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SUMMARY 

 

The main objectives of this thesis is oriented toward three directions: The 

first objective is to study fuzzy set theory with some basic properties related to 

the theory of variational problems. 

       The second objective is to study variational problems with fuzzy 

functions, fuzzy condition and fuzzy boundaries by using different approaches 

for defuzzification, such as centroid method, α-cut method, centroid point and 

expected interval in which fuzzy sets have been transformed into crisp sets.  

       The third objective is to find the necessary conditions for extremizing the 

fuzzy variational problems with fuzzy function and fuzzy boundaries. 
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INTRODUCTION 

 

In the basic sciences, such as engineering, chemistry or physics, we construct 

exact mathematical models of empirical phenomena, and then these models are used 

to make predictions. While some aspects of the real world problems always escape 

from such precise mathematical models and usually there is an elusive inexactness 

as a part of the original model. Also, the elements of the real world problems are 

perturbed by imperfection and thus, for example, there exists no elements that are 

perfectly round. Perfect notations or exact concepts correspond to the sort of things 

envisaged in pure mathematics, while inexact structures encounter us in real life 

problems, [2]. 

Moreover, everyday life, so many properties which can not be deals with 

satisfactory on a simple “belong” or “not belong” basis are used. Whether these 

properties perhaps best indicated by a shade of gray, rather than by the black or 

white. Assigning each individual in a population on a “belong” or “not belong” 

value, as is done in ordinary set theory is not an adequate way for dealing with 

properties of this type, [12]. 

Historically, the accepted birth date of the theory of fuzzy sets returns to 

1965, when the first article entitled “fuzzy sets” submitted by Zadeh appeared in the 

journal of information and control. Also, the term “fuzzy” was introduced and coined 

by Zadeh for the first time. In which the original definition of fuzzy sets is to consider 

a class of objects with a continuum grades of membership, such a set is characterized 

by a membership (or characteristic) function which assigns to each object a grade of 

membership value ranging between zero and one. As the membership value 

approaches unity, the grade of membership of an event in the fuzzy set becomes 

higher. For example, the unit membership value indicates that the event � is strictly  
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contained in the fuzzy set, and on the other hand, the zero membership value indicate 

strictly that � is strictly does not belong to the fuzzy set. Any intermediate value 

would reflects the degree on which x could be a member of the fuzzy set, [2]. 

In addition, the history of the calculus of variation is tightly interwoven with 

the history of mathematics. The field has drawn the attention of a remarkable range 

of mathematical luminaries, beginning with Newton, then initiated as a subject in its 

own right by the Bernoulli family. The first major developments appeared in the 

work of Euler, Lagrange and Laplace. In the nineteenth century, Hamilton, Dirichlet 

and Hilbert are among the outstanding contributors. In modern times, the subject of 

calculus of variations has continued to occupy center stage, witnessing major 

theoretical advances, along with wide-ranging applications in physics, engineering 

and all branches of mathematics, [22].  

Calculus of variation is a branch of mathematics dealing with the optimization 

of physical quantities (such as time, area, or distance). It finds applications in many 

fields, such as aeronautics (maximizing the lift of an airplane wing), sporting 

equipment design (minimizing air resistance on a bicycle helmet, optimizing the 

shape of a ski), mechanical engineering (maximizing the strength of a column, a 

dam, or an arch), boat design (optimizing the shape of a boat hull), physics 

(calculating trajectories and geodesics in both classical mechanics and general 

relativity), [14]. 

 

A huge amount of problems in the calculus of variations have their origin in 

physics where one has to minimize the energy associated to the problem under 

consideration. Nowadays, many problems come from economics. Here is the main  
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point that the resources are restricted. There is no economy without restricted 

resources, [22]. 

Minimization principles form one of the most wide-ranging means of formulating 

mathematical models governing the equilibrium configurations of physical systems. 

Moreover, many popular numerical integration schemes such as the powerful finite 

element method are also founded upon a minimization paradigm, [21]. 

 

The main objective of this thesis is to study fuzzy variational problem which 

are generalized from classical variational problem that are obtained by replacing real 

initial conditions and real boundaries by fuzzy ones. 

This thesis consists of three chapters. In chapter one, some fundamental 

concepts of fuzzy set theory and variational problem are considered, in which this 

chapter consists of three sections. In the second section, some basic definitions, 

theorems and algebraic properties of fuzzy set theory are given with some illustrative 

examples. In the third section, basic definitions, theorems and algebraic properties 

of variational problems are also given for completeness purpose of this work. 

In chapter two, variational problems with fuzzy function and variational 

problem with fuzzy boundary conditions are investigated. We will discuss the 

derivation of Euler-Lagrange equation of unconstrained variational problems with 

fuzzy function, and we will discuss the derivation of Euler-Lagrange equation of 

constrained variational problems with fuzzy function. 

In chapter three, variational problems with fuzzy boundaries is investigated 

where in second section the Euler-Lagrange equation of such type of problems have 

been studied. In third section the centroid method for defuzzification have been 

discussed. In forth section the expected interval method is also discussed. In fifth  
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section the centroid point method for defuzzification is introduced explained 

discussed with an illustrative example. 



1 

 

CHAPTER ONE 

 

Basic Concepts of Fuzzy Set Theory and 

Variational Problems  

1.1 Introduction: 

In this chapter, the basic concepts, definitions and theorems related to fuzzy 

set theory and variational problems will be introduced, with some illustrative 

examples. These concepts includes for fuzzy set theory, the α-level sets, the 

extension principle, fuzzy relation and fuzzy functions which for variational 

problems: variational problems with simple form and Euler-Lagrange equation. 

 

1.2 Fuzzy Sets Theory: 

Fuzzy set theory is a generalization of abstract set theory; it has a wider scope 

of applicability than abstract set theory for solving problems that involve to some 

degree subjective evaluation [2]. 

 

Definition (1.1), [6]: 

Let X be a classical set of objects, called the universal set, whose generic 

elements are denoted by x. The membership in a classical subset A of X is often 

viewed as a characteristic function µA from X into {0, 1}, such that: 
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µA(x) = 
1 if x A

0 if x A

∈


∉
 

{0, 1} is called a valuation set. If the valuation set is allowed to be the real interval 

[0, 1], then A is called a fuzzy set (which is denoted by A% ), and 
A

(x)µ %  is the 

grade of membership of x in A% . 

Remarks (1.1), [5]: 

1. Let X be a finite set, a fuzzy set on X is expressed as: 

A%  = 1A
(x )µ % |x1 + 2A

(x )µ % |x2 + … + nA
(x )µ % |xn 

= 
n

i iA
i 1

(x ) x
=

µ∑ %  

When X is infinite, we write: 

A%  = 1A
(x )µ % |x1 + 2A

(x )µ % |x2 + … 

= 
A

X

(x) | xµ∫ %  

or: 

A%  = {(x, ������) | x ∈ X, ������ ∈ [0, 1]} 

where the slash ( | ) is employed link the elements of the support with their 

grades of membership in A% , and the plus sign (+) or the integral ( ∫ ) playing 

the role of "union" rather than arithmetic sum of integral [9]. 
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2. The difference between crisp and fuzzy sets is that the former always have a 

unique membership, while every fuzzy sets have an infinite number of 

memberships that may represented them. 

3. Functions that maps X into the unit interval may be fuzzy sets, but they 

become fuzzy set when, and only when, they match some intuitively plausible 

semantic description of imprecise properties of the objects in X. 

The following example illustrates this remark: 

Example (1.1), [6]: 

Let: 

X = {0, 1, 2, 3, 4, 5, 6} 

be the set of number of children in a family may be choosed to have the fuzzy set: 

B%  = "desirable number of children in a family" 

which may be described as follows: 

B%  = {(x, 
B

(x)µ % ) | x ∈ X} 

and implies that: 

B%  = {(0, 0.1), (1, 0.3), (2, 0.7), (3, 1), (4, 0.7), (5, 0.3), (6, 0.1)} 
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Figure (1.1) Membership function of example (1.1) with discrete universe, where 
��� stands 

for the membership function on discrete universe. 

Example (1.2), [8]: 

Let X = R+ be the set of possible ages for human beings, then the fuzzy set: 

C%  = "About 50 years old" 

may be expressed as: 

C%  = {(x, 
C

(x)µ % ) | x ∈ X} 

where: 

C
(x)µ %  = 

4

1

x 50
1

10

− 
+  
 

 

0 1 2 3 4 5 6

x

0.0

0.2

0.4

0.6

0.8
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1.2

(x
)
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Fig.(1.2) Membership function of example (1.2) with continuous universe. 

 

Next, a summary of the most fundamental and necessary concepts in fuzzy 

set theory are given, [6], [5]: 

1. The support of A%  is the crisp set (or nonfuzzy set) of all x ∈ X, such that 

A
(x)µ %  > 0 and is denoted by S( A% ) or Supp( A% ). 

