 20 ln 20
2.7268... (4.4)

3 3 ln3

Menger

f

k

kk

Log
D Lim

Log

Log Log
Lim

Log Log







   

N e

e

It is clear that the fractal dimensions of Sierpinski carpet which covers an 

area is less than the Euclidean dimension of area ( E
D = 2). Similarly, the 

fractal dimension of Menger sponge which fills a volume is less than the 

Euclidean dimension of volume ( E
D = 3).  

Fractal geometry has found a large list of applications in a vast field of 
scientific disciplines and human knowledge [53, 54,57]. In physics, a large 
number of phenomena can be treated on the basis of the rules of fractal 
geometry [53, 57].  Historically, the first example of the fractional physical 
phenomena was the Brownian motion, whose paths are non–differentiable, 
self–similar curves that have a fractal dimension which is different from their 

Fig.(4.1) The Sierpinski carpet (pores in white) and the Menger  sponge (pores in black) [56]. 
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topological dimension [53]. Furthermore, in view of considering fractal 
geometry as a generalization of the Euclidean geometry, the laws of physics 
known prior to the discovery of fractal geometry, which essentially rely on 
integer spatial dimensions, might need to be generalized by reformulations 
in terms of fractal geometry [57]. The importance of using the analysis of 
fractal geometry is not only due to these theoretical aspects, but also because 
this importance meets with findings in natural phenomena [53,54,57]. 
Some findings related to fractal geometry that are of relevance to the title of 
this thesis are highlighted in § (4.2). The rest of this chapter deals with 
bosons confined in fractal structures.  

4.2 Experimental Findings Related to Bosons Confined 
      in Fractal Media 

Since the superfluidity of liquid 4He was ascribed to the BEC phenomenon 
[8], liquid helium has been studied intensively in different situations. One of 
these situations was the confinement in a multiply connected geometry such 
as porous glasses, Vycor glass, aerogel glass and xerogel [58]. From 1975 to 
1988, a series of experimental measurements of superfluid density of 4He 

films in these porous glasses [58] revealed a sharp transition at Tc similar to 
that in bulk systems. In 1988, the first observation of a sharp heat capacity 
signature related to the superfluid transition in thin helium films adsorbed 
on porous Vycor and xerogel glasses was reported [58]. In the 1990s, 4He in 
porous media was one of the preferred systems for studying BEC in an 
external potential. By confining 4He in porous media, various experimental 
parameters such as dimension, topology, and disorder could be freely 
controlled [59]. Recently, the measurements of the heat capacity of 4He 
confined in nanoporous (has nano diameter) Gelsil glass have been reported 
[59]. This was considered as an evidence for the formation of localized BE 
condensates on nanometer length scales [59]. The geometry of various glass 
surfaces and the geometry of liquid helium films adsorbed on those surfaces 
have been treated only in two dimensions [60].  The analysis of small–angle 

X–ray and neutron scattering data, in 1988 by Höhr et al, showed that the 
surface of  Vycor porous glass has a fractal nature and that the Vycor glass 
surface has a fractal dimension larger than two [61]. According to this fact, it 
was suggested [60–63] that the presence of porous media should also be 
analyzed by finding an analogy with fractional dimensionality. The same 
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suggestion was also recognized in the works of Ref. [32,35] for systems 
confined in external potentials. 

Apart from the aforementioned fractal media in which bosons are 
confined, since 1983 there has been an increasing amount of clues that 
asserts space–time fractality [64]. It is found that space–time fractality 
extends from cosmology to the realm of quantum mechanics [64].  In 1985, 
an interesting paper has mentioned that the measured value of the 

dimension of space–time is 74 5 3 2 5 10( . . )    [65]. It was also found by 
observation and experiments that the dimensionality is scale dependent; 
whereas different dimensionality is encountered from very large scales to very 
small scales [66].  The fractal properties of space–time have been found to be 
significantly manifested on the quantum scale [67]. References [64,66,67] 
contain well–known experiments and observations which record the 
fractality of space–time. Therefore, precise analyses of physical systems in 
actual experiments should not ignore the existence of space–time fractality 
especially within the quantum regime; the regime in which BE condensates 
form. 

4.3 Theoretical Approaches for Bosons Confined in Fractal Media 

The study of the BEC phenomenon in fractional dimensions demands 
looking at the Bose systems confined in these dimensions as ideal in order to 
investigate the effect of fractality.  Motivated by the experimental evidence 
for bosons confined or trapped in fractal media [58–60], which was 
contemporary to the success of fractal geometry in a variety of applications 
[53,54,57], scientists were stimulated to look at these physical systems 
through " fractal eyes" [68]. This stimulus was also asserted by the dimension 
dependence of BEC occurrence discussed in chapter two. This, in turn, led 
to adopt theoretical approaches that consider the BEC phenomenon to 
evolve in spaces possessing fractional dimensions. It has been found that 
different approaches can be used to evaluate thermodynamic properties of 
quantum particles confined in fractional dimensions. Those approaches 
have different mathematical formalisms since they belong to different 
theoretical bases that introduce fractality. Thus, there are more than one 
thermostatistics for this endeavor. The common feature for these distinct 
approaches is the ability to introduce the effect of fractality of space or 
structures confining quantum particles. The main approaches which are 
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adequate to treat the theory of BEC and to evaluate thermodynamic 
properties of ideal Bose gases (i.e., dilute atomic vapors) in fractal media are 
summarized in the paragraphs below.  

The first approach that has been used is the one that adopts the 
concept of fractional dimension and with which the theory of the BEC 
phenomenon was extended into fractal dimensions [35,58,60,63,68,69] by 
functional analysis of the Bose gas function in fractal dimensions. These 
works investigated the Bose gas confined in fractal media for two cases; the 
homogeneous systems and inhomogeneous ones. The computations of the 
heat capacity within this analysis showed that there is a striking similarity 
with that corresponding to liquid 4He in porous media [60]. In this 
approach, the parameter representing the integer dimension in the theory of 

BEC is denoted as D–dimension to indicate that D is not necessarily an 
integer. The first attempt in this framework was in 1988 whereas the specific 
heat, as phase–transition indicator, was studied for an ideal Bose gas in 
fractional dimension by Pfeifer [68]. In his study, Pfeifer pointed out that the 
heat capacity in these systems is similar to the model of the well–known bulk 
system but the low–temperature slopes and the high temperature limits are 
different [68]. 

The second approach is a special kind of invented quantum 

mechanics. It is a kind of deformed calculus (D–deformed calculus) that 
takes place in fractional–dimensional spaces which is invented in Ref. [70]. It 

was found that the D–deformed calculus is an appropriate tool for treating 
fractional dimensional systems and it is quite analogous to the 
corresponding one–dimensional partners [70].  

In the context of the term "deformation", another (third) approach to 
evaluate thermodynamic properties of quantum particles known as 

"q–deformed thermostatistics" is also known. This approach is based on the 

q–deformed quantum algebra in which trapped quantum particles are 

considered as q–deformed oscillators.  In many works, this approach is 

referred as q–deformed bosons; specifically when the considered quantum 
particles are bosons. The crucial idea of this theory is to deform the standard 
quantum algebra of the creation and annihilation operators of bosons [71]. 

In this formalism, the parameter q, where q , represents the extent of 
deformation (deviation) from the standard quantum mechanics in such a 
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way that when q→1, the standard quantum mechanics formalism is 

recovered [71]. The q–deformation whose extent is determined by the 
parameter q may represent different effects deforming the ideal or standard 
quantum system. Some of these effects are the fractality of spaces, interaction 
between quantum particles (fermions or bosons), impurities or any pure 
quantum effect. The works [71–85] are useful for obtaining more details 

concerning the types of effects the q parameter can represent and also for 

reviewing the theory and applications of the q–deformed analysis.  
The fourth approach for investigating BEC phenomenon in fractal 

media is the one which is used in the works [86–88] and is called "fractional 
mathematical approach". In this "fractional mathematical approach", the 
order of the fractional derivative can represent different physical parameters; 
one of these parameters is the measure of the fractality of space [87]. A 
remarkable use for this approach is also observed in investigating the sort of 
interaction in the BE condensate of dilute atomic gases [88]. It is worth 
mentioning here that the fractional mathematical approach is based on the 
works [89–94].  

