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Abstract

The interacting boson model (IBM) has been used to make a
schematic study of (Y218Hf and 8-1%0\W) isotopes. For each isotope of
Hafnium and Tungsten determined the values of the parameters in the
Hamiltonian of IBM-1 and IBM-2, which satisfied the best fit to the
experimental datafor energy levels. Beside on these values, can extrapolate
to isotopes are extrapolated for which no experimental data founded and
can make predictions for future experiments. We obtain the
el ectromagnetic transition probability B (E2) and B (M1) by using the same
values of these parameters for each isotope to, quadrupole moments for

first and second excited states, mixing ratios d(E2/M1) and monopole

transition probabilities B (EO), isomer and isotopic shifts and two neutron
boson separation energy. Where our results had good agreement with the
experimental data in general, athough more experimental data we needed
for the nuclear properties. The long range goa is to understand the origin
of the IBM-1 and IBM-2 parameters in terms of a microscopic theory, such
as nuclear shell and Nillson models.

Results of schematic calculations are presented in various terms of
F-spin symmetry in the Hamiltonian of the IBM-2. Specific attention is
paid to the effect of F-spin symmetry breaking on gamma to ground and
gamma to gamma M1 transition in deformed nuclei. A comparison with
available magnetic dipole moment transition probability M1 data in
deformed nuclei is presented. The constraints implicit by these data on the
form of IBM-2 Hamiltonian in deformed nuclei are discussed.

Mixed symmetry states are also studied. It is found that some of the
mixed symmetry states with moderate high spins change very fast with
respect to Magjorana interaction. Under known conditions, they become the
yrast state or yrare state. These states are difficult to decay and become
very stable. This study suggests that a possible new mode of isomers may

X



exist due to the special nature in their proton and neutron degrees of
freedom for these isotopes.
The mixed-symmetry 2;,2;,2;,3; and 1',states or at least a

fragment of it, have been identified in Hf and W isotopes. This enable usto
trace the evolution of the one-phonon and two-phonon states in the even-
even Hafnium and Tungsten isotopic chain from the y-soft nuclel near
N = 82 to the deformed nuclel towards mid-shell.

In 18019 jsotopes, energy levels, B (E2), B (M1) and mixed
symmetry states (MSS) have been discussed using IBM-2. The effects of
the Mg orana parameters on the energy of the highly excited state have
been investigated. The variation of these parameters has a great effect on
the properties of MSS. All the calculated results were compared to the
available experimental data and a reasonable agreement was achieved. It is
found that the 2;, in W and 82W are the first 2" mixed symmetry states,
while the 2;, in %W and ¥W are the first 2* mixed symmetry states. The
B (M1) properties of even 1818\ jsotopes are investigated in the IBM-2.
The d (E2/M1) mixing ratios, g-factors, and summed M1 strength are
calculated. A least-squares fit of the excitation energies is used to fix the
IBM-1 projected Hamiltonian parameters, while the F-spin-breaking terms
are adjusted to reproduce the M1 properties of low-lying states. The
influence of F-spin mixing on the summed M1 strength is studied using the
coherent state technique in perturbation theory. The M1 properties of the
low-lying states are described satisfactorily when the standard boson
g factors are used, but the summed M1 strengths are found to be larger than
the present experimental values. Possible g factor adjustment, which
reconciles the calculated and experimental M1 strength, is discussed.

The Hafnium (Z=72) lies in the deformed region and tungsten
isotopes (Z = 74) liein the transitional region that occurs at the upper limit

of the range of the deformed nuclel. The g-ray E2/MI mixing ratios for the

Xi



selected transitions in 172180Hf and 818\ are calculated in the IBM-2.
The Majorana parameters are found to have a great effect on the energy of
mixed-symmetry states as well as on the sign and magnitude of the E2/M1
mixing ratios of transitions between regular (symmetric) states. The results
demonstrate the sensitivity of the sign and magnitude of d(E2/M1)values
on particular IBM-2 parameters.

In this study, analyzed the positive and negative parity states of odd
Hf and W isotopes within framework IBFM-1 and IBFM-2. The results of
an IBFM-1 and IBFM-2 multilevel calculations of 2f,,,,3p,, and3p,,,

single particle orbit are reported for the positive and negative parity states
of the odd atomic mass number, A, Hf and W isotopes. Also, an IBM-1 and
IBM-2 calculation by using ODDA and PBEFM programs is presented for
the low-lying states in the even-even 1%18°Hf and 819w core nucleus.
The energy levels, B (E2) and B (M1) transition probabilities and mixing
ratios are calculated and compared to the available experimental data. We
found that the calculated positive and negative parity low spin state energy
spectraof the odd-A 1"+1°Hf and 8187\ isotopes agree quite well with the

experimental data.

Xii
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CHAPTER ONE
INTRODUCTION
1.1 Nuclear structure

Nuclear structure has been an active field of research since the
discovery of the nucleus. Rutherford found that most of all matter was
concentrated in a very small core at the center of the atom in 1911 [1].
Perhaps the next great milestone was the discovery of the neutron by the
associate and doctora student of Rutherford, Chadwick in 1932 [2]. It is
noteworthy that by this time special relativity, quantum mechanics, and
the relativistic formulation of quantum mechanics were already
developed. The existence of the positron was postulated by Dirac in his
relativistic formulation of gquantum mechanics in 1928 [3, 4] and it was
subsequently discovered in 1932 by Anderson [5], in the same year the
neutron was discovered. The proton and neutron have since been used as
the fundamental building blocks in describing the nature of the atomic
nucleus to this day.

A number of models have been developed to describe the large
array of phenomena and properties displayed by atomic nuclei. The
Liquid Drop Model (LDM), first proposed by Gamow in 1928 [6],
viewed the nucleus as drop of liquid whose constituent particles were
held together by surface tension. This model was able to describe some
bulk properties of nuclei. Using the ideas of the liquid drop model, von
Weizsacker developed a semi-empirical mass formula [7] to predict
nuclear masses. A large breakthrough in nuclear theory came in 1949
when Maria Goeppert-Mayer [8] and independently Jensen, Haxel and
Suess [9] were able to explain the magic numbersin nuclei, where nuclel
would exhibit an increased stability, by including a spin-orbit interaction
term in a Hamiltonian that considered all nucleons to be orbiting
essentially freely in an average field created by all the other nucleons.
The magic numbers correspond to closed shells in nuclei analogous to
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the filling of electron shells in atoms. Excited states were found that
correspond to the excitation of a nucleon into an orbit of a higher lying
shell as predicted by the model. The shell model, as this model is called,
has been one of the most fundamental ways to describe atomic nuclei. It
has been used extensively in the analysis of experimenta data.

Apart from the single-particle excitations found in nuclei, another
type of excitation, collective excitation, was soon explained. In 1950,
Rainwater observed that spherical nuclei could easily be deformed [10].
This led the way in the 1950’s for more ground breaking work done by
Bohr and Mottelson [11, 12] and aso Hill and Wheeler [13] when they
presented models for a collective motion in nuclei. These models used
shapes to parameterize the nucleus and used their dynamics to derive the
collective phenomena observed. Since the discoveries of single-particle
and collective motion, these have been the two ways in which
excitations in nuclei have been classified. The interplay between single-
particle and collective degrees of freedom has long been and continues
to be an active field of study. One example is perhaps a variation of the
shell model, which was proposed by Nilsson in 1955 [14] where he
considered the average potential of the shell model to be deformed. This
led to the idea of changing shell structure with deformation.

In 1975, the I nteracting Boson Model (IBM), the model used in
the present work, was proposed by lachello and Arima [15], where
interacting bosons are used to describe collective excitations in nuclel.
From the symmetry properties of the model’s boson Hamiltonian, three
types of idealized nuclel were found whose properties can be calculated
analyticaly. These three limits of nuclel can be used as benchmarks with
which to classify different nuclei. It was found that different regions of
the nuclear chart exhibit properties that are similar to one of these
idealized limits,
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The above account of nuclear physicsis very brief and highlights
only a few of the main accomplishments in nuclear physics in the
twentieth century. Although brief, it can be seen that there is not one
single comprehensive theory in nuclear physics, but several models
tailored to describe specific phenomena. A quote taken from the book of
Eisenbud and Wigner [16] published in 1958 describes the state of
nuclear theory in the following way:

"Introduction forces are not yet completely known and it is clear
that they have a complex character. Even the consequences of a
simple interaction are difficult to obtain for a system containing
a large but finite number of particles. A good deal of effort has
been expended, therefore, in the search for ssmple models in
terms of which the broad regularities satisfied by nuclel could
be understood. This search has led to a number of interesting
but only partially successful models; these have proved very
fruitful for the stimulation of experimental research, and for the
development of further ideas on nuclear structure. One can hope
that future investigations will clarify the limitations of these
models and provide an understanding of the validity of it
different models for different groups of phenomena’.

Although written in 1958, the ideas set forth in this quote till
serve as a description of present day research in nuclear physics. It is
with the aim of better understanding the “broad regularities satisfied by
nuclei” and “understanding the validity of different models for different
groups of phenomena” that the topic of this present work is introduced.
One of the broad regularities in nuclei that will be investigated is the
existence of a certain class of collective excitations called mixed-
symmetry states defined within the Interacting Boson Model (IBM). The
data obtained from the experimental investigations of these states will
help elucidate the extent of the validity of the IBM.
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1.2 Historical Survey

During the last two-decade nuclear spin states and high spin states
have been the subject of experimental and theoretical studies. The
fascinating progress in this new field has been made possible by the
essential development in experimental on exciting and detecting the high
spin states in Hf-W nuclei. A part from such interesting expectations as
existence of a deformed and super-deformation, the research in this new
field can also be considered as providing atool for testing the validity of
Interacting Boson Model (IBM) and Interacting Boson Fermion
Model (IBFM).

1.2.1 Hf isotopes

K. S Krane [17] proposed the multipole mixing ratios
d(E2/M1of gamma transitions in even-even deformed nuclei. A
summary is presented of the magnitudes and phases of previously
measured d(E2/M1) multipole mixing ratios of gamma transition
dexciting levels of the beta and gamma bands to the ground state band in
even-even deformed nuclei. A uniform phase, with few expectations is
characteristic of transitions depopulating the gamma band, while no
systematic behavior is apparent among the nuclel in this region.
Although none of the previously proposed theoretical interpretation is
sufficient to explain both the magnitudes and relative phases of these
mixing ratios, a phenomenological interpretation in terms of AK =1 band
mixing through the intermediary of a K =1" excitation is successful with
regard to the relative magnitudes and phases in a number of cases.

Hamilton et al., [18] have studied X (E0/E2) values of 1®Hf and
compared with nuclear models. Three of these values are considerably

large than the b-vibrationa mode estimates. Experiments are
suggested to test the possibility that large X(E0/E2) values indicate

mostly proton excitations.
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Chen et al., [19] investigated the Hf isotopes in the boson plus
Fermion pair model. Energy spectra, effective moments of inertia and
B(E2) values are calculated. It was found that the high spin anomalies
gualitatively by the model. Possible extension of the model is disused.

Subber [20] studied the monopole transition in deformed nuclei of
Hf isotopes. The structure and monopole transitions of sum neutron rich
deformed Hf isotopes have been studied within the framework of the
Interacting Boson Model. The level structure for two selected isotopes
Hf16178 and B(E2), r (E0) and the X (E0/E2) ratios have been cal cul ated.

The numerical results obtained have been compared to the experimental
data. Satisfactory results for comparison were obtained.

Abou Salem and El-mageed [21] studied the spectra of even-even
Hf isotopes through the selecting of core-cluster decomposition of the
parent nucleus. The considered partition should give internal stability of
the core-cluster combination. The modified Wood-Saxon and Coulomb
potentials were used to reproduce the spectra of even-even Hf isotopes
where the core radius was taken as a free parameter. The theoretical
calculations of the excitation energies and the transition probabilities
B(E2) of the ground state band were compared to the experimental data
of the considered Hf isotopes. The obtained results reflect the ability of
describing the pure rotational ground state band of even-even Hf
Isotopes through the core cluster decomposition model.

The two-dimensional total routhian surface calculations have been
carried out to study the triaxial super-formed structured of a neutron-rich
nucleus Hf?® firstly studied by Shao-Ying et al., [22]. In particular, the
effects of the rotational frequency w and pairing-energy gap parameter
A are discussed in detaill in the course of shaping its triaxia super
deformed nucleus Hf'”3, Finaly, more systematical results have been
investigated for some confirmed super-deformed nuclei experimentally

and a few predicted triaxia super deformed nuclel theoretically with
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quadrupole deformation e, ~0.4 and triaxial deformation g~20° or
g~30° inthe z=72.

Mansour and Saad [23] studied the properties of high-spin states
and the alignment effects in the lighter ©°"17°Hf isotopes. An interesting
nuclear feature emerging from this study concerns the evaluation of the
moment of inertia and the yrast line yields conclusion in the Hf isotopes
Is discussed.

Usmanov et al., [24] investigated the analysis of electromagnetic
transitions in nuclei 1"%1®Hf. In this study, the structure of excited states
and non-adiabatic effects in manifested in the energies and probabilities
of electromagnetic transitions are studied in the context of a
phenomenological model taking into account the Coriolis mixing of the
low-lying states of positive parity in rotational bands. Energies and the
structure of wave functions of excited states are calculated. The
calculated energies are in agreement with the experimental data. The
mixing effect is demonstrated to play an important role in the wave
functions of vibrational states. The probabilities of E2 and M1
transitions are calculated. The theoretical values of ratios and multipole
mixing coefficients d(E2/M1) of transitions from the first and second
beta and gamma vibrational bands are compared to the available
experimental data.

Ohlsson [25] showed that the even-even deformed nuclel present
a rotational band built on their ground state 0. In some of these nuclei,
higher energy levels are interpreted as members of a rotational band
built on the 3-vibrational level.

Al-Magtary et al., [26] discussed the Interacting Boson Model-1
(IBM-1) and employed for calculating the energy levels and
electromagnetic transitions probabilities B(E2) of the even-even 174+180Hf
isotopes. These isotopes have been investigated based on two different
arrangements; i.e., the dynamical symmetries of "#®Hf isotopes;

6
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SU(3) (deformed nuclei) and dynamical symmetries of 1"Hf isotope in
trangition region SU(3)-O (6). The determined values using IBM-1
Hamiltonian showed a significant agreement with the experimenta
reported energy levels data and B(E2) values. The model provides a fast
and accurate prediction method of energy levels and B(E2) values.

Nomura et al., [27] studied the collective structural evolution in
neutron rich Yb-Hf-W-Os and Pt isotopes. In this study an Interacting
Boson Model Hamiltonian determined from Hatree-Fock-Bogoliubov
calculation with microscopic Gogny energy density function D1M
applied to the spectroscopic analysis of neutron rich Y b-Hf-W-Os and Pt
Isotopes with mass A~180-200. Excitation energies and transition rates
for the relevant low-lying quadrupole collective states are calculated by
this method. Transitions from prolate to oblate ground state shapes are
anayzed as a function of neutron number in a given isotopic chain by
calculating excitation energies, B(E2) ratios, and correlation energies in
the ground state.

Praharg et al., [28] studied the band structures and deformations
of rare-earth nucleé using deformed Hartree-Fock and angular
momentum projection theory and some results are presented here.

In 2013, Gupta [29] studied the collective band structure of
166-168f in IBM and DPPQ. This study showed the 1%-1%Hf are the
lightest isotopes of Hf for which the spectra information for non-yrast
levels is now available from recent experiments. The algebraic
Interacting Boson Model-1 (IBM-1) is employed to reproduce their level
structure and to produce the E2 transition probabilities. The pairing plus
quadrupole model (PPQ) is used to predict their spectra and E2
transition rates and the static moments in a microscopic approach. The
spin assignments 1° of new levels and K-and structures are studied. The
validity of inclusion of %-18Hf as members of U(12) super-group is

studied using various empirical observations. The potentia energy
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surfaces for the two isotopes are compared and the fitting of the
nucleons in Nillson orbits is anadyzed to yield a consistent
comprehensive view of the two Z=72 isotopes.

Ma [30] studied in 2014 the triaxial strongly deformed structures
in the even-even Hf isotopes. This study showed that the two rotational
bands of distinct character have been identified in **Hf from a recent
experiment at Gamma-sphere. They are suggested to correspond to the
long anticipated triaxial strongly deformed (TSD) bands predicted by
theoretical studies. The bands are substantially stronger in intensity and
are located at lower spins than the previously observed TSD bands in
1644f , and have been linked to the known states, hereby making 16Hf
the best even-even system for the study of TSD structures in the A~160
mass region. Cranking calculations based on the modified oscillator
model suggest that the bands are associated with four quasi-particle

configurations involving high - j intruder (i.,,)? proton orbits. Wobhing

model has not been observed in Hf*** and the possible reasons are
discussed.
1.2.2 W Isotopes

The b and g vibrational bands are nearly degenerated around
W182184 making these nuclei ideal for probing the interaction between
these important collective degrees of freedom in nuclel. A perturbation
treatment of the coupling between the various collective degrees of
freedom (rotation, b -vibration and g-vibration) is inadequate to
reproduce the collective properties in the shape of transitional nuclel, a
region of nuclear shape change from spherical to deformed or prolate to
oblate. The first attempt at a more exact treatment of such couplings was
accomplished by Kumar and Baranger [31] who solved Bohrs
Hamiltonian using a pairing plus quadrupole model. Kumar and
Baranger predicted some unusual features, such as a prolate-oblate shape

trangition in Os-Pt nuclel and a strong mixing between the beta and

8
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gamma bands in the more strongly deformed rotationa W nuclei. The
former has been established [32, 33] by the measurement of the
guadrupole moments of the first excited state in Coulomb excitation
experiments. A notable consequence of the latter is the reduction of

guadrupole moments for the 2; and 2; states and the predicted deviation

from the Alaga rule for the decay of the beta and gamma bands. For
example, the predicted quadrupole moment of the 2; state of 182W is
only 8% of what it would be if it were a pure K = 2, gamma band
member of a prolate nucleus. Most of the supportive experimental
evidence [34,35] for this strong mixing in W nuclel comes from the
electromagnetic properties of the 2; states and the level energies of the
lower members of the gamma and beta bands.

Conflicting experimental evidence exists regarding the band

mixing in W nuclei. The known E2 transition between the 2; and 2;

states and the ground-state band can also be well reproduced by means
of a three-bands mixing calculation [36], indicating a rather weak
mixing between beta and gamma bands. Moreover, the recent theoretical
studies of W nuclel using phenomenological model, such as the general
collective model by Hess, Maruhn and Greiner [37] and Interacting
Boson Model by Duva and Barrett [38], suggest weak mixing between
beta and gamma bands.

Although %W has been proposed [39] as an empirical example of
a deformed odd-mass nucleus with pseudo-L symmetry, it remains true
that the specific K mixing implied by the pseudo-L scheme makes it
applicable in very specia case only.

A new limit of the SU(3) symmetry scheme of the Interacting
Boson-Fermion model (IBFM) is suggested for deformed-mass nucle
[40]. In this scheme, states are characterized by the intrinsic quantum
number K, instead of the pseudo-orbital angular momentum of previous

multi-j symmetries of thistype. An application to 1818"W is presented.

9
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Wu et al., [41] studied the coupling between the beta and gamma
bands in W nuclel. This work was stimulated by the need for a
systematic study of the E2 transitions between beta, gamma and ground
state bands.

Mosbah et al., [42] applied an Interacting Boson Model-2
(IBM-2) to study the miltipole mixing ratios for selected transitions in
182188\, The results demonstrate the sensitivity of the sign and
magnitude of delta values on particular IBM-2 parameters.

The M1 properties of even 18218\V jsotopes are investigated in the
Interacting Boson Model-2 (IBM-2) [43]. The E2/M1 mixing ratios,
g factors, and summed M1 strength are calculated. A least-squares fit of
the excitation energies is used to fix the IBM-1 projected Hamiltonian
parameters, while the F-spin-breaking terms are adjusted to reproduce
the M1 properties of low-lying states. The influence of F-spin mixing on
the summed M1 strength is studied using the coherent state technique in
perturbation theory. When the standard boson g factors are used, the
M1 properties of the low-lying states are described satisfactorily, but the
summed M1 strengths are found to be larger than present experimental
values. Possible g factor adjustment, which reconciles the calculated and
experimental M1 strength, is discussed.

Ameer and AL-Shimmary [44] investigated even-even 180190y
Isotopes with means IBM-1. For these isotopes, the energy levels, B(E2)
transition probabilities, and el ectric quadrupole moment were cal cul ated.
The results are compared to the most recent experimental data. In 2011
Abojassem and AL-Temeame [45] studied the nuclear structure of 82W
using IBM-1. In this work, the energy levels and reduced transition
probability have been studied. Also, the nucleus shape was determined
through the potential energy surface; the square rotational energy and

the moment of inertiawere cal cul ated.

10
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Sharrad et al., [46] investigated the low-lying states of ¥*W and
1840s nuclei. The energy levels, B(E2) values, intrinsic quadrupole
moment and potential energy surface were calculated using IBM-1. The
predicted energy levels and transition probabilities and intrinsic
quadrupole moments results are reasonably consistent with the
experimental data.

The backbending phenomenon in deformed even-even 18-182\y
isotopes within IBM-1, have been studied by AL-Ameer and
Hussein[47]. 18182V jsotopes near mass region A~180 which exhibits
feature of the SU(3)-O(6) symmetry at low energy and the backbending
phenomenon a high spin, are studied in framework of IBM-1. A
reasonable agreement was obtained between the theoretical calculation
and the experimental data. The backbending phenomenon was noticed
both experimentally and theoretically were in agood agreement.

Mohmmadi and Banafshen Nemati Giv [48] studied the
backbending W isotopes. They developed a special computing code for
calculation of nuclear deformation parameters (b ) of tungsten isotopes.
It has been shown from these calculations that by increasing neutron
number, deformation parameter also increases for heavier isotopes
which means more deformation from spherical shape. By comparison
with Nillson level diagrams, quadrupole deformation (b,) of these
Isotopes can be inferred.

In tungsten isotopes Z = 74 (A=180-186), energy levels, B(E2),
B(M1) and mixed symmetry states (MSS) have been discussed using the
Interacting Boson Model (IBM-2) studied by Mahdi et al., [49]. The
effect of the Majorana parameters on energy of the highly excited state
have been investigated. The variation of these parameters have a great
effect on the properties of MSS. All the calculated results were
compared with the available experimental data and a reasonable
agreement has been achieved. It is found that the 2; in W and 182w

11
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are the first 2* mixed symmetry states, while the 2; in W and %W are

thefirst 2" mixed symmetry states.
1.3 Scientific M otivation of the Present Work

The purpose of the present study is to analyze some properties of
the nuclear structure of Hf and W isotopes with the framework of |IBM
and IBFM. Firstly, the low-lying excited energy states for even-even
positive parity states and even-odd negative parity states are examined.

Secondly, the reduced transition probabilities for quadrupole and dipole

B(E2) and B(M1) and B(EQ) are determined and thirdly, the theoretical

results are compared to the available experimental data. Part of this work

IS an investigation of the mixed-symmetry states for some states when

there is a mixture between the wavefunction for proton and neutron, and

then determines the quadrupole moment (Q) to find out the deformation
of these isotopes, mixing ratios d(E2/M1) and finaly X (E0/E2) ratios.
The 17218%Hf nuclei under consideration have Z = 72 and N = 100
to 108, which mean that we have (for 1®Hf) 22 proton particle outside
shell at 50 or 10 proton holes related to the closed shell at the magic

number 82. The neutrons number are 104 (*°Hf), means that have 22

neutrons outside the major closed shell at 82, or we have 22 holes

related to the closed shell at 126, and 106 which means that we have 24

neutrons outside number 82 or 20 holes outside the closed shell at magic

number 126. The large numbers of nucleons outside the major shell
make the nucleus close to heavy deformed nuclel more like Gd, Er, and

Sm nuclei.

The aims of the present study arethe following:

1- The properties of the even-even Hf-W nuclel are investigated in the
framework of Interacting Boson Mode (IBM) and Interacting
Boson-Fermion model (IBFM), including the neutron-proton degree
of freedom. The axially symmetric deformed feature of Hf nuclei to

transition from gamma unstable region in W nuclei is shown. This

12



Chapter One | ntroduction

work the dynamical symmetries are investigates Hf and W nucle
and studies the energy levels, Electromagnetic transition
probabilities B(E2), B(M1), mixing ratio d(E2/M1)and monopole
transition probability B(EO), quadrupole and magnetic moments and
monopole transitions.

2- The implementing IBM-2 calculation of the even-even W isotopes in
the context of new experimental data.

3- Studying the mixed symmetry characters through a study of various
guantities, the wave function, the F-spin values and the
electromagnetic transition probabilities.

4- |dentifying the one-phonon and two—phonon mixed symmetry states.

5- Studying some even-odd 17°Hf and 8118\ jsotopes purposely for
the sake of having alternative testes experimental data. In this study
spectroscopic properties such as energy levels, electromagnetic
transition probabilities, mixing ratios d (E2/M1), quadrupole and
magnetic moments for these isotopes will be investigated using IBM
and IBFM.

1.4 Thesis Layout
Finally, a brief outline of the remaining this work will be given. In

Chapter two, some background on the Interacting Boson Model (IBM)

and interacting Boson-Fermion Model (IBFM) in details, Mixed

Symmetry States (MSS). The results of IBM are discussed in Chapter

Three, and the results of IBFM are discussed in Chapter four, Chapter

five gives the concluding remarks and suggestions for future work.

13



CHAPTER TWO
THEORETICAL
CONSIDERATIONS



CHAPTER TWO
THEORETICAL CONSIDERATIONS

2.1 Group Theoretical Model-The Interacting Boson Model (IBM)
lachello and Arima [50, 51, 52] have proposed a model which
attempts to describe the collective structure of all nuclei with A>100,
except those near closed shells. The particles outside of closed shells are
treated as bosons, or pairs of particles, which can occupy one of two levels:
a ground state with angular momentum equal to zero (called s-bosons) and
an excited state with two units of angular momentum (called d-bosons).
The d-bosons have energy ey, the s-bosons e;; one can define a boson
energy e = g - e Unlike the more familiar bosons, these bosons may
interact with each other. Thus, the model has been called the Interacting
Boson Model (IBM). The total number of bosons, equal to the number of

d-bosons plus the number of s-bosons, N =n, +n_, isaconstant in the IBM

prescription as for a given nucleus. N is the number of pairs of neutrons
plus the number of pairs of protons, outside their respective nearest closed

shells, without distinguishing between the particle or hole character of the

pairs. For example, ‘%W, is characterized by N=13, due to the 8 protons

(4 proton pairs) + 18 neutrons (9 neutron pairs) away from the closed shell

208

o PDs - Alternatively, *“Hf would correspond to N=15, because of the

20 neutron particles away from the 82 neutron closed shell and 10 proton
holes away from the 82 proton closed shell.

As stated earlier, interactions between the s- and d- bosons, and
among the s- or d- bosons themselves, may occur. Therefore, in the
simplest terms, the Hamiltonian of the system can be written as [53]:

H=es's+e,Xd'd +V .....ocoooeiiinn (2-1)

where e _ande,, are the s-and d-boson energies, s'(s)is the creation

(annihilation) operator for s-bosons, d'(d)is the creation (annihilation)

14
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operator for d-bosons, the sum is taken over the 5(2(L =2) + 1) components
of the d-boson state, and V is the interaction(s) between the bosons.

In this description, three natural limits occur. The first [50,54] occurs
when e=e,-e,>>V, SO that the energy spectrum is simply given by
E =en,, the ground state being a C, zero d-boson state. This first limit is
similar to the harmonic oscillator of the geometrical picture described in
section (2.1.1) of this chapter. The IBM interpretation will be discussed
later. The other two limits occur when Vv >>e, and correspond to specific
interboson interactions. If V is a quadrupole-quadrupol e interaction [51,55]
between bosons, the system obtained is very similar to a certain kind of
deformed rotor. The IBM version will be presented in section (2.1.2). The
third limit arises when a repulsive pairing interaction [66] exists between
the bosons. Aswill be seen in the discussion of section (2.1.3), thislimit is
very-similar to the geometrical description of the g-unstable oscillator of
Wilets and Jean [56].

The most general form of the IBM Hamiltonian, in which al
possible boson-boson interactions up to second order are explicitly

included, is given by [54]:
H=es'ste,Ydd, + ¥ 123+1):C,[d'd")ad™]”
m 4

J=0,2,
Lol w0
Ao sfos )]
+ % u, [(d s Y7 (ds)? }O) + % Uy [(s*sT J7 (ss) }O) .............. (2-2)

where e is the boson energy, d',d,s'ands, are as described for

Eq. (2-1) and the parentheses denote angular momentum couplings.
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The parameters C,,v,, u, are related to the two-body matrix

elements by [54]:
C, =(d2v[d*3)
v, = (ds2v|d?2)(5;)"*
v, = (d*qv|s*0)(33)*
= (ds2v|ds2)5*
=<qu\’ S (2-3)

The IBM-1 Hamiltonian (Eq. (2-2)) can be written in general form as [55] :

A~

H= e(ﬁs + N, )+ aPP+all+aQQ+aTl, T, +aT,T,.... (2-3a)

the operators are:
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IZ:\/E[(]TXCEN](D ,
Q = \/E[(&* X §~)+ (§T X a~)](2) +C [&T X &~]
T - [aT y a~]<3> T [aT o a~]<4> .............. (2-3b)

The phenomenological parameters a,,a,,(a,,c),a,,a, , represents the
strengths of the pairing angular momentum, quadrupole, octupole and
hexadecopoul e interaction between bosons, respectively.

Equation (2-2) appears formidable, especially given the explicit form
of the parameters, as introduced in Eq. (2-3). However, the terms
correspond to one of four types:

1) es's+e,>.d'd - simply counts the number of s-and d-bosons,

respectively, and multiplies this number by the appropriate energy;

2) the terms with coefficients C;, U, and Uy represent interactions in
which the total number of d-bosons and s-bosons, separately, are
conserved, i.e., ng, is not changed,;

3) aterm (with coefficient v,) in which ng, is changed by unity;

4) aterm (with coefficient vp) in which ng is changed by two units.

Returning to the three limits alluded to earlier, the vibrational limit

will correspond to a Hamiltonian with only ng-conserving terms, the
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rotational limit to a Situation with one and two d-boson number changing
terms, and the "g-unstable’ limit will represent the situation with two
d-boson number changing terms included.

An dternate form, in which the general Hamiltonian may be
frequently written, is in terms of the specific interactions between the

bosons. In these cases, [54, 57]:

H=eXdld,-k>XQ -Q -Kk'IL -K"YPR .ccooornnn. (2-4)

i<]j i<]j
where Q is the quadrupole moment of the i* boson, L, =2/, -¢, with ¢;, 7.

being the angular momenta of the i and i boson, respectively, R, isthe
pairing operator, between bosons, and k, k',k" are the respective strengths
of the different interactions. For simplicity, was set equal to zero, so that
only e=e, —e,=¢, appearsin Eq. (2-4).

Associated with the collective states calculated with the IBM are
transition operators. In the most general form, the EO, MI, E2, M3, E4
transition operators are, to leading order, given [54,55,58]:

T =ad,(d's+s'd)?+b,(d'd),) + gl uo(S'SE i (2-5)
where | denotes the multipolarity with projection m, and a,b,g are the
coefficients of the different terms of the operator. In particular, for E2
transitions [54,55,58]:

T (E2)=a,(d's+s'd)f? +b,(d'd)? ... (2-6)
This operator has two parts (d's+ s'd ) : which satisfies the selection

rule An, =51, and (d 'd ) which satisfies the selection rule an, =0. The
coefficients and depend on the limit involved or the appropriate
intermediate structure. The form of the operator that corresponds to the
various limiting symmetries will be discussed later.

Exact forms of the EO, M3, and E4 operators exist. It should be noted

that no M1 transitions can occur in first order [64, 65, 69]. The reasons lie
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in the form of the MI operator [54, 55, 58]:

T,(MD=b,(d"d)) (2-7a)

As discussed in references [54, 55, 58], the operator (d "d )(1) proportional
to the boson angular momentum operator; therefore, Eq. (2-7a) may be

rewritten as
T.(M1)= g I ¥ R SSRISUPRNY (227 4 o)

where g5 is the effective boson g-factor. This form of the operator has no
off-diagonal matrix elements, implying that in this approximation MI
transitions are forbidden [54, 55, 58]. Some of the transition probabilities
obtained from perturbation theory are further discussed in Refs. [54, 55].
The solution of the Hamiltonian, in either the Eq. (2- 6) or the Eq.
(2-7b) form, may be attempted either analytically or numerically. Arima
and lachello [50, 51, 52] have been able to solve the Hamiltonian
analytically in the three -limiting situations described earlier by utilizing
the underlying group theoretic aspects of this system. As discussed in
Ref.[54], the five components of the L = 2 d-boson state and the single
component of the L = 0 s-boson state span a linear vector space which
provides a basis for the totally symmetric representations of the group
U(6), the special unitary group in six dimensions. The group SU(6) is
partitioned, with each totally symmetric representation labeled by [N]. For
a situation where al boson states are degenerate and no boson-boson
interaction exists, all states belonging to a particular partition [N] are
degenerate. However, given the energy difference e=e,-e,and an
interaction between the bosons, a definite energy level spectrum will exist.
The group SU(6) is characterized by nine parameters which will
correspond to the parameters of EQ.(2-6), i.e, N, e, and the

coefficientsC,(J =0,2,4)n,,n,,u,,U, .
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The EO operator can be written directly as:
T(E0) = by(d"d™)+gy(S'E ) (2—8a)
where b, and g, are free parameters and the superscript notation indicates
spherical tensor coupling. Eg. (2-8a) can be expressed in terms of the boson

number operators n’; A, and N = (ﬁs + ﬁd) as [54]:

T(EO) =byA, +g,A, =g,N +Db N, =by N+ggn,............ (2—-8b)
where
. b N ' ~ ’
boszos , D=0y =05, Oy =0y = Dgeeererieiieree (2—-8c)

The IBM-1 possesses simple limiting dynamical symmetries which
lead to closed form expressions for the matrix elements of 'f(EO) and,
consequently, to selection rules [54]. We deal with the three limiting cases,
U(5), SU(3), and O(6), separately.

