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Abstract

The interacting boson model (IBM) has been used to make a

schematic study of (172-180Hf and 180-190W) isotopes. For each isotope of

Hafnium and Tungsten determined the values of the parameters in the

Hamiltonian of IBM-1 and IBM-2, which satisfied the best fit to the

experimental data for energy levels. Beside on these values, can extrapolate

to isotopes are extrapolated for which no experimental data founded and

can make predictions for future experiments. We obtain the

electromagnetic transition probability B (E2) and B (M1) by using the same

values of these parameters for each isotope to, quadrupole moments for

first and second excited states, mixing ratios )1/2( ME and monopole

transition probabilities B (E0), isomer and isotopic shifts and two neutron

boson separation energy. Where our results had good agreement with the

experimental data in general, although more experimental data we needed

for the nuclear properties. The long range goal is to understand the origin

of the IBM-1 and IBM-2 parameters in terms of a microscopic theory, such

as nuclear shell and Nillson models.

Results of schematic calculations are presented in various terms of

F-spin symmetry in the Hamiltonian of the IBM-2. Specific attention is

paid to the effect of F-spin symmetry breaking on gamma to ground and

gamma to gamma M1 transition in deformed nuclei. A comparison with

available magnetic dipole moment transition probability M1 data in

deformed nuclei is presented. The constraints implicit by these data on the

form of IBM-2 Hamiltonian in deformed nuclei are discussed.

Mixed symmetry states are also studied. It is found that some of the

mixed symmetry states with moderate high spins change very fast with

respect to Majorana interaction. Under known conditions, they become the

yrast state or yrare state. These states are difficult to decay and become

very stable. This study suggests that a possible new mode of isomers may



xi

exist due to the special nature in their proton and neutron degrees of

freedom for these isotopes.

The mixed-symmetry ,23
 ,24

 ,25
 

23 and ,1 states or at least a

fragment of it, have been identified in Hf and W isotopes. This enable us to

trace the evolution of the one-phonon and two-phonon states in the even-

even Hafnium and Tungsten isotopic chain from the γ-soft nuclei near

N = 82 to the deformed nuclei towards mid-shell.

In 180-190W isotopes, energy levels, B (E2), B (M1) and mixed

symmetry states (MSS) have been discussed using IBM-2. The effects of

the Majorana parameters on the energy of the highly excited state have

been investigated. The variation of these parameters has a great effect on

the properties of MSS. All the calculated results were compared to the

available experimental data and a reasonable agreement was achieved. It is

found that the ,25
 in 180W and 182W are the first 2+ mixed symmetry states,

while the ,24
 in 184W and 186W are the first 2+ mixed symmetry states. The

B (M1) properties of even 180-188W isotopes are investigated in the IBM-2.

The  (E2/M1) mixing ratios, g-factors, and summed M1 strength are

calculated. A least-squares fit of the excitation energies is used to fix the

IBM-1 projected Hamiltonian parameters, while the F-spin-breaking terms

are adjusted to reproduce the M1 properties of low-lying states. The

influence of F-spin mixing on the summed M1 strength is studied using the

coherent state technique in perturbation theory. The M1 properties of the

low-lying states are described satisfactorily when the standard boson

g factors are used, but the summed M1 strengths are found to be larger than

the present experimental values. Possible g factor adjustment, which

reconciles the calculated and experimental M1 strength, is discussed.

The Hafnium (Z=72) lies in the deformed region and tungsten

isotopes (Z = 74) lie in the transitional region that occurs at the upper limit

of the range of the deformed nuclei. The  -ray E2/Ml mixing ratios for the
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selected transitions in 172-180Hf and 180-188W are calculated in the IBM-2.

The Majorana parameters are found to have a great effect on the energy of

mixed-symmetry states as well as on the sign and magnitude of the E2/M1

mixing ratios of transitions between regular (symmetric) states. The results

demonstrate the sensitivity of the sign and magnitude of )1/2( ME values

on particular IBM-2 parameters.

In this study, analyzed the positive and negative parity states of odd

Hf and W isotopes within framework IBFM-1 and IBFM-2. The results of

an IBFM-1 and IBFM-2 multilevel calculations of 2/32/5 3,2 pf and 2/13p ,

single particle orbit are reported for the positive and negative parity states

of the odd atomic mass number, A, Hf and W isotopes. Also, an IBM-1 and

IBM-2 calculation by using ODDA and PBEFM programs is presented for

the low-lying states in the even-even 170-180Hf and 180-190W core nucleus.

The energy levels, B (E2) and B (M1) transition probabilities and mixing

ratios are calculated and compared to the available experimental data. We

found that the calculated positive and negative parity low spin state energy

spectra of the odd-A 171-179Hf and 181-187W isotopes agree quite well with the

experimental data.
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CHAPTER ONE

INTRODUCTION

1.1 Nuclear structure

Nuclear structure has been an active field of research since the

discovery of the nucleus. Rutherford found that most of all matter was

concentrated in a very small core at the center of the atom in 1911 [1].

Perhaps the next great milestone was the discovery of the neutron by the

associate and doctoral student of Rutherford, Chadwick in 1932 [2]. It is

noteworthy that by this time special relativity, quantum mechanics, and

the relativistic formulation of quantum mechanics were already

developed. The existence of the positron was postulated by Dirac in his

relativistic formulation of quantum mechanics in 1928 [3, 4] and it was

subsequently discovered in 1932 by Anderson [5], in the same year the

neutron was discovered. The proton and neutron have since been used as

the fundamental building blocks in describing the nature of the atomic

nucleus to this day.

A number of models have been developed to describe the large

array of phenomena and properties displayed by atomic nuclei. The

Liquid Drop Model (LDM), first proposed by Gamow in 1928 [6],

viewed the nucleus as drop of liquid whose constituent particles were

held together by surface tension. This model was able to describe some

bulk properties of nuclei. Using the ideas of the liquid drop model, von

Weizsäcker developed a semi-empirical mass formula [7] to predict

nuclear masses. A large breakthrough in nuclear theory came in 1949

when Maria Goeppert-Mayer [8] and independently Jensen, Haxel and

Suess [9] were able to explain the magic numbers in nuclei, where nuclei

would exhibit an increased stability, by including a spin-orbit interaction

term in a Hamiltonian that considered all nucleons to be orbiting

essentially freely in an average field created by all the other nucleons.

The magic numbers correspond to closed shells in nuclei analogous to
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the filling of electron shells in atoms. Excited states were found that

correspond to the excitation of a nucleon into an orbit of a higher lying

shell as predicted by the model. The shell model, as this model is called,

has been one of the most fundamental ways to describe atomic nuclei. It

has been used extensively in the analysis of experimental data.

Apart from the single-particle excitations found in nuclei, another

type of excitation, collective excitation, was soon explained. In 1950,

Rainwater observed that spherical nuclei could easily be deformed [10].

This led the way in the 1950’s for more ground breaking work done by

Bohr and Mottelson [11, 12] and also Hill and Wheeler [13] when they

presented models for a collective motion in nuclei. These models used

shapes to parameterize the nucleus and used their dynamics to derive the

collective phenomena observed. Since the discoveries of single-particle

and collective motion, these have been the two ways in which

excitations in nuclei have been classified. The interplay between single-

particle and collective degrees of freedom has long been and continues

to be an active field of study. One example is perhaps a variation of the

shell model, which was proposed by Nilsson in 1955 [14] where he

considered the average potential of the shell model to be deformed. This

led to the idea of changing shell structure with deformation.

In 1975, the Interacting Boson Model (IBM), the model used in

the present work, was proposed by Iachello and Arima [15], where

interacting bosons are used to describe collective excitations in nuclei.

From the symmetry properties of the model’s boson Hamiltonian, three

types of idealized nuclei were found whose properties can be calculated

analytically. These three limits of nuclei can be used as benchmarks with

which to classify different nuclei. It was found that different regions of

the nuclear chart exhibit properties that are similar to one of these

idealized limits.
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The above account of nuclear physics is very brief and highlights

only a few of the main accomplishments in nuclear physics in the

twentieth century. Although brief, it can be seen that there is not one

single comprehensive theory in nuclear physics, but several models

tailored to describe specific phenomena. A quote taken from the book of

Eisenbud and Wigner [16] published in 1958 describes the state of

nuclear theory in the following way:

"Introduction forces are not yet completely known and it is clear

that they have a complex character. Even the consequences of a

simple interaction are difficult to obtain for a system containing

a large but finite number of particles. A good deal of effort has

been expended, therefore, in the search for simple models in

terms of which the broad regularities satisfied by nuclei could

be understood. This search has led to a number of interesting

but only partially successful models; these have proved very

fruitful for the stimulation of experimental research, and for the

development of further ideas on nuclear structure. One can hope

that future investigations will clarify the limitations of these

models and provide an understanding of the validity of it

different models for different groups of phenomena".

Although written in 1958, the ideas set forth in this quote still

serve as a description of present day research in nuclear physics. It is

with the aim of better understanding the “broad regularities satisfied by

nuclei” and “understanding the validity of different models for different

groups of phenomena” that the topic of this present work is introduced.

One of the broad regularities in nuclei that will be investigated is the

existence of a certain class of collective excitations called mixed-

symmetry states defined within the Interacting Boson Model (IBM). The

data obtained from the experimental investigations of these states will

help elucidate the extent of the validity of the IBM.
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1.2 Historical Survey

During the last two-decade nuclear spin states and high spin states

have been the subject of experimental and theoretical studies. The

fascinating progress in this new field has been made possible by the

essential development in experimental on exciting and detecting the high

spin states in Hf-W nuclei. A part from such interesting expectations as

existence of a deformed and super-deformation, the research in this new

field can also be considered as providing a tool for testing the validity of

Interacting Boson Model (IBM) and Interacting Boson Fermion

Model (IBFM).

1.2.1 Hf isotopes

K. S. Krane [17] proposed the multipole mixing ratios

)1/2( ME of gamma transitions in even-even deformed nuclei. A

summary is presented of the magnitudes and phases of previously

measured )1/2( ME multipole mixing ratios of gamma transition

dexciting levels of the beta and gamma bands to the ground state band in

even-even deformed nuclei. A uniform phase, with few expectations is

characteristic of transitions depopulating the gamma band, while no

systematic behavior is apparent among the nuclei in this region.

Although none of the previously proposed theoretical interpretation is

sufficient to explain both the magnitudes and relative phases of these

mixing ratios, a phenomenological interpretation in terms of 1K band

mixing through the intermediary of a 1K excitation is successful with

regard to the relative magnitudes and phases in a number of cases.

Hamilton et al., [18] have studied )2/0( EEX values of 178Hf and

compared with nuclear models. Three of these values are considerably

large than the  vibrational model estimates. Experiments are

suggested to test the possibility that large )2/0( EEX values indicate

mostly proton excitations.
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Chen et al., [19] investigated the Hf isotopes in the boson plus

Fermion pair model. Energy spectra, effective moments of inertia and

B(E2) values are calculated. It was found that the high spin anomalies

qualitatively by the model. Possible extension of the model is disused.

Subber [20] studied the monopole transition in deformed nuclei of

Hf isotopes. The structure and monopole transitions of sum neutron rich

deformed Hf isotopes have been studied within the framework of the

Interacting Boson Model. The level structure for two selected isotopes

Hf176-178 and B(E2), )0(E and the )2/0( EEX ratios have been calculated.

The numerical results obtained have been compared to the experimental

data. Satisfactory results for comparison were obtained.

Abou Salem and El-mageed [21] studied the spectra of even-even

Hf isotopes through the selecting of core-cluster decomposition of the

parent nucleus. The considered partition should give internal stability of

the core-cluster combination. The modified Wood-Saxon and Coulomb

potentials were used to reproduce the spectra of even-even Hf isotopes

where the core radius was taken as a free parameter. The theoretical

calculations of the excitation energies and the transition probabilities

B(E2) of the ground state band were compared to the experimental data

of the considered Hf isotopes. The obtained results reflect the ability of

describing the pure rotational ground state band of even-even Hf

isotopes through the core cluster decomposition model.

The two-dimensional total routhian surface calculations have been

carried out to study the triaxial super-formed structured of a neutron-rich

nucleus Hf178 firstly studied by Shao-Ying et al., [22]. In particular, the

effects of the rotational frequency  and pairing-energy gap parameter

 are discussed in detail in the course of shaping its triaxial super

deformed nucleus Hf173. Finally, more systematical results have been

investigated for some confirmed super-deformed nuclei experimentally

and a few predicted triaxial super deformed nuclei theoretically with
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quadrupole deformation 4.02  and triaxial deformation 020 or

030 in the .72Z

Mansour and Saad [23] studied the properties of high-spin states

and the alignment effects in the lighter 157-175Hf isotopes. An interesting

nuclear feature emerging from this study concerns the evaluation of the

moment of inertia and the yrast line yields conclusion in the Hf isotopes

is discussed.

Usmanov et al., [24] investigated the analysis of electromagnetic

transitions in nuclei 176-178Hf. In this study, the structure of excited states

and non-adiabatic effects in manifested in the energies and probabilities

of electromagnetic transitions are studied in the context of a

phenomenological model taking into account the Coriolis mixing of the

low-lying states of positive parity in rotational bands. Energies and the

structure of wave functions of excited states are calculated. The

calculated energies are in agreement with the experimental data. The

mixing effect is demonstrated to play an important role in the wave

functions of vibrational states. The probabilities of E2 and M1

transitions are calculated. The theoretical values of ratios and multipole

mixing coefficients )1/2( ME of transitions from the first and second

beta and gamma vibrational bands are compared to the available

experimental data.

Ohlsson [25] showed that the even-even deformed nuclei present

a rotational band built on their ground state 0. In some of these nuclei,

higher energy levels are interpreted as members of a rotational band

built on the 3-vibrational level.

Al-Maqtary et al., [26] discussed the Interacting Boson Model-1

(IBM-1) and employed for calculating the energy levels and

electromagnetic transitions probabilities B(E2) of the even-even 174-180Hf

isotopes. These isotopes have been investigated based on two different

arrangements; i.e., the dynamical symmetries of 174-180Hf isotopes;



Chapter One Introduction

7

SU(3) (deformed nuclei) and dynamical symmetries of 174Hf isotope in

transition region SU(3)-O (6). The determined values using IBM-1

Hamiltonian showed a significant agreement with the experimental

reported energy levels data and B(E2) values. The model provides a fast

and accurate prediction method of energy levels and B(E2) values.

Nomura et al., [27] studied the collective structural evolution in

neutron rich Yb-Hf-W-Os and Pt isotopes. In this study an Interacting

Boson Model Hamiltonian determined from Hatree-Fock-Bogoliubov

calculation with microscopic Gogny energy density function D1M

applied to the spectroscopic analysis of neutron rich Yb-Hf-W-Os and Pt

isotopes with mass 200180A . Excitation energies and transition rates

for the relevant low-lying quadrupole collective states are calculated by

this method. Transitions from prolate to oblate ground state shapes are

analyzed as a function of neutron number in a given isotopic chain by

calculating excitation energies, B(E2) ratios, and correlation energies in

the ground state.

Praharaj et al., [28] studied the band structures and deformations

of rare-earth nuclei using deformed Hartree-Fock and angular

momentum projection theory and some results are presented here.

In 2013, Gupta [29] studied the collective band structure of
166-168Hf in IBM and DPPQ. This study showed the 166-168Hf are the

lightest isotopes of Hf for which the spectral information for non-yrast

levels is now available from recent experiments. The algebraic

Interacting Boson Model-1 (IBM-1) is employed to reproduce their level

structure and to produce the E2 transition probabilities. The pairing plus

quadrupole model (PPQ) is used to predict their spectra and E2

transition rates and the static moments in a microscopic approach. The

spin assignments I of new levels and K-and structures are studied. The

validity of inclusion of 166-168Hf as members of U(12) super-group is

studied using various empirical observations. The potential energy
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surfaces for the two isotopes are compared and the fitting of the

nucleons in Nillson orbits is analyzed to yield a consistent

comprehensive view of the two Z=72 isotopes.

Ma [30] studied in 2014 the triaxial strongly deformed structures

in the even-even Hf isotopes. This study showed that the two rotational

bands of distinct character have been identified in 164Hf from a recent

experiment at Gamma-sphere. They are suggested to correspond to the

long anticipated triaxial strongly deformed (TSD) bands predicted by

theoretical studies. The bands are substantially stronger in intensity and

are located at lower spins than the previously observed TSD bands in
164Hf , and have been linked to the known states, hereby making 164Hf

the best even-even system for the study of TSD structures in the 160A

mass region. Cranking calculations based on the modified oscillator

model suggest that the bands are associated with four quasi-particle

configurations involving high - j intruder ( 2/13i )2 proton orbits. Wobbing

model has not been observed in Hf164 and the possible reasons are

discussed.

1.2.2 W Isotopes

The  and  vibrational bands are nearly degenerated around

W182-184 making these nuclei ideal for probing the interaction between

these important collective degrees of freedom in nuclei. A perturbation

treatment of the coupling between the various collective degrees of

freedom (rotation,  -vibration and  -vibration) is inadequate to

reproduce the collective properties in the shape of transitional nuclei, a

region of nuclear shape change from spherical to deformed or prolate to

oblate. The first attempt at a more exact treatment of such couplings was

accomplished by Kumar and Baranger [31] who solved Bohr,s

Hamiltonian using a pairing plus quadrupole model. Kumar and

Baranger predicted some unusual features, such as a prolate-oblate shape

transition in Os-Pt nuclei and a strong mixing between the beta and
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gamma bands in the more strongly deformed rotational W nuclei. The

former has been established [32, 33] by the measurement of the

quadrupole moments of the first excited state in Coulomb excitation

experiments. A notable consequence of the latter is the reduction of

quadrupole moments for the 
22 and 

32 states and the predicted deviation

from the Alaga rule for the decay of the beta and gamma bands. For

example, the predicted quadrupole moment of the 
22 state of 182W is

only 8% of what it would be if it were a pure K = 2, gamma band

member of a prolate nucleus. Most of the supportive experimental

evidence [34,35] for this strong mixing in W nuclei comes from the

electromagnetic properties of the 
22 states and the level energies of the

lower members of the gamma and beta bands.

Conflicting experimental evidence exists regarding the band

mixing in W nuclei. The known E2 transition between the 
22 and 

32

states and the ground-state band can also be well reproduced by means

of a three-bands mixing calculation [36], indicating a rather weak

mixing between beta and gamma bands. Moreover, the recent theoretical

studies of W nuclei using phenomenological model, such as the general

collective model by Hess, Maruhn and Greiner [37] and Interacting

Boson Model by Duval and Barrett [38], suggest weak mixing between

beta and gamma bands.

Although 185W has been proposed [39] as an empirical example of

a deformed odd-mass nucleus with pseudo-L symmetry, it remains true

that the specific K mixing implied by the pseudo-L scheme makes it

applicable in very special case only.

A new limit of the SU(3) symmetry scheme of the Interacting

Boson-Fermion model (IBFM) is suggested for deformed-mass nuclei

[40]. In this scheme, states are characterized by the intrinsic quantum

number K, instead of the pseudo-orbital angular momentum of previous

multi-j symmetries of this type. An application to 183-187W is presented.
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Wu et al., [41] studied the coupling between the beta and gamma

bands in W nuclei. This work was stimulated by the need for a

systematic study of the E2 transitions between beta, gamma and ground

state bands.

Mosbah et al., [42] applied an Interacting Boson Model-2

(IBM-2) to study the miltipole mixing ratios for selected transitions in
182-186W. The results demonstrate the sensitivity of the sign and

magnitude of delta values on particular IBM-2 parameters.

The M1 properties of even 182-186W isotopes are investigated in the

Interacting Boson Model-2 (IBM-2) [43]. The E2/M1 mixing ratios,

g factors, and summed M1 strength are calculated. A least-squares fit of

the excitation energies is used to fix the IBM-1 projected Hamiltonian

parameters, while the F-spin-breaking terms are adjusted to reproduce

the M1 properties of low-lying states. The influence of F-spin mixing on

the summed M1 strength is studied using the coherent state technique in

perturbation theory. When the standard boson g factors are used, the

M1 properties of the low-lying states are described satisfactorily, but the

summed M1 strengths are found to be larger than present experimental

values. Possible g factor adjustment, which reconciles the calculated and

experimental M1 strength, is discussed.

Ameer and AL-Shimmary [44] investigated even-even 180-190W

isotopes with means IBM-1. For these isotopes, the energy levels, B(E2)

transition probabilities, and electric quadrupole moment were calculated.

The results are compared to the most recent experimental data. In 2011

Abojassem and AL-Temeame [45] studied the nuclear structure of 182W

using IBM-1. In this work, the energy levels and reduced transition

probability have been studied. Also, the nucleus shape was determined

through the potential energy surface; the square rotational energy and

the moment of inertia were calculated.
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Sharrad et al., [46] investigated the low-lying states of 184W and
184Os nuclei. The energy levels, B(E2) values, intrinsic quadrupole

moment and potential energy surface were calculated using IBM-1. The

predicted energy levels and transition probabilities and intrinsic

quadrupole moments results are reasonably consistent with the

experimental data.

The backbending phenomenon in deformed even-even 180-182W

isotopes within IBM-1, have been studied by AL-Ameer and

Hussein[47]. 180-182W isotopes near mass region 180A which exhibits

feature of the SU(3)-O(6) symmetry at low energy and the backbending

phenomenon a high spin, are studied in framework of IBM-1. A

reasonable agreement was obtained between the theoretical calculation

and the experimental data. The backbending phenomenon was noticed

both experimentally and theoretically were in a good agreement.

Mohmmadi and Banafsheh Nemati Giv [48] studied the

backbending W isotopes. They developed a special computing code for

calculation of nuclear deformation parameters (  ) of tungsten isotopes.

It has been shown from these calculations that by increasing neutron

number, deformation parameter also increases for heavier isotopes

which means more deformation from spherical shape. By comparison

with Nillson level diagrams, quadrupole deformation ( 2 ) of these

isotopes can be inferred.

In tungsten isotopes Z = 74 (A=180-186), energy levels, B(E2),

B(M1) and mixed symmetry states (MSS) have been discussed using the

Interacting Boson Model (IBM-2) studied by Mahdi et al., [49]. The

effect of the Majorana parameters on energy of the highly excited state

have been investigated. The variation of these parameters have a great

effect on the properties of MSS. All the calculated results were

compared with the available experimental data and a reasonable

agreement has been achieved. It is found that the 
42 in 180W and 182W
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are the first 2+ mixed symmetry states, while the 
52 in 184W and 186W are

the first 2+ mixed symmetry states.

1.3 Scientific Motivation of the Present Work

The purpose of the present study is to analyze some properties of

the nuclear structure of Hf and W isotopes with the framework of IBM

and IBFM. Firstly, the low-lying excited energy states for even-even

positive parity states and even-odd negative parity states are examined.

Secondly, the reduced transition probabilities for quadrupole and dipole

B(E2) and B(M1) and B(E0) are determined and thirdly, the theoretical

results are compared to the available experimental data. Part of this work

is an investigation of the mixed-symmetry states for some states when

there is a mixture between the wavefunction for proton and neutron, and

then determines the quadrupole moment (Q) to find out the deformation

of these isotopes, mixing ratios )1/2( ME and finally )2/0( EEX ratios.

The 172-180Hf nuclei under consideration have Z = 72 and N = 100

to 108, which mean that we have (for 176Hf) 22 proton particle outside

shell at 50 or 10 proton holes related to the closed shell at the magic

number 82. The neutrons number are 104 (176Hf), means that have 22

neutrons outside the major closed shell at 82, or we have 22 holes

related to the closed shell at 126, and 106 which means that we have 24

neutrons outside number 82 or 20 holes outside the closed shell at magic

number 126. The large numbers of nucleons outside the major shell

make the nucleus close to heavy deformed nuclei more like Gd, Er, and

Sm nuclei.

The aims of the present study are the following:

1- The properties of the even-even Hf-W nuclei are investigated in the

framework of Interacting Boson Model (IBM) and Interacting

Boson-Fermion model (IBFM), including the neutron-proton degree

of freedom. The axially symmetric deformed feature of Hf nuclei to

transition from gamma unstable region in W nuclei is shown. This
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work the dynamical symmetries are investigates Hf and W nuclei

and studies the energy levels, Electromagnetic transition

probabilities B(E2), B(M1), mixing ratio )1/2( ME and monopole

transition probability B(E0), quadrupole and magnetic moments and

monopole transitions.

2- The implementing IBM-2 calculation of the even-even W isotopes in

the context of new experimental data.

3- Studying the mixed symmetry characters through a study of various

quantities, the wave function, the F-spin values and the

electromagnetic transition probabilities.

4- Identifying the one–phonon and two–phonon mixed symmetry states.

5- Studying some even-odd 171-179Hf and 181-187W isotopes purposely for

the sake of having alternative testes experimental data. In this study

spectroscopic properties such as energy levels, electromagnetic

transition probabilities, mixing ratios  (E2/M1), quadrupole and

magnetic moments for these isotopes will be investigated using IBM

and IBFM.

1.4 Thesis Layout

Finally, a brief outline of the remaining this work will be given. In

Chapter two, some background on the Interacting Boson Model (IBM)

and interacting Boson-Fermion Model (IBFM) in details, Mixed

Symmetry States (MSS). The results of IBM are discussed in Chapter

Three, and the results of IBFM are discussed in Chapter four, Chapter

five gives the concluding remarks and suggestions for future work.



CHAPTER TWO
THEORETICAL

CONSIDERATIONS



14

CHAPTER TWO

THEORETICAL CONSIDERATIONS

2.1 Group Theoretical Model-The Interacting Boson Model (IBM)

Iachello and Arima [50, 51, 52] have proposed a model which

attempts to describe the collective structure of all nuclei with 100A ,

except those near closed shells. The particles outside of closed shells are

treated as bosons, or pairs of particles, which can occupy one of two levels:

a ground state with angular momentum equal to zero (called s-bosons) and

an excited state with two units of angular momentum (called d-bosons).

The d-bosons have energy d, the s-bosons s; one can define a boson

energy  = d - s. Unlike the more familiar bosons, these bosons may

interact with each other. Thus, the model has been called the Interacting

Boson Model (IBM). The total number of bosons, equal to the number of

d-bosons plus the number of s-bosons, sd nnN  , is a constant in the IBM

prescription as for a given nucleus. N is the number of pairs of neutrons

plus the number of pairs of protons, outside their respective nearest closed

shells, without distinguishing between the particle or hole character of the

pairs. For example, 108
182

74W is characterized by N=13, due to the 8 protons

(4 proton pairs) + 18 neutrons (9 neutron pairs) away from the closed shell

126
208
82 Pb . Alternatively, Hf174 would correspond to N=15, because of the

20 neutron particles away from the 82 neutron closed shell and 10 proton

holes away from the 82 proton closed shell.

As stated earlier, interactions between the s- and d- bosons, and

among the s- or d- bosons themselves, may occur. Therefore, in the

simplest terms, the Hamiltonian of the system can be written as [53]:

 
m

mmds VddssH ††  …………………… (2-1)

where s and d , are the s-and d-boson energies, )(† ss is the creation

(annihilation) operator for s-bosons, )(† dd is the creation (annihilation)
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operator for d-bosons, the sum is taken over the 5(2(L =2) + 1) components

of the d-boson state, and V is the interaction(s) between the bosons.

In this description, three natural limits occur. The first [50,54] occurs

when Vsd   , so that the energy spectrum is simply given by

dnE  , the ground state being a CL zero d-boson state. This first limit is

similar to the harmonic oscillator of the geometrical picture described in

section (2.1.1) of this chapter. The IBM interpretation will be discussed

later. The other two limits occur when V , and correspond to specific

interboson interactions. If V is a quadrupole-quadrupole interaction [51,55]

between bosons, the system obtained is very similar to a certain kind of

deformed rotor. The IBM version will be presented in section (2.1.2). The

third limit arises when a repulsive pairing interaction [66] exists between

the bosons. As will be seen in the discussion of section (2.1.3), this limit is

very-similar to the geometrical description of the  -unstable oscillator of

Wilets and Jean [56].

The most general form of the IBM Hamiltonian, in which all

possible boson-boson interactions up to second order are explicitly

included, is given by [54]:

     


 
4,2,0

0)(††1
2

† )(12
1
2

J

JJ
J

m
mmds ddddCJddssH 

…...........(2-2)

             022††22††
22

1

2
1

dddsdsddv 

             000††00††
02

1
ddssssddv 

               000††
0

022††
2 2

1
2
1

ssssudssdu 

where  is the boson energy, sasdd nd,, †† , are as described for

Eq. (2-1) and the parentheses denote angular momentum couplings.
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The parameters JC , Jv , Ju are related to the two-body matrix

elements by [54]:

JdVJdCJ
22

................................(2-3)

  2
1

2
52

2 22 dVdsv 

  2
1

2
122

0 00 sVdv 

2
1

5222 dsVdsu 

00 22
0 sVsu 

The IBM-1 Hamiltonian (Eq. (2-2)) can be written in general form as [55] :

  )32........(ˆ.ˆˆ.ˆˆ.ˆˆ.ˆˆ.ˆˆˆˆ
444333210 aTTaTTaQQaLLaPPannH ds  

the operators are:

~† ˆ.ˆˆ ssns  , ~† ˆ.ˆˆ ddnd  ,    ssddP ˆ.ˆ
2
1ˆ.ˆ

2
1ˆ ~~ 

  )1(~† ˆˆ10ˆ ddL  ,

      ~†)2(~†~†^ ˆˆˆˆˆˆ5 dddssdQ  

  )3(~†
3

ˆˆˆ ddT  ,   )4(~†^
4

ˆˆˆ ddT  ..............(2-3b)

The phenomenological parameters 43210 ,),,(,, aaaaa  , represents the

strengths of the pairing angular momentum, quadrupole, octupole and

hexadecopoule interaction between bosons, respectively.

Equation (2-2) appears formidable, especially given the explicit form

of the parameters, as introduced in Eq. (2-3). However, the terms

correspond to one of four types:

1)  mmds ddss ††  - simply counts the number of s-and d-bosons,

respectively, and multiplies this number by the appropriate energy;

2) the terms with coefficients CJ, u2 and u0 represent interactions in

which the total number of d-bosons and s-bosons, separately, are

conserved, i.e., nd, is not changed;

3) a term (with coefficient v2) in which nd, is changed by unity;

4) a term (with coefficient v0) in which nd is changed by two units.

Returning to the three limits alluded to earlier, the vibrational limit

will correspond to a Hamiltonian with only nd-conserving terms, the
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rotational limit to a situation with one and two d-boson number changing

terms, and the " -unstable" limit will represent the situation with two

d-boson number changing terms included.

An alternate form, in which the general Hamiltonian may be

frequently written, is in terms of the specific interactions between the

bosons. In these cases, [54, 57]:





ji

ij
ji

ij
ij

ji
m

mm PLQQddH '''†  …………… (2-4)

where iQ is the quadrupole moment of the thi boson, jiijL   2 with i , j .

being the angular momenta of the
thi and

thj boson, respectively, ijP is the

pairing operator, between bosons, and , '','  are the respective strengths

of the different interactions. For simplicity, was set equal to zero, so that

only dsd   appears in Eq. (2-4).

Associated with the collective states calculated with the IBM are

transition operators. In the most general form, the E0, Ml, E2, M3, E4

transition operators are, to leading order, given [54,55,58]:

          )0(

0
†

000
†2††

2 ssdddssdT mllmmm  



 .................(2-5)

where l denotes the multipolarity with projection m, and  ,, are the

coefficients of the different terms of the operator. In particular, for E2

transitions [54,55,58]:

       2†
2

2††
22 mmm dddssdET   ………… (2-6)

This operator has two parts   )2(†† dssd  : which satisfies the selection

rule 1 dn , and   )2(†dd which satisfies the selection rule 0 dn . The

coefficients and depend on the limit involved or the appropriate

intermediate structure. The form of the operator that corresponds to the

various limiting symmetries will be discussed later.

Exact forms of the E0, M3, and E4 operators exist. It should be noted

that no M1 transitions can occur in first order [64, 65, 69]. The reasons lie
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in the form of the Ml operator [54, 55, 58]:

  )72.........(..........)1(
)1(†

1 addMT mm  

As discussed in references [54, 55, 58], the operator   1†dd proportional

to the boson angular momentum operator; therefore, Eq. (2-7a) may be

rewritten as

   11 mBm IgMT  …………...............…..(2-7b)

where gB is the effective boson g-factor. This form of the operator has no

off-diagonal matrix elements, implying that in this approximation Ml

transitions are forbidden [54, 55, 58]. Some of the transition probabilities

obtained from perturbation theory are further discussed in Refs. [54, 55].

The solution of the Hamiltonian, in either the Eq. (2- 6) or the Eq.

(2-7b) form, may be attempted either analytically or numerically. Arima

and Iachello [50, 51, 52] have been able to solve the Hamiltonian

analytically in the three -limiting situations described earlier by utilizing

the underlying group theoretic aspects of this system. As discussed in

Ref.[54], the five components of the L = 2 d-boson state and the single

component of the L = 0 s-boson state span a linear vector space which

provides a basis for the totally symmetric representations of the group

SU(6), the special unitary group in six dimensions. The group SU(6) is

partitioned, with each totally symmetric representation labeled by [N]. For

a situation where all boson states are degenerate and no boson-boson

interaction exists, all states belonging to a particular partition [N] are

degenerate. However, given the energy difference sd   and an

interaction between the bosons, a definite energy level spectrum will exist.

The group SU(6) is characterized by nine parameters which will

correspond to the parameters of Eq.(2-6), i.e., N,  , and the

coefficients   0202 ,,,,4,2,0 uuJCJ  .