In the works [90–94], the authors introduced a formalism that 
combines the standard statistics of Maxwell–Boltzmann (MB), Bose–Einstein 
(BE), and Fermi–Dirac (FD) on the basis of a generalized statistics known as 
"the Tsallis (nonextensive) statistics". This formalism introduces a unified 
statistics by using a fractional distribution function. This statistical 
unification is not only for the well–known distribution functions (of the 
MB, BE, FD statistics) but also for particles whose distribution functions 
interpolate in between [86]. This means that in the framework of this unified 
formalism, the MB, BE and the FD statistics are special cases. Another utility 
of using the analysis of this approach is the ability to introduce intermediate 
quantum statistics (wherever BE or FD statistics are not satisfied) [89]. Such 
statistics is necessary for what is called "quasi–particles" [86]. These particles 
are considered as virtual particles interpolate between bosons and fermions 
[86].  

Upon the formalism of the works [86,90–94], a nonextensive model 
for the BEC phenomenon in fractal media will be formulated, in the present 
work, in § (4.12).  
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4.4 The Boltzmann-Gibbs (BG) Extensive Entropy 

The concept of entropy introduced in 1865 by Rudolf Clausius was in the 
context of classical thermodynamics [95]. This concept had no connection 
with the microscopic world until Ludwig Boltzmann, one decade later, 
found that [96,4]: 

maxln( ) , (4.5)BS k W   

where   is the total number of microstates and  maxW is the maximum weight 

(Planck's definition) [4]. Indeed, it was Max Planck who set Boltzmann's 

entropy in the form of Eq. (4.5) and gave the proportionality constant Bk

the name of Boltzmann [4]. From Planck's definition of the maximum 
weight, Boltzmann's entropy only holds for systems in thermal equilibrium. 
The discrete form of equation (4.5) which is also known as Shannon's 
entropy is [96]: 

1

ln (4.6)
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S k p p
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where ip is the propability associated with the ith microscopic state of the 

system such that [96]: 

 
1
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The latter expressions of Eqn. (4.7) are the normalization condition and 
Boltzmann principle of equiprobablity [96]. The definition of entropy given 
by Eqns. (4.5) and (4.6) implies a magnificent connection of 
thermodynamics with the microscopic world; because entropy reflects 
microscopic information upon the physical systems.  Both definitions (4.5) 
and (4.6) are also frequently called "Boltzmann–Gibbs (BG) entropy". The 
main characteristic feature of this entropy is the property of extensivity; i.e. 
the proportionality to the amount of matter involved which, in our present 
microscopic understanding, is interpreted as being proportional to the 

number of particles, N, involved in a system [95]. The term which is 
frequently used to stand for extensivity is "additivity"; i.e. extensive entropy 
means an additive one. From the statistical mechanics point of view, the 
property of extensivity (additivity) can be illustrated by the following 
example. When a physical system is composed of two statistically 
independent subsystems A and B with associated total number of microstates 

AW and BW , the total number of microstates in the composite system is 
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( )A BW W . Then, the entropy of the composite system is the sum of entropies 

of the individual subsystems; which follows directly from (4.5) and it is 
expressed as [96]: 

( ) ln( ) ( ) ( ) (4.8)BG B A BS A B k W W S A S B  

With this entropy, Josiah Willard Gibbs presented, in 1902, his last glorious 
achievement in statistical mechanics in the book entitled "Elementary 
Principles in Statistical Mechanics" [97]. In his last work, Gibbs introduced 
the foundations and the formalism of the well–known conventional or 
standard BG statistical mechanics which bears the names of Boltzmann and 
Gibbs. The core of Gibbs's achievement is a a firm bridge between the laws 
of mechanics and classical thermodynamics in such a way that 
thermodynamics can be viewed in a microscopic point of view [98]. From 
Eqns. (4.6) and (4.8), it is clear that BG statistical mechanics is basically 
constructed for extensive systems which are in thermal equilibrium. 

The construction of BG statistical mechanics is basically oriented to 
thermodynamics that belongs to the entropy that bears the names of 
Boltzmann and Gibbs.  The standard or conventional textbooks in statistical 
mechanics or statistical physics [4,48] are formalized upon  this entropy. 
Applications of statistical mechanics methods to thermodynamics are 
denoted by the term thermostatistics. Thus, in this context, applications of 
the methods of the extensive (additive) BG statistical mechanics to 
thermodynamics are called BG thermostatistics. 

4.5 Domain and Restrictions of BG Statistical Mechanics 

Due to the overall success that BG statistical mechanics achieved 
(particularly the cases of MB, BE and FD statistics) and due to its elegant 
formalism as well, it was thought to be universal, eternal and infinitely 
precise [99,100]. In other words, BG statistical mechanics was thought to be 
applicable to all sorts of systems [101]. The fact that this belief is false was 
indeed recognized early even before 1902. Gibbs himself, in his book 
"Elementary Principles in Statistical Mechanics", explicitly pointed out to 

anomalies related to "system or part of it [which] can be distributed in unlimited 

space (or in spaces which have limits) but still infinite in volume" [102]; an example 
of such systems (anomalies) is gravitation [103]. This is because BG statistics 
can exactly describe the state of systems with short–range interaction (inter–
particle forces) at thermal equilibrium; this means in systems whenever 
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thermodynamic extensivity (additivity) holds [104,105]. Consequently, 
gravitating systems, which possess properties such as inhomogeneity and 
non–equilibrium due to the long–range nature of the gravitational force, are 
thought to be non–extensive [106]. However, many important phenomena 
in natural, artificial, and even social systems do not accommodate with the 
BG statistics. This is particularly frequent in physical sciences as well as in 
biology and economics, where non–equilibrium stationary states are the 
common rule [98]. In conclusion, the anomalies Gibbs addressed are those 
classes of physical systems whose ensembles lie outside the domain and the 
restrictions of BG statistics. The domain of BG statistics is the one whenever 
thermodynamic extensivity (additivity) holds and whose restrictions are 
[92,99,104,105]:  

 short–range interactions (the range of the effective microscopic
interactions must be small (or inexistent) compared to the linear size
of the macroscopic systems);

 short–time memories (the time range of the microscopic memory
must be small (or inexistent) compared to the time of observation, i.e.,
Marcovian processes);

 the system must evolve in an Euclidean–like space–time ("Euclidean–
like" basically refers to a continuous and sufficiently differentiable
variety, either curved or not).

When one (or more) of these restrictions is (are) violated, i.e. when the 
domain is not any more extensive (i.e., it is nonextensive), the formalism of 
BG thermostatistics fails. The latter statement of failure refers to the fact that 
standard sums (or integrals) that appear in the calculation of the BG 
thermostatistical quantities (e.g., partition function, internal energy, entropy 
and average square displacement) diverge [104]. Consequently, there will be 
ill–behaved mathematical prescriptions for calculating the quantities which 
are normally used for characterizing a system, and which enable meaningful 
comparisons with experimental data (always finite) [104]. 