2. The height of a fuzzy set A%  (denoted by hgt ( A% )) is the supremum of 

)x(
A
~µ  over all x ∈ X. If hgt ( A% ) = 1, then A%  is normal, otherwise it is 

subnormal, and a fuzzy set may be always normalized by defining the 

scaled membership function: 

*
A

(x)µ %  = 
A

A
x X

(x)

Sup (x)
∈

µ

µ

%

%

, ∀ x ∈ X 

3. A fuzzy singleton (or fuzzy point) xα is a fuzzy set whose support is a 

single point x ∈ X, with membership function: 

0 50 100

µ(x)

x
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xα(y) = 
,    if x y

0,     if x y

α =


≠
 

4. The crossover point of a fuzzy set A%  is that point in X, whose grade of 

membership in A%  is 0.5. 

5. A B=% %  if and only if  
A

(x)µ %  = 
B

(x)µ % , ∀ x ∈ X. 

6. A B⊆% %  if and only if  
A

(x)µ %  ≤ 
B

(x)µ % , ∀ x ∈ X. 

7. cA%  is the complement of A%  with membership function 

c AA
(x) 1 (x)µ = − µ %%

, for all x ∈ X. 

8. The empty fuzzy set ∅%  and the universal set X, have the membership 

functions 
A

(x)µ %  = 0 and 
A

(x)µ %  = 1, respectively, for all x ∈ X. 

9. C A B= ∩% % %  is a fuzzy set with membership function: 

{ }BC A
(x) Min (x), (x) , x Xµ = µ µ ∀ ∈% % %  

More generally, for any index set J, then j
j J

A
∈

%I  is also a fuzzy set of X with 

membership function: 

j
j J

A
(x)

∈

µ %I
 = 

i J
inf
∈ jA

(x)µ % , ∀ x ∈ X 

10. D A B= ∪%% %  is a fuzzy set with membership function: 

{ }D BA
(x) Max (x), (x) , x Xµ = µ µ ∀ ∈% % %  
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More generally, for any index set J, then j
j J

A
∈

%U  is also a fuzzy set of X with 

membership function: 

j
j J

A
(x)

∈

µ %U
 = 

i J

sup
∈

jA
(x)µ % , ∀ x ∈ X 

Remark (1.2), [21]: 

It is important to notice that the only law of contradiction is A%  ∪ cA%  = X and 

the law of excluded middle A%  ∩ cA%  = ∅ are broken for the fuzzy sets, since A%  ∪ 

cA%  ≠ X and A%  ∩ cA%  ≠ ∅. Indeed; for all x∈ A% , such that 
A

(x)µ %  = α, 0 < α < 1, 

then: 

���∪������ = max��, 1 − �� ≠ 1 

���∩������ = min��, 1 − �� ≠ 0. 

 

1.2.1 The Extension Principle: 

An important concept in fuzzy set theory that may be used to generalize 

crisp mathematical concepts to fuzzy sets, is the extension principle. In the 

elementary form, Zadeh already implied this principle in his first contribution in 

1965, [6], [17]. 

Definition (1.2), [6]: 

Let � be the Cartesian product of universes ��, ��, … , �! and "#�, "#�, … , "#!  
be r-fuzzy subsets of ��, ��, … , �!, respectively, $ is a mapping from � into a 
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universe %, &	=	$���, ��, … , �! 	�. Then the extension principle allows us to define a 

fuzzy set (�  in % by: 

(�= {�&, �)��| &	=	$���, ��, … , �! 	�, ��, ��, … , �! ∈ �} 

where: 

�)��&�
= *supmin.���/����,… , ���0��!�1																										 , 2$	$3��&� ≠ ∅, ��1, �2, … , �6	� ∈ $3��&�

0																																																																, 78ℎ:6;2<:  

 

where $−�	is the inverse image of $. 

For 6	=	1, the fuzzy extension principle, of course reduces to: 

B
~ 	=	$�A

~ �	=	$��&, )y(
B
~µ �	|	&	=	$���, �	∈	�� 

where: 

)y(
B
~µ  = 







 ∅≠µ −

∈ −

otherwise,0

)y(fif),x(Sup 1
A
~

)y(fx 1  

which is the definition of the fuzzy mapping. 

The next examples illustrate the extension principle: 
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Example (1.3), [6]: 

            Let f  be a real valued function which is integrable over the interval >	=	[?@, 	A@] where ?@, 	A@ ∈ B and ?@ < 	A@, then according to the extension 

principle the membership function of the fuzzy integral 
b

a

f∫
%

%

 is given by: 

{ }b

y
a

x

a b
x,y Jf

z f

(z) Sup Min (x), (y)
∈

=

µ = µ µ

∫

∫

%

%

%%  

In particular, let: 

a%  = {(4, 0.8), (5, 1), (6, 0.4)} 

b%  = {(6, 0.7), (7, 1), (8, 0.2)} 

and 

y = 2, x ∈ [a0, b0] = [4, 8] 

where a0 is the minimum of the supports of a%  and b0 is the maximum of the 

supports of b%  and the problem is to find the fuzzy integration of f(x) over J = [4, 

8], then: 

b

a

f∫
%

%

 = {(0, 0.4), (2, 0.7), (4, 1), (6, 0.8), (8, 0.2)} 
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Example (1.4), [6]: 

           Let: 

X = {−1, 0, 1} 

and define a fuzzy subset of X, by: 

A%  = {(−1, 0.4), (0, 1), (1, 0.6)} 

If f(x) = x3, then B%  = f ′( A% ), is also a fuzzy set with membership function: 

f (A)
(y)′µ %  = 

A
f (x) y

Sup (x)
′ =

µ %  

= 
2

A
3x y

Sup (x)
=

µ %  

If y = 3, then 3x2 = 3 and hence x = ±1. Therefore: 

A
(1)µ %  = 0.6  and  

A
( 1)µ −%  = 0.4 

and hence sup {0.6, 0.4} = 0.6, which implies to 
f (A)

(3)′µ %  = 0.6.  

Similarly: 

�DE�������=	 A
0 y

Sup (x)
=

µ % 	=	1 

Therefore: 

$F�"#�	=	��3, 0.6�, �0, 1��	
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1.2.2 α-Cut Sets: 

The concept of this section is to cover some basic and most important 

properties of an ordinary set that can be derived from certain fuzzy set. These sets 

are called the �-level sets (or �-cuts), which corresponds to any fuzzy set. The �-

level sets are those sets which collect between fuzzy sets and ordinary sets, that can 

be used to prove most of the result that are satisfied in ordinary sets are also 

satisfied here to fuzzy sets and vise versa, i.e., there is also another approach in 

which the classical sets and fuzzy sets are connected to each other [27]. 

Definition (1.3), [27]: 

        The �-level (or �-cut) set of fuzzy set "#, labeled by "J, is the crisp set of all x 

in X such that ������ ≥ �, i.e., 

"J = �� ∈ �|������ ≥ 	��, � ∈ [0, 1] 
One can notice that an �-level set discards those points of � whose membership 

values are less than �. Also, it is remarkable that in some literatures, if the equality 

is dropped in the definition of "J then it is called a strong �-level set and is 

denoted by"JL 	76	"JM. 

 

The following properties are satisfied for all α ∈ [0, 1], [12]: 

1. If "# is convex, α1, α2 ∈ [0, 1], and α1 ≤ α2, then "J/⊇ "JN. 
2. ("# ∪ (� )α = "J ∪ (J. 

3. ("# ∩ (� )α= A% α ∩ B% α. 

4. "# ⊆ (� , gives "J ⊆ (J. 
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5. "# = (�  if and only if "J = (J, ∀ α ∈ [0, 1]. 

Remarks (1.3), [8]: 

1. The set of all levels α ∈ [0, 1], that represent distinct α-cuts of a given fuzzy 

set "# is called a level set of"#, i.e., 

Λ("#) = {α | 
A

(x)µ %  = α, for some x ∈ X} 

2. The support of "# is exactly the same as the strong α-cut of "# for α = 0, "@L = P�"#�. 
3. The core of "# is exactly the same as the α-cut of "# for α = 1 (i.e.,  

A1 = core ("#)). 
4. The height of "# may also be viewed as the supremum of α-cut for which Aα	≠	∅. 
 

1.2.3 Convex Fuzzy Sets, [8]: 

An important property of fuzzy sets defined on BR (for some S	∈	T) is their 

convexity; this property is viewed as a generalization of the classical concept of 

convexity of crisp sets. The definition of convexity for the fuzzy set does not 

necessarily mean that the membership function of a convex fuzzy set is also 

convex function. 

Definition (1.4), [8]: 

A fuzzy set A
~

 on R is convex if and only if: 

����U	�� + �1 − U���� ≥ min��������, �������� 
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for all x1, x2 ∈ R, and all λ ∈ [0, 1]. 

Remark (1.4), [8]: 

Assume that A
~

 is a fuzzy set, we need to prove that for any α ∈ [0, 1], "J is 

convex. Now, for any x1, x2 ∈"J and for any λ ∈ [0, 1]: 

����U	�� + �1 − U���� ≥ min��������, �������� ≥ min��, �� = � 

i.e., 1 2x (1 )xλ + − λ  ∈"J, therefore "J is convex for any α ∈ [0, 1], A
~

 is convex. 