Chapter Two Theoretical Considerations

19

The E0 operator can be written directly as:

    )82...(....................~)0(ˆ †
0

~†
0 assddET  

where 0 and 0 are free parameters and the superscript notation indicates

spherical tensor coupling. Eq. (2-8a) can be expressed in terms of the boson

number operators ^
sn ; dn̂ and  ds nnN ˆˆˆ  as [54]:

where

5
0'

0


  , 000

~   , )82(..............................~
000 c 

The IBM-1 possesses simple limiting dynamical symmetries which

lead to closed form expressions for the matrix elements of )(ET 0ˆ and,

consequently, to selection rules [54]. We deal with the three limiting cases,

U(5), SU(3), and O(6), separately.

The isomer shift,  2r is measure r2 between the first 2+ state and

the ground state,

  )82..(....................ˆˆ~ )(
0

)(
20

2 dnnr N
d

N
d  

The isotope (isotone) shifts  2r , are measure of difference in radii

between nuclei one neutron (or proton) pair (one boson) away from each

other,
)(

0

2)1(

0

2)(2 NNN rrr   

  )82....(..........
~~ )(

0
2)1(

0
2

00
)(2 errr NNN  



If one can find a subgroup  6SUG  under which the Hamiltonian

is invariant, then the diagonalization problem is simplified. In particular,

Arima and Iachello have observed that there are three such groups, namely

SU(5) [50,54], SU(3) [51,55], and O(6) [59], the special unitary groups in

five and three dimensions, and the orthogonal group in six dimensions. The

solutions obtained correspond to the same three limits mentioned earlier,

the vibrational, rotational, and " -unstable" limits, respectively.

Frequently, when the subgroup G under which the Hamiltonian is

)82..(..........ˆˆˆ~ˆˆˆ~
)0(ˆ

000000 bnNnNnnET sdsd  
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invariant has been identified, the problem may be written in terms of the

forces as given in Eq. (2-8). Then, the eigenvalue problem is reduced to

finding the expectation value of the forces. This method of solution in the

different limits will be discussed in their separate subsections.

An alternative approach to the eigenvalue problem presented in

Eq. (2-6) or Eq. (2-8) is to solve the Hamiltonian numerically. This has

advantages in that the entire Hamiltonian may be solved, not only in the

limits for which analytic solutions are readily obtainable, but also in the

intermediate cases. To this end, Scholten has written a computer code

PHINT [60] which solves the entire IBM Hamiltonian in the Eq. (2-6) or

Eq. (2-8) parameterization, or a convenient mixture of the two forms.

The computer code presents the wave functions in the basis

nnnJ d 
 where J is spin-parity, dn is the number of d-bosons. n is the

number of pairs of d-bosons coupled to angular momentum zero, and n is

the number of triplets of bosons coupled to angular momentum zero. For

example, the 2 d-boson 0+ state would be denoted 2100 ; the 3 d-boson 0

state would be 3100 ; the 3 d-boson 2 state would be 3102 , because the

parentage of this state is the 2102 .

Calculations have been performed with this code to reproduce a

number of different situations:

1) calculations of the three limiting symmetries which reproduce

the analytic solutions;

2) calculations of systematic deviations from these limiting cases;

3) calculations of, not necessarily physical, situations to

understand the operation and interplay of the different

parameters contained in the IBM.

The first case will be discussed in subsections (2.1.1), (2.1.2), and

(2.1.3). However, since an understanding of the effect of the parameters is

essential to the later discussions, the third aspect will be discussed here.
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It is more convenient to discuss the forces of the IBM in terms of

the parameterization of Eq.(2-8), where the variables are  , the boson

energy, and the strengths of the quadrupole-quadrupole, fi   , and pairing

interactions between the bosons.

To summarize this section, the IBM model developed by Iachello

and Arima aims to predict the structure of collective states of heavy

even-even nuclei. This model can be analytically solved for the case of

three limiting symmetries; these will be discussed in the next three

sections. The model can also be solved numerically with the computer code

PHINT [60]. A discussion of the transition between the limits will be

presented in next section.

2.1.1- The Vibrational SU(5) Symmetry

The first limiting symmetry of the IBM to be discussed was the

vibrational limit [8,64]. As described in the last section, a very simple

spectrum of collective states, presented in Figure (2.1), arises from a

system characterized by a boson energy  . This limit corresponds to the

O(5), orthogonal group in 5 dimensions, symmetry. However, the IBM

Hamiltonian can also be solved analytically for the SU(5) representation

[50, 54].

In the SU(5) representation, the degeneracies of the levels in

Figure(2.1) are explicitly broken by the introduction of interactions which

Figure (2-1). Energy spectra corresponding to a spherical vibrator, axially deformed

rotor, and a deformed  - unstable nucleus [54].
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conserve the number of d-bosons. The form of the Hamiltonian in this limit

is given by [50,54]:

           
m J

JJ

Jmm ddddCJddH
0

††
2

1† .12 2
1

 ….. (2-9)

where the JC 's are given in Eq. (2-3). An analytic solution to this

Hamiltonian is presented in detail in Ref. [54]. For the reader's information,

the arguments of Arima and Iachello will be repeated here. The

Hamiltonian of this symmetry can be written as:

  )92........(ˆ.ˆˆ.ˆˆ.ˆˆˆˆ
4443331 aTTaTTaLLannH ds  

Where  ds nn ˆˆ  is the energy of s and d bosons, a1 is the angular

momentum and a3 is the octoupole and a4 the heaxdecoupole parameters.

The eigenvalue equation may be expressed as:

JMvnnEJMvnnH dd   ………… (2-10)

where H is given by Eq. (2-9) and the states are labelled by the quantum

numbers MJnvnd ,,,,  . The number of d-bosons, nd, the angular momentum

J and its projection M are already familiar; dn , as discussed earlier, is the

number of d-boson triplets coupled to angular momentum zero, and v is the

seniority, which counts the number of d-bosons not coupled to angular

momentum zero. An alternate representation involves the quantum

number n , which counts the number of d-boson pairs coupled to angular

momentum zero; v and Bn are related by nnv d 2 . The total number of

bosons is partitioned as [54]:

  nnnd 32 …………………. (2-11)

where  is the excess bosons and determines the angular momentum

range[54]:

 ,1,...,32,22,2 J …………. (2-12)

The angular momentum 12  J is absent because of the requirement

that bosons may only be coupled to form symmetric states [61].
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An alternate method of solving the Hamiltonian in Eq. (2-9) is

to rewrite it in terms of the forces presented earlier in Eq. (2-8). Only

three parameters are necessary to describe the interaction between two

d-bosons because only three angular momentum couplings can occur

[61]: 4,2,0J . Therefore, the coefficients  4,2,0JCJ in Eq. (2-13), or

three alternate parameters  ,, , are necessary. Iachello and Arima

have expressed the interaction as [54]:

  )132......(..........  
 ji

ijijij
ji

ij LPlVV 

where ijl is the unit operator, ijP and ijL are the pairing and L interactions

discussed earlier . The expectation values of these operators, as given in

Ref. [54], are:

 1
2

1
1  dd nn

)142.......(.......... 

dnJJL 6)1( 

  3 vnvnP dd

Therefore, the eigenvalue of interacting d-boson Hamiltonian are [50, 54]:

    1,,,,, 2
1  dddd nnnMJnvnNE 

)152.......(.......... 

  3 vnvn dd

  dnJJ 61  

A typical spectrum in the vibrational limit is presented in

Figure (2.2). The spectrum may be divided into several "bands"; this

terminology is valid since large E2 matrix elements exist between adjacent

members of the same band. The states in Figure (2.2) are labelled by the

quantum numbers nvnd ,, . The "bands" are very reminiscent of those

occurring in rotational nuclei. The Y-band corresponds to the ground band,

X and Z to a  -vibrational band,  to a  -vibrational band and  to a
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2-phonon  -vibrational band. The energies of states in some of these bands

are given by [54]:

Y band    1,2,0,, 42
1  ddddddY nnCnMnJnnE 

X band      281,22,0,, 2
4  ddd

C
ddddX nnnnMnJnnE 

Z band      6121,32,0,, 2
4  ddd

C
ddddZ nnnnMnJnnE 

 band        1416121,42,0,2, 2
4  ddddd

C
dddd nnnnnnMnJnnE 

 band      5461,62,1,, 2
4  ddd

C
dddd nnnnMnJnnE  .......................(2-16)

The general form of the electric quadrupole transition operator

T(E2) was given in Eq. (2-17). In the limits for which analytic solutions are

obtainable, Arima and Iachello require the transition operator to be a

generator of the underlying group. For the limit characterized by SU(5),

T(E2) is given by [54]:

    2
2 mm dssdET   ………………... (2-17)

for   2
5

1sQd


 , where Q


is the quadrupole operator. This form of

the operator leads to the selection rule 1 dn .

The U(5) limit of the IBM-1 possesses N and nd as good quantum

numbers [54]. Thus, T^(E0) is diagonal in this limit and E0 transitions are

forbidden.

2.1.2- The Rotational SU(3) Symmetry

The second limit of the IBM model is based on the SU(3) group and

gives rise to nuclear structures similar to a certain form of the symmetric

rotor. This symmetry occurs when there is a dominant quadrupole-

quadrupole interaction between bosons, as described in section (2-1). The

most general form of the interboson interaction will also include a term of

the form  ji llL . .

In Eq. (2-2), the entire IBM Hamiltonian was presented. Many years

ago Elliott [62] showed that if a Hamiltonian could be expressed in terms
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of the generators of a group, in particular SU(3), the special unitary group

in three dimension, the eigenvalue problem [55,62]:

)182..(..................... 
 ji QQH 

where iQ


is the quadrupole operator of particle i and  is the strength of

the quadrupole-quadrupole interaction. The solution of Eq. (2-18) is

presented in Ref. [55]. Some of the results will be repeated here. The

eigenvalue equation becomes [55]:

    )192...(..........,][,][  KJMNEKJMNH 

where [N] labels the totally symmetric representations of SU(6);  , are

two quantum numbers which label the representations of SU(3), and J, M

are the angular momentum and its projection along the z-axis, respectively.

The additional quantum number K labels states having the same J,,  . In

this basis, the eigenvalues can be written [55]:

         )202.....(..........,1,   CJJKKJMNE

where  ,C is quadratic Casimir operator of SU(3) [55]:

    )212..(....................3, 22  C

As mentioned earlier, the addition of the L interaction does not

change the diagonalization problem. Therefore, in its most general form,

the Hamiltonian becomes [55]:

)222........(...........'.
,,

 
ji

ji
ji

ji QQH 






The Hamiltonian of this symmetry used the angular momentum and

the quadrupole parameters (a1, a2). This Hamiltonian is given by:

)222.......(..........ˆ.ˆˆ.ˆˆ
21 aQQaLLaH 

with the eigenvalues [55]:

       






,'

)232.......(....................,1,

4
3

CJJKJMNE

Due to their importance in predicting the level spacing's of deformed

nuclei, the parameters  , will be discussed here in terms of the Young
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Tableaux [61] they represent. Each particle can be represented by a box;

boxes may be coupled to form symmetric or antisymmetric states [64].

An example of the collective positive parity states characteristic of

the SU(3) symmetry is shown in Figure (2.2), The spectrum is divided into

a number of bands according to the  , value. The angular momenta J

which may occur in each  , group are given by [55]:

     )242........(..........,max,....,1,  KKKJ

where K = integer = min {,}, min {,}-2,...., 1 or 0 unless K = 0.

For K = 0, the allowed angular momentum values are [55]:

    1,....,2,max,,max  J or 0 ......................(2-25)

The quantum number K is analogous to the K quantum number of a

symmetric rotor, namely the projection of the angular momentum J along

the nuclear symmetry axis. Therefore, the K = 0 and K = 2 bands of the

)2,4( N representation would correspond to the  and  bands,

respectively, in the geometrical rotor description of subsection (2.1.2).

However, in this limit of the IBM, states with the same angular momentum

and  , representation are required to be degenerate; e.g., the 
2 and 

2

states. Also, the transition probabilities between bands are considerably

altered, as will be discussed below.

Figure (2.2) Typical spectrum of a nucleus exhibiting the SU(5) symmetry. The states are labeled by the

quantum numbers ),,( nvnJ d
 . The spectrum is broken up into a number of bands [55].



Chapter Two Theoretical Considerations

27

The most general form of the E2 transition operator T(E2) was

presented in Eq. (2-17). As for the earlier SU(5) symmetry, Arima and

Iachello require this operator to be a generator of the underlying group

symmetry. For the case of the SU(3) symmetry, since the operators of Eq.

(2-6), namely d†s and d†d are already generators of the group [55], the

requirement reduces to fixing the values, of the coefficients 2 and 2

in Eq.(2-6). The resulting E2 operator in the SU(3) symmetry is [55]:

         )262.......(..........72
2†

2
12††

2  mmm dddssdET 

where 2 is the effective E2 charge, of Eq. (2-6) became 22
1 7 . Due to

the form of the E2 operator T(E2) in Eq. (2-26) does not connect states with

different  , representations [55]. Thus, transitions between the  -band

or  -band and the ground band are forbidden. Conversely, transitions

between states of the same representation are allowed. Therefore, unlike

the predictions of the geometrical rotational model, the 
2 state will

preferentially decay to the 
0 state rather than to the 

g0 state.

A number of regions of the periodic table have shown evidence of

exhibiting a rotational structure characterized by a J(J+1) level sequence.

However, the requirement of degenerate β-and  -vibrations tends to limit

the regions of SU(3) symmetry to those where the onset of prolate

deformation occurs, such as the Gd isotopes.

)272......(...........
,

 
 ji

ij
ji

jid LQQnH 


where  , the boson energy, and Q is the quadrupole-quadrupole and

L interactions are as previously described. To study a transitional region,

they fixed  and  ', allowing to linearly decrease as a function of the

number of bosons [65].

Equation (2-27) shows that all transition probabilities depend

explicitly upon the number of valence nucleons. Now that two limiting

symmetries have been presented, the SU(5) and SU(3) limits, it would be



Chapter Two Theoretical Considerations

28

interesting to investigate the transition between these two regions. Such

work has recently been conducted by Iachello, Scholten, and Arima. In this

investigation, they considered a simpler form of the. IBM Hamiltonian in

Eq. (2-6), namely [65]:

)282..(....................  vc N

where c is a constant and vN is the number of neutron bosons. This will

simulate the transition, since, near SU(5),  is much greater than any

interboson interaction, while, near SU(3), the quadrupole-quadrupole

interaction dominates the boson energy.

The SU(3) limit of the IBM-1 possesses N as a good quantum

number together with the conventional SU(3) quantum numbers ),(  , but

nd is not a good quantum number [55]. However, considering )0(ˆ ET in the

form:

  )282(..............................5
~ˆ)0(ˆ )0(†

00 addNET  

noting that d transforms [55] as a ),(  = (2; 0) representation of SU(3);

then, e.g., ),(  = (2N; 0) states connect only with ),(  = (2N −4; 2)

states via E0 transitions. This includes the E0 transitions connecting the

"  " band ((2N − 4; 2) irrep.) with the ground band ((2N; 0) irrep.).

2.1.3- The Gamma Unstable O(6) Symmetry

A third limiting symmetry of the IBM model will occur when the

interboson interaction is dominated by a pairing force [52]. Analogous to

the SU(5) and SU(3) symmetries, Iachello and Arima have diagonalized the

IBM Hamiltonian, generated by SU(6) (Eq. (2-7)), by identifying a

subgroup of SU(6) under which the Hamiltonian is invariant. In this case,

the subgroup is O(6) which also contains the subgroups O(5) and O(3). By

using the group chain, )3()5()6()6( OOOSU  , the IBM Hamiltonian in

the O(6) limit can be written as:

)292.......(..........356  CCBCAPH
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where P6 is the pairing operator in O (6) and C5 and C3 are the Casimir

operators of O (5) and O(3), respectively. A, B, and C are the strengths of

the various components. In terms of the IBM Hamiltonian of Eq. (2-1),

corresponds to the term:

         )302......(..........
)0()0()0(††)0()0(†

0  ddssssddv

while C5 and C3 and correspond to the terms

         )312.....(..........12
4,2,0

0
††

2
1† 2

1

 
J

JJ

J
m

mm ddddCJdd

The Hamiltonia of this symmetry is:

)312........(ˆ.ˆˆ.ˆˆ.ˆˆ
33310 aTTaLLaPPaH  

The symmetric irreducible representations of O(6) are labelled by a

quantum number  where [52]:

0,...,4,2,  NNN or 1 for N= even or odd.................(2-32)

The expectation value of the O(6) pairing operator, P6, can be written in

terms of  as [52]:

  44
1

6   NNP …………………………..(2-33)

As stated in Ref. [52], the quantum number  is chosen to

characterize the representations of O(5) where

)342......(..........0,...,1,  

The expectation value of C5 in the  representation of O(5) is given by [52]

  )352(..........36
1

5  Cv

Therefore, the eigenvalues of states corresponding to the Hamiltonian in

Eq. (2-29) are [52]:

        )362.......()1(34
4

 JCJBNN
A

JMNE 

where the
6
1 in Eq. (2-35) has been incorporated into the constant B. The

quantum number  is useful in labelling the states: it is related to n , which

counts the number of boson triplets coupled to angular momentum zero.
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The quantum numbers  and v are related by   v3 for v = 0, 1,… .

The value of  determines the angular momentum of states via [52]:

J= 2 , 2 -2, 2 -3, …,  +1,  ……(2-37)

Arima and Iachello have also succeeded in obtaining analytic

expressions for transition probabilities [52]. As in the SU(5) and SU(3)

symmetries, they require the E2 transition operator, T(E2), to be a

generator of the underlying group structure, in this case O(6). The form of

T(E2) satisfying this requirement is [52]:

    )382.......(..........2
)2(††  dssdET 

Since T(E2) is a generator of O(6), it cannot connect states from

different representations; therefore, one selection rule is 0 . Also, due

to the O(5) structure contained in O(6), the O(5) selection rule 1

still holds.

Within each  grouping itself, the level spacing somewhat resembles that

of a vibrational model, as described in subsection (2.1.1), but with an

energy spacing proportional to  3 rather than simply to . This will

give rise to the energy ratio     5.22/4 11  EE rather than 2, as expected in

the vibrational picture; also, as  increases even larger energy differences

will occur between states of different  . Further, the degeneracies of the

geometrical vibrational phonon model are explicitly eliminated by the

J(J + 1) term and certain states, e.g., the 0+ state of the two- phonon triplet,

do not occur. As described earlier in subsection (2.1.l), the state which

would correspond to this 0+ state is "repelled" by the ground state and is

raised in energy due to the repulsive pairing force which characterizes this

limit. Branching ratios and absolute B(E2) values also differ significantly

from the geometrical prescriptio.

The O(6) limit (especially for large N) seems to resemble most

closely the  -unstable model described by Wilets and Jean [56].

However, in the O(6) scheme, the level degeneracies are no longer
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maintained, and there are spin cutoffs, and a specific number of different

 groupings. It is reasonable that the O(6) description may correspond to

the  -unstable geometrical model, in analogy to the SU(5)-vibrator and

SU(3)-symmetric rotor correspondences. The Hamiltonian of a  -unstable

oscillator is characterized by a potential energy which is independent of  ,

although  -dependent terms are included in the kinetic energy. A

correspondence exists between the coordinates of the Bohr-Mottelson

picture and the operators of the IBM. Arima has suggested the result that

the  -unstable potential corresponding to the O(6) limit of the IBM would

be of the form [52]: 42  dcV  ,where  is the deformation parameter

and c and d are arbitrary constants. This form of potential arises from the

zero d-boson and two d-boson number changing terms of the O(6)

Hamiltonian. A  -dependent term in the potential would be of the form

 3cos3 ,which corresponds to one d-boson number changing terms that are

not included in this symmetry. Currently, attempts to understand more

explicitly the analogy between the O(6) symmetry and relevant geometrical

models are being pursued [52]. A convenient basis in which to describe the

O(6) level wave functions is that of the vibrational limit, given by

nnnJ d 
 , where nnnd  . are, as usual, the number of d-bosons, number of

d-boson pairs coupled to angular momentum zero, and the number of

d-boson triplets coupled to angular momentum zero, respectively. Although

the wave functions are not pure in this basis, they can be described in a

simple manner as a linear combination of basis states differing in the nd and

n quantum numbers. For example, in the vibrational limit, the ground state

is a pure 0+|000> state; in O(6), the ground state, with max  would be

characterized by the 0+ wave function A convenient basis in which to

describe the O(6) level wave functions is that of the vibrational limit, given

by nnnJ d 
 , where nnnd  . are, as usual, the number of d-bosons, number

of d-boson pairs coupled to angular momentum zero, and the number of
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d-boson triplets coupled to angular momentum zero, respectively. Although

the wave functions are not pure in this basis, they can be described in a

simple manner as a linear combination of basis states differing in the nd and

n quantum numbers. For example, in the vibrational limit, the ground state

is a pure 0+|000> state; in O(6), the ground state, with max  would be

characterized by the 0+ wave function

20/...........420210000 NN  . The relation between  and the

more familar phonon number is given by calculating the expectation value

of nd. Iachello has determined that, for the max  = N states, the

expectation value of nd in the O(6) limit is given by [52]:

 
 

 
  )392...(....................

12

3

12

1










NN

NN
nd



Two types of perturbations may be added to the exact results of the

O (6) limit: one which does not change the forces of the symmetry, and one

which introduces a force from outside the limit. The former type can be

accomplished, for example, by changing the boson energy from the value

determined by B in Eq. (2-36). This will alter the amplitudes of the non-

zero components of all wave- functions, but will not add new components.

The result will be to break the selection rule 0 , but to preserve the

1 E2 selection rule. The second type of perturbation can be accom-

plished, for example, by the introduction of a quadrupole-quadrupole

interboson force. Since such an interaction contains one d-boson changing

terms, all wave function components would be non-zero, though perhaps

small, and the effect would be to break both O (6) E2 selection rules, as

well as to alter all E2 branching ratios.

The interferences between these three dynamical symmetries give

three transitional regions. These regions are as follows:

SU(3)SU(5) : This transitional region can be treated by breaking SU(3)

symmetry in the direction of SU(5) by adding
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  444333
ˆ.ˆˆ.ˆˆˆˆ TTaTTannH ds   terms. The Hamiltonian of this region can

be written as:

  )402........(ˆ.ˆˆ.ˆˆ.ˆˆ.ˆˆˆˆ
44433321  TTaTTaQQaLLannH ds

SU(3) O(6) : The nuclei in this transitional region can be treated by

breaking SU(3) symmetry in the direction of O(6) by adding ^
3

^
33

^^ .,. TTaPP

terms. The Hamiltonian of this region can be written as:

)402........(ˆ.ˆˆ.ˆˆ.ˆˆ.ˆˆ
333210 aTTaQQaLLaPPaH 

O(6) SU(5): The nuclei in this transitional region can be treated by a

Hamiltonian containing  ds nn ˆˆ  and PPa ˆ.ˆ
0 terms as :

  )402........(ˆ.ˆˆ.ˆˆ.ˆˆ.ˆˆˆˆ
44433310 bTTaTTaLLaPPannH ds  

The O(6) limit of the IBM-1 possesses N as a good quantum number

together with the conventional O(6) quantum numbers  ; but nd is not a

good quantum number [55]. The E0 transition operator possesses the

selection rules  = 0;+2;  = 0. Thus, the E0 matrix elements that

connect to the 0+ ground-state level   0,0,,  LNN  originate in the

 N − 2 multiplet, i.e..   0,0,2,  LNN 

2.2- Interacting Boson Model-2 (IBM-2)

In the IBM-2 model the neutrons and protons degrees of freedom are

taken into account explicitly. Thus the Hamiltonian [66, 67] can be written

as:

)412........(....................   VHHH

vvvvvv MQQVVddddH    .
~ ††† ……………(2-42)

Here  is the d-boson energy,  is the strength of the quadrupole

interaction between neutron and proton bosons.

In the IBM-2 model, the quadrupole moment operator is given by:

      )432......(....................
~~~ 2†2††    ddsddsQ
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where   or  , Q is the quadrupole deformation parameter for

neutrons )(   and protons )(   . Where the terms V and V are the

neutron-neutron and proton-proton d-boson interactions only and given by:

        022††2
1

4.2.0

~~
12

2
1

 ddddJCV L
J

 


…………………(2-44)

The last term M is the Majorana interaction, shits the states with mixed

proton-neutron symmetry with respect to the totally symmetric ones. Since

little experimental information is known about such states with mixed

symmetry, which has the form:

       )452.(..........)
~~~~