4.6 The Tsallis (Nonextensive) Entropy 

Systems which, either in their direct space–time description or in their phase 
space evolution, present a (multi–) fractal–like or unconventional structure 
exhibit serious mathematical untractability and unfamiliar scalings with size 
for large sizes or with time for long time intervals within the standard 
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formalisms of BG thermostatistics [104]. Motivated by the behavior of these 
systems which is abnormal (anomalous) in the context of BG 
thermostatistics, Constantino Tsallis in 1988 proposed a theoretical 
formalism to generalize BG entropy [107].  This formalism has introduced a 

family of generalized entropy functionals with a single parameter (q) [108]: 

   
1

(1 )

, ( , ) (4.12)
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

  
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 where k  is a positive constant and { }ip are the probabilities of the i 

microscopic states. It is found that in the limit  1q  ,  Shannon's entropy, 

Eqn. (4.7), is recovered [108]. From this, it is inferred that the Tsallis entropy 

includes BG entropy as a special single case; only when q=1. The generalized 
statistical mechanics which is based on this entropy basically relies upon two 
postulates; the first is the generalized entropy, Eqn. (4.12), and the second is 

the q –expectation value of an observable O , whose value in the state i is 

given by [92]: 

(4.13)
W

q

i iq
i

O p O

where iO is the value of the observable in the state i. In this formalism, it is 

noticeable that neither the entropy qS of Eqns. (4.12) nor the observable 

qO  are extensive thermodynamic variables when 1.q  The interesting 

property of this entropy is that of pseudo–additivity (Nonextensivity) [92]. 
This term can be illustrated by the following example. When a system is 

composed of two statistically independent subsystems A and B, the entropy 
of the composite system is [92]: 

 ( ) ( ) ( ) (1 ) ( ) ( ) (4.14)q q q q qS A B S A S B q S A S B   

From the latter expression, it is clear that qS is generally nonadditive 

(nonextensive) [105], and that is why the Tsallis entropy is called 
nonextensive entropy. Therefore, (1 )q represents the measure of 

nonextensivity (or the measure of the departure from BG entropy) [105].  
In this view, the nonextensivity index (q ) may represent a physical effect 

that stands beyond the deviation from the BG thermostatistics. Eqn. (4.14) 
also implies that qS is superadditive (entropy of the system is greater than 

the sum of the constituting subsystems) for q <1 and subadditive (entropy of 
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the system is smaller than the sum of the constituting subsystems) for q >1 

[92]. Other properties of the Tsallis entropy are [92]: 

 Positivity ( 0qS   for any arbitrary set of { }ip  and for any value of q ). 

 Concavity ( qS is concave for q > 0 and convex for q < 0). 

 Equiprobability of the microcanonical ensemble (i.e., 1/ ,ip W i  ) 

and qS attains its extremal value: 
1( 1) / (1 ) (4.15)q

qS k W q   . 

 The optimization of qS is under the two constraints [109] 

1 (4.16)

(4.17)

W

i

i

W

i i q

i

p

P U









where { }i is the set of the eigenvalues of the Hamiltonian (energy spectrum) 

and iP  is the escort probability (to normalize the energy qU ) which is 

defined as  [109]: 

1

/ , 1 (4.18)
W W

q q

i i j i

j i

P p p P


 
  

 
 

From the above, the grand canonical probability distribution and the 
associated generalized partition function are respectively [110]: 

 

 

1

1

1

1

1
1 (1 ) ( ) (4.19)

1 (1 ) ( ) (4.20)

  

  





   

   

q

i i

q

W q

q i

i

p q N
Z

Z q N

It is important, here, to focus on the probability distribution, Eqn. (4.19). 

For the case when 1q  , Tsallis complemented the probability distribution 

by an auxiliary condition (cut–off condition) that 0ip   whenever the 

argument of the function becomes negative [100], i.e., this cut–off condition 
is expressed as: 

 

1

11
1 (1 ) ( ) , [1 (1 ) ( N)] 0

0 , elsewhere

     


      
 
  

  
 
  

q

i i

q

q N q
Z

ip    (4.21). 
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Within the above postulates and the properties of nonextensivity or pseudo–
additivity, irreversibility, positivity, concavity, equiprobability of the 
microcanonical ensemble, and Onsager reciprocity, it was found that the 
Tsallis entropy preserves and generalizes the relevant features of the BG 
entropy [91,111]. It has also been shown to be compatible with the 
information theory foundations of statistical mechanics given by Jaynes and 
with the dynamical thermostatistics approach to statistical ensembles [107]. 
More important, it has been found that the Legendre–transform structure of 

thermodynamics is invariant for all values of q, indicating that the entire 
formalism of thermodynamics can be extended to be nonextensive [91]. In 
addition to this, it has been proved that the thermodynamical stability, the 

H–theorem of Boltzmann as well as the Ehrenfest theorem hold for all q 
values [91,92]. Since applications of the methods of statistical mechanics to 
thermodynamics are denoted by the term thermostatistics, applications of 
the methods of the Tsallis (or nonextensive) statistical mechanics to 
thermodynamics are denoted by Tsallis thermostatistics.   

In the framework of the Tsallis nonextensive entropy (with 1q  ), a 

generalized statistical mechanics, whereas BG statistics (with 1q  ) is a 

special case, has been developed rapidly by many researchers [112,113].  
The development of the nonextensive statistical mechanics was accompanied 
by an increasing amount of confirmations indicating that remarkable 
processes and systems, not only in physics but also in other disciplines as 
well, are better described in terms of the Tsallis distribution [113]. This, in 
turn, has initiated a new stream in the foundations of statistical mechanics 
which produced a huge amount of research works and a universal success in 
a variety of applications (direct experimental and observations data) on this 
subject have been witnessed [86–94,96,98,100,103–107,109–120].  

An automatically updated bibliography which exhibits research works 
concerning this rapidly growing field is given in Ref. [121].  Before closing 
this section, it is necessary to mention that there is an acute and non–
ignorable connection between the Tsallis nonextensivity and quantum group 
theory [122–126]; the theory to which the q –deformrd oscillators belong.      
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4.7 Literature Related to BEC in Fractal Media within BG 
      Thermostatistics 

It is necessary to mention, here, that FD and BE quantum statistics, as well 
as MB classical statistics are based on the framework of BG statistical 
mechanics [95]. Thus, the theory of BEC occurrence previously reviewed in 
chapter two and the thermodynamic properties evaluated in chapter three 
for bosons harmonically trapped in integer dimensions are based on BE 
statistics; hence thermodynamic properties of these Bose systems were 
evaluated in the framework of BG thermostatistics. 

It is also worth mentioning here that the analysis of 
the works [35,59,60,63,68,69], reviewed in § (4.3), which adopted the 
functional analysis approach for treating Bose systems confined in fractal 
media, is based on the BE statistics. Hence, these works belong to the 
standard BG statistical mechanics; i.e., these works treat extensive systems. 
In the works [35,59,60,63,68,69], the analysis used is based on integrals, and 
this in turn led to evaluate the BEC properties in terms of the Bose function, 
gamma function and the Riemann zeta function. This indeed asserts that the 
properties computed for these Bose systems are for gases within the 
thermodynamic limit; hence, one is dealing with an analysis similar to that 
discussed in chapter two for treating the BEC phenomena.   

4.8 The Problem of Finite Number of Particles 

Despite the fact that the analyses used to compute of the heat capacity 
within the works [35,58,60,63,68,69] showed that there is a striking 
similarity with that corresponding to liquid 4He in porous media [60], the 
analyses of these works are inadequate for treating Bose systems with finite 
number of particles. The justification for this inadequacy concerning the 
case of finite number of particles is discussed in § (2.6) and § (3.2), and it is 
also asserted by the results obtained in § (3.4.1) and thereafter. Furthermore, 
in view of the rapid development in nanotechnology and the possibility of 
constructing complex structures or networks [127–131], confining a few 
dozens of particles (bosons) becomes plausible. The most recent works 
[127–131] assert the possibility of the occurrence of BEC for ideal Bose gases 
confined in these networks.  The most interesting feature of these networks 
is that BEC can occur within dimensions D<2 even in the absence of 
external potentials (see § (2.1), § (2.2) and § (2.3)). This occurrence of BEC 
in these networks is called "topology–induced BEC"; whereas the complex 
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structure of these media (networks) plays the role of external potentials in 
producing inhomogeneous Bose systems. 