The isomer shift, d <r?> is measure r2 between the first 2* state and
the ground state,

d <r?>=byf< Ay >0 =< Ay O] (2-8d)
The isotope (isotone) shifts A <r? >, are measure of differencein radii
between nuclel one neutron (or proton) pair (one boson) away from each
other,

A<r?>MN—cy2? >g§‘+1) —<r? >é§‘)

A<r? >(N)=§0+50[<r2>gT+1)—<r2>('+“’1 ............. (2-8e)
If one can find a subgroup G < SU(6) under which the Hamiltonian

IS invariant, then the diagonalization problem is simplified. In particular,
Arimaand lachello have observed that there are three such groups, namely
JU(5) [50,54], U(3) [51,55], and O(6) [59], the specia unitary groups in
five and three dimensions, and the orthogonal group in six dimensions. The
solutions obtained correspond to the same three limits mentioned earlier,

the vibrational, rotational, and " g -unstable" limits, respectively.

Frequently, when the subgroup G under which the Hamiltonian is
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invariant has been identified, the problem may be written in terms of the
forces as given in Eg. (2-8). Then, the eigenvalue problem is reduced to
finding the expectation value of the forces. This method of solution in the
different limits will be discussed in their separate subsections.

An alternative approach to the eigenvalue problem presented in
Eq. (2-6) or Eq. (2-8) is to solve the Hamiltonian numerically. This has
advantages in that the entire Hamiltonian may be solved, not only in the
limits for which analytic solutions are readily obtainable, but also in the
intermediate cases. To this end, Scholten has written a computer code
PHINT [60] which solves the entire IBM Hamiltonian in the Eq. (2-6) or
Eq. (2-8) parameterization, or a convenient mixture of the two forms.

The computer code presents the wave functions in the basis
J37|nyn,n,) where J° is spin-parity, n, isthe number of d-bosons. n, isthe
number of pairs of d-bosons coupled to angular momentum zero, and n, is

the number of triplets of bosons coupled to angular momentum zero. For

example, the 2 d-boson 0" state would be denoted 0°|210) ; the 3 d-boson 0*
state would be 0'|310); the 3 d-boson 2" state would be 2°|310), because the
parentage of this state is the 2*|210).

Calculations have been performed with this code to reproduce a
number of different situations:
1) calculations of the three limiting symmetries which reproduce
the analytic solutions;
2) calculations of systematic deviations from these limiting cases,
3) calculations of, not necessarily physical, situations to
understand the operation and interplay of the different
parameters contained in the IBM.
The first case will be discussed in subsections (2.1.1), (2.1.2), and
(2.1.3). However, since an understanding of the effect of the parameters is

essential to the later discussions, the third aspect will be discussed here.

20



Chapter Two Theoretical Considerations

It is more convenient to discuss the forces of the IBM in terms of
the parameterization of EQ.(2-8), where the variables are e, the boson

energy, and the strengths of the quadrupole-quadrupole, ¢ -7, , and pairing

Interactions between the bosons.

To summarize this section, the IBM model developed by lachello
and Arima aims to predict the structure of collective states of heavy
even-even nuclel. This model can be analytically solved for the case of
three limiting symmetries; these will be discussed in the next three
sections. The model can also be solved numerically with the computer code
PHINT [60]. A discussion of the transition between the limits will be
presented in next section.

2.1.1- TheVibrational SU(5) Symmetry

The first limiting symmetry of the IBM to be discussed was the
vibrational limit [8,64]. As described in the last section, a very simple
spectrum of collective states, presented in Figure (2.1), arises from a
system characterized by a boson energy e. This limit corresponds to the
O(5), orthogonal group in 5 dimensions, symmetry. However, the IBM
Hamiltonian can aso be solved analytically for the SU(5) representation
[50, 54].

+
B4 =g ——— { | gt— 4—agt—p'— &
1 1'—
aqt_ g -
. - ’
4+_ 2+ D+_ 0+ %
G gl
2F— Sph. vibrator Sym. rotor
P at— 1 P def. y—unstable
+ U5) |y SU(3) 0(6)
ot— 0+_ 0+

Figure (2-1). Energy spectra corresponding to a spherical vibrator, axially deformed
rotor, and adeformed g - unstable nucleus [54].

In the SU(5) representation, the degeneracies of the levels in
Figure(2.1) are explicitly broken by the introduction of interactions which
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conserve the number of d-bosons. The form of the Hamiltonian in this [imit
isgiven by [50,54]:

H=eXdd +Y %23 +1)*C, [(d*d*)(”.(dd )‘”]‘0) e (29)

where the C,'s are given in Eq. (2-3). An anaytic solution to this

Hamiltonian is presented in detail in Ref. [54]. For the reader's information,
the arguments of Arima and lachello will be repeated here. The
Hamiltonian of this symmetry can be written as:

H=e(i +A,)+all+aTl,T,+aT,T,....(2-9)
Where e(A, +f,) is the energy of s and d bosons, a; is the angular

momentum and az is the octoupole and a, the heaxdecoupole parameters.
The eigenvalue equation may be expressed as:
H|ngvn, JM) = E[navn,IM ) ............ (2-10)
where H is given by Eq. (2-9) and the states are labelled by the quantum
numbers n,,v,n,,J,M . The number of d-bosons, ny, the angular momentum
Jand its projection M are aready familiar; n,, as discussed earlier, is the
number of d-boson triplets coupled to angular momentum zero, and v isthe
seniority, which counts the number of d-bosons not coupled to angular
momentum zero. An dternate representation involves the quantum
number n, , which counts the number of d-boson pairs coupled to angular
momentum zero; v and n, are related by v=n, -2n, . The total number of
bosons is partitioned as [54]:
Ng=2n, +3n, +1 ... (2-11)

where | is the excess bosons and determines the angular momentum
range[54]:

J=2,2 -2,2I -3,...,1 +1,1
The angular momentum J=2 -1 is absent because of the requirement
that bosons may only be coupled to form symmetric states [61].
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An aternate method of solving the Hamiltonian in Eq. (2-9) is

to rewrite it in terms of the forces presented earlier in Eq. (2-8). Only
three parameters are necessary to describe the interaction between two
d-bosons because only three angular momentum couplings can occur
[61]: J=0,24. Therefore, the coefficients C,(J =0,24)in Eq. (2-13), or
three aternate parameters a,b,g, are necessary. lachello and Arima

have expressed the interaction as [54]:
V=V, =Yl +bP + 0 Jureeeeen (2-13)

i<j i<]

where |; isthe unit operator, P,

. and L; arethe pairing and L interactions

discussed earlier . The expectation values of these operators, as given in
Ref. [54], are:

<1>:%nd (n, -1)

<L>=J(J+1)-6n,
<P>= (nd —v)(nd +V+3) ................. (2-14)
Therefore, the eigenvalue of interacting d-boson Hamiltonian are [50, 54]:
E(N]n,,v,n,,J,M)=en, +a %n,(n, —1)
+b(n, —v)n, +v+3)

+g[J(J +1)—6nd] ................. (2—15)

A typical spectrum in the vibrational limit is presented in
Figure (2.2). The spectrum may be divided into several "bands'; this
terminology is valid since large E2 matrix elements exist between adjacent
members of the same band. The states in Figure (2.2) are labelled by the

guantum numbers n,,v,n,. The "bands' are very reminiscent of those

occurring in rotational nuclei. The Y-band corresponds to the ground band,
X and Z to a g-vibrational band, b to a b -vibrational band and A to a
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2-phonon g-vibrational band. The energies of statesin some of these bands
are given by [54]:
Y band E,(n,,n,,0,J =2n,,M)=en, +3C,n,(n, -1)

Xband E,(n,,n,,0,d=2n,-2,M)=en, +%n,(n, —1)—g(8n, - 2)
Zband E,(n,,n,,0,J=2n,-3M)=en, +%n,(n, -1)-g(12n, - 6)

bband E,(n,,n,-20J=2n,-4,M)=en, +%n,(n, -1)+g(12n, —16n,)+b(4n, +1)

A band E,(n,,n,,L,J =2n,-6,M)=en, +%n,(n, —1)—6g(4n, —=5)..ccerrrrererrrrerenn. (2-16)

The general form of the electric quadrupole transition operator
T(E2) was givenin Eqg. (2-17). In the limits for which analytic solutions are
obtainable, Arima and lachello require the transition operator to be a
generator of the underlying group. For the limit characterized by SU(5),
T(E2) isgiven by [54]:

T.(E2)=a(d's+s'd)> oo (2-17)
fora = <d HQHs>(%)(2) , where Q is the quadrupole operator. This form of

the operator leads to the selection rule An, = +1.

The U(5) limit of the IBM-1 possesses N and nq as good quantum
numbers [54]. Thus, T (EO) is diagonal in thislimit and EO transitions are
forbidden.

2.1.2- The Rotational SU(3) Symmetry

The second limit of the IBM model is based on the SU(3) group and
gives rise to nuclear structures similar to a certain form of the symmetric
rotor. This symmetry occurs when there is a dominant quadrupole-
guadrupole interaction between bosons, as described in section (2-1). The
most general form of the interboson interaction will also include a term of
theform L=1717.

In EqQ. (2-2), the entire IBM Hamiltonian was presented. Many years
ago Elliott [62] showed that if a Hamiltonian could be expressed in terms
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of the generators of a group, in particular SU(3), the specia unitary group
in three dimension, the eigenval ue problem [55,62]:

H=-kYQ Qs oo . (2-18)

where Q is the quadrupole operator of particle i and Kk is the strength of
the quadrupole-quadrupole interaction. The solution of Eg. (2-18) is
presented in Ref. [55]. Some of the results will be repeated here. The

eigenval ue equation becomes[55]:

HIINI(, mKIM) = E[[N](I , mMKIM)............ (2-19)

where [N] labels the totally symmetric representations of SU(6); (I ,m) are
two quantum numbers which label the representations of SU(3), and J, M
are the angular momentum and its projection along the z-axis, respectively.
The additional quantum number K labels states having thesame | ,m J. In

this basis, the eigenvalues can be written [55]:

where C(I ,m) is quadratic Casimir operator of SU(3) [55]:
Cl ,m=12+nP+1m+3(0 +Mhrrrrrrrirens (2-21)

As mentioned earlier, the addition of the L interaction does not
change the diagonalization problem. Therefore, in its most genera form,

the Hamiltonian becomes [55]:

H=-kYQ.Q, KX/l (2-22)

The Hamiltonian of this symmetry used the angular momentum and

the quadrupol e parameters (a;, a2). This Hamiltonian is given by:
H=all+a0Q. . . (2-22a)

with the eigenvalues [55]:

E(NJI ,mKIM)=aJ(3 +2)—bC(l ,M)rrrrrrrrerrrrnnes (2-23)
a=3k-k'b=Kk
Dueto their importance in predicting the level spacing's of deformed

nuclei, the parameters (I ,m) will be discussed here in terms of the Young
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Tableaux [61] they represent. Each particle can be represented by a box;
boxes may be coupled to form symmetric or antisymmetric states [64].

An example of the collective positive parity states characteristic of
the SU(3) symmetry is shown in Figure (2.2), The spectrum is divided into
a number of bands according to the (I ,m) value. The angular momenta J
which may occur in each (1 ,m) group are given by [55]:

J=K,(K+1),..,(K +max{l ,m})...ccccueneee. (2-24)

where K = integer = min{A,u}, min {i,u}-2,...., 1 or OunlessK = 0.
For K =0, the allowed angular momentum values are [55]:

J=max{l ,ml,max{l ,m—2,...10r0.ocooerrrrrrrrner... (2-25)

The quantum number K is analogous to the K quantum number of a
symmetric rotor, namely the projection of the angular momentum J along
the nuclear symmetry axis. Therefore, the K = 0 and K = 2 bands of the
(N-4,2) representation would correspond to the b and g bands,
respectively, in the geometrical rotor description of subsection (2.1.2).
However, in this limit of the IBM, states with the same angular momentum
and (I ,m) representation are required to be degenerate; e.g., the 2; and 2
states. Also, the transition probabilities between bands are considerably
altered, as will be discussed below.

h X £ xX s Fay
| ! | ! ! |
- gt (4,94.0)
i =
= + {4.49.0) + {(a,2,0) '
= B . .4, q* (9,2 + (4.0,0)
O D,
Lt b*_(ﬂxf‘-c'-‘q‘_ (4,4,0 2* (42,0
2 .
o+ (33,0 2+ 2.3.0
= + (31,0}
3 4*..‘_._2;'4-0) 2+ (3,3.0) 2 —== .
- —= o 3.3
_ a* {2.2,0’
1 2t 2.2,0 o* 12L0.00
=% €1,1,00
o L g+ (0,0.0)

Figure (2.2) Typical spectrum of anucleus exhibiting the SU(5) symmetry. The states are labeled by the
guantum numbers J® (n,,Vv,Nn,) . The spectrum is broken up into a number of bands [55].
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The most general form of the E2 transition operator T(E2) was
presented in Eq. (2-17). As for the earlier SU(5) symmetry, Arima and
lachello require this operator to be a generator of the underlying group
symmetry. For the case of the SU(3) symmetry, since the operators of Eq.
(2-6), namely d's and d'd are aready generators of the group [55], the
requirement reduces to fixing the values, of the coefficients a, and b,
in Eqg.(2-6). The resulting E2 operator in the SU(3) symmetry is[55]:

T.(E2)=a,|d's+s'd)” - 27(d"d)? | (2-26)
where a, is the effective E2 charge, of Eq. (2-6) became - %+/7a,. Due to
the form of the E2 operator T(E2) in Eq. (2-26) does not connect states with

different (I ,m) representations [55]. Thus, transitions between the g-band
or b-band and the ground band are forbidden. Conversely, transitions

between states of the same representation are allowed. Therefore, unlike

the predictions of the geometrical rotational model, the 2; state will
preferentially decay to the 0; state rather than to the 0; state.

A number of regions of the periodic table have shown evidence of
exhibiting a rotational structure characterized by a J(J+1) level sequence.

However, the requirement of degenerate -and g-vibrations tends to limit

the regions of SU(3) symmetry to those where the onset of prolate
deformation occurs, such as the Gd isotopes.

H=en,-kY Q.Q —K'Y Ljurrs crmen (2-27)

i<
where e, the boson energy, and Q is the quadrupole-quadrupole and
L interactions are as previously described. To study a transitional region,
they fixed k and k', allowing to linearly decrease as a function of the
number of bosons [65].
Equation (2-27) shows that all transition probabilities depend
explicitly upon the number of valence nucleons. Now that two limiting

symmetries have been presented, the SU(5) and SU(3) limits, it would be
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interesting to investigate the transition between these two regions. Such
work has recently been conducted by lachello, Scholten, and Arima. In this
investigation, they considered a simpler form of the. IBM Hamiltonian in
Eq. (2-6), namely [65]:

where e, is a constant and N, is the number of neutron bosons. This will
simulate the transition, since, near SU(5), e is much greater than any
interboson interaction, while, near SU(3), the quadrupole-quadrupole
interaction dominates the boson energy.

The SU(3) limit of the IBM-1 possesses N as a good guantum

number together with the conventional SU(3) quantum numbers (1 ,m), but

Ng IS not a good quantum number [55]. However, considering 'f(EO) in the

form:

T(E0) = gyN + by/5(dd [ o (2— 28a)

noting that d* transforms [55] asa (I ,m = (2; 0) representation of SU(3);
then, e.g., (I,m = (2N; 0) states connect only with (I ,m = (2N —4; 2)
states via EO transitions. This includes the EO transitions connecting the
"b" band (2N — 4; 2) irrep.) with the ground band ((2N; 0) irrep.).
2.1.3- The Gamma Unstable O(6) Symmetry

A third limiting symmetry of the IBM model will occur when the
interboson interaction is dominated by a pairing force [52]. Analogous to
the SU(5) and SU(3) symmetries, lachello and Arima have diagonalized the
IBM Hamiltonian, generated by SU(6) (Eq. (2-7)), by identifying a
subgroup of SU(6) under which the Hamiltonian is invariant. In this case,
the subgroup is O(6) which also contains the subgroups O(5) and O(3). By
using the group chain, SU(6) > O(6) > O(5) o O(3), the IBM Hamiltonian in
the O(6) limit can be written as:

H = AR, + BC, + CC,................ (2-29)
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where Ps is the pairing operator in O (6) and Cs and C; are the Casimir
operators of O (5) and O(3), respectively. A, B, and C are the strengths of

the various components. In terms of the IBM Hamiltonian of Eq. (2-1),

corresponds to the term:
(0)
v, [(d*d)“’) (ss)® +(s"s" ) (dd )“”] ................ (2-30)
while Cs and C;3 and correspond to the terms
eyYdid + Yi(23+1)C, [(d*d*)(‘”(dd )“)}0) ............... (2-31)
m J=0,2,4

The Hamiltonia of this symmetry is:

H=aP P+all+aT,T,.... (2-31a)

The symmetric irreducible representations of OF) are labelled by a
guantum number s where[52]:
s =N,N-2,N-4,..,0 or 1for N=evenorodd................ (2-32)

The expectation value of the Q) pairing operator, Ps, can be written in
termsof s as[52]:
(P)=2(N=S ) N+S +4)ccoeeiiiiiiiiiiiiiiiniiee, (2-33)

As stated in Ref. [52], the quantum number t is chosen to
characterize the representations of O(5) where
t =5, 1.0 ... (2—34)

The expectation value of Csinthet representation of O(5) isgiven by [52]
V(C=1tt +3) e (2-35)

Therefore, the eigenvalues of states corresponding to the Hamiltonian in
Eq. (2-29) are [52]:

E(Nktu,dM)= 7:\(N ~s N+s +4)+Btt +3)+CIJ+D) ... (2—-36)
where the % in Eg. (2-35) has been incorporated into the constant B. The

quantum numberu, isuseful inlabelling the states: it isrelated to n,, which

counts the number of boson triplets coupled to angular momentum zero.
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The quantum numberst and v, are related by t =3v, +I for v,=0, 1,... .
Thevalue of | determines the angular momentum of states via[52]:
J=21,21-2,21 -3, ..., 1 +1,1 ...... (2-37)

Arima and lachello have also succeeded in obtaining analytic
expressions for transition probabilities [52]. As in the SU(5) and SU(3)
symmetries, they require the E2 transition operator, T(E2), to be a
generator of the underlying group structure, in this case O(6). The form of
T(E2) satisfying this requirement is[52]:

Since T(E2) is a generator of O(6), it cannot connect states from
different representations; therefore, one selection ruleis As =0. Also, due
to the O(5) structure contained in O(6), the O(5) selection rule At =+1
still holds.

Within each s grouping itself, the level spacing somewhat resembles that
of a vibrational model, as described in subsection (2.1.1), but with an
energy spacing proportional to t (t +3) rather than ssmply tot . This will
give rise to the energy ratio E(4{ )/ E(Zl*): 2.5rather than 2, as expected in
the vibrational picture; also, ast increases even larger energy differences
will occur between states of different t . Further, the degeneracies of the
geometrical vibrational phonon model are explicitly eliminated by the
J(J + 1) term and certain states, e.g., the 0" state of the two- phonon triplet,
do not occur. As described earlier in subsection (2.1.1), the state which
would correspond to this 0" state is "repelled” by the ground state and is
raised in energy due to the repulsive pairing force which characterizes this
limit. Branching ratios and absolute B(E2) values also differ significantly
from the geometrical prescriptio.

The O(6) limit (especialy for large N) seems to resemble most
closaly the g -unstable model described by Wilets and Jean [56].

However, in the O(6) scheme, the level degeneracies are no longer
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maintained, and there are spin cutoffs, and a specific number of different
s groupings. It is reasonable that the O(6) description may correspond to
the g-unstable geometrical model, in analogy to the SU(5)-vibrator and
U(3)-symmetric rotor correspondences. The Hamiltonian of a g-unstable
oscillator is characterized by a potential energy which is independent of g,
although g-dependent terms are included in the kinetic energy. A
correspondence exists between the coordinates of the Bohr-Mottelson
picture and the operators of the IBM. Arima has suggested the result that
the g-unstable potential corresponding to the Q@) limit of the IBM would
be of the form [52]:V =-cb*+db*,where b is the deformation parameter
and c and d are arbitrary constants. This form of potential arises from the
zero d-boson and two d-boson number changing terms of the O(6)
Hamiltonian. A g-dependent term in the potential would be of the form
b ®cos3g ,which corresponds to one d-boson number changing terms that are
not included in this symmetry. Currently, attempts to understand more
explicitly the analogy between the O(6) symmetry and relevant geometrical
models are being pursued [52]. A convenient basis in which to describe the

O(6) level wave functions is that of the vibrational limit, given by

J*|ngn,n, ), where nyn,n, . are, as usual, the number of d-bosons, number of

d-boson pairs coupled to angular momentum zero, and the number of
d-boson triplets coupled to angular momentum zero, respectively. Although
the wave functions are not pure in this basis, they can be described in a
simple manner as alinear combination of basis states differing in the ng and
ng quantum numbers. For example, in the vibrational limit, the ground state
is a pure 0|000> state; in O(6), the ground state, with s =s __ would be
characterized by the 0" wave function A convenient basis in which to
describe the O(6) level wave functions is that of the vibrational limit, given

by J°|nyn,n,), where nyn,n, . are, as usual, the number of d-bosons, number

of d-boson pairs coupled to angular momentum zero, and the number of
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d-boson triplets coupled to angular momentum zero, respectively. Although
the wave functions are not pure in this basis, they can be described in a
simple manner as alinear combination of basis states differing in the nqg and
ng quantum numbers. For example, in the vibrational limit, the ground state
IS a pure 0*|000> state; in O(6), the ground state, with s =s__ would be
characterized by the o wave function

a|000) + b|210) +g|420) +........... e[NN/20). The relation between t and the

more familar phonon number is given by calculating the expectation value
of ng. lachello has determined that, for the s =s__= N states, the
expectation value of ng in the O(6) limit is given by [52]:

N(N-1) t{+3
(ng) = 2((N+1))+t2((t|\|+1)) ....................... (2-39)

Two types of perturbations may be added to the exact results of the
O (6) limit: one which does not change the forces of the symmetry, and one
which introduces a force from outside the limit. The former type can be
accomplished, for example, by changing the boson energy from the value
determined by B in Eq. (2-36). This will ater the amplitudes of the non-
zero components of al wave- functions, but will not add new components.
The result will be to break the selection ruleas =0, but to preserve the
At ==1 E2 selection rule. The second type of perturbation can be accom-
plished, for example, by the introduction of a quadrupole-quadrupole
interboson force. Since such an interaction contains one d-boson changing
terms, all wave function components would be non-zero, though perhaps
small, and the effect would be to break both O (6) E2 selection rules, as
well asto alter al E2 branching ratios.

The interferences between these three dynamical symmetries give
three transitional regions. These regions are as follows:
SU(3) - SU(5) : Thistransitional region can be treated by breaking SU(3)
symmetry in the direction of J(5) by adding
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~

H =e(A, +A,)+a.T,T,+a,T,T, terms. The Hamiltonian of this region can

be written as:

A~

H=e(f,+A,)+alLl+a00Q+aT,T,+aT,T,...(2-40)
SU(3) —»O(6) : The nuclel in this transitional region can be treated by
breaking SU(3) symmetry in the direction of O(6) by adding P".P",a,T, T,
terms. The Hamiltonian of this region can be written as:
H=aP.P+al.[+a,00Q+a,T,T,....(2-40a)
0O(6) - SU(5): Thenuclei inthistransitional region can be treated by a
Hamiltonian containing e(f, + A, ) and a,P.Ptermsas:

H = e(ﬁs + N, )+ a,PP+all+aTl,T,+aT,T ... (2-40Db)
The O(6) limit of the IBM-1 possesses N as a good guantum number

together with the conventional O(6) quantum numbers s;t but ng is not a
good quantum number [55]. The EO transition operator possesses the
selection rules As = 0;+2; At = 0. Thus, the EO matrix elements that
connect to the 0" ground-state level |[N]s =N,t =0,L=0) originate in the
s = N—2multiplet, i.e.. |[N]s =N-2t =0,L=0)

2.2- Interacting Boson M odel-2 (IBM-2)

In the IBM-2 model the neutrons and protons degrees of freedom are
taken into account explicitly. Thus the Hamiltonian [66, 67] can be written
as.

H=H, +H, +V e, (2-41)
H=e,d/d, +edid +V, +V, +kQ,Q + M, ocoerrrrre. (2-42)
Here e isthe d-boson energy, k isthe strength of the quadrupole

interaction between neutron and proton bosons.

In the IBM-2 model, the quadrupole moment operator is given by:
Q, =(s'd+d'5)" ¢, (d'd | (2-43)
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wherer =p orn, Q,, isthe quadrupole deformation parameter for
neutrons (r =n) and protons (r =p). Wherethetermsv, and Vv, arethe

neutron-neutron and proton-proton d-boson interactions only and given by:
—~ 0)
Vo= ¥ %cu (23 +1)% [(d*d*)fz)(dd)‘f)} ..................... (2-44)
J=024

The last term M is the Mgjorana interaction, shits the states with mixed

proton-neutron symmetry with respect to the totally symmetric ones. Since
little experimental information is known about such states with mixed
symmetry, which has the form:

M pn ~ _kzzll_gzxk (dgdg )(k)(ap CTp )<k) +X2(dgsj - % &1 )

2.2.1-Electromagnetic Transitions and Quadrupole Momentsin IBM-2
The general one-body E2 transition operator in the IBM-2 is
TH =T M) +T() e (2-46)

TN R S PO P O RO 4
T(E2)=6,Q, +8Q, i (2—47)

where Q, isin the form of Eq.(2-43). For simplicity, thec, has the same

value as in the Hamiltonian. This is also suggested by the single j-shell
microscopy. In genera, the E2 transition results are not sensitive to the

choice of e and e, whether ¢ = ¢ or not. Thus, the reduced €electric

quadrupole transition rates between J, — J, states are given by:

B(E2;J" > J!)= 1+1\<J:HT(EZ)HJ:>\2 ......... (2-48)

2J

The electric quadrupole moment in IBM-2 is given:

Q, = {%}%Lj éﬂ <JT(E2JI> ....... (2-49)

In the IBM-2, the M1 transition operator up to the one-body term
(1=1)is
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where LW =410(d'd), and L9 =10+, The g, and g, are the boson

g-factors (gyromagnetic factors) in unit m,(nuclear magneton) that

depends on the nuclear configuration. They should be different for different

nuclei.

T(M1)=3 4p ]y[ o+ 0, LY+ L)+ ;(gp —g, LY +L® )} ....... (2-51)
The magnetic dipole moment operator is given by:

TM1)=077[d'd ), - (@'d).]" (g, - 9.)crer.-. (2-52)
the reduced magnetic dipole transition rates between J. — J, states are

given by:

1

B(M1,37 > J7)= 3 1

3is...(2-53)

[< 37T (M 1)

The reduced E2 and M1 matrix elements were combined in the calculation

of the mixing ratio d(E2/M1) using the relation [68]:

<J{[T(E2)J" >
Ji[TMD|I” >

d(E2/MLJ; — J7) = 0.835E, (MeV)

The EO (electric monopole transition) transition occurs between two
states of the same spin and parity by transferring the energy and zero units
of angular momentum, and it has no competing gamma ray. The EO
transition is present when there is a change in the surface of the nucleus.
For example, in nuclear models where the surface is assumed fixed, EO
transitions are strictly forbidden, such as in shell and IBM-1 models.
Electric monopol e transitions are completely under the penetration effect of
atomic electrons on the nucleus, and can occur not only in 0© - O°
transition but also, in competition with gamma multipole transition, and
depending on transition selection rules that may compete in any AJ =0

decay such asa 2" —» 2" or any J = J; states in the scheme. When the
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transition energy greater than 2m.,c?, monopole pair production is also
possible. The EO reduced transition probability iswritten [69]:

B(EQ;J, — J,)=€’Rir (EQ), J; = Jfevrrrnnne, (2-55)
where e is the electron effective charge, Ry = 1.25AY3 fm is the nuclear
radius, A is the atomic mass, and p(EO) is the monopole transition matrix

elements. There are only limited cases of p(EO) that can be measured

directly. The electric monopole transition operator is:

T(EO)=b,, (d"xd)® +g, (s'x3)O....... (2-56)
T(EQ)=by, (d'xd)@ 40, N, coovveerreerreer (2-57)
by, =b,, /5-g,
N, =v5(d"xd " +(s' x5)°.
The monopole matrix element is given by:
rif(EO):%zb'or < fld %A > o (2-58)

The two parameters Bor, Bov iN EQ. (2-56) must be estimated. In most cases
we have to determine the intensity ratio of EO to the competing E2
transition, X(EO/E2) [69]:

X(EO/E2J' — J])=€’Rr ?(EG; J" — J7)/IB(E2;J" — J)........ (2-59)

where J =J for J = J =0, and J; = 2 for J; = J; = 0. The two parameters
b, and by, in Eq. (2-57) may be estimated by fitting the isotope shift,
which is different in the mean sguare radius between neighboring isotopes
in their ground state. They are given by Bijker et al., [70]:
A<r?>=<0,[r’[0, >, —<0,[r’[0, >,
A<r?>=by[< Ol‘dgap ‘01 >y =< Ol‘dgap ‘01 > ]

+bg[<0fdId, [0, > —<0,dd, [0, > 1= Ggy oo (2—-60)
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The isomer shift is the difference between the mean square radius d <r? >
of an excited state and the ground state in a given nucleus [70]:

d<ri>=<re> —<r’> g
d<r?>=< 21‘r2‘21 >—< Ol‘rz‘ol >
d <r?>=bg[<2|d}d,[2, >~ <0,]d/d,][0, >]

+bg[<2ld'd [2,>-<0,d'd, [0, >]...( 2-61)

2.2.2- Two-neutron Separ ation Energy
The binding energy E, of a nucleus is given by the negative of its

ground-state energy. This energy is not just the eigenvalue of 0] state,

since we are looking for an absolute number. We must recall all of the

unused constant terms in the Hamiltonian described in Eq. (2-42). These

give:

E,.=—E; =Eg.+e, N, +e_ N/ run (N -1 e N, (N =1)+ Eggqy oo (2—62)
2 2

where E_,, isthe energy of the closed shellsand E,, isthe deformation

energy (i.e., the 0; eigenvalue using IBM-2 Hamiltonian). The primes on
N, and N, again emphasize that they are to represent boson particles.

For constant proton number, the binding energy can thus be written

E, = A+ BN, +%CNA (N} =2)+ Ega ycoverrrnvorre (2-63)

where Aand B, and C areconstantsand E,, =-E,, .

Instead of the actual binding energy we will examine the
two-neutron separation energy. This is the energy required to remove

two neutrons (one neutron boson) from a given isotope and is given by:
S, (N )= E(N: )= Eo(N; =)= B+ C(N, ~1)+ AEq gy (2—64)

Where AE g, = Esgery (N )~ Engary (N —2) -
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2.2.3-The|BM-2 Basis States
The calculation of IBM-2 energy eigenvalues and eigenfunctions is

usually done numerically using the computer code NPBOS [71]. The
resulting elgenvectors can then be used to calculate transition rates and
related properties using the computer code NPBTRN [71]. The relationship
between the parameters of Eq. (2-42).
The basis states used in the calculations are the products of neutron
and proton basis states. The complete |BM-2 basis state can be stated as:
[PIM) =[N =N, +N, Jng, v, N, LMy ing v 0, L M3 M)

- U[N]nd,v,nA, L’M>n|[N]nd,V,nA,L,|\/| >p E/I

The basis states can be found by choosing states that transform as the
representations of the chain of algebras that can be derived from the U(6)
algebra formed by the bilinear pair of boson creation and annihilation
operators. In the IBM-2, the bilinear pairs of proton and neutron creation
and annihilation operators respectively form the algebras U, (6) and U, (6) .
There are several ways decompose and combine the two algebras into a
chain of subalgebras and each way will determine the basis. As in the
IBM-1, the requirement for the chain is the inclusion of the SO, (3)
algebraasit isrelated to a good total angular momentum quantum number.
The algebra S0, ,,(3) is created from the sum of generators of the algebras
0,3 and 0,13
As an example, one may take the two chains of algebras for protons and
neutron,

U, (6) oU, (5 > SO, (5) o S0, (3) © 0, (2)
U, (6) 2V, (5) >30,(5) > 50,(3) > 50,(2)

These two chains can be combined at any point up except at SO, (2) since

+n

the combined algebra SO, ., (3) is needed. One of the possibilitiesis:
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U, (6)>U, (5) > 0, (5) > SO, (3)\
N, ndp Voo npA mp+n (3) > g)p+n (2)
L P
U, (6) 5U, (5) > S0, (5) > S0, (3) L M

N, Ngn Vos Mha L,
where the quantum numbers are labelled beneath the corresponding
algebra. Thisisthe basisthat is used in the IBM-2 program NPBOS.
Another set of bases can be obtained if one combines the algebras at

adifferent point such as:

U, (6) Ny

Upin(6) DU, (8) 2 30,,,(5) © 0,,,(3 2 0,,,(2)

U, (6)

In general there are three chains that can be combined at U, (6) to give

three different bases. In these chains, the proton and neutron bosons exhibit
asymmetry and thisis the subject of the following section.
2.2.4- Mixed-Symmetry States

The low-energy spectrum of even-even nuclei is dominated by
simple collective excitation modes [72]. These correlations in the nucleon
motion are induced by the long-range quadrupole component of the nuclear
force. In spherical nuclel with few vaence nucleons, surface vibrations
evolve which can be described as bosons, so-called phonons. In an ideal
case, the excitation spectrum of a vibrator nucleus is a harmonic oscillator
with equidistant level spacings 7w, where phonons can couple to
multiphonon states with different angular momenta and parities. For large
numbers of the valence nucleons, an elliptically deformed equilibrium state
becomes energetically more favorable. Its vibrational modes can be divided
into vibrations of the deformation parameter b (b -vibrations) and the form
parameter g (g -vibrations).