 

1.2.4 Fuzzy Number: 

Fuzzy number is expressed as a fuzzy set defining a fuzzy interval over the 

set of real numbers B. Since the boundary of this interval is ambiguous, the interval 

is also a fuzzy set. Generally, a triangular fuzzy interval is represented by two end 

points ?� and ?W and a peak point ?� as [?�, ?�, ?W	]. 
Fuzzy number should be normalized and convex. Here the condition of 

normalization implies that maximum membership value is 1 (i.e., there exist �@ ∈B, such that �����@� = 1). 

Operations over fuzzy numbers can be generalized from that of crisp interval. 

Based on the extension principle, arithmetic operations on fuzzy numbers are 

defined as follows, [28]: 

If XY  and TY are fuzzy numbers, the membership function of XY(*)TY is defined 

as follow: 

�ZY�∗�\Y�]� = <^_] = � ∗ &`2S��ZY���, �\Y�&�� 
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where * stands for any of the four arithmetic operations, namely addition, 

subtraction, multiplication and division. 

The procedure of addition or subtraction is simple, but the procedure of 

multiplication or division is more difficult. 

Definition (1.5), [24]:  

A fuzzy number is a fuzzy set like XY:B → c = [0, 1] which satisfies: 

1. XY  is upper semi-continous, 

2. XY��� = 0 outside some interval [a, d], 

3. There are real numbers a, d such that ? ≤ A ≤ e ≤ f and 

a. XY��� is monotonic increasing on [?, A], 
b. XY��� is monotonic decreasing on [e, f], 
c. XY��� = 1, A ≤ � ≤ e. 

The membership function of XY  may be expressed as: 

�ZY��� = gh
iXYj���, ? ≤ � ≤ A,1, A ≤ � ≤ e,XYk���, e ≤ � ≤ f,0, 78ℎ:6;2<:

 

where XYj ∶ [?, A] → [0, 1] and XYk: [e, f] → [0, 1] are left and right membership 

functions of fuzzy number XY . 

A Trapezoidal fuzzy number XY  is defined as [?, A, e, f] where the 

membership function: 
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�ZY��� =
gm
h
mi
� − ?A − ? , ? ≤ � ≤ A,1, A ≤ � ≤ e,f − �f − e , e ≤ � ≤ f,0, 78ℎ:6;2<:

 

when A = e, XY  is called triangular fuzzy number and defined as [?, A, f]. 
Remarks (1.5), [17]: 

1. A fuzzy number XY  may be represented in terms of its α-level sets, as the 

following closed intervals of the real line: 

XJ = [�	−	 1− α , �	 + 	 1− α ] 
or 

XJ = [α	�, 1

α
�] 

where � ∈ B, which is called the mean value of XY  and α ∈ [0, 1]. This fuzzy 

number may be written as Mα =[X,X], where X refers to the greatest lower 

bound of Mα and X to the least upper bound of Mα. 

2. If the sides of the fuzzy number XY  are strictly monotone then one can see 

easily that X and X are inverse functions of XYj��� and XYk���, respectively. 

We denote by n�B� the set of all fuzzy numbers. 

 

1.2.5 Fuzzy Functions on Fuzzy Sets, [5]: 

A fuzzy function is a generalization of the classical function in which a 

classical function f is a mapping (correspondence) from the domain D of definition 
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of the function into a space P; $�o�	⊆	P	is called the range of f. Different features 

of the classical concept of a function can be considered to be fuzzy rather than 

crisp. Therefore, different "degrees" of fuzzification of the classical notion of a 

function are conceivable: 

1. There can be a crisp mapping from a fuzzy set, which carries along the 

fuzziness of the domain and therefore generates a fuzzy set. The image of a 

crisp argument would again be crisp. 

2. The mapping itself can be fuzzy, thus blurring the image of a crisp 

argument. Thus, we shall call a fuzzy function. These are called “fuzzifying 

functions”. 

3. Ordinary functions can have fuzzy properties or be constrained by fuzzy 

constraints. 

Definition (1.6), [5]: 

A classical function $ ∶ 	�	→	% maps from a fuzzy domain A
~

 in X into a 

fuzzy range   in Y if and only if: 

))x(f(
B
~µ  ≥ )x(

A
~µ , ∀ x ∈ X. 

Given a classical function $:	�	→	%	and a fuzzy domain A
~

 in X, the extension 

principle yields the fuzzy range  with the membership function: 

)y(
B
~µ  = )x(Sup

A
~

)y(fx 1

µ
−∈

 

hence $	 is a function according to definition (1.5). 

 

B
~

B
~
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Definition (1.7), [5]: 

Let X and Y be two universes and )Y(P
~

 be the set of all fuzzy subsets of  Y 

(power set), f
~

: X → P
~

(Y) is a mapping, then f
~

 is a fuzzy function if and only if: 

)y(
)x(f

~µ  = )y,x(
R
~µ , ∀ (x, y) ∈ X×Y 

where )y,x(
R
~µ  is the membership function of a fuzzy relation. 

Examples (1.5), [5]: 

1. Let � be the set of all workers of a plant, $# the daily output, and & be the 

number of processed work pieces. A fuzzy function may then be defined 

as	$#���	=	&. 

2. If ?p, 	AY  are two fuzzy subsets of B, �	=	B, $# ∶ �	→	?p� ⊕ 	AY , is a fuzzy 

function. 

3. � =	set of all 1-mile runners, $#= possible recorded times, 

$	̃���	=	�&	|	&:	?eℎ2:s:f	6:e76f	82`:<�. 
Definition (1.8), [20]:  

The gH-difference of two fuzzy numbers u, v ∈ RF, is the fuzzy number w, if 

it exists, such that: 

^	 ⊖uv s	 = 	;	 ⟺	 x �2�^	 = 	s	 + 	;,	76	�22�s	 = 	^	 +	�−1�;. 

If ;	 = 	^	 ⊖uv s exists as a fuzzy number, its level sets [;���, ;���] are 

obtained by: ;���= min{^��� − s���, ^��� − s���}  

and  ;��� = max{^��� − s���, ^��� − s���} for all α ∈ [0, 1]. 
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Definition (1.9), [20]:  

Let �@ ∈ [?, A] and h be such that x0+ h∈ �?, A�, then the gH-derivative of a 

function f :(a,b)→ RF at x0 is defined as: 

$Fuv��@� 	= 	 limz→@ �z [$��@ + ℎ�	⊖uv $��@�]                                       …(1.1). 

If $Fuv��@� 	∈ B{ satisfying (1.1) exists, we say that f is gH-differentiable at x0. 

Theorem (1.1), [20]:  

Let f :(a, b)→ RF be such that:  

	$���J =	 [$��, ��, 	$��, ��]. 
Suppose that functions $��, �� and 	$��, �� are real-valued functions, 

differentiability with respect to x, uniformly with respect to α ∈ [0, 1]. Then the 

function $��� is gH-differentiable at a fixed �	 ∈ 	 �?, A� if and only if one of the 

following two cases holds: 

(a) �$�′��, �� is increasing, �$�′��, �� is decreasing as functions of α, and 

�$�′��, 1� ≤ �$�′��, 1�, 
or 

(b)  �$�′��, ��  is decreasing, �$�′��, �� is increasing as functions of α, and 

�$�′��, 1�  ≤ �$�′��, 1�. 
Also, ∀α ∈ [0, 1] we have: 

$uvF ���[�] = ~min ��$�F ��, ��, �$�F��, ��� ,`?� ��$�F ��, ���$�F��, ���	�. 
Definition (1.10), [20]: 

 Let $ ∶ 	 [?, A] 	→ 	B{ and �@ ∈ �?, A� with $��, �� and $��, �� both 

differentiable at �@. 
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− $ is (i)-gH-differentiable at �@ if: 

�2�$uvF ��@�[�] = ~�$�F ��@, ��, �$�F��@, ��	� , ∀� ∈ [0, 1] 
 

− f is (ii)-gH-differentiable at �@ if: 

�22�$uvF ��@�[�] = ~�$�F��@, ��, �$�F ��@, ��	� , ∀� ∈ [0, 1] 
 

It is possible that $ ∶ 	 [?, A] 	→ 	B{ is gH-differentiable at �@ and not (i)-

gHdifferentiable nor (ii)-gH-differentiable. 

 

1.3 Basic Concepts of Calculus of Variation: 

The subjects of calculus of variation is concerned with solving extremal 

problems for a functionals. That is to say the maximum and minimum problems for 

functions whose domain contains functions, %��� (or %��@,··· ���, or n-tuples of 

functions). The range of the functional will be the real numbers B, [13]. 

Definition (1.10), [1]:  

Let B be the set of real numbers and Ω a set of functions. Then the function > ∶ 	Ω → B is called a functional. 

Example (1.6), [13]:  

Given two points �� 	= 	 ���, &��	and	�� =	 ���, &�� in the plane, which are 

joined by a curve &	 = 	$���. The length functional is given by:  

��,��&� = � �1 + �&F��	f������������
�N�/ .  
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The domain is the set of all curves, &��� ∈ 	��, such that: 

&���� = 	&� , 2 = 1,2. 

The minimum problem for ��,�[&] is solved by the straight line segment ����. 