In conclusion, the above discussion emphasizes the necessity to adopt 
the treatment of finite number of particles for the BEC phenomenon in 
fractal media.  The rest of this chapter is mainly devoted for the BEC 
phenomenon with finite number of particles in fractal media.  

4.9 BEC in Harmonic Fractal Traps within BG Thermostatistics: 
 An Extensive Model 

A remarkable approach for BEC with finite number of particles is that of 
A. Rovenchack [132]. Motivated by the works such as [25,36,40,41], which 
rely on the case of finite number, Rovenchack presented an approach for 
treating the BEC phenomenon for bosons harmonically trapped on the 
well–known fractal Sierpinski carpet. He introduced the effect of fractality 
into the main equation for computing the properties, total number of 
particles, by replacing the discrete representation of harmonic degeneracy 
factors by a continuum representation [132]; i.e. generalizing the degeneracy 
factors of the harmonic oscillator from the discrete form into a continuous 
one. Mathematically, this will be illustrated below. In his endeavor, 
Rovenchack [132], determined the condensation temperature and 
thermodynamic properties by using Euler–MacLaurin formula as a 
mathematical technique for computing the sum by converting the latter into 
an integral (i.e., an approximation).  

Encouraged by Rovenchack's approach [132], this section discusses 
investigating the thermodynamic behavior of an ideal Bose gas with finite 
number of particles in the framework of grand canonical ensemble. The 
system is assumed to be harmonically trapped in a fractal medium. This 
investigation is carried out by using the symbolic computation as a 
mathematical technique for evaluating the sums entering in the expression 
of the properties of the BE condensate. The manner used for evaluating 
these properties is similar to that illustrated in § (3.5) for bosons 
harmonically trapped in integer dimensions. The starting point is the 
equation of the total number of particles which is related to the temperature, 

T, and the fugacity, z ,[132]: 

/1
1

, (4.22)
1 1n B

n
o ok T

n

g z
N N N

z e z






  
 


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where 0N  is the occupation of the lowest energy level, n is the single–

particle energy spectrum, and ng  is the harmonic degeneracy factor of the 

nth level. For a system consisting of N harmonic oscillators confined in an 
isotropic harmonic trap, the single–particle energy spectrum is given by 

n n   (neglecting the zero point energy). In one dimension (1D), the 

degeneracy ng = 1, in 2D the degeneracy ng = 1n  , and in 3D it is given by 

( 2)( 1) / 2ng n n   .  So, the degeneracy in the D–integer dimensions is 

given by the binomial coefficient [132]: 

1

1

( 1)!
(4.23)

! ( 1)!

D

n n D

n D
g C

n D



 

 
 



Extending Eqn. (4.23) to a continuous fD , Eqn.(4.23) becomes [136]: 

( )
(4.24)

( 1) ( )

f
n

f

n D
g

n D

 

  

Inserting Eqn. (4.24) into Eqn. (4.22), yields the total number of bosons 
harmonically trapped in fractal media as [132]: 

0 /
1

( 1) 1
(4.25)

( ) ( ) 1Bn k T
nf f

z n
N N

D n D e 





 
 

   


Now, Eqn. (4.25) is the main equation that would be used for evaluating the 

condensation temperature, cT , fugacity, z , the condensate fraction, 

0( / )N N , the total internal energy, U, and the heat capacity at constant 

volume, VC , for a finite number of bosons harmonically trapped in a fractal 

medium.  Determining the condensation temperature, cT , for a given total 

number N requires solving Eqn. (4.25) for  T  numerically by applying the 

condition for Bose–Einstein condensation 0( 0N  , 1z  ).  

Evaluating the fugacity temperature dependence ( )z T  requires 

solving Eqn. (4.25) numerically for z by taking into account the evaluated 

cT , where the fugacity is customarily taken as 1z   when cT T . 

The temperature dependence of the condensate fraction 0( / )N N  for these 

Bose systems is obtained by using Eqns. (3.8) and (4.25) to be in the form: 

0 /
1

1 ( 1) 1
( / ) 1 (4.26)

( ) ( ) 1Bn k T
nf f

z n
N N

N D n D e 





  
   

    

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The temperature dependence of the internal energy is obtained by using 
Eqns. (3.7) and (4.25) to get: 

/
1

( 1) 1
( , ) (4.27)

( ) ( ) 1Bn k T
nf f

z n
U T z n

D n D e 






  
  

    


The temperature dependence of the heat capacity ( VC ) is obtained by using 

the result of Eqn. (4.25) in Eqn. (3.9) as: 

/
1

( 1) 1
( , ) (4.28)

( ) ( ) 1B
V n k T

nf f

z n
C U T z n

T T D n D e 






    
   
      



4.10 Literature Related to Nonextensive Bosons 

It has been discussed in § (4.5) and § (4.6) where and why it is better to treat 
certain systems with the Tsallis statistics. In this respect, the BEC 
phenomenon has been also reviewed in the framework of the Tsallis 
thermostatistics, where the thermodynamic behavior and several statistical 
quantities were generally investigated as q –dependent quantities             

[90–94,110,112,120,124,133–136]. A significant use of the nonextensivity 

index, q , has been witnessed in the work of A. Lawani et al. [137]. In the 

latter work, the index q was used as a parameter that stands for interparticle 

interaction of the BEC vapors.  
It seems feasible and also interesting to investigate the phenomenon 

of BEC in fractal media within the Tsallis statistics, especially, when there is 
a proposed definition for the fractional dimension within the Tsallis 
nonextinsivity [115]. For this goal, it is intended to formulate a suitable 
theoretical quantum statistical model for the BEC phenomenon in fractal 
media. The starting point for the formalism of the intended nonexensive 
model is the distribution function to be discussed below. 

4.11 The Distribution Function of Nonextensive Bosons

The works of Fevzi Büyükkiliç et al [90–94] introduced a statistics that 
unifies the statistics for classical and quantum gases. In the framework of this 
statistics, bosons and fermions are regarded as g –ons which obey fractional

exclusion statistics. With this point of departure, the thermostatistical 
relations concerning the Bose and Fermi systems are unified under the 

g –on formulation [90]. This unified statistics ( g –ons) is essentially
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constructed in the framework of the Tsallis thermostatistics [94–98]. In the 
grand canonical ensemble, the g –ons distribution function is given by

[90,91]: 

   
1

1

1
( , ) (4.29)

[1 ( 1) ( )] 2 1
q

i

i

n q

q



  




    

g ,
g

where g , whose value 0 1 g , is the parameter which specifies the sort of

statistics the g –ons belong to. To simplify matter, the role of g  can be

illustrated in the extensive BG thermostatistics and by using the generalized 

q–exponential functions given by [138]: 

 1/(1 )

1exp ( ) e [1 (1 ) ] , ( 1, ) (4.30)x q x x

q q qx q x q e e     

Replacing x by ( )i    yields: 
( )1/(1 )[1 (1 ) ( )] e (4.31)iq

i qq         

Substituting Eqn. (4.31) into Eqn. (4.29) gives: 
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For the case of extensive statistics, 1( 1, )x x

qq e e  , Eqn. (4.32) reads: 
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From Eqns. (4.33), (4.34) and (4.35), it is clear that within the BG statistics, 

(q=1), the standard distribution functions for ideal particles in FD, MB and 
BE statistics are recovered from the nonextensive distribution function for 
the values g = {1, 1/2, 0}.