Multiphonon excitations of atomic nuclel are interesting collective

structures of the nuclear many-body system. Their existence enables us to
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judge the capability of the corresponding phonon modes to act as building
blocks of nuclear structure. Possible deviations from harmonic phonon
coupling occur due to the microscopic structure of the underlying phonon
modes and serve as a sensitive source of information on the formation of
collectivity in the nuclear many-body system. The proton-neutron
interaction in the nuclear valence shell has been known for along time as
the driving force for the evolution of the low-energy nuclear structure. This
has been discussed in many ways, eg. in terms of the evolution of
collectivity in heavy nucle as a function of the product of valence proton
and neutron numbers N N, [73]. Otsuka et al. (2006) have identified the

proton-neutron interaction as being responsible for the evolution of shell
structure [74]. Therefore, it is interesting to study those nuclear excitations
that are most sensitive to the proton-neutron interaction in the valence
shell. One class of states are collective isovector valence shell excitations
that are frequently called Mixed-Symmetry States (MSSs) in the
terminology of the interacting boson model.

The first observation of a nuclear MSS was made in electron
scattering experiments [75] on the deformed nucleus *°Gd. A strong M1
excitationto a1l® state close to 3 MeV excitation energy, the scissors mode,
was observed. The scissors mode has subsequently been studied mainly in
electron and photon scattering experiments on deformed nuclel. Data are
available for many nucle in the rare-earth mass region and interpretations
of the systematic of the centroid and the total strength as a function of
deformation have been put forward [76].
2.2.4.1- F-Spin

The F-spin formalism is analogous to the isospin formalism of
nucleons. Proton bosons and neutron bosons have F=1/2 and the
z-projection is F,=+1/2 for protons and F,=-1/2 for neutrons. For a
system of N proton bosons and N, neutron bosons, the maximum F-spin is
F =Fmax= (N + N, )/2and
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|Np;Nn|SF Ny +N, (2-65)

max

F,=
In the F-spin space, one can aso define the creation and annihilation
operators F. and F- by

R X A N (2-66)

A state composed by N, proton bosons and N, neutron bosons with
F-spin quantum number F = Fpu can be transformed by the successive
action of the F-spin raising operator F. into a state that consists of proton
bosons only. This state has still a total F-spin quantum number F = Fmax
since the raising operator does not change the total F-spin quantum
number. This new state has only proton bosons and obviously stays
unchanged under a pairwise exchange of proton and neutron labels.
Therefore, IBM-2 states with F = Fpu are caled Full Symmetry States
(FSSs). These states correspond actually to the IBM-1 states which are all
symmetric. All others states with F-spin quantum numbers F < Fmax
contain pairs (at least one) of proton and neutron bosons that are
antisymmetric under a pairwise exchange of protons and neutrons labels.
They are called Mixed-Symmetry States (M SSs).

A comprehensive review of the F-spin symmetry of the IBM-2 has
been given by Van Isacker et al. [77]. One important result of the F-spin
formalism is given by the proton-neutron contribution to the matrix
elements of any one-body operator between FSSs:

<F_ .a b:,bbrlb'\ F

a >=NC_. (2-69)

max ! bb

where o, o , B, B are additiond quantum numbers and c . . is

independent of p. This major result tells us that there are no M1 transition
between FSSs.

41



Chapter Two Theoretica Considerations
Both operators E2 and M1 can be divided into F-scalar

(denoted by s) and F-vector (denoted by v) parts

T(|\/|1)S=§P;—9“(|_p L oo (2—70)
T(M), =9P;—9“(Lp L e (2-71)
T(E2), = 90;—%((3;5 +Q ) (2-72)

T(E2), =5;—%(an —Q oo (2-73)
with
cs=9% *&C (2-74)
& T8
ch :M (2_75)

From the previous (?fisc?jssi on concerning the E2 and M1 decays of
full symmetric states and the mixed-symmetry states (here discussed in
near vibrational nuclei), we expect following signatures for mixed-
symmetry one-phonon and two phonon excitations for vibrational and
transitional nuclei:

First: The one-quadrupole-phonon 2, , state is the lowest-lying MSS in

vibrational nuclei.
Second: The 2;,, state decays to the 2; state by a strong M1 transition

(<2 T(MD[2 >)= 1nf .
Third: A weakly collective E2 transition strength of a few e** for the
2! — 07 trangition.

In the IBM-1, geometrical shapes can be assigned to the algebras of
the three possible chains, which correspond directly to the description of
nuclear shapes by Bohr and Mottlesohn’s shape variables [78, 79]. In the
IBM-2, the mixed-symmetry states correspond to a quadrupole vibration
where the protons and neutrons oscillate out of phase. For deformed nuclei,

the protons and neutrons oscillate with respect to one another as the
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nucleus as a whole rotates. Because of this type of motion, the mixed-
symmetry states for deformed nuclei are also known as the scissors mode.

Mixed-symmetry states can be identified by their unique signature,
namely a collective M1 decay to afully-symmetric state. M1 transitions are
forbidden between fully-symmetric states and between mixed-symmetry
states in the F-spin basis.

2.3-Interacting Boson-Fermion Model
2.3.1. Interacting Boson-Fermion Model-1 (IBFM-1)

The description of collective nuclear states in even-odd nuclei has
been proposed in terms of a mixed system of interacting bosons and
fermions [51-80]. The corresponding model, which is referred to as the
interacting boson-fermion model (IBFM), is an extension of the interacting
boson model (IBM) [50-51] introduced a few years ago in order to provide
a unified description of collective states in even-even nuclei. In the IBFM,
the fermionic degrees of freedom of the single (unpaired) nucleon are
coupled to the even-even core nucleus, which is described by the IBM.
Whenever the core (IBM) Hamiltonian possesses one of its three possible
dynamical symmetries, U(5), SU(3), and O(6) or SO(6) [50-55], the
corresponding spectrain odd-even nuclei exhibit simple features, which in
the case of the odd nucleon occupying a single j-orbit, are shown to be
analogous to the particle-vibrational model, the Nilsson model , and the
particle-plus-g —soft-rotor model . Transitional regions between any of
these limiting situations can be treated equally well in IBFM.

In addition to providing aframework for the description of collective
properties in even-odd nuclei, the IBFM-Hamiltonian has an interesting
algebraic structure, which suggests the occurrence of dynamical
symmetries. The concept of dynamical symmetries, which is usually used
for a system of bosons or fermions separately, has been extended to a
mixed system of bosons and fermions [81, 82]. These symmetries are

called dynamical boson-fermion symmetries. Boson-fermion symmetries
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can be extended to supersymmetries, in which certain states both in even-
even and in odd-even nuclel are treated on equal footing. This can be
achieved by imbedding the symmetry group of the combined system of
bosons and fermions into a supergroup (graded Lie group).

The boson-fermion symmetries, connected with the boson symmetry

SOB(6) have been discussed [81] and in more detail in the preceding

publication in this series, for | =g and a forthcoming publication [80] for

. In this work we will discuss the boson-fermion symmetries,

N
N w
N | ol

j = ’ ’

which are related to the boson symmetry UB(5). These symmetries arise

when the fermions occupy a single particle orbit with j:%, jzg or jzg,

jzg and will be referred to as the Spin(3), Spin(S), and UG e UF( 2)

limit, respectively. Although in reality nuclei will never show properties
which are exactly identical to the idea sSituations described by the
dynamical symmetries, the analytic formulae presented here may provide a
tool for understanding the gross features of the properties of collective stats
in even-odd nuclei.

In order to describe the interplay between collective and single-
particle motion in nuclel, one has to introduce explicitly collective and
single-particle degrees of freedom. Within the framework of the IBFM the
collective degrees of freedom are described by a set of N bosons with
angular momentum L = O (s-bosons) and L = 2 (d-bosons). The single-
particle degrees of freedom are described by a set of M fermions with
angular momentum j, j ..., where M = 0 for the low-lying collective statesin
even-even nuclei, M = 1 for the one quasi-particle states in odd-even
nuclei, M = 2 for the two quasi-particle states in even-even nuclei, etc. The
most general one- and two-body Hamiltonian for a mixed system of bosons

and fermions can be written as[81, 82]:
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H=Hg+Hr+Hgr ... (2-76)

where Hg is the usua IBM-1 Hamiltonian [50] for the even-even core,

He is the fermion Hamiltonian containing only one-body terms and Vgg is
the boson-fermion interaction that describes the interaction between the
odd quasi-nucleon and the even-even core nucleus. Hr is the fermion

Hamiltonian containing only one-body terms [81, 82]:

ST DY U R (2-77)
jm

where the e; are the quasiparticle energies and a}m(ajm) is the creation
(annihilation) operator for the quasiparticle in the eigenstate |jm). The

boson-fermion interaction Vgr that describes the interaction between the
odd quasi-nucleon and the even-even core nucleus contains, in general,
have many different terms and is rather complicated, but has been shown to

be dominated by the following three terms:
~\0) ~ \0) ~ \2 [0
\V/ :ZAj[(ded) x(a}xaj) ]+ijj.[Q(2)x(aijaj) L
] 1

+ AL [(olT <3 " x(a xd, )“""10) .............. (2-78)
where the core boson quadrupole operator is given by the equation (2-43),
and c is a parameter shown by microscopic theory to lie between 7/2
and —+/7/2. Vgr is dominated by three terms. a monopole interaction
characterized by the parameter A; which plays a minor role in actual
calculations, the most important arise from the quadrupole interaction
[83,84] characterized by T, and the exchange of the quasiparticle with one
of the two fermions forming a boson [54,82] characterized by Ao.

A =An2j+1 s,d,s',d" are boson operators with d,, =(-1)'™" and
denotes normal ordering whereby contributions that arise from commuting
the operators are neglected. The first term in Vg is a monopole interaction

which plays a minor role in actual calculations and the dominant term are
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the second and third, which arise from the quadrupole interaction. The third
term represents the exchange of the quasiparticle with one of the two
fermions forming a boson; Talmi [85] has shown that this exchange force is
a consequence of the Pauli principle for the quadrupole interaction between
protons and neutrons. The remaining parameters in Equation (2-78) can be
related to the BCS occupation probabilities u; , v; of the single-particle
orbits:

A =\BAun +nu o b +un +nu o b /2] +1...(2-80)

where Q, . are single particle matrix elements of the quadrupole operator

and
b .=(un.+nu.jQ /e, +e, —aw) e .. (2-81)

i
are the structure coefficients of the d-boson deduced from microscopic
considerations, with aw being the energy of a |D) pair relative to an (S|
pair [86].

The BCS occupation probability n; and the quasiparticle energy e,

of each single particle orbital can be obtained by solving the gap equations
[54, 82]:

e =|E -1 F+a?]® (2-82)
n? —1{1—('5"—_')} ...................... (2-83)
2 e,

where E; is the single particle energy calculated from the relations in [86],
| isthe Fermi level energy, and A is the pairing gap energy, which was
chosen to be 12A7Y2 MeV [87].

That leaves the strengths Ao, T,, and A, as free parameters which are

varied to give the best fit to the excitation energies.
The IBFM Hamiltonian has been an interesting algebra structure,

that suggests the possible occurrence of dynamical symmetriesin odd A. In
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the single-j case, the value of mis m=2j+1. Thus, in general, a chain of
algebras:
URj+1)>U(2j+1)>SP(2j+1)oU(2)20(2) ...... (2-84)

Since in the IBFM odd A nuclel are described in terms of a mixed
system of interacting bosons and fermions, the concept of dynamical
symmetries has to be generalized. Under the restriction, that both the boson
and fermion states have good angular momentum, the respective group
chains should contain the rotation region group (O(3) for boson and SU(2))

for fermion) as subgroup.

UB(6)........... 0%(3)
UFm)....SUF(2)

If one of subgroups of UB(6) is isomorphic to one of the subgroups
of UF(m), the boson and fermion group chains can be combined into a
common boson-fermion group chain. When the Hamiltonian is written in
terms of Casmir invariants of the combined boson-fermion symmetry
arises.

Among the many different possibilities, we consider two dynamical
boson-fermion symmetries associated with the O(6) limit of the IBM. The
first example discussed in the Refs. [88,89] it corresponds to bosons with
O(6) symmetry and fermions occupying a state with j =3/2. The relevant
group chains are:

{UB(6)305(6)303(5)305(3)303(2) }
UP(A)o U (4oSPT(4HoU7 (22072

The Spinor group spin (n) (spin®F(6)) are the universal covering
groups of the orthogonal groups O(n), with the isomorphisms of the
algebras U (4) ~ 0B (6) ~ Jin (6), P (4)~0°8(5)~ Jin (5) and
U (2) »0°®(3) ~ Spin(3). The boson with one-fermion group chains can be

combined into:
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0°(6)®U * (4) [N=NJ{N. =1
S0B(B)®UF(4) >

> Spin™ (6) (51.5,.55)

> Spin® (5) {tuts)

> in™ (3 n,,J

> Sin® (2) M,

The second example discussed of a multi-j case [90,91] is that of a
dynamical boson-fermion symmetry associated with the O (6) limit and the
odd nucleon occupying single-particle orbits with spinj = 1/2, 3/2, 5/2. In
this case, the fermion space is decomposed into a pseudo-orbital part with
K =0, 2 and pseudo-spin with s = 1/2, in general, an algebra UF(m) can be
broken into [82]:

UF (M) UL (M) ®UE (M) (2-87)
where
m =Y .(2j +1), m =Y, (2k +1), mg=34(2S +1)..ccccccrn (2-88)
then

UF(12) DU (B) QU (2).eueeeeeeeeeeereeeeeeeeeeean, (2-89)

Since the pseudo-orbital angular momentum K has the same values as the
angular momentum of the s-and d-boson of the IBM, it is clear that the
pseudo-orbital part can be combined with all three dynamical symmetries
of the IBM.
U®(5),
SRR VA <) (2-90)
0°(6),

Recently, a different way to construct dynamical boson-fermion
symmetries was introduced [16]. Suppose that the fermion part, which
consists of the single-particle orbitsj, j ..., can be split into a pseudo-orbital
part k and a spin part s. The pseudo-orbital part does not necessarily

coincide with the actual orbital angular momentum. Suppose that the
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bosons can be described by the group chain G® 5G'® 5. | If the
pseudo-orbital angular momentum k or the spin s forms the full angular
momentum content of a certain representation of one of the groups in the
boson group chain, this representation can be combined with its bosonic
counterpart to yield representations of a common boson plus fermion
(B + F) group (class BF-2). An example of this second class is that of
bosons with U®)(6)> SOB(6) symmetry and fermions with angular
momenta j = 1/2, 3/2, 5/2 . The fermion spins can be decomposed into
k = 0,2 with which we can associate the U(6) representation and s = 1/2.
The boson and fermion group chains can then be coupled at the level of the
common U(6) group or at one of its subgroups.
2.3.1.1- UB(5) Plus Particle

In this section we will discuss the symmetries associated with the
boson symmetry UB(5). The group chain for the boson symmetry UB(5) is
given by [54]:

U®(6) oU®(5) 2 0°(5) 2 0°(3) 2 D%(2)..cccvrerrrrrrrrnene, (2-91)

Since the algebras of SO(5) and SO(3) are isomorphic to those of
SP(4) and SU(2), respectively, spinor symmetries are possible whenever m
Is such that the fermions span an irreducible representation of SU(2) and/or
Sp(4).
2.3.1.2-UB(5) plusj = 4: the Spin(3) Limit

The coupling of a ] = 1/2 nucleon to the quadrupole degrees of
freedom of an even-even core nucleus has been discussed in terms of core-
excitation model [92], in which states in spherical odd-A nuclei are
described by coupling the odd nucleon weakly to core excitations. In this
section we will examine the coupling of a j = 4 particle to a vibrational
core nucleus in the framework of the IBFM. It will be shown that by using
the algebraic structure of the IBFM it is possible to obtain closed analytic

expressions for the energy eigenvalues, electromagnetic transition rates,
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static moments, and one and two nucleon transfer intensities. UB(5) plus
] = 4: the Spin(3) Limit .
1- Energy Spectra
In this section we discuss the states built on aj = 4 shell model orbit.
The matching of boson and fermion group chains gives [82]:
UB(6)2U°B(5) 2 0°(5) 2 S0°%(3) 2 0%(2).ceererreerereieeeeeeieieerne (2-92)

UF(2> SUF(2) >0F(2)
The two chains can be combined into

U6 ®UF(2)oUB(B) QU (2 o 0°(B)®UF(2) o 0°B)®

UF(2) 2 iNB) D DIN2)oreerererrerrereneerrr, (2-93)
where Spin(3) ~ SU(2) and Spin(2) ~ N SO(2). The boson generators of
the groups UB(5), and SOB(5), and SOB(3) can be written as B!, | =0,...4,

B, =0,.3,and, B, respectively, where

The fermion generators of the groups U(2) and SUF(2) are given by
A 1 =01 and A, respectively, with

~ |
R A A IO (2-95)
Note that in Egs. (2-94) and (2-95) we have used Racah’s [93] coupled

tensor notation, while in Egs.( 2-76), (2-77) and (2-78), we have used the
uncoupled notation. The generators of the Spin(3) group can be obtained by
combining those of SOB(3) and SUF(2):

GO - B® _

m m

and are proportional to the total angular momentum operator J® =.10G®,

The basis states can be characterized by a complete set of labels which are
given by the irreducible representations of the groups appearing in
Eq.(2- 94):

| UB(6); UF(2);UB(5); SO°(5); SO°(3); Spin(d); Jin(2); )

O[N] MY ong v L: o Moy ) (2-97)

50



Chapter Two Theoretica Considerations
The total number of bosons N labels the totally symmetric

irreducible representations of U (6) and the total number of fermions M
labels the totally antisymmetric irreducible representations of UF(2). The
vaues of the number of d-bosons ng contained in each [N] are
ng =0, 1, ..., N. The values of the boson seniority v contained in each ny are
V=ng Ng- 2, ..., 1 or 0, depending on whether ny is odd or even. Since the
reduction from SOB(5) to SOB(3) is not fully decomposable [92], one hasto

introduce an additional label n, which counts the number of boson triplets

coupled to zero angular momentum, to classify the basis states uniquely.
The values of the boson angular momentum L contained in each
representation of SOB(5) are given by:

L=2v-6n,, 2v-6n, -2, 2v-6n, -3,....,2v-6Nn, +1 2v-3n, ...(2-98)

Finaly, the angular momentum L with the fermion angular
momentum. For a system of N bosonsand M =0 fermionsJ =L, and in the
case of N bosonsand M =1 fermionsJ =L +1/2. M; is the z component of
the total angular momentum J.

A part from terms which only contribute to binding energies, the
most general Hamiltonian, which is diagona in the basis, Eq. (2-97) is
given by:

H=eC

W*e(s)

+e,C C +8C, 06 +PCoge g + 9C,g0e 5 T 92Cosiing) -+ (2—99)

WE(5) "1 (2)
Here C;c and Cyc denote the linear and quadratic Casimir operators
of the group G. In terms of the generators, Egs. (2-94) and (2-96) can be

written as;

_ ' - JERO
Cye =Ny = /58]

-M" = (0)

ClUF(Z) =M = _\/EAO
4 " p) "

Coues ZIZ_(:)B B =n}(n; +4)

— (ON=1C) O RO
C,epr ey = 4B B + BY.B?|

— ® Rp®
C,pe e = 20B” B
Cogingy = 20G% G

25pin(3)
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The energy eigenvalues of the Hamiltonian Eq.(2-99) are now given by:

E(N,M,n,,v,L,J) =e,n, +e,n,M +an,(n, +4) + 2bv(v+3)+29,L(L +1) + 29, (J +1)......(2—100)
We note that since all three boson chains contain the rotation group

S0B(3) as a subgroup, it is obvious that for any of the three boson
symmetries we can construct a Spin(3) limit.
2- Electromagnetic Transition Rates
In the interacting boson-fermion model the most general form of a
one-body transition operator with multipolarity | isgiven by:
T8 =T T (2-101)

where T{ ) isgivenin Eq. ( 2-43) and T.'). isgiven by:
1)
T =3 tO(al xal f e (2-102)
]

represents the single-particle part of the transition operator.
E2 Transitions.
In this case where the odd nucleon has spin | = 1/2, the E2 transitions

are fully determined by the collective part of the E2-operator:
T(F2 = qu(s+ xd +d* x s~)(,:) + q;(d+ X d~)(,:)
T 5 =e,Q = e, ZQ (axa ) L (2-103)

Since the second term is a generator of UB(5), it has selection rule an,= 0,
while the first term can change ng by one unit, An, =+1. The reduced

matrix elements of T & between the basis states, Eq. (2-97), can simply be
related to those between the corresponding core states,
(INJ{M =12, 0, L I[T(ER)[N] M =1},n;n",L,3)

(-1 L-1/2+0 \/(ZJ +1)(2J ; +1){‘|;Jl;2}
<[N n, n, UTE[[N]n,n’, L‘> ............................. (2-104)
and quadrupole moments
=\16p 15,323 +D/{23 + 1[I + 223+ 3} (2, IT 8, ) (2-105)
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witha =[N]{M =1},n,n,L

MI Transitions.

The most general MI operator is given by:

1
To" = g5 V108 — gAY

TMY = /30/4p gy(d* xd ) —z\/j(j +2§2j e xa ). (2-106)
i
where BPand AP have been defined in Egs. (2-94) and (2-95). The

operator TMY has selection rules An, = An =AL =0. Therefore, the only

nonvanishing Ml transitions are those between states with J = L + 1/2 and
J=L-1/2

magnetic moments are simply given by:

My, =+/J /{23 +1)J +1)}<aJ”T(M1)HaJ> ~g,L*g, % .................. (2-107)

Againa =[N]{M =1},n,n,L

2.3.1.3-UB(5) plusj = 3/2: the Spin(S) Limit

The coupling of aj = 3/2 orbit to the collective quadrupole degrees
of freedom has been studied in the framework of various core-particle
coupling models. In Ref. [94] Bayman and Silverberg discuss the coupling
of aparticlein aj = 3/2 shell to the quadrupole oscillations of the nuclear

surface. The Hamiltonian:

H =hw2(b*b + j kza YOQ,D) s (2-108)

IS invariant under transformations of the symplectic group Sp(4). This
property provides a convenient basis, spanned by the irreducible
representations (v + 1, v) of Sp(4) in which the matrix elements of this
Hamiltonian can be calculated. However, the Hamiltonian is not diagonal
in this basis. Both in the weak-coupling limit (kaw <<1) and in the strong-

coupling limit (kaw >> 1), approximate solutions are obtained for the energy
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eigenvalues. The transition between the weak- and the strong coupling limit
can be studied numerically.

In the framework of the IBFM the Hamiltonian, which describes the
coupling of a j= 3/2 particle to a core nucleus, has the group structure
G = UB(6)® UF(4). In general, no further symmetry is present and the
eigenvalue problem has to be solved numerically. However, whenever the
Hamiltonian can be expressed in terms of Casimir invariants of a chain of
subgroups of G, a dynamical boson-fermion symmetry arises and the
energy eigenvalues can be obtained in closed analytic form. The coupling
of aj = 3/2 particle to an even-even nucleus with SOB(6) symmetry has
recently been discussed by |achello and Kuyucak [95, 96].

1- Energy Spectra.

In this section we discuss the states built on aj = 3/2 shell model

orbit. The matching of boson and fermion group chains gives
UB(6) oUB(5) o 0°(5) o 0°(3) o 0°(2)

~ ~ ~
~N KR

UF(@)o>UF(4)>PF(4)>U (2 >0(2
Since the algebras of SOB(5), SOB(3), and SOB(2) are isomorphic to those

of SpT(4), SUF(2), and SOF(2), respectively, the boson and fermion group
chains can be combined into
UB(B)®UF(4)oUB(B)® U F(4) > 0 B (5)
® SPF(4) o Fin(5) > Fin(3) o Sin(2).....(2-109)
where Spin(S) ~ Sp(4), Spin(3) ~ SU(2), and Spin(2) ~ SO(2) [95, 96].
The generators of the groups UB(5) again are given by B{’, | =0,...4, and

those of SOB(5) by B® and B with B!’ = (dT xd )(r:) The generators of

UF(4) can bewritten as AY and A® those of SpF(4) as AY and AY with:

Al =(al, x3,,). s e (2-110)

m m

The generators of the combined group Spin(S) can be written as
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GY =Bl - (2-111)

@
\/_ AD e

\/_ A(l) ...............................................
The generators of the Spin(3) group are simply G%, which are proportional

G @ _ B (1)

to the total angular momentum operator J& =/10G®.

The basis states can be labelled by a set of quantum numbers which
characterize the irreducible representations of the groups appearing in
Eq.(2-109).

‘U 6); U F(4); UB(5); S0°(5); in(3); Spin(3); Fin(2) >;
CINE MY ngs v pny)s 30 My )Ll(2-119)

The quantum numbers N, M, ng, and v are the same in the previous
section. The vaues of (vi, Vv2) which characterize the irreducible
representations of Spin(S), can be obtained from the branching rules. For

the case of N bosons and M = 0 fermions the values of (v1, V,) are given by:

n,=n=n,,n, -2..10r0(ng=odd or even) ........ccc.coeu... (2-114)
n,=0
for the case of N bosons and M = 1 fermions by
1 1
n,=Nn+=-n-=
2 2
N, =0 (2-115)

Since the step from Spin(S) to Spin(3) is not fully reducible an
additional label n, is needed to classify the basis states uniquely:
n, =0.12,... For M =0
n, =01/213/2.. ForM=1
Apart from terms which only contribute to binding energies the most generdl
Hamiltonian which is diagonal in the basis, Eq.(2- 113), isgiven by:

H = el W*E(5) +eC1U 5(5) CJUF(Z)'CJJJF4) +aC 2U 8 (5) +bczsoB(5) +b Czannn(5)+gpzaoin(3) ---(2_116)
The linear C; and quadratic C,, Casimir operators appearing in Eq. (2-116)

can be expressed in terms of the generators Egs. (2-110), (2-11) and
(2-112) as [82]:
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C, 6., =N; =~/5B
C. .., =M"=+4A?

4
~3'B" B =n;(n; +4)

0°() ot
—4B® B® +B® BY|
— 4GP GP +GY GY|
Coging = 20GP GY i (2-117)
The expectation values of the Hamiltonian, Eq.(2-116), are given by

W °(5)
UF(4)
C
CzsoB (5)
C

250in(3)

the energy formula

E(N,M,n,,v,L,J)=¢en, +e,n;M +an,(n, +4) + 2b,v(v+3)
+2b,n, (M, +3)+n, N, +1)]+293(J +1)........(2-118)
2- Wave Functions.

In order to calculate matrix elements for electromagnetic transitions
and other nuclear properties analytically, one needs to know the wave
functions explicitly. It is convenient to expand the wave functions,
Eq.(2-113), into wave functions of the product group SOB(5) ® SP(4).

[N]ngn ,nl,J>:;zr?lt [N]ng,n,L)x

13
E’E> ......................... (2-119)

where n :nli%. The wave function [[N]n,nn;,J) denotes the wave
function |[N],{M =1},nd,n,(nl,n2=%),J>, while [[N]n,.n,L) denotes the

UB(5) wave function |[N],{M =0},n,,n,(,=nn,=0),L) and ‘%,§>the

fundamental spinor representation of Sp(4). The expansion coefficients

z;'\, can be interpreted as the isoscalar factors [97] for the group reduction
Sp(4) oSU(2). Next we use Racah’s factorization lemma [97], which
relates the isoscalar factors z\%/5...,, for the group reduction
SU(4) > Sp(4) o SU(2), which already have been calculated, to those for
the reductions SU(4) > Sp(4), h % ,...,, and Sp(4) 5 SU(2), h"L,, ;.

Nn,L _ Nn L
XN+1/2,n,J _hN+1/2,nv:yJ ----------------- (2_120)
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where n=n,+1/2. Taking hY%,, .0, =—((N+n+4)/2N+4))* and

h %2, = ((N=n)/(2N +4))"?, we obtain the following expressions for

the Sp(4) - SU(2) isoscalar factors,

2N +4 )"
\/&,1_1/2“] = —(mj Xr\,\llfl};nﬂ/z,\] .................... (2 — 121)
. 2N+ 4% ..
\/lll+]I/L2,L :(W) Xl\,\llfl/;’,rl;ﬂlz\l ....................... (2—122)

The coefficients V', can also be found by diagonalizing the operator

G® . G® between the wave functions given in Eq. (2-117). The matrix
elements of G® . G® are given by

(INJ{M =1},n,,n.n,, 3|GPGO|[NJM =1},ng.n "0, 3 ) (2-123)

1 3) 1
d,d,,d,d, . {E(nl(nl +3) + Zj - 1—OJ(J + 1)} .................... (2-124)

3- Electromagnetic Transition Rates E2 Transitions.

The most general one-body E2 transition operator can be written as [82]:
TE) — g (shxd +d" x5 + g5 (d" xd |2 +1,(al,, %y ) oo (2-125)
Thefirst termin Eq. (2-125) has selection rules An, = +1, while the last two
terms have An, =0. The reduced matrix elements of T2 can be caculated
by expanding the wave functions according to Eq. (2-119):

<[N], M =1}n,n 0, ITE[[N] M =1},n, n ',nl',J'>

=Y znszn (23 +1)23 +1)

‘TQ(EZ) H[ N].ngn, L>>{5 JL3; ZH

SLdaL
Laizes /1 3@l 3\)2
+(-1) <§,§HTF HE’E B B (2-126)

Xl:(_l)L-1/2+J'<[N]’nd n,L

The isoscalar factors z;';, have been derived in the previous section

and the reduced matrix elements of T{* have been derived in the previous

section and the reduced can be taken from Ref. [54]. From the reduced
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matrix elements, Eq. (2-126), we can caculate B(E2) vaues, Eq. (2-103),
and quadrupole moments, Eq. (2-105), in the usual way.

M1 Transitions.
The MI operator in the Spin(S) limit can be expressed as.

TMD = ggV10BY — g VBAY e (2-127)
where B, AY are defined in Egs. (2-94) and,(2-95). The operator in Eq.
(2-127), has selection rules An, =0, An=0, An,=+1, An,=0. If g,=g;,
the Ml-operator is proportional to the total angular momentum operator J®
and therefore in this case al MI transitions are forbidden. We will consider
the genera caseg, = g.. The reduced matrix elements of T™» can be
obtained by expanding the wave functions according to Eqg. (2-119).

(IN}M =1ngn 0y, T[N} M =1}n, 0 n;,07)
=d_d, .gg/(J+1)23+1)

nn J,J

(0 -9 )Y zntz ()20 + 120 0T b (2-129)
L

From the reduced matrix elements Eq. (2-128) one can calculate T(M1)
matrix element values EqQ. (2-106) and magnetic moments Eq. (2-107).

2.3.2-Interacting Boson-Fermion Model-2 (IBFM-2)

The interacting boson-fermion model-1 (IBFM-1) describes
properties of even-odd nuclei by coupling collective and single-particle
degrees of freedom much in the same way this is done in the collective
model [72]. The collective degrees of freedom are described either by
shape wvariables o, (4 = 0, 1, *2) or by boson operators

s, d_(u = 0, £1, £2), with no direct link to the underlying microscopic

structure. A microscopic description of nuclei is provided by the spherical
shell model. Collective features in this model can be obtained by
introducing the concept of correlated pairs with angular momentum and

parity J° =0 and J° =2". A treatment of these pairs as bosons leads to the
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interacting boson model (IBM). However, since there are protons and
neutrons, one has the possibility of forming proton and neutron pairs. In
heavy nuclei, the neutron excess prevents the formation of correlated
proton-neutron pairs and one thusis led to consider only proton-proton and
neutron-neutron pairs. The corresponding model is the interacting boson
model-2 (IBM-2) [98, 99]. The introduction of fermions in this models
leads to the interacting boson-fermion model-2 (IBFM-2). In addition to a
more direct connection with the spherical shell model, the interacting
boson-fermion model-2 (IBFM-2) has features that cannot be obtained in
the interacting boson-fermion model-1 (IBFM-1).