(
~~~~

2 )2()2(††
2

3.1

††  


  dssddssdddddM
k

kk

k

2.2.1-Electromagnetic Transitions and Quadrupole Moments in IBM-2

The general one-body E2 transition operator in the IBM-2 is

)()()( lTlTlT v  …………………………..………….(2-46)

               2)2(†2††
2

2†2†† ~~~~~~
)2(   ddsddseddsddseET vv 

  )472.(..............................2  vvQeQeET 

where Q is in the form of Eq.(2-43). For simplicity, the  has the same

value as in the Hamiltonian. This is also suggested by the single j-shell

microscopy. In general, the E2 transition results are not sensitive to the

choice of e and e , whether e = e or not. Thus, the reduced electric

quadrupole transition rates between fi JJ  states are given by:

)482.........()2(
12

1
);2(

2 


 
if

i
fi JETJ

J
JJEB

The electric quadrupole moment in IBM-2 is given:

  











 JETJ

JJ

JJ
QJ 2

0

2

5

16 2
1

 …….(2-49)

In the IBM-2, the M1 transition operator up to the one-body term

(l =1) is
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        212
1

4
31  LgLgMT v …………………………(2-50)

where  
 )

~
(10 †1 ddL  and      111

vLLL   . The g and g are the boson

g-factors (gyromagnetic factors) in unit N (nuclear magneton) that

depends on the nuclear configuration. They should be different for different

nuclei.

          )512.......(
2

1

2

1
4

31 )1()1()1()1(2
1





   LLggLLggMT v

The magnetic dipole moment operator is given by:

         vv ggddddMT  

1†† ~~
77.01 ……….(2-52)

the reduced magnetic dipole transition rates between fi JJ  states are

given by:

    2
1

12

1
,1 


 

fi
i

fi JMTJ
J

JJMB ….(2-53)

The reduced E2 and M1 matrix elements were combined in the calculation

of the mixing ratio δ(E2/M1) using the relation [68]:

........
)1(

)2(
)(835.0);1/2(




 




if

if
fi JMTJ

JETJ
MeVEJJME  (2-54)

The E0 (electric monopole transition) transition occurs between two

states of the same spin and parity by transferring the energy and zero units

of angular momentum, and it has no competing gamma ray. The E0

transition is present when there is a change in the surface of the nucleus.

For example, in nuclear models where the surface is assumed fixed, E0

transitions are strictly forbidden, such as in shell and IBM-1 models.

Electric monopole transitions are completely under the penetration effect of

atomic electrons on the nucleus, and can occur not only in 0+ → 0+

transition but also, in competition with gamma multipole transition, and

depending on transition selection rules that may compete in any ΔJ = 0

decay such as a 2+ → 2+ or any Ji = Jf states in the scheme. When the
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transition energy greater than 2moc2, monopole pair production is also

possible. The E0 reduced transition probability is written [69]:

)0();0( 24
0

2 EReJJEB fi  , )552....(..........  fi JJ

where e is the electron effective charge, R0 = 1.25A1/3 fm is the nuclear

radius, A is the atomic mass, and ρ(E0) is the monopole transition matrix

elements. There are only limited cases of ρ(E0) that can be measured

directly. The electric monopole transition operator is:

)562....(..........)~()
~

()0( )0(†)0(†
0    ssddET

)572.....(....................)
~

()0( )0(†
0    NddET

  00
'
0 5/ 

    .~~
5

)0(†)0(†
 ssddN 

The monopole matrix element is given by:

)582(..........
~

)0( †'
02

  iddf
R

Z
Eif 





The two parameters β0π, β0ν in Eq. (2-56) must be estimated. In most cases

we have to determine the intensity ratio of E0 to the competing E2

transition, X(E0/E2) [69]:

)592)........(;2(/);0();2/0( 24
0

2  
iififi JJEBJJEReJJEEX 

where Jf =Jf
' for Ji = Jf

' =0, and Jf
' = 2 for Ji = Jf = 0. The two parameters

0 and 0 in Eq. (2-57) may be estimated by fitting the isotope shift,

which is different in the mean square radius between neighboring isotopes

in their ground state. They are given by Bijker et al., [70]:
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The isomer shift is the difference between the mean square radius  2r

of an excited state and the ground state in a given nucleus [70]:

sgse rrr .
2

.
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2.2.2- Two-neutron Separation Energy

The binding energy BE of a nucleus is given by the negative of its

ground-state energy. This energy is not just the eigenvalue of 
10 state,

since we are looking for an absolute number. We must recall all of the

unused constant terms in the Hamiltonian described in Eq. (2-42). These

give:

    )622........(1
2

1
1

2

1
.)(

''
0

''
0

''
.  defBsscoreBsg ENNuNNuNNEEE 





 

where coreE is the energy of the closed shells and .defE is the deformation

energy (i.e., the 
10 eigenvalue using IBM-2 Hamiltonian). The primes on

N and N again emphasize that they are to represent boson particles.

For constant proton number, the binding energy can thus be written

as:

  )632........(..........1
2

1
.)(

'''  defBB ENCNBNAE 

where A and B , and C are constants and .. defdef EE  .

Instead of the actual binding energy we will examine the

two-neutron separation energy. This is the energy required to remove

two neutrons (one neutron boson) from a given isotope and is given by:

        )642........(..........11 .)(
''''

2  defBBB ENCBNENENS 

where    1'
.)(

'
.)(.)(   NENEE defBdefBdefB .
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2.2.3-The IBM-2 Basis States

The calculation of IBM-2 energy eigenvalues and eigenfunctions is

usually done numerically using the computer code NPBOS [71]. The

resulting eigenvectors can then be used to calculate transition rates and

related properties using the computer code NPBTRN [71]. The relationship

between the parameters of Eq. (2-42).

The basis states used in the calculations are the products of neutron

and proton basis states. The complete IBM-2 basis state can be stated as:

  JMMLnvnMLnvnNNNJM dd ;,,,,;,,,,  

    J
Mdd MLnvnNMLnvnN


,,,,,,,, 

The basis states can be found by choosing states that transform as the

representations of the chain of algebras that can be derived from the U(6)

algebra formed by the bilinear pair of boson creation and annihilation

operators. In the IBM-2, the bilinear pairs of proton and neutron creation

and annihilation operators respectively form the algebras )6(U and )6(U .

There are several ways decompose and combine the two algebras into a

chain of subalgebras and each way will determine the basis. As in the

IBM-1, the requirement for the chain is the inclusion of the )3( SO

algebra as it is related to a good total angular momentum quantum number.

The algebra )3( SO is created from the sum of generators of the algebras

)3(SO and )3(SO .

As an example, one may take the two chains of algebras for protons and

neutron,

)2()3()5()5()6(  SOSOSOUU 

)2()3()5()5()6(  SOSOSOUU 

These two chains can be combined at any point up except at )2( SO since

the combined algebra )3( SO is needed. One of the possibilities is:
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)3()5()5()6(  SOSOUU 

N dn  nv , L  )3(SO )2( SO

)3()5()5()6(  SOSOUU  L M

N dn  nv , L

where the quantum numbers are labelled beneath the corresponding

algebra. This is the basis that is used in the IBM-2 program NPBOS.

Another set of bases can be obtained if one combines the algebras at

a different point such as:

)6(U

)2()3()5()5()6(    SOSOSOUU

)6(U

In general there are three chains that can be combined at )6( U to give

three different bases. In these chains, the proton and neutron bosons exhibit

a symmetry and this is the subject of the following section.

2.2.4- Mixed-Symmetry States

The low-energy spectrum of even-even nuclei is dominated by

simple collective excitation modes [72]. These correlations in the nucleon

motion are induced by the long-range quadrupole component of the nuclear

force. In spherical nuclei with few valence nucleons, surface vibrations

evolve which can be described as bosons, so-called phonons. In an ideal

case, the excitation spectrum of a vibrator nucleus is a harmonic oscillator

with equidistant level spacings  , where phonons can couple to

multiphonon states with different angular momenta and parities. For large

numbers of the valence nucleons, an elliptically deformed equilibrium state

becomes energetically more favorable. Its vibrational modes can be divided

into vibrations of the deformation parameter  (  -vibrations) and the form

parameter  ( -vibrations).

Multiphonon excitations of atomic nuclei are interesting collective

structures of the nuclear many-body system. Their existence enables us to
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judge the capability of the corresponding phonon modes to act as building

blocks of nuclear structure. Possible deviations from harmonic phonon

coupling occur due to the microscopic structure of the underlying phonon

modes and serve as a sensitive source of information on the formation of

collectivity in the nuclear many-body system. The proton-neutron

interaction in the nuclear valence shell has been known for a long time as

the driving force for the evolution of the low-energy nuclear structure. This

has been discussed in many ways, e.g. in terms of the evolution of

collectivity in heavy nuclei as a function of the product of valence proton

and neutron numbers  NN [73]. Otsuka et al. (2006) have identified the

proton-neutron interaction as being responsible for the evolution of shell

structure [74]. Therefore, it is interesting to study those nuclear excitations

that are most sensitive to the proton-neutron interaction in the valence

shell. One class of states are collective isovector valence shell excitations

that are frequently called Mixed-Symmetry States (MSSs) in the

terminology of the interacting boson model.

The first observation of a nuclear MSS was made in electron

scattering experiments [75] on the deformed nucleus 156Gd. A strong M1

excitation to a 1+ state close to 3 MeV excitation energy, the scissors mode,

was observed. The scissors mode has subsequently been studied mainly in

electron and photon scattering experiments on deformed nuclei. Data are

available for many nuclei in the rare-earth mass region and interpretations

of the systematic of the centroid and the total strength as a function of

deformation have been put forward [76].

2.2.4.1- F-Spin

The F-spin formalism is analogous to the isospin formalism of

nucleons. Proton bosons and neutron bosons have 2/1F and the

z-projection is 2/1zF for protons and 2/1zF for neutrons. For a

system of Nπ proton bosons and Nν neutron bosons, the maximum F-spin is

F = Fmax = (Nπ + Nν )/2 and
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22 max
 NN

F
NN

Fz





 ………(2-65)

In the F-spin space, one can also define the creation and annihilation

operators F+ and F− by

)662(....................,
†

,
†   


 ddssF

)672(....................,
†
,

†   


 ddssF

The projection operator Fz is given by

   


 ,
†

,
†

2
1

ddssFz  )682........(,
†
,

†  


 ddss

A state composed by Nπ proton bosons and Nν neutron bosons with

F-spin quantum number F = Fmax can be transformed by the successive

action of the F-spin raising operator F+ into a state that consists of proton

bosons only. This state has still a total F-spin quantum number F = Fmax

since the raising operator does not change the total F-spin quantum

number. This new state has only proton bosons and obviously stays

unchanged under a pairwise exchange of proton and neutron labels.

Therefore, IBM-2 states with F = Fmax are called Full Symmetry States

(FSSs). These states correspond actually to the IBM-1 states which are all

symmetric. All others states with F-spin quantum numbers F < Fmax

contain pairs (at least one) of proton and neutron bosons that are

antisymmetric under a pairwise exchange of protons and neutrons labels.

They are called Mixed-Symmetry States (MSSs).

A comprehensive review of the F-spin symmetry of the IBM-2 has

been given by Van Isacker et al. [77]. One important result of the F-spin

formalism is given by the proton-neutron contribution to the matrix

elements of any one-body operator between FSSs:

)692.........(,, ''' ,

'
max,,max  

  cNFbbF

where α, α' , β, β' are additional quantum numbers and '' ,,, c is

independent of ρ. This major result tells us that there are no M1 transition

between FSSs.
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Both operators E2 and M1 can be divided into F-scalar

(denoted by s) and F-vector (denoted by v) parts

  )702.(..........
2

)1( 


 
 LL

gg
MT s
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2
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
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2
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

 ss QQ
ee

ET s
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ee
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

ee

ees

)752.........(.................... 
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
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

 


ee

ee

From the previous discussion concerning the E2 and M1 decays of

full symmetric states and the mixed-symmetry states (here discussed in

near vibrational nuclei), we expect following signatures for mixed-

symmetry one-phonon and two phonon excitations for vibrational and

transitional nuclei:

First: The one-quadrupole-phonon 
ms,12 , state is the lowest-lying MSS in

vibrational nuclei.

Second: The 
ms,12 state decays to the 

12 state by a strong M1 transition

  2
1,1 12)1(2 Nms MT   .

Third: A weakly collective E2 transition strength of a few 22be for the
  1,1 02 ms transition.

In the IBM-1, geometrical shapes can be assigned to the algebras of

the three possible chains, which correspond directly to the description of

nuclear shapes by Bohr and Mottlesohn’s shape variables [78, 79]. In the

IBM-2, the mixed-symmetry states correspond to a quadrupole vibration

where the protons and neutrons oscillate out of phase. For deformed nuclei,

the protons and neutrons oscillate with respect to one another as the



Chapter Two Theoretical Considerations

43

nucleus as a whole rotates. Because of this type of motion, the mixed-

symmetry states for deformed nuclei are also known as the scissors mode.

Mixed-symmetry states can be identified by their unique signature,

namely a collective M1 decay to a fully-symmetric state. M1 transitions are

forbidden between fully-symmetric states and between mixed-symmetry

states in the F-spin basis.

2.3-Interacting Boson-Fermion Model

2.3.1. Interacting Boson-Fermion Model-1 (IBFM-1)

The description of collective nuclear states in even-odd nuclei has

been proposed in terms of a mixed system of interacting bosons and

fermions [5l-80]. The corresponding model, which is referred to as the

interacting boson-fermion model (IBFM), is an extension of the interacting

boson model (IBM) [50-51] introduced a few years ago in order to provide

a unified description of collective states in even-even nuclei. In the IBFM,

the fermionic degrees of freedom of the single (unpaired) nucleon are

coupled to the even-even core nucleus, which is described by the IBM.

Whenever the core (IBM) Hamiltonian possesses one of its three possible

dynamical symmetries, U(5), SU(3), and O(6) or SO(6) [50-55], the

corresponding spectra in odd-even nuclei exhibit simple features, which in

the case of the odd nucleon occupying a single j-orbit, are shown to be

analogous to the particle-vibrational model, the Nilsson model , and the

particle-plus-  soft-rotor model . Transitional regions between any of

these limiting situations can be treated equally well in IBFM.

In addition to providing a framework for the description of collective

properties in even-odd nuclei, the IBFM-Hamiltonian has an interesting

algebraic structure, which suggests the occurrence of dynamical

symmetries. The concept of dynamical symmetries, which is usually used

for a system of bosons or fermions separately, has been extended to a

mixed system of bosons and fermions [81, 82]. These symmetries are

called dynamical boson-fermion symmetries. Boson-fermion symmetries
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can be extended to supersymmetries, in which certain states both in even-

even and in odd-even nuclei are treated on equal footing. This can be

achieved by imbedding the symmetry group of the combined system of

bosons and fermions into a supergroup (graded Lie group).

The boson-fermion symmetries, connected with the boson symmetry

SOB(6) have been discussed [81] and in more detail in the preceding

publication in this series, for
2

3
j and a forthcoming publication [80] for

2

5
,

2

3
,

2

1
j . In this work we will discuss the boson-fermion symmetries,

which are related to the boson symmetry UB(5). These symmetries arise

when the fermions occupy a single particle orbit with
2

1
j ,

2

3
j or

2

3
j ,

2

5
j and will be referred to as the Spin(3), Spin(S), and U(B+F) UF( 2)

limit, respectively. Although in reality nuclei will never show properties

which are exactly identical to the ideal situations described by the

dynamical symmetries, the analytic formulae presented here may provide a

tool for understanding the gross features of the properties of collective stats

in even-odd nuclei.

In order to describe the interplay between collective and single-

particle motion in nuclei, one has to introduce explicitly collective and

single-particle degrees of freedom. Within the framework of the IBFM the

collective degrees of freedom are described by a set of N bosons with

angular momentum L = 0 (s-bosons) and L = 2 (d-bosons). The single-

particle degrees of freedom are described by a set of M fermions with

angular momentum j, j'..., where M = 0 for the low-lying collective states in

even-even nuclei, M = 1 for the one quasi-particle states in odd-even

nuclei, M = 2 for the two quasi-particle states in even-even nuclei, etc. The

most general one- and two-body Hamiltonian for a mixed system of bosons

and fermions can be written as [81, 82]:
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H=HB+HF+HBF ………………….(2-76)

where HB is the usual IBM-1 Hamiltonian [50] for the even-even core,

HF is the fermion Hamiltonian containing only one-body terms and VBF is

the boson-fermion interaction that describes the interaction between the

odd quasi-nucleon and the even-even core nucleus. HF is the fermion

Hamiltonian containing only one-body terms [81, 82]:

)772(..............................†  jm
jm

jmF aaH

where the j are the quasiparticle energies and  jmjm aa† is the creation

(annihilation) operator for the quasiparticle in the eigenstate jm . The

boson-fermion interaction VBF that describes the interaction between the

odd quasi-nucleon and the even-even core nucleus contains, in general,

have many different terms and is rather complicated, but has been shown to

be dominated by the following three terms:

        )0(

0

)2(†)2()0(†)0(† ~~~
'

' jj
jj

jjjj
j

jBF aaQaaddAV  

   
)0(

0

)(†)(†
'''''

''''

'''

;

~~: 



  

j

jj

j

j
jjj

j

jj
daad …………..(2-78)

where the core boson quadrupole operator is given by the equation (2-43),

and  is a parameter shown by microscopic theory to lie between 2/7

and − 2/7 . VBF is dominated by three terms: a monopole interaction

characterized by the parameter A0 which plays a minor role in actual

calculations, the most important arise from the quadrupole interaction

[83,84] characterized by 0 , and the exchange of the quasiparticle with one

of the two fermions forming a boson [54,82] characterized by A0.

120  jAA j
††,,, dsds are boson operators with mj

jm
 )1( and

denotes normal ordering whereby contributions that arise from commuting

the operators are neglected. The first term in VBF is a monopole interaction

which plays a minor role in actual calculations and the dominant term are



Chapter Two Theoretical Considerations

46

the second and third, which arise from the quadrupole interaction. The third

term represents the exchange of the quasiparticle with one of the two

fermions forming a boson; Talmi [85] has shown that this exchange force is

a consequence of the Pauli principle for the quadrupole interaction between

protons and neutrons. The remaining parameters in Equation (2-78) can be

related to the BCS occupation probabilities uj , vj of the single-particle

orbits:

  )792.........(..........5 '''' 0 
jjjjjjjj

Quu 

    )802......(12/5 "
0 "''""'"'"'"'"'"'

"

'  jQuuQuuA
jjjjjjjjjjjjjjjj

j

jj


where "' jj
Q are single particle matrix elements of the quadrupole operator

and

    )812.....(........../ '''"'"'   
jjjjjjjjjj

Quu

are the structure coefficients of the d-boson deduced from microscopic

considerations, with  being the energy of a D pair relative to an S

pair [86].

The BCS occupation probability j and the quasiparticle energy j

of each single particle orbital can be obtained by solving the gap equations

[54, 82]:

   2/122   jj E ………………….(2-82)

 










 


j

j
j

E




 1

2

12 ………………….(2-83)

where Ej is the single particle energy calculated from the relations in [86],

 is the Fermi level energy, and  is the pairing gap energy, which was

chosen to be 12A−1/2 MeV [87].

That leaves the strengths A0, 0 , and 0 as free parameters which are

varied to give the best fit to the excitation energies.

The IBFM Hamiltonian has been an interesting algebra structure,

that suggests the possible occurrence of dynamical symmetries in odd A. In
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the single-j case, the value of m is m=2j+1. Thus, in general, a chain of

algebras:

         22121212 OSUjSPjSUjU  ……(2-84)

Since in the IBFM odd A nuclei are described in terms of a mixed

system of interacting bosons and fermions, the concept of dynamical

symmetries has to be generalized. Under the restriction, that both the boson

and fermion states have good angular momentum, the respective group

chains should contain the rotation region group (O(3) for boson and SU(2))

for fermion) as subgroup.

)852......(........................................
)2().......(

)3(..).........6(














FF

BB

SUmU

OU

If one of subgroups of UB(6) is isomorphic to one of the subgroups

of UF(m), the boson and fermion group chains can be combined into a

common boson-fermion group chain. When the Hamiltonian is written in

terms of Casmir invariants of the combined boson-fermion symmetry

arises.

Among the many different possibilities, we consider two dynamical

boson-fermion symmetries associated with the O(6) limit of the IBM. The

first example discussed in the Refs. [88,89] it corresponds to bosons with

O(6) symmetry and fermions occupying a state with j =3/2. The relevant

group chains are:

)862...(..............................
)2()2()4()4()4(

)2()3()5()6()6(
2

















FFFFF

BBBBB

SOSUSPSUU

OOOOU

The Spinor group spin (n) (spinBF(6)) are the universal covering

groups of the orthogonal groups O(n), with the isomorphism's of the

algebras )6()6()4( SpinOSU B  , )5()5()4( SpinOSP B  and

).3()3()2( SpinOSU B  The boson with one-fermion group chains can be

combined into:
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)4()6( FB UO    1 FB NNN

)4()6( FB SUO  
)6(BFSpin  321 ,, 

)5(BFSpin 21 ,

)3(BFSpin J,

)2(BFSpin JM

The second example discussed of a multi-j case [90,91] is that of a

dynamical boson-fermion symmetry associated with the O (6) limit and the

odd nucleon occupying single-particle orbits with spin j = 1/2, 3/2, 5/2. In

this case, the fermion space is decomposed into a pseudo-orbital part with

K = 0, 2 and pseudo-spin with s = 1/2, in general, an algebra UF(mj) can be

broken into [82]:

)872...(..............................).........()()(  s
F
Sk

F
kj

F mUmUmU

where

   ji ij jm 12 ,    ki ik km 12 ,   )882....(..........12  Si iS sm

then

)892...(..............................).........2()6()12(  FFF UUU

Since the pseudo-orbital angular momentum K has the same values as the

angular momentum of the s-and d-boson of the IBM, it is clear that the

pseudo-orbital part can be combined with all three dynamical symmetries

of the IBM.
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Recently, a different way to construct dynamical boson-fermion

symmetries was introduced [16]. Suppose that the fermion part, which

consists of the single-particle orbits j, j'..., can be split into a pseudo-orbital

part k and a spin part s. The pseudo-orbital part does not necessarily

coincide with the actual orbital angular momentum. Suppose that the
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bosons can be described by the group chain ...)()(  BB GG . If the

pseudo-orbital angular momentum k or the spin s forms the full angular

momentum content of a certain representation of one of the groups in the

boson group chain, this representation can be combined with its bosonic

counterpart to yield representations of a common boson plus fermion

(B + F) group (class BF-2). An example of this second class is that of

bosons with U(B)(6) SOB(6) symmetry and fermions with angular

momenta j = 1/2, 3/2, 5/2 . The fermion spins can be decomposed into

k = 0,2 with which we can associate the U(6) representation and s = 1/2.

The boson and fermion group chains can then be coupled at the level of the

common U(6) group or at one of its subgroups.

2.3.1.1- UB(5) Plus Particle

In this section we will discuss the symmetries associated with the

boson symmetry UB(5). The group chain for the boson symmetry UB(5) is

given by [54]:

)912......(..........).........2()3()5()5()6(  BBBBB SOSOSOUU

Since the algebras of SO(5) and SO(3) are isomorphic to those of

SP(4) and SU(2), respectively, spinor symmetries are possible whenever m

is such that the fermions span an irreducible representation of SU(2) and/or

Sp(4).

2.3.1.2-UB(5) plus j = 4: the Spin(3) Limit

The coupling of a j = 1/2 nucleon to the quadrupole degrees of

freedom of an even-even core nucleus has been discussed in terms of core-

excitation model [92], in which states in spherical odd-A nuclei are

described by coupling the odd nucleon weakly to core excitations. In this

section we will examine the coupling of a j = 4 particle to a vibrational

core nucleus in the framework of the IBFM. It will be shown that by using

the algebraic structure of the IBFM it is possible to obtain closed analytic

expressions for the energy eigenvalues, electromagnetic transition rates,
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static moments, and one and two nucleon transfer intensities. UB(5) plus

j = 4: the Spin(3) Limit .

1- Energy Spectra

In this section we discuss the states built on a j = 4 shell model orbit.

The matching of boson and fermion group chains gives [82]:

)922...(..............................).........2()3()5()5()6(  BBBBB SOSOSOUU

 
)2(FU )2(FSU )2(FSO

The two chains can be combined into

)932.....(....................).........2()3()2(

)3()2()5()2()5()2()6(





SpinSpinU

SOUSOUUUU
F

BFBFBFB

where Spin(3)  SU(2) and Spin(2)  N SO(2). The boson generators of

the groups UB(5), and SOB(5), and SOB(3) can be written as 
B , 4,...0 ,

3,...0, 
B , and, 1

B respectively, where

  )942.(..............................
~† 





 ddB .

The fermion generators of the groups UF(2) and SUF(2) are given by

,1,0, 
A and ,1

A respectively, with

  )952...(..............................~
2/1

†
2/1 





 aaA

Note that in Eqs. (2-94) and (2-95) we have used Racah’s [93] coupled

tensor notation, while in Eqs.( 2-76), (2-77) and (2-78), we have used the

uncoupled notation. The generators of the Spin(3) group can be obtained by

combining those of SOB(3) and SUF(2):

)962.......(........................................
52

1 )1()1()1(   ABG

and are proportional to the total angular momentum operator )1()1( 10  GJ  .

The basis states can be characterized by a complete set of labels which are

given by the irreducible representations of the groups appearing in

Eq.(2- 94):

)6(BU ; )2(FU ; )5(BU ; )5(BSO ; )3(BSO ; )3(Spin ; )2(Spin ;

 N ;  M ; dn ; v ; L ; J ; MJ ; .........(2-97)
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The total number of bosons N labels the totally symmetric

irreducible representations of UB (6) and the total number of fermions M

labels the totally antisymmetric irreducible representations of UF(2). The

values of the number of d-bosons nd contained in each [N] are

nd = 0, l, ..., N. The values of the boson seniority v contained in each nd are

v = nd, nd - 2, ..., 1 or 0, depending on whether nd is odd or even. Since the

reduction from SOB(5) to SOB(3) is not fully decomposable [92], one has to

introduce an additional label n which counts the number of boson triplets

coupled to zero angular momentum, to classify the basis states uniquely.

The values of the boson angular momentum L contained in each

representation of SOB(5) are given by:

,62  nvL ,262  nv ,....,362  nv ,162  nv  nv 32 ...(2-98)

Finally, the angular momentum L with the fermion angular

momentum. For a system of N bosons and M = 0 fermions J = L, and in the

case of N bosons and M = 1 fermions J = L 2/1 . MJ is the z component of

the total angular momentum J.

A part from terms which only contribute to binding energies, the

most general Hamiltonian, which is diagonal in the basis, Eq. (2-97) is

given by:

)992....(. )3(22)5(21)5(2)5(2)2(1)5(12)5(11  SpinSOSOUUUU
CCCCCCCH BBBFBB 

Here C1G and C2G denote the linear and quadratic Casimir operators

of the group G. In terms of the generators, Eqs. (2-94) and (2-96) can be

written as:
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The energy eigenvalues of the Hamiltonian Eq.(2-99) are now given by:

)1002)......(1(2)1(2)3(2)4(),,,,,( 2121  JJLLvvnnMnnJLvnMNE ddddd 

We note that since all three boson chains contain the rotation group

SOB(3) as a subgroup, it is obvious that for any of the three boson

symmetries we can construct a Spin(3) limit.

2- Electromagnetic Transition Rates

In the interacting boson-fermion model the most general form of a

one-body transition operator with multipolarity  is given by:

)1012......(..............................)(
,

)(
,

)(  






 FB TTT

where )(
,

BT is given in Eq. ( 2-43 ) and .)(

,

FT is given by:

  )1022.........(....................
)(††)()(

,
'

' 





 jj
jj

jjF aatT

represents the single-particle part of the transition operator.

E2 Transitions.

In this case where the odd nucleon has spin j = 1/2, the E2 transitions

are fully determined by the collective part of the E2-operator:

    )2(~~
2

)2(~~~
2

)2(
 ddqsddsqT E  

  )1032.........(....................
)2(~)2()2(

"

''

''   jj
jj

jjFBB
E aaQeQeT

Since the second term is a generator of UB(5), it has selection rule dn = 0,

while the first term can change nd by one unit, 1 dn . The reduced

matrix elements of T (E2) between the basis states, Eq. (2-97), can simply be

related to those between the corresponding core states,

        '''' ,,,,1,)2(,,,,1, JLnMNETJLnMN dd  

  








 

2........

2/1........
1212)1(

''

'2/1 '

LJ

JL
JJJL

    )1042.........(....................,,,,,, ''')2(  LnNTLnN d
E

d 

and quadrupole moments

     )1052........(..........,,32112/)12(5/16 )2(  JTJJJJJJQ E
J 
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with     LnMN d ,,,1,  

Ml Transitions.

The most general Ml operator is given by:

)1()1()1(

2

1
10  AgBgT FB

M 

    )1062...(...........
4

)12)(1(
4/30

)1(~)1(~)1(

'




 
jj

jj
B

M aa
jjj

ddgT




where )1(
B and )1(

A have been defined in Eqs. (2-94) and (2-95). The

operator T(M1) has selection rules 0 Lnd  . Therefore, the only

nonvanishing Ml transitions are those between states with J = L + 1/2 and

J' = L - 1/2.

magnetic moments are simply given by:

    )1072........(..........
2
1

112/ )1(
2/1  FB

M
LJ gLgJTJJJJ 

Again     LnMN d ,,,1,  

2.3.1.3-UB(5) plus j = 3/2: the Spin(S) Limit

The coupling of a j = 3/2 orbit to the collective quadrupole degrees

of freedom has been studied in the framework of various core-particle

coupling models. In Ref. [94] Bayman and Silverberg discuss the coupling

of a particle in a j = 3/2 shell to the quadrupole oscillations of the nuclear

surface. The Hamiltonian:

  )1082........(....................,
2
1 )2( 





     

 
 YkbbH 

is invariant under transformations of the symplectic group Sp(4). This

property provides a convenient basis, spanned by the irreducible

representations (v + 1, v) of Sp(4) in which the matrix elements of this

Hamiltonian can be calculated. However, the Hamiltonian is not diagonal

in this basis. Both in the weak-coupling limit ( 1k ) and in the strong-

coupling limit ( 1k ), approximate solutions are obtained for the energy
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eigenvalues. The transition between the weak- and the strong coupling limit

can be studied numerically.

In the framework of the IBFM the Hamiltonian, which describes the

coupling of a j= 3/2 particle to a core nucleus, has the group structure

G = UB(6)UF(4). In general, no further symmetry is present and the

eigenvalue problem has to be solved numerically. However, whenever the

Hamiltonian can be expressed in terms of Casimir invariants of a chain of

subgroups of G, a dynamical boson-fermion symmetry arises and the

energy eigenvalues can be obtained in closed analytic form. The coupling

of a j = 3/2 particle to an even-even nucleus with SOB(6) symmetry has

recently been discussed by Iachello and Kuyucak [95, 96].

1- Energy Spectra.

In this section we discuss the states built on a j = 3/2 shell model

orbit. The matching of boson and fermion group chains gives

)2()3()5()5()6( BBBBB SOSOSOUU 
  

)2()2()4()4()4( FFFFF SOSUSPSUU 

Since the algebras of SOB(5), SOB(3), and SOB(2) are isomorphic to those

of SpF(4), SUF(2), and SOF(2), respectively, the boson and fermion group

chains can be combined into

)5()4()5()4()6( BFBFB SOSUUUU 

)1092).....(2()3()5()4(  SpinSpinSpinSP F

where Spin(S)  Sp(4), Spin(3)  SU(2), and Spin(2)  SO(2) [95, 96].

The generators of the groups UB(5) again are given by )(
B , 4,...0 , and

those of SOB(5) by )1(
B and )3(

B with   )2(†)( ~



 ddB  . The generators of

UF(4) can be written as )1(
A and )3(

A those of SpF(4) as )1(
A and )3(

A with:

  )1102(.............................~
2/3

†
2/3 





 aaA

The generators of the combined group Spin(S) can be written as



Chapter Two Theoretical Considerations

55

)1112.......(........................................
2

1 )1()1()1(   ABG

)1122.......(........................................
2

1 )1()1()1(   ABG

The generators of the Spin(3) group are simply )1(
G , which are proportional

to the total angular momentum operator .10 )1()1(
 GJ 

The basis states can be labelled by a set of quantum numbers which

characterize the irreducible representations of the groups appearing in

Eq.(2-109).

)6(BU ; )4(FU ; )5(BU ; )5(BSO ; )3(Spin ; )3(Spin ; )2(Spin ;

 N ;  M ; dn ; v ;  21 , ; J ; MJ ....(2-113)

The quantum numbers N, M, nd, and v are the same in the previous

section. The values of (v1, v2) which characterize the irreducible

representations of Spin(S), can be obtained from the branching rules. For

the case of N bosons and M = 0 fermions the values of (v1, v2) are given by:

1,...,2,1  dd nn or 0 (nd = odd or even) ......................(2-114)
02 

for the case of N bosons and M = 1 fermions by

2

1
,

2

1
1  

02  ...................................(2-115)

Since the step from Spin(S) to Spin(3) is not fully reducible an

additional label n is needed to classify the basis states uniquely:

,...2,1.0n For M =0

...2/3,1,2/1,0n For M =1

Apart from terms which only contribute to binding energies the most general

Hamiltonian which is diagonal in the basis, Eq.(2- 113), is given by:

)1162...(.. )3(2)5(22)5(21)5(2)41)2(1)5(12)5(11  SpinSpinSOUUUUU
CCCCCCCCH BBFFBB 

The linear C1 and quadratic C2, Casimir operators appearing in Eq. (2-116)

can be expressed in terms of the generators Eqs. (2-110), (2-11) and

(2-112) as [82]:
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)0(
0

^

)5(1
5BnC dU B 

)0(
0

^

)4(1
4AMC FU



 4. ^^)(
4

0

)(

)5(2



ddU

nnBBC B






 )1()1()3()3(

)5(2
..4 BBBBC BSO



 )1()1()3()3(
)3(2 ..4 GGGGC Spin 

)1()1(
)3(2 .20 GGC Spin  ............................................(2-117)

The expectation values of the Hamiltonian, Eq.(2-116), are given by

the energy formula

)3(2)4(),,,,,( 121  vvnnMnnJLvnMNE ddddd 
       )1182........(12132 22112  JJ

2- Wave Functions.

In order to calculate matrix elements for electromagnetic transitions

and other nuclear properties analytically, one needs to know the wave

functions explicitly. It is convenient to expand the wave functions,

Eq.(2-113), into wave functions of the product group SOB(5)SPF(4).

    )1192.....(....................
2

3
,

2

1
,,,,,,, ,

,1 1
 LnNJnN d

L

L
Ld  



where
2

1
1  . The wave function   JnN d ,,,, 1 denotes the wave

function     JnMN d ),
2

1
,(,,,1, 21   , while   LnN d ,,,  denotes the

UB(5) wave function     LnMN d ),0,(,,,0, 21   and
2

3
,

2

1 the

fundamental spinor representation of Sp(4). The expansion coefficients
L
L

,
,1


 , can be interpreted as the isoscalar factors [97] for the group reduction

Sp(4)  SU(2). Next we use Racah’s factorization lemma [97], which

relates the isoscalar factors LN
JN

,,
,2/1,2/1

'
  for the group reduction

SU(4)  Sp(4)  SU(2), which already have been calculated, to those for

the reductions SU(4) Sp(4),
',

2/1,2/1


 N
N  and Sp(4)  SU(2), L

J
,

,2/1,

'
  .

)1202.......(..........,
,

,
,2/1

,,
,,2/1  

L
J

N
N

LN
JN








 
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where 2/11  . Taking   2/1,
2/1,2/1 )42/()4(  NNN

N  
 and

  2/11,
2/1,2/1 )42/()( 

 NNN
N  

 , we obtain the following expressions for

the Sp(4)  SU(2) isoscalar factors,

)1212(....................
4

42 ,,
,2/1,2/1
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,

,2/1 
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


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
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JN

L
LN N

N 


 




The coefficients L
J
,
,


 can also be found by diagonalizing the operator

G(3) . G(3) between the wave functions given in Eq. (2-117). The matrix

elements of G(3) . G(3) are given by

        )1232.(....................,,,,1,.,,,,1, ''
1

'')3()3(
1  JnMNGGJnMN dd 

  )1242(....................1
10

1

4

3
)3(

2

1
11'''

11
' 



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




  JJ

dd nnJJ
 

3- Electromagnetic Transition Rates E2 Transitions.

The most general one-body E2 transition operator can be written as [82]:

      )1252......(..........~~~~ )2(

2/3
†

2/32

)2(†~
2

)2(††~
2

)2(   aatddqsddsqT E

The first term in Eq. (2-125) has selection rules 1 dn , while the last two

terms have 0 dn . The reduced matrix elements of T(E2) can be calculated

by expanding the wave functions according to Eq. (2-119):

        ''
1
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1 ,,,,1,,,,,1, JnMNTJnMN d

E
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The isoscalar factors L
J

,
,1


 , have been derived in the previous section

and the reduced matrix elements of )2(E
BT have been derived in the previous

section and the reduced can be taken from Ref. [54]. From the reduced
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matrix elements, Eq. (2-126), we can calculate B(E2) values, Eq. (2-103),

and quadrupole moments, Eq. (2-105), in the usual way.

M1 Transitions.

The Ml operator in the Spin(S) limit can be expressed as:

)1272........(..............................510 )1()1()1(   AgBgT FB
M

where )1()1( ,  AB are defined in Eqs. (2-94) and,(2-95). The operator in Eq.

(2-127), has selection rules ,0 dn ,0 ,11  02  . If FB gg  ,

the Ml-operator is proportional to the total angular momentum operator )1(
J

and therefore in this case all Ml transitions are forbidden. We will consider

the general case FB gg  . The reduced matrix elements of )1(MT can be

obtained by expanding the wave functions according to Eq. (2-119).
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From the reduced matrix elements Eq. (2-128) one can calculate T(M1)

matrix element values Eq. (2-106) and magnetic moments Eq. (2-107).

2.3.2-Interacting Boson-Fermion Model-2 (IBFM-2)

The interacting boson-fermion model-1 (IBFM-1) describes

properties of even-odd nuclei by coupling collective and single-particle

degrees of freedom much in the same way this is done in the collective

model [72]. The collective degrees of freedom are described either by

shape variables αμ (μ = 0, ±1, ±2) or by boson operators

ds, (μ = 0, ±1, ±2), with no direct link to the underlying microscopic

structure. A microscopic description of nuclei is provided by the spherical

shell model. Collective features in this model can be obtained by

introducing the concept of correlated pairs with angular momentum and

parity  0J and  2J . A treatment of these pairs as bosons leads to the
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interacting boson model (IBM). However, since there are protons and

neutrons, one has the possibility of forming proton and neutron pairs. In

heavy nuclei, the neutron excess prevents the formation of correlated

proton-neutron pairs and one thus is led to consider only proton-proton and

neutron-neutron pairs. The corresponding model is the interacting boson

model-2 (IBM-2) [98, 99]. The introduction of fermions in this models

leads to the interacting boson-fermion model-2 (IBFM-2). In addition to a

more direct connection with the spherical shell model, the interacting

boson-fermion model-2 (IBFM-2) has features that cannot be obtained in

the interacting boson-fermion model-1 (IBFM-1).

The structure of interacting boson fermion model-2 (IBFM-2) is very

similar to that of model-1 (IBFM-1). In order to avoid repetitions, the

discussion here and in the following section will therefore be kept short and

will concentrate mostly on numerical studies [82].

2.3.2.1- Bosons and fermions

Consider an odd-even nucleus in the spherical shell model. Single-

particle levels here are denoted by nlj with n being the principal quantum

number, l the orbital angular momentum and j the total angular momentum,

2
1 lj .When many particles occupy the valence shells, the

diagonalization of the residual interaction in the shell model space is

unmanageable. A truncation can be obtained first by assuming that the

closed shells are inert and second by considering only those configurations

arising from pairing together particles to states with angular momentum

and parity  0J and  2J . In even-odd nuclei at least one particle

remains unpaired. In odd-proton nuclei it is a proton, in odd-neutron nuclei

it is a neutron. One can also consider situations in which both one proton

and one neutron are unpaired or cases in which two neutrons or two protons

are unpaired. The former situation will arise in odd-odd nuclei while the

latter will correspond to excited states in even-even nuclei. (These excited

states are often called two-quasi-particle states.) The general situation is
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thus described by proton (neutron) bosons with  0J , denoted by  vss

and proton (neutron) bosons with  2J , denoted by  vdd . This is

identical to the situation in even-even nuclei. In addition, there are unpaired

protons, denoted by a and neutrons, a . As in the case of even-even

nuclei, in order to take into account the particle-hole conjugation in particle

space, the number of proton and neutron bosons, BN and BN , and of

proton and neutron fermions, FN and FN is counted from the nearest

closed shell, i.e., if more than half of the shell is full, )(BN and )(FN are

taken as holes. Thus, for example, for 65
119
54 Xe , 250)/2-(54 BN ,

750)/2-(64 BvN and 164-65 FvN while for 73
127
54 Xe , 250)/2-(54 BN ,

4
~

74)/2-(82
~ BvN and 1

~
73-74

~ FvN . A bar is sometimes placed over the

numbers )(BN and )(FN to indicate that these are hole states. The total

number of bosons and fermions is then:

,BvBB NNN  

 1292 .FvFF NNN  

Properties of this model, with protons and neutrons explicitly introduced,

will now be discussed.

1- Boson and fermion operators.

The building blocks of the interacting boson-fermion model-2

(IBFM-2) are boson and fermion operators for protons and neutrons. The

boson operators are identical to those in section (2.2) [82]:

,,,, †
,

††
,

†
 vv dsds 2,1,0 

)1302(.......... ,,,, ,,  vv dsds 2,1,0 

or, in a more compact notation,

†
,, mlb ; mlb ,, ;  lmlv  1;2,0;, )1312.........( 

These operators satisfy Bose commutation relations,

  ,, '''
†

',',',, mmllmlml bb  
........... )1322(     0,, †

',','
†

,,',',',,  mlmlmlml bbbb  .

In addition, there are now fermion creation and annihilation operators,
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 jm
n

jjjjvaa mjmj  ,,2/3,2/1,,,
2

,
1

;,;; ,,
†

,,  …. )1332( 

The fermion operators satisfy Fermi anticommutation relations,

  ,, '''
†

'',',,, mmjjmjmj aa   

.................................... )1342(     0,, †
',','

†
,,',',',,  mjmjmjmj aaaa  .

The values over which the index j runs are now determined by the single-

particle levels in the valence shell. For example, for 73
127
54 Xe , the values of vJ

are 5/2, 7/2, 11/2, 1/2 and 3/2. The principal quantum number, n, is as usual

not written as an index on the fermion operators, unless one considers large

spaces in which there are two single-particle states with the same j. If only

valence shells are included, this never occurs. Boson and fermion operators

are assumed to commute,

        0,,,, †
',','

†
,,',','

†
,,

†
',',',,',',',,  mjmlmjmlmjmlmjml abababab  ….(2-135)

2-Isospin

Instead of the label v,  , it is possible, for bosons as well as for
fermions, to introduce another, equivalent label. For bosons it is called
F-spin and was defined in    mnOSpmnU  where m is even. For

fermions the label is precisely identical to isospin. Protons can be
characterized by 2

1T and projection 2
1zT , while neutrons are

characterized by 2
1T and 2

1zT , i.e.

2
1

2
1 , ,

......................... )1362( 
2
1

2
1 ,v .

Using the isospin label, fermion creation and annihilation operators are

denoted by

†
,,,

2
1 mjmt

a ; mjmt
a ,,,

2
1 ; )2/1( m ............................ )1372( 

When the isospin label is used, spherical tensors are built from creation and

annihilation operators of the type

  †
,,,,,,

2
1

2
1

2
1

~
mjm

mjm

mjm t

t

t
aa 

 . )1382( 

Isospin for fermions does not play an important role in the interacting

boson-fermion model-2 (IBFM-2) since protons and neutrons occupy
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different single-particle states. It plays instead an important role in more

elaborate versions of the model.

3-Basis states

Basis states in the interacting boson-fermion model-2 (IBFM-2) are

rather complex. Denoting the indices l, m as  and the indices j, m as i,

basis states can be written as

obbbbaaaaBF vvivivii  †
',

†
,

†
',

†
,

†
',

†
,

†
',

†
,:  ………...(2-139)

If no fermion creation operators are present, Eq. (2-139) describes a

state in an even-even nucleus, if one fermion operator is present,

Eq. (2-139) describes a state in an even-odd nucleus, if one proton and one

neutron creation operator is present, the state is in an odd-odd nucleus, etc.

Angular momentum couplings are chosen in such a way that bosons and

fermions are first coupled among themselves, followed by the final

coupling,

BF :        F
v

JJ

jvjv

J

jj aaaa   †
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†
,

†
',

†
,





................ )1402(           obbbb J
M

LL

lvlv

L

ll

Bv ]†
',

†
,

†
',

†
,   

 .

2.3.2.2 The IBFM-2 Hamiltonian operator

The Hamiltonian operator has now the general form [82]:

BFFB HHHH  .......................................... )1412( 
with

vBvBB HHHH   ,

.............. )1422( 
vFvFF HHHH   ,

vvBFBFvvBFBF HHHHH  

The various parts have the same structure as those discussed in

section(2.2), except that indices v, appear everywhere.

1-Special forms of the interaction

The most general Hamiltonian (2-141) and (2-142) contains many

parameters. A phenomenological study using all the parameters is nearly

impossible. In the analysis of experimental data simpler Hamiltonians are

quite often used which contain the essential features of the interaction. The
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part describing the bosons is usually treated in terms of the Talmi

Hamiltonian, which contains the basic features of the effective nucleon-

nucleon interaction that emerge from pairing, quadrupole and symmetry

energy. In addition, in some calculations a d-boson number-conserving

interaction arising from a seniority-conserving nucleon-nucleon interaction

between like particles is introduced. The adopted boson Hamiltonian is

then [82]:

vvvvdvd VVMQQnnEH
v

 


 


ˆ'ˆ.ˆˆˆ0
......... )1432( 

The operators 


Qnn
vdd

ˆ,ˆ,ˆ and 
vQ̂ have the same meaning as in section (2.2).

In terms of the boson operators they are given by:




 ,
†

,ˆ ddnd ,

.........  1442      2†2††
,