From Eqns. (4.29) and (4.35), and when ( 1, )q g = 0 , the nonextensive

Bose–Einstein distribution function of the grand canonical ensemble is 
obtained as [94–98]: 

1
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4.12 BEC in Harmonic Fractal Traps within Tsallis Thermostatistics: 

        A Nonextensive Model 

The key idea of introducing fractality into the medium confining the Bose 
gas is to use the nonextensivity index q . Tsallis, on the basis of the 

nonextensive analysis, proposed a direct connection between this index and 
the fractal dimension as [115]: 

     / (4.37)f Eq D D  

where fD and ED  are respectively the fractal dimension and the Euclidean 

dimension in which the fractal dimension is embedded. Tsallis also 

indicated [115] that porous structures (fractal media) have 1q   because 

( f ED D (. So, the auxiliary cut–off condition, Eqn. (4.21), is extremely 

necessary in this formalism to preserve the probability of the Tsallis statistics. 
In view of the conclusion of § (4.8), the intended nonextensive model 

for BEC in fractal media is the one that addresses a Bose gas with finite 
number of particles. Therefore, the symbolic computation is the 
mathematical technique to investigate the thermodynamic behavior. The 
total number of particles, Eqn. (2.2), is defined as [25]: 

0 0

( ) (4.38)i i i

i i

N n g n 
 

  

where ig is the degeneracy of the ith state and ( )in  is the distribution 

function of the ideal nonextensive bosons. By substituting Eqn. (4.36) in 
Eqn. (4.38), one gets: 
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Then, the ground state population, 0N ,  is expressed as: 
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Isolating the ground state population, Eqn. (4.40) reads: 
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To determine the thermodynamic properties for this nonextensive Bose 

system, Eqn. (4.41) is expressed in terms of fugacity z ( ln )   z e z as: 
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The validity for this formulation is verified only if it is proved that the 

ground state population, Eqn. (4.40), recovers its standard form,
1

o

z
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when 1q  ; in other words: 
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The proof of Eqn. (4.43) is given in Appendix B.  Now, Eqn. (4.42) is the 
one to be used for evaluating the condensation temperature and the 
temperature dependence for the properties of the nonextensive condensate, 
where the total number of particle is written as a function of  T  and z  

  To determine  cT  , it is required to solve Eqn.(4.42) for T, after setting 

0 0N   and 1z  . Evaluating the fugacity temperature dependence, ( )z T , 

requires solving Eqn. (4.42) for z by taking into account the determined cT , 

where the fugacity is customarily taken as 1z   when cT T .The 

temperature dependence of the condensate fraction, 0( / )N N , is obtained 

by using Eqns. (3.8) and (4.42) to be in the form: 
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The temperature dependence of the total internal energy, ( ,z)U T , is 

obtained by using Eqns. (3.7) and (4.42) to get:  
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The temperature dependence of the heat capacity is obtained by using the 
result of Eqn. (4.45) in Eqn. (3.9) as: 
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4.13 Thermodynamic Behaviors for the Extensive and 

        Nonextensive BE Condensates in Harmonic Fractal Traps 

This section exhibits the thermodynamic behaviors of the two models (the 
extensive and the nonextensive) formulated in § (4.9) and § (4.13) for the 
BEC phenomenon in a fractal medium. The temperature dependence for 
thermodynamic properties of the Bose Einstein condensate will be evaluated 

for a given total number of particles N=10000. The bosons' confining fractal 

media are selected with arbitrary fractional dimensions; fD  =2.7, 2.8 and 

2.9. It is assumed that these fractal media are embedded in a Euclidean space 

of 3D. Hence, the corresponding q  values, which represent the fractal 

dimensions according to Eqn. (4.37), for the nonextensive model are 
respectively (2.7/3), (2.8/3) and (2.9/3).   

Figs. (4.2) and (4.3) show the effect of fractional dimension (1 3)fD 

on the condensation temperature of the extensive bosonic system for two 
different values of  total number of particles  (5000 and 10000).  It is clear 

from these figures that for N harmonically trapped bosons, the condensation 

temperature cT  increases with decreasing the fractional dimension ( fD ). 
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Fig. (4.2): Condensation temperature of harmonically trapped extensive bosons 

in fractal media whose fractional dimensions are in the range (1 2)fD  .
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Fig. (4.3): Condensation temperature of harmonically trapped extensive bosons 

in fractal media whose fractional dimensions are in the range (2 3)fD  .
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Figs.  (4.4) and (4.5), below, show the effect of the fractional 

dimension fD  on the fugacity temperature dependence. It is clear from 

these figures that at a certain temperature when cT T ,  the lower the 

fractional dimension is the higher the fugacity. 
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Fig. 4.4: Temperature dependence of the fugacity for harmonically 

 trapped extensive bosons in fractal media. 

Fig. 4.5: Temperature dependence of the fugacity for harmonically 

 trapped nonextensive bosons in fractal media. 
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Figs. (4.6) and (4.7) show the effect of the fractional dimension fD on the 

condensate fractions. These figures show that, for a given total number of 

particles N, when cT T , the lower the fractional dimension is the higher 

the condensate fraction. 
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Fig. (4.6): Temperature dependence of the condensate fraction 

for harmonically trapped extensive bosons in fractal media.  

Fig. (4.7): Temperature dependence of the condensate fraction for 

harmonically trapped nonextensive bosons in fractal media.  
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Figs. (4.8) and (4.9) show the effect of the fractional dimension fD  on the 

temperature dependence of the internal energy. These figures assert that the 
lower the fractional dimension is the lower the internal energy. This result 
emphasizes that these particles possess higher degrees of freedom when 
trapped in higher fractional dimensions.  
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Fig. (4.8): Temperature dependence of the internal energy 

for harmonically trapped extensive bosons in fractal media. 

Fig. (4.9): Temperature dependence of the internal energy for 

harmonically trapped nonextensive bosons in fractal media.  
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Figs. (4.10) and (4.11) show the effect of the fractional dimension fD  on the 

temperature dependence of the heat capacity for these Bose systems. These 
figures show that the lower the fractional dimension is the lower the heat 
capacity.  
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Fig.(4.10): Temperature dependence of the heat capacity for 

harmonically trapped extensive bosons in fractal media.  

Fig.(4.11): Temperature dependence of the heat capacity for 

harmonically trapped nonextensive bosons in fractal media.  
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In Figs. (4.4)–(4.11), the effect of fractional dimensions on the condensates 
thermodynamic properties for the two models (the extensive and the 
nonextensive) exhibits a similarity with the corresponding properties 
evaluated in chapter three for bosons harmonically trapped in integer 
dimensions. The comparison of the effect of fractal dimension on the 
condensate properties for the extensive bosons and the nonextensive bosons 
leads to the following two observations. The first observation is that the 

condensation temperature within the Tsallis's thermostatistics ( T

cT ) is always 

less than the corresponding one in BG thermostatistics ( BG

cT ); i.e., T BG

c cT T . 

The reason that stands behind T BG

c cT T is the Tsallis cut–off condition, 

which is given by  Eqn.  (4.21). This is because the structure of porous media 
has values for  q<1. It is found that this result agrees with Salasnich's result 
[133]. Consequently, the condensate thermodynamic properties in the 
Tsallis thermostatistics are always shifted to lower temperatures. The second 
observation is that despite the fact that the thermodynamic behaviors of the 
two thermostatistics are, in general, similar, the condensate thermodynamic 
properties seem to possess different temperature responses (slopes).  

4.14 BEC in the Sierpinski Carpet and the Menger Sponge: A Comparison 
between  Extensive and  Non-extensive Thermostatistics 

In § (4.13), the obtained results compare between the thermodynamic 
behaviors of the extensive and the nonextensive bosons, where these bosons 
are trapped harmonically in fractal media. But the fractal dimensions of the 
bosons' confining media are arbitrarily selected. In this section, it is also 
intended to compare the thermodynamic behaviors of the extensive and the 
nonextensive harmonically trapped bosons but within standard fractals, the 
Sierpinski carpet and the Menger sponge. These fractals have fractal 
dimensions defined in Eqns. (4.3) and (4.4). The Siepinski carpet whose 

log8 / log3fD  , is embedded in a Euclidean space of dimension 2D, while 

the Menger sponge, whose log20 / log3fD  ,  is embedded in a Euclidean 

space of dimension 3D.  The application of the two formulated models for 
bosons trapped in harmonic fractal traps is due to their characteristic 
features. These fractals have connected interior, are highly symmetric, and 
most of all, are infinitely ramified [139].  Applying the two models to these 
fractals yields the results from Fig. (4.13) to Fig.(4.20).  