The structure of interacting boson fermion model-2 (IBFM-2) isvery
similar to that of model-1 (IBFM-1). In order to avoid repetitions, the
discussion here and in the following section will therefore be kept short and
will concentrate mostly on numerical studies[82].
2.3.2.1- Bosons and fermions

Consider an odd-even nucleus in the spherical shell model. Single-
particle levels here are denoted by nlj with n being the principal gquantum
number, | the orbital angular momentum and j the total angular momentum,
j=1+% .When many particles occupy the vaence shells, the
diagonalization of the residual interaction in the shell model space is
unmanageable. A truncation can be obtained first by assuming that the
closed shells are inert and second by considering only those configurations
arising from pairing together particles to states with angular momentum
and parity J° =0" and J° =2". In even-odd nuclei at least one particle
remains unpaired. In odd-proton nuclei it is a proton, in odd-neutron nuclei
it is a neutron. One can also consider situations in which both one proton
and one neutron are unpaired or cases in which two neutrons or two protons
are unpaired. The former situation will arise in odd-odd nuclei while the
latter will correspond to excited states in even-even nuclel. (These excited

states are often called two-quasi-particle states.) The general situation is
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thus described by proton (neutron) bosons with J° =0*, denoted by s, (s,)
and proton (neutron) bosons withJ® =2, denoted byd,(d,). This is

identical to the situation in even-even nuclei. In addition, there are unpaired

protons, denoted by a, and neutrons, a . As in the case of even-even

nuclei, in order to take into account the particle-hole conjugation in particle

space, the number of proton and neutron bosons, N, and N, , and of
proton and neutron fermions, N, and N, is counted from the nearest

closed shdll, i.e.,, if more than half of the shell isfull, N and N are

Bp(n) Fp (@)

taken as holes. Thus, for example, for {’Xe;, N, =(54-50)/2=2,
Ng, =(64-50)/2=7 and N, =65-64=1 while for ' Xe,, Ny, =(54-50)12=2,
N, =(82-74)/2=4and N., =74-73=1. A bar is sometimes placed over the

numbers Ng,.,and N ., to indicate that these are hole states. The total

Bp (n)
number of bosons and fermionsis then:

Ng = Ng, + Ng,,
Ng = Ng, + N, (2-129)
Properties of this model, with protons and neutrons explicitly introduced,

will now be discussed.
1- Boson and fermion oper ators.

The building blocks of the interacting boson-fermion model-2
(IBFM-2) are boson and fermion operators for protons and neutrons. The

boson operators are identical to thosein section (2.2) [82]:

Sp dp s vm’ m=0,+1,42
Sp ’dp,mis/ldv,ma m= O,il,iz .......... (2 —130)
or, in amore compact notation,
b i b, (r=p,vl=02-1<m<l) . (2—-131)
These operators satisfy Bose commutation relations,
[brlm’ rlm] d dIId
[ [rlm,r.m] e (2-132)

In addition, there are now fermion creation and annihilation operators,
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a‘:,j,m1a‘r,1,m1(r :p1V1 J = le j2,"', jn,m=i1/2,i3/2,--,ij)(2—133)

The fermion operators satisfy Fermi anticommutation rel ations,
{aT ,j,m’a:',j',m'}:drr'djj‘dmm"
O W T LC IR (2-134)

The values over which the index | runs are now determined by the single-

particle levelsin the valence shell. For example, for Z/ xe,,, the values of J,

are5/2,7/2, 11/2, 1/2 and 3/2. The principa quantum number, n, is as usud
not written as an index on the fermion operators, unless one considers large
spaces in which there are two single-particle states with the same j. If only
valence shells are included, this never occurs. Boson and fermion operators

are assumed to commute,

[br ,I,m’ar',j',m]: [br ,I,m’a:',j',m]: [b:,l,m’ar',j',m]: [b:,l,m’dr',j',m]zo- ...(2-139)
2-1sospin

Instead of the label r =p,v, it is possible, for bosons as well as for
fermions, to introduce another, equivalent label. For bosons it is called
F-spin and was defined in U(njm)> OSp(njm) where m is even. For
fermions the label is precisely identical to isospin. Protons can be
characterized by T =% and projection T, =+%, while neutrons are

characterizedby T=% and T, =-%, 1.e.

p)=[3+3),
‘V>:‘%,—%>. ......................... (2-136)

Using the isospin label, fermion creation and annihilation operators are
denoted by

t .
a%m,j m?

& pme (M=1/2) (2-137)
When the isospin label is used, spherical tensors are built from creation and
annihilation operators of the type

()il (2-138)

a1 m,j,—m'

Tm,im
Isospin for fermions does not play an important role in the interacting

boson-fermion model-2 (IBFM-2) since protons and neutrons occupy
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different single-particle states. It plays instead an important role in more
elaborate versions of the model.
3-Basis states

Basis states in the interacting boson-fermion model-2 (IBFM-2) are
rather complex. Denoting the indices |, mas a and the indices j, m as i,

basis states can be written as

BF:al,a . --alal, b b, b bl 0) o (2-139)

If no fermion creation operators are present, Eq. (2-139) describes a
state in an even-even nucleus, if one fermion operator is present,
Eq. (2-139) describes a state in an even-odd nucleus, if one proton and one
neutron creation operator is present, the state is in an odd-odd nucleus, etc.
Angular momentum couplings are chosen in such a way that bosons and
fermions are first coupled among themselves, followed by the final

coupling,

BF . [[al;rJ X a;l x---](Jp) x[a\:j xa\;j. Xo--](JV)}JF)
[[bJ,| < x-" x [l <l x ...]<H>}LB)]<@>\0>. ................ (2-140)

2.3.2.2 The | BFM-2 Hamiltonian oper ator
The Hamiltonian operator has now the general form [82]:

H=H;+H: +Hg (2-141)
with

H=Hgy;+Hg;+H

H=H;+H;+H.,,

H=H_ g +tHg t Hpge T Hoge o (2-142)

pvB?

The various parts have the same structure as those discussed in
section(2.2), except that indices p,v appear everywhere.
1-Special forms of theinteraction

The most general Hamiltonian (2-141) and (2-142) contains many
parameters. A phenomenological study using all the parameters is nearly
impossible. In the analysis of experimental data ssmpler Hamiltonians are

guite often used which contain the essential features of the interaction. The
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part describing the bosons is usually treated in terms of the Tami

Hamiltonian, which contains the basic features of the effective nucleon-
nucleon interaction that emerge from pairing, quadrupole and symmetry
energy. In addition, in some calculations a d-boson number-conserving
interaction arising from a seniority-conserving nucleon-nucleon interaction
between like particles is introduced. The adopted boson Hamiltonian is
then [82]:

H=E,+e,N, +e, +KQE QS +1 "M, + Vo +V,, e (2-143
The operators f, ,A, ,Q and Q; have the same meaning as in section (2.2).

In terms of the boson operators they are given by:
I;\]d, = Zdrder ,m?

(jrc'm = [SrT X Jr +d' xS ](r:) +C, [drT N Er ](r:), r=p,v " (2-144)
The Majorana operator M wisgiven by:
M pv — [SJ X dr:r B Sl;r X dJ](Z)'[gv X ap B §p X av ](2)
2y x,[d xd' [, xd, |
o kzzl;;(k v XY, Uy x4, e (2-145)

The coefficients x, have been introduced in Eg. (2-145) relative to

Eq. (2-45), in order to allow for different strengths of the last two terms
relative to the first one. This result arises from microscopic calculations of

the coefficients. The d-boson number-conserving interactionis:

V.= Y %c@[d:xd:](”-[arxaj}”, r=p,v

L=0.2,4
The part related to the fermions is described in terms of an effective
nucleon-nucleon interaction. This interaction can be taken either as a
schematic interaction (such as a surface d -function interaction), as often
used in shell-model calculations [100], or as the effective interaction
arising from the free nucleon-nucleon interaction. In most calculation only
one proton or one neutron is unpaired. In these cases, only the one-body

part of He matters. Thisisjust the single-particle energy [82]:
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H'e=E +Zejp e TZE (2-147)

where
Ny :mza:,jr,m, A, m r=p,v

In odd-cr)dd nuclei there is one unpaired proton and one unpaired
neutron. In these cases, one needs also the proton-neutron interaction. This
can be taken in the form of a quadrupole interaction:

HE= % Vi [a xa: 1 <[, <&, 1] o (2-149)
or, alternatively, a surface d -function interaction is used.

The most important part of the Hamiltonian for even-odd nuclel is
the boson-fermion interaction. The microscopic theory of the interacting
boson-fermion model suggests specific forms for this interaction. The three
important terms are, as in section (2.2) the monopole, the quadrupole and
the exchange interaction. The monopole and quadrupole terms are written

in the same form asin section (2.2):

Ve = Z A, (R, A, )+ ZA( ) (2-150)

QUAD ZFJPJPQ ql i T ZFJJ Q qJJ L (2—151)

il

where A, and f; are deflned in EQ. (2-148) and the fermion quadrupole

operators g, ;. aregiven by:

~ t ~ 2) — _
6, ) m= ] xF, [7) TPV (2-152)

The microscopic structure of the interacting boson model suggests
that the monopole interaction acts predominantly between like particles
(proton fermions with proton bosons and neutron fermions with neutron
bosons), while the quadrupole interaction acts predominantly between
unlike particles (protons with neutrons) [101] . These considerations are
built in the specia forms (2-150) and (2-151). The last term in the boson-
fermion interaction is the exchange term. In the interacting boson-fermion
model-2 (IBFM-2) this term has a form somewhat different from the

corresponding term in section (2-3):
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Vrr = [Sg X ap ](2) { Z Aji';vi'v : [[d\;r X é-J"'v ](m X [S\J/r X a;r ](jIV)r) :}
ity
ddl s gl 1l <1

N

+ Hermitian conjugate. .. (2-153)

This form again is suggested by the microscopic structure of the model. It
should be noted that, if no distinction is made between protons and
neutrons, the form (2-153) can approximately be rewritten as by
appropriately contracting the s-boson operators.
2-Transition operators

Transition operators can be written in the same way as in section
(2-2). There are now four terms describing proton and neutron bosons and
fermions [82]:

I (O (O O (O

o T+ T F Tl s
The boson terms are given in section (2.2). The fermion terms can, to the

lowest order, be written as:

-~
TW = fp(f)gdLo+ij; fj(pLj)'p [aij Xaj'p]( ’

pF,m

3

~—~
N
|
[EY
o
O1
~

~ L
TV(FL,)m = fv((OJ)d Lot Z fl(vl])v [a}rv X aj 'V](
iy m
Particularly important in even-odd nuclei are the transition operators which
induce E2 and MI transitions. It is customary in the operators to separate

the dependence on the angular momenta j, and j, from the coefficients that

determine the strengths of the transitions. This is done by introducing

effective charges and moments. For E2 transitions, one has:

£ ==l (n 1 2o 2 Y >/\/§, r=p,v (2-156)

where now the single particle indices n,l,s= %, j are written explicitly. The

quantities e and € are the fermion effective charges. The free values of

these charges are 1 and O respectively, in units of the electron charge. Shell

65



Chapter Two Theoretica Considerations
model calculations indicate that € ~1.5e and € ~0.5e [100]. Following,

the boson part is written as:

T =€PQC oy I =P Verrrrereeeeennnn (2-157)
A superscript B has been added to e in order to distinguish it from the
fermion charges. The units of €® are different from those of € since the
radial integral is aready included in Eg. (2-157). The boson effective

charges €° have the same units as the product:

el =ef(n, I,

r r

[ P L o TRV (2-158)

that isthe units are eb.

For M1 transitions, the fermion part of the operator iswritten in the form [82]:

f-(l-)- = 3<|r1%ljr

i T Nap

gllir r+ ggr §

50 )dy N3, T =pv L (2-159)

The quantities ¢/,,9/,,0;, and g, are the single-particle g-factors. The
free values are g/, =19/, =0,9;, =558 and g;, =-3.82 in units of
nuclear magnetons, m,. In actua calculations, the spin factors g, are
renormalized. Typical values in shell-model calculations are
gl ~ 0.7g . Following, the boson part of the Ml operator is usualy

written as;

TOD = J2G8L, 0 T =PV (2-160)
where L, is the angular momentum operator of the r (r =p or n) bosons.

The boson g -factors have the same units as the fermion g-factors since no
radial integrals are involved in Ml transitions.
3-Transfer operators

Transfer operators assume a particularly important role in the
interacting boson-fermion model-2 (IBFM-2). This is because the
transferred particle is either a proton or a neutron (or a pair of protons or

neutrons) and it is thus natural to compute matrix elements of transfer
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operators within a framework of a model that explicitly treats proton and
neutron degrees of freedom. There are two types of one-nucleon transfer
operators, those that change the boson number by one unit and those that
do not. When expanded in terms of creation and annihilation operators, the

transfer operators of the second kind can be written as [82]:
P+(’j,;]r) =p; a}r m qu’ )ﬂsf xd E) xal, k ) + Zq'(jj.: )[[drT X3 ](nf) xal, I: )
i, ' " i, ' "
+ kz q"(k";j.% [[d: xd, E) xal, E | Forr —— (2-161)
Y, ' "
Those of the first kind can be written as

I

PJ,(J{) = pj [Sf xa ]::)+Zq’-". [drT x & ]:)+ ............ (2-162)

The substraction operators, P, are obtained by taking Hermitian
conjugate of Egs. (2-161) and (2-162).

Two-neutron addition and subtraction operators are written terms of
boson operators alone, at least if one considers only states with at most one
unpaired particle.
4-Algebras. Boson and Fermion Algebras

The algebraic structure of the interacting boson-fermion model-2
(IBFM-2) is a combination of the algebraic structures discussed previously
and those of section (2.2). There are now four parts corresponding to
proton and neutron bosons and fermions. By combining these four pieces
one can obtain alarge number of possible couplings. Since these are simple
extensions of the couplings described in section (2.2), only a few selected
examples will be discussed here.

From the bilinear products of boson and fermion operators one can

form now four algebras [82]:
9. :B,. =hy.b

pa-pb?
ng : Bv,ab = b\;r,a bv,b ’
grl): : Bp,ik = b;,ibp,k’
0f (B =bib e s (2-163)
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The algebrasin Eq. (2-163) are the unitary algebras discussed previously,

g, =u, (6).97 =u/(6),
gr =u2(Q, )07 =u(Q,), e (2-164)
where @, and Q are the dimensions of the fermionic spaces, i.e,

Q, = (2j, +1) and Q,=3(2j, +1). The agebraic structure of the model
i )

Is thus that of the direct sum of al four algebras, or, using the notation
appropriate for groups, the product:

G=U’(6)®UJ(6)®US (Q,)®UZ(Q,), v (2-165)

This product is reduced to the rotation group O(3). There are two
main routes, which will now be illustrated with an example. The first route
Is that in which bosons are first coupled and so are fermions and
subsequently the combinations of bosons and fermions are coupled. The
second route is that in which protons first are coupled and so are neutrons
and subsequently the combinations of protons and neutrons are coupled. To

clarify this, consider the case in which Q  =Q,  =4. This case has been

extensively investigated [102]. The first route corresponds to the lattice of
algebras.

uz(6) ® us) ©® us(4) ® us(4)
N P VSN P
o7(6)  Un(6)  0OJ(6) SUg(4)  UL(e) SuJ(4)
VN L sy Loy Y !
o;(5)  ©o7()  0Ol(s) S, (4) VLA 7(4)
N L T
07(3)  ©7(5) N 0O7(3) V() w4) U2
N v v e
026 \ N RV C)
o (6) P
N BF =
N 0% (5) L
N v

The second route correspond to the lattice of algebras
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Uz (6) ® Uy (4) ® US4 ® ur(4)
J J J
0, (6) U, (4) 0;(4) U (4)
! vl AN L

v(4)  sinT(6)  s(4)

0%(3) aoinf(s)? o (2) 0(2) — Sin¥ (5) /sﬁ(z)
\l ¢ P , Yooy
Sin®(3) v 4N Sin=(3)
E 0¥ (6)
1 s
N BF
\ o (5) P
1 oE@)
N
ove (2-166)

The complexity of the problemis clear from Egs. (2-165) and (2-166).
2.3.2.3-Dynamic symmetries

The only dynamic symmetry that will be considered here in detail is
one that has found useful applications in the description of odd-odd nuclei
in the region of the Au isotopes. This symmetry corresponds to bosons
described by O(6), protons occupying a single-particle level with
j, =%,Q, =4 and neutrons occupying single-particle levels with
I =%%%Q,=12.
1-L attice of algebras

The lattice of algebras considered [103] is intermediate between the
two schemes discussed in section (2.3.2).

ue) ® UJ(s) ® uf@2) ® us@d)
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2-Energy Eigenvalues
The usual procedure of writing the Hamiltonian in terms of Casimir

operators gives [82]:

H =g +6C,[U26)+eC,(UE6)+eC,(Us6)+eC,(Us6)
+eC(UF4)+eC,(U54)+eC U5 12)+eC,Uf12)
+aC,(U26)+a'C,(UB6)+hC,(UE6)
+h'C,(U ¥ 6)+h"C,(Sping" 6)+ bC,(Sping"5)

+C,(INEF3)+g'C,(Pinf,2)+9"C,(0%3) . (2-168)

uz(e) ® Ul ® US4 ®© U@
\ \A \ \A
[NBp = Np] [NB = Nv] [NFp :1] [NF = ]
> u.(6) ® US4 © Uje) ® UL[Q
\ \
[N, N, ] 1
> Uy ® US4 © UL o uxye © suf(4 eull(2
\ \A
[Nl’lelNl3] (8182’83)
> Siny(6) ® UL(R) o siny(5) © ULQ
2 {
(51525'3) (t1rt2)
> Siny@B) ® Wi o oFy@E o o0y
\) A \ A
v, S=1/2 L Mo (2-169)

Taking the expectation value of H in the basis
one obtains energy eigenvalues appropriate to describe odd-odd nuclel [82]:
E(Ng, =N,,Ng, =N,, N, =1L N, =1[N",,N',,N",]
(51:52:55)(6%,8%,8 ).t ,)v,, 3, LM,)
=€, +a(N, + N, )+a'[N,(N, +5)+ N, (N, + 3)]
+h[N", (N, +5)+ N', (N',+3)+ N', (N',+1)]
+oh's (s, +4)+s (s ,)+s 2]
+os (s +4)+s ', (s",)+s ]
+2bt,(t, +3)+t,{t,,)]+200(I +1)+29"L(L+D) ... (2-170)

where the constant terms have been included in e,. Similar formulas can be

obtained in the cases where the U} (4)®U/ (12) representations are {0}® {0}
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(even-even nuclei), {}®{0} (odd-proton nuclei) and {0}® {1} (odd-neutron

nuclei) for example % Au, (N, =1Ng =3 N, =1N. =1,).

Examples of nuclel with U’ (6) ®@U *(6) ®U (4) ®U (12) symmetry.
Experimental examples of odd-odd nuclei which can be described by

the expression Eqg. (2-170) have been found in the Au region. One of these

nuclei, “$Au,,, Recently, this nucleus has been remeasured by [104].

However, due to the complexity of the odd-odd spectrum, it is difficult to
establish a one-to-one correspondence between observed and calculated
states. Thus, any assignment of quantum numbers to the observed levelsin

“Au,,, can only be viewed as tentative as long as they are not confirmed by

nucleon transfer or electromagnetic decay properties. Simple analytic
expressions are available for the former [105] and will provide a test of
proposed classifications of levelsin nuclei in this mass region.

It is worthwhile commenting on the extreme difficulty, both
experimental and theoretical, posed by odd-odd nuclel. From the
experimental side, the high density of levels makes it very hard to assign
spin and parity to individual states. A theoretical analysis of odd-odd
nuclei, especialy when many single-particle levels are included, is hardly
feasible. Dynamic symmetries offer here a unigue opportunity. Despite the
apparent complexity of the procedure described in section, calculations are
still feasible and straightforward. The only complication is in the
bookkeeping aspect of the procedure, but thisis greatly aided by the use of
algebraic methods (group theory). It is in the treatment of these very
complex cases that the full power of algebraic methods comes into
play[82].

Examples of nuclei with U (6)®U’(6)®U (4 ®U, (4) symmetry.

Although not discussed here in detail, we note that examples of

dynamic Bose-Fermi symmetries based on the chain Eq.(2-169) have been

found in the spectra of the odd-odd Cu isotopes, in particular of 22Cu.,.
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The odd-even Cu isotopes were discussed in the examples of nuclel with

Spin®" (5) symmetry. The odd-odd isotopes provide further examples of

Spin®" (5) symmetry in the case in which the odd proton occupies an orbit
with j, =3/2 and the odd neutron one with j, =3/2.

2.3.2.4-Superalgebras.

Superalgebras can aso be used within the context of the interacting
boson-fermion model-2 (IBFM-2) [82]. The only difference is that the
proton and neutron indices now appear everywhere and that the number of
routes possible in the reduction of the superalgebra to the rotation algebra
increases considerably. Superalgebras based on the IBFM-2 are particularly
useful in the description of odd-odd nuclei, since by fixing the parameters
of the Hamiltonian and other operators from a study of even-even and odd-
even nuclei, one is able to predict the structure of odd-odd nuclel. These
predictions can be compared to the experimental data (when they exist) or
used as a guideline for future experiments. In this section, only a few
selected cases will be presented.

1- Supersymmetric chains.

Supersymmetric chains can be obtained by embedding the algebras
of section (2.3) into superalgebras. There are again two main routes that
will be illustrated with an example. Consider the case in which both
protons and neutrons occupy a level withj =], =3/2. The
corresponding algebraic structure has been discussed in section (2.3) and
can be embedded into the superalgebra [82]:

G =U,(6|4)®U,(6]4) i (2-171)
When considering the subalgebras of Eq. (2-171), one can either first

combines the two subalgebras into their sum:

U,(6]4)®U,(6]4)oU(6]4)oUBB)OU"(4) i, (2-172)

where the algebra U(6]4)is obtained by adding the generators of
U, (6]4) to the corresponding generators of U,(6]4), or one can go
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directly from the proton and neutron superalgebras to their maximal Lie

subalgebras [82]:
U,(6]4)®U,(6]4)>U2(6)®US(6)®U; (4)®U; (4)oUB)®U(4) ........ (2-173)

The first alternative only exists if the proton and neutron spaces are

identical,, =Q,. If the first alternative is possible, one can introduce

formalism similar to F -spin, but now applied to superalgebras. Proton
bosons and fermions can be assigned to a supermultiplet with F =1/2 and

F -spin projectionF, =+1/2. Similarly, neutron bosons and fermions have

F=1/2andF,=-1/2,i.e.

The supersymmetric multiplets now contain:

\M{E‘é’? J;\v>=[k;%j j;(a S TR < Y IO ) L (2-175)

The F -spin basis can be obtained by constructing the Kronecker
products of two U(6|4) representations. The rules for this product, when
expressed in terms of Y oung supertableaux, are identical to those of normal

Lie algebras. For example, [82]:

RP®®®. s (2-176)
or
BB =[2®[LL.  ——— (2-177)

One obtains in this case Young supertableaux which are not totally
supersymmetric.
2- Dynamic super symmetries

In heavy nuclel, the situation described in the previous section
(the F-spin scheme) seldom occurs. One must therefore use the second
possible reduction Eq.(2-172). Some examples of this kind have been
found. One such example corresponds to the embedding of the chains
discussed in sect. (2.3) into [82]:
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U,(6]14) ® U,(6]12) > U6 ® UJ(6) ® UZ6E) ® UJ6)
2 \! 2 2 2 2
N, } N, } [Ne, ] [Nel  {Ng Ne,
Use of supersymmetry now alows the construction of
supermultiplets obtained by combining the proton supermultiplets with the
neutron supermultiplets. The important portion of the supermultiplet that
can be accessed easily is that formed by an even-even nucleus, the
adjoining odd-even and even-odd nuclei and the neighboring odd-odd

nucleus, i.e. the nuclel with 82]:

Ng, =Ny, Ne, =0, Ng, =N, N, =0,
Ng =N, -1, N =1, Ny =N, N, =0,
Ng, =N, Ne, =0, Ng, =N, -1, N =1,
Ng =N, -1, N =1, N =N,-1, N,=1. ... (2-179)

All these nuclei belong to the supermultiplet [N} ®[N,}. The set of
four nuclei Eq.(2-179) has been termed a magic square. An example of
such amagic square is shown in Figure (2.3). If a dynamic supersymmetry
is present, al nuclei in the square should be described with the same
Hamiltonian. For the nuclel shown in Figure (2.3) the appropriate
Hamiltonian is given by Eq. (2-170). One must insert in this formula the
appropriate eigenvalues of the Casimir operators corresponding to the four
cases in Eq.(2-179). The odd-odd formula is given by Eq. (2-171). The
even-even and even-odd formulas are obtained in the manner discussed in
sections (2-1) and (2-2). A comparison of the spectra obtained in this way
with those experimentally measured is shown in Figure (2.3).

197 198
79 Au118 79 AU119

196 197
78 AU118 78 A"'1119

Figure (2.3) An example of amagic square in the Pt-Au
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Another example of a dynamic supersymmetry including even-even,
even-odd, odd-even and odd-odd nuclel has been presented by Hiibsch and
Paar (1987) [102] in the region of the Cu isotopes.

A further generalization of these studies can be achieved by
embedding the direct product of proton and neutron superalgebras into a
single, larger superalgebra [82]. This, in general, can be written as Jolie
etal., [106]:
u@12|Q,+Q,) o U (6|Q,) ® U, 6|Q,)

\ \ N R (2-180)

{N} N, | {N,}

with - N, +N,=N. The single representation [N] of
U(12|Q, +Q,) now not only contains al even-even nuclei with
Ng, + Ng, =N but also all associated even-odd, odd-even and odd-odd

nuclei, as specified in Eq. (2-179). It is clear that, due to the large number
of nuclei contained in one multiplied, such schemes have only a very
limited applicability.
2.3.2.5-Numerical studies

The degree of complexity when going from even-even to even-odd
nuclel increases by at least one order of magnitude. It increases further by
another order of magnitude when going from odd-even to odd-odd nuclei.
Although the dynamic symmetries discussed in the section (2-2) may give
some insight into the structure of specific examples of nuclel, they cannot
be used in all cases and one must resort to more realistic, numerical
calculations. Many odd-even nuclel have been studied in this way with the
interacting boson-fermion model-2 (IBFM-2), using a computer code
written by Bijker (1983) [ 107] and an example will be discussed in next
section. Odd-odd nuclei, being more complex, have been studied less

accordingly, but nevertheless a few calculations are available. Finally, we
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also discuss in this chapter an example of a broken-pair calculations for
even-even nuclei.
1- Even-Odd nuclel.

In view of the large number of parameters appearing in the operators
of section (2-2), a semi microscopic input is introduced [108]. Here this
input is more appropriate, since the (IBM-2) is directly related to the
underlying shell model. Coefficients in the operators of sections (2.2) and
(2.3) are written in terms of the occupation probabilities obtained through a
BCS calculation [86]. This calculation is done separately for protons and
neutrons and provides the single-particle energies in the presence of several

valence particles (quasi-particle energies, e , and e, ), in terms of the Fermi
energies | jand |, the pairing gaps A and A, and the single-particle

energies in the absence of other valence particles, E; and E; ,

e, =J[E, -1 F+&, r=pV (2-181)

Je

The occupation probabilities are then given by

E —1 |
VJ :{E[l_ < ]} ’
12 €

1

u, = (1_"12, )5, S TV A (2-182)

The pairing gaps are usually taken as A=12A MeV [72] . The
Fermi energies are obtained by solving Egs. (2-181) and (2-182) with the

condition that the number of nucleons be:
n;, :JZVJ?[ (2, +1), [ =PV e, (2-183)

For the calculation of energies and wave functions one needs the
parameters of the boson-fermion interaction. On the basis of BCS theory

one can write them in the form:
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L :(Ujr“j', =V V. )erj', I,

1. 1,
(N SR IEEN VR P R (2-18)
and
AJJJ :_bJJ JJ(N zljo_l_]_) ro
by =, vi +v,u,. Q. F =PV, s (2-185)

All energies in odd-even nuclel are then calculated in terms of three
coefficients, A ,I', and A,. The BCS theory also provides a simple

parameterization of the coefficients appearing in the one-nucleon transfer
operators (2-184) and (2-185):

1/2
p. =U, L g’ =—n b 10 1
P~ Y K}p1 i RN, (er _|_1) K, K}r

12
‘ V.
pjl’ = J i",q_.(h) :ujl’ b 10 1 T ireeasassaas (2—186)
N K. i Ir (2Jr +1) K, K,

r ir

where K, ,K', and K", are obtained from the three conditions:

and

> (odd;ad| P/ evenso;)” = (2, +1u?

al

> (even0;| P Jodd;ad)* = (2, +1V? , r =p,v

al

The formulas (2-184) -(2-188) are valid when the odd nucleon is a

particle. Corresponding formulas for a hole are obtained by interchanging

u, and v, . From this parameterization one can obtain that of other

operators, since these can be built from one-nucleon operators.
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2-Energies

The calculation that will be described here concerns the even-odd
isotopes of Hf (Z=72) and W (Z=74). The single-particle levelsincluded in
the calculation and their energies are given in chapter four. In addition, one
needs the parameters appearing in the boson part of the Hamiltonian, HB.
These are determined by the energies of nuclei with no unpaired nucleons
(even-even nuclei).

In the case discussed here these parameters are taken from the
calculation of the even Hf and W isotopes, which are discussed in chapter
three. The appropriate parameters are shown in Table (4-1). The only new
parameters needed for the calculation of even-odd nuclel, are the strengths

of the monopole, quadrupole and exchange interactions, A ,I’, anda, .

The calculation separates into two parts, one related to the negative-parity
states and another part related to the positive-parity states. The resulting
energies are shown in Figs. (4-1) to (4-5) for Hf isotopes and Figs (4-6) to
(4-10) for W isotopes.

It isof interest to contrast spectra of even-proton nuclel with those of
odd-neutron nuclei with the same mass number. One observes major
differences. These differences arise from the fact that the boson-fermion
coupling depends on the occupation probabilities which are different for

protons and neutrons.

3-Electromagnetic transitions and moments; E2

Matrix elements of electromagnetic transition operators are
caculated using the wave functions obtained from the numerical
diagonalization of H and the operators discussed in section (2.2). E2
transitions and moments are given in terms of the boson effective charges,

epB and e®. The fermion part of the operator requires the fermion effective

charges and radial integrals.
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The radial integrals are estimated to be (n, ,| |, ) =0.00330

rior rror

2

r

n

2

for the 1h,,level and (n, I |r

n, I, ) =0.0027bfor the positive-parity

levels. The fermion effective charges are taken as e; =1.5eand &) = 0.5e.

Without any further parameters, one can then compute al E2
transitions and moments. A portion of these results is shown in chapter 4.
The experimental information on electromagnetic transitions and moments
in even-odd nuclei in this mass region is rather meager. E2 transitions in
odd-even nucle are still dominated by the collective boson part. The
fermion part contributes only 5-10% to the matrix elements. A study of the
latter must thus a wait more accurate and systematic measurements of E2
transitions.

In contrast to E2 properties, MI transitions and moments in odd-even
nuclei are dominated by the fermion part of the M| operator. Using the
operator of section (2.2), one can compute the corresponding transitions.
The boson part of the operator requires a specification of gf andg’. These
can be taken from the calculations reported in chapter three for even-even
nuclei by Sambataro et al., [109]. The fermion part of the operator requires

a specification of the fermion 5-factors. The orbital j-factors are g/, =1m,
and gpF 1 =0. The spin g-factors are taken as the free values quenched by a

factor of 0.7, i.e. g5, =0.7x5.58m, and g_, =0.7x3.82m. Also here

the experimental information is rather scarce. For those cases for which
experimental data exist, the results of calculations of M1 transitions agree
in general less well with the data as compared to the corresponding
calculations of E2 transitions. This indicates that while the collective
degrees of freedom appear to be well described in even-odd nuclei, the

single-particle degrees of freedom still require improvement.
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CHAPTER THREE
INTERACTION BOSON MODEL RESULTSAND DISSCUSION

3.1- 172180Hf | sotopesin IBM-1

We investigate the dynamical symmetry of "218Hf isotopes and
energy spectra and the electromagnetic transition probabilities B(E2),
B(M1) and mixing ratio d (E2/M1) of these isotopes (Z = 72) within the
framework of IBM-1.
3.1.1 Hamiltonian I nteraction Parameters

According to the Hamiltonian of IBM-1, the energy of 72174Hf
isotopes (total numbers of bosons 14 and 15 respectively) lies in the
transitional region SU (3)—0O (6) (Eq.(2-40a)) and the "¢18Hf isotopes
(total number of bosons 16,15 and 14 respectively), lies in the dynamical
symmetry SU (3), Eq.(2-22a) have been calculated using the angular

momentum, quadrupole and octoupole parameters (a;, ac and ag). The

best fit values of these parameters are given in Table (3-1), which show the
values of the relevant parameters. These values are obtained by fitting to
get results of the energy levels than that the experimental data [110],
whereas the first two terms and the last term in Eq.(2-3a)) have now
included because they are irrelevant to the case of the fully weakly
deformed nuclei (rotational nuclei).
3.1.2 Energy spectra

IBM-1 model has been used in calculating the energy of the positive
parity low-lying levels of Hafnium series of isotopes. A comparison
between the experimental spectra [110] and our calculations, using the
values of the model parameters given in Table (3-1) for the ground beta and
gamma bands, is illustrated in Figures (3.1) to (3.5). The agreement
between the theoretical and their correspondence experimental values for
all the isotopes are in a good agreement but for high spin states are slightly

higher but reasonable.
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Table (3-1): IBM-1 Hamiltonian parametersfor 17>18°Hf isotopes.
| sotopes & a, 3 c

12 f 0.040 -0.0110 -0.0700 -0.080

1A f 0.0450 -0.0105 -0.0640 -0.060

176 f 0.0095 -0.1130 0.000 -0.600

178 f 0.0960 -0.0146 0.000 -0.110

180 f 0.0101 -0.0140 0.000 -0.260

Table (3-2) gives the experimental and theoretical energy ratios. It
has been found that the '"#1"4Hf isotopes are in the transitional region
SU(3)—- O (6), and the 1"®18Hf are deformed isotopes (rotational nuclei)
and they have the SU(3) dynamical symmetry respecting to IBM-1.