~~~ˆ



  ddsddsQ  , v, 

The Majorana operator vM 
ˆ is given by:

     22†††† ~~~~.ˆ
vvvvv dsdsdsdsM  

     



3,1

†† ~~
2

k

k

v

k

vk dddd  . ....................(2-145)

The coefficients k have been introduced in Eq. (2-145) relative to

Eq. (2-45), in order to allow for different strengths of the last two terms

relative to the first one. This result arises from microscopic calculations of

the coefficients. The d-boson number-conserving interaction is:

      



4,2,0

††
2
1 ~~

L

LL

L ddddcV 


 , v,  ......  1462 

The part related to the fermions is described in terms of an effective

nucleon-nucleon interaction. This interaction can be taken either as a

schematic interaction (such as a surface  -function interaction), as often

used in shell-model calculations [100], or as the effective interaction

arising from the free nucleon-nucleon interaction. In most calculation only

one proton or one neutron is unpaired. In these cases, only the one-body

part of HF matters. This is just the single-particle energy [82]:
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 
v

vv
j

jj
j

jjF nnEH ˆˆ' 0 



, ..................................  1472 

where

 


 
m

mjmjd aan ,,,,ˆ , v,  ............................  1482 

In odd-odd nuclei there is one unpaired proton and one unpaired

neutron. In these cases, one needs also the proton-neutron interaction. This

can be taken in the form of a quadrupole interaction:

        
vv

vvvv
jjjj

jjjjjjjjF aaaavH
''

0

0

2
'

2†
'

†
''2

1 ~~



, ............... )1492( 

or, alternatively, a surface  -function interaction is used.

The most important part of the Hamiltonian for even-odd nuclei is

the boson-fermion interaction. The microscopic theory of the interacting

boson-fermion model suggests specific forms for this interaction. The three

important terms are, as in section (2.2) the monopole, the quadrupole and

the exchange interaction. The monopole and quadrupole terms are written

in the same form as in section (2.2):

    
v

vvv
j

jdj
j

jdj
MON

BF nnAnnAV ˆˆˆˆ


 ............................. )1502( 

 
vv

vvvv
jj

jjvjj
jj

jjvjj
QUAD

BF qQqQV
'

''
'

'' ˆˆˆˆ 




, ...............................  1512 

where
j

n̂ and
vj

n̂ are defined in Eq. (2-148) and the fermion quadrupole

operators
 'ˆ jjq are given by:

  2

'
†

,'
~ˆ

  jjjj aaq  , v,  ..........................................  1522 

The microscopic structure of the interacting boson model suggests

that the monopole interaction acts predominantly between like particles

(proton fermions with proton bosons and neutron fermions with neutron

bosons), while the quadrupole interaction acts predominantly between

unlike particles (protons with neutrons) [101] . These considerations are

built in the special forms (2-150) and (2-151). The last term in the boson-

fermion interaction is the exchange term. In the interacting boson-fermion

model-2 (IBFM-2) this term has a form somewhat different from the

corresponding term in section (2-3):
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This form again is suggested by the microscopic structure of the model. It

should be noted that, if no distinction is made between protons and

neutrons, the form (2-153) can approximately be rewritten as by

appropriately contracting the s-boson operators.

2-Transition operators

Transition operators can be written in the same way as in section

(2-2). There are now four terms describing proton and neutron bosons and

fermions [82]:
         L

vF
L

F
L

vB
L

B
L TTTTT  ,,,,  .....................................................  1542 

The boson terms are given in section (2.2). The fermion terms can, to the

lowest order, be written as:

Particularly important in even-odd nuclei are the transition operators which

induce E2 and Ml transitions. It is customary in the operators to separate

the dependence on the angular momenta j and vj from the coefficients that

determine the strengths of the transitions. This is done by introducing

effective charges and moments. For E2 transitions, one has:

where now the single particle indices jsln ,,, 2
1 are written explicitly. The

quantities Fe and F
ve are the fermion effective charges. The free values of

these charges are 1 and 0 respectively, in units of the electron charge. Shell
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model calculations indicate that eeF 5.1 and eeF
v 5.0 [100]. Following,

the boson part is written as:

  
 ,, Q̂eT BL

B  , v,  .....................  1572 

A superscript B has been added to e in order to distinguish it from the

fermion charges. The units of Be are different from those of Fe since the

radial integral is already included in Eq. (2-157). The boson effective

charges Be have the same units as the product:

 ',',' 2 lnrlnee FF  , v,  ........................  1582 

that is the units are eb.

For M1 transitions, the fermion part of the operator is written in the form [82]:

The quantities F
s

F
vl

F
l ggg  ,,, ,, and F

vsg , are the single-particle g-factors. The

free values are 58.5,0,1 ,,,  F
s

F
vl

F
l ggg  and 3.82, F

vsg in units of

nuclear magnetons, N . In actual calculations, the spin factors sg are

renormalized. Typical values in shell-model calculations are

freeenorm 7.0 s
r
s gg  . Following, the boson part of the Ml operator is usually

written as:

where L̂ is the angular momentum operator of the  (   or  ) bosons.

The boson g -factors have the same units as the fermion g-factors since no

radial integrals are involved in Ml transitions.

3-Transfer operators

Transfer operators assume a particularly important role in the

interacting boson-fermion model-2 (IBFM-2). This is because the

transferred particle is either a proton or a neutron (or a pair of protons or

neutrons) and it is thus natural to compute matrix elements of transfer

  3/',,',, '2
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,,2
1

4
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' 
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31
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operators within a framework of a model that explicitly treats proton and

neutron degrees of freedom. There are two types of one-nucleon transfer

operators, those that change the boson number by one unit and those that

do not. When expanded in terms of creation and annihilation operators, the

transfer operators of the second kind can be written as [82]:
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Those of the first kind can be written as
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The substraction operators, P , are obtained by taking Hermitian

conjugate of Eqs. (2-161) and (2-162).

Two-neutron addition and subtraction operators are written terms of

boson operators alone, at least if one considers only states with at most one

unpaired particle.

4-Algebras: Boson and Fermion Algebras

The algebraic structure of the interacting boson-fermion model-2

(IBFM-2) is a combination of the algebraic structures discussed previously

and those of section (2.2). There are now four parts corresponding to

proton and neutron bosons and fermions. By combining these four pieces

one can obtain a large number of possible couplings. Since these are simple

extensions of the couplings described in section (2.2), only a few selected

examples will be discussed here.

From the bilinear products of boson and fermion operators one can

form now four algebras [82]:
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The algebras in Eq. (2-163) are the unitary algebras discussed previously,

   6,6 B
v

B
v

BB ugug   ,

   v
B
v

F
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BF ugug  , , .....................................  1642 

where  and v are the dimensions of the fermionic spaces, i.e.,

  



j

j 12 and   
vj

vv j 12 . The algebraic structure of the model

is thus that of the direct sum of all four algebras, or, using the notation

appropriate for groups, the product:
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B UUUUG   66 , .................  1652 

This product is reduced to the rotation group O(3). There are two

main routes, which will now be illustrated with an example. The first route

is that in which bosons are first coupled and so are fermions and

subsequently the combinations of bosons and fermions are coupled. The

second route is that in which protons first are coupled and so are neutrons

and subsequently the combinations of protons and neutrons are coupled. To

clarify this, consider the case in which 4 v . This case has been

extensively investigated [102]. The first route corresponds to the lattice of

algebras.

The second route correspond to the lattice of algebras
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...............  1662 

The complexity of the problem is clear from Eqs. (2-165) and (2-166).

2.3.2.3-Dynamic symmetries

The only dynamic symmetry that will be considered here in detail is

one that has found useful applications in the description of odd-odd nuclei

in the region of the Au isotopes. This symmetry corresponds to bosons

described by O(6), protons occupying a single-particle level with

4,2
3  j and neutrons occupying single-particle levels with

12,,, 2
5

2
3

2
1  vvj .

1-Lattice of algebras

The lattice of algebras considered [103] is intermediate between the

two schemes discussed in section (2.3.2).
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2-Energy Eigenvalues

The usual procedure of writing the Hamiltonian in terms of Casimir

operators gives [82]:

       6666 241322110
BB
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Taking the expectation value of H in the basis

one obtains energy eigenvalues appropriate to describe odd-odd nuclei [82]:
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where the constant terms have been included in 0'e . Similar formulas can be

obtained in the cases where the    124 F
v

F UU  representations are    00 

       

       
       

   
           

   
       

   
       

L

BF
v

BF
v

F
vs

BF
v

F
vs

BF
v

F
vs

BF
v

F
vs

FBF
v

F
vs

FBF
v

F
vs

F
v

FB
v

FvFvBvB

F
v

FB
v

B

MLSJv

OOSUSpin

USpinUSpin

NNN

USUUUUU

NN

UUUU

NNNNNN

UUUU

2/1,

2'3'23

,',','

2526

,,',','

246246

1,

2646

11

12466

,

21321

,,

321321

,,

21

,






































………  1692 



Chapter Two Theoretical Considerations

71

(even-even nuclei),    01  (odd-proton nuclei) and    10  (odd-neutron

nuclei) for example  ,1,1,3,1119
198
79 

 FFBB NNNNAu
v

.

Examples of nuclei with )12()4()6()6( FFBB UUUU   symmetry.

Experimental examples of odd-odd nuclei which can be described by

the expression Eq. (2-170) have been found in the Au region. One of these

nuclei, 119
198
79 Au , Recently, this nucleus has been remeasured by [104].

However, due to the complexity of the odd-odd spectrum, it is difficult to

establish a one-to-one correspondence between observed and calculated

states. Thus, any assignment of quantum numbers to the observed levels in

119
198
79 Au can only be viewed as tentative as long as they are not confirmed by

nucleon transfer or electromagnetic decay properties. Simple analytic

expressions are available for the former [105] and will provide a test of

proposed classifications of levels in nuclei in this mass region.

It is worthwhile commenting on the extreme difficulty, both

experimental and theoretical, posed by odd-odd nuclei. From the

experimental side, the high density of levels makes it very hard to assign

spin and parity to individual states. A theoretical analysis of odd-odd

nuclei, especially when many single-particle levels are included, is hardly

feasible. Dynamic symmetries offer here a unique opportunity. Despite the

apparent complexity of the procedure described in section, calculations are

still feasible and straightforward. The only complication is in the

bookkeeping aspect of the procedure, but this is greatly aided by the use of

algebraic methods (group theory). It is in the treatment of these very

complex cases that the full power of algebraic methods comes into

play[82].

Examples of nuclei with )4()4()6()6( FFBB UUUU   symmetry.

Although not discussed here in detail, we note that examples of

dynamic Bose-Fermi symmetries based on the chain Eq.(2-169) have been

found in the spectra of the odd-odd Cu isotopes, in particular of 33
62
29 Cu .
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The odd-even Cu isotopes were discussed in the examples of nuclei with

(5)Spin BF symmetry. The odd-odd isotopes provide further examples of

(5)Spin BF symmetry in the case in which the odd proton occupies an orbit

with 2/3j and the odd neutron one with 2/3vj .

2.3.2.4-Superalgebras.

Superalgebras can also be used within the context of the interacting

boson-fermion model-2 (IBFM-2) [82]. The only difference is that the

proton and neutron indices now appear everywhere and that the number of

routes possible in the reduction of the superalgebra to the rotation algebra

increases considerably. Superalgebras based on the IBFM-2 are particularly

useful in the description of odd-odd nuclei, since by fixing the parameters

of the Hamiltonian and other operators from a study of even-even and odd-

even nuclei, one is able to predict the structure of odd-odd nuclei. These

predictions can be compared to the experimental data (when they exist) or

used as a guideline for future experiments. In this section, only a few

selected cases will be presented.

1- Supersymmetric chains.

Supersymmetric chains can be obtained by embedding the algebras

of section (2.3) into superalgebras. There are again two main routes that

will be illustrated with an example. Consider the case in which both

protons and neutrons occupy a level with 2/3 vjj . The

corresponding algebraic structure has been discussed in section (2.3) and

can be embedded into the superalgebra [82]:

   4|64|6*
vUUG   ......................  1712 

When considering the subalgebras of Eq. (2-171), one can either first

combines the two subalgebras into their sum:

         464|64|64|6 FB
v UUUUU  .................  1722 

where the algebra  4|6U is obtained by adding the generators of

4)|(6U to the corresponding generators of  4|6vU , or one can go
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directly from the proton and neutron superalgebras to their maximal Lie

subalgebras [82]:

               4644664|64|6 FBF
v

FB
v

B
v UUUUUUUU   ........  1732 

The first alternative only exists if the proton and neutron spaces are

identical, v . If the first alternative is possible, one can introduce

formalism similar to F -spin, but now applied to superalgebras. Proton

bosons and fermions can be assigned to a supermultiplet with 2/1F and

F -spin projection 2/1zF . Similarly, neutron bosons and fermions have

2/1F and 2/1zF , i.e.

2
1

2
1 ,

2
1

2
1 ,v ...................  1742 

The supersymmetric multiplets now contain:
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The F -spin basis can be obtained by constructing the Kronecker

products of two  4|6U representations. The rules for this product, when

expressed in terms of Young supertableaux, are identical to those of normal

Lie algebras. For example, [82]:

 . ............................ )1762( 
or

}1,1[}2[}1[}1[  . .......................  1772 
One obtains in this case Young supertableaux which are not totally

supersymmetric.

2- Dynamic supersymmetries

In heavy nuclei, the situation described in the previous section

(the F -spin scheme) seldom occurs. One must therefore use the second

possible reduction Eq.(2-172). Some examples of this kind have been

found. One such example corresponds to the embedding of the chains

discussed in sect. (2.3) into [82]:
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Use of supersymmetry now allows the construction of

supermultiplets obtained by combining the proton supermultiplets with the

neutron supermultiplets. The important portion of the supermultiplet that

can be accessed easily is that formed by an even-even nucleus, the

adjoining odd-even and even-odd nuclei and the neighboring odd-odd

nucleus, i.e. the nuclei with 82]:

 NN B  , 0FN , vBv NN  , 0FvN ,

..........  1792 

1  NN B , 1FN , vBv NN  , 0FvN ,

 NN B  , 0FN , 1 vBv NN , 1FvN ,

1  NN B , 1FN , 1 vBv NN , 1FvN .

All these nuclei belong to the supermultiplet }[}[ vNN  . The set of

four nuclei Eq.  1792  has been termed a magic square. An example of

such a magic square is shown in Figure (2.3). If a dynamic supersymmetry

is present, all nuclei in the square should be described with the same

Hamiltonian. For the nuclei shown in Figure (2.3) the appropriate

Hamiltonian is given by Eq. (2-170). One must insert in this formula the

appropriate eigenvalues of the Casimir operators corresponding to the four

cases in Eq.  1792  . The odd-odd formula is given by Eq. (2-171). The

even-even and even-odd formulas are obtained in the manner discussed in

sections (2-1) and (2-2). A comparison of the spectra obtained in this way

with those experimentally measured is shown in Figure (2.3).

Figure (2.3) An example of a magic square in the Pt-Au
region.

118
197
79 Au 119

198
79 Au

118
196
78 Au 119

197
78 Au
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Another example of a dynamic supersymmetry including even-even,

even-odd, odd-even and odd-odd nuclei has been presented by Hübsch and

Paar (1987) [102] in the region of the Cu isotopes.

A further generalization of these studies can be achieved by

embedding the direct product of proton and neutron superalgebras into a

single, larger superalgebra [82]. This, in general, can be written as Jolie

et al., [106]:

     

     v

vvv

NNN

UUU






 |6|6|12

..............  1802 

with NNN v  . The single representation [N] of

 vU |12 now not only contains all even-even nuclei with

NNN BvB  but also all associated even-odd, odd-even and odd-odd

nuclei, as specified in Eq. (2-179). It is clear that, due to the large number

of nuclei contained in one multiplied, such schemes have only a very

limited applicability.

2.3.2.5-Numerical studies

The degree of complexity when going from even-even to even-odd

nuclei increases by at least one order of magnitude. It increases further by

another order of magnitude when going from odd-even to odd-odd nuclei.

Although the dynamic symmetries discussed in the section (2-2) may give

some insight into the structure of specific examples of nuclei, they cannot

be used in all cases and one must resort to more realistic, numerical

calculations. Many odd-even nuclei have been studied in this way with the

interacting boson-fermion model-2 (IBFM-2), using a computer code

written by Bijker (1983) [ 107] and an example will be discussed in next

section. Odd-odd nuclei, being more complex, have been studied less

accordingly, but nevertheless a few calculations are available. Finally, we
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also discuss in this chapter an example of a broken-pair calculations for

even-even nuclei.

1- Even-Odd nuclei.

In view of the large number of parameters appearing in the operators

of section (2-2), a semi microscopic input is introduced [108]. Here this

input is more appropriate, since the (IBM-2) is directly related to the

underlying shell model. Coefficients in the operators of sections (2.2) and

(2.3) are written in terms of the occupation probabilities obtained through a

BCS calculation [86]. This calculation is done separately for protons and

neutrons and provides the single-particle energies in the presence of several

valence particles (quasi-particle energies,


 j and
vj

 ), in terms of the Fermi

energies  and v , the pairing gaps  and v and the single-particle

energies in the absence of other valence particles,
j

E and
vj

E ,

  22



 jj E , v,  ........................  1812 

The occupation probabilities are then given by
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21
 jj vu  , v,  ............................  1822 

The pairing gaps are usually taken as 2
1

12  A MeV [72] . The

Fermi energies are obtained by solving Eqs. (2-181) and (2-182) with the

condition that the number of nucleons be:

  


 
j

jj jvn 122 , v,  ....................  1832 

For the calculation of energies and wave functions one needs the

parameters of the boson-fermion interaction. On the basis of BCS theory

one can write them in the form:
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All energies in odd-even nuclei are then calculated in terms of three

coefficients,  ,A and  . The BCS theory also provides a simple

parameterization of the coefficients appearing in the one-nucleon transfer

operators (2-184) and (2-185):

where
 jKK ', and

j
K '' are obtained from the three conditions:
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The formulas (2-184) -(2-188) are valid when the odd nucleon is a

particle. Corresponding formulas for a hole are obtained by interchanging

j
u and

j
v . From this parameterization one can obtain that of other

operators, since these can be built from one-nucleon operators.
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2-Energies

The calculation that will be described here concerns the even-odd

isotopes of Hf (Z=72) and W (Z=74). The single-particle levels included in

the calculation and their energies are given in chapter four. In addition, one

needs the parameters appearing in the boson part of the Hamiltonian, HB.

These are determined by the energies of nuclei with no unpaired nucleons

(even-even nuclei).

In the case discussed here these parameters are taken from the

calculation of the even Hf and W isotopes, which are discussed in chapter

three. The appropriate parameters are shown in Table (4-1). The only new

parameters needed for the calculation of even-odd nuclei, are the strengths

of the monopole, quadrupole and exchange interactions,  ,A and  .

The calculation separates into two parts, one related to the negative-parity

states and another part related to the positive-parity states. The resulting

energies are shown in Figs. (4-1) to (4-5) for Hf isotopes and Figs (4-6) to

(4-10) for W isotopes.

It is of interest to contrast spectra of even-proton nuclei with those of

odd-neutron nuclei with the same mass number. One observes major

differences. These differences arise from the fact that the boson-fermion

coupling depends on the occupation probabilities which are different for

protons and neutrons.

3-Electromagnetic transitions and moments; E2
Matrix elements of electromagnetic transition operators are

calculated using the wave functions obtained from the numerical

diagonalization of H and the operators discussed in section (2.2). E2

transitions and moments are given in terms of the boson effective charges,

Be and B
ve . The fermion part of the operator requires the fermion effective

charges and radial integrals.
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The radial integrals are estimated to be blnrln 0033.0,, 2 

for the 2/111h level and blnrln 0027.0,, 2  for the positive-parity

levels. The fermion effective charges are taken as eeF 5.1 and eeF
v 5.0 .

Without any further parameters, one can then compute all E2

transitions and moments. A portion of these results is shown in chapter 4.

The experimental information on electromagnetic transitions and moments

in even-odd nuclei in this mass region is rather meager. E2 transitions in

odd-even nuclei are still dominated by the collective boson part. The

fermion part contributes only 5-10% to the matrix elements. A study of the

latter must thus a wait more accurate and systematic measurements of E2

transitions.

In contrast to E2 properties, Ml transitions and moments in odd-even

nuclei are dominated by the fermion part of the Ml operator. Using the

operator of section (2.2), one can compute the corresponding transitions.

The boson part of the operator requires a specification of Bg and B
vg . These

can be taken from the calculations reported in chapter three for even-even

nuclei by Sambataro et al., [109]. The fermion part of the operator requires

a specification of the fermion 5-factors. The orbital j-factors are N
F

lg  1, 

and 0, 
F

lg . The spin g-factors are taken as the free values quenched by a

factor of 0.7, i.e. N
F
Sg  58.57.0,  and N

F
sg  82.37.0,  . Also here

the experimental information is rather scarce. For those cases for which

experimental data exist, the results of calculations of M1 transitions agree

in general less well with the data as compared to the corresponding

calculations of E2 transitions. This indicates that while the collective

degrees of freedom appear to be well described in even-odd nuclei, the

single-particle degrees of freedom still require improvement.
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CHAPTER THREE

INTERACTION BOSON MODEL RESULTS AND DISSCUSION

3.1- 172-180Hf Isotopes in IBM-1

We investigate the dynamical symmetry of 172-180Hf isotopes and

energy spectra and the electromagnetic transition probabilities B(E2),

B(M1) and mixing ratio  (E2/M1) of these isotopes (Z = 72) within the

framework of IBM-1.

3.1.1 Hamiltonian Interaction Parameters

According to the Hamiltonian of IBM-1, the energy of 172-174Hf

isotopes (total numbers of bosons 14 and 15 respectively) lies in the

transitional region SU (3)O (6) (Eq.(2-40a)) and the 176-180Hf isotopes

(total number of bosons 16,15 and 14 respectively), lies in the dynamical

symmetry SU (3), Eq.(2-22a) have been calculated using the angular

momentum, quadrupole and octoupole parameters (a1, a2  and a3). The

best fit values of these parameters are given in Table (3-1), which show the

values of the relevant parameters. These values are obtained by fitting to

get results of the energy levels than that the experimental data [110],

whereas the first two terms and the last term in Eq.(2-3a)) have now

included because they are irrelevant to the case of the fully weakly

deformed nuclei (rotational nuclei).

3.1.2 Energy spectra

IBM-1 model has been used in calculating the energy of the positive

parity low-lying levels of Hafnium series of isotopes. A comparison

between the experimental spectra [110] and our calculations, using the

values of the model parameters given in Table (3-1) for the ground beta and

gamma bands, is illustrated in Figures (3.1) to (3.5). The agreement

between the theoretical and their correspondence experimental values for

all the isotopes are in a good agreement but for high spin states are slightly

higher but reasonable.
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Table (3-1): IBM-1 Hamiltonian parameters for 172-180Hf isotopes.
Isotopes 1a 2a 3a 

172Hf 0.040 -0.0110 -0.0700 -0.080
174Hf 0.0450 -0.0105 -0.0640 -0.060
176Hf 0.0095 -0.1130 0.000 -0.600
178Hf 0.0960 -0.0146 0.000 -0.110
180Hf 0.0101 -0.0140 0.000 -0.260

Table (3-2) gives the experimental and theoretical energy ratios. It

has been found that the 172-174Hf isotopes are in the transitional region

SU(3)O (6), and the 176-178Hf are deformed isotopes (rotational nuclei)

and they have the SU(3) dynamical symmetry respecting to IBM-1.

The obtained results are given in Figures (3-1) to (3-5), These figures

show the ground,  and  bands of experimental and IBM-1 calculation

for 172-180Hf isotopes. They show that there in a good agreement between

experimental energy levels and IBM-1 calculations.
Table (3-2): Experimental and theoretical values of energy ratios in 172-180Hf isotopes.

Isotopes )2/4( 11
E )2/6( 11

E )2/8( 11
E

Exp. IBM-1 IBM-2 Exp. IBM-1 IBM-2 Exp. IBM-1 IBM-2
172Hf 3.245 3.229 3.249 6.596 6.414 6.614 10.892 10.304 10.536
174Hf 3.3 3.3 3.267 6.67 6.66 6.88 11.21 11.30 11.023
176Hf 3.29 3.29 3.481 6.77 6.72 7.094 11.33 11.41 11.932
178Hf 3.3 3.3 3.290 7 7.2 6.784 11.67 11.8 10.774
180Hf 3.3 3.3 3.3011 6.88 6.82 6.881 11.645 11.7 10.739

SU (5) 2 3 4
O (6) 2.5 4.5 7

SU (3) 3.33 7 12
Experimental data are taken from ref. [110].

The root means square deviation (rmsd) [111]:

  )13.......(..........1 2/1
2

.exp. 



   EE

N
rmsd cal

(where N is the number of energy levels) is used to compare the

experimental and theoretical energy levels. Tale (3-3) gives the rmsd

between experimental and theoretical energy levels. In this table, we see

the ground state levels. The best agreement was found in 172Hf isotope

where the smallest value of rmsd is equal 0.0039 and equal 0.010 for
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gamma band in 178Hf isotope. However, rmsd equals 0.0099 for beta band

in 180Hf isotope.
Table (3-3): The root means square deviations (rmsd) between experimental and

calculated energy levels for 172-180Hf isotopes.

Isotopes
root mean square deviations (rmsd)

ground state band  band  band
IBM-1 IBM-2 IBM-1 IBM-2 IBM-1 IBM-2

172Hf 0.0039 0.0031 0.059 0.042 0.014 0.018
174Hf 0.0046 0.0029 0.061 0.040 0.013 0.0131
176Hf 0.0360 0.0030 0.054 0.041 0.012 0.001
178Hf 0.0340 0.0025 0.044 0.0038 0.010 0.09
180Hf 0.0140 0.016 0.0099 0.022 0.019 0.012

In general, the experimental and the IBM-1 calculated energy levels

in174-180Hf isotopes increase with angular momentum as J(J+1) because

these isotopes are of rotational nuclei (deformed nuclei) [26].
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Fig. (3.1): Comparison between experimental data [110],
IBM-1 and IBM-2 calculated energy levels for 172Hf.
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Figure (3.3): Comparison between experimental data [110], IBM-1 and IBM-2 calculated
energy levels for 176Hf.
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Figure (3.4): Comparison between experimental data [110],
IBM-1 and IBM-2 calculated energy levels for 178Hf.
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3.1.3 Electric Transition Probability B(E2)

The E2 transitions provide a more stringent test of the IBM-1. The

general E2 transition operator is given by the Eq. (2-6). The coefficient 2

called the boson effective charge is an overall scaling factor for all B(E2)

values which is determined from the fit to the )02;2( 11
 EB value. The

coefficient 2 may be determined from the quadrupole moment Q ( )21
 .

The ratio 22 / = χ = -1.32 in the SU (3) limit and is reduced to zero in the

O(6) limit. In the “FBEM” program the corresponding parameters are

Figure (3.3): Comparison between experimental data [110],
IBM-1 and IBM-2 calculated energy levels for 180Hf.
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)2(2 SDE and )2()5/1(2 DDE . The used parameters in T(E2) matrix

element of 172-180Hf isotopes are given in Table (3-4).
Table (3-4): The reduced matrix element parameters for 172-180Hf isotopes.

Isotopes )02;2( 11
 EB ).( 22 be ).(2 be ).(2 be

172Hf 0.920 0.046 -0.220
174Hf 1.0615 0.042 -0.330
176Hf 1.040 0.125 -0.540
178Hf 0.970 0.127 -0.033
180Hf 0.950 0.139 -0.031

As we noticed in IBM-1 results the B(E2) for g and g

transitions can vanish when these nuclei are treated as SU (3) symmetric

nuclei. This problem was solved by breaking this symmetry in the direction

of U (5) and employing the  parameter. The calculated B(E2) values were

improved by this attempt.

Table (3-5) shows that the electric transition probability for

g and g are smaller than the electric transition probabilities

between gg band. This table also shows also that, in general, there is a

good agreement between the experimental and theoretical B(E2) values in

the ground state band in 174-180Hf isotopes except the transition   11 46 in
174-180Hf, where the experimental and IBM-1 results of this transitions are

weak in agreement. The experimental and IBM-1 B(E2) calculations

between beta and ground band and between gamma band in general are

weak in agreement except the transition   12 02 in 176Hf isotope and
  13 02 in 178Hf isotope which gave a good agreement.

The weak agreement between experimental and theoretical in some

B(E2) values in those isotopes can be explained by the fact that many small

component of the initial and final wave functions contribute coherently to

the value of the reduced E2 transition probability, since these small

components are not stable enough against small changes in the model

parameters [114]. There are no available experimental data to many

transitions in Table (3-5); therefore, it has been predicted by IBM-1.
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3.1.4 Magnetic Transition Probability and Mixing Ratio  (E2/M1)

To evaluate the magnetic transition probability B(M1), we depend on

Eqs. (2-7a) and (2-7b), where the effective boson g-factor is estimated

using the fact g = Z/A is. The form of eq. (2-7) of the operator has no

off-diagonal matrix elements, implying that in this approximation, Ml

transitions are forbidden [54,55,58]. Some of the transition probabilities

obtained from perturbation theory are further discussed in [54,55].

The results show that the transitions between low-lying

collective states are weak. This is because of the increase of antisymmetric

component in the wave functions. The magnitude of M1 values increase

with increasing spin for g and   transitions, see Table (3-6).

The E2/M1 multiple mixing ratios for 172-180Hf isotopes, δ(E2/M1),

were calculated for some selected transitions between states of ΔJ = 0. The

sign of the mixing ratio must be chosen according to the sign of the

reduced matrix elements. The equations used are (2-7) for M1 transitions

and (2-54) for the mixing ratios. The results are listed in Table (3-7). The

agreement with available experimental data [110] is more than good

especially in the sign of the mixing ratio. However, there is a large

disagreement in the mixing ratios of 3+→ 2+, due to the small value of M1

matrix elements.