Example (1.7), [1]:  

Let " and ( be two fixed points in a space. Then we want to find the shortest 

distance between these two points. From basic geometry (i.e., Pythagoras 

Theorem), it is know that: 

f<� = 	f�� + f%� 

            = �1 + �%F���	f��                                                                         …(1.2) 

The second line of this is achieved by noting %	′ = 	 ����. Now to find the path 

joining the two points " and (, we integrate ds between " and (, i.e., � f<)� . We 

however replace ds using equation (1.2) and hence get the expression of the length 

of our curve: 

>�&� = ��1 + �&F��	f��
�

 

To find the shortest path, i.e., to minimise >, the extremal function is needed. 

1.3.1 Variational Problem with Simple Form, [14]: 

Setting: 

s�&� = � n��, &���, &F����f��/
��
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and for given &@, &� ∈ B 

% = �&	 ∈ ��[�@, ��]:	&��@� 	= &@, &���� 	= &�� 
where −∞	 < 	�@ 	< �� 	< 	∞ and n is sufficiently regular. One of the basic 

problems in the calculus of variation is 

`2S�∈�	s�&�                                                                                          …(1.3) 

that is, we seek for a function &, such that: 

& ∈ % ∶ s�&�� ≤ s�&��	for	all	&� ∈ % 

 

1.3.2 Euler-Lagrange Equation, [14]:  

All solutions of the variational Problem (1.3) above satisfy the following so-

called Euler-Lagrange equations: 

n���, &, &F� − ff�	n�E��, &, &F� = 0, ∀	� ∈ ��@, ��� 
with the boundary conditions &��@� = 	&@,			&���� = 	&�. 

 

Lemma (1.1), [13]: 

Let X��� ∈ �R[�@, ��], 0 ≤ 	S ≤ ∞. If � X���	¡���f� = 0�/��  for all ¡��� 
such that ¡��@� = 	¡���� = 	0, ¡��� ∈ 	�R,	 on [�@, ��]	then X��� 	= 	0 at all 

points of continuity. 

Theorem (1.2), [1]:  

A necessary condition for >�%� to have an extremum (maximum or 

minimum) at & is: 
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¢> = 〈¤ξ, >F�&�〉 = 0                                                                               …(1.4) 

for all admissible functions §. 

Theorem (1.3), [1]:   

A necessary condition for 

>�&� = � n��, &, &F�f��/
��  

with &��@� = &@and &���� = &�, to have an extremum at & is that y is a solution of 

¨n¨& − ff� ¨n¨&F = 0 

with	�@ < � < �� and n	 = n��, &, &′�. This is known as the Euler-Lagrange 

equation. 
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CHAPTER TWO 

 

Variational Problems with Fuzzy Inte-

grands 

 

2.1 Introduction: 

In this chapter, variational problems with fuzzy function and variational 

problem with fuzzy boundary conditions are investigated. In the second sec-

tion, we will discuss the derivation of Euler-Lagrange equation of uncon-

strained variational problems with fuzzy function, while in the third section, 

we will discuss the derivation of Euler-Lagrange equation of constrained vari-

ational problems with fuzzy function. 

 

2.2 Unconstrained Fuzzy Variational Problems with Fuzzy Func-

tion, [20]: 

Consider the fuzzy variational problem (FVP) with fuzzy function ��: � → �, which is to minimize the functional: ����	 = 	� 
��, ��, �� �	������                                                              … (2.1) 

 

where � and � are subsets of �, �� and �� are crisp fixed points and the 

boundary conditions �����	 = ��� and �����	 = ��� are fixed fuzzy numbers. 

Where the fuzzy curve �� = ����	 is a fuzzy function of � ∈ [��, 	��] 	⊆ � and 

belongs to the class of fuzzy functions with continuous first gH-derivatives 



CHAPTER TWO                                            Variational Problems with Fuzzy Integrands 
 

 

24 

 

with respect to � ∈ [��, 	��] and  F assigns a fuzzy number to the fuzzy point ��, ����	, �� ���		 ∈ 	�� ×	�� × �. We assume that the integrand F has con-

tinuous first and second partial gH-derivatives with respect to all of its argu-

ments. 

The goal of FVP is to find an admissible fuzzy curve ��∗ in a fuzzy 

weak neighborhood, if any exists, such that minimize J. The fuzzy curve ��∗ 	= 	��∗��	 is a minimizing curve for the FVP if for all admissible fuzzy 

curves ��∗  in the fuzzy weak neighborhood, i.e., ����	 ≥ 	����∗	                                                                               … (2.2) 

Now, by using the  −cuts of fuzzy curve ��∗��	, in terms of  �∗��,  	 
and �∗��,  	, by using  −cuts of an arbitrary twice continuously gH-

differentiable fuzzy function #���	 as follows: ���,  	 = �∗��,  	 + %	#��,  	                                                 … (2.3) ���,  	 = �∗��,  	 + %	#��,  	                                                  … (2.4) 

such that ���	& =	 [���,  	, ���,  	] is admissible for any real number % and 

further #����	 ≈ 	 #����	 ≈ 0. Given ε > 0, to be sufficiently small, we are able 

to make ��∗��	 lie in the fuzzy weak neighborhood. 

The inequality (2.2) holds if and only if: ����,  	 ≥ 	 ����∗,  	 and  ����,  	 ≥ 	 ����∗,  	                                … (2.5) 

for all  	 ∈ [0,1]. 
From (2.5), inequality (2.2) holds if and only if the lower and upper-

increments are non-negative (in the sense of α-cuts), that is, ∆	� ,�∗�-,  	, �∗�-,  	,  . = �∆	�, ∆	�	 ≥ �0, 0	                          … (2.6) 

∆	� ,�∗�-,  	, �∗�-,  	,  . = �∆	�, ∆	�	 ≥ �0, 0	                          … (2.7) 

for all  	 ∈ [0,1] and all admissible curve close to �∗. We see that (2.6) and 

(2.7) hold if and only if 
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∆	� = � ,���,  	, �∗��,  	,  . − � ,�∗��,  	, �∗��,  	,  . ≥ 0   … (2.8) 

∆� = � ,�∗��,  	, ���,  	,  . − � ,�∗��,  	, �∗��,  	,  . ≥ 0    … (2.9) 

∆	� = � ,���,  	, �∗��,  	,  . − � ,�∗��,  	, �∗��,  	,  . ≥ 0 … (2.10) 

∆	� = � ,�∗��,  	, ���,  	,  . − � ,�∗��,  	, �∗��,  	,  . ≥ 0 … (2.11) 

and consider only equation (2.8), then by using (2.8) and (2.3), one can easily 

verify that: 

∆	� ,�∗, �∗,  . = � /
 ,�∗ + %	#, ��∗	� + %	#�, �∗, ��∗	�, �,  . −����	
 ,�∗, ��∗	�, �∗, ��∗	�, �,  .0 	��	 ≥ 0                                        … (2.12) 

Corresponding to definition (1.10), the following two cases just can occur: 

Case (i): F is (i)-gH differentiable ((ii)-gH differentiable) with respect to � 

and	��. 
Expanding the integrant 
 ,�∗ + %	#, ��∗	� + %	#�, �∗, ��∗	�, �,  . of (2.12) in 

a Taylor series about the point ,�∗, ��∗	�, �∗, ��∗	�, �,  . gives: 

∆	� ,�∗, �∗,  . = %	�� ,�∗, �∗,  . + %1	�1 ,�∗, �∗,  . + 2�%3	                    … (2.13) 

where; 

�� ,�, �,  . = 4 5# 6
6� + #� 6
6��7����
��  

 

�1 ,�, �,  . = 12	4 5#1 61
6�1 + 2	#	#� 61
6�	�� + �#�	1 	 61
6���	17����
��  

The integral �� ,�, �,  . is called the first variation of �, since it is expressed 

in terms containing the first-order change in � with respect to the defor-

mations y∗ + ϵ	η and �∗ + %	#. Similarly, the integral �1 ,�, �,  . is called the 
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second variation of �. The notation 2�%3	 denotes terms in the expansion of 

order 3 and greater in %. 