Chapter Four: Thermodynamic Properties for Finite Number of Bosons 
Harmonically Trapped in Fractal Media 

73

0 100 200 300 400 500 600 700
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

q Df 2,Tc 258.832

Df log8 log3 , Tc 323.183

N 100000

0 20 40 60 80 100 120 140
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

q Df 3, Tc 49.681

Df log20 log3 , Tc 61.726

N 100000

Fig. (4.12): Temperature dependence of  the fugacity for harmonically 

     trapped extensive and nonextensive bosons in the Sierpinski carpet. 

Fig. (4.13): Temperature dependence of the fugacity for harmonically 

     trapped extensive and nonextensive bosons in the Menger sponge.  
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 Fig. (4.14): Temperature dependence of  the condensate fractions for harmonically 

 trapped extensive and nonextensive bosons in the Sierpinski carpet.  

Fig. (4.15): Temperature dependence of  the condensate fractions for harmonically 

 trapped extensive and nonextensive bosons in the Menger sponget.  
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Fig. (4.16): Temperature dependence of  the internal energy for harmonically 

       trapped extensive and nonextensive bosons in the Sierpinski carpet.  
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Fig. (4.17): Temperature dependence of the  internal energy for harmonically 

         trapped extensive and nonextensive bosons in the Menger sponge.  
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Fig. (4.19): Temperature dependence of  the heat capacity for harmonically 

       trapped extensive and nonextensive bosonsin the  Menger sponge.  

Fig. (4.18): Temperature dependence of  the heat capacity for harmonically 

      trapped extensive and nonextensive bosons in the Sierpinski carpet.  
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These comparisons, Figures from (4.12) to (4.19), were carried out for total 
number of particles 100000N  . These figures assert the two main results 
concerning the condensation temperature and the thermodynamic 
properties observed in § (4.13) with arbitrarily selected fractal dimensions 
(2.7, 2.8 and 2.9).  Fig. (4.20) compares the condensation temperatures 
obtained by the extensive and the nonextensive thermostatistics in the 
Sierpinski carpet and the Menger sponge for varying number of particles 
(bosons). The two upper curves (with "SC" super script) belong to the 
Sierpinski carpet, while the two lower curves (with "MS" super script) belong 
to the Menger sponge. This figure also indicates that the condensation 
temperature in extensive thermostatistics model is always higher than that in 
the nonextensive one. Finally, from the thermodynamic behavior of the BEC 
phenomenon in the present section, and the thermodynamic behavior of the 
arbitrarily selected fractals, the results of § (4.13), it can be concluded that 
these two models (the extensive and the nonextensive) are adequate to 
represent the BEC phenomenon in fractal media.

Fig. (4.20): The condensation temperature for harmonically trapped 

extensive and nonexrensive bosons as a function of varying total 

number of particles.  
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5.1 Conclusions 

1. A theoretical quantum statistical mechanics model for the BEC
phenomenon in fractal media is formulated. This model is based upon
the generalized Tsallis (nonextensive) thermostatistics. The
thermodynamic behavior computed on the basis of this model (the
temperature dependence of the condensate thermodynamic properties)
is also investigated.

2. In addition to this nonextensive model, another model for bosons
harmonically trapped in a fractal medium based on the extensive
thermostatistics is also adopted and its thermodynamic behavior is
investigated.

3. The thermodynamic behaviors of these two models (the extensive and

the nonextensive) are compared using the symbolic MATHEMATICA®
computational scheme. The comparisons were carried out for arbitrarily
selected fractal dimensions and also for two standard fractals; the
Sierpinski carpet and the Menger sponge. One of the standard fractals
the Sierpinski carpet is embedded in Euclidean space of 2D and the
other (the Menger sponge) is embedded in Euclidean space of 3D. The
comparisons lead to the following observations:

 The condensation temperature within the Tsallis thermostatistics is
always less than the corresponding one in the Boltzmann–Gibbs
thermostatistics. Consequently, the condensate thermodynamic
properties in the Tsallis thermostatistics are always shifted to lower
temperatures. The disagreement in the condensation temperature
between the two thermostatistics is also justified. The justification is
ascribed to the Tsallis cut–off condition for q < 1 when representing a
fractal structures.

 Despite the fact that the thermodynamic behaviors of the two
thermostatistics are, in general, similar, the condensate thermodynamic
properties seem to possess different temperature responses (slopes).
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4. The use of MATHEMATICA® software package as a computing 
environment, in this thesis, has shown an important utility. This utility 
is represented mainly in its feature of symbolic computation for 
computing the sums over their terms; i.e. evaluating the condensate 
properties by computing the sums over the energy states. In addition to 

the utility of using MATHEMATICA® for carrying out the 

aforementioned investigations, the use of MATHEMATICA® has 
disclosed an important observation from which significant results are 
obtained.  This observation is related to the essential difference between 
computing quantities by using integrals or by using sums; i.e., the 
problem of finite number of particles. This observation explicitly 
appears in chapter three when investigating the accurate condensation 
temperature correction order for the case of ideal Bose gases trapped in 
a 3D isotropic harmonic potentials. The latter investigation reveals 
significant results:  

 The first is that the first order correction is the upper bound correction 
for the case indicated above. This result is justified for the excellent 
agreement between the numerically (by symbolic computation) obtained 
relative correction and the first order relative correction

3/13
0 )/(7275.0)/(  NTT m

D
c  . Accordingly, the evaluation of the 

thermodynamic properties of an ideal Bose gas confined in a 3D 
harmonic trap on the basis of the first order correction is more accurate 
than the properties evaluated by any other correction order. Hence, the 
excellent agreement of the first order correction with the obtained 

results (by symbolic computation) for atoms number 100 < N < ∞ 
exhibits the extent of precision in the density of states used in           
Refs. [25,36]. The departure of the first order relative correction from 

the obtained (by symbolic computation) one when N < 100 uncovers the 
fundamental difference between the use of discrete sums and continuous 
spectrum together with a correctly approximated density of states.  

 The other two results are numerical corrections to analytical expressions 
(equations) which correspond to the condensation temperature in 2D 
and in 1D harmonic potentials. The most interesting observation in the 
result of these two cases is that in 1D harmonic oscillator, the 
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condensation temperature is significantly higher than in previous 
predictions [25,39].  
 

5. In view of the rapid development in nanotechnology and the possibility 
of constructing complex structures or networks [127–131], confining 
few dozens of bosons becomes plausible. This, in turn, emphasizes the 
necessity and the utility for using the symbolic computation in statistical 
treatment of finite number of particles.  

6. Taking into account effects such as the size and the shape of the 
container and boundary conditions, which are relevant to the finiteness 
of the Bose system size, on the properties of non–interacting bosons, the 
interaction influence may be precisely understood. 

7. A final comment on the use of symbolic computation is in order here. 
This work may reveal its role and its importance in different statistical 
mechanics issues not only those related to the BEC phenomenon but 
also in other cases with finite number of particles. Hence, the symbolic 
computation method, employed in this thesis, warrants extension  to 
the domain of other statistical mechanics issues not only related to the 
BEC phenomenon but others that are affected by the finiteness of the 
number of particles.  