The present high-precision measurements indicate some

disagreements and these would not change significantly if the  value

recommended by Lange et a1., [115] were used. The most serious

disagreement occurs for the   43 transition which has the same initial

state as the   23 reference transition. A possible conclusion is that one or

both of the ground-state band levels contain admixtures. The difference

between the measured and deduced  values for the   22 transition may

be due to mixing in either or both of the levels.

Band mixing, and in particular a K = 1 admixture within the K = 0

ground state band, has previously been considered necessary in order to
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explain the M1 component in transitions linking the  and ground-state

bands. An analysis following the Mikhailov formulation and involving the

lower-spin states indicates a substantial K = 1 admixture. The

approximately equal value  (E2/M1) obtained for all such transitions

suggests that this mixing is uniform within the ground-state band.

The IBM-1 formalism predicts essentially the same spin dependence

for M1 transitions in 172-180Hf isotopes as does a geometrical approach, and

is thus capable of giving at least an equally good description of the data. In

addition, the IBM-1 model yields the simple prediction that )1/2( ME

values of   and g transitions should be equal for the same initial

and final spins, and this prediction seems to be borne out empirically. It has

been shown that different signs for g and g )1/2( ME values can

be reproduced by the IBM-1 model.
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3.1.5 Electric Monopole Transition Matrix Element

Strongly-deformed nuclei are easily identified by their rotational

behavior. There have been remarkably few such nuclei for which )0(2 E

data are available. Consequently, we have undertaken a compilation and

evaluation of data from which )0(2 E values have been extracted for

deformed nuclei. We present the data in Table (3-8). Traditionally,

strongly-deformed nuclei have been discussed in terms of rotations, 

vibrations and quasiparticle excitations; with an association between E0

transitions and  vibrations. This association has been based largely on the

nuclei 174Hf. This  -vibrational band picture has probably retained its

popularity because E0 transitions are expected with equal strength for all

 J = 0;  -band to ground-band transitions. Indeed, gJJ  E0 transitions

are seen in 174Hf up to J = 8. However, the identification of  vibrations

has generally been elusive and the current picture is confused.

The strength of the electric monopole transition matrix

element, )2/0(' EEX
fif

can be calculated using Eqs. (2-58) and (2-59) and

presented in Tables (3-8) and (3-9).

As pointed out previously [116], a large X (E0 / E2) value is not

necessarily a

signature of a  -vibrational state. For instance, our calculated X (E0 / E2)

value for   12 22 transition. However, it should be kept in mind that a large

result from the vanishing B(E2) values, especially in the case of higher

bands whose structure may be quite different from that of the lower bands.

Because of the possibility of accidental cancellations in the calculation of a

sum of terms with different signs, only the correct order of magnitude can

be expected from present calculation of a large number of states and matrix

element.

In the present X(E0/E2), branching ratios are used to extract the

)00;0( 12
 EB and )00( 12

2   values associated with 
20 states. Our results
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are shown in Table (3-9). In to complete the monopole values of 172-180Hf

isotopes, the measurements of E0 matrix elements of excited 
30 states in

these isotopes are in progress. The ratio of the reduced transition

probabilities )00;0( 12
 EB / )00;2( 12

 EB , is small for some transitions

which is close to transitional rotor value. However, the assumed two-

phonon 
20 state is strongly pushed too high in energy, which is explained

as being due to  -soft.

The most conspicuous features of the 
30 states in 172-180Hf is strongly

enhanced E2 decay to the 
10 state. This may be connected with the

intriguing question of the possible deformation of the excited 0+ state: the

large B(E2) values could alternatively be interoperated to imply a

vibrational structure associated e.g., with mixed bands.

The measurement of E0 components in 0J transitions are also

sensitive to the model predictions and using the IBM-1. An excellent

agreement for  (E0) of the 0.692 MeV   12 22 transition for which we are

also able to deduce the sign of E2 reduced matrix element, that is the

relative phase of the E0:E2 matrix elements.

From Table (3-9), the )2/0( EEX values for 2+ states are taken when

the large M1 admixtures in the   22 transitions are included. These

large differences emphasize the need for knowledge of the M1 admixture

before a theoretical analysis of 2+ state.

The ratio )2/0( EEX does increase with nuclear deformation because

the E2 matrix element goes to zero at a slower rate than E0. Hence, a larger

)2/0( EEX value, especially a larger )0(E value, should be noted regarded

as firm evidence of more collectively. In 178Hf, it is the lower 2+ state

which has a smaller B(E2) to the ground state but higher )2/0( EEX value.
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3.2 - 180-190W Isotopes in IBM-1

The present study attempts a unitary IBM-1 treatment of positive

parity states in even-even 182-188W isotopes. IBM-1 is a powerful tool for

studying the low-lying excited states and electromagnetic transition rates.

3.2.1 Hamiltonian Parameters and Energy Spectra

The best fit for the Hamiltonian Parameters Eq. (2-3a) used in the

present work is presented in Table (3-10) which gives the best agreement

between the calculated energy levels in the present work and their

corresponding experimental data taken from [117] as shown in Figures

(3.6) to (3-11).

The best fit values for the Hamiltonian parameters for 180-190W

isotopes are given in Table (3-10). The boson-boson interaction parameter

was fixed by the calculations on the boson core nuclei.

Table (3 - 10): IBM-1 Hamiltonian parameters for 180-190W Isotopes

Isotopes N 1a 2a 3a 

180W 14 0.0553 0.01150 -0.0140 -1.3228
182W 13 0.0597 0.0120 -0.0150 -1.3228
184W 12 0.0460 0.01423 -0.0115 -1.3228
186W 11 0.0401 0.0168 -0.0080 -1.3228
188W 10 0.3420 0.02063 -0.0085 -1.3228
190W 9 0.0206 0.0326 -0.0052 -1.3228

The examination of the experimental and theoretical energy levels

ratios (Table (3-11)) for the nuclei 180-190W shows that they lie in the

transitional region SU(3)→O(6), therefore the Hamiltonian of the transition

region SU(3)→O(6) has been employed in the calculation by using the

program PHINT [60].

Good global agreement was obtained in comparison with the most

recent experimental data and the model with the best fitted parameters



Chapter Three Interaction Boson Model Results and Discussion

98

proves that the isotopes 188W and 190W have high deformation and tend to

be near O(6) limit than to SU(3) limit.

The results indicate that the energy spectra of all different quasi-band

of 180-190W isotopes can be presented quite well. It is noticed; however, that

the results agree with the experimental data.
Table (3-11): Energy ratios for 180-190W isotopes in IBM-1 and its dynamical

symmetries

Isotopes
)2/4( 11
E )2/6( 11

E )2/8( 11
E

Exp. IBM-1 IBM-2 Exp. IBM-1 IBM-2 Exp. IBM-1 IBM-2
180W 3.260 3.278 3.175 6.647 5.726 6.166 10.999 12.344 10.958
182W 3.290 3.096 2.375 6.797 6.693 6.786 11.431 11.324 11.393
184W 3.273 3.190 3.194 6.726 6.330 6.637 11.258 10.654 11.734
186W 3.245 3.256 3.196 6.631 6.880 6.557 7.065 7.188 7.008
188W 3.096 2.835 3.090 6.090 6.264 6.034 9.965 9.864 9.769
190W 2.724 2.219 2.661 5.067 4.795 4.685 7.922 7.247 7.666

SU (5) 2 3 4

O (6) 2.5 4.5 7

SU (3) 3.33 7 12

Experimental data are taken from ref. [117].

The root means square deviation (rmsd) (Eq. (3-1)) is used to

compare the experimental and theoretical energy levels (see Tale (3-12)).

In this table we see the ground state levels. The best agreement was found

in 180W isotope where the smallest value of rmsd is equal 0.0028 and equal

0.011 for gamma band in 188W isotope. However, rmsd equals 0.0078 for

beta band in 182W isotope.
Table (3-12): The root means square deviations (rmsd) between experimental and

calculated energy levels for 180-190W isotopes.

Isotopes
root mean square deviations (rmsd)

ground state band  band  band

IBM-1 IBM-2 IBM-1 IBM-2 IBM-1 IBM-2
180W 0.0028 0.0024 0.055 0.044 0.017 0.015
182W 0.0044 0.0040 0.060 0.053 0.015 0.013
184W 0.0350 0.032 0.054 0.050 0.013 0.011
186W 0.0320 0.030 0.043 0.041 0.011 0.010
188W 0.0300 0.023 0.0078 0.030 0.015 0.012
190W 0.0290 0.020 0.0088 0.0062 0.015 0.013
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Figure (3.6): Comparison between experimental data [110],
IBM-1 and IBM-2 calculated energy levels for 180W.
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Figure (3.7): Comparison between experimental data [110],
IBM-1 and IBM-2 calculated energy levels for 182W.
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Figure (3.8): Comparison between experimental data [110],
IBM-1 and IBM-2 calculated energy levels for 184W.
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Figure (3.9): Comparison between experimental data [110], IBM-1 and IBM-2
calculated energy levels for 186W.
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Figure (3.10): Comparison between experimental data [110],
IBM-1 and IBM-2 calculated energy levels for 188W.
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Figure (3.11): Comparison between experimental data [110],
IBM-1 and IBM-2 calculated energy levels for 190W.
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3.2.2 Electric Transition Probability B(E2)

The even-even nuclei in 182-188W isotopic chains represent a good

opportunity for studying the behavior of the total low-lying E2 strengths in

the transitional region from SU(3)O(6) nuclei. After having obtained

wave functions of the states, we can calculate the electromagnetic transition

rates between low-lying states of all chain for 182-186W isotopes. Calculation

of electromagnetic transitions is a sign of good test for the nuclear model

wave functions. To determine the boson effective charges 2 = E2SD and



Chapter Three Interaction Boson Model Results and Discussion

105

2 = E2DD, we perform a fit to the experimental B(E2) values in such

isotopes (see Table (3-13)). The matrix elements of the E2 operator of Eq.

(2-6) have been calculated by using the following values of effective

charge parameters.

More information can be obtained by studying the reduced transition

probabilities B(E2). The FBEM program were employed and the values of

2 and 2 , were estimated to reproduce the experimental )02;2( 11
 EB

values. The parameters E2SD and E2DD used in the present calculations

were determined by normalizing the calculated values to the experimentally

known ones and displayed in Table (3-13).
Table (3-13): The reduced matrix element parameters for 180-190W Isotopes.

Isotopes )02;2( 11
 EB [117,118] 2 (e.b) 2 (e.b)

180W 0.850 0.0990 -0.3001
182W 0.840 0.10555 -0.312214
184W 0.756 0.108013 -0.3201
186W 0.7001 0.11310 -0.3341
188W 0.6001 0.1141 -0.3061
190W 0.414 0.1050 -0.3099

B(E2) values of 180-186W isotopes have been studied within the

framework of IBM-1. It is shown that there is a good agreement between

the results found, especially with the experimental once [117, 118].

The calculated values of the electric transition probability which has

shown the transition connect the levels with the same parity and E2

transitions are predominant. As seen from Table (3-14), the theoretical

B(E2) values agree with the experimental data within the indicated errors in

the experimental values. Moreover, the theoretical B(E2) values for the

transition seem to be systematically too small. This can be explained by the

fact that many small components of the initial and final wavefuntions

contribute coherently to the value of the reduced matrix element E2

transition probability [119]. Since the small components are not stable

enough against small changes in the model parameters, a quantitative

comparison with the experimental data is not possible.
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However, the calculated values in Table (3-14) are in agreement with

the experimental results. There are some differences between the B(E2)

values of   22 02 transition. Because there is no enough data and certain

result for this transition. The experimental B(E2) values of   23 02 ,
  23 22 transitions are little and the experimental B(E2) values of   11 46

for 184-186W isotopes do not exist. The calculated B(E2) value of   12 22

transition is between the error limits. For   11 24 transition, the difference

between the experimental and theoretical values is seen very small.

The quadrupole moment for the first excited state )2( 1
Q and the

second excited state )2( 2
Q is an important property for nuclei and is defined

as the deviation from the spherical charge distribution inside the nucleus

and from the quadrupole moment we can determine if the nucleus is

spherical, deformed oblate or prolate shapes. From the results in

Table (3-14), the shape of 182-186W isotopes is prolate in the first excited

state, and oblate shape in the second excited state.

In the quadrupole moment, qualitatively, with for the ground state

band, a negative )2( 1
Q means a positive intrinsic quadrupole moment 0Q .

For the gamma band, a negative )2( 1
Q means a negative 0Q . The negative

0Q implies that the nucleus has an oblate shape. The overall agreement is

surprisingly good in view of the interacting boson model-1 (IBM-1).
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3.2.3- Magnetic Transition Probability and Mixing Ratio (E2/M1)

In order to examine B(M1) and the magnetic dipole moment  of 
12

and 
22 state, we employed the relation [72]:

)23.....(....................  gI

where g is the boson gyromagnetic factor and I is the nuclear angular

momentum, where g estimated using the fact that Eq. (3-2), and the

experimental value )2( 1
 = 0.25 (8) N [117] for 184W, we obtained g =

0.2605 N . For the parameter in the M1 operator the value of g = 0.7 μN is

used in Eq. (2-7a). The B(M1) results are shown in Table (3-15). It is seen

that there is a good agreement between experimental and calculated ones in

IBM-1. The magnetic dipole moment of the first excited  12 and second

excited state  22 for the 182-188W isotopes are given in Table (3-15). It is

seen that a very good agreement among the values is obtained.

Magnetic dipole moment for first excited state  12 , second excited

state  22 and for )4( 1
 are given in Table (3-15). It has been shown that

the data on )2( 1
 in 182-188W isotopes provides a sensitive test of the

effective proton boson number in the IBM-1 framework. 182-188W isotopes,

conform the validity of assuming a drastic change in number of bosons N

when the number of neutron increased.
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The direct measurement of B(M1) matrix elements is difficult

normally, so the M1 strength of gamma transition may be expressed in

terms of the multipole mixing ratio which can be written in Eq. (2-54)

as[68]. The multipole mixing ratio, (E2/M1), of 180-190W isotopes was

calculated. The comparison between experimental and calculated values for

this quantity is given in Table (3-16). The results highly agreed with the

experimental data.

In this work, we have also examined the mixing ratio  (E2/M1) of

transitions linking the  -band and g- state bands. The transitions which

link low spin states and those obtained in the present work are in a good

agreement and show a little bit of irregularities.

The results of the  (E2/M1) calculations are listed in Table (3-16).

These results exhibit disagreement in some cases, with one case showing

disagreement in sign. However, it is a ratio between very small quantities

and any change in the dominator that will have a great influence on the

ratio. The large calculated value for   11 23 in 184-186Wis not due to

dominate E2 transition, but may be under the effect of very small M1

component in the transition. Moreover, the large predicted value for some

transitions compared to experimental value may be related to the highly

predicted energy level values of the IBM-1. We are unable to bring the

energy value of this state close to the experimental value simply by

changing the parameters.
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3.2.4 Electric Monopole Transition Matrix Element

The monopole matrix element is important for nuclear structure and

the model predictions due to their sensitivity for the nuclear shape. We

conclude that more experimental work is needed to clarify the band

structure and investigate an acceptable degree of agreement between the

predictions of the IBM-1 and the experimental data.

The calculation of the matrix elements of the E0 transition operator

(2-8a) requires the knowledge of the parameters 0 and 0 . We calculate

these parameters

by fitting procedure into two experimental values of reduced E0 matrix

element for transition   12 22 , in 182-184W isotopes. The parameters which

were subsequently used to evaluate the  (E0) -values were; β0 = 0.064 2fm

and 0 = 0.032 2fm . From Table (3-17), there is no enough experimental

data to compare with the IBM-1 calculations.

The forbiddenness of E0 transitions in the U (5) limit of IBM-1 and

their allowed character in the harmonic quadrupole vibrator needs some

comment. Primarily, the model operators are quite different. For the

geometric model, the N = 0, +2 selection rules follow directly. For the

interacting boson model, the operator is the simplest monopole operator

that can be constructed from the boson operators. It is fair to say that the

IBM-1 E0 operator is too simplistic. There are other concerns with the

interacting boson model: the bosons of the model are regarded as

superposition's of pair-correlated configurations restricted to the valence

shell. This has been formalized in the OAI mapping procedure [120].

Restriction to a valence shell within a harmonic oscillator-based shell

model, as noted earlier, would result in vanishing E0 matrix elements.

Thus, we infer that the description of E0 transitions within the IBM-1 is

probably seriously deficient.
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Table (3-17): Monopole Matrix Element  0E for 182-186W isotopes.

  fi JJ
182W 184W 186W

EXP. IBM -1 IBM -2 EXP. IBM -1 IBM -2 EXP. IBM -1 IBM -2

2221
26.0

6.0 104 
  0.0093 0.005 5.1

9.29.2 
 10-2 0.109 2.87 0.11 0.0621 0.083

02 01
- 0.187 0.173 - 0.0161 0.172 - 0.151 0.164

03 01 - 0.317 0.126 - 0.0372 0.153 - 0.0171 0.169
03 02 - 0.0931 0.083 - 0.0810 0.108 - 0.143 0.136

Experimental data are taken from ref. [121]

We notice that the theoretical values for the ratio )2/0( EEX are

small for some transitions (see Table (3-18)) which means that there is a

small contribution of E0 transition on the life time of 0+ states. There are

two high values of )2/0( EEX in transition from 
20 to 

10 in 182 W isotope

means that this state decay mostly by E0 and according to this one could

say that the study of this state gives information about the shape of the

nucleus, because the E0 transitions matrix elements are connected strongly

with the penetration of the atomic electron to the nucleus. So, combination

of the wave function of atomic electron, which is well known, and the

nuclear surface give good information of the nuclear shape.

Table (3-18) shows that the IBM-1 predicts well the monopole

matrix elements compare to the quadrupole transition from the same states.

However, it is not easy to estimate the ratio because of the smallness on the

monopole matrix element and it is one of the reasons not getting the exact

ratio. A small )2/0( EEX value for transition from 
30 to 

20 agrees well with

the experimental despite the band crossing transition, which means that the

30 has a collective structure.

The large value of )2/0( EEX interpreted for several 0+ states in

terms of pair vibrations,  -band vibration and spin quadrupole excitations.

However, the nature of 2+ states is not clear. Also, there is no available

experimental data for 186W isotopes.
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Table (3-18): X(E0/E2) for 182-186W Isotopes.
  fj JJ

182W 184W 186W
EXP. IBM -1 IBM -2 EXP. IBM -1 IBM -2 EXP. IBM -1 IBM -2

02 01 1.28(2) 0.0031 0.0027 0.0020 12
8

 0.0038 0.0028 - 0.0034 0.004

2221 0.0120(4) 0.022 0.015 - 0.0281 0.018 - 0.0221 0.022
03 01 0.0020(10) 0.0037 0.0023 - 0.0047 0.0054 - 0.057 0.006
2321 0.0022(14) 2.11 0..33 - 2.317 1.38 - 2.471 2.414

Experimental are taken from ref. [68].

There is a good agreement between the calculated values and the

available experimental results for both the E0 transitions and the isotope

shifts. However, rather different sets of the E0 parameters can be found

which give similar isotope shifts but different isomer shifts. Therefore, in

the absence of any experimental isomer shift data, it is not possible to tell

whether it represents the "best" possible set of E0 parameters. Besides a

good agreement was found between the calculated and experimental values

for Isomeric and isotopic shifts for all 182-186W isotopes (Tables (3-19) and

(3-20)).

Table (3-19): Isomer Shift 2r in fm2 for 182-186W Isotopes.

Isomer Shift EXP. IBM -1 IBM -2

W-182

-0.210-3

-0.2510-2 -0.2810-3-0.3710-3

0.010-3

W-184

0.1610-3

0.1310-3 0.16910-30.1210-3

0.010-3

W-186
0.1410-3

0.2110-3 0.17210-30.1210-3

-0.4910-3

W-188 - 0.1410-3 0.12110-3

W-190 - 0.1210-3 0.11110-3

Experimental data are taken from refs. [117,122,123,124].
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Table (3-20): Isotopic shifts 2r in fm2 for 182-186W Isotopes.

Isomer shift EXP. IBM -1 IBM -2
180W-182W 0.074

0.068(4) 0.066 0.072

182W-184W 0.120
0.099(5) 0.140 0.150

184W-186W 0.092 0.068 0.0870.085(4)
186W-188W - 0.088 0.0873
188W-190W - 0.092 0.097

Experimental data are taken from refs. [117,122,123,124].

3. 3- 172-180Hf Isotopes in IBM-2
3.3.1 Hamiltonian Interaction Parameters

Since the Hamiltonian contains many parameters, it is unpractical

and not very meaningful to vary all parameters freely. Instead, it is

convenient to use the behavior of the parameters predicted by a

microscopic point of view as a zeroth-order approximation. In a simple

shell-model picture based upon degenerate single nucleon levels [120], the

expected dependence of  ,, and  on neutron )( N and proton )( N

boson numbers can be expressed as:

tcons tan ,   , )0(

1 



 






N
, )0(2





 

N

N




 ........(3-3)

Here )0(
 and )0(

 are constants, and  is the pair degeneracy of the shell.

We see that while  has always the same sign,  changes the sign in the

middle of the shell.

In realistic cases, the estimates of Eq. (3-3) are expected to be valid

only approximately. In this work, somewhat weaker constrains we have

imposed on the parameters: (i) it is assumed that within a series of isotones

(isotopes) (  ) does not vary at all isotopes; (ii) the parameters  , and

 are assumed to be smooth functions of )( N .

Concerning the sign of  and  , a complication arises. From very

simple microscopic consideration it follows that the s, (which also
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determined to a large extent the sign of the quadrupole moment of the first

excited state 
12 ) are negative in the region where the valence shell is less

than half filled (particle-boson) and positive in the region where the

valance shell is more than half filled (hole-boson). Quantitatively, such a

behavior was confirmed in other phenomenological calculations with

IBM-2. For example, in a study of the Hf isotopes with 100 < N <108 good

fit to the energy levels was obtained with  -0.90 to -1.0

(see Table (3-21)). Since in the native shell-model picture in this region

both neutrons and protons are hole-like and therefore both s, would be

positive, there would be no way to obtain an SU (5) type spectrum, which

requires opposite signs of  and  . This indicates that the situation is not

so simple and that more complicated effects play a role, such as a possible

nonclosedness of the Z = 82 or N = 126 core. Although the Hamiltonian

invariant under simultaneous change in sign of both  ,  and thus

equally good, fits to energy spectra can be obtained for both combinations

 <0 and  <0. Namely, only with this choice the observed sign of the

mass quadrupole moment of the 
12 state in 170-180Hf can be reproduced.

The remaining parameters play a less important role and are used

mainly to improve the fit with experiment. In this work only 0C , 2C and

4C , representing part of the d-boson conserving interaction between

neutron bosons, were used as free parameters independent of )(  NN .

Finally, the values of 31   were constant for all isotopes. The parameters

used for the various isotopes are shown in Table (3-21).

It is seen that parameters are constant or vary smoothly: within a

series of isotopes  does not vary and the values of  and  are close to

the values calculated by Pittle et al., [125]. The variation in  is small and

there is a slight decrease of the value of  for the 170-180Hf isotopes. The

change in character of the spectra through a series of isotopes is essentially
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due to two effects: (i) the increase of the value of  for 172-174Hf and

decreases for 176Hf, and (ii) the increased of the number of neutron bosons

N for 172-174-176Hf ( N =9,10 and 11 respectively) and decrease for 178-180Hf

( N =10 and 9). We note that the behaviors of  ,, and  is a qualitative

agreement with microscopic considerations (see Eq. (3-3)). It was found

that 0C , 2C and 4C constant for the isotopes. Such a behavior agrees

with the trend found in other regions. The positive value of 2 guarantees

that no low-lying anti-symmetric multiplets occur for which there is no

experimental evidence.

This was determination from fitting the first excited state

without effecting the ground band energy spacing. The overview of the

parameters indicates that there is good continuity without a marked change,

and at the same a good fit to the experimental energies of the ground state

band and of beta and gamma bands was obtained.

3.3.2 Energy spectra

The calculated excitation energies of positive parity levels to 172-180Hf

are given in Table (3-21) and displayed in Figures (3.1) to (3.5). The

agreement between the calculated and experimental values is satisfactory.

Using the parameters in Table (3-21), the estimated energy levels are

shown in the Figures (3.1) to (3.5), along with experimental energy levels.

As can be seen, the agreement between experiment and IBM-2 is quite

good and the general features are reproduced well. We observe the

discrepancy between IBM-2 and experimental for high spin states. But one

must be careful in comparing theoretical with experimental, since all

calculated states have a collective nature, whereas some of the

experimental states may have a particle-like structure. Behavior of the ratio

)2(/)4( 112/4
 EER of the energies of the first 

14 and 
12 states are good

criteria for the shape transition. The value of R4/2 ratio has the limiting

value 2.0 for a quadrupole vibrator, 2.5 for a non-axial gamma-soft rotor
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and 3.33 for an ideally symmetric rotor. R4/2 remain nearly constant at

increase with neutron number. The estimated values change from isotope to

another (see Table (3-2)), this meaning that their structure seems to be

varying from deformed (rotational nuclei) to gamma soft SU(3)O(6).

Since Hf nucleus has a rather vibrational-like character, taking into account

of the dynamic symmetry location of the even-even Hf isotopes at the IBM

phase Casten triangle, where their parameter sets are at the SU (3)O (6)

transition region and closer to SU (3) character and we used the multiple

expansion form of the Hamiltonian for our approximation. The shape

transition predicted by this study is consistent with the spectroscopic data

for these isotopes.
172-180Hf are typical examples of isotopes that exhibit a smooth phase

transition from rotational (deformed) nuclei (SU (3)) to gamma soft (O(6)).

In the Figures (3-1) to (3-5) the results of calculations for the

energies are shown the ground state band ( 
11 4,2 , 

16 and 
18 ) in the 172-180Hf

isotopes. We observe the small discrepancy between theory and experiment

for J 
16 and J 

18 in 170-180Hf isotopes. However, one must be careful

when comparing theory to experiment, since all calculated low-lying states

have a collective nature.

The order of the 
20 and 

13 is correctly predicted in 170-180Hf isotopes

and we remark that the energy of the 
13 state is predicted systematically

too high. This is a consequence of the presence of a Majarona term M in

the Hamiltonian (Eq. (2-45)). We have chosen the parameters of the

Majarona force in such a way that it pushes up states which are not

completely symmetric with respect to proton and neutron bosons, since

there is no experimental evidence for such states. However, experimental

information becomes available about these states with mixed symmetry.

This situation could possibly be improved. In the present case, it would
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have been possible to further higher its energy by constant the value of

31   .

Table (3-21): IBM-2 Parameters of 172-180Hf, all parameters in MeV units except
the parameters  and v are dimensionless.

Isotopes     31   2 0C 2C 4C
172Hf 0.522 -0.029 -0.9 -0.9 -0.422 -0.033 -0.151 0.08 0.0
174Hf 0.525 -0.035 -0.85 -0.9 -0.422 -0.025 -0.151 0.072 0.0
176Hf 0.528 -0.031 -1.02 -0.9 -0.422 -0.023 -0.151 0.075 0.0
178Hf 0.530 -0.033 -0.8 -0.9 -0.422 -0.020 -0.151 0.09 0.0
180Hf 0.532 -0.035 -1.0 -0.9 -0.422 -0.190 -0.151 0.09 0.0

The position of the 
32 state is relative to the 

20 state especially in
176-178-180Hf isotopes. The moment of inertia of the ground state band

increases, the quasi γ-band is pushed up, and also 
20 state becomes a

member of a K = 0 β-band. The energy spectra show the first criterion for

identifying the collective 
20 states. For instance, in 170-180Hf isotopes, the

experimental energies of the 
20 states are close to those of the calculated 

20

states. As a consequence, we suspect that these states are collective.

However, no final conclusion can be drawn from the energies alone, since

it is very likely that collective 
20 states will occur in the same energy

region.

It is found that the present calculations fit very well most states in the

scheme, except the case of γ -band members ( 
32 , 

13 and 
24 states), which

were pushed higher. In Table (3-3), the root mean square deviation (rmsd)

is used to compare the experimental and calculated IBM-2 energy levels. In

this table (3-3), we see the ground state levels the best agreement was

found in 178Hf isotope where the smallest value of rmsd is equal 0.0025 and

equal 0.0038 for beta band in 178Hf isotope. However, rmsd equals 0.001

for γ -band in 176Hf isotope.

From the results of energy levels, the experimental and IBM-2

calculation increased with increasing the angular momentum because the

Hf nuclei are deformed nuclei (rotational nuclei).
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3.3.3 Electric Transition Probability B(E2)

Calculations of electromagnetic properties give us a good test of the

nuclear models prediction. The electromagnetic matrix elements between

eigenstates were calculated using the programs NPBTRN for IBM-2

model.

From Eq. (2-47), we note that an E2 transition mainly depends on

identifying proton and neutron bosons effective charges e and e . The

relationship between ( e , e ) and the reduced transition probability B(E2)

for rotational limit SU (3) is given in the form [77]:

   )43(..........
5

32)02;2( 11 


 

N

NeNeN
EB 

This relation was used to estimate the effective boson charges for proton

and neutron bosons ( e , e ). In these calculations, we use the following

criteria to determine the effective charges. e = 1165.0 e.b is constant

throughout the whole isotopic chain and the e changes with the neutron

number. This is true if the neutron (proton) interaction does not depend on

the proton (neutron) configurations. The values of e and e are determined

by fitting to the five )02;2( 11
 EB and )22;2( 12

 EB in 174Hf. They are

given in Table (3-22).

Table (3-22): Effective charge used in E2 transition calculations ( e = 0.1165 e.b).

Isotopes 172Hf 174Hf 176Hf 178Hf 180Hf

e (eb) 0.266 0.319 0.301 0.330 0.350

It is well known that absolute gamma ray transition probabilities

offer the possibility of a very sensitive test of nuclear models and the

majority of the information on the nature of the ground state has come from

studies of the energy level spacing. The transition probability values of the

excited state in the ground state band constitute another source of nuclear

information. Yrast levels of even-even nuclei ( iJ 2, 4, 6,... ) usually

decay by E2 transition to the lower lying yrast level with .2 if JJ
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In Table (3-5), we show the )02;2( 11
 EB and )24;2( 11

 EB

values, which are of the same order of magnitude and display a typical

decrease towards the middle of the shell.

As a consequence of possible M1 admixture, the

)22;2( 12
 EB quantity is rather difficult to measure. For 170-180Hf isotopes,

we give the different, conflicting experimental results and we see that no

general feature be derived from them, from these values seems to decrease

for 172-174Hf and increase for 176-180Hf.

In the same table, we show )02;2( 12
 EB values. Experimentally, the

results are radically different for the Hf isotopes. In the some Hf isotopes,

the value seems to increase towards the middle of the shell, whereas in

another Hf isotopes, is decreased. Our calculations could not reproduce

these contradictory features simultaneously.

The quantity )20;2( 12
 EB , which is shown in Table (3-5), provides

a second clue for identifying intrude 
20 states. If the experimental

)20;2( 12
 EB value is small, it largely deviates from the results of our

calculation. It is very likely that the observed 
20 states do not correspond to

the collective state, but it is rather an intruder state.

In 180Hf isotope, there is a good agreement between experimental and

calculated )20;2( 12
 EB value. This confirm, our earlier statement about

the nature of the lowest 
20 state in this isotope. Other transitions are small

values because these transitions are between different bands (cross over

transitions).

The electric transition probabilities from the mixed-symmetry state
 1J to the symmetric states ( 

21 2,2 ) is a weak collective E2 transition.

The E2 transition between the 1 and the 2 ground state is small, whereas

E2 transitions are large between fully-symmetric states and between mixed-

symmetry states.
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To conclude this section on the E2 properties, we give the results for

the quadrupole moments )2( 1
Q of the first excited Table (3-5) (see

equation (2-49)). We show complication of theoretical results. The general

features of these results are clear, namely an increase in the negative

quadrupole moment with the increasing neutron number.

3.3.4 Magnetic Transition Probability and Mixing Ratio  (E2/M1)

The M1 transition operator is given in Eq. (2-52), where the

gyromagnetic factors for bosons g and g are estimated. The reduced E2

and M1 matrix elements were combined in a calculation of mixing ratio

)1/2( ME ) using the relation which is given by Eq. (2-54).

Sambatora et al., [109] suggested a total g-factor which is given in

the following equation:

)53...(.................... 














 NN

N
g

NN

N
gg

it is used to compute the 
12 state g-factor. The value of the measured

magnetic moment for 178Hf isotope, Ng  )3(48.02  [110], and the

experimental mixing ratio NebME  /410.0)22;1/2( 12   [68] for 178Hf

isotope were used to produce suitable estimation for the boson

gyromagnetic factors. The values are Ng  70.0 and Ng  05.0 . The

results of the calculations are listed in Table (3-6).

From the results of B(M1), the transitions between low-lying

collective states in IBM-1 and IBM-2 vanish is not necessarily a

consequence of F-spin symmetry, but may be related to the existence of

other symmetries, like SU (3). The M1 excitation strength for the

)01;1( 11
 MB transition is proportional to the factor 2

g and depends only

weakly on the strength of Majarona force.

The magnetic dipole moment for the first excited state in even-even
172-180Hf isotopes in Table (3-6) provides a sensitive test of the effective

boson number in the IBM-2 framework. In 172-180Hf isotopes with N = 100-
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108, it confirms the validity of assuming a drastic change in number of

proton boson when the number of neutron boson increased

from 106 to 108.