The obtained results are given in Figures (3-1) to (3-5), These figures
show the ground, b and g-bands of experimental and IBM-1 calculation
for 172-18Hf jsotopes. They show that there in a good agreement between

experimental energy levels and IBM-1 calculations.

Table (3-2): Experimental and theoretical values of energy ratiosin />18Hf isotopes.

Isotopes E(4;/2) E(6; /2;) E; /2))
Exp. |IBM-1 |IBM-2 | Exp. | IBM-1 | IBM-2 | Exp. | IBM-1 | IBM-2
124f | 3.245 | 3229 | 3.249 |6.596 | 6.414 | 6.614 | 10.892 | 10.304 | 10.536
1At 3.3 3.3 3.267 | 6.67 | 6.66 | 6.88 | 11.21 | 11.30 | 11.023
64f | 329 | 329 | 3481 | 6.77 | 6.72 | 7.094 | 11.33 | 11.41 | 11.932
181 f 3.3 3.3 3.290 | 7 72 | 6.784 | 1167 | 11.8 | 10.774
180 f 3.3 33 /33011 6.88 | 6.82 | 6.881 | 11.645 | 11.7 | 10.739
SU (5) 2 3 4
0 (6) 2.5 45 7
SU (3) 3.33 7 12
Experimental data are taken from ref. [110].
The root means square deviation (rmsd) [111]:
1 1/2
rmsd = [Wz(E%u - Eexp_)z} ................. (3-1)

(where N is the number of energy levels) is used to compare the
experimental and theoretical energy levels. Tale (3-3) gives the rmsd
between experimental and theoretical energy levels. In this table, we see
the ground state levels. The best agreement was found in 2Hf isotope
where the smallest value of rmsd is equal 0.0039 and equal 0.010 for
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gamma band in 1"®Hf isotope. However, rmsd equals 0.0099 for beta band

in 18°Hf isotope.

calculated energy levelsfor 17>180Hf jsotopes.

Table (3-3): Theroot means square deviations (rmsd) between experimental and

root mean square deviations (rmsd)
Isotopes ground state band b —band g —band

IBM-1 | IBM-2 | IBM-1 | IBM-2 | IBM-1 | IBM-2
Sl 0.0039 | 0.0031 0.059 0.042 0.014 0.018
1At 0.0046 | 0.0029 0.061 0.040 0.013 0.0131
sl 0.0360 | 0.0030 0.054 0.041 0.012 0.001
178 f 0.0340 | 0.0025 0.044 0.0038 | 0.010 0.09
1801 f 0.0140 0.016 0.0099 0.022 0.019 0.012

In general, the experimental and the IBM-1 calculated energy levels

int"+1891f jsotopes increase with angular momentum as J(J+1) because

these isotopes are of rotational nuclei (deformed nuclei) [26].
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3.1.3 Electric Transition Probability B(E2)

The E2 transitions provide a more stringent test of the IBM-1. The

general E2 transition operator is given by the Eq. (2-6). The coefficient a,

called the boson effective charge is an overall scaling factor for all B(E2)

values which is determined from the fit to the B(E2;2; —0;) value. The

coefficient b, may be determined from the quadrupole moment Q (2;).

The ratio b,/a, =X =-1.32 in the SU (3) limit and is reduced to zero in the

O(6) limit. In the “FBEM™” program the corresponding parameters are
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a, = (E29D) and b, = (1/,/5)(E2DD). The used parameters in T(E2) matrix

element of 7218Hf isotopes are given in Table (3-4).

Table (3-4): Thereduced matrix element parameters for 1728°Hf jsotopes.

| sotopes | B(E2;2; —0;) (e*.b?) a,(eb) b, (eb)
12Hf 0.920 0.046 -0.220
Al 1.0615 0.042 -0.330
16f 1.040 0.125 -0.540
178 f 0.970 0.127 -0.033
180 £ 0.950 0.139 -0.031

As we noticed in IBM-1 results the B(E2) for b - g and g—>g
transitions can vanish when these nuclei are treated as SU (3) symmetric
nuclei. This problem was solved by breaking this symmetry in the direction
of U (5) and employing the e parameter. The calculated B(E2) values were
improved by this attempt.

Table (3-5) shows that the electric transition probability for
b >gand g— g are smaller than the electric transition probabilities
between g — gband. This table also shows also that, in general, there is a
good agreement between the experimental and theoretical B(E2) values in
the ground state band in 1"*18°Hf isotopes except the transition 6; — 4 in
174-1804f where the experimental and IBM-1 results of this transitions are
weak in agreement. The experimental and IBM-1 B(E2) calculations
between beta and ground band and between gamma band in general are
weak in agreement except the transition 2; —0; in ®Hf isotope and

2: — 07 in 1"®Hf isotope which gave a good agreement.

The weak agreement between experimental and theoretical in some
B(E2) values in those isotopes can be explained by the fact that many small
component of the initial and final wave functions contribute coherently to
the value of the reduced E2 transition probability, since these small
components are not stable enough against small changes in the model
parameters [114]. There are no available experimental data to many
transitions in Table (3-5); therefore, it has been predicted by IBM-1.
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3.1.4 Magnetic Transition Probability and Mixing Ratio d (E2/M 1)
To evaluate the magnetic transition probability B(M1), we depend on

Egs. (2-7a) and (2-7b), where the effective boson g-factor is estimated
using the fact g = Z/A is. The form of eq. (2-7) of the operator has no
off-diagonal matrix elements, implying that in this approximation, Ml
transitions are forbidden [54,55,58]. Some of the transition probabilities
obtained from perturbation theory are further discussed in [54,55].

The results show that the transitions between low-lying
collective states are weak. This is because of the increase of antisymmetric
component in the wave functions. The magnitude of M1 values increase
with increasing spin for g — g and g — g transitions, see Table (3-6).

The E2/M1 multiple mixing ratios for 1"218Hf isotopes, 6(E2/M1),
were calculated for some selected transitions between states of AJ=0. The
sign of the mixing ratio must be chosen according to the sign of the
reduced matrix elements. The equations used are (2-7) for M1 transitions
and (2-54) for the mixing ratios. The results are listed in Table (3-7). The
agreement with available experimental data [110] is more than good
especially in the sign of the mixing ratio. However, there is a large
disagreement in the mixing ratios of 3" - 2%, due to the small value of M1
matrix elements.

The present high-precision measurements indicate some
disagreements and these would not change significantly if the d value
recommended by Lange et al., [115] were used. The most serious
disagreement occurs for the 3* — 4* transition which has the same initial
state as the 3" — 2" reference transition. A possible conclusion is that one or
both of the ground-state band levels contain admixtures. The difference
between the measured and deduced d values for the 2* — 2* transition may
be due to mixing in either or both of the levels.

Band mixing, and in particular a K = 1 admixture within the K = 0

ground state band, has previously been considered necessary in order to
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explain the M1 component in transitions linking the g and ground-state

bands. An analysis following the Mikhailov formulation and involving the

1 admixture. The

lower-spin states indicates a substantial K
approximately equal value d (E2/M1) obtained for all such transitions
suggests that this mixing is uniform within the ground-state band.

The IBM-1 formalism predicts essentially the same spin dependence
for M1 transitions in 17218Hf isotopes as does a geometrical approach, and
Is thus capable of giving at least an equally good description of the data. In
addition, the IBM-1 model yields the simple prediction that A(E2/M1)

values of g —»g and g — g transitions should be equal for the same initial

and final spins, and this prediction seems to be borne out empirically. It has

been shown that different signs for b - g and g —» g A(E2/M1) values can

be reproduced by the IBM-1 model.
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3.1.5 Electric Monopole Transition Matrix Element

Strongly-deformed nuclei are easily identified by their rotational
behavior. There have been remarkably few such nuclei for which r *(E0)
data are available. Consequently, we have undertaken a compilation and
evaluation of data from which r?(E0) values have been extracted for
deformed nuclei. We present the data in Table (3-8). Traditionally,
strongly-deformed nuclei have been discussed in terms of rotations, b
vibrations and quasiparticle excitations; with an association between EO
transitions and b vibrations. This association has been based largely on the
nuclei *Hf. This b -vibrational band picture has probably retained its
popularity because EO transitions are expected with equal strength for all

AJ=0; b-band to ground-band transitions. Indeed, J, — J, EO transitions

are seen in *Hf up to J = 8. However, the identification of b vibrations
has generally been elusive and the current picture is confused.
The strength of the electric monopole transition matrix

element, X . (E0/E2) can be calculated using Egs. (2-58) and (2-59) and

presented in Tables (3-8) and (3-9).

As pointed out previously [116], a large X (EO / E2) value is not
necessarily a
signature of a b -vibrational state. For instance, our calculated X (EO / E2)
value for2; — 2; transition. However, it should be kept in mind that a large
result from the vanishing B(E2) values, especially in the case of higher
bands whose structure may be quite different from that of the lower bands.
Because of the possibility of accidental cancellations in the calculation of a
sum of terms with different signs, only the correct order of magnitude can
be expected from present calculation of a large number of states and matrix
element.

In the present X(EO/E2), branching ratios are used to extract the

B(E0;0; — 0;)and r *(0; — 0;) values associated with 0; states. Our results
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are shown in Table (3-9). In to complete the monopole values of 172180Hf
isotopes, the measurements of EO matrix elements of excited 0; states in
these isotopes are in progress. The ratio of the reduced transition
probabilities B(EO0;0; — 0;)/B(E2;,0; —0;), is small for some transitions
which is close to transitional rotor value. However, the assumed two-
phonon 0; state is strongly pushed too high in energy, which is explained
as being due to g-soft.

The most conspicuous features of the 0; states in 1'218Hf is strongly
enhanced E2 decay to the 0; state. This may be connected with the
intriguing question of the possible deformation of the excited 0" state: the
large B(E2) values could alternatively be interoperated to imply a
vibrational structure associated e.g., with mixed bands.

The measurement of EO components in AJ=0 transitions are also
sensitive to the model predictions and using the IBM-1. An excellent
agreement for r (EO) of the 0.692 MeV 2; — 2; transition for which we are
also able to deduce the sign of E2 reduced matrix element, that is the
relative phase of the EO:E2 matrix elements.

From Table (3-9), the X(E0/E2)values for 2* states are taken when
the large M1 admixtures in the 2" —2* transitions are included. These
large differences emphasize the need for knowledge of the M1 admixture
before a theoretical analysis of 2" state.

The ratio X(E0/E2) does increase with nuclear deformation because
the E2 matrix element goes to zero at a slower rate than EQ. Hence, a larger
X(E0/E2) value, especially a larger r (E0) value, should be noted regarded
as firm evidence of more collectively. In 8Hf, it is the lower 2* state

which has a smaller B(E2) to the ground state but higher X (E0/E2) value.
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Chapter Three Interaction Boson Model Results and Discussion
3.2 - 18190 | sotopesin IBM-1
The present study attempts a unitary IBM-1 treatment of positive

parity states in even-even 8218\ jsotopes. IBM-1 is a powerful tool for
studying the low-lying excited states and electromagnetic transition rates.
3.2.1 Hamiltonian Parameters and Energy Spectra

The best fit for the Hamiltonian Parameters Eq. (2-3a) used in the
present work is presented in Table (3-10) which gives the best agreement
between the calculated energy levels in the present work and their
corresponding experimental data taken from [117] as shown in Figures
(3.6) to (3-11).

The best fit values for the Hamiltonian parameters for 180-1%0w
Isotopes are given in Table (3-10). The boson-boson interaction parameter

was fixed by the calculations on the boson core nuclei.

Table (3 -10): IBM-1 Hamiltonian parameters for 8190 | sotopes

| sotopes N a a, a c
18w 14 0.0553 0.01150 -0.0140 -1.3228
182y 13 0.0597 0.0120 -0.0150 -1.3228
184y 12 0.0460 0.01423 -0.0115 -1.3228
186wy 11 0.0401 0.0168 -0.0080 -1.3228
188y 10 0.3420 0.02063 -0.0085 -1.3228
190wy 9 0.0206 0.0326 -0.0052 -1.3228

The examination of the experimental and theoretical energy levels
ratios (Table (3-11)) for the nuclei ¥-1%W shows that they lie in the
transitional region SU(3) - O(6), therefore the Hamiltonian of the transition
region SU(3) - O(6) has been employed in the calculation by using the
program PHINT [60].

Good global agreement was obtained in comparison with the most

recent experimental data and the model with the best fitted parameters
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proves that the isotopes 8W and W have high deformation and tend to
be near O(6) limit than to SU(3) limit.
The results indicate that the energy spectra of all different quasi-band

of 18019 jsotopes can be presented quite well. It is noticed; however, that

the results agree with the experimental data.

Table (3-11): Energy ratiosfor 8-1%0W isotopesin IBM-1 and its dynamical

symmetries

| sotopes E(4,/2]) E(6,/2;) E@®;/2))

Exp. | IBM-1 | IBM-2 | Exp. |IBM-1 |IBM-2 | Exp. |IBM-1 | IBM-2
0w | 3260 | 3.278 | 3.175 | 6.647 | 5726 | 6.166 | 10.999 | 12.344 | 10.958
‘2w | 3290 | 3.096 | 2375 | 6.797 | 6.693 | 6.786 | 11.431 | 11.324 | 11.393
4w | 3273 |3.190 |3.194 | 6.726 | 6.330 | 6.637 | 11.258 | 10.654 | 11.734
86\ | 3.245|3.256 |3.196 | 6.631 | 6.880 | 6.557 | 7.065 | 7.188 | 7.008
88w | 3.096 | 2.835 | 3.090 | 6.090 | 6.264 | 6.034 | 9.965 | 9.864 | 9.769
90w | 2724 | 2219 | 2661 | 5067 | 4795 | 4.685 | 7.922 | 7.247 | 7.666
SU (5) 2 3 4
O (6) 2.5 4.5 7
SU (3) 3.33 7 12

Experimental data aretaken from ref. [117].

The root means square deviation (rmsd) (Eg. (3-1)) is used to
compare the experimental and theoretical energy levels (see Tale (3-12)).
In this table we see the ground state levels. The best agreement was found
in W isotope where the smallest value of rmsd is equal 0.0028 and equal
0.011 for gamma band in W isotope. However, rmsd equals 0.0078 for

beta band in 82W isotope.

Table (3-12): Theroot means squar e deviations (rmsd) between experimental and
calculated energy levelsfor 1810\ jsotopes.

root mean squar e deviations (rmsd)
Isotopes | ground state band b —band g —band

IBM-1 | IBM-2 | IBM-1 | IBM-2 | IBM-1 | IBM-2
180wy 0.0028 | 0.0024 0.055 0.044 0.017 0.015
182y 0.0044 | 0.0040 0.060 0.053 0.015 0.013
184y 0.0350 0.032 0.054 0.050 0.013 0.011
186wy 0.0320 0.030 0.043 0.041 0.011 0.010
188y 0.0300 0.023 0.0078 0.030 0.015 0.012
190wy 0.0290 0.020 0.0088 | 0.0062 0.015 0.013
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Figure (3.6): Comparison between experimental data [110],
IBM-1and IBM-2 calculated energy levelsfor 1w,
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IBM-1 and IBM-2 calculated eneray levelsfor W,

3.2.2 Electric Transition Probability B(E2)

The even-even nuclei in 8218\ jsotopic chains represent a good
opportunity for studying the behavior of the total low-lying E2 strengths in
the transitional region from SU(3) - O(6) nuclei. After having obtained
wave functions of the states, we can calculate the electromagnetic transition
rates between low-lying states of all chain for 18218\ isotopes. Calculation
of electromagnetic transitions is a sign of good test for the nuclear model
wave functions. To determine the boson effective charges a,= E2SD and
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b,= E2DD, we perform a fit to the experimental B(E2) values in such
isotopes (see Table (3-13)). The matrix elements of the E2 operator of Eq.
(2-6) have been calculated by using the following values of effective
charge parameters.

More information can be obtained by studying the reduced transition
probabilities B(E2). The FBEM program were employed and the values of
a, and b,, were estimated to reproduce the experimental B(E2;2; — 0;)
values. The parameters E2SD and E2DD used in the present calculations
were determined by normalizing the calculated values to the experimentally

known ones and displayed in Table (3-13).

Table (3-13): Thereduced matrix element parametersfor 119w | sotopes.

Isotopes B(E2;2; — 0;)[117,118] a, (eb) b, (eb)
180\ 0.850 0.0990 -0.3001
182y 0.840 0.10555 -0.312214
184\ 0.756 0.108013 -0.3201
186\ 0.7001 0.11310 -0.3341
188\ 0.6001 0.1141 -0.3061
190\ 0.414 0.1050 -0.3099

B(E2) values of 818\ jsotopes have been studied within the
framework of IBM-1. It is shown that there is a good agreement between
the results found, especially with the experimental once [117, 118].

The calculated values of the electric transition probability which has
shown the transition connect the levels with the same parity and E2
transitions are predominant. As seen from Table (3-14), the theoretical
B(E2) values agree with the experimental data within the indicated errors in
the experimental values. Moreover, the theoretical B(E2) values for the
transition seem to be systematically too small. This can be explained by the
fact that many small components of the initial and final wavefuntions
contribute coherently to the value of the reduced matrix element E2
transition probability [119]. Since the small components are not stable
enough against small changes in the model parameters, a quantitative

comparison with the experimental data is not possible.
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However, the calculated values in Table (3-14) are in agreement with
the experimental results. There are some differences between the B(E2)

values of 2; — 0} transition. Because there is no enough data and certain
result for this transition. The experimental B(E2) values of 2] —0;,
2; — 2; transitions are little and the experimental B(E2) values of 6] — 4;
for 184188\ jsotopes do not exist. The calculated B(E2) value of 2; — 2;
transition is between the error limits. For 4, — 2; transition, the difference

between the experimental and theoretical values is seen very small.

The quadrupole moment for the first excited state Q(2;) and the
second excited state Q(23)1s an important property for nuclei and is defined

as the deviation from the spherical charge distribution inside the nucleus
and from the quadrupole moment we can determine if the nucleus is
spherical, deformed oblate or prolate shapes. From the results in
Table (3-14), the shape of 18218\ jsotopes is prolate in the first excited
state, and oblate shape in the second excited state.

In the quadrupole moment, qualitatively, with for the ground state

band, a negative Q(2;) means a positive intrinsic quadrupole moment Q,.
For the gamma band, a negative Q(2;) means a negative Q,. The negative
Q, implies that the nucleus has an oblate shape. The overall agreement is

surprisingly good in view of the interacting boson model-1 (IBM-1).
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3.2.3- Magnetic Transition Probability and Mixing Ratio d(E2/M 1)

In order to examine B(M1) and the magnetic dipole moment m of 2;

and 2} state, we employed the relation [72]:

where g is the boson gyromagnetic factor and | is the nuclear angular
momentum, where g estimated using the fact that Eq. (3-2), and the
experimental value m(2;)= 0.25 (8) m,[117] for ¥*W, we obtained g =
0.2605 m, . For the parameter in the M1 operator the value of g = 0.7 pn IS

used in Eqg. (2-7a). The B(M1) results are shown in Table (3-15). It is seen
that there is a good agreement between experimental and calculated ones in

IBM-1. The magnetic dipole moment of the first excited n(ZI) and second
excited state n{zg) for the 182188\ jsotopes are given in Table (3-15). It is
seen that a very good agreement among the values is obtained.

Magnetic dipole moment for first excited state n{2; ) second excited
state n{zg) and form(4,) are given in Table (3-15). It has been shown that

the data on m2;)in 82188\ jsotopes provides a sensitive test of the

effective proton boson number in the IBM-1 framework. 182188\ isotopes,
conform the validity of assuming a drastic change in number of bosons N

when the number of neutron increased.
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The direct measurement of B(M1) matrix elements is difficult
normally, so the M1 strength of gamma transition may be expressed in
terms of the multipole mixing ratio which can be written in Eq. (2-54)
as[68]. The multipole mixing ratio,d (E2/M1), of %1% isotopes was
calculated. The comparison between experimental and calculated values for
this quantity is given in Table (3-16). The results highly agreed with the
experimental data.

In this work, we have also examined the mixing ratio d (E2/M1) of
transitions linking the g-band and g- state bands. The transitions which
link low spin states and those obtained in the present work are in a good
agreement and show a little bit of irregularities.

The results of the d (E2/M1) calculations are listed in Table (3-16).
These results exhibit disagreement in some cases, with one case showing
disagreement in sign. However, it is a ratio between very small quantities
and any change in the dominator that will have a great influence on the

ratio. The large calculated value for 37 —2; in ¥*18Wijs not due to

dominate E2 transition, but may be under the effect of very small M1
component in the transition. Moreover, the large predicted value for some
transitions compared to experimental value may be related to the highly
predicted energy level values of the IBM-1. We are unable to bring the
energy value of this state close to the experimental value simply by

changing the parameters.
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3.2.4 Electric Monopole Transition Matrix Element

The monopole matrix element is important for nuclear structure and
the model predictions due to their sensitivity for the nuclear shape. We
conclude that more experimental work is needed to clarify the band
structure and investigate an acceptable degree of agreement between the
predictions of the IBM-1 and the experimental data.

The calculation of the matrix elements of the EQ transition operator

(2-8a) requires the knowledge of the parameters b, and g,. We calculate

these parameters

by fitting procedure into two experimental values of reduced EO matrix
element for transition 2; — 2;, in 182184\ jsotopes. The parameters which
were subsequently used to evaluate the r (EO) -values were; Bo = 0.064 fm?

and g,= 0.032 fm*. From Table (3-17), there is no enough experimental

data to compare with the IBM-1 calculations.

The forbiddenness of EO transitions in the U (5) limit of IBM-1 and
their allowed character in the harmonic quadrupole vibrator needs some
comment. Primarily, the model operators are quite different. For the
geometric model, the AN = 0, +2 selection rules follow directly. For the
interacting boson model, the operator is the simplest monopole operator
that can be constructed from the boson operators. It is fair to say that the
IBM-1 EO operator is too simplistic. There are other concerns with the
interacting boson model: the bosons of the model are regarded as
superposition’s of pair-correlated configurations restricted to the valence
shell. This has been formalized in the OAI mapping procedure [120].
Restriction to a valence shell within a harmonic oscillator-based shell
model, as noted earlier, would result in vanishing EO matrix elements.
Thus, we infer that the description of EO transitions within the IBM-1 is

probably seriously deficient.
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Table (3-17): Monopole Matrix Element r (E0) for 18218\ jsotopes.

182/ 184y 186y
J' - 37
EXP. IBM -1 | IBM -2 EXP. IBM -1 | IBM -2 | EXP. | IBM -1 | IBM -2
2,21 | 4°%%x102 | 0.0093 | 0.005 | 2.9'}5x102|0.109 |2.87 |0.11 | 0.0621 | 0.083
02— 01 - 0.187 | 0.173 - 0.0161 | 0.172 - | 0.151 | 0.164
03— 01 - 0.317 | 0.126 - 0.0372 | 0.153 - 10.0171 | 0.169
03— 02 - 0.0931 | 0.083 - 0.0810 | 0.108 - | 0.143 | 0.136

Experimental data aretaken from ref. [121]

We notice that the theoretical values for the ratio X(E0/E2) are
small for some transitions (see Table (3-18)) which means that there is a
small contribution of EO transition on the life time of 0" states. There are
two high values of X(E0/E2) in transition from 0; to 0; in 18 W isotope
means that this state decay mostly by EO and according to this one could
say that the study of this state gives information about the shape of the
nucleus, because the EO transitions matrix elements are connected strongly
with the penetration of the atomic electron to the nucleus. So, combination
of the wave function of atomic electron, which is well known, and the
nuclear surface give good information of the nuclear shape.

Table (3-18) shows that the IBM-1 predicts well the monopole
matrix elements compare to the quadrupole transition from the same states.
However, it is not easy to estimate the ratio because of the smallness on the
monopole matrix element and it is one of the reasons not getting the exact

ratio. A small X (E0/E2)value for transition from 0; to 0; agrees well with
the experimental despite the band crossing transition, which means that the
0; has a collective structure.

The large value of X(E0/E2) interpreted for several 0" states in
terms of pair vibrations, b -band vibration and spin quadrupole excitations.

However, the nature of 2* states is not clear. Also, there is no available

experimental data for 18W isotopes.
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Table (3-18): X(EQ/E2) for 182188\\ | sotopes.

R N 182\ 184\)\/ 186\)\/

Jj —J; EXP. IBM-1 | IBM -2 EXP. IBM-1 | IBM -2 | EXP. | IBM -1 | IBM -2
02— 01 1.28(2) 0.0031 | 0.0027 | 0.0020F" | 0.0038 | 0.0028 | - | 0.0034 | 0.004
22521 0.0120(4) 0.022 | 0.015 - 0.0281 | 0.018 - 10.0221 | 0.022
03— 0; | 0.0020(10) | 0.0037 | 0.0023 - 0.0047 | 0.0054 | - 0.057 | 0.006
23 —21 |0.0022(14) 2.11 0..33 - 2317 | 1.38 - 2471 | 2414

Experimental aretaken from ref. [68].

There is a good agreement between the calculated values and the

available experimental results for both the EO transitions and the isotope

shifts. However, rather different sets of the EO parameters can be found

which give similar isotope shifts but different isomer shifts. Therefore, in

the absence of any experimental isomer shift data, it is not possible to tell

whether it represents the "best" possible set of EO parameters. Besides a

good agreement was found between the calculated and experimental values

for Isomeric and isotopic shifts for all 182-18\ jsotopes (Tables (3-19) and
(3-20)).

Table (3-19): Isomer Shift d<r2>in fm? for 182188\ | sotopes.

| somer Shift EXP. IBM -1 IBM -2

-0.2x10°3

W-182 -0.37x10°3 -0.25x102 -0.28x103
0.0x103
0.16x1073

W-184 0.12x10°3 0.13x10°3 0.169x1073
0.0x103
0.14x103

W-186
0.12x103 0.21x103 0.172x1073
-0.49x103

W-188 0.14x10°3 0.121x10°3

W-190 - 0.12x10°3 0.111x10°3

Experimental data aretaken from refs. [117,122,123,124].
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Table (3-20): Isotopic shifts A<r2> in fm? for 182-18\W | sotopes.

Isomer shift EXP. IBM -1 IBM -2
180\p/_182 0.074

W-W 0.068(4) 0.066 0.072
182\p/_184 0.120

W-1"W 0.099(5) 0.140 0.150

0.092

184yp/_186

W= 0.085(4) 0.068 0087
186\\/_168\\/ - 0.088 0.0873
188\ 190\ - 0.092 0.097

Experimental data aretaken from refs. [117,122,123,124].

3. 3- 1721804f | sotopesin IBM -2
3.3.1 Hamiltonian Interaction Parameters

Since the Hamiltonian contains many parameters, it is unpractical
and not very meaningful to vary all parameters freely. Instead, it is
convenient to use the behavior of the parameters predicted by a
microscopic point of view as a zeroth-order approximation. In a simple
shell-model picture based upon degenerate single nucleon levels [120], the

expected dependence of e,k,c, and c, on neutron (N,) and proton (N,)

boson numbers can be expressed as:

Q. —N Q. -2N
e=constant, k =k k,, k, = [—-k®, ¢, =———S0c........ (3-3)

pn? Qr -1 ,—Qr _ Nr
Here k® and ¢ are constants, and Q. is the pair degeneracy of the shell.

We see that while k, has always the same sign, c, changes the sign in the

middle of the shell.

In realistic cases, the estimates of Eq. (3-3) are expected to be valid
only approximately. In this work, somewhat weaker constrains we have
imposed on the parameters: (i) it is assumed that within a series of isotones

(isotopes) (c, ) does not vary at all isotopes; (ii) the parameters e,k and
c, are assumed to be smooth functions of (N,).
Concerning the sign ofc, and c_, a complication arises. From very

simple microscopic consideration it follows that the c's (which also
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determined to a large extent the sign of the quadrupole moment of the first
excited state 2;) are negative in the region where the valence shell is less
than half filled (particle-boson) and positive in the region where the
valance shell is more than half filled (hole-boson). Quantitatively, such a
behavior was confirmed in other phenomenological calculations with
IBM-2. For example, in a study of the Hf isotopes with 100 < N <108 good
fit to the energy levels was obtained with ¢, ,~-090 to -1.0

(see Table (3-21)). Since in the native shell-model picture in this region
both neutrons and protons are hole-like and therefore both c¢'s would be
positive, there would be no way to obtain an SU (5) type spectrum, which

requires opposite signs of ¢ and c,. This indicates that the situation is not

so simple and that more complicated effects play a role, such as a possible
nonclosedness of the Z = 82 or N = 126 core. Although the Hamiltonian

invariant under simultaneous change in sign of both c,, ¢, and thus

n

equally good, fits to energy spectra can be obtained for both combinations

c,<0 and c,<0. Namely, only with this choice the observed sign of the
mass quadrupole moment of the 2; state in 179-18Hf can be reproduced.
The remaining parameters play a less important role and are used
mainly to improve the fit with experiment. In this work only C,, , C,, and
C, , representing part of the d-boson conserving interaction between
neutron bosons, were used as free parameters independent of N (N ).
Finally, the values of x, =x, were constant for all isotopes. The parameters

used for the various isotopes are shown in Table (3-21).
It is seen that parameters are constant or vary smoothly: within a

series of isotopes c, does not vary and the values of ¢, and c, are close to

the values calculated by Pittle et al., [125]. The variation in e is small and
there is a slight decrease of the value of k for the 7*-18Hf isotopes. The

change in character of the spectra through a series of isotopes is essentially
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due to two effects: (i) the increase of the value of ¢, for "217Hf and

decreases for 1®Hf, and (ii) the increased of the number of neutron bosons
N, for 172174-176Hf (N =9,10 and 11 respectively) and decrease for 17818Hf

(N,=10and 9). We note that the behaviors of e k,c, and c, is a qualitative

agreement with microscopic considerations (see Eq. (3-3)). It was found

that C,, , C,, and C, constant for the isotopes. Such a behavior agrees

with the trend found in other regions. The positive value of x, guarantees

that no low-lying anti-symmetric multiplets occur for which there is no
experimental evidence.

This was determination from fitting the first excited state
without effecting the ground band energy spacing. The overview of the
parameters indicates that there is good continuity without a marked change,
and at the same a good fit to the experimental energies of the ground state
band and of beta and gamma bands was obtained.

3.3.2 Energy spectra

The calculated excitation energies of positive parity levels to 1/2-18Hf
are given in Table (3-21) and displayed in Figures (3.1) to (3.5). The
agreement between the calculated and experimental values is satisfactory.

Using the parameters in Table (3-21), the estimated energy levels are
shown in the Figures (3.1) to (3.5), along with experimental energy levels.
As can be seen, the agreement between experiment and IBM-2 is quite
good and the general features are reproduced well. We observe the
discrepancy between IBM-2 and experimental for high spin states. But one
must be careful in comparing theoretical with experimental, since all
calculated states have a collective nature, whereas some of the
experimental states may have a particle-like structure. Behavior of the ratio

R,, = E(47)/E(2]) of the energies of the first 4, and 2; states are good

criteria for the shape transition. The value of Ru;, ratio has the limiting
value 2.0 for a quadrupole vibrator, 2.5 for a non-axial gamma-soft rotor
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and 3.33 for an ideally symmetric rotor. Ry, remain nearly constant at
increase with neutron number. The estimated values change from isotope to
another (see Table (3-2)), this meaning that their structure seems to be
varying from deformed (rotational nuclei) to gamma soft SU(3)® O(6).
Since Hf nucleus has a rather vibrational-like character, taking into account
of the dynamic symmetry location of the even-even Hf isotopes at the IBM
phase Casten triangle, where their parameter sets are at the SU (3)® O (6)
transition region and closer to SU (3) character and we used the multiple
expansion form of the Hamiltonian for our approximation. The shape
transition predicted by this study is consistent with the spectroscopic data
for these isotopes.

172-180Hf are typical examples of isotopes that exhibit a smooth phase
transition from rotational (deformed) nuclei (SU (3)) to gamma soft (O(6)).

In the Figures (3-1) to (3-5) the results of calculations for the
energies are shown the ground state band (2; ,4;, 6; and 8) in the 1/>18Hf
isotopes. We observe the small discrepancy between theory and experiment
for J° =6; and J* =8; in %180Hf jsotopes. However, one must be careful
when comparing theory to experiment, since all calculated low-lying states
have a collective nature.

The order of the 0; and 3; is correctly predicted in 1"%18Hf isotopes
and we remark that the energy of the 3} state is predicted systematically
too high. This is a consequence of the presence of a Majarona term M in
the Hamiltonian (Eqg. (2-45)). We have chosen the parameters of the
Majarona force in such a way that it pushes up states which are not
completely symmetric with respect to proton and neutron bosons, since
there is no experimental evidence for such states. However, experimental
information becomes available about these states with mixed symmetry.