By (2.12), the right-hand side of equation (2.13) is non-negative. On 

the other hand, % is an arbitrary and may be positive or negative. Hence, di-

viding the right-hand side of (2.13) by %, the two following inequalities can 

be taken into consideration: 

�� ,�∗, �∗,  . + %	�1 ,�∗, 	�∗,  . + 2�%1	 ≥ 0, <=	% > 0                             … (2.14) 

�� ,�∗, �∗,  . + %	�1 ,�∗, 	�∗,  . + 2�%1	 ≤ 0, <=	% < 0                         … (2.15) 

Now, the two inequalities (2.14) and (2.15) can be reduced to �� ,�∗, �∗,  . ≥ 0 

and �� ,�∗, �∗,  . ≤ 0, respectively, as % approaches zero. This means that: 

�� ,�∗, �∗,  . = 4 A# 6
6� ,�∗, ,�∗.� , �∗, ��∗	�, �,  . + #� 6
6�� 	,�∗, ,�∗.� , �∗, ��∗	�, �,  .B����
��  

= 0                                                                                                             … (2.16) 

for all admissible #��,  	. Since #���,  	 = #���,  	 = 0, solving integral 

involves integration by part, the equation (2.16) becomes: 

4
CD
E#F6
6� ,�∗, ,�∗.� , �∗, ��∗	�, �,  . − ��� A6
6�� 	,�∗, ,�∗.� , �∗, ��∗	�, �,  .BGHI

J����
��  

= 0                                                                                     … (2.17) 

for all admissible #��,  	. 
Applying lemma (1.1) to equation (2.17), we have: 

K�KL ,�∗, ,�∗.� , �∗, ��∗	�, �,  . − MM� 5 K�KLN 	,�∗, ,�∗.� , �∗, ��∗	�, �,  .7 = 0 … (2.18) 

Following the scheme of obtaining (2.18) and adapting it to the cases (2.9), 

(2.10) and (2.11), one can easily show that: 6
6� ,�∗, ,�∗.� , �∗, ��∗	�, �,  . − ��� O6
6�� 	,�∗, ,�∗.� , �∗, ��∗	�, �,  .P = 0 
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6
6� ,�∗, ,�∗.� , �∗, ��∗	�, �,  . − ��� A6
6�� 	,�∗, ,�∗.� , �∗, ��∗	�, �,  .B = 0 

6
6� ,�∗, ,�∗.� , �∗, ��∗	�, �,  . − ��� A6
6�� 	,�∗, ,�∗.� , �∗, ��∗	�, �,  .B = 0 

Case (ii): F is (i)-gH differentiable ((ii)-gH differentiable) with respect to y 

and (ii)-gH differentiable ((i)-gH differentiable) with respect to ��. 
Similar the procedure of obtaining the fuzzy Euler-Lagrange conditions 

for case (i), one can show that the conditions for this case are: 

K�KL ,�∗, ,�∗.� , �∗, ��∗	�, �,  . − MM� 5 K�KLN 	,�∗, ,�∗.� , �∗, ��∗	�, �,  .7 = 0   … (2.19) 

K�KL ,�∗, ,�∗.� , �∗, ��∗	�, �,  . − MM� 5 K�KLN 	,�∗, ,�∗.� , �∗, ��∗	�, �,  .7 = 0 … (2.20) 

K�KL ,�∗, ,�∗.� , �∗, ��∗	�, �,  . − MM� 5 K�KLN 	,�∗, ,�∗.� , �∗, ��∗	�, �,  .7 = 0   … (2.21) 

K�KL ,�∗, ,�∗.� , �∗, ��∗	�, �,  . − MM� 5 K�KLN 	,�∗, ,�∗.� , �∗, ��∗	�, �,  .7 = 0 … (2.22) 

Now, we consider the following example as an illustration: 

 

Example (2.1): 

Find the minimum of: 

����	 = 	4 −	��� �	1���
�  

with: ���0	 ≈ 2Q = 〈0, 2, 4〉, ���1	 ≈ 4Q = 〈2, 4, 6〉 
 

First from the  −level set of �, we get: 

����	& = VJ��,  	, J��,  	X = 4 V−	���	1, −	���	1X 	����
��  

And therefore the integrand is: 
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��, ��	, �� �	& = Y
��, ��	, �� �	, 
��, ��	, �� �	Z = V−	���	1, −	���	1X 
and hence: 
LN ��, �	, ��	 = −2����,  	, 


L ,�, �	, ��. = 0 

 


LN[�, �	, ��\ = −2����,  	, 

L [�, �	, ��\ = 0 

Suppose that case (ii) is satisfied in ���	, i.e., F is (i)-gH differentiable ((ii)-

gH differentiable) with respect to y and (ii)-gH differentiable ((i)-gH differen-

tiable) with respect to ��. 
Using the fuzzy Euler-Lagrange equations given by (2.19) and (2.20): 

− ��� /−2�′��,  	0 = 0 

− ��� ,−2�′��,  	. = 0 

by solving this differential equations, one may get: ���,  	 = ^�	� + ^1 ���,  	 = ^�	� + ^1 

By representing the endpoint conditions in its the  −cut sets: 

2& = [2α	, 2 1

α

] 
4& = [4α	, 4 1

α

] 
using the endpoint conditions, we have: ���,  	 = 2 	� + 2  
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���,  	 = 2 	� + 2  

and at  = 1, ���, 1	 = ���, 1	 = 2� + 2. 

Then: 

���	& = V���,  	, ���,  	X = _2 	� + 2 , 2 	� + 2 ` 
that defines the α-level sets of a fuzzy number which minimizes J in the fuzzy 

sense. 

 

2.3 Constrained Fuzzy Variational Problem with Fuzzy Function, 

[20]: 

The problem involving minimization of a fuzzy functional with fuzzy integral 

constraints is called the constrained fuzzy variational problem and it is stated 

as follows: 

Minimize		����	 = 	� 
��, ��, �� �	������  

Subject to a���	 = 	� b��, ��, �� �	������ ≈ ^ �����	 ≈ ���, �����	 ≈ ��� 

 

where ^ is a given fuzzy number. 

For constrained fuzzy variational problems consider the following de-

formations of the α−cuts of fuzzy curve �∗ by taking into consideration 

α−cuts of an arbitrary twice continuously gH-differentiable fuzzy function c�-	 as: ���,  	 = �∗��,  	 + %	c��,  	                                                 … (2.23)                     

���,  	 = �∗��,  	 + %	c��,  	                                                 … (2.24) 
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where ϵ is a small real number and c�-	 	= 	d#�-	 + ef�-	. In the last equa-

tion d, e are real constants and the arbitrary independent fuzzy functions #�-	 
and f�-	 vanish in the fuzzy sense at the endpoints. 

Since a is equal to the fuzzy number c, therefore its increment is identi-

cally zero, particularly, the first variation must be zero. According to defini-

tion (1.10), and therefore, eight cases can be occur. 

Case (i): 
 and b are both (i)-gH differentiable ((ii)-gH differentiable) with 

respect to � and ��. In this case, for all  	 ∈ 	 [0, 1], we have: 

� 	5c KgKL ,�∗, ,�∗.� , �∗, ��∗	�, �,  . + c� KgKLN 	,�∗, ,�∗.� , �∗, ��∗	�, �,  .7�� = 0����          … (2.25) 

� 5c KgKL ,�∗, ,�∗.� , �∗, ��∗	�, �,  . + c� KgKLN 	,�∗, ,�∗.� , �∗, ��∗	�, �,  .7������ = 0          … (2.26) 

� 5c KgKL ,�∗, ,�∗.� , �∗, ��∗	�, �,  . + c� KgKLN 	,�∗, ,�∗.� , �∗, ��∗	�, �,  .7������ = 0          … (2.27) 

� 5c KgKL ,�∗, ,�∗.� , �∗, ��∗	�, �,  . + c� KgKLN 	,�∗, ,�∗.� , �∗, ��∗	�, �,  .7������ = 0          … (2.28) 

 

Consider only equation (2.25) and by integrating by parts, the terms 

involving c� and letting c�-	 	= 	d#�-	 + ef�-	, we may find that: 

4 	F/d#�-	 + ef�-	0 h6b6� ,�∗, ,�∗.� , �∗, ��∗	�, �,  . + ��� A6b6�� 	,�∗, ,�∗.� , �∗, ��∗	�, �,  .BiG����
��  

= 0                                                                                                                          … (2.29) 

Let us define the fuzzy operator j�∗	 as: 

j�∗	 = K∗KL − MM� / K∗KLN0                                                                 … (2.30) 

Hence, we see that (2.25) can be written as: 

� 	/d#�-	 + ef�-	0 j[b\	������ = 0                                          … (2.31) 
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Observe that �∗ is not the minimizer of a therefore, 

j�b ,�∗, ,�∗.� , �∗, ��∗	�, �,  .	. Furthermore, for any #, f, the constants d, e are 

related together by (2.27). 

The assumption that �∗ is the minimizer of � grantees the increment of � must 

be non-negative in the fuzzy sense with respect to the deformation given in 

(2.19). 