The E2/M1 multipole mixing ratios for 172-180Hf isotopes, )1/2( ME ,

were calculated for some selected transitions between states. The sign of

the mixing ratios must be chosen according to the sign of the reduced

matrix elements. The equation used are (2-52) for M1 transitions and

(2-54) for the mixing ratios. The results are listed in Table (3-7). The

agreement with available experimental data [68,110] is more than good

especially in the sign of the mixing ratio. However, there is a large

disagreement in the mixing ratios of some transitions. It is not due to a

dominate E2 transition, but may be under the effect of a very small value of

M1 matrix element. However, it is a ratio between very small quantities

and may change in the dominator that will have a great influence on the

ratio.

For   transitions, the intraband B(E2) values have been

estimated by assuming that the intrinsic E2 matrix elements in the ground

and gamma bands are equal. Then, combining these B(E2) values with the

measured E2/M1 mixing ratios leads to the tabulated B(M1). We note that

in IBM, the intrinsic E2 matrix element of the gamma band is smaller than

that of the ground band due to the finite dimensionality of the boson space.

Using the IBM intrinsic E2 matrix elements instead of the pure rotational

ones would thus lead to smaller experimental   M1 matrix elements,

which would improve the agreement with the calculation.

The results for the g and   mixing ratios, the sign of the

mixing ratios is not arbitrary. For large majority of the g transitions

considered in Table (3-7) to the experimentally known s, are negative; the

sign is not known for   . According, we have assumed that all )( g
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values are negative in some transitions and used then as a constraint on the

parameters  and  . Specially, it implies that 0   .

The calculated g M1 transition probability in Table (3-6) has

been obtained by a recourse to the IBM-2: the )1/2( ME mixing ratios from

the complication of Lang et al., [68] from this work are combined with the

)02;2( 13
 EB values and the conventional band mixing parameters. Note

that in a few cases the asymmetric errors on the measured mixing ratio

values have been incorporated in the M1 matrix elements by shifting the

central value slightly to ensure that the overall error range denoted is

correct.

These results exhibit disagreement in some cases, with one case

showing disagreement in sign. However, it is a ratio between very small

quantities and any change in the dominator that will have a great influence

on the ratio. The large calculated value for   12 22 is not due to a dominant

E2 transition, but may be under the effect of very small M1 component in

the transition. Moreover, the large predicted value for transition   12 22 in
180Hf compared to the experimental value may be related to the high

predicted energy level value of the IBM-2; 162.1)2( 2 
E MeV, while the

experimental value is 1.174 MeV. We are unable to bring the energy value

of this state close to the experimental value simply by changing the

Majorana parameters.

Most experimentally observed low-spin levels, apart from 1 states

below 2.5 MeV; have their counterpart in the IBM-2 level spectrum

although the energy match is not good in every case. It also appears that we

may identify the members of the family of mixed-symmetry states

corresponding to the [N-1,1] representation [77]. The small E2/M1 mixing

ratios are consistent with this interpretation but level lifetimes are required

for a firmer identification.
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3.3.5 Electric Monopole Transition Matrix element

The E0 monopole matrix element is given in Eq. (2-58). The

parameters in Eq. (2-57) can be predicted from the isotope shift [110],

098.02  r 2fm for 178Hf- 180Hf and )4(048.02  r 2fm for 180Hf-
182Hf, since such data are not available for Hf isotopes. These parameters

are calculated by fitting procedure into two experimental values of isotopic

shifts (Eq. (2-60)). The parameters which were subsequently used to

evaluate the )0(E -values were; 056.00  2fm , 028.00  2fm and

 0 0.032 2fm . From Table (3-8), there is no enough experimental data to

compare with the IBM-2 calculations.

The monopole matrix element is important for nuclear structure and

the model predictions due to their sensitivity for the nuclear shape. We

conclude that more experimental work is needed to clarify the band

structure and investigate an acceptable degree of agreement between the

predictions of the models and the experimental data.

Table (3-9) contains the experimental and calculated X(E0/E2)

values. In general there is good agreement except for the   13 00 and
  14 00 , transitions but it is not possible to say if these disagreements are

attributed to the E0 or E2 component in the ratio. The disagreement in the

results for some transitions could be removed by interchanging the ordering

since for the higher lying states, the correspondence between the

experimental and theoretical levels is uncertain.

It must also be remarked that the comparatively large X-values for

transitions from the 
32 mixed-symmetry state and from the 

22 states

indicate that substantial E0 components occur in these decays from mixed-

symmetry states. The E0 matrix element describing such decay is

proportional to   00  and, although the 0 values are small, their sign

difference results in E0 matrix being greatest.
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In making this comparison, we have assumed that all the identified
0 levels correspond to IBM states and that the experimental level ordering

is the same as the calculated order. Some previous work, attempted to fit

levels in several 170-180Hf isotopes [20] with a single set of regularly varying

parameters, has not been successful for 176-178Hf. These isotopes are

distinctly different from their neighbors; the 
22 lies well above the 

14 level

at the two phonon energies.

3.3.6 Mixed Symmetry States in 172-180Hf Isotopes

One of the advantage of the IBM-2 is the ability to reproduce the

mixed symmetry states. These states are created by a mixture of the wave

function of protons and neutrons that are observed in most even-even

nuclei. These mixed symmetry states (MSSs) have been observed in many

nuclei. In more vibrational and  - soft nuclei these mixed symmetry states

(MSSs) have been observed in many nuclei. In more vibrational and gamma

soft nuclei. We expect the lowest MSS with  2J state, while in

rotational nuclei observed as the 1J state. In 170-180Hf isotopes, we see

that when the states  42 2,2J and 
13 are strongly dominated by the

F=Fmax, the strongest contribution to the  23 3,2J states is the one with

F=Fmax-1. We can see the  23 3,2J states as mixed symmetry states in 170-

180Hf isotopes.

In this work, we proposed that the 
32 state decays to the first excited

state with an energy 1.226 MeV in 174Hf with a mixing ratio

 (E2 /M1) = 2.467 Neb / which means it is dominated by the M1

transition, with B(M1) equal to 0.0026 N . In 178Hf isotope, for the third

J = 2+ state at energy 1.274 MeV excitation is close to the experimental

data for 1.276 MeV. The energy is well reproduced by the calculation,

where the choice of the Majarona parameters plays a crucial role. This state

is quite pure Fmax-1 with %50)1(/ maxmax
2  FFJFJR . The excitation

energy of 
23 state is 2.109 MeV with mixing ratio
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NebME  /0231.0)23;1/2( 12   , 2
12 0054.0)23;1( NMB   . In the 178Hf, the

calculation predicted the 
32 state at 1.274 MeV with R = 83%.

In other isotopes, the states 
32 and 

23 are mixed symmetry states,

their excitation energies are close to available experimental data and the

values of R= 73%,75%,72% and 80% respectively.

The energy that fits to several levels is very sensitive to the

parameters in the Majorana term which also strongly influences the

magnitude and sign of the multipole mixing ratios of many transitions. In

particular, we find that the calculated energies of a number of states are

affected in a very similar way and these might be considered to have a

mixed-symmetry origin, or contain substantial mixed-symmetry

components. Those with a mixed-symmetry origin have no counterpart in

IBM-1. The energy dependence of the 
22 and 

42 levels is consistent with

the mixed-symmetry character of the 
32 level being shared with

neighboring states.

The influence of the different parameters (see Table (3- 23)) on these

states is shown in Figure (3.12). The 2 term strongly affects the energies

of all of the levels considered to have a mixed-symmetry character or to

contain mixed-symmetry components. In obtaining this plot, the 1 and 3

terms were maintained at their best-fit values.
Table (3-23): IBM-2 Parameters of 172-180Hf, all parameters in MeV units except

the parameters  and v are dimensionless used in mixed symmetry states.

Isotopes     1 3 2 0C 2C 4C
172Hf 0.522 -0.029 -0.9 -0.9 0.07 0.02 0.120 -0.151 0.08 0.0
174Hf 0.525 -0.035 -0.85 -0.9 0.08 0.022 0.121 -0.151 0.072 0.0
176Hf 0.528 -0.031 -1.02 -0.9 0.083 0.22 0.130 -0.151 0.075 0.0
178Hf 0.530 -0.033 -0.8 -0.9 0.09 0.23 0.160 -0.151 0.09 0.0
180Hf 0.532 -0.035 -1.0 -0.9 0.11 0.026 0.20 -0.151 0.09 0.0

The mixing ratio data have a strong dependence on 2 and it has been

shown that 2 cannot be zero in our fit. The 1 level is strongly affected by

changing 1 , Figure (3-12), while the 
13 level energy depends on the 3
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value as shown in Figure (3-12). The 
32 mixed-symmetry state and the

predominantly symmetric 
22 and 

42 levels are largely unaffected by

changing 1 , or 3 in contrast to their dependence on 2 , see Table (3-24).

Fig. (3-12): The change in level energy as 1 , 2 , 3 .
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The F-spin components in the 
22 , 

32 , 
42 and 

30 levels as a function

of 2 are shown in Figure (3-13). Our i parameters, of Table (3-23),

obtained from the level energy fit disagree with those obtained by Subber

[20]. He found 1 and 3 to be large and negative and 2 small and

negative.

Table (3-24): Mixing Ratio )1/2( ME for 172-180Hf in Neb / units.

  fi JJ
172Hf 174Hf 176Hf 178Hf 180Hf

Exp. IBM-2 Exp. IBM-2 Exp. IBM-2 Exp. IBM-2 Exp. IBM-2

22 21 - 0.031 2
22  -6.377 4 12.701 0.410 0.731 6.3

2.38.9 
 14.257

23 21 - 12.60 - 2.467 - 12.0 32 20.71 6.3
2.38.6 

 8.190

31 21 - 5.510 - 20.238 - 3.098 - 2.818 - 0.045
31 41 - 0.044 - 5.261 - - - 10.97 -

42 41 - -0.09 13
7.05.2 

 -4.980 7.0 0.781 - 0.0981 4.5(1.1) 10.981

24 41 - 0.123 0.00039 0.0051 0.022 0.0424 19.0
12.074.0 

 -0.561 - -

25 21 0.022 0.90 - 0.098 - 0.123 - -0.76 - 0.87
26 21 - 1.56 - 2.780 - 3.907 - -0.84 - 3.09
24 41 - 11.5 - 8.97 - 12.87 - 0.098 - 1.134

121 - 0.0887 - 1.605 - 0.5674 - 22.701 - 1.3559

221 - 0.0492 - 2.104 - 0.0614 - 3.617 - 0.0492

321 - 2.227 - 0.855 - 3.560 - 0.527 - 2.227

Fig. (3-13): F-spin components in the 22, 23, 24 and 03 levels as a function of 2 when
all other parameters are as in Table (3-22).
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In 172-180Hf isotopes, all hitherto discovered MSSs have been

reviewed in [126]. It has been shown that the lowest lying MSSs is the one

quadrupole phonon MSS labeled as 
Ms,12 , 

Ms,13 and characterized by

a weakly-collective E2 transition probability to the ground state and a large

M1 transition to the 
12 state.

The reduced transition probability 22
1 064.0)20;2( beEB M   , in the

two cases the )20;2( 1
  MEB value is smaller than )20;2( 11

 EB by a

factor of ~100, making the identification of the 
M2 state in electron

scattering experiment difficult. In addition, the mixing with background

two-quasi-particle states will render the observation of the 
M2 state even

more complicated. In 172-180Hf isotopes the 
M2 level belonging to a  1K

band, a second mixed symmetry 2 state occurs, which is the head of

a  2K band.

The information of 
M1 decay became available on the decay

intensities from 
M1 level toward the 

10 and 
12 ground band members. The

ratio 2)21;1(/)01;1( 11  
MM MBMB . The same result from the Alaga rule

(which predicts it as the ratio of two Clebsh- Gordan coefficients, i.e., (11

1-1 00 )2/ (11 1-1 )2)20 2  and, hence, the result does not constitute a good

test of the IBM-2. In the IBM-2 exact ratio [ 120]:

2
)21;1(
)01;1(

1

1 







M

M

MB

MB

Thus, this predicted ratio is slightly less than the corresponding ratio

derived from the Alaga rule, due to the Finite-N character of the IBM. It

would be interesting to know whether this deviation from the Alaga rule is

confirmed experimentally.

Most characteristics and measurable quantities of MSS states is the

electromagnetic decay by allowing F-vector any M1 transition to

symmetric states. This is an important feature because the M1 transitions

between FSS are prohibited and therefore M1 transition is a distinct of MSS
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states. The M1 transitions between MSS and FSS are proportional to the

quantity    NNgg 2 , while, E2 transitions between FSS are

proportional to the quantity  2 NeNe  and E2 transition between MSS

and FSS are proportional to the quantity    NNee 2 . The proportionality

factors that depend on the structures of the wave functions are included.

3.4- 180-190W Isotopes in IBM-2
3.4.1 Hamiltonian Interaction Parameters

The program NPBOS [71] was used to diagonalize the Hamiltonian.

The electromagnetic matrix elements between eigenstates were calculated

using the program NPBTRN. The isotopes 180-190W have 4N , and

N varies from 5 to 10, while the parameters  ,  , and  , as well as the

Majorana parameters 31   and 2 , were treated as free parameters and

their values were estimated by fitting to the measured level energies. This

procedure was made by selecting the ‘traditional’ values of the parameters

and then allowing one parameter to vary while the parameter  keeping

constant until the best fit was obtained. The IBM-2 parameters obtained for
180-190W are summarized in Table (3-25).

The Hamiltonian parameters are fitted to obtain the excitation

energies and the electromagnetic properties in the following way. The

least-squares that fit the excitation energies of each isotope was attempted

in the full IBM-2 calculation. Only six parameters, however, were varied in

the fit, namely [ 43]:

)63.(.................... a
N

N

N

N
 




 

)63.(.................... b
N

N

N

N
 




 

 =  )63.........(.............................. c
  )63....().........1(/)1()1( dNNCNNCNNC LLL  

where L = 0, 2, 4
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while the differences
)73.....(.................... a  
)73.....(.................... b  

)73.....(.................... cCCC LLL  

The earlier results of Duval and Barrett [38] for the W isotopes, and

those of Bijker et al., [127] for the Os and Pt isotopes are characterized by

sharply rising values of  , with change of sign over the neutron number in

the range 108-112. In the present work  rises, but less sharply, and it

does not become positive for 186-190W isotopes. In contrast to this,

references [38,127] have fixed values of the Majorana parameters, while

we find them to rise sharply as the neutron number increases. The reason

for these significant differences is that we have included the mixing ratios

in the fits to obtain the best parameters.

The structure of the energy spectra is determined mainly by the first

three terms on the right-hand side of Eq. (2-42) (the pairing plus

quadrupole terms), while the remaining terms have minor, but non-

negligible contributions. This is borne out by our calculations for the 180-

190W isotopes. We expect the importance of V term (or the V term) to be

manifest when there are many more proton bosons than neutron bosons (or

vice-versa). We also assume that those parameters in the Hamiltonian

labeled with a  depend only on proton number and those labeled with a 

depend only on neutron number. Those left un-subscripted may depend on

both proton and neutron numbers.

We now apply the IBM-2 model to the calculation of the energy

spectra of the tungsten isotopes (Z=74, 4N and 12682  N ). To reduce

this number of free parameters, the following simplifications are made.

First: we set    , which is the usual assumption. This is might seem

an oversimplification, especially since the proton bosons and

neutron bosons are in different shells. However, calculations using
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this assumption have led to reasonable results, not only for 180-

190W, but also for other nuclides.

Second: we include the LC terms in the V interaction since for most of

all region fitted,  NN  and we do not expect the V term to be

very important.

Third: in the Majorana term, we set 2 and 31   values in Table (3-25)

for the entire isotopic chain. The Majorana term is used primarily

to push up the energy of those states with large anti-symmetric

parts. Since the low-lying collective states are largely asymmetric,

we then expect the influence of the Majorana term on these states

to be minimal.

The experimentally determined energy levels for the even-even 180-

190W isotopes span the range in neutron number from N = 106 to N = 116.

We can make predictions beyond this region by smooth extrapolation of the

above parameters.

3.4.2 Energy Spectra

The IBM-2 parameters obtained for 190-180W are summarized in

Table (3-25). The boson numbers used 4N and N vary from 5 to 10

respectively. The corresponding calculated and experimental energy

spectra are shown in Figures (3-6) to (3-11). It is apparent that the

calculated spectra are in a good agreement with the experimental ones. A

characteristic feature of the present calculation is the appearance of

nonzero LC terms. Excluding those terms from the fit and setting them to

zero would lead to a substantially worse description of the spectra. From

Table (3-25) we observe that  remains almost constant for all the

isotopes, while  and  increase from 186W to 190W. The LC parameters

get reduced on average with increasing N .
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Table (3-25): IBM-2 Parameters for 180-190W Isotopes, all parameters in MeV units
except  and  are dimensionless.

Parameter 180W 182W 184W 186W 188W 190W

 0.51 0.52 0.52 0.53 0.54 0.54
K -0.122 -0.121 -0.22 -0.23 -0.123 -0.11

 -1.6 -1.6 -1.6 -1.6 -1.6 -1.6
 -0.089 -0.09 -0.095 0.001 0.02 0.04
2 0.021 0.039 0.04 0.136 0.161 0.161

31   0.092 0.1 0.1 0.4 0.4 0.41
oC -0.521 -0.487 -0.437 -0.383 -0.289 -0.277
2C -0.321 -0.295 -0.260 -0.225 -0.201 -0.190
4C 0.185 0.132 0.105 0.049 -0.060 -0.070
oC -0.523 -0.420 -0.357 -0.343 -0.287 -0.278
2C -0.165 -0.172 -0.180 -0.185 -0.202 -0.221
4C 0.011 0.019 0.025 0.089 -0.060 -0.070

The examination of the experimental and IBM-2 energy levels ratios

(Table (3-11)) for the 180-190W isotopes shows that they lie in the

transitional region SU (3) →O (6), therefore the Hamiltonian of the

transition region SU (3) →O (6) has been employed in the calculation by

using the program NPBOS [71].

Our calculated energy spectrum is shown in Figures (3-6) to (3-11).

The root means square deviation (rmsd) for the ground, beta and gamma

bands totaling levels are 0.109, 0.82 and 0.80 MeV for Duval and Barrett

[38] and the present work respectively. (Since the values obtained by Duval

and Barrett [38], were interpolated from their level energy plot, small errors

may arise and a figures representing their goodness of fit could not be

determined accurately). In all four cases, the overall agreement with the

experimental energy levels is quite good and shows a strong dominance of

the rotational SU (3) symmetry. A comparison of the parameters used to

obtain these energy spectra reveals some important points.

These calculations depend on two parameters obtained from a fit of

the 
12 and 

14 levels in nuclei in the region. The relative spacing of the
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levels is satisfactory although the overall energy fit is not nearly as good as

for the IBM-2 results.

In Figures (3.6) to (3.11), we present the results of our

calculation of the energy levels for the isotopes chain 180W to 190W, and in

figures we give a detailed comparison with the experimental data according

to the quasi-ground state rotational band and the quasi gamma and beta

vibrational bands.

Perhaps the most striking feature of the energy spectra is the sharp

rise in the beta and gamma bands at neutron number N = 108, which may

be due to a sub-shell in the 2/13i Nilsson level and/or a reversal in the

deformation. This is supported by such effects as a large change in the two

neutron separation energy after N = 108. The same rise also occurs in the

gamma band of the neighboring Os isotopes (Z=76). Fitting this has led to

a dip in the value of  at N =108. Note that the IBM-2 predicts a dramatic

increase in the 
30 state at this neutron number [38].

Another interesting feature is a relatively sharp increase in the

ground state band at N =104. Once again, this same feature shows up in the

Os data. When the ground state band is fitted for 180W, the IBM-2 predicts

even larger increases in the higher energy levels of the gamma and beta

bands. In general, the agreement with experimental for the ground state

band and gamma and beta bands energy levels is quite good. The

agreement with the high spin states energies, however, is not successful,

notably in 186W and 188 W isotopes.

The root means square deviation (rmsd) (Eq. (3-1)) is used to

compare the experimental and IBM-2 energy levels (see Tale (3-12)). In

this table we see the ground state levels, the best agreement was found in
180W isotope where the smallest value of rmsd equals 0.0024 and equals

0.010 for gamma band in 186W isotope. However, rmsd equals 0.0062 for

beta band in 190W isotope.
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3.4.3- Electric Transition Probability B(E2)

Having obtained the wavefuntions for the energy states in the
180-190W isotopes by fitting to the experimental energy levels, we can

determine the electromagnetic transition rates between these states. The

most general single-boson transition probability of angular momentum

2J given in Eq. (2-47).

In principle, the parameters  and  may be different from those

in the quadrupole operators in the Hamiltonian (Eq. (2-42)), however, we

have taken to be the different in our calculations so as to reduce the number

of free parameters.

From Eq. (2-47), it can be noted that, the reduced transition

probability B(E2) is dependent on e and e . The relationship between

( e , e ) and the reduced transition probability B(E2) for rotational limit

SU (3) is given in Eq. (3-4) [77]. This relation was used to estimate the

effective boson charges for proton and neutron bosons ( e , e ). In this

calculation, we use the following criteria to determine the effective

charges. e = 151.0 e.b is constant throughout the whole isotopic chain and

the e changes with neutron number. This is true if the neutron (proton)

interaction does not depend on the proton (neutron) configurations. The

values of e and e are determined by fitting to the five )02;2( 11
 EB and

)22;2( 12
 EB in 186W. They are given in Table (3-26).

Table (3-26): Effective charge used in E2 transition calculations ( e = 151.0 e.b).

Isotopes 180W 182W 184W 186W 188W 190W

e (eb) 0.100 0.110 0.120 0.130 0.140 0.150

The boson effective charges ( e , e ) have the same dependence on

proton number and neutron number as do  and  however, as an even

further simplification Duval and Barrett [38] used  ee  equals a constant

for all isotopes.
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The results of the calculations are presented in Table (3-14). Looking

through the table, one can easily recognize that our calculations reproduce

the experimental data quite well.

The )02;2( 11
 EB and )24;2( 11

 EB values decrease as the neutron

number increases toward the middle of the shell as the value of

)22;2( 12
 EB has a small value because it contains admixture of M1. As a

consequence of possible M1 admixture, this quantity is rather difficult to

measure. The value of )02;2( 12
 EB is small because this has a transition

from a quasi-beta band to a ground state band (cross over transition).

In Table (3-14), the B(E2), s obtained between the ground state band

agrees almost perfectly with the experiment. The agreement of the IBM-2

B(E2), s with the experiment, for transitions from beta and gamma bands

states to the ground band states is also rather good, though not as good as it

is for transitions within the ground band states.

The results for )02;2( 12
 EB and )02;2( 13

 EB values are rather

small since this transition is forbidden in all three limits of IBM [54]. Our

agreement with the available data is generally quite good. It should be

noted that no attempt was made to fit any of the B(E2) values while

determining the parameters in the Hamiltonian.

One of the important properties which can be calculated is the

branching ratios, through which one can identify the position for the nuclei

studied in Casten triangle, and hence to identify the dynamic symmetry for

the nuclei by using the Alaga rule. Table (3-27) shows the branching ratios

for 182-186W. These are compared to the experimental data. Our agreement

with available data is generally quite good, but it must be noted that in the

)02;2(/)22;2( 1212
  EBEB branching ratio the denominator is small and

hence the ratio is very sensitive to experimental errors and/or precision in

the numerical calculation.
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Table (3-27): Branching ratios for 182-186W Isotopes.

Isotopes
)02;2(/)22;2( 1212
  EBEB )02;2(/)22;2( 1313

  EBEB

EXP. IBM -1 IBM -2 EXP IBM-1 IBM-2
180W - 1.414 1.654 - 2.541 2.561
182W 1.95 1.561 1.930 - 2.877 2.570
184W 1.88 1.971 1.837 3.60 3.158 3.871
186W 2.37 3.872 20572 - 3.647 4.100
188W - 3.881 2.120 - 3.771 4.210
190W - 3.921 2.223 - 3.821 4.228

Experimental data taken from ref. [128]

The E2 transition operators is, in fact, a quadrupole operator

moments for a nucleus in state characterized by angular momentum 2J ,

is given by the Eq. (2-49). Using the IBM-2 wavefunction and E2 transition

operator given by Eq. (2-47), we obtain the results shown in Table (3-14)

for  12J and  22J . Note that the parameters e and e in the T(E2)

operator have already determined from fitting experimental

)02;2( 11
 EB data and as before  and  are the same numbers used in

the Hamiltonian (Eq.(2-47)), so that we fit no new parameters in

determining the quadrupole moments. The IBM-2 predicts the correct sign

in both of the above cases, and the agreement with the experimental is very

good for quadrupole moment for first excited state )2( 1
Q . But, in the case

of quadrupole moment for second excited state )2( 2
Q , the IBM-2 values

differ dramatically from the experimental data for 184W. The experiment

indicates a sharp decrease in )2( 2
Q , for this isotope, which is not predicted

by the IBM-2, but for other properties associated with the 
22 state

(i.e., energy levels and E2 transition), the IBM-2 agrees much better with

the experiment.

3.4.4- Magnetic Transition Probability and Mixing Ratio  (E2/M1)

The magnetic dipole moment operator T(M1) were calculated using

Eq.(2-53), and the boson gyromagnetic factors g and g were estimated

using the fact that AZg / and the relation (3-5), and one of the

experimental 2
12 11.0)22;1( NMB   [117] for 186W isotope, was used to
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produce a suitable estimation for the boson gyromagnetic factors. These

values are Ng  71.0 and Ng  051.0 . They are different from those of

the rare–earth nuclei, )65.0( Ngg   , suggested by Van Isacker

et al.,[129] also used Ng  1 and Ng  0 to reduce the number of the

model parameters in their calculation of M1 properties in deformed nuclei.

The results of our calculation are listed in Table (3-15). A good agreement

between the theory and the available experimental data is achieved. As can

be seen from the table, yields to a simple prediction that M1 matrix

elements values for gamma to ground band and transitions should be equal

for the same initial and final spin. Also the size of gamma to ground band

matrix elements seems to decrease as the mass number increases.

The results show that the transitions between low-lying collective

states are relatively weak. This is because of the increase of the anti-

symmetric component in the wave functions introduced by F-spin breaking

in the Hamiltonian. The magnitude of M1 values increases with increasing

spin for g and   transitions and we see:

1- By fitting B(M1) from 
22 to 

12 we always get a small value for

 gg  compared to the value basis on the microscopic calculations

.1 Ngg  

2- There are evidences that M1 small mode exists in all spectra.

3- One cannot make decisive conclusions related to the agreement between

theoretical and experimental data from the above table due to the lack

of experimental data. However, both experiments and IBM-2 predicts

small M1 component which is due to symmetry and forbiddances of

band crossing gamma transitions.

4- The   M1 matrix elements are larger than the  g M1 matrix

elements by a factor of 2 to 3. Again, this agrees qualitatively with the

perturbation expressions derived in ref. [130].
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5- The size of the g M1 matrix elements seems to decrease with the

increasing mass, specially, a change in  g M1 strengths occurs

when the gamma band crosses the beta band.

These three aspects of M1 data shown in Table (3-15) are reproduced

by the calculation through a smooth variation of the parameters  and  ,

and with a few exceptions (e.g., some  g transitions in 186W and   11 23

transition in 184W). A good agreement between the theory and the

experimental data is achieved.

The calculated values for B(M1) are acceptable to some extent as

compared to the available experimental data, where some of B(M1) values

are small compared to the values of the quadrupole transition probabilities

because the wavelength of the gamma ray transitions is greater than it is in

the magnetic transitions according to the following the relationship:

)(3.0)( 3/2 ELAML   . This relation shows that the B(M1) transition

probability is less than B(E2) transition probability and our results confirm

this.

The M1 properties of collective nuclei are certainly very sensitive to

various, even small, components in the wave functions either of collective

or non-collective character. In the 182-184W isotopes it was shown that the

inclusion of excitations across the major shell and two quasi-particle states

is important. One excepts that also for 188W isotopes (which are near to

closed shell for neutron) similar effects come into play. As the above

analysis suggests, they can manifest in a considerable renormalization of

IBM-2 boson g-factors from their slandered values. The magnetic dipole

moment for first excited state is given by:

 LgLg  …………….(3-8)

where )(  gg is the g-factor for the correlated proton (neutron) boson and

)(  LL is the corresponding angular momentum operator. According to the

microscopic foundation of the model, )(  gg is expected to depend, in the
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first approximation, on proton (neutron) number )(  NN only, )(  Ng and

)(  Ng . The IBM-2 calculations for )2( 1
 , )4( 1

 and )2( 2
 are listed in

Table (3-15), where we see a good agreement with the experimental data.

It is clear that the two effects contribute to the dependence of the

magnetic moments on proton and neutron number: the dependence of g

and g on proton and neutron number and the variation of the matrix

elements of the operator )(  LL with N and N . As will be better shown

below, the former effect is related to the shell structure of the orbits, while

the latter is related to the average number of proton and neutron boson

taking part in the collective motion.

The characteristic of M1 of deformed nuclei is the summed M1

strength measured for rare-earth nuclei [131]. When calculated in the

IBM-2, it is found to be proportional to 2)(  gg  . If the Hamiltonian is

F-spin invariant, the summed M1 strength is given by the Ginocchio sum

rule [132] and is proportional to the average number of d bosons in the

ground state. On the other hand, F-spin breaking may affect the summed

M1 strength. Therefore, once one decides to study M1 properties using the

IBM-2, as many characteristics as possible should be considered

simultaneously [43].

Table (3-28) gives the g-factor in N units for 182-186W isotopes for

the first excited state )2( 1
 and second excited state )2( 2

 and compares it

with the experimental data. The g-factor of a state k is given by [43]:

)93.......(..........
))(4/3(

)1(







KLL

kMTk
gk



Table (3-28): Experimental and IBM-2 calculations for g-factors for 182-186W in N units.

g-factor 182W 184W 186W 188W
Exp. IBM-2 Exp. IBM-2 Exp. IBM-2 Exp. IBM-2

Ng )2( 1
 0.263(7) 0.266 0.288(7) 0.32 0.308(2) 0.43 - 0.49

Ng )2( 2
  - 0.099 0.12(4) 0.18 0.20(4) 0.33 - 0.36

Experimental data are taken from ref. [133].
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We evaluate the mixing ratio  (E2 /M1) for 182-186W isotopes

depending on the Eq.(2-54). The results of IBM-2 calculation for

(E2 /M1) together with the experimental values are shown in Table (3-16).

The g factors together with the experimental data are presented in

Table (3-28). For this calculation we used the standard boson g- factors

Ng  71.0 and Ng  051.0 .

We were able to reproduce the 
12 g-factors as well as most of the

(E2/M1) mixing ratios. In particular, all the signs are reproduced

correctly. It should be noted that a sign change appears in both

the )22( 12
  and )22( 13

  transition mixing ratios, when going from
184W to 182W. Moreover, in 186W there is an opposite sign between the

)22( 12
  mixing ratio and the )23( 11

  mixing ratio. We were able to

reproduce all of these features in the calculation. Mainly, the sign change

of  and  for 182W in comparison to 184-186W is responsible for this

effect. We also calculated the admixtures of lower F-spin states in the

ground state. They are 1.6%, 2.2%, 1.3% for 186-184-182W, respectively.

The properties of low-lying levels in the 180-190W isotopes have also

been calculated within the context of the dynamic deformation model

(DDM) [134]. In Ref. [134], the authors have mainly focused on an

analysis of quadrupole moments, for which reasonable agreement is also

obtained in the present IBM-2 calculations. Unfortunately, only one

 (E2/M1) mixing ratio is given in Ref.[134] (-43 Neb / ) for the )22( 12
 

transition in 186W to be compared with the experimental value (-11 3
1

 Neb / )

and the IBM-2 result (-13. 201 Neb / ). One should, however, keep in mind

that the DDM approach is more microscopically motivated than the present

phenomenologically oriented IBM-2 analysis.

The sign of the mixing ratio must be chosen according to the sign of

the reduced matrix elements. The equations used are (2-52) for M1

transitions and (2-54) for the mixing ratios. The results are listed in Table
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(3-16). The agreement with available experimental data [68,117] is more

than good especially in the sign of the mixing ratio. However, there is a

large disagreement in the mixing ratios of some transitions, is not due to a

dominant E2 transition, but may be under the effect of very small value of

M1 matrix element. However, it is a ratio between very small quantities

and may change in the dominator that will have a great influence on the

ratio.

3.4.5 Electric Monopole Transition Matrix element

Electric monopole (E0) transitions between nuclear levels proceed

mainly by internal conversion with no transfer of angular momentum to the

ejected electron. For transition energies greater than 2
02 cm , electron-

positron pair creation is also possible; two-photon emission is possible at

all energies but extremely improbable. The E0 transition also occurs in

cases where the levels have the same spin and parity. This means that the

E0 transition competes with E2 and M1 components in these transitions.

The reduced matrix monopole transition is given in Eq.(2-58), the

necessary parameters of the monopole matrix element )0(E are derived

from fitting the isotope and isomer shifts ( 2
0 078.0 fm , 2

0 043.0 fm ).

There is a good agreement with the experimental data (see Table (3-17))

for the transition )22,0( 12
 E . Other IBM-2 results of )0(E values are

available upon request.

In 182-186W isotopes E0 values increased with the increasing neutron

numbers and they go up to the highest value at 186W isotope. This means

that all the isotopes are deformed because they possess the amount of

excess energy and that they are trying to get rid of this by lessen the E0

transitions to the state of stability. This is an additional evidence of the

deformation of these isotopes.