This situation could possibly be improved. In the present case, it would
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have been possible to further higher its energy by constant the value of
X, =X,

Table (3-21): IBM-2 Parameters of 1/>180Hf, all parametersin MeV units except
the parameters ¢, and c, aredimensionless.

Isotopes | e k C, C, | X;=Xg X, Co: C,, C,

72H4f | 0522 |-0.029 | -09 | -0.9 | -0.422 | -0.033 | -0.151 | 0.08 0.0

17%44f |0.525|-0.035| -0.85 | -0.9 | -0.422 | -0.025 | -0.151 | 0.072 | 0.0

16Hf |0.528 | -0.031 | -1.02 | -0.9 | -0.422 | -0.023 | -0.151 | 0.075 | 0.0

1784f | 0.530 | -0.033 | -0.8 | -0.9 | -0.422 | -0.020 | -0.151 | 0.09 0.0

180H4f |0.532|-0.035| -1.0 | -0.9 | -0.422 | -0.190 | -0.151 | 0.09 0.0

The position of the 2} state is relative to the 0; state especially in

176-178-180f jsotopes. The moment of inertia of the ground state band
increases, the quasi y-band is pushed up, and also 0;state becomes a
member of a K = 0 B-band. The energy spectra show the first criterion for
identifying the collective 0; states. For instance, in "*18Hf isotopes, the
experimental energies of the 0; states are close to those of the calculated 0;
states. As a consequence, we suspect that these states are collective.
However, no final conclusion can be drawn from the energies alone, since
it is very likely that collective 0;states will occur in the same energy
region.

It is found that the present calculations fit very well most states in the

scheme, except the case of y -band members (2}, 3;and 4; states), which

were pushed higher. In Table (3-3), the root mean square deviation (rmsd)
IS used to compare the experimental and calculated IBM-2 energy levels. In
this table (3-3), we see the ground state levels the best agreement was
found in 1"®Hf isotope where the smallest value of rmsd is equal 0.0025 and
equal 0.0038 for beta band in ®Hf isotope. However, rmsd equals 0.001
for y -band in 1"®Hf isotope.

From the results of energy levels, the experimental and IBM-2
calculation increased with increasing the angular momentum because the

Hf nuclei are deformed nuclei (rotational nuclet).
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3.3.3 Electric Transition Probability B(E2)
Calculations of electromagnetic properties give us a good test of the

nuclear models prediction. The electromagnetic matrix elements between
eigenstates were calculated using the programs NPBTRN for IBM-2
model.

From Eq. (2-47), we note that an E2 transition mainly depends on

identifying proton and neutron bosons effective charges e, and e . The
relationship between (e, ,g ) and the reduced transition probability B(E2)

for rotational limit SU (3) is given in the form [77]:
B(E2;21*—>01*):(2N+3)(65PNNP+e”N”) .......... (3 4)

This relation was used to estimate the effective boson charges for proton

and neutron bosons (e, ,e ). In these calculations, we use the following
criteria to determine the effective charges. e = 0.1165 e.b is constant
throughout the whole isotopic chain and the e changes with the neutron
number. This is true if the neutron (proton) interaction does not depend on
the proton (neutron) configurations. The values of e and e are determined
by fitting to the five B(E2;2; —»0;) and B(E2;2; —2;) in *Hf. They are
given in Table (3-22).

Table (3-22): Effective charge used in E2 transition calculations (g, = 0.1165 e.b).

| sotopes 12Hf sl 176H{ 178Hf 180H{
e, (eb) 0.266 0.319 0.301 0.330 0.350

It is well known that absolute gamma ray transition probabilities
offer the possibility of a very sensitive test of nuclear models and the
majority of the information on the nature of the ground state has come from
studies of the energy level spacing. The transition probability values of the
excited state in the ground state band constitute another source of nuclear

information. Yrast levels of even-even nuclei (J, = 2, 4, 6,... ) usually

decay by E2 transition to the lower lying yrast level with J, =J, -2.
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In Table (3-5), we show the B(E22; —»0;) and B(E24, —2))
values, which are of the same order of magnitude and display a typical
decrease towards the middle of the shell.

As a consequence of possible M1 admixture, the
B(E2;2; — 2;) quantity is rather difficult to measure. For *18Hf isotopes,
we give the different, conflicting experimental results and we see that no
general feature be derived from them, from these values seems to decrease
for 172174Hf and increase for 176-180Hf,

In the same table, we show B(E2;2; — 0;) values. Experimentally, the
results are radically different for the Hf isotopes. In the some Hf isotopes,
the value seems to increase towards the middle of the shell, whereas in
another Hf isotopes, is decreased. Our calculations could not reproduce
these contradictory features simultaneously.

The quantity B(E2;0; — 2;), which is shown in Table (3-5), provides
a second clue for identifying intrude 0;states. If the experimental
B(E2;0; — 2;) value is small, it largely deviates from the results of our
calculation. It is very likely that the observed 0; states do not correspond to
the collective state, but it is rather an intruder state.

In 18°Hf isotope, there is a good agreement between experimental and
calculated B(E2;,0; — 2]) value. This confirm, our earlier statement about
the nature of the lowest 0; state in this isotope. Other transitions are small
values because these transitions are between different bands (cross over
transitions).

The electric transition probabilities from the mixed-symmetry state
JP =1" to the symmetric states (2;,2;) is a weak collective E2 transition.
The E2 transition between the 1* and the 2* ground state is small, whereas
E2 transitions are large between fully-symmetric states and between mixed-

symmetry states.
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To conclude this section on the E2 properties, we give the results for
the quadrupole moments Q(2;)[lof the first excited Table (3-5) (see
equation (2-49)). We show complication of theoretical results. The general
features of these results are clear, namely an increase in the negative
quadrupole moment with the increasing neutron number.

3.3.4 Magnetic Transition Probability and Mixing Ratio d (E2/M 1)

The M1 transition operator is given in Eq. (2-52), where the

gyromagnetic factors for bosonsg, and g, are estimated. The reduced E2

and M1 matrix elements were combined in a calculation of mixing ratio
d(E2/M1) ) using the relation which is given by Eq. (2-54).

Sambatora et al., [109] suggested a total g-factor which is given in
the following equation:

N N

= P 4+ T, 3-5
J g'ONp+Nn g”N +N (3-3)

it is used to compute the 2; state g-factor. The value of the measured
magnetic moment for 8Hf isotope, m=2g=048(3)m, [110], and the
experimental mixing ratio d(E2/M12; — 27)=0.410eb/m, [68] for 178Hf

isotope were used to produce suitable estimation for the boson

gyromagnetic factors. The values are g, =0.70m, and g, =0.05m,. The

results of the calculations are listed in Table (3-6).

From the results of B(M1), the transitions between low-lying
collective states in IBM-1 and IBM-2 vanish is not necessarily a
consequence of F-spin symmetry, but may be related to the existence of
other symmetries, like SU (3). The M1 excitation strength for the
B(MLL — 0]) transition is proportional to the factor g’ and depends only

weakly on the strength of Majarona force.
The magnetic dipole moment for the first excited state in even-even
172-1804f jsotopes in Table (3-6) provides a sensitive test of the effective

boson number in the IBM-2 framework. In 17218Hf isotopes with N = 100-
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108, it confirms the validity of assuming a drastic change in number of
proton boson when the number of neutron boson increased
from 106 to 108.

The E2/M1 multipole mixing ratios for 1"218Hf isotopes, d(E2/M1),
were calculated for some selected transitions between states. The sign of
the mixing ratios must be chosen according to the sign of the reduced
matrix elements. The equation used are (2-52) for M1 transitions and
(2-54) for the mixing ratios. The results are listed in Table (3-7). The
agreement with available experimental data [68,110] is more than good
especially in the sign of the mixing ratio. However, there is a large
disagreement in the mixing ratios of some transitions. It is not due to a
dominate E2 transition, but may be under the effect of a very small value of
M1 matrix element. However, it is a ratio between very small quantities
and may change in the dominator that will have a great influence on the
ratio.

For g—g transitions, the intraband B(E2) values have been
estimated by assuming that the intrinsic E2 matrix elements in the ground
and gamma bands are equal. Then, combining these B(E2) values with the
measured E2/M1 mixing ratios leads to the tabulated B(M1). We note that
in IBM, the intrinsic E2 matrix element of the gamma band is smaller than
that of the ground band due to the finite dimensionality of the boson space.
Using the IBM intrinsic E2 matrix elements instead of the pure rotational
ones would thus lead to smaller experimental g —-g M1 matrix elements,
which would improve the agreement with the calculation.

The results for the g —» g and g —g mixing ratios, the sign of the
mixing ratios is not arbitrary. For large majority of theg — g transitions

considered in Table (3-7) to the experimentally known d's are negative; the

sign is not known forg — g. According, we have assumed that all d(g — g)
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values are negative in some transitions and used then as a constraint on the

parameters ¢, and c, . Specially, it implies that ¢, —c, >0.
The calculated g — g M1 transition probability in Table (3-6) has
been obtained by a recourse to the IBM-2: thed(E2/M1) mixing ratios from

the complication of Lang et al., [68] from this work are combined with the

B(E2;2; — 0;) values and the conventional band mixing parameters. Note

that in a few cases the asymmetric errors on the measured mixing ratio
values have been incorporated in the M1 matrix elements by shifting the
central value slightly to ensure that the overall error range denoted is
correct.

These results exhibit disagreement in some cases, with one case
showing disagreement in sign. However, it is a ratio between very small
quantities and any change in the dominator that will have a great influence
on the ratio. The large calculated value for 2; — 2; is not due to a dominant
E2 transition, but may be under the effect of very small M1 component in
the transition. Moreover, the large predicted value for transition2; — 2, in
180Hf compared to the experimental value may be related to the high
predicted energy level value of the IBM-2; E(2;)=1.162 MeV, while the
experimental value is 1.174 MeV. We are unable to bring the energy value
of this state close to the experimental value simply by changing the
Majorana parameters.

Most experimentally observed low-spin levels, apart from 1 states
below 2.5 MeV; have their counterpart in the IBM-2 level spectrum
although the energy match is not good in every case. It also appears that we
may identify the members of the family of mixed-symmetry states
corresponding to the [N-1,1] representation [77]. The small E2/M1 mixing
ratios are consistent with this interpretation but level lifetimes are required

for a firmer identification.
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3.3.5 Electric Monopole Transition Matrix element

The EO monopole matrix element is given in Eq. (2-58). The
parameters in Eq. (2-57) can be predicted from the isotope shift [110],
A<r?>=0098 fm® for "8Hf- %Hf and A <r?>=0.048(4) fm* for 18Hf-
1824f, since such data are not available for Hf isotopes. These parameters
are calculated by fitting procedure into two experimental values of isotopic
shifts (Eq. (2-60)). The parameters which were subsequently used to

evaluate the r(EO0)-values were; b, =0.056 fm*, b, =0.028 fm* and
d,, = 0.032 fm’. From Table (3-8), there is no enough experimental data to

compare with the IBM-2 calculations.

The monopole matrix element is important for nuclear structure and
the model predictions due to their sensitivity for the nuclear shape. We
conclude that more experimental work is needed to clarify the band
structure and investigate an acceptable degree of agreement between the
predictions of the models and the experimental data.

Table (3-9) contains the experimental and calculated X(EO/E2)
values. In general there is good agreement except for the 0; —0; and
0; — 0/, transitions but it is not possible to say if these disagreements are
attributed to the EO or E2 component in the ratio. The disagreement in the
results for some transitions could be removed by interchanging the ordering
since for the higher lying states, the correspondence between the
experimental and theoretical levels is uncertain.

It must also be remarked that the comparatively large X-values for

transitions from the 2; mixed-symmetry state and from the 2; states

indicate that substantial EO components occur in these decays from mixed-
symmetry states. The EO matrix element describing such decay is

proportional to b, —b,, and, although the b, values are small, their sign

Op

difference results in EO matrix being greatest.
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In making this comparison, we have assumed that all the identified
0" levels correspond to | BM states and that the experimental level ordering
Is the same as the calculated order. Some previous work, attempted to fit
levels in several 1"-18Hf isotopes [20] with a single set of regularly varying
parameters, has not been successful for 7®18Hf. These isotopes are
distinctly different from their neighbors; the 2; lies well above the 4; level
at the two phonon energies.

3.3.6 Mixed Symmetry Statesin 1"218Hf | sotopes

One of the advantage of the IBM-2 is the ability to reproduce the
mixed symmetry states. These states are created by a mixture of the wave
function of protons and neutrons that are observed in most even-even
nuclei. These mixed symmetry states (MSSs) have been observed in many
nuclei. In more vibrational and g- soft nuclei these mixed symmetry states
(MSSs) have been observed in many nuclei. In more vibrational and gamma
soft nuclei. We expect the lowest MSS with JP =2* state, while in
rotational nuclei observed as the J° =1* state. In 1"%18Hf jsotopes, we see
that when the states J° =2},2; and 3/ are strongly dominated by the
F=Fnax the strongest contribution to the J° =2;,3; states is the one with
F=Fmax.1. We can see the J° =23} states as mixed symmetry states in /%
180Hf isotopes.

In this work, we proposed that the 2; state decays to the first excited
state with an energy 1.226 MeV in Hf with a mixing ratio
d(E2 /M1) = 2.467eb/m, which means it is dominated by the M1
transition, with B(M1) equal to 0.0026 m,. In Y"®Hf isotope, for the third
J = 2" state at energy 1.274 MeV excitation is close to the experimental
data for 1.276 MeV. The energy is well reproduced by the calculation,
where the choice of the Majarona parameters plays a crucial role. This state
is quite pure Fraci With R=<J|F*[J>/F

(F_.+1)=50%. The excitation

max max

energy of 37 state is 2109 MeV with mixing ratio
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d(E2/M13; — 2;) =0.0231eb/m,, B(M13; — 2;) =0.0054n7,. In the 1"®Hf, the
calculation predicted the 2; state at 1.274 MeV with R= 83%.
In other isotopes, the states 2; and 3; are mixed symmetry states,

their excitation energies are close to available experimental data and the
values of R= 73%,75%,72% and 80% respectively.

The energy that fits to several levels is very sensitive to the
parameters in the Majorana term which also strongly influences the
magnitude and sign of the multipole mixing ratios of many transitions. In
particular, we find that the calculated energies of a number of states are
affected in a very similar way and these might be considered to have a
mixed-symmetry origin, or contain substantial mixed-symmetry
components. Those with a mixed-symmetry origin have no counterpart in
IBM-1. The energy dependence of the 2; and 2; levels is consistent with
the mixed-symmetry character of the 2] level being shared with
neighboring states.

The influence of the different parameters (see Table (3- 23)) on these
states is shown in Figure (3.12). The x, term strongly affects the energies
of all of the levels considered to have a mixed-symmetry character or to

contain mixed-symmetry components. In obtaining this plot, the x, and x,

terms were maintained at their best-fit values.

Table (3-23): IBM-2 Parameters of 1/>180Hf, all parametersin MeV units except
the parameters ¢, and ¢, aredimensionless used in mixed symmetry states.

Isotopes | e K c, C, X, Xy X, Co: C, |C,

?Hf |0.522|-0.029 | -09 | -0.9 | 0.07 | 0.02 | 0.120 | -0.151 | 0.08 | 0.0

1%Hf |0.525 | -0.035 | -0.85 | -0.9 | 0.08 | 0.022 | 0.121 | -0.151 | 0.072 | 0.0

164f |0.528 | -0.031 | -1.02 | -0.9 | 0.083 | 0.22 | 0.130 | -0.151 | 0.075 | 0.0

4f |0.530 | -0.033 | -0.8 | -0.9 | 0.09 | 0.23 | 0.160 | -0.151 | 0.09 | 0.0

180H4f |0.532|-0.035| -1.0 | -0.9 | 0.11 | 0.026 | 0.20 | -0.151 | 0.09 | 0.0

The mixing ratio data have a strong dependence on x,and it has been
shown that x, cannot be zero in our fit. The 1" level is strongly affected by

changing x,, Figure (3-12), while the 3; level energy depends on the x,
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value as shown in Figure (3-12). The 2; mixed-symmetry state and the

predominantly symmetric 2; and 2; levels are largely unaffected by

changing x,, or x, in contrast to their dependence on x,, see Table (3-24).
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The F-spin components in the 2}, 2;, 2; and 0} levels as a function

of x, are shown in Figure (3-13). Our x, parameters, of Table (3-23),

obtained from the level energy fit disagree with those obtained by Subber

[20]. He found x, and x, to be large and negative and x, small and

negative.
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Fig. (3-13): F-spin componentsin the 22, 23, 24 and Oz levels as a function of x, when
all other parametersareasin Table (3-22).
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Table (3-24): Mixing Ratio d(E2/M1) for ¥#1Hf in eb/m, units.

0.21

. 172H f 174H f 176H f 178H f 180H f

= Exp. | IBM-2 | Exp. | IBM-2 | Exp. IBM-2 Exp. IBM-2 | Exp. IBM-2
2021 0031 | -272 | 6377 | [d|24 | 12701 0.410 0731 | 9.87%% | 14.257
23> 21 12.60 2.467 12.0 d<32 2071 | 6.8 8.190
31> 21 5510 20.238 3.098 2.818 0.045
Aok 0.044 5.261 - 10.97

4y 4 009 | —25% | -4980 | [d[=07 | 0.781 0.0981 | 4.5(1.1) | 10.981
2> h 0.123 | 0.00039 | 0.0051 0.022 0.0424 | —0.74% | -0.561

25>21 | 0022 | 090 0.098 0.123 -0.76 0.87
26— 21 1.56 2.780 3.907 -0.84 3.09
2> 4 115 8.97 12.87 0.098 1.134
12, 0.0887 1.605 0.5674 22.701 1.3559
152, 0.0492 2.104 0.0614 3.617 0.0492
12, 2.227 0.855 3.560 0.527 2.227
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In 172-180Hf jsotopes, all hitherto discovered MSS have been
reviewed in [126]. It has been shown that the lowest lying MSSs is the one

quadrupole phonon MSS labeled as 2;,., 3;, and characterized by
a weakly-collective E2 transition probability to the ground state and a large
M1 transition to the 2; state.

The reduced transition probability B(E2;,0; — 2;,) = 0.064€’b?, in the
two cases the B(E2;0; —2;,) value is smaller than B(E2;0; —2;)by a
factor of ~100, making the identification of the 2; state in electron

scattering experiment difficult. In addition, the mixing with background

two-quasi-particle states will render the observation of the 2;, state even
more complicated. In 1"218Hf isotopes the 2;, level belonging to a KP =1
band, a second mixed symmetry 2* state occurs, which is the head of
a K? =2" band.

The information of 1;, decay became available on the decay
intensities from 1;, level toward the 0; and 2; ground band members. The
ratio B(ML1;, —0;)/B(ML1;, — 2;)=2. The same result from the Alaga rule
(which predicts it as the ratio of two Clebsh- Gordan coefficients, i.e., (11

1-1/00)?/ (11 1-1]20)* =2)and, hence, the result does not constitute a good

test of the IBM-2. In the IBM-2 exact ratio [ 120]:

B(MLL, >0)) _,
B(MLL, —>2))

Thus, this predicted ratio is slightly less than the corresponding ratio
derived from the Alaga rule, due to the Finite-N character of the IBM. It
would be interesting to know whether this deviation from the Alaga rule is
confirmed experimentally.

Most characteristics and measurable quantities of MSS states is the
electromagnetic decay by allowing F-vector any M1 transition to
symmetric states. This is an important feature because the M1 transitions
between FSSare prohibited and therefore M1 transition is a distinct of MSS
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states. The M1 transitions between MSS and FSS are proportional to the

quantity [(gp ~0, N, Nn], while, E2 transitions between FSS are
proportional to the quantity (e,N, +¢ N, )* and E2 transition between MSS

and FSSare proportional to the quantity (e, —e, )*N, N, . The proportionality

factors that depend on the structures of the wave functions are included.

3.4- 1810 | sotopesin IBM -2
3.4.1 Hamiltonian Interaction Parameters

The program NPBOS [71] was used to diagonalize the Hamiltonian.
The electromagnetic matrix elements between eigenstates were calculated

using the program NPBTRN. The isotopes W have N, =4, and
N, varies from 5 to 10, while the parameters e, k, and c,, as well as the
Majorana parameters x, =x, and x,, were treated as free parameters and
their values were estimated by fitting to the measured level energies. This

procedure was made by selecting the ‘traditional’ values of the parameters

and then allowing one parameter to vary while the parameter c, keeping

constant until the best fit was obtained. The IBM-2 parameters obtained for
180-190\/ are summarized in Table (3-25).

The Hamiltonian parameters are fitted to obtain the excitation
energies and the electromagnetic properties in the following way. The
least-squares that fit the excitation energies of each isotope was attempted
in the full IBM-2 calculation. Only six parameters, however, were varied in
the fit, namely [ 43]:

e:—l“—ep+l|\\||”en ..................... (3—-6a)
C —Ep—cp +mcn ..................... (3—6b)
N N
K=Ky Ky, (3-6¢)
CL :[Np(Np _1)CLp + Nn(Nn _1)CLn ]/ N(N _1) """"""" (3_6d)
where L=0, 2, 4
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while the differences

AB =€, =6 i, (3—7a)
AC =Cp = Cpnnnnninniins (3—7h)
AC =C, —C i, (3-7¢)

The earlier results of Duval and Barrett [38] for the W isotopes, and
those of Bijker et al., [127] for the Os and Pt isotopes are characterized by

sharply rising values of c,, with change of sign over the neutron number in
the range 108-112. In the present work c, rises, but less sharply, and it

does not become positive for 8-1%W jsotopes. In contrast to this,
references [38,127] have fixed values of the Majorana parameters, while
we find them to rise sharply as the neutron number increases. The reason
for these significant differences is that we have included thed mixing ratios
in the fits to obtain the best parameters.

The structure of the energy spectra is determined mainly by the first
three terms on the right-hand side of Eqg. (2-42) (the pairing plus
quadrupole terms), while the remaining terms have minor, but non-
negligible contributions. This is borne out by our calculations for the 8%

90\ isotopes. We expect the importance of V,, term (or the v, term) to be

manifest when there are many more proton bosons than neutron bosons (or
vice-versa). We also assume that those parameters in the Hamiltonian
labeled with a p depend only on proton number and those labeled with a n
depend only on neutron number. Those left un-subscripted may depend on
both proton and neutron numbers.

We now apply the IBM-2 model to the calculation of the energy
spectra of the tungsten isotopes (Z=74, N, =4 and 82< N <126). To reduce

this number of free parameters, the following simplifications are made.

First: we set e, =e, =e, which is the usual assumption. This is might seem

an oversimplification, especially since the proton bosons and

neutron bosons are in different shells. However, calculations using
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this assumption have led to reasonable results, not only for 8
190w, but also for other nuclides.

Second: we include the C, terms in the V., interaction since for most of
all region fitted, N, >N, and we do not expect the Vv, term to be

very important.

Third: in the Majorana term, we set x, and x, =x, values in Table (3-25)

for the entire isotopic chain. The Majorana term is used primarily
to push up the energy of those states with large anti-symmetric
parts. Since the low-lying collective states are largely asymmetric,
we then expect the influence of the Majorana term on these states
to be minimal.
The experimentally determined energy levels for the even-even 8%
190\ isotopes span the range in neutron number from N = 106 to N = 116.
We can make predictions beyond this region by smooth extrapolation of the
above parameters.
3.4.2 Energy Spectra
The IBM-2 parameters obtained for °-18%W are summarized in

Table (3-25). The boson numbers used N, =4 and N, vary from 5 to 10

respectively. The corresponding calculated and experimental energy
spectra are shown in Figures (3-6) to (3-11). It is apparent that the
calculated spectra are in a good agreement with the experimental ones. A
characteristic feature of the present calculation is the appearance of
nonzero C_ terms. Excluding those terms from the fit and setting them to
zero would lead to a substantially worse description of the spectra. From
Table (3-25) we observe that c, remains almost constant for all the

isotopes, while e and c, increase from %W to 1°W. The C, parameters

get reduced on average with increasing N, .
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Table (3-25): IBM-2 Parameters for 1810\ | sotopes, all parametersin MeV units
except ¢, and ¢, aredimensionless.

Par ameter 180W 182W 184W 186W 188W 190W
e 051 | 052 | 052 | 053 | 054 | 0.54
K -0.122 | -0.121 | -0.22 | -0.23 | -0.123 | -0.11
C, -1.6 -1.6 -1.6 -1.6 -1.6 -1.6
Cn -0.089 | -0.09 | -0.095| 0.001 | 0.02 | 0.04
X, 0.021 | 0.039 | 0.04 | 0.136 | 0.161 | O.161
X, =X3 0.092 | 0.1 0.1 0.4 0.4 0.41
op -0.521 | -0.487 | -0.437 | -0.383 | -0.289 | -0.277
2 -0.321 | -0.295 | -0.260 | -0.225 | -0.201 | -0.190
0.185 | 0.132 | 0.105 | 0.049 | -0.060 | -0.070
ou -0.523 | -0.420 | -0.357 | -0.343 | -0.287 | -0.278
2u -0.165 | -0.172 | -0.180 | -0.185 | -0.202 | -0.221
i 0.011 | 0.019 | 0.025 | 0.089 | -0.060 | -0.070

Ol 0o o oo

The examination of the experimental and IBM-2 energy levels ratios
(Table (3-11)) for the 8%19W jsotopes shows that they lie in the
transitional region SU (3) - O (6), therefore the Hamiltonian of the
transition region SU (3) - O (6) has been employed in the calculation by
using the program NPBOS [71].

Our calculated energy spectrum is shown in Figures (3-6) to (3-11).
The root means square deviation (rmsd) for the ground, beta and gamma
bands totaling levels are 0.109, 0.82 and 0.80 MeV for Duval and Barrett
[38] and the present work respectively. (Since the values obtained by Duval
and Barrett [38], were interpolated from their level energy plot, small errors
may arise and a figures representing their goodness of fit could not be
determined accurately). In all four cases, the overall agreement with the
experimental energy levels is quite good and shows a strong dominance of
the rotational SU (3) symmetry. A comparison of the parameters used to
obtain these energy spectra reveals some important points.

These calculations depend on two parameters obtained from a fit of

the 27 and 4; levels in nuclei in the region. The relative spacing of the
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levels is satisfactory although the overall energy fit is not nearly as good as
for the IBM-2 results.

In Figures (3.6) to (3.11), we present the results of our
calculation of the energy levels for the isotopes chain W to %W, and in
figures we give a detailed comparison with the experimental data according
to the quasi-ground state rotational band and the quasi gamma and beta
vibrational bands.

Perhaps the most striking feature of the energy spectra is the sharp
rise in the beta and gamma bands at neutron number N = 108, which may

be due to a sub-shell in the i, Nilsson level and/or a reversal in the

deformation. This is supported by such effects as a large change in the two
neutron separation energy after N = 108. The same rise also occurs in the
gamma band of the neighboring Os isotopes (Z=76). Fitting this has led to
a dip in the value of ¢, at N =108. Note that the IBM-2 predicts a dramatic

increase in the 0; state at this neutron number [38].

Another interesting feature is a relatively sharp increase in the
ground state band at N =104. Once again, this same feature shows up in the
Os data. When the ground state band is fitted for ¥W, the IBM-2 predicts
even larger increases in the higher energy levels of the gamma and beta
bands. In general, the agreement with experimental for the ground state
band and gamma and beta bands energy levels is quite good. The
agreement with the high spin states energies, however, is not successful,
notably in 8W and 8 W isotopes.

The root means square deviation (rmsd) (Eq. (3-1)) is used to
compare the experimental and IBM-2 energy levels (see Tale (3-12)). In
this table we see the ground state levels, the best agreement was found in
180\ isotope where the smallest value of rmsd equals 0.0024 and equals
0.010 for gamma band in 8w isotope. However, rmsd equals 0.0062 for

beta band in W isotope.
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3.4.3- Electric Transition Probability B(E2)
Having obtained the wavefuntions for the energy states in the

180-190w isotopes by fitting to the experimental energy levels, we can
determine the electromagnetic transition rates between these states. The
most general single-boson transition probability of angular momentum
J =2 givenin Eq. (2-47).

In principle, the parameters ¢, and c, may be different from those
in the quadrupole operators in the Hamiltonian (Eq. (2-42)), however, we
have taken to be the different in our calculations so as to reduce the number
of free parameters.

From Eq. (2-47), it can be noted that, the reduced transition
probability B(E2) is dependent on e, and e . The relationship between
(e ,e) and the reduced transition probability B(E2) for rotational limit

SU (3) is given in Eq. (3-4) [77]. This relation was used to estimate the

effective boson charges for proton and neutron bosons (e, ,e, ). In this

calculation, we use the following criteria to determine the effective

charges. e, = 0.151 e.b is constant throughout the whole isotopic chain and
the g changes with neutron number. This is true if the neutron (proton)
interaction does not depend on the proton (neutron) configurations. The
values of e and g, are determined by fitting to the five B(E2;2; —0;) and
B(E2;2; — 2;) in 18%W., They are given in Table (3-26).

Table (3-26): Effective charge used in E2 transition calculations (g, = 0.151 e.b).

| sotopes 180y 182y 84y woyy | ey | 10y

e, (eb) 0.100 0.110 0.120 0.130 0.140 0.150

The boson effective charges (e, ,e ) have the same dependence on
proton number and neutron number as do k,and k, however, as an even
further simplification Duval and Barrett [38] used e, = ¢, equals a constant

for all isotopes.
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The results of the calculations are presented in Table (3-14). Looking
through the table, one can easily recognize that our calculations reproduce
the experimental data quite well.

The B(E2;2; —0;) and B(E2;4; — 2;) values decrease as the neutron
number increases toward the middle of the shell as the value of
B(E2;2; — 2;) has a small value because it contains admixture of M1. As a
consequence of possible M1 admixture, this quantity is rather difficult to
measure. The value of B(E2;2; — 0;) is small because this has a transition
from a quasi-beta band to a ground state band (cross over transition).

In Table (3-14), the B(E2) s obtained between the ground state band
agrees almost perfectly with the experiment. The agreement of the IBM-2
B(E2) s with the experiment, for transitions from beta and gamma bands
states to the ground band states is also rather good, though not as good as it
Is for transitions within the ground band states.

The results for B(E2;2; —0;) and B(E2;2; —0;) values are rather

small since this transition is forbidden in all three limits of IBM [54]. Our
agreement with the available data is generally quite good. It should be
noted that no attempt was made to fit any of the B(E2) values while
determining the parameters in the Hamiltonian.

One of the important properties which can be calculated is the
branching ratios, through which one can identify the position for the nuclei
studied in Casten triangle, and hence to identify the dynamic symmetry for
the nuclei by using the Alaga rule. Table (3-27) shows the branching ratios
for 182188\, These are compared to the experimental data. Our agreement
with available data is generally quite good, but it must be noted that in the

B(E2;2; — 2;)/B(E2;2; — 0;) branching ratio the denominator is small and

hence the ratio is very sensitive to experimental errors and/or precision in

the numerical calculation.
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Table (3-27): Branching ratios for 1#18\V | sotopes.

B(E22, - 2)/B(E22;, —0;) | B(E22; - 2)/B(E2,2; —0;)
I sotopes | EXP. IBM -1 ‘ IBM -2 EXP IBM-1 IBM-2
- 1414 1.654 - 2.541 2.561
182yy 1.95 1.561 1.930 - 2.877 2.570
184y 1.88 1.971 1.837 3.60 3.158 3.871

186wy 2.37 3.872 20572 - 3.647 4.100
188wy - 3.881 2.120 - 3.771 4.210
190wy 3.921 2.223 - 3.821 4.228

Experimental data taken from ref. [128]
The E2 transition operators is, in fact, a quadrupole operator

moments for a nucleus in state characterized by angular momentum J =2,
IS given by the Eq. (2-49). Using the IBM-2 wavefunction and E2 transition
operator given by Eq. (2-47), we obtain the results shown in Table (3-14)
for J=27 and J=2;. Note that the parameters e and g in the T(E2)
operator have already determined from fitting experimental
B(E2;2; —0;)data and as before c, and c, are the same numbers used in
the Hamiltonian (Eq.(2-47)), so that we fit no new parameters in
determining the quadrupole moments. The IBM-2 predicts the correct sign
in both of the above cases, and the agreement with the experimental is very
good for quadrupole moment for first excited state Q(2;). But, in the case
of quadrupole moment for second excited state Q(2;), the IBM-2 values
differ dramatically from the experimental data for 8*W. The experiment
indicates a sharp decrease in Q(2;), for this isotope, which is not predicted
by the IBM-2, but for other properties associated with the 2} state
(i.e., energy levels and E2 transition), the IBM-2 agrees much better with
the experiment.

3.4.4- Magnetic Transition Probability and Mixing Ratio d (E2/M 1)

The magnetic dipole moment operator T(M1) were calculated using
Eq.(2-53), and the boson gyromagnetic factors g,and g, were estimated
using the fact that g=z/A and the relation (3-5), and one of the

experimental B(M1;2; — 2;)=0.11nf [117] for '8W isotope, was used to
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produce a suitable estimation for the boson gyromagnetic factors. These
values are g, =0.71m, and g, =0.051m,. They are different from those of

the rare-earth nuclei, (g, -g, =0.65m,), suggested by Van Isacker
et al.,[129] also used g, =1m, and g, =0m, to reduce the number of the

model parameters in their calculation of M1 properties in deformed nuclei.
The results of our calculation are listed in Table (3-15). A good agreement
between the theory and the available experimental data is achieved. As can
be seen from the table, yields to a simple prediction that M1 matrix
elements values for gamma to ground band and transitions should be equal
for the same initial and final spin. Also the size of gamma to ground band
matrix elements seems to decrease as the mass number increases.

