Republic of Iraq

Ministry of Higher Education
and Scientific Research
Al-Nahrain University
College of Science

Security in Voice over
Internet Protocol (VolP)

A Thesis
Submitted to the College of Science, Al-Nahrain University
In Partial Fulfillment of the Requirements for
The Degree of Master of Science in Computer Science

By

Kawthar Abed Al-Elah Abed Al-Rasul
Mashkour
(B.Sc. 2004)

Super visor

Dr. Ban N. Al-Kallak
April 2008 Rabi' Thani 1429

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

54;)3\ Cyaal Nl JEveTy
13 B oM & Zad)

Vs ot UK
(AM‘ 5

pabanll) (3aa

(43) <l e V)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Dedication

| would like to dedicate this work to the member of my beloved family and

all those who supported me in finishing this thesis.

Kawthar

Acknowledgement

First, I would like to thank God, for all the blessings that have given us.

Second, | would like to express my sincere gratitude and appreciation to
my supervisor Dr. Ban N. Al-Kallak for her valuable guidance, supervision and

untiring efforts during the course of this work.

Grateful thanks for the Head of Department of Computer Science Dr. Taha

S. Bashaga, all staff and employees.

Finally, my very special thanks to my family, my friends for their

encouragement during the period of my studies.

Abstract

In today’s environment nearly all end-to-end telephone connections are set
up via circuit-switching using Public Switched Telephone Network (PSTN),
whereby node-to-node links in an origin/destination connection are set up via
interconnects, and the connection is maintained exclusively for exchanges of
information between the origin and destination until it is torn down. An alternate
way of setting up end-to-end connections that is widely used for transmission of
data is packet-switching, whereby origin-to-destination connections are effected
by node-to-node, store-and-forward relay of small segments of data sets that are
reassembled at the destination; this technique is called Voice over Internet
Protocol (VolP). VoIP is considered as the third generation of
telecommunication telephony after the analog and digital telecommunication

technology.

This thesis study the architecture of packet-switched telephone networks
and then analyzes the structure of VVoIP technology, which is the Transmission
Control Protocol/Internet Protocol (TCP/IP) model, some protocols reside in the
application layer (i.e., Session Initiation Protocol (SIP) for call control, Session
Description Protocol (SDP) for description media stream, and Real-time

Transport Protocol (RTP) for media exchange).

Over years, Interest of security is increasing. To provide privacy for user's
conversation in VolP, there is a need to implement a security for media
transmission. A Secure Real-time Transport Protocol (SRTP) is designated to

provide security for real-time media transmission using an encryption method,

but it does not provide key agreement between participants. This thesis
implemented SIP protocol and a key agreement using pre-shared key protocol
within SDP protocol used by SIP. The implementation is done using UNICON

language.

AALX

ACK
AES-CTR
AH

AIN

ALG
AOR

API

APP
ARPANET
ASN.1
ATM

BES

BNF

CAN
CODEC
CRLF
CVE
DCCP
DHT

DSL

List of Abbreviations

Asynchronous transfer mode Adaptation Layer
(1,2, or 5)

ACKnowledgement

Advanced Encryption Standard in Counter Mode
Authentication Header

Advanced Intelligent Network

Application Layer Gateway

Address Of Record

Application Programming Interface
Application-sPecific Packet

Advanced Research Projects Agency Network
Abstract Syntax Notation One

Asynchronous Transfer Mode

Back-End Service

Backus-Naur Form

Content Addressable Network

Coder/Decoder

Carriage Return Line Feed

Collaborative Virtual Environment

Datagram Congestion Control Protocol
Distributed Hash Table

Digital Subscriber Line

EBCDIC

EP
ESP
FolP
FreeBSD
FSM
FSR
FTP
GC
GK
GW
HP-UX
HTAB
HTTP
ID
IETF
IKE
IP
IPsec
ISDN
ITU
ITU-T

Vi

Extended Binary Coded Decimal Interchange
Code

EndPoint

Encapsulating Security Payload

Fax over IP

Free Berkeley Software Distribution
Finite State Machine

Feedback Shift Register

File Transfer Protocol

Gateway Controller

GateKeeper

GateWay

Hewlett Packard UniX

Horizontal TAB

HyperText Transfer Protocol

IDentifier

Internet Engineering Task Force
Internet Key Exchange

Internet Protocol

IP security protocol

Integrated Services Digital Network
International Telecommunication Union
International Telecommunication Union-

Telecommunication

v

JMF
JRTPLIB
JVOIPLIB
LAN
LFSR
LocalSI
LWS

MCU

MG

MGC
MGCP
MPEG Il video
MS-Windows
NAT

NVP

P2P

PBX

PC

PCM
PESQ
POTS

PPP

PSTN

Vil

Initialization Vector

Java Media Framework

Jori’s Real-time Transport Protocol LIBrary
Jori’s Voice Over Internet Protocol LIBrary
Local Area Network