 

5.2 Suggestions for Further work 

A number of suggestions for further work related to the theoretical and 
computational aspects dealt with in this thesis can be enlisted here: 
 

1. The case of rotating bosons confined in fractal geometries, rotation is 
highly recommended as a further area of application for its relevant 
connection with experimental findings in superfluids. It is important to 
comment here that formulating such a model for this aspect seems possible 
based on the Tsallis statistics but not upon Rovenchack's idea. This is 
because the latter model is restricted to the case of an isotropic potential 
while rotation leads to anisotropy. Furthermore, the model based on the 
Tsallis statistics is not only applicable for bosons in fractal media under 
external potentials but also to the case of free bosons in such fractal media. 
On the other side, the model based on Rovenchack's idea is not applicable 
to the case of free bosons. 
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2. The case of q–deformed bosons, referred to in section § (4.3), is also a 
promising approach for treating the BEC phenomenon in fractal media. 
Furthermore, it is applicable to the cases of rotating bosons, free bosons, 
and bosons trapped in a potential as well.  It is suggested that further work 
can be done in this direction. However, a drawback in this approach which 
emerged in a preliminary investigation is absence of a direct and            
well–defined relation between the fractal dimension and the index of       

q–deformation, which is not the case for the Tsallis statistics.  
3. It is important to indicate here that the models formulated in the present 

work, and also the approaches reviewed in § (4.3), are for treating ideal 
bosons in fractal media. But to treat real systems the interaction should be 
introduced. To introduce the effect of interaction simultaneously with the 

effect of fractality, it is suggested to use a two–parameter q–deformation 

model; which is an extension to the q–deformed quantum algebra since it 
involves two parameters rather than one parameter. In this case, the 
interaction can be treated as an additional deformation to the case of ideal 
bosons. The treatment of BEC as a general case with two–parameter 
deformation, but not taking into account either the fractality or the 
interaction, is found in work of A.  Algin and B Deviren [140].  

4. The two models formulated in the present work, and also the approaches 
reviewed in § (4.3), for treating bosons in fractal media, are indeed 
phenomenological approaches. Most recently, a remarkable rigorous 
mathematical treatment of the BEC phenomenon in fractal media has been 
suggested by Chen [139].  In the latter work, spectral geometry analysis 
based on a rigorous mathematical formulation was used to formulate a 
quantum statistical mechanics of the BEC phenomenon. In this approach, 
the fractality of the medium confining the bosons is the starting point. The 
treatments of interacting bosons and massless bosons are also involved. It is 
also worth mentioning that the latter work is devoted to extensive bosons 
only. It is suggested that some of the ideas adopted in the present thesis, 
such as the symbolic computation method and the nonextensivity 
extension, may find some applications here as well. 
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Appendix A 
 
 

The Bose Function  
 

The general form of the Bose function is [141]: 
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where 10  z , R , and Γ(ν) is the gamma function. For small values of z, the 

integrand can be expanded as: 
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Using equation (A.2) in equation (A.1) yields: 
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Changing the variable, kx=y; equation (A.3) becomes: 
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The last integral is the definition of the gamma function Γ(ν), and equation (A.4) 

becomes 
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When  z=1 (µ=0) , equation (A.5) leads to the Riemann zeta function which is 

defined as: 
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The integral form of (A.6) is given by [145  ]: 
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Both (A.6) and (A.7) are finite (converging) for ν>1 for all 0 ≤ z ≤ 1. 

Some special values of the Riemann zeta functions are given below: 
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Appendix B 
 

Evaluation of the Limit Related to the Occupation Number of the 
Ground State in the Nonextensive Model 
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which can be found by L' Hospital's rule as 
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It is also noted that  
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       Condensation Temperature in Harmonic Traps for Ideal Bose 

Gas with Finite Number of Particles* 

 

Ibrahim A. Sadiq, M.A.Z Habeeb and Ayad A. Al-Ani,
 

Department of Physics, College of Science, Al-Nahrain University, Baghdad, IRAQ. 

 

Abstract 
 

For the case of ideal Bose gas harmonically trapped in a 3D potential, 

three correction orders for an accurate condensation temperature determination 

are numerically investigated. This investigation reveals that the corrections up to 

21N  and up to 2 3/N   do not give a better agreement with the (numerically 

obtained) accurate result. Instead, the first order correction (the lowest order) 

which is proportional to 1 3/N  , yields results closest to the numerically accurate 

result. This observation is obtained by using the accurate statistical treatment for 

computing the sum over the energy states. This treatment is also extended to the 

cases of an ideal Bose gas harmonically trapped in 2D potential and 1D potential 

in order to evaluate the accurate condensation temperature for these Bose 

systems.  In the case of 1D harmonic potential, the numerically accurate 

condensation temperature evaluated in this work uncovers that the condensation 

temperature is higher than previous predictions.  
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Bose-Einstein Condensation in Fractal Traps: A  Comparison 

                   between Extensive and Non-extensive Thermostatistics* 
 

Ibrahim A. Sadiq, M.A.Z Habeeb and Ayad A. Al-Ani,
 

Department of Physics, College of Science, Al-Nahrain University, Baghdad, IRAQ. 

 

Abstract  

A quantum statistical mechanics model for the BEC phenomenon in fractal 
media is formulated. This model is based upon the generalized nonextensive 
Tsallis thermostatistics. The thermodynamic behavior this formulation (the 
temperature dependence of the condensate thermodynamic properties) is 
also investigated. In addition to the formulated nonextensive model, a 
model for bosons harmonically trapped in fractal media based on the 
extensive thermostatistics is also adopted and its thermodynamic behavior is 
investigated. 

 The thermodynamic behaviors of the two models (the extensive and 
the nonextensive) are compared. The comparisons are carried out for two 
standard fractals (the Sierpinski carpet and the Menger sponge). One of 
them is topologically embedded in 2D and the other is embedded in 3D.  
The comparisons reveal that the condensation temperature within the Tsallis 
(nonextensive) thermostatistics is always less than the corresponding one in 
the Boltzmann–Gibbs (extensive) thermostatistics. Consequently, the 
condensate thermodynamic properties in Tsallis thermostatistics are always 
shifted to lower temperatures. These comparisons also show that despite the 
thermodynamic behaviors for the two thermostatistics are, in general, 
similar; the condensate thermodynamic properties seem to possess different 
temperature responses (slopes). The disagreement in the condensation 
temperature between the two thermostatistics is also justified.  
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Sustainable Development, Al-Nahrain University, Baghdad, Oct. 2014. 
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ُصخُ لـالمُ 

 ـتكاثَرة َـظاهَ َتَ أضحَ َقدَ ـل َ والتي1925ََأَبهاَآينشتاينَعامَـ َ،َالتيَتنب(BEC)نـنشتايـآيَ-وزـفَبـ

لموضَ ،1995َفيَعامََمليا َعَ َتَ ـقـتحق َ َالجان  َنم  َالأخي رة َف يَالقق ودَ َثَ ونَالبح مَ َلكثـيرَ وعاَ 

الت  يََالمواض  ي َ َه  مَ أَأح  دَ َرة َـالظاه  َدراس  هَه    َ س  الي َل َنَالأم   َالقدي  دَ َتَ يغَ ص   ،َظريــ   الن

َالظ  ـالدراس  اتَه   َله  اَتل   َ َضَ تقرَ ـت   نَـنَبي  ـرة َم   ـاه   ـ َالظَ  َ ـه  َقَ ـتحق   ـقهاَتَ ـف  الت  يَوَ َروفَ ـي 

ضاءَالمك     انيَـلف     اَق     دَ بَ َدارَ ـق     ه     وَمَ َه     احقيقَ ف     يَتَ َرَ ؤثَ ـهَوالت     يَت      المقروف      َلَ القوام      

(dimensionality    َل)َنت   ا  َ َتَ أش   ارَ َقدَ ـل    َبوزون   ات( الب   وزَ)َس   يماتَ نَلجَ الحاض    َلوسطَ ـ

َ ي ََمك اني ََفضاءَ فيََرةـالظاهَ َ  َ ـهَدوثَ ـحَ َلىَإمكانيهَ إَ،فيَه اَالخصوصَ،ابقهالسَ َالدراساتَ 

ف  يَ َهاق َـحق   َتَ الواج   َروطَ ـالش   نَس   َم   أوَم  د َ ولك  نَتح  تََدينـق   ـ يَبَآخ  رَ أوََأبق  ادَ َلاثهَ ـث  