We notice that the theoretical values for the X (E0/E2) ratio are

small, for some transitions (see Table (3-18)) which means that there is a
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small contribution of E0 transition on the life time of the 0+ states. There

are two high values of X (E0/E2) in transitions from   12 00 in 182-186W

isotopes means that this state decay mostly by the E0 and according to this

one could say that the study of this state gives information about the shape

of the nucleus, because the E0 transitions matrix elements are connected

strongly with the penetration of the atomic electron to the nucleus. So

combination of the wavefunction of atomic electron, which is well known,

and the nuclear surface give good information of the nuclear shape.

Tables (3-19) and (3-20) shows theoretical versus experimental

isomer and isotopic shifts. The values of the parameters were determined to

be 23
0 10169.0 fm and 2

0 119.0 fm by fitting to isomer shift
22 16.0 fmr  for 184W and the value of isotopic shifts

22 150.0 fmr  and 0.087 2fm for the 182W-184W and 184W-186W

respectively. These same values were used in determining the monopole

matrix element.

The agreement is good with the experimental data, although the

IBM-2 does predict the experimentally observed sign not to change in the

isomer shift. It should be noted that the certainties in isomer shift data are

roughly an order of magnitude. Clearly more experimental results on the

isomer and isotopic shifts for the 180-190W isotopes would be very useful to

compare with the predictions possible using IBM-2.

3.4.6 Two Neutron Separation Energy

Instead of the actual binding energy we will examine the two neutron

separation energies. This is to say that the energy required to remove two

neutrons (one neutron boson) from a 180-190W isotopes and is given by

Eq. (2-64). The parameters B=23.2 MeV and C=-0.71 MeV are determined

by fitting Eq. (2-64) to the experimental data [117] to obtain the results

shown in Table (3-29) for 180-190W isotopes. The agreement with

experimental is good.
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Table (3-29 ): Two neutron bosons separation energies S2n in MeV units.
Isotopes Exp. [117] IBM-2
W-180 16.6 16.01
W-182 15.2 16.0
W-184 14.8 15,4
W-186 13.6 14.23
W-188 12.8 13.21
W-190 11.5 11.4

3.4.7 Mixed Symmetry States in 180-190W Isotopes

The existence of the mixed symmetry states is recognized as a

manifestation of a new nuclear mode consisting of oscillations of the angle

between symmetry axes of the deformed valance neutron and valance

proton. The occurrence of the mixed symmetry state in even-even nuclei is

a well-established fact [135], and they lie usually high in energy. In

even-even nuclei, the identification is based on the measurement of M1 and

E2 transitions to symmetry states, and strong from these states, weakly

collective E2 transitions to symmetric states, and strong M1 transitions can

take place via the bosons.

In rotational nuclei the lowest-energy mixed-symmetry state is a 1+

level at about 3 MeV, while in vibrational and  -unstable nuclei the Ms

level is a 2+ and occurs at about 2 MeV. The mixed-symmetry states can be

excited from, or decay to, normal symmetric states by magnetic dipole

transitions (M1) which are usually strong. The energy dependence of the

mixed-symmetry states and the sharing of mixed-symmetry features with

the symmetric states are governed by the parameters of the Majorana term

which shifts the energy of the states with mixed proton-neutron symmetry

with respect to the totally symmetric ones [42].

The IBM-2 is able to describe mixed-symmetry states because it

distinguishes between neutron and proton bosons. The F-spin quantum

number [67,77,98] has been introduced in order to classify these states in

the model. For a single boson, F = 1/2 with 2/1ZF for a proton boson and

2/1ZF for a neutron boson. Two bosons may be combined into a trio of

symmetric states with F = 1, FZ = 1, 0, -1, for the combinations   , 
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and  , respectively. For the  system there is also an antisymmetric

state with F = FZ = 0. Because the boson wavefunction must be symmetric

overall, the orbital wavefunction in the sd space must be symmetric for

F =1 and antisymmetric for F = 0. The scheme is readily extended to higher

boson numbers. The fully symmetric states of N bosons, containing no

antisymmetric boson pairs, have F = N/2. These are equivalent to the states

described by IBM-1. All other states in IBM-2 are states of mixed

symmetry. States containing one antisymmetric boson pair have

1
2


N
F , and include the 1 and 2+ states observed experimentally. The

Majorana term, M , provides a repulsive interaction between the bosons in

an antisymmetric pair, and therefore raises the energy of a state containing

such a pair. However, the  QQ . , interaction also contributes to the energy

difference between symmetric and mixed-symmetry states. In principle,

IBM-2 predicts the existence of further mixed-symmetry states with

F = N/2 - p, where p = 2, 3, 4, ..., [N/2] is the number of antisymmetric

boson pairs. These are expected to lie at much higher energy [42].

The best fit values for the Hamiltonian parameters are given in

Table (3-25). The 2 component is of a completely different nature from

the other two terms in the Majorana interaction. The term containing 2

corresponds to the matrix element in which the seniority of protons and

neutrons changes while the other two terms belong to the seniority-

conserving matrix elements. Consequently, in some cases 2 and 3 are

taken equal while 2 is set to zero. In the fitting procedures described in

this work we set, as a starting point, the three )3,2,1( kk parameters

equal and obtained a best-fit value. The best fit was judged on the basis of

the level energies of the lower-lying states, ignoring for the moment any

that might have a mixed-symmetry character, electric transition probability

B(E2) values and the static moments. Now with 31   at their best fit
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value, we allowed 2 to vary. We see that the energy dependence of all 
S2 :

symmetric states reaches saturation very quickly with increasing 2 , while

the energy of the state 2 is increases rapidly with increasing 2 and

becomes constant at about 2.5 MeV. The energy of the 
M1 shows a linear

increase with 2 . These features are illustrated in Figures (3.14) and (3.15).

It is obvious that the change in energy levels as 2 is varied is a good

indicator for the lowest 2+ and 1+ mixed-symmetry states, and we

recommend this method for searching for mixed symmetry states.

The values of the Majorana parameters will depress 2 with respect

first scissor mode state. The aim was to minimize the position of 2 mixed

symmetry states in the 180-190W isotopes, and to monitor the effects of such

a change on the calculated energy spectrum. On the other hand, we fixed

the value of k for all isotopes.

Figure (3.14): The change in energy of low-lying positive parity states as a function of
the Majorma term with 31  
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The calculated energy spectrums of the 180-190W nuclei are shown in

Figures (3-6) to (3-11). Reproduction of the trend in the experimental

data[117] can be seen, the energy states have been grouped according to

bands and F-spin values, and they provide an opportunity to study possible

collective band structures that are predicted in these nuclei. As can be seen,

our results agree well with the available experimental data. In particular, all

symmetry states in different band are reproduced correctly, all second 
20

and 
22 states, except the 

20 in the 180W isotope where the deviation is

0.028 MeV upper than the experimental value. The IBM-2 predictions of

the γ- band of the selected set of 180-190W isotopes are also satisfactory.

Though the calculated 
20 state at 1.093 MeV in the 182W isotope has been

observed, while the 
20 states in the 180,184,186W isotopes are very close to the

experimental ones. All 
13 states are fully symmetric states, i.e., belong to γ-

collective band. The deviations between theoretical and experimental data

may be attributed to the mixing of the collective excitation with

quasiparticle excitations.

Figure (3.15): The variation in level energy as a function of 2 .
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The parameter 2 component of Mojorana interaction should have an

extreme effect on the energy of the MSS. We set, as starting point, the three

parameters 1 , 2 and 3 which obtained the best fit to experimental data

and then allow 2 to vary. The completely symmetric 2+ states are not

affected by changing 2 , or reach the saturation value very quickly, while

the energy of the MSS increase (decrease) rapidly by changing the 2 value

and becomes constant at a certain energy as shown in Figure(3.15). The

energy of the (F*F/max) shows a linear increase with 2 . The 
M3 and 

M4

behave in the same manner of the 
M2 . The F-spin projection calculation

confirms these criteria. In other word, we recommend the two methods in

searching for the mixed symmetry states.

According to the above discussion, it is found that the 
52 and 

62 at

calculated energy around 2.1 MeV in 180-190W isotope are mixed symmetry

states, plus the 
11 and 

21 at 2.0 MeV and 2.3 MeV respectively. The same

states in 182W isotopes are mixed symmetry states. In 184W isotope, it is

found that the 
42 and 

52 states at experimental and theoretical energies

(1.386, 1.431) MeV and (1.397, 1.437) MeV respectively are the mixed

Figure (3.16): F-spin components in the 22 , 32 , 42 and 30 levels as a
function of 2 .
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symmetry states. In 186W has the similar behavior as previous isotope, i.e.,

the 
42 and 

52 states at experimental and theoretical energies (1.285, 1.322)

MeV and (1.274, 1.326) MeV respectively are mixed symmetry states.

The magnitude and sign of the multipole mixing ratios are found to

depend sensitively on 2 . In IBM-2, the E2 transition operator is given by

the Eq.(2-42) and the MI transition operator can be written in Eq.(2-52).

The reduced E2 and M1 matrix elements have been evaluated for a

selection of transitions in 180-190W isotopes 180-190W isotopes; their

dependence on 2 is striking. A sudden change in sign is sometimes

observed in M1; it occurs when the E2 matrix element is small. It may be

attributed to a very low value of the E2 reduced matrix element; even

though the program has an arbitrary sign choice, the sign is consistent for

all results within a calculation, and the sign of the ratio of the matrix

elements which determine the sign of the multipole mixing ratio is not

arbitrary.

In Table (2-16), it should be noted that a sign change appears in both

the   12 22 and   13 22 transition mixing ratios, when going from 182W to
184W. Moreover, in 182W there is an opposite sign between the   12 22

mixing ratio and the   11 23 and   11 43 mixing ratios. We were able to

reproduce all of these features in the calculation. Mainly, the sign change

of  and  for 182W in comparison to 184W which is responsible for this

effect. We also calculated the admixtures of lower F-spin states in the

ground state. They are 1.6%, 2.2%, 1.3% for 186-184-182W, respectively. They

are 1.5%, 2.10%, 1.2% for 186,184,182W, respectively.

From the calculated values for the transition probability B(E2) and

B(M1) in 182-186W in Tables (3-14) and (3-15), it has been found that the

state 
42 is a mixed symmetry state and represents 

M2 because the electric

transition probability B(E2) is smaller than the magnetic transition

probability B(M1) as well as the 
42 state which represents the mixed
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symmetry for the same reason. Whereas 
42 state is a totally symmetric

state because of B (M1) < B(E2). While, in the case of 184-186W, the 
42

represent the 
M2 according to the values of B(E2) and B(M1) [49].

The branching ratios of B(M1) are very helpful in nuclear shape

coexistence. Normally the value of )01;1(
11
MB is the largest value in

the M1 transition probability between states, so we applied the B(M1) ratio

normalized to the value of this transition, according to the following

relations;

)22;1(/)01;1( 111
  fiMBMBR

i = 4, 5,6,7, f = 1, 2

The ratio R1 depends on the )22;1(   fiMB . The large value of R1, means

that the 
i2 state is a totally symmetric state and this is consistent with the

values calculated in the program and with the F-spin values. For small R1

values the 2
1 11)22;1( NiMB   is large, in other words, the state,


7,6,5,42 is a mixed symmetry state and it has the strong M1 decay to the 

12

state and one must take into account that the states in which the M1 decay

are one-phonon or two-phonon differences. It can be seen that R1 = 0.00001

is small when 12N , because this isotope has a larger value of B(M1)

than the other isotopes.

The analyses demonstrate the sensitivity of the mixed symmetry

states energy to the model parameters F-spin and the Majorana term 2 .

The comparison with the experimental data shows that, we still lack the

experimental data on the )01;1(
11
MB in order to focus on these aspects.



CHAPTER FOUR
INTERACTION

BOSON-FERMION
MODEL RESULTS
AND DISSCUSION



152

CHAPTER FOUR

INTERACTION BOSON-FERMION MODEL RESULTS AND

DISCUSSION

4.1- 171-179Hf Isotopes in IBFM-1

In recent years, many negative and positive parity states of the even-

odd nuclei, such even-odd Hf isotopes have been found experimentally.

Over the major shell N = 82, there are available negative parity single-

particle levels, the 2/32/5 3,2 pf and 2/13p . The basic algebraic structure

associated with the IBFM model Hamiltonian of the Hf isotopes, whose

last unpaired nucleon occupied single-particle orbits with 2/1j , 2/3 and

2/5 , is the direct product )12()6( FB UU  , where )6(BU is the boson group

describing the collective properties of the even-even core and )12(FU is the

fermion group associated the single-particle degree of freedom.

4.1.1 Energy Spectra for 171-179Hf isotopes

The even-odd 171-179Hf isotopes consists of 72 protons and 99-107

neutrons, hence the numbers of bosons (12-16), it could be calculated by

hole protons that are 5. The IBFM-1 Hamiltonian (Eq. (2-76)) was

diagonalized by means of the ODDA program [136]. The IBFM-1

parameters used in the ODDA code are given in Table(4-1) for all isotopes

under study ( BEMA 0 , BFQ0 , BFE 0 )

Table (4-1): Adopted Parameters used for IBFM-1 calculation; all parameters are
given in MeV units.

Isotopes BFE BFQ BFM N N BN FN N
171Hf 0.071 0.031 -0.011 5 7 12 1 13
173Hf 0.252 0.031 -0.072 5 8 13 1 14
175Hf 0.181 0.07 0 5 9 14 1 15
177Hf 0.501 0.161 0.131 5 10 15 1 16
179Hf 0.9 0.02 -0.25 5 11 16 1 17

In the framework of the IBFM-1, we performed the BCS (Barden-

Cooper-Schrieffer) calculation, which provide the quasi particle energies i
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and the shell occupation 2
j using in the Eqs. (2-82) and (2-83) which are

presented in Table (4-2).
Table (4-2): Adopted values for the parameters used for IBFM calculation.

Parameters 171Hf 173Hf 175Hf

2/52 f 2/33p 2/13p 2/52 f 2/33p 2/13p 2/52 f 2/33p 2/13p

j (MeV) 2.030 1.7020 2.570 2.0530 1.6970 2.5940 2.0330 1.730 2.0340
2
j 0.0510 0.0716 0.0301 0.0480 0.0691 0.0474 0.0690 0.030 0.0471

Parameters 177Hf 179Hf

j (MeV) 1.7230 2.5740 2.0349 2.0640 1.7260 2.570
2
j 0.0674 0.0290 0.0471 0.0460 0.0670 0.030

The IBFM-1 results and experimental data [110] of low-lying

negative parity levels were plotted in Figures (4.1) to (4.5) for the 171-179Hf

isotopes. In these figures, the IBFM-1 calculations are in good agreement

with the experimental data [110].

Because of the discrepancies between experimental results in both

energy levels and their assignments, the IBFM-1 parameters used are those

which give the same energy value for the first energy level (1/2-)

(see Figure (4-1)). Hence, a normalization to the level (1/2-) at 0.021 MeV

was made.

The average percentage deviation between experimental levels and

the IBFM predictions was calculated to be less than 2% only. The energy

levels compared are those below 2 MeV, since most of the levels at higher

energy are not assigned and there are a lot of discrepancies in their

excitation energy.

The whole Hamiltonian was then diagonalized in the model space

spanned by the basis states
JMds JLnn ;,  where )2/7( j in 171-173-175-177Hf

isotopes and )2/9( j in 179Hf isotope. The interaction parameters were

determined by fittings to the experimental energy spectra of the 171-179Hf

isotopes. In the fittings, all interaction parameters were treated on equal

footing. The strength of L.L term can be determined from the relative level

spacing's of different L states. From the general level spacing's of even-
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even core nuclei in the isotope the parameter a2 was chosen to be

(-0.011 to -0.014) for all nuclei in the isotope string. Also, it was found that

the exchange force term has the effect to be complementary with the da 0

term and could be unified for all isotopes in the string. Therefore, the value

of  was chosen in Table (4-1) and the da 0 term was renormalized to

absorb the relative effects of exchange force for different isotopes.

The best fitted interaction parameters are shown in Table (4-1). It is

worth noting that the free varying parameters are very smoothly versus the

change of the boson number.

The calculated and experimental energy spectra of positive parity

states are shown in Figures (4-6) to (4-10). In general, the agreement is

very good. The root mean-square deviation for 64 states is only 0.021MeV.

There are several interesting features that are worthy of mentioning.

1- High spin states can be reproduced quite well but some high spin states

cannot be fitted well. If want to fit these states well by adjusting the

interaction parameters, the fittings in the lower spin states will be

affected significantly. Therefore, these states were excited in the least-

squares fittings and were marked by an asterisk on the energy levels. It

seems that these cannot be explained in this one fermion orbit IBFM-1

model.

2- The observed order reverse of the 5/2+, 7/2+, 3/2+, 9/2+, 11/2+.13/2+,

doublets in the energy spectra can be reproduced. It was found that the

quadrupole-quadrupole interaction is crucial for this order reverse. Note

that the sign of this term changes from isotope to another.

3- The unflavored high spin states that currently do not have experimental

counterparts are not shown in the figures.
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Figure (4.1): Comparison between experimental negative parity states data [110],
IBFM-1 and IBFM-2 calculated energy levels for 171Hf.
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173Hf
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Figure (4.2): Comparison between experimental negative parity states data [110],
IBFM-1 and IBFM-2 calculated energy levels for 173Hf.
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175Hf
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Figure (4.3): Comparison between experimental negative parity states data [110],
IBFM-1 and IBFM-2 calculated energy levels for 175Hf.
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177 Hf
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Figure (4.4): Comparison between experimental negative parity states data [110],
IBFM-1 and IBFM-2 calculated energy levels for 177Hf.
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179Hf
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Figure (4.5): Comparison between experimental negative parity states data [110],
IBFM-1 and IBFM-2 calculated energy levels for 179Hf.
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Figure (4.6): Comparison between experimental positive parity states data [110],
IBFM-1 and IBFM-2 calculated energy levels for 171Hf.
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Figure (4.7): Comparison between experimental positive parity states data [110],
IBFM-1 and IBFM-2 calculated energy levels for 173Hf.
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Figure (4.8): Comparison between experimental positive parity states data [110],
IBFM-1 and IBFM-2 calculated energy levels for 175Hf.
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Figure (4.9): Comparison between experimental positive parity states data [110],
IBFM-1 and IBFM-2 calculated energy levels for 177Hf.
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4.1.2- E2 Transitions for 171-179Hf Isotopes

The IBFM-1model wavefuntions can be further tested by

electromagnetic transition probabilities. Unfortunately, in this region the

lack of experimental data prevents any significant theory-experiment

comparison.

The calculation of electromagnetic transitions gives a good test of

the nuclear model wave functions. In this section, the calculation of the E2

transition strengths and results with the available experimental data are

Figure (4.10): Comparison between experimental positive parity states data [110],
IBFM-1 and IBFM-2 calculated energy levels for 179Hf.
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discussed. In general, the electromagnetic transition operators can be

written as a sum of two terms, the first of which acts only on the boson part

of the wave function and second only on the fermion part.

In the IBFM-1 the E2 operator is given in Eq. (2-103), where Be and

Fe are the boson and fermion effective charges. The electric quadrupole

moments for a state with spin J can be calculated from the E2 operator. Eq.

(2-103) contains the E2 boson and the fermion effective charges as

adjustable parameters. Experimental B(E2) values were used to find the

best fit with PBEM [60] and determine the boson effective charges e and

e . The fermion effective charge Fe is taken to be equal to Be . Fermion

effected charge can be reproduced from the experimental );2( fi JJEB 

and can be written as [82]:

     
   )14(..........

215
32:2 2

22 





NN

NN
fJJEB fi 

and it is tabulated in Table (4-3) together with boson effective charges. The

theoretical B(E2), s for 171-179Hf are given in Table (4-4) because there is no

experimental data to be comparable to. But we can calculate the B(E2)

values depending on the case when )()( 22 FB efe  . From Table (4-4) and

Table (4-5), some B(E2) transitions for positive and negative parity states

are strong because these transitions have selection rules.

Table (4-3): effective fermions charge for Hafnium isotopes.

Isotopes ).( beeB ).( beeF

171Hf 0.1165 -0.135
173Hf 0.121 -0.419
175Hf 0.123 -0.270
177Hf 0.113 -0.141
179Hf 0.132 -0.162

E2 transitions do not show a clear pattern that allows for the

arrangement of the levels into bands. This is partly due to the fact that there

are several single-particle levels important for the low-lying states and
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partly due to the fact that the even-even cores do not show strong

collectivity.

Table (4-4): Electric Transition Probability for 171-179Hf );2(   fi JJEB

in e2. b2 units for Positive Party States.

  fi JJ
171Hf 173Hf 175Hf 177Hf 179Hf

IBFM-1 IBFM-2 IBFM-1 IBFM-2 IBFM-1 IBFM-2 IBFM-1 IBFM-2 IBFM-1 IBFM-2

11 2
7

2
9
 0.130 0.221 0.51 0.617 0.023 0.073 - - - -

11 2
9

2
11
 0.64 0.622 0.721 0.832 0.011 0.014 0.0414 0.031 0.0621 0.0633

11 2
7

2
11
 0.293 0.419 0.0021 0.0027 0.003 0.007 0.0521 0.0547 - -

11 2
11

2
13
 0.073 0.087 0.682 0.672 0.037 0.055 - - 0.0533 0.0557

11 2
9

2
13
 - - 0.0009 0.008 - - 0.0007 0.00081 0.0067 0.0071

11 2
7

2
13
 - - 0.0029 0.003 - - - - - -

11 2
9

2
17
 0.056 0.068 0.131 0.153 - - - - - -

11 2
13

2
17
 0.375 0.432 0.352 0.427 - - - - - -

11 2
13

2
15
 - - - - - - - - 0.0918 0.0816



Chapter Four Interaction Boson-Fermion Model Results and Discussion

167

Table (4-5): Electric Transition Probability for 171-179Hf );2(   fi JJEB in e2. b2

units for negative Party States
  fi JJ

171Hf 173Hf 175Hf 177Hf 179Hf
IBFM-1 IBFM-2 IBFM-1 IBFM-2 IBFM-1 IBFM-2 IBFM-1 IBFM-2 IBFM-1 IBFM-2

11 2
1

2
5
 0.478 0.621 0.0021 0.002

7 - - - - - -

11 2
5

2
3
 0.046 0.0321 - - - - - - - -

11 2
1

2
5
 0.259 0.571 - - - - - - - -

12 2
1

2
5
 0.622 0.731 - - - - - - - -

12 2
3

2
5
 0.01 0.011 0.589 0.674 - - - - - -

11 2
1

2
3
 0.488 0.377 0.013 0.0021 - - - - 0.051 0.041

11 2
5

2
7
 0.362 0.475 0.19 0.188 0.0321 0.0616 - - - -

21 2
5

2
7
 1.381 2.615 0.47 0.522 - - - - - -

12 2
7

2
7
 0.478 0.513 0.419 0.522 - - - - - -

21 2
7

2
9
 0.0072 0.0081 0.038 0.0521 - - 0.0371 0.0351 0.0717 0.0619

11 2
9

2
11
 0.626 0.731 0.0132 0.0122 - - 0.0472 0.0481 - -

12 2
5

2
5
 - - 0.0014 0.0018 - - - - - -

21 2
5

2
7
 - - 0.008 0.0078 - - - - - -

12 2
9

2
9
 - - 0.066 0.061 - - - - - -

4.1.3 - M1 Transitions and 171-179Hf Isotopes

The M1 transition operator is given by the Eq. (2-106), where,

Bg = 0.31 N is the boson g-factor determined by the magnetic moment of

levels in the even-even core and, 'jj
g is the single particle contribution

which depends on lg and sg of the odd nucleon. In the actual calculations,

the computer program PBEM [60] has been used. For the odd 171-179Hf

neutron, we use Nlg 0 and Nsg 5.1 . The spin g-factor indicates some

quenching from that of a free neutron. It should be noted that there is a
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wide range of lg and sg values that give a reasonable fit to the data. In

considering the M1 operator one should keep in mind that for the special

choice slB ggg  the operator Eq. (2-106) reduces to the operator for a

total angular momentum. Since this corresponds to a good quantum

number, the calculated B(M1) values vanish exactly for this choice. The

relatively large B(M1) values thus requires a significant deviation from

slB ggg  however the data do not allow an accurate determination of

these parameters and a variation of the parameters with 30% is possible

without significantly spoiling the agreement.

The Calculated B(M1) values are only available for some transitions

in Tables (4-6) and (4-7). The calculation shows some large discrepancies

for 175-177Hf. The M1-operator in IBFM-1 higher-order terms are more

important than for the E2-operator due to the fact that the M1 transitions

are not collective.

Table (4-6): Magnetic Transition Probability );1( fi JJMB  in 2
N units for

171-179Hf for positive Party State

fi JJ 
171Hf 173Hf Hf175 Hf177 Hf179

IBFM-1 IBFM-2 IBFM-1 IBFM-2 IBFM-1 IBFM-2 IBFM-1 IBFM-2 IBFM-1 IBFM-2

11 2
7

2
9
 0.023 0.0461 0.478 0.537 0.0632 0.787  -  -  -  -

11 2
9

2
11
 0.011 0.263 0.046 0.0391 0.357 0.0272 0.697 0.532 0.271 0.472

11 2
7

2
11
 0.00028 2.510-3 0.0488 0.0526 0.0031 0.0004  -  -  -  -

11 2
11

2
13
 0.326 0.527 -  - 0.732 0.543 0.521 0.431 0.334 0.437

11 2
9

2
13
  - 0.00071  -  -  -  - 0.0072 0.0083 0.007 0.00089

11 2
7

2
13
  - - 210-5 310-5  -  -  -  -  -  -
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Table (4-7): Magnetic Transition Probability );1( fi JJMB  in 2
N for 171-179Hf for

negative Party State

fi JJ 
171Hf 173Hf 175Hf 177Hf 179Hf

IBFM-1 IBFM-2 IBFM-1 IBFM-2 IBFM-1 IBFM-2 IBFM-1 IBFM-2

11 2
1

2
5
 0.34 0.442 0.0024 0.0063 -- 0.732 -- --

11 2
5

2
3
 0.16 0.264 0.053 0.067 -- 0.087 -- --

11 2
1

2
5
 - 210-5 -- -- -- 0.00631 -- --

12 2
1

2
5
 0.0025 0.00033 -- -- -- 0.468 -- --

12 2
3

2
5
 0.1901 0.0156 -- -- -- -- -- --

11 2
1

2
3
 -- -- 0.243 0.327 -- -- -- --

12 2
5

2
5
 -- -- 0.00031 0.0077 -- -- -- --

21 2
5

2
7
 -- -- 0.001 210-3 -- -- -- --

11 2
7

2
9
 -- -- -- -- -- -- 0.732 0.622

11 2
9

2
11
 -- -- -- -- -- -- 0.872 0.413

11 2
7

2
11
 -- -- -- -- -- -- 0.0043 0.0007

11 2
11

2
13
 -- -- -- -- -- -- 0.0006 410-4

4.2- 181-187W Isotopes in IBFM-1

4.2.1- Energy Levels for 181-189W Isotopes

The present study, concentrated on the odd-mass 181-189W isotopes.

Since in the IBFM-1 no distinction is made between neutron and proton

bosons, the IBM-l parameters were obtained by projecting the IBM-2

Hamiltonian onto the IBM-l space and equating the matrix elements of the

Hamiltonian between states that are fully symmetric in the neutron-proton

degree of freedom. The remaining parameters, appearing in the boson-

fermion interaction ),,( 000 AVBF , were determined starting from the

values obtained in studying the odd-mass 171-179Hf isotopes in this work.
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They were subsequently adjusted in order to obtain a good description of

both positive-parity and negative-parity states at the same time. Thereby,

one finally obtains the values of the interaction parameters

MeVA 25.00  , MeV3.00  and MeV130.20  . The value of

MeV5.1 which is consistent with the excitation energy for the   12iJ

states in the even-even 180-190W isotopes.

The levels calculation is used to fit experimental energy levels with

the boson-fermion parameters for 181−187W isotopes. These parameters have

not been changed along the isotopic chain. The dependence of VBF on the

specificity of each nucleus is counted for in the occupation probabilities

appearing in the exchange term 0 and in the quadrupole term 0 . The best

agreement with experiment for the level calculations of 181-187W isotopes is

found by slightly varying the occupation probabilities to 2
j to allow a

better fit with the experiment (see Figs. (4.11) to (4.15) for negative parity

states and Figures (3-16) to (3-20) for positive parity states). The

Hamiltonian (Eq. (2-76)) was diagonalised by means of the computer

program ODDA [136] in which the IBFM-1 parameters. The parameters for

the 180−190W core are derived in the present work and given in Chapter

Three, while the quasi-particle energies and occupation probabilities used

in this work are given in Table (4-8).
Table (4-8): Adopted values for the parameters used for IBFM calculation.

Parameters

181W 183W 185W

2/52 f 2/33p 2/13p 2/52 f 2/33p 2/13p 2/52 f 2/33p 2/13p

j (MeV) 2.0281 1.097 2.419 2.052 1.714 2.584 2.032 1.72 2.576
2
j 0.049 0.0715 0.03 0.0477 0.0687 0.0293 0.0462 0.0691 0.0289

Parameters 187W

j (MeV) 2.033 1.722 2.573
2
j 0.0469 0.0672 0.0287

As an example we discuss 185W isotope. The low lying negative

parity states in this nucleus are built upon the negative parity orbits in the

82-126 neutron shell with angular momenta lh9/2, 2f7/2, 2f5/2, 3p3/2 and 3pl/2.
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In the SU (3)U (2) limit these orbits all belong to the pseudo-orbital

oscillator shell with n = 4.
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Figure (4.11): Comparison between experimental negative parity states data [110],
IBFM-1 and IBFM-2 calculated energy levels for 181W.
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Figure (4.12): Comparison between experimental negative parity states data [110],
IBFM-1 and IBFM-2 calculated energy levels for 183W.
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Figure (4.13): Comparison between experimental negative parity states data [110],
IBFM-1 and IBFM-2 calculated energy levels for 185W.
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Figure (4.14): Comparison between experimental negative parity states data [110],
IBFM- 1 and IBFM-2 calculated energy levels for 187W
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Figure (4.15): Comparison between experimental positive parity states data [110],
IBFM- 1 and IBFM-2 calculated energy levels for 181W.
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Figure (4.16): Comparison between experimental positive parity states data [110],
IBFM- 1 and IBFM-2 calculated energy levels for 183W.
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Figure (4.17): Comparison between experimental positive parity states data [110],
IBFM-1 and IBFM-2 calculated energy levels for 185W.
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4.2.2- E2 Transitions for 181-187W Isotopes

Electromagnetic transitions give a good test of the model wave

functions where in particular the extent to which two wave functions have

similar single particle components. In general, the electromagnetic

transition operators are written as the sum of two terms, the first of which

acts only on the boson part of the wave function and second only on the

fermion part (see Eq. (2-103)), where BQ has been defined in Eq. (2-43),
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)

Figure (4.18): Comparison between experimental positive parity states data [110],
IBFM-1 and IBFM-2 calculated energy levels for 187W.
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'jj
Q are single particle matrix elements of the quadruple operator, Be and Fe

are the boson and fermion effective charges respectively. In the

calculations, the boson effective charge Be was chosen such that it

reproduces the experimental values for the even mass W isotopes

reasonably well with one value taken constant over the entire isotopic

chain. This resulted in Be = 0.151 eb for 180-190W isotopes. The fermion

effective charge for W isotopes is taken as Fe = 0.15 eb. It should be noted

that the fermion effective charge has only a minor influence on the

collective E2 transition strengths. Tables (4-9) and (4-10) give B(E2), s for

positive and negative parity states in W isotopes.

Table (4-9): Electric Transition Probability );2(   fi JJEB for 181-187W in e2. b2

units for Positive Party States.
  fi JJ

181W 183W 185W 187W
IBFM-1 IBFM-2 IBFM-1 IBFM-2 IBFM-1 IBFM-2 IBFM-1 IBFM-2

11 2
9

2
11
 4.33 10-3 8.610-3 - - - - - -

11 2
11

2
13
 3.7210-3 3.2010-3 3.1110-4 3.2710-4 0.0008 0.0037 2.5010-4 0.0055

11 2
13

2
15
 6.9110-3 4.2910-4 - - - - - -

11 2
9

2
13
 5.9310-4 5.3010-4 - - - - - -

11 2
13

2
9
 - - 6.7210-4 4.6110-4 0.00078 0.0008 - -

11 2
11

2
9
 - - 4.3310-3 5.0310-4 - - - -

11 2
9

2
7
 - - - - 0.048 0.097 - -

12 2
7

2
9
 - - - - 2.9210-4 3.0010-4 0.00087 0.087

11 2
13

2
7
 - - - - - - 7.710-4 0.00073
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Table (4-10): Electric Transition Probability );2(   fi JJEB for 181-187W in e2. b2

units for negative Party States.
 fi JJ

181W 183W 185W 187W
IBFM-1 IBFM-2 IBFM-1 IBFM-2 IBFM-1 IBFM-2 IBFM-1 IBFM-2

2
1

2
5
 2.2810-2 3.2010-3 - - 3.3010-3 2.3110-3 - -

2
1

2
7
 1.3210-3 3.2010-4 - - - - - -

2
7

2
3
 4.4010-2 3.2010-2 - - - - - -

2
1

2
3
 - - 8.3010-4 7.3210-4 - - - -

2
3

2
5
 - - 6.5010-3 8.9010-3 - - 3.3110-3 3.3010-2

2
5

2
7
 - - 9.7010-4 5.5010-4 - - - -

2
3

2
1
 - - - - 5.6010-3 4.2110-1 - -

11 2
5

2
3
 - - - - 4.4010-3 4.2010-3 3.7010-4 4.9010-4

2
5

2
1
 - - - - - - 4.5010-3 2.5410-3

4.2.3- M1 Transitions for 181-187W Isotopes

The M1 operator is given in Eq. (2-106), Where Bg is the boson

g-factor determined by the even-even core, and 'jj
g is the single particle

contribution which depends on gland ground state band (orbital and spin g-

factor) of the odd nucleon, where 'jj
g = 0.32 N is the boson g-factor

determined by the magnetic moment of levels in the even-even core. In the

actual calculations the computer program PBEM [60] has been used.