The results show that the transitions between low-lying collective
states are relatively weak. This is because of the increase of the anti-
symmetric component in the wave functions introduced by F-spin breaking
in the Hamiltonian. The magnitude of M1 values increases with increasing
spin for g—gand g® g transitions and we see:

1- By fitting B(M1) from 2; to2; we always get a small value for

g, — 9, compared to the value basis on the microscopic calculations

O, — g, =1m,.

2- There are evidences that M1 small mode exists in all spectra.

3- One cannot make decisive conclusions related to the agreement between
theoretical and experimental data from the above table due to the lack
of experimental data. However, both experiments and IBM-2 predicts
small M1 component which is due to symmetry and forbiddances of
band crossing gamma transitions.

4- The g® g M1 matrix elements are larger than the g® g M1 matrix

elements by a factor of 2 to 3. Again, this agrees qualitatively with the

perturbation expressions derived in ref. [130].
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5- The size of theg® g M1 matrix elements seems to decrease with the
increasing mass, specially, a change in g® g M1 strengths occurs
when the gamma band crosses the beta band.

These three aspects of M1 data shown in Table (3-15) are reproduced

by the calculation through a smooth variation of the parameters e and Ac,
and with a few exceptions (e.g., some g® g transitions in W and 3! — 2;

transition in ¥W). A good agreement between the theory and the
experimental data is achieved.

The calculated values for B(M1) are acceptable to some extent as
compared to the available experimental data, where some of B(M1) values
are small compared to the values of the quadrupole transition probabilities
because the wavelength of the gamma ray transitions is greater than it is in
the magnetic transitions according to the following the relationship:
| (ML) =0.3A* (EL). This relation shows that the B(M1) transition
probability is less than B(E2) transition probability and our results confirm
this.

The M1 properties of collective nuclei are certainly very sensitive to
various, even small, components in the wave functions either of collective
or non-collective character. In the 182184\ isotopes it was shown that the
inclusion of excitations across the major shell and two quasi-particle states
is important. One excepts that also for #W isotopes (which are near to
closed shell for neutron) similar effects come into play. As the above
analysis suggests, they can manifest in a considerable renormalization of
IBM-2 boson g-factors from their slandered values. The magnetic dipole
moment for first excited state is given by:

m=g, L, +9g,L, ceeiiiinn, (3-8)
where g, (g,) is the g-factor for the correlated proton (neutron) boson and

L, (L,) is the corresponding angular momentum operator. According to the

microscopic foundation of the model, g, (g,) is expected to depend, in the
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first approximation, on proton (neutron) number N, (N,) only,g,(N,) and
g,(N,). The IBM-2 calculations for m(2;), m4;)and m(2}) are listed in

Table (3-15), where we see a good agreement with the experimental data.
It is clear that the two effects contribute to the dependence of the

magnetic moments on proton and neutron number: the dependence of g,
and g, on proton and neutron number and the variation of the matrix
elements of the operator L (L,) with NJ and N,. As will be better shown

below, the former effect is related to the shell structure of the orbits, while
the latter is related to the average number of proton and neutron boson
taking part in the collective motion.

The characteristic of M1 of deformed nuclei is the summed M1
strength measured for rare-earth nuclei [131]. When calculated in the

IBM-2, it is found to be proportional to(g, —g,)*. If the Hamiltonian is

F-spin invariant, the summed M1 strength is given by the Ginocchio sum
rule [132] and is proportional to the average number of d bosons in the
ground state. On the other hand, F-spin breaking may affect the summed
M1 strength. Therefore, once one decides to study M1 properties using the
IBM-2, as many characteristics as possible should be considered
simultaneously [43].

Table (3-28) gives the g-factor in m, units for 8218\ jsotopes for
the first excited state (2;) and second excited state (2;) and compares it

with the experimental data. The g-factor of a state |k) is given by [43]:

<KT(MID)[k > (3-9)
0 =T e, —
< H(«/3/4p)(Lp 1)K >
Table (3-28): Experimental and |BM-2 calculationsfor g-factorsfor 228w in m units.

g_f actor 182W 184W 186W 188W

Exp. IBM-2 Exp. IBM-2 Exp. IBM-2 | Exp. | IBM-2
g(2))m, | 0.263(7) | 0266 |0.288(7) | 0.32 |0308(2) | 043 - 0.49
92, ] 0.099 | 0.12(4) 0.18 | 0.20(4) 0.33 - 0.36

Experimental data aretaken from ref. [133].
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We evaluate the mixing ratio d(E2 /M1) for 18218 isotopes

depending on the Eq.(2-54). The results of IBM-2 calculation for
d(E2 /M1) together with the experimental values are shown in Table (3-16).
The g factors together with the experimental data are presented in
Table (3-28). For this calculation we used the standard boson g- factors
g, =0.71m, and g, =0.051m,.

We were able to reproduce the 2; g-factors as well as most of the

d(E2/M1) mixing ratios. In particular, all the signs are reproduced
correctly. It should be noted that a sign change appears in both
thed(2; —»27) and d(2; —»2;) transition mixing ratios, when going from
18w to 82W. Moreover, in %W there is an opposite sign between the
d(2; —2;) mixing ratio and the d(3; — 2;) mixing ratio. We were able to
reproduce all of these features in the calculation. Mainly, the sign change
of Ae and ae for W in comparison to #18W is responsible for this
effect. We also calculated the admixtures of lower F-spin states in the
ground state. They are 1.6%, 2.2%, 1.3% for 18-184-182\\/ respectively.

The properties of low-lying levels in the 819 isotopes have also
been calculated within the context of the dynamic deformation model
(DDM) [134]. In Ref. [134], the authors have mainly focused on an
analysis of quadrupole moments, for which reasonable agreement is also
obtained in the present IBM-2 calculations. Unfortunately, only one
d (E2/M1) mixing ratio is given in Ref.[134] (-43eb/m,) for the d(2; —» 2))
transition in 18W to be compared with the experimental value (-11* eb/m,)

and the IBM-2 result (-13. 201 eb/m, ). One should, however, keep in mind

that the DDM approach is more microscopically motivated than the present
phenomenologically oriented IBM-2 analysis.

The sign of the mixing ratio must be chosen according to the sign of
the reduced matrix elements. The equations used are (2-52) for M1

transitions and (2-54) for the mixing ratios. The results are listed in Table
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(3-16). The agreement with available experimental data [68,117] is more
than good especially in the sign of the mixing ratio. However, there is a
large disagreement in the mixing ratios of some transitions, is not due to a
dominant E2 transition, but may be under the effect of very small value of
M1 matrix element. However, it is a ratio between very small quantities
and may change in the dominator that will have a great influence on the

ratio.

3.4.5 Electric Monopole Transition Matrix element
Electric monopole (EO) transitions between nuclear levels proceed
mainly by internal conversion with no transfer of angular momentum to the

ejected electron. For transition energies greater than 2myc?, electron-

positron pair creation is also possible; two-photon emission is possible at
all energies but extremely improbable. The EO transition also occurs in
cases where the levels have the same spin and parity. This means that the
EO transition competes with E2 and M1 components in these transitions.
The reduced matrix monopole transition is given in Eq.(2-58), the
necessary parameters of the monopole matrix elementr (EO)are derived

from fitting the isotope and isomer shifts (b,, =0.078fm*, b, =-0.043fm* ).

There is a good agreement with the experimental data (see Table (3-17))
for the transition r (E0,2; — 2;). Other IBM-2 results of r (E0) values are
available upon request.

In 182-188\\/ isotopes EO values increased with the increasing neutron
numbers and they go up to the highest value at W isotope. This means
that all the isotopes are deformed because they possess the amount of
excess energy and that they are trying to get rid of this by lessen the EO
transitions to the state of stability. This is an additional evidence of the
deformation of these isotopes.

We notice that the theoretical values for the X (EO/E2) ratio are
small, for some transitions (see Table (3-18)) which means that there is a
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small contribution of EO transition on the life time of the 0" states. There
are two high values of X (EO/E2) in transitions from 0; —0; in 1818w
iIsotopes means that this state decay mostly by the EO and according to this
one could say that the study of this state gives information about the shape
of the nucleus, because the EO transitions matrix elements are connected
strongly with the penetration of the atomic electron to the nucleus. So
combination of the wavefunction of atomic electron, which is well known,
and the nuclear surface give good information of the nuclear shape.

Tables (3-19) and (3-20) shows theoretical versus experimental

iIsomer and isotopic shifts. The values of the parameters were determined to
be by, =0.169x10”° fm* and g, =-0.119fm* by fitting to isomer shift
d<r?>=016fm*> for W and the wvalue of isotopic shifts
A<r?>=0.150fm* and 0.087 fm? for the ®2W-184W and 84W-186\y

respectively. These same values were used in determining the monopole
matrix element.

The agreement is good with the experimental data, although the
IBM-2 does predict the experimentally observed sign not to change in the
isomer shift. It should be noted that the certainties in isomer shift data are
roughly an order of magnitude. Clearly more experimental results on the
isomer and isotopic shifts for the 18- isotopes would be very useful to

compare with the predictions possible using IBM-2.

3.4.6 Two Neutron Separation Energy

Instead of the actual binding energy we will examine the two neutron
separation energies. This is to say that the energy required to remove two
neutrons (one neutron boson) from a 8%1%0W jsotopes and is given by
Eq. (2-64). The parameters B=23.2 MeV and C=-0.71 MeV are determined
by fitting Eq. (2-64) to the experimental data [117] to obtain the results
shown in Table (3-29) for 1% isotopes. The agreement with

experimental is good.
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Table (3-29): Two neutron bosons separ ation energies Sen in MeV units.

| sotopes Exp. [117] IBM-2
W-180 16.6 16.01
W-182 15.2 16.0
W-184 14.8 15,4
W-186 13.6 14.23
W-188 12.8 13.21
W-190 11.5 11.4

3.4.7 Mixed Symmetry Statesin 18%1%W | sotopes

The existence of the mixed symmetry states is recognized as a
manifestation of a new nuclear mode consisting of oscillations of the angle
between symmetry axes of the deformed valance neutron and valance
proton. The occurrence of the mixed symmetry state in even-even nuclei is
a well-established fact [135], and they lie usually high in energy. In
even-even nuclei, the identification is based on the measurement of M1 and
E2 transitions to symmetry states, and strong from these states, weakly
collective E2 transitions to symmetric states, and strong M1 transitions can
take place via the bosons.

In rotational nuclei the lowest-energy mixed-symmetry state is a 1"

level at about 3 MeV, while in vibrational and g-unstable nuclei the Ms

level is a 2* and occurs at about 2 MeV. The mixed-symmetry states can be
excited from, or decay to, normal symmetric states by magnetic dipole
transitions (M1) which are usually strong. The energy dependence of the
mixed-symmetry states and the sharing of mixed-symmetry features with
the symmetric states are governed by the parameters of the Majorana term
which shifts the energy of the states with mixed proton-neutron symmetry
with respect to the totally symmetric ones [42].

The IBM-2 is able to describe mixed-symmetry states because it
distinguishes between neutron and proton bosons. The F-spin quantum
number [67,77,98] has been introduced in order to classify these states in

the model. For a single boson, F = 1/2 with F, =1/2 for a proton boson and
F, =-1/2 for a neutron boson. Two bosons may be combined into a trio of

symmetric states with F =1, F; = 1, 0, -1, for the combinations p p, pn
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and nn, respectively. For the pn system there is also an antisymmetric
state with F = Fz = 0. Because the boson wavefunction must be symmetric
overall, the orbital wavefunction in the sd space must be symmetric for
F =1 and antisymmetric for F = 0. The scheme is readily extended to higher
boson numbers. The fully symmetric states of N bosons, containing no
antisymmetric boson pairs, have F = N/2. These are equivalent to the states
described by IBM-1. All other states in IBM-2 are states of mixed

symmetry. States containing one antisymmetric boson pair have
N : :
F= ?—l, and include the 1" and 2" states observed experimentally. The

Majorana term, M_,, provides a repulsive interaction between the bosons in

an antisymmetric pair, and therefore raises the energy of a state containing

such a pair. However, the Q,.Q,, interaction also contributes to the energy

difference between symmetric and mixed-symmetry states. In principle,
IBM-2 predicts the existence of further mixed-symmetry states with
F=N/2-p, where p=2, 3,4, .., [N2] is the number of antisymmetric
boson pairs. These are expected to lie at much higher energy [42].

The best fit values for the Hamiltonian parameters are given in

Table (3-25). The x, component is of a completely different nature from
the other two terms in the Majorana interaction. The term containing X,

corresponds to the matrix element in which the seniority of protons and
neutrons changes while the other two terms belong to the seniority-

conserving matrix elements. Consequently, in some cases X, and x, are
taken equal while x, is set to zero. In the fitting procedures described in
this work we set, as a starting point, the three x, (k=1,2,3) parameters

equal and obtained a best-fit value. The best fit was judged on the basis of
the level energies of the lower-lying states, ignoring for the moment any
that might have a mixed-symmetry character, electric transition probability

B(E2) values and the static moments. Now with x, =X, at their best fit
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value, we allowed x, to vary. We see that the energy dependence of all 25:
symmetric states reaches saturation very quickly with increasing x,, while

the energy of the state 2 is increases rapidly with increasing x, and

becomes constant at about 2.5 MeV. The energy of the 1, shows a linear
increase with x, . These features are illustrated in Figures (3.14) and (3.15).
It is obvious that the change in energy levels as x, is varied is a good

indicator for the lowest 2* and 1" mixed-symmetry states, and we

recommend this method for searching for mixed symmetry states.
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Figure (3.14): Thechangein energy of low-lying positive parity states asa function of
the Majorma term with x, =X,

The values of the Majorana parameters will depress x, with respect

first scissor mode state. The aim was to minimize the position of 2* mixed
symmetry states in the 18-1%W jsotopes, and to monitor the effects of such
a change on the calculated energy spectrum. On the other hand, we fixed

the value of x, for all isotopes.
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The calculated energy spectrums of the 8%-1%W nuclei are shown in
Figures (3-6) to (3-11). Reproduction of the trend in the experimental
data[117] can be seen, the energy states have been grouped according to
bands and F-spin values, and they provide an opportunity to study possible
collective band structures that are predicted in these nuclei. As can be seen,
our results agree well with the available experimental data. In particular, all

symmetry states in different band are reproduced correctly, all second 0}
and 2 states, except the 0; in the ¥°W isotope where the deviation is

0.028 MeV upper than the experimental value. The IBM-2 predictions of
the y- band of the selected set of 8%-1%W isotopes are also satisfactory.
Though the calculated 0; state at 1.093 MeV in the 82W isotope has been

observed, while the 0; states in the 180.184186\\/ jsotopes are very close to the
experimental ones. All 3} states are fully symmetric states, i.e., belong to y-

collective band. The deviations between theoretical and experimental data
may be attributed to the mixing of the collective excitation with

quasiparticle excitations.
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The parameter x, component of Mojorana interaction should have an
extreme effect on the energy of the MSS We set, as starting point, the three
parameters x,, x, and x, which obtained the best fit to experimental data
and then allow x, to vary. The completely symmetric 2* states are not
affected by changing x,, or reach the saturation value very quickly, while
the energy of the MSSincrease (decrease) rapidly by changing the x, value
and becomes constant at a certain energy as shown in Figure(3.15). The
energy of the (F*F/max) shows a linear increase with x,. The 3;, and4;,
behave in the same manner of the 2;,. The F-spin projection calculation

confirms these criteria. In other word, we recommend the two methods in

searching for the mixed symmetry states.
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Figure (3.16): F-spin componentsin the 2,, 2,, 2,and 0,levelsasa
function of x, .

According to the above discussion, it is found that the 2; and 2; at
calculated energy around 2.1 MeV in 8190 isotope are mixed symmetry
states, plus the 17 and 1; at 2.0 MeV and 2.3 MeV respectively. The same
states in 82W isotopes are mixed symmetry states. In 84W isotope, it is
found that the 2; and 2; states at experimental and theoretical energies

(1.386, 1.431) MeV and (1.397, 1.437) MeV respectively are the mixed
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symmetry states. In W has the similar behavior as previous isotope, i.e.,

the 2; and 2; states at experimental and theoretical energies (1.285, 1.322)

MeV and (1.274, 1.326) MeV respectively are mixed symmetry states.

The magnitude and sign of the multipole mixing ratios are found to
depend sensitively on x,. In IBM-2, the E2 transition operator is given by
the Eq.(2-42) and the MI transition operator can be written in Eq.(2-52).
The reduced E2 and M1 matrix elements have been evaluated for a
selection of transitions in 819w isotopes 8-10W isotopes; their
dependence on x, is striking. A sudden change in sign is sometimes
observed in M1; it occurs when the E2 matrix element is small. It may be
attributed to a very low value of the E2 reduced matrix element; even
though the program has an arbitrary sign choice, the sign is consistent for
all results within a calculation, and the sign of the ratio of the matrix
elements which determine the sign of the multipole mixing ratio is not
arbitrary.

In Table (2-16), it should be noted that a sign change appears in both
the 2; —2; and 2; — 2; transition mixing ratios, when going from 82W to
18W. Moreover, in W there is an opposite sign between the 2} — 2;
mixing ratio and the 3; —2; and 3; — 4, mixing ratios. We were able to
reproduce all of these features in the calculation. Mainly, the sign change
of Ae and Ac for ¥2W in comparison to 3*W which is responsible for this
effect. We also calculated the admixtures of lower F-spin states in the
ground state. They are 1.6%, 2.2%, 1.3% for 186-184-182\\/ 'respectively. They
are 1.5%, 2.10%, 1.2% for 186184182\ respectively.

From the calculated values for the transition probability B(E2) and
B(M1) in 18218\ jn Tables (3-14) and (3-15), it has been found that the
state 2; is a mixed symmetry state and represents 2;, because the electric
transition probability B(E2) is smaller than the magnetic transition

probability B(M1) as well as the 2; state which represents the mixed
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symmetry for the same reason. Whereas 2, state is a totally symmetric
state because of B (M1) < B(E2). While, in the case of 1818w, the 2

represent the 2;, according to the values of B(E2) and B(M1) [49].
The branching ratios of B(M1) are very helpful in nuclear shape
coexistence. Normally the value of B(M11 —0) is the largest value in

the M1 transition probability between states, so we applied the B(M1) ratio
normalized to the value of this transition, according to the following

relations;
R = B(I\/Il;ll+ - 01+)/B(M1;2i+ —> 2?)

1=4,56,7,f=1,2

The ratio R1 depends on the B(ML2" — 27 ). The large value of R;, means

that the 2 state is a totally symmetric state and this is consistent with the
values calculated in the program and with the F-spin values. For small R;

values the B(M1,2" —27)=11nY, is large, in other words, the state,
2,561 @ mixed symmetry state and it has the strong M1 decay to the 2;

state and one must take into account that the states in which the M1 decay
are one-phonon or two-phonon differences. It can be seen that R; = 0.00001

is small when N =12, because this isotope has a larger value of B(M1)

than the other isotopes.
The analyses demonstrate the sensitivity of the mixed symmetry

states energy to the model parameters F-spin and the Majorana term x,.
The comparison with the experimental data shows that, we still lack the

experimental data on the B(M1,1 — 0;)in order to focus on these aspects.
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CHAPTER FOUR
INTERACTION BOSON-FERMION MODEL RESULTSAND
DISCUSSION
4.1- 1"1%Hf | sotopesin IBFM-1
In recent years, many negative and positive parity states of the even-
odd nuclei, such even-odd Hf isotopes have been found experimentally.
Over the major shell N = 82, there are available negative parity single-

particle levels, the 2f,,,3p,, and 3p,,. The basic algebraic structure

associated with the IBFM model Hamiltonian of the Hf isotopes, whose
last unpaired nucleon occupied single-particle orbits with j=1/2, 3/2 and
5/2, is the direct product U®(6)®U " (12), where U ®(6) is the boson group
describing the collective properties of the even-even core and U (12) is the
fermion group associated the single-particle degree of freedom.
4.1.1 Energy Spectrafor "1°Hf isotopes

The even-odd *17°Hf isotopes consists of 72 protons and 99-107
neutrons, hence the numbers of bosons (12-16), it could be calculated by
hole protons that are 5. The IBFM-1 Hamiltonian (Eq. (2-76)) was
diagonalized by means of the ODDA program [136]. The IBFM-1
parameters used in the ODDA code are given in Table(4-1) for all isotopes
under study (A, = BEM, T, =BFQ, A, = BFE)

Table (4-1): Adopted Parametersused for IBFM-1 calculation; all parametersare
given in MeV units.

Isotopes | BFE BFQ BEM Ny | N, [ Ng | Nz | N
iHf 0.071 0.031 -0.011 5 7 12 1 13
131 f 0.252 0.031 -0.072 5 8 13 1 14
1751 f 0.181 0.07 0 5 9 14 1 15
THf 0.501 0.161 0.131 5 10 15 1 16
191 f 0.9 0.02 -0.25 5 11 16 1 17

In the framework of the IBFM-1, we performed the BCS (Barden-
Cooper-Schrieffer) calculation, which provide the quasi particle energies e,
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and the shell occupation nf using in the Egs. (2-82) and (2-83) which are

presented in Table (4-2).
Table (4-2): Adopted valuesfor the parametersused for IBFM calculation.

Par ameters it 13Kt 1oHf
21:5/2 3p3/2 3pl/Z 21:5/2 3p3/2 3p1/2 21:5/2 3p3/2 3p1/2
e; (MeV) | 2.030 |1.7020 | 2.570 | 2.0530 | 1.6970 | 2.5940 | 2.0330 | 1.730 | 2.0340
nj2 0.0510 | 0.0716 | 0.0301 | 0.0480 | 0.0691 | 0.0474 | 0.0690 | 0.030 | 0.0471
Parameters YTt 19Kt
e, (MeV) | 1.7230 | 2.5740 | 2.0349 | 2.0640 | 1.7260 | 2.570
n? 0.0674 | 0.0290 | 0.0471 | 0.0460 | 0.0670 | 0.030

The IBFM-1 results and experimental data [110] of low-lying
negative parity levels were plotted in Figures (4.1) to (4.5) for the 1"*17Hf
isotopes. In these figures, the IBFM-1 calculations are in good agreement
with the experimental data [110].

Because of the discrepancies between experimental results in both
energy levels and their assignments, the IBFM-1 parameters used are those
which give the same energy value for the first energy level (1/2)
(see Figure (4-1)). Hence, a normalization to the level (1/2°) at 0.021 MeV
was made.

The average percentage deviation between experimental levels and
the IBFM predictions was calculated to be less than 2% only. The energy
levels compared are those below 2 MeV, since most of the levels at higher
energy are not assigned and there are a lot of discrepancies in their
excitation energy.

The whole Hamiltonian was then diagonalized in the model space
spanned by the basis states |n,,n,nL;J), . where j=(7/27) in 71AEATHE
isotopes and j=(9/2*) in ®Hf isotope. The interaction parameters were
determined by fittings to the experimental energy spectra of the 1"*17°Hf
isotopes. In the fittings, all interaction parameters were treated on equal
footing. The strength of L.L term can be determined from the relative level
spacing’s of different L states. From the general level spacing's of even-
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even core nuclei in the isotope the parameter a, was chosen to be

(-0.011 to -0.014) for all nuclei in the isotope string. Also, it was found that
the exchange force term has the effect to be complementary with the a,e,
term and could be unified for all isotopes in the string. Therefore, the value
of A was chosen in Table (4-1) and the a,&, term was renormalized to

absorb the relative effects of exchange force for different isotopes.

The best fitted interaction parameters are shown in Table (4-1). It is
worth noting that the free varying parameters are very smoothly versus the
change of the boson number.

The calculated and experimental energy spectra of positive parity
states are shown in Figures (4-6) to (4-10). In general, the agreement is
very good. The root mean-square deviation for 64 states is only 0.021MeV.
There are several interesting features that are worthy of mentioning.

1- High spin states can be reproduced quite well but some high spin states
cannot be fitted well. If want to fit these states well by adjusting the
interaction parameters, the fittings in the lower spin states will be
affected significantly. Therefore, these states were excited in the least-
squares fittings and were marked by an asterisk on the energy levels. It
seems that these cannot be explained in this one fermion orbit IBFM-1
model.

2- The observed order reverse of the 5/2*, 7/2*, 3/2%, 9/2%, 11/2*.13/2",
doublets in the energy spectra can be reproduced. It was found that the
quadrupole-quadrupole interaction is crucial for this order reverse. Note
that the sign of this term changes from isotope to another.

3- The unflavored high spin states that currently do not have experimental

counterparts are not shown in the figures.
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4.1.2- E2 Transitionsfor 1®Hf | sotopes

The IBFM-1model

wavefuntions can be further

tested by

electromagnetic transition probabilities. Unfortunately, in this region the
lack of experimental data prevents any significant theory-experiment

comparison.

The calculation of electromagnetic transitions gives a good test of

the nuclear model wave functions. In this section, the calculation of the E2

transition strengths and results with the available experimental data are
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discussed. In general, the electromagnetic transition operators can be
written as a sum of two terms, the first of which acts only on the boson part
of the wave function and second only on the fermion part.

In the IBFM-1 the E2 operator is given in Eq. (2-103), where e, and
e. are the boson and fermion effective charges. The electric quadrupole
moments for a state with spin J can be calculated from the E2 operator. Eq.
(2-103) contains the E2 boson and the fermion effective charges as
adjustable parameters. Experimental B(E2) values were used to find the
best fit with PBEM [60] and determine the boson effective charges e, and

e . The fermion effective charge e. is taken to be equal to e,. Fermion
effected charge can be reproduced from the experimental B(E2;J, — J,)

and can be written as [82]:

£y 2N(N +3)

B(E2:9, > J/)=(a, - 5(N +1)(N + 2)

and it is tabulated in Table (4-3) together with boson effective charges. The
theoretical B(E2) s for 1*1°Hf are given in Table (4-4) because there is no
experimental data to be comparable to. But we can calculate the B(E2)
values depending on the case when a,(e;) = f,(e.). From Table (4-4) and
Table (4-5), some B(E2) transitions for positive and negative parity states

are strong because these transitions have selection rules.

Table (4-3): effective fermions charge for Hafnium isotopes.

Isotopes | e;(eb) e- (eb)
Hf 0.1165 -0.135
1B3Hf 0.121 -0.419
151§ 0.123 -0.270
THf 0.113 -0.141
194f 0.132 -0.162

E2 transitions do not show a clear pattern that allows for the
arrangement of the levels into bands. This is partly due to the fact that there

are several single-particle levels important for the low-lying states and
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partly due to the fact that the even-even cores do not show strong

collectivity.
Table (4-4): Electric Transition Probability for 1*1°Hf B(E2;J — J7)

in €. b? unitsfor Positive Party States.

‘]i+ BT 171Hf 173Hf 175Hf 177Hf 179Hf
IBFM-1 | IBFM-2 | IBFM-1 | IBFM-2 | IBFM-1 | IBFM-2 | IBFM-1 | IBFM-2 | IBFM-1 | IBFM-2

3,7

. 2, 0130 | 0221 | 051 | 0617 | 0.023 | 0.073 - - - -

1.9

2, 2,| 064 | 0.622 | 0.721 | 0.832 | 0.011 | 0.014 | 0.0414 | 0.031 | 0.0621 | 0.0633

u. .7

2, 2, 0293 | 0.419 |0.0021 | 0.0027 | 0.003 | 0.007 | 0.0521 | 0.0547 - -

13_u

2, 2, 0073 | 0.087 | 0.682 | 0.672 | 0.037 | 0.055 - - 0.0533 | 0.0557

B3

2, 2| - - 0.0009 | 0.008 - - 0.0007 |0.00081| 0.0067 | 0.0071

B 7

2, 2| - - 0.0029 | 0.003 - - - - - -

7.3

2 "2 0056 | 0068 | 0.131 | 0.153 - - - - - -

1 1

17 13

5 7510375 | 0432 | 0352 | 0.427 - - - - - -

1 1

15 13

2, 2| - - - - - - - - 0.0918 | 0.0816
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Table (4-5): Electric Transition Probability for 1*1°Hf B(E2;J" — J;) in €. b?
unitsfor negative Party States

3 3+ 171Hf 173Hf 175Hf 177Hf 179Hf
RN
I ' IBFM-1 | IBFM-2 | IBFM-1 | IBFM-2 | IBFM-1 | IBFM-2 | IBFM-1 | IBFM-2 | IBFM-1 | IBFM-2
51 0.002

> | 0.478 | 0.621 | 0.0021 e e
21 21 7
3 5
=2 | 0046 00321 | - S T R B
2. 2,
> | 0259 | 0571 | - o e I e e e
21 21
5 1
2 7 | 062|073 | - o e I e e e
5 3
~>—- | 001 | 0011 | 0589 | 0674 | - | - | - | - | - | -
2 1
3 1
S | 0488 | 0377 | 0013 |00021| - | - | - | - |00l 0041
1 1
7 5
S>> | 0362 | 0475 | 019 | 0.188 | 00321 00616 - | - | - | -
1 1
7 5
- | 1381 | 2615 | 047 | 052 | - | - | - | - | - | -
1 2

7 7
oo | 0418 | 0513 | 0419 (0522 | - | - | - | - | - | -
2 1
9 7
2**2* 0.0072 | 0.0081 | 0.038 | 0.0521 - - 0.0371 | 0.0351 | 0.0717 | 0.0619
1 2
o | 0626 | 0731 | 00132 | 00122 | - - 00472 | 00481 | - :
5 5
>o> | - | - o004 looos| - | - | - | - | - | -
2 1
7 5
S>> - | - | o008 ooo78| - | - | - | - | - | -
21 22
9 9
~o2 0 o | - Jo0s6 (0061 - | - | - | - | - | -
22 21

4.1.3- M1 Transitions and "1®Hf | sotopes

The M1 transition operator is given by the Eq. (2-106), where,

gs= 0.31m, is the boson g-factor determined by the magnetic moment of

levels in the even-even core and, g, is the single particle contribution

which depends on g, and g, of the odd nucleon. In the actual calculations,

the computer program PBEM [60] has been used. For the odd 1"*-17°Hf

neutron, we use g, =0m, and g,

-1.5m,. The spin g-factor indicates some

quenching from that of a free neutron. It should be noted that there is a
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wide range of g, and g, values that give a reasonable fit to the data. In

considering the M1 operator one should keep in mind that for the special

choice g, =g, =g, the operator Eq. (2-106) reduces to the operator for a

total angular momentum. Since this corresponds to a good quantum

number, the calculated B(M1) values vanish exactly for this choice. The

relatively large B(M1) values thus requires a significant deviation from

gz =0, =g, however the data do not allow an accurate determination of

these parameters and a variation of the parameters with 30% is possible

without significantly spoiling the agreement.

The Calculated B(M1) values are only available for some transitions

in Tables (4-6) and (4-7). The calculation shows some large discrepancies

for 1>177"Hf. The M1-operator in IBFM-1 higher-order terms are more

important than for the E2-operator due to the fact that the M1 transitions

are not collective.

Table (4-6): Magnetic Transition Probability B(ML J, — J,) in n{ unitsfor

171-179Hf for positive Party State

171Hf 173Hf Hf175 Hf177 Hf179
J —>J
! f IBFM-1 | IBFM-2 | IBFM-1 IBFM-2 | IBFM-1 | IBFM-2 IBFM-1 IBFM-2 IBFM-1 IBFM-2
7
o 5 | 0023 | 00461 | 0478 | 0537 | 0.0632 | 0787 ; ;
1 1
11 9
o5 | 0011 | 0263 | 0046 | 00891 | 0357 | 00272 | 0697 | 0532 | 0271 | 0472
1 1
11 7
55 | 000028 | 25x10% | 0.0488 | 0.0526 | 0.0031 | 0.0004 ; ;
1 1
13 11
5 5 | 0326 | 0527 - ] 0732 | 0543 | 0521 | 0431 | 0334 | 0437
1 1
13 9
= 5= 0.00071 ; 0.0072 | 0.0083 | 0.007 | 0.00089
21 2l
BT 2x105 | 3x10°
2, 2, ) x x ” ”
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Table (4-7): Magnetic Transition Probability B(MLJ, — J,)in nf, for 1*17°Hf for
negative Party State

] 3 171Hf 173Hf 175Hf 177Hf 179Hf
ERas IBFM-1 IBFM-2 IBFM-1 | IBFM-2 | IBFM-1 IBFM-2 IBFM-1 IBFM-2

23 Zi 0.34 0.442 | 0.0024 | 0.0063 | -- 0.732 - -

3 5

oo | 018 0264 | 0053 | 0.067 | - 0.087 - -
RIS - 2x10° - - - | 000631 | - -
2, 2,

5 1
> 5 | 00025 | 000033 - - - 0.468 - -
> 53 01001 | 0.0156 - - - - - -
2, 2,
3,1 - - 0243 | 0327 | - - - -

2, 2,
ERIN] - - 0.00031 | 0.0077 | - - - -
2, 2
I, - - 0.001 | 2x10% | - - - -

2, 2,
3,7 - - - - - - 0.732 | 0.622
2, 2,
1,3 - - - - - - 0.872 | 0.413
2, 2,

u,r - - - - - - 0.0043 | 0.0007
2, 2,

13 11

RN - - - - - - 0.0006 | 4x10%

1 1

4.2- 1818\ | sotopesin IBFM-1

4.2.1- Energy Levelsfor 8118\ | sotopes

The present study, concentrated on the odd-mass 81-18W jsotopes.