Consequently, the first variation is zero and after integrating by parts, it holds 

that: 

� 	/d#�-	 + ef�-	0 j[
\	������ = 0                                          … (2.32) 

 

where d, e are those satisfy (2.31). Solving by elimination d and e between 

(2.31) and (2.32), for every independent and twice continuously differentia-

ble functions # and f, one can show that: 

� k	l[�\	M�m�m�� k	l[g\	M�m�m� = � n	l[�\	M�m�m�� n	l[g\	M�m�m�                                                           … (2.33) 

 

Introducing the constant −o� = −o�� 	which is equal to both sides of the 

equality in (2.33) gives that: 

� #	j 	5
 ,�∗, ,�∗.� , �∗, ��∗	�, �,  . + o�� 	b ,�∗, ,�∗.� , �∗, ��∗	�, �,  .7���� �� = 0  … (2.34) 

for any admissible # = 	 #��,  	. 
Applying Lemma 1.1, we derive from (2.34) that: 

j	5
 ,�∗, ��∗	�, , �∗, ��∗	�, �,  . + o� 	b ,�∗, ,�∗.� , �∗, ��∗	�, �,  .7 = 0         … (2.35) 

 

Taking into account the structure of j in (2.30), we get from (2.31) that: 
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KKL /
�p	 + o1b�p	0 − MM� 5 KKLN /
�p	 + o1b�p	07 = 0                … (2.36) 

where p = ��∗, ��∗	′, �∗, ��∗	′, �,  	. 
Now following the scheme of obtaining (2.36) and adapting it to the 

case under consideration involving (2.26), (2.27) and (2.28), it may be shown 

that: 

KKL ,
�p	 + o1b�p	. − MM� 5 KKLN ,
�p	 + o1b�p	.7 = 0                            … (2.37) 

KKL ,
�p	 + o1b�p	. − MM� 5 KKLN ,
�p	 + o1b�p	.7 = 0                            … (2.38) 

KKL ,
�p	 + o�b�p	. − MM� 5 KKLN ,
�p	 + o�b�p	.7 = 0                             … (2.39) 

Following the scheme of obtaining the Euler-Lagrange conditions for case (i), 

one can show that these conditions for other cases are as follows: 

Case (ii): H, F with respect to � and F  with respect to �� are both (i)-gH dif-

ferentiable ((ii)-gH differentiable) and H is (ii)-gH differentiable ((i)-gH dif-

ferentiable) with respect to ��. 
KKL /
�p	 + o�b�p	0 − MM� 5 KKLN /
�p	 + o�b�p	07 = 0                              … (2.40) 

KKL ,
�p	 + o1b�p	. − MM� 5 KKLN ,
�p	 + o1b�p	.7 = 0                              … (2.41) 

KKL ,
�p	 + o1b�p	. − MM� 5 KKLN ,
�p	 + o1b�p	.7 = 0                             … (2.42) 

KKL ,
�p	 + o�b�p	. − MM� 5 KKLN ,
�p	 + o�b�p	.7 = 0                              … (2.43) 

Case (iii): H with respect to � and �� is (ii)-gH differentiable ((i)-gH differ-

entiable) and F is (i)-gH differentiable ((ii)-gH differentiable) with respect to � and �� . 
KKL /
�p	 + o�b�p	0 − MM� 5 KKLN /
�p	 + o�b�p	07 = 0                              … (2.44) 
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KKL ,
�p	 + o1b�p	. − MM� 5 KKLN ,
�p	 + o1b�p	.7 = 0                              … (2.45) 

KKL ,
�p	 + o1b�p	. − MM� 5 KKLN ,
�p	 + o1b�p	.7 = 0                             … (2.46) 

KKL ,
�p	 + o�b�p	. − MM� 5 KKLN ,
�p	 + o�b�p	.7 = 0                              … (2.47) 

Case (iv): H, F with respect to �� and F with respect to � are both (i)-gH dif-

ferentiable ((ii)-gH differentiable) and H is (ii)-gH differentiable ((i)-gH dif-

ferentiable) with respect to �. 

KKL /
�p	 + o�b�p	0 − MM� 5 KKLN /
�p	 + o�b�p	07 = 0                              … (2.48) 

KKL ,
�p	 + o1b�p	. − MM� 5 KKLN ,
�p	 + o1b�p	.7 = 0                              … (2.49) 

KKL ,
�p	 + o1b�p	. − MM� 5 KKLN ,
�p	 + o1b�p	.7 = 0                             … (2.50) 

KKL ,
�p	 + o�b�p	. − MM� 5 KKLN ,
�p	 + o�b�p	.7 = 0                              … (2.51) 

Case (v): H, F with respect to � and H with respect to �� are both (i)-gH dif-

ferentiable ((ii)-gH differentiable) and F is (ii)-gH differentiable ((i)-gH dif-

ferentiable) with respect to ��. 
KKL /
�p	 + o�b�p	0 − MM� 5 KKLN /
�p	 + o�b�p	07 = 0                              … (2.52) 

KKL ,
�p	 + o1b�p	. − MM� 5 KKLN ,
�p	 + o1b�p	.7 = 0                              … (2.53) 

KKL ,
�p	 + o1b�p	. − MM� 5 KKLN ,
�p	 + o1b�p	.7 = 0                             … (2.54) 

KKL ,
�p	 + o�b�p	. − MM� 5 KKLN ,
�p	 + o�b�p	.7 = 0                              … (2.55) 

Case (vi): H, F with respect to � are both (i)-gH differentiable ((ii)-gH differ-

entiable) and H, F are both (ii)-gH differentiable ((i)-gH differentiable) with 

respect to ��. 
KKL /
�p	 + o�b�p	0 − MM� 5 KKLN /
�p	 + o�b�p	07 = 0                              … (2.56) 
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KKL ,
�p	 + o1b�p	. − MM� 5 KKLN ,
�p	 + o1b�p	.7 = 0                              … (2.57) 

KKL ,
�p	 + o1b�p	. − MM� 5 KKLN ,
�p	 + o1b�p	.7 = 0                             … (2.58) 

KKL ,
�p	 + o�b�p	. − MM� 5 KKLN ,
�p	 + o�b�p	.7 = 0                              … (2.59) 

Case (vii): H with respect to �� and F with respect to y are both (i)-gH differ-

entiable ((ii)-gH differentiable) and H with respect to y and F with respect to ��  are both (ii)-gH differentiable ((i)-gH differentiable). 

KKL /
�p	 + o�b�p	0 − MM� 5 KKLN /
�p	 + o�b�p	07 = 0                              … (2.60) 

KKL ,
�p	 + o1b�p	. − MM� 5 KKLN ,
�p	 + o1b�p	.7 = 0                              … (2.61) 

KKL ,
�p	 + o1b�p	. − MM� 5 KKLN ,
�p	 + o1b�p	.7 = 0                             … (2.62) 

KKL ,
�p	 + o�b�p	. − MM� 5 KKLN ,
�p	 + o�b�p	.7 = 0                              … (2.63) 

Case (viii): F with respect to � is (i)-gH differentiable ((ii)-gH differentiable) 

and H, F with respect to �� and H with respect to � are both (ii)-gH differen-

tiable ((i)-gH differentiable). 

KKL /
�p	 + o�b�p	0 − MM� 5 KKLN /
�p	 + o�b�p	07 = 0                              … (2.64) 

KKL ,
�p	 + o1b�p	. − MM� 5 KKLN ,
�p	 + o1b�p	.7 = 0                              … (2.65) 

KKL ,
�p	 + o1b�p	. − MM� 5 KKLN ,
�p	 + o1b�p	.7 = 0                             … (2.66) 

KKL ,
�p	 + o�b�p	. − MM� 5 KKLN ,
�p	 + o�b�p	.7 = 0                              … (2.67) 

As an illustration, we consider the following example, [20]: 
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Example (2.2): 

Find the minimum of: 

����	 = 	4 −	��� �	1���
�  

Subject to 

a���	 = 	4 ����	���
� ≈ ^ = 〈0, 1, 3〉 

���0	 ≈ 2Q = 〈0, 2, 4〉, ���1	 ≈ 4Q = 〈2, 4, 6〉 
In order to find the optimal solution of the above problem, it suffices to find 

the optimal solution of: 

J���	 = 	� �−	��� �	1 + o	����		����  

given that: ���0	 ≈ 2Q = 〈0, 2, 4〉, ���1	 ≈ 4Q = 〈2, 4, 6〉 
We first derive the α-level set of J as follows: 

���	& = � _−	[�′\2��,  	 + o� 		���,  	, −	,�′.2 ��,  	 + o� 		���,  	` 	��10               … (2.68) 

We have 
 = −	��� �	1 and b =	����	. Suppose that case (i) is fulfilled in this 

constrained fuzzy variational problem, i.e., F and H are (i)-gH differentiable 

((ii)-gH differentiable) with respect to � and ��. Using equation (2.34) for 

equation (2.68), we have ,���.1 ��,  	 = 0. Hence, by virtue of the classical 

differential equation theory, we may solve it analytically for fixed  ∈ [0,1] 
to get: ���,  	 = r�� + r1 

Here, the constants of integration, i.e., r� and r1, might be given by the end-

point conditions, so: ���,  	 = 2� + 2  
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On the other hand, in view of < 0,1,3 >[&]=	 [ , 3 − 	2 ], the above left-

hand endpoint of the α-level set of extremal must satisfy the fuzzy constraint a��	. That is: 

4 �2� + 2 		�� =  �
�  

which is contradiction with  ∈ [0,1].	Then this problem has no solution with 

Euler-Lagrange conditions obtained in. 

In case (ii), by using (2.37), we have ,���.1 ��,  	 = 0. Similar previous case, 

we cannot find the solution of problem. 