Tables (4-11) and (4-12) gives the B(M1) for positive and negative parity

states for 181-187W isotopes.
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Table (4-11): Magnetic Transition Probability );1(   fi JJMB for 181-187W in
2
N units for Positive Party States.

  fi JJ
181W 183W 185W 187W

IBFM-1 IBFM-2 IBFM-1 IBFM-2 IBFM-1 IBFM-2 IBFM-1 IBFM-2

2
5

2
3
 2.2810-2 3.2010-3 - - - - - -

2
11

2
13
 1.3210-3 3.2010-4 8.3010-4 7.3210-4 5.6010-3 4.2110-1 3.3110-3 3.3010-2

2
13

2
15
 4.4010-2 3.2010-2 - - - - - -

2
13

2
9
 - - 6.5010-3 8.9010-3 3.3010-3 2.3110-3 - -

2
11

2
9
 - - 9.7010-4 5.5010-4 - - - -

2
9

2
7
 - - - - 4.4010-3 4.2010-3 - -

2
13

2
7
 - - - - - - 4.5010-3 2.5410-3

2
7

2
9
 - - - - - - 3.7010-4 4.9010-4

Table (4-12): Magnetic Transition Probability );1(   fi JJMB for 181-187W in
2
N units for negative Party States.

  fi JJ
181W 183W 185W 187W

IBFM-1 IBFM-2 IBFM-1 IBFM-2 IBFM-1 IBFM-2 IBFM-1 IBFM-2

2
1

2
5
 5.010-5 4.810-5 - - - - - -

2
1

2
7
 3.710-4 4.5710-5 - - - - 7.8010-4 6.7010-5

2
7

2
3
 4.110-5 7.3010-5 - - - - - -

2
1

2
3
 - - 4.3010-5 3.8010-5 - - - -

2
3

2
5
 - - 5.9710-5 6.2010-5 - - 4.5010-5 8.0010-5

2
5

2
7
 - - 4.4810-5 5.7010-4 - - - -

2
3

2
1
 - - - - 3.7010-5 4.0010-5 - -

2
5

2
3
 - - - - 5.2010-5 6.0010-6 - -

2
5

2
1
 - - - - 4.6010-4 3.4010-5 3.7010-5 3.7010-5
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4.3 171-179Hf Isotopes in IBFM-2

An even-odd Hf isotope is described in IBFM-2 by coupling a

neutron to its 72Hf isotope, described in terms of the IBM-2, with the

Hamiltonian of Eq. (2-42). Consequently, the first step to describe the

even-odd nucleus is a compelling description of the even-even core. In the

case of the Hf isotopes, we start pointing for the description of the Hf even-

even cores. Afterward, the parameters were slightly changed to take into

account later experimental information on mixed symmetry states 1+. The

resulting values of the parameters used in the description of the Hf cores

can be found in Table (3-21). The strength of the Majorana interaction, Mπν,

was obtained by fitting the excitation energy of the first 1+ level, mixed

symmetry state allowed in IBM-2, but not in IBM-1. With those

parameters, both energy spectra and electromagnetic properties were

calculated in a good agreement with the available experimental data for

even-even Hf isotopes. Thus, we are confident that the wave functions of

the even-even Hf core nuclei provided by the IBM-2 model are good. Once

the wave functions for the states in the even-even core have been obtained,

the odd-neutron has to be coupled to it in order to calculate excitation

energies, electromagnetic properties.

4.3.1- Energy Spectra

The coupling of the neutron to the even-even core is governed by the

boson-fermion interaction, where the more important terms are those

between the odd fermion and the bosons with the alternative flavor. This

interaction, Eq. (2-154), is decomposed into three terms: quadrupole ( QV ),

exchange ( EV ), and monopole ( MV ). Since the Hamiltonian is invariant

under parity, positive and negative parity states are studied separately. The

parameters in VBF are different for each parity accordingly and are shown in

Table (4-13). It is important to emphasize that   , and A are

phenomenological parameters for the entire chain of isotopes, in contrast to
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the above-mentioned IBFM-1 calculation, where these parameters were

fitted for each isotope separately. The IBFM-2 Hamiltonian (Eq. (2-142))

was diagonalized by means of the ODDPAR program [107] in which the

IBFM-2 parameters which used in the ODDPAR code are given in Table

(4-2) for all isotopes under study ( BEMA  , BFQ , BFE )

Table (4-13): Parameters (in MeV) of the boson-fermion interaction used in this
work for positive (+) and negative (−) parity states for 171-179Hf isotopes.
Parity   A

+ 0.455 0.033 -0.095
- 0.879 4.871 -0.864

The single-particle energies sp
jE appear in Eqs. (2-82) and (2-83) are

listed in Table (4-2), but we changed the relative position of the 2/52 f , 2/33p

and 2/13p orbits to account for the sequence in the low-lying levels
 2/5J and  2/3J along the chain of isotopes. Table (4-2) shows the

quasiparticle energies and the occupation probabilities obtained from the

BCS calculation. One important feature to note is that the positive parity

levels as well as the negative parity levels have high quasiparticle energies

and small occupation probabilities when we compare them with the rest of

the levels of the same parity.

In Figs. (4-1) to (4-5), experimental and calculated excitation

energies of the negative parity levels in 171-179Hf isotopes are shown. The

correspondence between experimental and calculated levels was done using

the electromagnetic properties discussed below. It can be seen that the

structure of the spectrum of 171Hf corresponds to a particle coupled to a

deformed core. The first two states come from the coupling of the single-

particle states included in the calculation with the ground state of 170Hf.

Then there is a gap and, around the energy of the first 2+ of 170Hf (0.10080

MeV), a set of levels, which comes from the coupling of the single-particle

levels to this state, appears. The spectrum of 173Hf corresponds to a

transitional situation where the forbidden zone (gap) is absent. Our
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calculations reproduce well this structure, although they show a certain

tendency to structures of the particle-rotation type in both isotopes. The

origin of this effect can be found in the low values of the boson-fermion

parameters, which supply weak coupling schemes.

Experimental and calculated excitation energies of the negative

parity levels in 171-179Hf isotopes are compared in Figs. (4.1) to (4.5). The

correspondence in this case is difficult for some levels in 171-179Hf isotopes,

due to the lack of electromagnetic information which would allow for their

correct identification. This fact was also observed in the IBFM-1

calculation, where it was suggested that this level could be reproduced

when the 7/2- level of Hf is included, which is beyond the scope of this

work. The calculation for the 173Hf isotope shows a sequence of levels

distributed almost uniformly up to 0.7 MeV, while there is a set of

experimental levels grouped together around 0.3 MeV. However,

there is an almost 1:1 correspondence between experimental and calculated

levels below 0.5 MeV.

Finally, as it can be seen in Figures (4-6) to (4-10) for positive parity

states that in 177-179Hf there is an excellent agreement between the

calculated and the experimental energies for the positive parity levels.

Again, the calculation predicts a first excited band led by a 7/2+ state at

around 0.4 MeV. In the case of the negative parity levels, experimental data

are only available for the ground-state band, well described in the

calculation, but with a slightly higher moment of inertia. A first excited

band, led by a 7/2− state at 0.2 MeV, appears in our calculations, as in
179Hf.

4.3.2- E2 Transitions for 171-179Hf Isotopes

In addition to spectra, we have calculated B(E2)’s. This electric

quadrupole transition operator T(E2) consists of a bosonic and a fermionic

part, )2(E
BT given in Eq. (2-47) and )2(E

fT taken in Eq. (2-155). The
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quadrupole operators present in )2(E
BT correspond to those appearing in the

Hamiltonian (2-142). The value used for the bosonic effective charges eπ

and eν is 0.191 e b. For the fermionic effective charge eF, we adopt the

value 1.5 e b. Tables (4-4) and (4-5). These tables show the trend of the

calculated values of B(E2) for some low-lying positive parity states in the

Hf isotopes. The calculation reproduces well the trend, except some

transitions for A = 171. These could be due to the existence of a low energy

state 0+ at 0.915.4 MeV in the even-even core, 172Hf, which the IBM is

unable to reproduce without including octupole degrees of freedom. The

coupling of this state with the fermionic single-particle degrees of freedom

may have a relatively high influence on the low-lying states in 172Hf.

Tables (4-4) and (4-5) show the calculated values of B(E2) for this
171-179Hf isotopes. It can be seen that, even when the calculation does not

describe fine details of the experimental data, general trends are

reproduced. Again the inclusion of octupole degrees of freedom could

improve the description of these isotopes. Some calculated values of the

reduced transition probabilities B(E2) in 175Hf are quoted in tables.

4.3.3 - M1 Transitions and Mixing Ratio )1/2( ME for 171-179Hf Isotopes

In contrast to E2 properties, M1 transitions and moments in even-

odd isotopes are dominated by the fermion part of the M1 operator. Using

the operator of Eq. (2-159), one can compute the corresponding transitions.

The boson part of the operator requires a specification of Bg and B
Fg . These

can be taken from the calculations reported for even-even nuclei for

Sambataro et al., 1984 [109]. The fermion part of the operator requires a

specification of the fermion g-factors. The orbital g-factors are N
F
lg  1, 

and N
F
lg  0,  . The spin g-factors are taken as the free values quenched by

a factor of 0.7, i.e. N
F
Sg  58.57.0  . A portion of the results is shown in

Tables (4-6) and (4-7). Also here there is no experimental information. For

those cases for the results of calculations of M1 transitions agree in general
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less well with the data as compared to the corresponding calculations of E2

transitions. This indicates that while the collective degrees of freedom

appear to be well described in odd-even nuclei, the single-particle degrees

of freedom still require improvement.

Calculations of electromagnetic transitions give a good test of

nuclear model wave functions. In this section discussed the calculation of

M1 and E2 transition strengths and compare them with the available

experimental information.

With T(E2) and T(M1) operators completely specified it is possible to

calculate )1/2( ME mixing ratios for transitions between states of spin as in

Eq. (2-54).

From the reduced E2 and M1matrix elements, the multipole mixing

ratios for transitions in 171-179Hf were calculated and compared with the

experimental data. Results are shown in Tables (4 - 13) and (4 - 14)

respectively. One can see that there is a good agreement for the sign and

the magnitude of the mixing ratios of most transitions, as calculated from

the IBFM-1 and IBFM-2, and that obtained from experiment results. The

expectation is for some transitions which the calculated sign of mixing ratio

is opposite to experiment results. However, this could be attributed to the

use of a different sign convention for the definition of mixing ratio, used in

the experimental work.
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4.4 181-187W Isotopes in IBFM-2

4.4.1- Energy Spectra

The Hamiltonian, Eq. (2-142) was diagonalized using the computer

program ODDPAR [107] in which the IBFM parameters are identified as

MeVA 25.00  , MeV3.00  and MeV130.20  for negative and positive

parity states. The value of MeV5.1 is consistent with the excitation

energy for the   12iJ states in the even-even W isotopes. In the present

study of the 181-189W isotopes we have used the complete 82-126 major

shell, the ,2 2/5f 2/33p and 2/13p single particle orbits, for the odd-neutron

quasi particle. The quasi particle for these calculations is the fermion

degree of freedom, describing a neutron hole, that is coupled to the bosons

of the even-even may occupy. For the description of the even-even cores

we have used the parameters as given in Table (3-25). The use of the

complete model space allows us, for the first time, to perform a

comprehensive and unified calculations for the positive and negative parity

states of the neutron-poor even-odd isotopes.

As part of our strategy to have a unified description we have tried,

and succeeded, to keep the same values for all isotopes for the interaction

strength of the quadrupole, exchange and monopole forces, see Eq. (2-142).

We have been able to obtain good results for positive and negative parity

states for all isotopes (shown in figures (4-6) to (4-10)).

By performing an overall fit to a larger series of isotopes and by

including positive as well as negative parity states the freedom in the

choice of the interaction strength is strongly limited. The strength of the

Monopole force does not have a very large effect on the results. The quasi-

particle energies and occupation probabilities were allowed to vary across

the isotopes to get an optimal to excitation energies. At the same time, we
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have kept an eye on single-particle transfer amplitudes as these are very

sensitive to the occupation probabilities. The used single-particle

parameters are given in Table (4-8). Since only on the relative quasi-

particle energies enter in the calculation of excitation energies we have set

the lowest energy to zero. For 181-189W one observes that the energies as

well as the occupation probabilities vary gradually over the mass range,

with a minimum in the quasi-particle energies.

4.4.2- E2 Transitions for 181-189W Isotopes

It is very well known that electric quadrupole transitions are

dominant in nuclear physics. Striking evidence is given by strong

enhancements in the measured E2 strength in even-even nuclei. The large

deviations from single particle estimates, expressed in 22be units, indicate

the presence of collective features. Since the transition rate T(E2) has a

pronounced energy ( E ) dependence it is desirable to extract it from the

other structure effects.

In the IBFM-2 formalism, the operator )2(ET is constructed starting

from the boson and fermion contributions is given in Eq. (2-154) The

boson effective charges are taken in Table (3-26) for both neutron and

proton bosons, whereas in estimating the fermion coefficients the radial

integrals <r2 > in Eq. (2-156) are approximated by the harmonic oscillator

value MN /)2/3(  , which turns out to be the same (0.27 b) for all the

positive parity orbits N = 6 shell. Furthermore, a renormalization, leading

to ebeF 136.0,  , ebeF 399.0,  is adopted to account for the effects of the

strong interaction among the nuclear constituents.

Even though the ability of accurately describing the observed

transitions depends in a crucial way upon details in the structure of the

wave functions, it is useful to illustrate how the essential features can be

understood by dealing with a specific example in transitions for positive

and negative parity states.



Chapter Four Interaction Boson-Fermion Model Results and Discussion

191

From the results presented in Tables (4-9) and (4-10), it appears that

the strong collective quadrupole transitions (large B(E2) values) are

reproduced quite well by the IBFM-2 model, especially for the 185W

isotopes, whereas some disagreement emerges in relation to those

transitions which are observed to be weak and in the intermediate cases.

The explanation of such a trend can be found by studying the specific

nature of the states involved in a de-excitation process.

4.4.3- M1 Transitions and Mixing Ratio )1/2( ME for 181-189W Isotopes

For even-odd nuclei, other electromagnetic transitions, such as the

Ml's, deserve particular attention, because they carry information about the

unpaired nucleon and the delicate coupling to the core. Therefore, they are

complementary to the role played by the E2's, where, as we have seen the

collective features are prevailing.

The appropriate one-body operator in our language is given in

Eq. (2-155). The bosonic g-factors g and g have been taken from

previous studies [109]. The coefficients of the fermionic contribution are

given in Eq. (2-159). and the single-particle g-factors of the free nucleons

are explicitly: Nlg  1,  , Nsg  5857.5,  , Nlg  0,  , Nsg  8268..3,  .

Throughout the applications considered here the spin components need to

be modified to the following values: Nsg  910.3,  and Nsg  678.2,  .

The calculated B(M1) values are given in Eq. (2-53), and presented

in Tables (4-11) and (4-12) shows IBFM results for reduced transition

probabilities B(M1), and their IBFM prediction for some of the lowest

levels. The present IBFM results are more reasonable for positive and

negative parity states.

Like the E2 transitions, there is no experimental data to compare the

theoretical results, the magnetic case is characterized by the occurrence, of

relatively strong de-excitations, which are predicted to be weak and vice-

versa. Such a behavior can be the result of having neglected higher order
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terms in the expression for the operator, or can reflect small configuration

admixtures, responsible for large variations in the matrix elements, without

appreciably affecting the energies of the corresponding states.

Using the operator of Eq. (2-159), one can compute the

corresponding transitions. The boson part of the operator requires a

specification of Bg and B
Fg . These can be taken from the calculations

reported for even-even nuclei for Sambataro et al., 1984 [109]. The

fermion part of the operator requires a specification of the fermion g-

factors. The orbital g-factors are N
F
lg  1,  and N

F
lg  0,  . The spin g-

factors are taken as the free values quenched by a factor of 0.66, i.e.

N
F
Sg  58.566.0  . A portion of the results is shown in Tables (4-11) and

(4-12). Also here there is no experimental information.

Tables of  the )1/2( ME mixing ratios for some selected transitions

in the 181-187W isotopes are calculated from the useful equations  above and

with the help of B(E2) and B(M1) values, which are obtained from

NPBTRAN (a computer code which is a subroutine of the NPBOS package

program) [71]; the results are given in Tables (4-15) and (4-16). In general,

the calculated electromagnetic properties of the Tungsten isotopes do not

differ significantly from those calculated in experimental and theoretical

work.

We have also examined the mixing ratio )1/2( ME of transitions linking

the ground state bands. The transitions which link low spin states obtained

in the present work are in good agreement and show little irregularities. We

find that the transitions which link low-spin states obtained in the present

work are largely consistent with this requirement, although some may be

considered to show irregularities.

In general, the calculated electromagnetic properties of the tungsten

isotopes do not differ significantly from those calculated in experimental

and previous theoretical work. The calculated values in this study show that
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the transitions connect the levels with the same parity and the E2

transitions are predominant. The later includes transitions originating from

the beta and gamma bands, which supports the idea that the beta and bands

may be quadrupole excitations of the perturbed ground state, but the

existence of M1 indicates that the beta and gamma bands cannot be pure

quadrupole excitations of the ground state band.

Table (4- 16): Mixing Ratio  12 ME for 181-187W for

Positive Parity States in Neb / units.

fi JJ 
181W 183W 185W W187

IBFM-1 IBFM-2 IBFM-1 IBFM-2 IBFM-1 IBFM-2 IBFM-1 IBFM-2

2
9

2
11
 0.0089 0.007 - - - - - -

2
11

2
13
 5.22 2.31 4.32 5.37 2.110-2 3.7110-1 0.981 0.431

2
13

2
15
 0.873 0.271 - - - - - -

2
13

2
9
 - - 8.710-4 6.010-3 2.12 1.110-4 - -

2
11

2
9
 - - 2.210-4 8.010-4 - - - -

2
9

2
7
 - - - - 0.731 5.39 - -

2
13

2
7
 - - - - - - 2.110-4 3.510-4

2
7

2
9
 - - - - - - 4.31 2.21
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CHAPTER FIVE
CONCLUSIONS AND SUGGESTIONS FOR FUTURE

WORK
5-1 Concluding Remarks

In this work we have described various properties and shape

evolution of the Hf and W isotopes in the framework of the IBM and

IBFM, we conclude the following points.

Hf Isotopes

1- Theoretical calculations of 170-180Hf (with Z=72) were performed by

using IBM-1 and IBM-2. The 172-174Hf total numbers of bosons 14,15

respectively (weakly deformed) lies in the transitional region

SU(3)O(6) and the 176-180Hf isotopes (total number of bosons 16,15

and 14 respectively), lies in the dynamical symmetry SU(3) (deformed

nuclei).

2- In Hf isotopes see that when the states  42 2,2J and 
13 are strongly

dominated by the F=Fmax, the strongest contribution to the  23 3,2J

states is the one with F=Fmax-1. The  23 3,2J and 1 states as a mixed

symmetry states in Hf isotopes.

3- The reduced electric transition probability B(E2) values are required in

order to identify the strength of E2 transitions within the gg  band

and from beta band to ground state band and from gamma band to beta

and ground band.

4- The root mean square deviation (rmsd) is used to compare the

experimental and calculated IBM-2 energy levels. The ground state

levels the best agreement was found.

5- The yrast levels of even-even nuclei ( iJ 2,4,6,.....) usually decay by

E2 transition to the lower lying yrast level with .2 if JJ

6- As a consequence of possible M1 admixture the )22;2( 12
 EB quantity

is rather difficult to measure. For Hf isotopes, give the different,
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conflicting experimental results and we see that no general feature be

derived from them, from these values seems to decrease for 172-174Hf

and increased for 176-180Hf.

7- The electric transition probabilities from the mixed-symmetry state
 1J to symmetric states ( 

21 2,2 ) is weak collective E2 transition.

8-The E2 transition between the 1 and the 2 ground state is small,

whereas E2 transitions are large between fully-symmetric states and

between mixed-symmetry states.

9- The general features of the quadrupole moment for first excited state

)2( 1
 results is clear, namely an increased in the negative quadrupole

moment with increasing neutron number.

10- The )01;1( 11
 MB transition probability is proportional to the factor 2

g

and weakly depends only on the strength of Majarona force.

11- The magnetic dipole moment for first excited state )2( 1
 in even-even

172-180Hf isotopes provide a sensitive test of the effective boson number

in the IBM-2 framework, in 172-180Hf isotopes with N = 100-108,

confirm the validity of assuming a drastic change in number of proton

boson when the number of neutron boson is increased from 106 to 108.

12- The theoretical and experimental X(E0/E2) values are in general in a

good agreement except for the   13 00 and   14 00 , transitions but it is

not possible to say if these disagreements may be attributed to the E0 or

E2 component in the ratio. The disagreement in the results for some

transitions could be removed by interchanging the ordering since for

the higher lying states the correspondence between the experimental

and theoretical levels is uncertain.

13- The possibility of obtaining a description of both positive and negative-

parity levels, starting from a single Hamiltonian is probably due to the

following two factors. (i) The IBM-2 Hamiltonian was obtained from

detailed study of spectra and E2 electromagnetic properties of the even-

even Hf nuclei. (ii) The single-particle properties (quasi-particle energy
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Ej and occupation probabilities 2
j ) have been determined from a BCS

calculation for the 2/33p , 2/13p and 2/52 f orbital's.

W Isotopes

1- The structure of the energy spectra is determined mainly by the first

three terms on the right-hand side of the Hamiltonian in Eq. (2-42)

(the pairing plus quadrupole terms), while the remaining terms have

minor, but non-negligible contributions.

2- The examination of the experimental and IBM-2 energy levels ratios for

the 180-190W isotopes shows that they lie in the transitional region

SU (3) →O (6), therefore the Hamiltonian of the transition region

SU (3) →O (6) has been employed in the calculation by using the

program NPBOS.

3- Our calculated energy spectrum is shown in Figs. (3-6) to (3-11). The

root mean square deviation (rmsd) for the ground, beta and gamma

bands totaling 19 levels are 0.109, 0.82 and 0.80 MeV for Duval and

Barrett [38] and the present work respectively. (Since the values

obtained by Duval and Barrett [38], were interpolated from their level

energy plot, small errors may arise and a figures representing their

goodness of fit could not be determined accurately.)

4- The boson effective charges ( e , e ) have the same dependence on

proton number and neutron number as do  and  however, as even a

further simplification Duval and Barrett [38] used  ee  equals

constant for all nuclei.

5- The electric transition probabilities from the mixed-symmetry state
 1J to the symmetric states 

12 and 
22 is weak collective E2

transition. The E2 transition between the 1 and the 2 ground state is

small, whereas E2 transitions are large between fully-symmetric states

and between mixed-symmetry states.
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6- The energy of the 
ms1 shows a linear increase with 2 . It is obvious that

the change in energy levels as 2 is varied to be a good indicator for the

lowest 2+ and 1+ mixed-symmetry states, and we recommend this

method for searching for mixed symmetry states.

7- The states 
52 and 

62 at calculated energy around 2.1 MeV in 180-190W

isotope are mixed symmetry states, plus the 
11 and 

21 at 2.0 MeV and

2.3 MeV respectively. The same states in 182W isotopes are mixed

symmetry states.

8- The analyses demonstrate the sensitivity of the mixed symmetry states

energy to the model parameters F-spin and the Majorana term 2 . The

comparison with experimental data shows that, we are still lacking of

experimental data on the )01;1(
11
MB in order to focus on these

aspect.

9- The values of gyromagnetic factors of boson used to evaluate the B(M1)

and mixing ratios are Ng  71.0 and Ng  051.0 .The results of

the calculations are listed in Table (3-15).

10- The size of the  g M1 matrix elements seems to decrease with

increasing mass, specially, a change in  g M1 strengths occurs when

the gamma band crosses the beta band.

11- The B(M1) transition probability values are small compared to the

values of the B(E2) transition probabilities because the wavelength of

the gamma ray transitions is greater than it is in the magnetic transitions

according to the following the relationship: )(3.0)( 3/2 ELAML   .

12- The magnetic transition probability B(M1) in the IBM-2, it is found to

be proportional to 2)(  gg  .

13- We reproduce the 
12 g-factors as well as most of the  (E2/M1) mixing

ratios. In particular, all the signs are reproduced correctly.

14- In W isotopes E0 values increased with increasing neutron numbers

and they go up to the highest value at 186W isotope. This means that all
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the nuclei are deformed because they possess the amount of excess

energy and that they are trying to get rid of this by lessen the E0

transitions to the state of stability. This is an additional evidence of the

deformation of these isotopes.

15- The theoretical values for the X (E0/E2) ratio are small, for some

transitions which means that there is a small contribution of

E0 transition on the life time of the 0+ states.

16- The energy of the 
ms1 shows a linear increase with 2 . These features

are illustrated in figures (3.14) and (3.15). It is obvious that the change

in energy levels as 2 is varied is a good indicator for the lowest 2+ and

1+ mixed-symmetry states, and we recommend this method for

searching for mixed symmetry states.

17- The branching ratios of B(M1) are very helpful in nuclear shape

coexistence. Normally the value of )01;1(
11
MB is the largest value in

the M1 transition probability between states, so we applied the B(M1)

ratio normalized to the value of this transition.

18- The possibility of obtaining a description of both positive and negative-

parity levels, starting from a single Hamiltonian is probably due to the

following two factors. (i) The IBM-2 Hamiltonian was obtained from

detailed study of spectra and E2 electromagnetic properties of the even-

even W nuclei. (ii) The single-particle properties (quasi-particle energy

Ej and occupation probabilities 2
j ) have been determined from a BCS

calculation for the 2/52 f , 2/33p and 2/13p orbital's.

5-2 Suggestions for Future Work

Several suggested projects remain for the future, which can be

abbreviated by the following possible works:

1. One of the most significant recent developments in nuclear structure

physics is the prediction that a Supersymmetry Model (SSM) may be

realized in nuclei. The recognition of dynamical symmetries in
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even-even nuclei via the introduction of bosons has reoriented our

directions nuclear spectroscopy. Therefore, this suggests to use this

model to study the level schemes in odd-even mass nuclei, and study

the non-collective motion in transitional and deformed nuclei.

2. This work can be extended to calculate E4 (hexadecupole degree of

freedom) in transitional nuclei, by addition of a g-boson (L = 4), to

test the important  4K band in this region.

3. The 
M2 states found so far in the A = 140 mass region give us an

interesting glimpse into the behavior of mixed-symmetry states. The

extent of the existence of these states and also their purity would test

the limits of the validity of describing them as states of mixed

proton-neutron symmetry. Efforts are continuing in the search of

mixed-symmetry states in this mass region.

4. Using other collective models, i.e., Dynamic Deformation Model

(DDM) to study the Nuclear structure and electromagnetic

transitions for this region.

5. Studying the two-neutrino double-β decay within the framework of

the interacting boson model (IBM-2) and its extensions (IBFM-2 and

IBFFM-2) models.
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مختلف عن القیم العملیة وبعض الاخر للبعضھا مقارب (المزدوج التنافر) ومن قیم نسبة الخلط 

.M1لقیموھي حساسة بالاشارة 

)وھنا تم الاعتماد على طرق جدیدة في حساب الشحنات المؤثرة للبوزونات  , وذلك (

لغرض استخدامھا في حساب الانتقالات الكھربائیة رباعیة القطب. وكذلك الاعتماد على طرق 

.M1لحساب الانتقالات المغناطیسیة g-factorجدیدة وحدیثة بأتخاذ 

ةبرامج متقدمة وجدیدعتماد على یوترون بالافصل بوزترون من نوع نتم حساب طاقة 

)وكذلك حساب نسبة التفرع NPBOSضمن برنامج  0/ لكلا السلسلتین.(2

الجزء الاخر من الدراسة تم تحلیل مستویات الطاقة الموجبة و مستویات الطاقة السالبة 

الفیرمیون -البوزونلنظائر الھافینیوم والتنكستن الزوجیة الفردیة بأستخدام نموذجي تفاعل 

یث تم ایجاد مستویات او مدارات الجسم المنفرد ذات ح،(IBFM-2)والثاني (IBFM-1)الاول

2/12/32/5التناظر السالب والموجب 3,3,2 ppf وھنا تم استخدام برنامج .ODDAوبرنامج

PBEFM وتمت لحساب مستویات الطاقة والانتقالات الكھرومغناطیسیة ونسب الخلط بینھما

مقارنة النتائج النظریة مع القیم العملیة المتوفرة.

)وكذلك تم اعتماد طرق جدیدة في حساب الشحنة الفعالة للفرمیون  وكذلك حساب (

)العامل الجیرومغناطیسي للفیرمیون  والذین استخدمناھما في دراسة الانتقالات (

(IBFM)والفردیة باستخدام الكھرومغناطیسیة في نوى الھافنیوم والتنكستن الزوجیة 



الخلاصة

الھافنیومنظائرلالتركیب النوويلدراسةIBMنموذج البوزونات المتفاعلة تم استخدام 

Hf180-172التنكستنوW190-180ة الھاملتونیمعادلة الطاقة معلماتتحدید قیم حیث تمH في نموذج

لكل نظیر من IBM-2و نموذج البوزونات المتفاعة الثاني IBM-1البوزونات المتفاعة الاول 

مع مستویات الطاقة التجریبیة المتوفرة. (fitting)عن طریق المواؤمةنظائر الھافنیوم والتنكستن 

B(E2)رباعیة القطب لكل نظیر لدراسة الانتقالات الكھربائیة معلماتوكذلك تم استخدام ھذه ال

كھربائي للمستویات والعزوم رباعیة القطب الB(M1)والانتقالات ثنائیة القطب المغناطیسي 

Q(2ىالمتھیجة الاول Q(2ةوالثانی( وكذلك نسب الخلط بین الانتقالات الكھرومغناطیسیة (

(E2/M1) والانتقالات احادیة القطب الكھربائیةB(E0)حات ابالاضافة الى دراسة الاز

) مع القیم IBM-2و IBM-1وتمت مقارنة النتائج النظریة (بنتائج ، الایزومیریة وازاحة النظائر

جید بینھما.توافق ھناكالعملیة المتوفرة وكان

بالنسبة لتفاعل IBM-2تم دراسة المستویات المزدوجة التناظر ذات البرم العالي في 

ھذه المستویات تتمیز بانھا ذات طاقة حیث ،ماجیرونا ومنھا مستویات ایریست ومستویات ایریر

Fقوي مع تحدید البرمM1ضعیف مع انتقال E2عالیة و  (F − Spin).لكل مستوي

المستویات 
32,24

,25


23,1 ھي  المستویات المزدوجة التناظر في نظائرfH وW

ذات النظائري سلاسل فد او فونونین حفونون واوھي المستویات التي تتمیز بانھا مستویات ذات 

النظائر المشوھھ بإتجاه82العدد السحريقریبة منNنیوترونیة اعداد التي لھاγ-softالشكل 

منصف القشرة.نحو

والمستویات المزدوجة التناظر وتأثیر B(E2) ،B(M1)مستویات الطاقةتم مناقشة 

وكان .IBM-2باستخدام W190-180عوامل ماجیرونا على مستویات الطاقة المتھیجة العلیا لنظائر 

نة جمیع النتائج رتم مقا،تأثیر كبیر على خواص المستویات المزدوجة التناظرعواملاللتغیر ھذه 

ث وجد ان المستوي یححصلنا على مقاربة جیدة.التي حصلنا علیھا مع القیم العملیة المتوفرة و
52

ھو اول مستوي مزدوج التناظر بینما W182وW180في 
ھو اول المستویات W186و W184في42

ونسب الخلط )MB(1المزدوجة التناظر في ھاتین النواتین. تم حساب خصائص  12/ME

بأستخدامW188-180للنوى الزوجیة للتنكستنstrengthM 1وfactors-gوكذلك العوامل 

IBM-2.

تقع في (Z = 74)تقع في المنطقة المشوھھ بینما نظائر التنكستن (Z=72)نظائر الھافنیوم 

لبعض الانتقالات في E2/Mlالمنطقة الانتقالیة بأتجاه المنطقة المشوھة العلیا. نسبة الخلط 

لمستویات الطاقة المنخفضة الموقع وكذلك المستویات العلیا تم حسابھاW188-180وHf180-172نظائر



ليب
الغالیة

رضاه عني

تها إصرارها وهمِ و لجمیل صبرهاوفاءاً 
زوجتي 

ویفرح بوجودهن القلب
جنى وجمانة

خواتيو اخوتي

ائي

الیكم جمیعا 

المحب
عمار



﴾

نسَانَ ﴾١﴿ خَلَقَ الإِْ

رَأْ وَربَُّكَ الأَْ ﴾٢﴿مِنْ عَلَقٍ  الَّذِي ﴾٣﴿كْرَمُ اقـْ

﴾٥﴿مْ عْلَ سَانَ مَا لمَْ ي ـَعَلَّمَ الإِْن﴾٤﴿

٥-١
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