Since in the IBFM-1 no distinction is made between neutron and proton

bosons, the IBM-I parameters were obtained by projecting the I1BM-2

Hamiltonian onto the IBM-I space and equating the matrix elements of the

Hamiltonian between states that are fully symmetric in the neutron-proton

degree of freedom. The remaining parameters, appearing in the boson-

fermion interaction V. (A, I,,A,), were determined starting from the

values obtained in studying the odd-mass "*1"°Hf isotopes in this work.
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They were subsequently adjusted in order to obtain a good description of
both positive-parity and negative-parity states at the same time. Thereby,
one finally obtains the values of the interaction parameters

A, =-0.25MeV ,[, =0.3MeV  and  A,=2130Mev. The value of
aw =1.5MeV which is consistent with the excitation energy for the J;" =2;

states in the even-even 8190 jsotopes.

The levels calculation is used to fit experimental energy levels with
the boson-fermion parameters for 181718\ jsotopes. These parameters have
not been changed along the isotopic chain. The dependence of Vg on the
specificity of each nucleus is counted for in the occupation probabilities

appearing in the exchange term A, and in the quadrupole term T,. The best

agreement with experiment for the level calculations of 8187\ isotopes is

found by slightly varying the occupation probabilities to n? to allow a

better fit with the experiment (see Figs. (4.11) to (4.15) for negative parity
states and Figures (3-16) to (3-20) for positive parity states). The
Hamiltonian (Eqg. (2-76)) was diagonalised by means of the computer
program ODDA [136] in which the IBFM-1 parameters. The parameters for
the 189-10W core are derived in the present work and given in Chapter
Three, while the quasi-particle energies and occupation probabilities used

in this work are given in Table (4-8).
Table (4-8): Adopted valuesfor the parameters used for IBFM calculation.

181W 183W 185W
Parametas 21:5/2 3p3/2 3p1/2 2f5/2 3p3/2 3p1/2 21:5/2 3p3/2 3p1/2
e (MeV) | 20281 |1.097 |2419 | 2052 |1714 |2584 |2032 | 172 |2576
ny 0.049 |0.0715 | 0.03 | 0.0477 | 0.0687 | 0.0293 | 0.0462 | 0.0691 | 0.0289
Parameters 187\
e (MeV) 7033 |1722 |2573
n; 0.0469 | 0.0672 | 0.0287

As an example we discuss ®*W isotope. The low lying negative

parity states in this nucleus are built upon the negative parity orbits in the
82-126 neutron shell with angular momenta lhgy, 2f7, 2fs2, 3ps2 and 3pjs..
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In the SU (3)®U (2) limit these orbits all belong to the pseudo-orbital

oscillator shell with n = 4.
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4.2.2- E2 Transitions for 88"\ | sotopes

Electromagnetic transitions give a good test of the model wave

functions where in particular the extent to which two wave functions have

similar single particle components. In general, the electromagnetic

transition operators are written as the sum of two terms, the first of which

acts only on the boson part of the wave function and second only on the

fermion part (see Eqg. (2-103)), where Q. has been defined in Eq. (2-43),
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Q, are single particle matrix elements of the quadruple operator, e, and e,

are the boson and fermion effective charges respectively. In the

calculations, the boson effective charge e, was chosen such that it
reproduces the experimental values for the even mass W isotopes
reasonably well with one value taken constant over the entire isotopic
chain. This resulted in e, = 0.151 eb for 8%-1%W jsotopes. The fermion
effective charge for W isotopes is taken as e. = 0.15 eb. It should be noted
that the fermion effective charge has only a minor influence on the
collective E2 transition strengths. Tables (4-9) and (4-10) give B(E2) s for
positive and negative parity states in W isotopes.

Table (4-9): Electric Transition Probability B(E2;J;" — J7) for 8-18'W in €. b?

unitsfor Positive Party States.

3 . ] N 181W 183W 185W 187W
e IBFM-1 | IBFM-2 | IBFM-1 | IBFM-2 | IBFM-1 | IBFM-2 | IBFM-1 | IBFM-2

u,9 3 3

2, 2, 4.33 x10 8.6x10 - - - - - -

13 11

2— 2— 3.72x10° | 3.20x10% | 3.11x10* | 3.27x10-4 | 0.0008 0.0037 | 2.50x10* 0.0055
1 1

15 13

o5 | 6.91x10% | 4.29x10* - - - - - -

21 21

E i 93x10* | 5.30x10*

2, 2, 5.93x1 5.30x1 - - - - - -
9 13

Pl d - - 6.72x10* | 4.61x10* | 0.00078 | 0.0008 - -
21 21

3 E 33x10® 03x10*

2, 2, - - 4.33x1 5.03x1 - - - -
l—>3 0.048 0.097

2, 2 ) ) ) ) ' ' ) )
9 7

i e - - - - 2.92x10* | 3.00x10* | 0.00087 0.087
22 21

7 13

PR - - - - - - 7.7x10* | 0.00073
21 21
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Table (4-10): Electric Transition Probability B(E2;J. — J;) for 8-187W in €% b?

unitsfor negative Party States.

T 3 181W 183W 185W 187W

L —>

' " | IBFM-1 | IBFM-2 | IBFM-1 | IBFM-2 | IBFM-1 | IBFM-2 | IBFM-1 | IBFM-2
ge% 2.28x107? | 3.20x10° - - 3.30x10° | 2.31x10° - -
ge% 1.32x10° | 3.20x10* - - - - - -

3 7

55 | 440x107 | 3.20x107 - - - - - -

3 1

5_)5 - - 8.30x10* | 7.32x10* - - - il

5 3

575 - - 6.50x10° | 8.90x10% - - 3.31x10° | 3.30x10-2
7 5

5_)5 - - 9.70x10* | 5.50x10* - - - il

1 3

> - - - - 5.60x10% | 4.21x10"* - -

3 5

> - - - - 4.40x10° | 4.20x107% | 3.70x10* | 4.90x10-4
1 1

1 5

5 - > - - - - - - 4.50x10° | 2.54x10-3

4.2.3- M1 Transitions for #1181\ | sotopes

The M1 operator is given in Eq. (2-106), Where g, is the boson

g-factor determined by the even-even core, and g, is the single particle

contribution which depends on gland ground state band (orbital and spin g-

factor) of the odd nucleon, where g .= 0.32 m, is the boson g-factor

determined by the magnetic moment of levels in the even-even core. In the

actual calculations the computer program PBEM [60] has been used.

Tables (4-11) and (4-12) gives the B(M1) for positive and negative parity

states for 18187\ jsotopes.
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Table (4-11): Magnetic Transition Probability B(M1;J;” — J7) for 8181\ in
m{, unitsfor Positive Party States.

3 3+ 181W 183W 185W 187W

7" [IBFM-1] IBFM-2 | IBFM-1| IBFM-2 | IBFM-1 | IBFM-2 | IBFM-1 | IBFM-2
252 | 228402 | 3.20x10° : . . . - -
D52 1132107 | 3.20x10% | 830x10¢ | 7.32x10% | 5.60x10° | 421x10% | 331x107 | 3.30x107
D52 | 4404102 | 3.20x10° . : . . . -

9 13 _ _ _ _

o3 i i 6.50x10°% | 8.90x10% | 3.30x10° | 2.31x10% | - .

% % i i 9.70x10% | 5.50x10* . . . -

g % i ; ; - 4.40x10° | 4.20x10° - -
%ﬁ% ] ] - - - - 4.50x10° | 2.54x10°
LN 3.70x10% | 4.90x10*
2 2 - - - - - - . X . X

Table (4-12): Magnetic Transition Probability B(ML J” — J;) for 8181\ in
m¢ unitsfor negative Party States.

J B J B 181W 183W 185W 187W

" 7t "IBEM-1| IBFM-2 | IBFM-1| IBFM-2 | IBFM-1 | IBEM-2 | IBFM-1 | IBFM-2
5—>l 5.0x10° | 4.8x10°

— — .Ox .OX - - - - - B

2 2

7 1

E_)E 3.7x10* | 4.57x10° - - - - 7.80x10% | 6.70x10°
3 7

——— | 41x10° | 7.30x10° - - - - - -

2 2

3 1

Nt - - 4.30x105 | 3.80x10° - - - -

2 2

5 3

E_)E - - 5.97x10° | 6.20x10 - - 4.50x10° | 8.00x10°
7 5

N - - 4.48x105 | 5.70x10* - - - -

2 2

1 3

24,0 - - - - 3.70x10° | 4.00x10° - -

2 2

3 5

242 - i - - 5.20x10° | 6.00x10° - -

2 2

1 5

E_)E i - - - 4.60x10% | 3.40x10° | 3.70x105 | 3.70x10S
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4.3 1"1-1PHf | sotopesin IBFM -2
An even-odd Hf isotope is described in IBFM-2 by coupling a

neutron to its »,Hf isotope, described in terms of the IBM-2, with the
Hamiltonian of Eq. (2-42). Consequently, the first step to describe the
even-odd nucleus is a compelling description of the even-even core. In the
case of the Hf isotopes, we start pointing for the description of the Hf even-
even cores. Afterward, the parameters were slightly changed to take into
account later experimental information on mixed symmetry states 1*. The
resulting values of the parameters used in the description of the Hf cores
can be found in Table (3-21). The strength of the Majorana interaction, My,
was obtained by fitting the excitation energy of the first 1* level, mixed
symmetry state allowed in IBM-2, but not in IBM-1. With those
parameters, both energy spectra and electromagnetic properties were
calculated in a good agreement with the available experimental data for
even-even Hf isotopes. Thus, we are confident that the wave functions of
the even-even Hf core nuclei provided by the IBM-2 model are good. Once
the wave functions for the states in the even-even core have been obtained,
the odd-neutron has to be coupled to it in order to calculate excitation

energies, electromagnetic properties.

4.3.1- Energy Spectra

The coupling of the neutron to the even-even core is governed by the
boson-fermion interaction, where the more important terms are those
between the odd fermion and the bosons with the alternative flavor. This

interaction, Eq. (2-154), is decomposed into three terms: quadrupole (V.2 ),
exchange (v,; ), and monopole (V' ). Since the Hamiltonian is invariant

under parity, positive and negative parity states are studied separately. The
parameters in Vg are different for each parity accordingly and are shown in

Table (4-13). It is important to emphasize that ,,A, and A are

phenomenological parameters for the entire chain of isotopes, in contrast to
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the above-mentioned IBFM-1 calculation, where these parameters were
fitted for each isotope separately. The IBFM-2 Hamiltonian (Eq. (2-142))
was diagonalized by means of the ODDPAR program [107] in which the
IBFM-2 parameters which used in the ODDPAR code are given in Table
(4-2) for all isotopes under study (A=BEM , I' = BFQ, A =BFE)

Table (4-13): Parameters (in MeV) of the boson-fermion interaction used in this
work for positive (+) and negative (<) parity states for 1"*17°Hf isotopes.

Parity r A A
+ 0.455 0.033 -0.095
- 0.879 4.871 -0.864

The single-particle energies E* appear in Egs. (2-82) and (2-83) are
listed in Table (4-2), but we changed the relative position of the 2f,,,, 3p,,
and 3p,, orbits to account for the sequence in the low-lying levels

JP =5/2" and J? =3/2" along the chain of isotopes. Table (4-2) shows the
quasiparticle energies and the occupation probabilities obtained from the
BCS calculation. One important feature to note is that the positive parity
levels as well as the negative parity levels have high quasiparticle energies
and small occupation probabilities when we compare them with the rest of
the levels of the same parity.

In Figs. (4-1) to (4-5), experimental and calculated excitation
energies of the negative parity levels in 1"*1°Hf isotopes are shown. The
correspondence between experimental and calculated levels was done using
the electromagnetic properties discussed below. It can be seen that the
structure of the spectrum of "*Hf corresponds to a particle coupled to a
deformed core. The first two states come from the coupling of the single-
particle states included in the calculation with the ground state of /°Hf.
Then there is a gap and, around the energy of the first 2* of 1"°Hf (0.10080
MeV), a set of levels, which comes from the coupling of the single-particle
levels to this state, appears. The spectrum of ®Hf corresponds to a

transitional situation where the forbidden zone (gap) is absent. Our
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calculations reproduce well this structure, although they show a certain
tendency to structures of the particle-rotation type in both isotopes. The
origin of this effect can be found in the low values of the boson-fermion
parameters, which supply weak coupling schemes.

Experimental and calculated excitation energies of the negative
parity levels in  Y"-1°Hf jsotopes are compared in Figs. (4.1) to (4.5). The
correspondence in this case is difficult for some levels in 1"*1°Hf isotopes,
due to the lack of electromagnetic information which would allow for their
correct identification. This fact was also observed in the IBFM-1
calculation, where it was suggested that this level could be reproduced
when the 7/2" level of Hf is included, which is beyond the scope of this
work. The calculation for the "*Hf isotope shows a sequence of levels
distributed almost uniformly up to 0.7 MeV, while there is a set of
experimental levels grouped together around 0.3 MeV. However,
there is an almost 1:1 correspondence between experimental and calculated
levels below 0.5 MeV.

Finally, as it can be seen in Figures (4-6) to (4-10) for positive parity
states that in Y71°Hf there is an excellent agreement between the
calculated and the experimental energies for the positive parity levels.
Again, the calculation predicts a first excited band led by a 7/2" state at
around 0.4 MeV. In the case of the negative parity levels, experimental data
are only available for the ground-state band, well described in the
calculation, but with a slightly higher moment of inertia. A first excited
band, led by a 7/2” state at 0.2 MeV, appears in our calculations, as in
179Hf.

4.3.2- E2 Trandtions for "*1°Hf | sotopes

In addition to spectra, we have calculated B(E2)’s. This electric
quadrupole transition operator T(E2) consists of a bosonic and a fermionic
part, T{¥ given in Eq. (2-47) and T taken in Eq. (2-155). The

184



Chapter Four Interaction Boson-Fermion Model Results and Discussion

quadrupole operators present in TS5 correspond to those appearing in the
Hamiltonian (2-142). The value used for the bosonic effective charges e;
and e, is 0.191 e b. For the fermionic effective charge e-, we adopt the
value 1.5 e b. Tables (4-4) and (4-5). These tables show the trend of the
calculated values of B(E2) for some low-lying positive parity states in the
Hf isotopes. The calculation reproduces well the trend, except some
transitions for A= 171. These could be due to the existence of a low energy
state 0" at 0.915.4 MeV in the even-even core, ”?Hf, which the IBM is
unable to reproduce without including octupole degrees of freedom. The
coupling of this state with the fermionic single-particle degrees of freedom
may have a relatively high influence on the low-lying states in 1"2Hf.

Tables (4-4) and (4-5) show the calculated values of B(E2) for this
171-191f isotopes. It can be seen that, even when the calculation does not
describe fine details of the experimental data, general trends are
reproduced. Again the inclusion of octupole degrees of freedom could
improve the description of these isotopes. Some calculated values of the

reduced transition probabilities B(E2) in 1”°Hf are quoted in tables.

4.3.3- M1 Transitions and Mixing Ratiod(E2/M1) for Y1°Hf | sotopes

In contrast to E2 properties, M1 transitions and moments in even-
odd isotopes are dominated by the fermion part of the M1 operator. Using
the operator of Eq. (2-159), one can compute the corresponding transitions.

The boson part of the operator requires a specification of g’ and g7. These

can be taken from the calculations reported for even-even nuclei for
Sambataro et al., 1984 [109]. The fermion part of the operator requires a

specification of the fermion g-factors. The orbital g-factors are g/, =1m,
and g/, =0m,. The spin g-factors are taken as the free values quenched by
a factor of 0.7, i.e. g§ =0.7x5.58m,. A portion of the results is shown in

Tables (4-6) and (4-7). Also here there is no experimental information. For

those cases for the results of calculations of M1 transitions agree in general
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less well with the data as compared to the corresponding calculations of E2
transitions. This indicates that while the collective degrees of freedom
appear to be well described in odd-even nuclei, the single-particle degrees
of freedom still require improvement.

Calculations of electromagnetic transitions give a good test of
nuclear model wave functions. In this section discussed the calculation of
M1 and E2 transition strengths and compare them with the available
experimental information.

With T2 and TMY operators completely specified it is possible to
calculate d(E2/M1) mixing ratios for transitions between states of spin as in
Eq. (2-54).

From the reduced E2 and M1matrix elements, the multipole mixing
ratios for transitions in *1°Hf were calculated and compared with the
experimental data. Results are shown in Tables (4 - 13) and (4 - 14)
respectively. One can see that there is a good agreement for the sign and
the magnitude of the mixing ratios of most transitions, as calculated from
the IBFM-1 and IBFM-2, and that obtained from experiment results. The
expectation is for some transitions which the calculated sign of mixing ratio
IS opposite to experiment results. However, this could be attributed to the
use of a different sign convention for the definition of mixing ratio, used in

the experimental work.
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4.4 18118\ | sotopesin IBFM -2
4.4.1- Energy Spectra

The Hamiltonian, Eq. (2-142) was diagonalized using the computer
program ODDPAR [107] in which the IBFM parameters are identified as
A, =-0.25MeV, T, =0.3MeV and A, =2.130MeV for negative and positive

parity states. The value of nw=15MeVv is consistent with the excitation

energy for the J =2, states in the even-even W isotopes. In the present

study of the 818\ jsotopes we have used the complete 82-126 major

shell, the 2f,,,, 3p,,, and 3p,,, single particle orbits, for the odd-neutron

quasi particle. The quasi particle for these calculations is the fermion
degree of freedom, describing a neutron hole, that is coupled to the bosons
of the even-even may occupy. For the description of the even-even cores
we have used the parameters as given in Table (3-25). The use of the
complete model space allows us, for the first time, to perform a
comprehensive and unified calculations for the positive and negative parity
states of the neutron-poor even-odd isotopes.

As part of our strategy to have a unified description we have tried,
and succeeded, to keep the same values for all isotopes for the interaction
strength of the quadrupole, exchange and monopole forces, see Eq. (2-142).
We have been able to obtain good results for positive and negative parity

states for all isotopes (shown in figures (4-6) to (4-10)).

By performing an overall fit to a larger series of isotopes and by
including positive as well as negative parity states the freedom in the
choice of the interaction strength is strongly limited. The strength of the
Monopole force does not have a very large effect on the results. The quasi-
particle energies and occupation probabilities were allowed to vary across

the isotopes to get an optimal to excitation energies. At the same time, we
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have kept an eye on single-particle transfer amplitudes as these are very
sensitive to the occupation probabilities. The used single-particle
parameters are given in Table (4-8). Since only on the relative quasi-
particle energies enter in the calculation of excitation energies we have set
the lowest energy to zero. For 8118\ one observes that the energies as
well as the occupation probabilities vary gradually over the mass range,

with a minimum in the quasi-particle energies.

4.4.2- E2 Transitionsfor -8\ | sotopes

It is very well known that electric quadrupole transitions are
dominant in nuclear physics. Striking evidence is given by strong
enhancements in the measured E2 strength in even-even nuclei. The large
deviations from single particle estimates, expressed in e*b* units, indicate
the presence of collective features. Since the transition rate T(E2) has a

pronounced energy (E,) dependence it is desirable to extract it from the

other structure effects.

In the IBFM-2 formalism, the operator T2 is constructed starting
from the boson and fermion contributions is given in Eq. (2-154) The
boson effective charges are taken in Table (3-26) for both neutron and
proton bosons, whereas in estimating the fermion coefficients the radial
integrals <r? > in Eq. (2-156) are approximated by the harmonic oscillator

value (N +3/2)n/Mw, which turns out to be the same (0.27 b) for all the
positive parity orbits N = 6 shell. Furthermore, a renormalization, leading
to e., =0.136eb, e., =0.399¢b is adopted to account for the effects of the

strong interaction among the nuclear constituents.

Even though the ability of accurately describing the observed
transitions depends in a crucial way upon details in the structure of the
wave functions, it is useful to illustrate how the essential features can be
understood by dealing with a specific example in transitions for positive
and negative parity states.
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From the results presented in Tables (4-9) and (4-10), it appears that
the strong collective quadrupole transitions (large B(E2) values) are
reproduced quite well by the IBFM-2 model, especially for the #w
isotopes, whereas some disagreement emerges in relation to those
transitions which are observed to be weak and in the intermediate cases.
The explanation of such a trend can be found by studying the specific

nature of the states involved in a de-excitation process.

4.4.3- M1 Transitionsand Mixing Ratiod (E2/M1) for 8-1W | sotopes
For even-odd nuclei, other electromagnetic transitions, such as the
MI's, deserve particular attention, because they carry information about the
unpaired nucleon and the delicate coupling to the core. Therefore, they are
complementary to the role played by the E2's, where, as we have seen the
collective features are prevailing.
The appropriate one-body operator in our language is given in

Eq. (2-155). The bosonic g-factors g, and g, have been taken from

previous studies [109]. The coefficients of the fermionic contribution are
given in Eq. (2-159). and the single-particle g-factors of the free nucleons

are explicitly: g,, =1im,, g,, =5.5857m,, g,, =0m, , g,, =—3..8268m,.

Throughout the applications considered here the spin components need to

be modified to the following values: g,, =3.910m, and g,, =-2.678m,.

The calculated B(M1) values are given in Eq. (2-53), and presented
in Tables (4-11) and (4-12) shows IBFM results for reduced transition
probabilities B(M1), and their IBFM prediction for some of the lowest
levels. The present IBFM results are more reasonable for positive and
negative parity states.

Like the E2 transitions, there is no experimental data to compare the
theoretical results, the magnetic case is characterized by the occurrence, of
relatively strong de-excitations, which are predicted to be weak and vice-

versa. Such a behavior can be the result of having neglected higher order
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terms in the expression for the operator, or can reflect small configuration
admixtures, responsible for large variations in the matrix elements, without
appreciably affecting the energies of the corresponding states.

Using the operator of Eq. (2-159), one can compute the
corresponding transitions. The boson part of the operator requires a

specification of gS and g7. These can be taken from the calculations

reported for even-even nuclei for Sambataro et al., 1984 [109]. The
fermion part of the operator requires a specification of the fermion g-
factors. The orbital g-factors are g/, =1m, and g/, =0m,. The spin g-

factors are taken as the free values quenched by a factor of 0.66, i.e.

05 =0.66x5.58m,. A portion of the results is shown in Tables (4-11) and

(4-12). Also here there is no experimental information.

Tables of the d(E2/M1) mixing ratios for some selected transitions

in the 8187\ isotopes are calculated from the useful equations above and
with the help of B(E2) and B(M1) values, which are obtained from
NPBTRAN (a computer code which is a subroutine of the NPBOS package
program) [71]; the results are given in Tables (4-15) and (4-16). In general,
the calculated electromagnetic properties of the Tungsten isotopes do not
differ significantly from those calculated in experimental and theoretical
work.
We have also examined the mixing ratio d(E2/M1) of transitions linking
the ground state bands. The transitions which link low spin states obtained
in the present work are in good agreement and show little irregularities. We
find that the transitions which link low-spin states obtained in the present
work are largely consistent with this requirement, although some may be
considered to show irregularities.

In general, the calculated electromagnetic properties of the tungsten
isotopes do not differ significantly from those calculated in experimental

and previous theoretical work. The calculated values in this study show that
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the transitions connect the levels with the same parity and the E2

transitions are predominant. The later includes transitions originating from

the beta and gamma bands, which supports the idea that the beta and bands

may be quadrupole excitations of the perturbed ground state, but the

existence of M1 indicates that the beta and gamma bands cannot be pure

quadrupole excitations of the ground state band.

Table (4- 16): Mixing Ratio d(E2/M1) for 8187 for

Positive Parity Statesin eb/m, units.

- J;

181W 183W

185/

W 187

IBFM-1 | IBFM-2 | IBFM-1 | IBFM-2

IBFM-1

IBFM-2

IBFM-1

IBFM-2

11 9
9
2 2

0.0089 | 0.007 - -

13 11
9

522 | 231 4.32 5.37

2.1x10%2

3.71x101

0.981

0.431

15 13

0.873 | 0.271 - -

8.7x10*(6.0x102

2.12

1.1x10-4

2.2x10%8.0x10*

0.731

5.39

2.1x10%

3.5x10*

431

2.21
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CHAPTER FIVE
CONCLUSIONS AND SUGGESTIONSFOR FUTURE
WORK

5-1 Concluding Remarks

In this work we have described various properties and shape

evolution of the Hf and W isotopes in the framework of the IBM and

IBFM, we conclude the following points.

Hf I sotopes

1

N
1

G

5-

6-

Theoretical calculations of %180Hf (with Z=72) were performed by
using IBM-1 and IBM-2. The 217Hf total numbers of bosons 14,15
respectively (weakly deformed) lies in the transitional region
SU(3) »O(6) and the %18Hf jsotopes (total number of bosons 16,15
and 14 respectively), lies in the dynamical symmetry SU(3) (deformed
nuclei).

In Hf isotopes see that when the states J° =2;,2; and 3/ are strongly
dominated by the F=Fux, the strongest contribution to the J° =2;.,3;

states is the one with F=Fpa1. The J° =2{,3; and 1* states as a mixed

symmetry states in Hf isotopes.

The reduced e ectric transition probability B(E2) values are required in
order to identify the strength of E2 transitions within the g — gband
and from beta band to ground state band and from gamma band to beta
and ground band.

The root mean sgquare deviation (rmsd) is used to compare the
experimental and calculated IBM-2 energy levels. The ground state
levels the best agreement was found.

The yrast levels of even-even nucle ( J, = 2,4,6,.....) usually decay by
E2 trangition to the lower lying yrast level with J, =J -2
As a consequence of possible M1 admixture theB(E2;2; — 2;) quantity

Is rather difficult to measure. For Hf isotopes, give the different,
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conflicting experimental results and we see that no general feature be
derived from them, from these values seems to decrease for 1"2174Hf
and increased for 176-180Hf,

7- The €eectric transition probabilities from the mixed-symmetry state
JP =1" to symmetric states (2] ,2;) isweak collective E2 transition.
8-The E2 transition between the 1" and the 2* ground state is small,
whereas E2 transitions are large between fully-symmetric states and

between mixed-symmetry states.

9- The genera features of the quadrupole moment for first excited state
(27) results is clear, namely an increased in the negative quadrupole
moment with increasing neutron number.

10- The B(M11 — 0;)transition probability is proportional to the factor g’
and weakly depends only on the strength of Majarona force.

11- The magnetic dipole moment for first excited state (2;)in even-even
172-1804f jsotopes provide a sensitive test of the effective boson number
in the IBM-2 framework, in 1>1Hf jsotopes with N = 100-108,
confirm the validity of assuming a drastic change in number of proton
boson when the number of neutron boson is increased from 106 to 108.

12- The theoretica and experimental X(EO/E2) values are in generd in a

good agreement except for the 0; — 0; and 0; — 0; , transitions but it is

not possible to say if these disagreements may be attributed to the EO or
E2 component in the ratio. The disagreement in the results for some
transitions could be removed by interchanging the ordering since for
the higher lying states the correspondence between the experimental
and theoretical levelsis uncertain.

13- The possibility of obtaining a description of both positive and negative-
parity levels, starting from a single Hamiltonian is probably due to the
following two factors. (i) The IBM-2 Hamiltonian was obtained from
detailed study of spectra and E2 electromagnetic properties of the even-

even Hf nuclei. (ii) The single-particle properties (quasi-particle energy
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E; and occupation probabilities n?) have been determined from a BCS
calculation for the 3p,,,, 3p,, and 2f,,, orbital's.

W | sotopes

1- The structure of the energy spectra is determined mainly by the first
three terms on the right-hand side of the Hamiltonian in Eq. (2-42)
(the pairing plus quadrupole terms), while the remaining terms have
minor, but non-negligible contributions.

2- The examination of the experimental and IBM-2 energy levels ratios for
the 81 jsotopes shows that they lie in the transitional region
SU (3) -0 (6), therefore the Hamiltonian of the transition region
SU (3) - O (6) has been employed in the calculation by using the
program NPBOS.

3- Our calculated energy spectrum is shown in Figs. (3-6) to (3-11). The
root mean square deviation (rmsd) for the ground, beta and gamma
bands totaling 19 levels are 0.109, 0.82 and 0.80 MeV for Duval and
Barrett [38] and the present work respectively. (Since the vaues
obtained by Duval and Barrett [38], were interpolated from their level
energy plot, small errors may arise and a figures representing their
goodness of fit could not be determined accurately.)

4- The boson effective charges (e, ,€,) have the same dependence on
proton number and neutron number asdo k ;and k, however, aseven a
further simplification Duval and Barrett [38] used €, =g, equals

constant for al nuclei.

5- The electric transition probabilities from the mixed-symmetry state
J? =1" to the symmetric states 2; and 2; is weak collective E2
trangition. The E2 transition between the 1© and the 2* ground state is
small, whereas E2 transitions are large between fully-symmetric states

and between mixed-symmetry states.
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6- The energy of the 1’ shows a linear increase with x, . It is obvious that
the change in energy levels as x, isvaried to be agood indicator for the
lowest 2° and 1" mixed-symmetry states, and we recommend this
method for searching for mixed symmetry states.

7- The states 2; and 2; at calculated energy around 2.1 MeV in 18190y

isotope are mixed symmetry states, plus the 17 and 1, at 2.0 MeV and
2.3 MeV respectively. The same states in 82W isotopes are mixed
symmetry states.

8- The analyses demonstrate the sensitivity of the mixed symmetry states
energy to the model parameters F-spin and the Mgorana term x,. The
comparison with experimental data shows that, we are still lacking of
experimental data on the B(M1l —0;)in order to focus on these
aspect.

9- The values of gyromagnetic factors of boson used to evaluate the B(M1)
and mixing ratios are g, =0.71m, and g, =0.051m, .The results of
the calculations arelisted in Table (3-15).

10- The size of the g—g M1 matrix elements seems to decrease with
increasing mass, specialy, a changein g —g M1 strengths occurs when
the gamma band crosses the beta band.

11- The B(M1) transition probability values are small compared to the
values of the B(E2) transition probabilities because the wavelength of
the gammaray transitions is greater than it isin the magnetic transitions
according to the following the relationship: | (ML) = 0.3A%"®| (EL).

12- The magnetic transition probability B(M1) in the IBM-2, it is found to
be proportional to (g, —g,)*.

13- We reproduce the 2; g-factors as well as most of the d (E2/M1) mixing
ratios. In particular, al the signs are reproduced correctly.

14- In W isotopes EO values increased with increasing neutron numbers

and they go up to the highest value at 1®W isotope. This means that all
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the nuclel are deformed because they possess the amount of excess
energy and that they are trying to get rid of this by lessen the EO
transitions to the state of stability. Thisis an additiona evidence of the
deformation of these isotopes.

15- The theoretical values for the X (EO/E2) ratio are small, for some
transitions which means that there is a small contribution of
EO transition on the life time of the 0" states.

16- The energy of the 1'_ shows a linear increase with x,. These features

are illustrated in figures (3.14) and (3.15). It is obvious that the change
in energy levels as x, isvaried isagood indicator for the lowest 2" and
1" mixed-symmetry states, and we recommend this method for
searching for mixed symmetry states.

17- The branching ratios of B(M1) are very helpful in nuclear shape
coexistence. Normally the value of B(M11 — 0;) isthelargest valuein
the M1 transition probability between states, so we applied the B(M1)
ratio normalized to the value of thistransition.

18- The possibility of obtaining a description of both positive and negative-
parity levels, starting from a single Hamiltonian is probably due to the
following two factors. (i) The IBM-2 Hamiltonian was obtained from
detailed study of spectra and E2 electromagnetic properties of the even-
even W nuclei. (ii) The single-particle properties (quasi-particle energy
E; and occupation probabilities n?) have been determined from a BCS

calculation for the 2f,,,, 3p,,, and 3p,,, orbital's.

5-2 Suggestions for Future Work
Several suggested projects remain for the future, which can be
abbreviated by the following possible works:
1. One of the most significant recent developments in nuclear structure
physicsis the prediction that a Supersymmetry Model (SSM) may be

realized in nuclel. The recognition of dynamical symmetries in
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even-even nuclel via the introduction of bosons has reoriented our
directions nuclear spectroscopy. Therefore, this suggests to use this
model to study the level schemes in odd-even mass nuclel, and study
the non-collective motion in transitional and deformed nuclel.

2. This work can be extended to calculate E4 (hexadecupole degree of
freedom) in transitional nuclei, by addition of a g-boson (L = 4), to
test theimportant K? =4" band in this region.

3. The 2}, states found so far in the A = 140 mass region give us an

interesting glimpse into the behavior of mixed-symmetry states. The
extent of the existence of these states and also their purity would test
the limits of the validity of describing them as states of mixed
proton-neutron symmetry. Efforts are continuing in the search of
mixed-symmetry states in this mass region.

4. Using other collective models, i.e.,, Dynamic Deformation Model
(DDM) to study the Nuclear structure and eectromagnetic
transitions for this region.

5. Studying the two-neutrino double- decay within the framework of
the interacting boson model (IBM-2) and its extensions (IBFM-2 and
IBFFM-2) models.
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