Now, suppose that H with respect to � and �� be (ii)-gH differentiable 

((i)-gH differentiable) and F be (i)-gH differentiable ((ii)-gH differentiable) 

with respect to � and �� (according to case (iii)). In this case, the fuzzy Euler-

Lagrange conditions (2.44), (2.45), (2.46) and (2.47) say: 

o1� 	 − ��� ,−2����,  	. = 0 

o1� 	 − ��� /−2����,  	0 = 0 

From the classical differential equation theory and the endpoint conditions, 

we have: 

���,  	 = − tu�&	v �1 + /2 + tu�&	v 0 � + 4 − 2                         … (2.69) 

���,  	 = − tu�&	v �1 + ,2 + tu�&	v . � + 4 − 2                         … (2.70) 

Now by virtue of < 0,1,3 > [ ] = [ , 3 − 2 ] and the fact that the 

above left-hand and right-hand endpoints of α-level set of extremal must sat-

isfy the fuzzy constraint a��	, o1� 	, o1� 	 are determined by considering: 

3 − 2 = 4 5−o1� 	4 �1 + 52 + o1� 	4 7� + 4 − 2 7 	���
�  
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 = 4 5−o1� 	4 �1 + 52 + o1� 	4 7� + 2 7 	���
�  

which result in o1� 	 − 48 and o1� 	 = −24� + 1	. According to this re-

sults (2.68) and (2.69) turn to: ���,  	 = 12�1 − 10� + 4 − 2  ���,  	 = 6� + 1	�1 − �4 + 6 	� + 2 	
One can easily show that: 6���,  	6 = −2 ≤ 0, ∀� ∈ [0, 1] 6���,  	6 = 6�1 − 6� + 2 ≥ 0, ∀� ∈ [0, 1] 
that is, ���,  	 and ���,  	 are continuous nonincreasing and nondecreasing 

functions of α respectively. 

Moreover, for all 0 ≤ 	 ≤ 	1, ���, 1	 = 12�1 − 10� + 2, 

And ���, 1	 = 12�1 − 10� + 2 

Hence, it holds ���, 1	 = ���, 1	. 
Consequently, � parameterized by: 

���	& = V���,  	, ���,  	X = [6� + 1	�1 − �4 + 6 	� + 2 , 12�1 − 10� + 4 − 2 ] 
that defines α-level set of a fuzzy function which minimizes J in the fuzzy 

sense. 
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CHAPTER THREE 

 

Variational Problems with Fuzzy Boundary 

Conditions 

3.1 Introduction: 

           In this chapter, the variational problems with fuzzy boundary conditions is 

investigated. In second section the Euler-Lagrange equation of such type of 

problems have been studied. In third section the centroid method for defuzzification 

have been discussed. In forth section the expected interval method is also discussed. 

In fifth section the centroid point method for defuzzification is introduced explained 

discussed with an illustrative example. 

 

3.2 Fuzzy Variational Problem:  

          Consider the problem of minimizing the fuzzy functional: 

���� = 	� ��	, �, ����	
��
��                                                                 … (3.1) 

and 	�� or  	�� are fuzzy numbers with fuzzy boundary conditions: 

��	��� = ���, ��	��� = ��� 

where � is real valued function. 
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For simplicity, it is assumed that one of the boundaries 	�� or 	��, for instance, 	�� is fixed non fuzzy number while the other end point 	��is a fuzzy number. 

Consider the following well-known description of a fuzzy number 	��: 

	���	� = � ���	�, �� ≤ 	 ≤ ��1									, �� ≤ 	 ≤ �����	�, �� ≤ 	 ≤ ��0									, ��ℎ� !"#�  

where ��, ��, ��, �� ∈ %, ��: '��, ��( → '0, 1( is nondecreasing upper semi-

continuous function, ������ = 0, ������ = 1, called the left side of the fuzzy 

number and  ��: '��, ��( → '0, 1( is nonincreasing upper semi-continuous function, ������ = 1, ������ = 0, called the right side of the fuzzy number. 

We transform the fuzzy number 	�� into a crisp number by using many 

approaches that will be explained next. 

Fuzzy numbers may be also represented using the * −cut or * −level sets 

and for this purpose, we represent 	�� in a parametric form where 	�� ='	��*�, 	��*�(, where 	��*� and 	��*� are the endpoints of the *-level set and * ∈'0, 1(. In case of the trapezoidal fuzzy number 	��=[x, y,,, -] with , > 0 and - > 0. 

The parametric form of 	�� is:  

	��*� = 	 − , + ,*, 
        	��*� = � + - − -* 

where * ∈ '0, 1( provided that if x = y then 	�� is a triangular fuzzy number, and we 

write 	�� = '	, ,, -(. Also, by setting the value of	*, we obtain the crisp value of 

lower and upper bounds 	��*�	and		��*� which are corresponding to 	��. 
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3.3 The Centroid Method for Defuzzification, [9]: 

 The centroid method is the most popular method for defuzzification, i.e., 

transforming fuzzy problems into nonfuzzy problems. 

This method determines the center of the area of the combined membership 

functions. 

We use this approach when the fuzzy number 	�� is the union of two or more 

fuzzy numbers. So, the fuzzy number 	�� = '�1, �2, �3, �4( will be transformed 

into a crisp number 	∗, by using the centroid method as follows: 

	∗ = � 	789��
�	
	:
89�� 	789��
�		:
89� , �� ≤ 	 ≤ ��                                                   … (3.2) 

where  �
�� means that the integration of the membership function is carried over 

each line segment of the produced union fuzzy number. 

Now, equation (3.1) can be solved by the same as in the problem presented in 

chapter two. 

Example (3.1): 

Find the minimum of the functional: ���� = 	� 	−�����	�	
���                                                                          … (3.3) 

with 

��0� ≈ 2< = 〈0, 2, 4〉,				��	��� ≈ 4< = 〈2, 4, 6〉 
with 	�� = @A� ∪ @A� ∪ @A�, where @A� =< 0, 1, 4, 5 >, @A� =< 3, 4, 6, 7 >,  

@A� =< 5, 6, 7, 8 >, then: 
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	∗ = � 	G
���	�	�	��
��� 	G
���	�		��
��
, 0 ≤ 	 ≤ 8 

	∗ = HI �0.3		�	�	 +�
� I �0.3		�	�	 +�.K

� I L	 − 32 M 	�	 +�
�.K I �0.5�	�	N.N

�
+I �	 − 5�	�	 +K

N.N I 	�	 +O
K I �8 − 	�	�	P

O Q 
÷ HI �0.3		��	 +�

� I �0.3��	 +�.K
� I L	 − 32 M�	 +�

�.K I �0.5��	 +N.N
� I �	 − 5�	�	K

N.N
+I �	 +O

K I �8 − 	��	P
O Q = 4.9 

By representing the endpoint conditions in its * −cut sets: 

2T = '2α, 2 1

α

( 

				G  

  1  

 .5 

 

 .3       

 

 

    1       2       3       4    	∗
5       6       7        8 

Figure (3.1) Membership function of example (3.1) 
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4T = '4α, 4 1

α

( 
using 	∗ which is a crisp number, then equation (3.3) becomes: 

���� = 	I 	−�����	�	�.U
�  

with 

	��0� ≈ 2<,				��4.9� ≈ 4<  

then the Euler-Lagrange equation is: 

2����	� = 0 

then: 

��	� = V�		 + V� 

Using the boundary conditions: 

��0,α� = V� = 2α	 
��0,α� = V� = 2 1* 

and; 

 ��4.9,α� = V��4.9� + 2α	 = 4α	 
V� = 0.41α 

��4.9,α� = V��4.9� + 2 1

α

	 = 4	 1

α

	 
V� = 0.41 1

α
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hence: 

��	, *� = 0.41α		 + 2α	 
��	, *� = 0.41 1

α
		 + 2 1

α

	 
Then: 

��	�T = W��	, *�, ��	, *�	X = H0.41α		 + 2α	, 0.41 1
α
		 + 2 1

α

	Q 
defines the α-level sets of a fuzzy function which minimizes �. 
3.4 The Expected Interval for Defuzzification, [26]: 

 The interval of defuzification can be used as a crisp approximation set with 

respect to a fuzzy number or any fuzzy quantity. 

The *-cut of a fuzzy number 	�� (for simplicity set @ = 	��) is: 

@T = Y@�*�, @�*�Z, 
where * ∈ '0, 1( and : 

@ = "[\]	 ∈ %: G^ ≥ *`, 
@ = #ab]	 ∈ %: G^ ≥ *`, 
The expected interval cd�@� of a fuzzy number @ is defined by: 

cd�@� = 'c∗�@�, c∗�@�( = '� @�*�	�*,�� 	� @�*�	�*�� (                              



CHAPTER THREE                                                                Variational Problems with Fuzzy Boundary Conditions 

 

44 

 

Fuzzy numbers with simple membership functions are preferred in practice. 

The most used such fuzzy numbers are the trapezoidal fuzzy numbers. A 

trapezoidal fuzzy number T, eT = Ye�*�, e�*�Z, * ∈ '0, 1(, is given by: 

e�*� = 	� + �	� − 	��*,	 
and 

e�*� = 	� + �	� − 	��*,	 
where 	�, 	�, 	�, 	� ∈ %, 	� ≤ 	� ≤		� ≤ 	�. When 	� = 	�, we obtain a triangular 

fuzzy number. We denote: 

e = '	�, 	�, 	�, 	�(, 
to be a trapezoidal fuzzy number and by �f�%� the set of all trapezoidal fuzzy 

numbers. The expected interval for a trapezoidal fuzzy number e is: 

cd�e� = W
�g
h� , 
ig
j� 		X                                                                         … (3.4) 

and by using (3.4), problem (3.3) can be solved. 