Linear Feedback Shift Register

Local Service Interface

Linear White Space

Multipoint Control Unit

Media Gateway

Media Gateway Controller

Media Gateway Control Protocol
Moving Picture Experts Group Il video
MicroSoft-Windows

Network Address Translation

Network Voice Protocol

Peer-to-Peer

Private Branch Exchange

Personal Computer

Pulse Code Modulation

Perceptual Evaluation of Speech Quality
Plain Old Telephony Service
Point-to-Point Protocol

Public Switched Telephone Network

PT
QoS
RAS
RFC
RR
RTCP
RTP
SDES
SDK
SDP
SIP
SIPS
SMTP
SP

SR
SRTP
SS7
SSRC
TCP
TCP/IP
TDM
Telnet
TFRC

Payload Type

Quality of Service

Registration Admission and Status
Request For Comment

Receiver Report

Real-time Transport Control Protocol
Real-time Transport Protocol

Source DEScription

Software Development Kit

Session Description Protocol

Session Initiation Protocol

Secure Session Initiation Protocol
Simple Mail Transfer Protocol

SPace

Sender Report

Secure Real-time Transport Protocol
Signaling System 7

Synchronization SouRCe
Transmission Control Protocol
Transmission Control Protocol/Internet Protocol
Time-Division Multiplexed
TELecommunications NETwork
Transmission control protocol Friendly Rate

Control

VIl

TLS
TU

TV

UA
UAC
UAS
UDP
UDP/IP
Unicon
URI
URL
VM
VOATM
VoFR
VolP
VPN
VTEL
WAN
WSP
XOR

Transport Layer Security

Transaction User

TeleVision

User Agent

User Agent Client

User Agent Server

User Datagram Protocol

User Datagram Protocol/Internet Protocol
Unified Extended Dialect of Icon
Uniform Resource Identifier

Uniform Resource Locator

Virtual Machine

Voice over Asynchronous Transfer Mode
Voice over Frame Relay

Voice over Internet Protocol (Voice over IP)
Virtual Private Network

video TELephony

Wide Area Network

White Space

eXclusive-OR

http://www.cs.arizona.edu/icon/

List of Figures

Figure (1.1) Basic Components of Packet Network
Figure (1.2) Normal Message Flow

Figure (1.3) VolP Message Flow

Figure (2.1) Network Multimedia Protocol Stack
Figure (2.2) Packet-Switched Call

Figure (2.3) H.323 Protocol Stack

Figure (2.4) SIP Protocol Operations

Figure (3.1) Encryption using AES in Counter Mode
Figure (3.2) Session Key Derivation

Figure (3.3) Pre-Shared Key Agreement Protocol
Figure (3.4) Feedback Shift Register

Figure (3.5) Linear Feedback Shift Register
Figure (4.1) Implementation Structure

Figure (4.2) SIP Message

Figure (4.3) SIP-URI

Figure (4.4) SIP Response Types

Figure (4.5) SIP Message Headers (Partl)

Figure (4.6) SIP Message Headers (Part2)

Figure (4.7) SIP Message Headers (Part3)

Figure (4.8) SIP Message Headers (Part4)

Figure (4.9) SIP Message Headers (Partb)

Figure (4.10) SIP Message Headers (Part6)

19
30
31
37
45
47
49
50
52
56
58
59
60
61
62
63
64
65
66

Figure (4.11) SDP Message (Partl)

Figure (4.12) SDP Message (Part2)

Figure (4.13) SDP Message (Part2) Continued
Figure (4.14) SDP Message (Part2) Continued
Figure (4.15) SDP Message (Part3)

Figure (4.16) SDP Message (Part4)

Figure (4.17) SDP Message (Part4) Continued
Figure (4.18) SDP Message (Part5)

Figure (4.19) INVITE Client Transaction
Figure (4.20) Non-INVITE Client Transaction
Figure (4.21) INVITE Server Transaction
Figure (4.22) Non-INVITE Server Transaction
Figure (4.23) Invite Session

Figure (4.24) INVITE Request

Figure (4.25) Accepting INVITE Resquest

Xl

67
68
69
70
71
72
73
74
84
89
03
96
108
109
111

Contents

Dedication
Acknowledgements
Abstract

List of Abbreviations
List of Figures
Contents

Chapter One: Overview of VolP Technology

1.1 Introduction
1.2 Components of a VoIP Network

1.2.1 IP-based Network
1.2.2 Gateway (GW)
1.2.3 Gateway Controller (GC)
1.2.4 Endpoints (EPs)
1.3 VolP Functional Components
1.3.1 Signaling
1.3.2 Bearer Channel Control
1.3.3 Coders/Decoders (CODECS)
1.3.4 Database Service
1.4 VolIP Isn’t Just Another Data Protocol
1.5 VolP Applications
1.6 Literature survey
1.7 The Aim of the Work
1.8 Thesis Outlines