َالنَّ ـظريه،َ َ َ جَّ تويَهَ نَّ إفَواح دَ َق دَ  يَبَ َمك اني ََفض اءَ ف يَرةَـالظاه  َ  َ ه ـَتتحق قيَك ل َالدراسات 

َع ددَ َم  َ َلَ قامَ ـت بالالخاصهََقالجهَ المَ َستخدامَ إَجو َ نهاَومهَومَ منَالشروطَالصارَ َالمزيدَ َقَ حق َتَ 

آي  ـنشتاينَف  يََ-فَب  وزـ   ــرةَتكاثظاه   َدوثَ ـح   َحال  هَ َتَ دَ ـه   شَ َؤخرا ،ـ  ـمَ نَالجس  يمات َم   َدَ ومح  د

َه  وَ َالأولَ َن ـي  ينَر يسَ ـسبب  ـمامَل َـهت   نَالإم   َسوريَالمزي  دَ ـالفض  ا يَالك   َق  دَ  اتَالبَ َوس  اطَ الأ

َحاض   نهَ َالمك   انيَلأوس   اطَ َس   وريهَللفض   اءَ بيقهَالكَ ـَّ   ـلطاَدتَ ـََّهَالت   يَأك   ختبري    المَ َالأكتش   افاتَ 

َ،لمقرف هاَلأح دَف رو َ َبح ثَ َالَ ـكمج َس وريهالكَ َلهندس هَ اَهورَ ـ َظ الث انيَه وََالسب َ َ للبوزونات

َأع لا  َم  َ َورةَ ـالم ك َهختبري  المَ كتش افاتَلإم  َازامناَ ـت مَهالكس وريَالهندس هَ َحيثَكانَإنبث اقَ 

ف يََزلَ ـ ـتاَـ ـمَ ـلَ نشتاينَـآي -فَبوزـ َةَتكاثرَ ـظاهكسوريهَل ََريهَلنما جَ ـظـََّهَالنياغَ الصَ َفأنَََّ،َ ـ ل َ

َرة بكَ هاَالمَ ل َمراحَ 

َه    َ َث  لَ يَمَ ح  اكَ يَ َظري َـََّن  َجَ و َ م   نَ َهَ ياغَ ص   ل َأساس  ي،ََ،َبش  كلَ َمك  ر َ َالح  اليَالقم  لَ َنََّإ

ََ َ الح  ا تَوك   ل َ س  ا َتحلالََا نَخ   مو جَم   ـََّه   اَالن  كيَل َـنامي  ـيمودرـالس  لو َالثَستقص  اءَ لأ 

 ََ®MATHEMATICAبرامجياتََهَ زمَ حَ َ  َوفرَ  يَتَ الَََّ(symbolic computation)زيَالرم

ضَ لقملَالح اليَيَ ل ََهَ تَ ـدَصياغَ راالمَ َمو جَ النَََّإنََّ المثالي هََم نَالبوزون اتَدَ ومح دَع ددَ َوج ودَ َفت ر 

((idealََ توافقيَت ب  َ مَ َدةَ صيَ فيَمَ َقهَ ـعال(harmonic trap)َ ََوكسوري،ََقدَ بَ َي َطَ وسَ َلَ داخ

َحص ا يه الإَ(grand canonical ensemble)َي هَ لميكانيكَخض و َ الو جَمـََّالن َضَ فت رَ يَ َ َ  ل َك  

َ ََنـينَمتمايزتيـطريقتَبوزوناتَبأستخدامَ ـللَنهَ الحاضَ لأوساطَ ـالكسوريهَل ََالطبقيهَ َإدخالَ َلقدَتمََّ

تحل لََلس تخدامَعوام  إإمكاني هََضَ ترَ ـف ـ،َوالت يَتَ Rovenchackَك رةَ فَ َىتبنَ ـهيَالتيَت َالأولى

ََلالَ نَخ  الكسوريهَمَ َلَالأبقادَ تشمَ ـ(َل energy levels degeneracy factorsَالطاقهَ)َمستويات

َف  يَعوام  لَ َظه  رَ الت  يَتَ وَ،(factorial functions) اتَالقوام  لَالمض  روبهََوالدََّـل  حوي  لَاتَ 

ه يَالت يََيهَ ـان ـالثَ َالطريق هَ (gamma functions)َام اگَال ىَدوالَ ََ،اقهـ َس توياتَالط تحل لَمَ 

(َ وindex of nonextensivityَ)َه اَالأحصاءَ َؤشرَ ـ،َحيثَيكونَمَ Tsallisَإحصاءَ َمَ تستخدَ 

،َينَتخت زلَ ـالطريقت َـلتيك  َ،َإنََّ،َف يَه  اَالمق امالي هَ َالأش ارة ََهمَ نَالمَ الكسوري ََمَ َدَ ـبالبقَصلهَ 

َََََََََََََالق   ددَهَ المك   انيَالص   حيحَالفض   اءَ َأبق   ادَ َم    َ َلَ التقام    َن   دَ القياس   يهَعَ َحال   هَ ،َال   ىَالأيَتق   ودَ 

( 1D2 وD3 وD)َ َ



 

B 
 

َ

َ

برامجي       اتََم       هَ زَ حَ الرم      زيَل ََط      ارَالبرمج       يَللحس       ا َ غ      رضَإختب       ارَالإل َ

MATHEMATICA®،َََََّإحتسا َ َتم  نشتاينـآي  –فَب وزـ َتكاث كهَلمَ ـنامي ـرموديـالثَالخص ا ص 

أس ا َ اتَالأفتراض اتَ(َوعل ى3Dَ و2D و1D )َالق ددَأبقادَالفضاءَالمك انيَالص حيحهَ في 

َ  الم كورةَسابقا 

عل       م ا ج    ها ع  قات  س اي   ه ا ع    تفاق  الحس اية  إ  النت اج  ودة  الأختبارات ج   هذه   ت  ـبتـلقد أث

َت  وافقيَت ب    َ مَ َص  ا دَ مَ َف  ي ق   ـعال   بـ  ـونإتات س  تاداا النم  و جةن لايحس  ايات ال ه  ذه    ج  ءا   

(harmonic trapsَ) ََلداخ   ق هَ الأوساطََقابَ َتكونَه  َ َسوريهَ،َحيثَكَ َأبقادَ لهاََلَأوساطَ داخ

  َ،وَم  نَخ  لالَالمقارن  هَب  ينَالنت  ا  ( 3Dَو2Dالق  ددَ)َهَ ص  حيحَ اتَأبق  ادَ َهَ مكاني  َاتَ فض  اء

 ف ف  ي النم  و م المبن  ي عل         ا   ـ  ج    للت اث  الحء   الح  ءارة   درج      ن  أ ن  تب  ة   فق  دع  اا   يش   ل  

Tsallis   َك رةَ فَ المبن يَعل ىَ  م  ــوعن النم    التي تنت   لك  ن ت  ع   ـأأإط   ت ونRovenchack ال ذ  إ

ت اج  تإ Salasnich ع    ق  ـف  ـ  النتة   تت هذه   ن  أ ظ  و   ـ  قد لل  .Boltzmann–Gibbsلِ   ا  ينتمي 

 .خءين في هذا الم الآيا ثـةن 

إك  ذلك الم  نه   الاطءإ     ه  ذه   تعءض  هماذين ـل  ااةن ـج  و ـالنم ن    ن  ل  كع    ـت  ـ   نـست  ي   

فَـ َكاث  ـتَءة  ـظاه   ع      ل  للتعاع    ين  ا    تاداعهاـأس  يم  ن   س تاداا الأ تس  ال الءع   لِ المقت ء   

َللتـطـويــر َقابلَ َوبشكلَ َالكسوريهَنشتاينَفيَالأوساطَ ـآيَ-بوز
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