 

Example (3.2): 

Find the minimum of: 

���� = 	I −�����	�	
��
�  

with 

	��0� ≈ 2<,				��	��� ≈ 4<  
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where 	�� = '0, 1, 3, 4( is a trapezoidal fuzzy number. 

cd�	��� = k	0 + 12 , 3 + 42 		l = k	12 , 72	l 
using cd�	��� which is a crisp number, then equation (3.3) becomes: 

���� = 	I 	−�����	�	�.N
�  

with 

�T�0� ≈ 2T ≈ 'α	2, 1

α

	2(,				�T�	��� ≈ k� L12M , � L72Ml ≈ 4T ≈ 'α	4, 1

α

	4( 
then the Euler-Lagrange equation is: 

2����	� = 0 

then: 

��	� = V�		 + V� 

Using the boundary conditions: 

��0,α� = V� = 2α	 
��0,α� = V� = 2 1

α

 

and; 

 � m�� ,αn = V� m��n + 2α	 = 4α	 
V� = 4* 
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� L72 ,αM = V� L72M + 2 1

α

	 = 4	 1

α

	 
V� = 47 	* 

hence: 

��	, *� = 4α		 + 2α	 
��	, *� = 0.6 1

α
		 + 2 1

α

	 
Then: 

��	�T = W��	, *�, ��	, *�	X = H4α		 + 2α	, 0.6 1
α
		 + 2 1

α

	Q 
defines the α-level sets of a fuzzy function which minimizes �. 
 

3.5 Centroid Point Method for Defuzzification, [25]: 

 This method is used for extended fuzzy number. An extended fuzzy number @A is described as any fuzzy subset of the universe set o with membership function G <̂ defined as follow: 

• G <̂ is a continuous mapping from o to the closed interval '0,!(, 0 < ! ≤ 1.   

• G <̂�	� = 0, for all 	 ∈ �−∞, ��(. 
• G <̂ is strictly increasing between '��, ��(. 
• G <̂�	� = !, for all 	 ∈ '��, ��(, ! is a constant and 0 < ! ≤ 1. 

• G <̂ is strictly decreasing between '��, ��(. 
• G <̂�	� = 0, for all 	 ∈ '��, +∞(. 
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In the above situations ��, ��, �� and �� are real numbers. If �� = �� =	�� =	��, @A becomes a crisp real number. 

The membership function G <̂ of the extended fuzzy number @A may be 

expressed as: 

G <̂ =
qrs
rt\̂<u�	�, !ℎ�[	�� ≤ 	 ≤ 	��!, !ℎ�[	�� ≤ 	 ≤ 	��\̂<v�	�, !ℎ�[	�� ≤ 	 ≤ 	��0,																									��ℎ� !"#�  

where \̂<u�	�: '��, ��( ⟶ '0,!( and \̂<v�	�: '��, ��( ⟶ '0,!(. Based on the basic 

theories of fuzzy numbers, is a normal fuzzy number if ! = 1, whereas @A is a non-

normal fuzzy number if 0 < ! ≤ 1. Therefore, the extended fuzzy number @A can 

be denoted as '��, ��, ��, ��; !(. The image −@A of @A can be expressed by '−��, −��, −��, −��; !(. 
If 	�� is extended fuzzy number, let y
��u ���: '0, !( → '��, ��( and y
��v ���: '0, !( → '��, ��( be the inverse functions of \
��u 	and	\
��v , respectively. Then y
��u ��� and y
��v ��� should be integrable on the closed interval '0, !(. In the other 

words, both � y
��u ���	��z� 	and � y
��v ���	��z�  should exist. 

In the case of trapezoidal fuzzy number, the inverse functions y
��u ��� and y
��v ��� can be analytically expressed as: 

y
��u ��� = �� + ��� − ����! , 0 ≤ � ≤ ! 

y
��v ��� = �� + �{j|{i�	}z , 0 ≤ � ≤ !. 

In order to determine the centroid point (	��	���, ���	���) of a fuzzy number 	��. 

provided the following centroid formulae, [23]: 
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	��	��� = � 
	~89�� �
�	:
g� �
	z�	:
g� 
	~89�� �
�	:
�j�i�i�h�h��� 	~89�� �
�	:
g� �z�	:
g� 	~89�� �
�	:
�j�i�i�h�h�� 																							               … (3.5) 

���	��� = � }m�89�� �}�|�89�� �}�	n:}��� m�89�� �}�|�89�� �}�	n:}��                                                               … (3.6) 

 For this trapezoidal fuzzy number, the following results are derived from (3.5) and 

(3.6), 

	� = �� 	W�� + �� + �� + �� − {j{i|{�{h�{jg{i�|�{��{h�X                                     … (3.7) 

�� = ! �� 	 W1 + {i|{h�{jg{i�|�{��{h�X                                                              … (3.8) 

So, by using the results of (3.7) and (3.8), we can solve equation (3.3) by the same 

way as in chapter two. 

 

Example (3.3): 

Find the minimum of the functional: 

���� = 	I −�����	�	
��
�  

with 

	��0� = ��,				��	��� = �� 

where 	�� = '0, 1, 3, 4; 1( is a trapezoidal fuzzy number, then the centroid point 

(	��	���, ���	���) of a fuzzy number 	�� is: 

	� = 13	k�� + �� + �� + �� − ���� − ������� + ��� − ���|���l 
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= 13 H0 + 1 + 3 + 4 − �4��3� − �0��1��4 + 3� − �0 + 1�Q = 3.33 

�� = ! 13	k1 + �� − ����� + ��� − ���|���l 
= �1� 13	k1 + 3 − 1�4 + 3� − �0 − 1�l = 0.42 

Now, using the centroid point (3.33, 0.42) of a fuzzy number 	��, equation 

(3.3) can be solve as in chapter two. 

using 	∗ which is a crisp number, then equation (3.3) becomes: 

���� = 	I 	−�����	�	�.�
�  

with 

��0� ≈ 2<,				��3.33� ≈ 4<  

then the Euler-Lagrange equation is: 

2����	� = 0 

then: 

��	� = V�		 + V� 

Using the boundary conditions: 

��0,α� = V� = 2α	 
��0,α� = V� = 2 1* 

and; 
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 ��3.33,α� = V��3.33� + 2α	 = 4α	 
V� = 1.2α 

��3.33,α� = V��3.33� + 2 1

α

	 = 4	 1

α

	 
V� = 0.6 1

α
 

hence: 

��	, *� = 1.2α		 + 2α	 
��	, *� = 0.6 1

α
		 + 2 1

α

	 
Then: 

��	�T = W��	, *�, ��	, *�	X = �1.2α		 + 2α	, 0.6 1
α
		 + 2 1

α

	� 
defines the α-level sets of a fuzzy function which minimizes �. 
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From the present study, we can conclude the following: 

1. As it is expected, there is a very strong relationship between fuzzy 

variational problems and it level sets in ordinary form (parametric 

form). 

2. The validity of the results obtained by solving the Euler-Lagrange 

equation may be checked by setting α = 1 in the α-level of solution of 

related to the fuzzy solution, in which the upper and lower solutions 

must be equal when setting α = 1. The crisp solution may be obtained 

from the fuzzy solution, by setting α = 1 in the α-level solution related 

to the fuzzy solution. 

3. Fuzzy variational problems may be considered as a generalization to 

the nonfuzzy variational problems. 

 

Also, we can recommend the following for future work: 

1. Studying real life problems, in which the governing mathematical 

modeling is fuzzy variational problems. 

2. Studying fuzzy variational problems using other definition for 

differentiation. 

3. Solving non-linear fuzzy variational problems using variational 

approach. 

4. Solving fuzzy variational problems with moving boundaries. 
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�ب �� ��ث ا���ھ�ت: ا��دف ا�ول ھو درا	� �ظر�� ا�� ��ھداف ا�ر"�	�� ��ذه ا�طرو

  ا�%��%�+ ا�,*�*�� %+ *(ض ا�%'�ھ�م ا�	�	�� ��ظر�� %	�"ل ا��$��ر.

ا��دف ا����� ھو درا	� %	�"ل ا��$��ر ذات ا�دوال ا�,*�*�� وا�-روط ا�,*�*�� وا��دود 

 ��1�1�ا�,*�*�� *�	�/دام طرق %/�.'� طر�ق:  �ل ا�%��ل2.3 	* ���و�ل ا�%��%�+ ا�,*�*�� ا�2 %��%�+ 

−7ط+(ا�%ر6ز��، ال �( ،.� ا��1ط� ا�%ر6ز��، ا�'�ره ا�%�و7(

ا��دف ا����ث ھو ا���د ا��.ول �%	�"ل ا��$��ر ا�,*�*�� ذات ا�دوال ا�,*�*�� و ا��دود 

.� ا�,*�*�




��ــور	� ا��ــراق 

  وزارة ا����	م ا����� وا���ث ا�����

ــــ���ـ� ا���ــــــر	ــن  

  ��	ــ� ا���وم
�م ا�ر	ـ� 	�ت و�ط�	��ت ا����وب!  
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