Chapter Two: VolP Network Architecture and Protocols

2.1 Introduction
2.2 VolP Network Architecture

2.2.1 Requirements of VVoice Transmission
2.2.2 Network Multimedia Protocol Stack

2.2.2.1 Physical/Link Layer

Xl

Xl

MG oeo~Noooor~rbPwwww N

16
17
17
19
20

X1

2.2.2.2 Internet Layer 20

2.2.2.3 Transport Layer 22

2.2.2.4 Application Layer 24

2.2.3 Client/Server versus Peer-to-Peer Architecture 25
2.2.3.1 Client/Server 25

2.2.3.2 Peerto Peer 27

2.3 VoIP Protocols 28
2.3.1 Call Signaling 28
2.3.2 H.323 30
2.3.2.1 H.323 Components 32

2.3.2.2 H.323 Operation 32

2.3.3 Session Initiation Protocol (SIP) 33
2.3.3.1 SIP Entities 34

2.3.3.2 How SIP Works 36

2.3.4 Session Description Protocol (SDP) 38
2.3.5 Real-time Transport Protocol (RTP) 39
2.35.1 RTP 39

2.35.2 RTCP 40

Chapter Three: SIP-Based VolP Security

3.1 Introduction 42
3.2 Encryption Protocols 42
3.2.1 IPsec: Network Layer Encryption 42

3.2.2 TLS: Transport Layer Encryption 43

3.2.3 SRTP: Application Layer Encryption 44
3.2.3.1 Default Encryption Algorithms 45

3.2.3.2 Session Key Derivation 46

3.2.3.3 Master Key Distribution 48

3.3 Key Agreement 48
3.3.1 Pre-Shared Key Agreement 49
3.3.1.1 Feedback Shift Registers 50

Chapter Four: Implementation and Result

4.1 Introduction 54
4.2 Call Control 54

4.3 Proposed Structure 55

4.3.1 SIP Structure
4.2.1.1 Syntax and Encoding Layer
4.2.1.2 Transport Layer
4.2.1.3 Transaction Layer
4.2.1.4 Transaction User Layer
4.4 Result of Work

Chapter Five: Conclusions and Suggestions for Future works

5.1 Conclusions
5.2 Suggestions for Future Works

References
Appendix A: Unicon Language
Appendix B: Parsing Rules of SIP and SDP

XV

55
S7
77
81
98
106

113
114

115
119
123

Chapter One
Overview of VolP Technology

1.1 Introduction
The impact of continuing advances in communications technology on

our ability to exchange information in new ways, places us at threshold of a
new era. The promise of ubiquitous high-speed networks carrying voice, data,

and multimedia services is happening today [Bil00].

The idea of using packet networks such as the Internet to transport
voice is not new. Experiments with voice over packet networks stretch back
to the early 1970s. The first Request For Comment (RFC) on this subject, the
Network Voice Protocol (NVP) dates from 1977. The initial developers of
NVP were researchers transmitting packet voice over the Advanced Research
Projects Agency Network (ARPANET), the predecessor to the Internet, but
today voice is transported over packet networks using individual transport
technologies: Voice over IP (VolP), Voice over Asynchronous Transfer Mode
(VOATM), and Voice over Frame Relay (VoFR). However, VoFR and
VOATM technologies are not used as widely as IP [Col03, Jon00].

This thesis is related to the VolP technology. In the late 1990s, VolP
was lauded as a way to save on long-distance charges by calling Grandma and
Grandpa using a Personal Computer (PC) with a headset and a microphone.
VoIP is a generic term that refers to all types of voice communication using
Internet Protocol (IP) technology. As a technology, VoIP is a pretty simple
ideas packet-switched data encapsulation instead of the tried-and-true Time-

Division Multiplexed (TDM), circuit-switched methods that telephony has

Chapter One: Overview of VoI®P Technology 2

used since its creation. Also VoIP is a family of technologies that has
sweeping implications for everybody who uses telephones, the Internet, fax
machines, email, and the Web. VoIP borrows from, and enhances, many

disciplines of communications technology [Jim02, Ted05].

Advances in packet communication technologies are now making that
model obsolete, permitting more efficient use of bandwidth resources while
providing mobility and the integration of voice, video, and other information,

saving cost, and possibility of adding a new features [Ted05].

When finishing this chapter, the following points will be clear:
What is VolP?

General VoIP components and there functions.

General functional components of VVolP technology.

How VolIP technology is different than other data protocol.

o A w0 Do

The most common applications of this new technology.

1.2 Components of a VolP Network
This topic introduces the basic components of a packet voice network

as shown in Figure (1.1).

Analog __
Phone B;._D
IP-Phone
Fax PC Fax

Figure 1.1 Basic Components of Packet Network [Ant06]

Chapter One: Overview of VoI®P Technology 3

1.2.1 IP-based Network
From the viewpoint of telephony, IP is the major Protocol that can be

used to deliver voice to the desktop [Dav01].

1.2.2 Gateway (GW)
Gateways are called different things by different people. The IP

community calls them Media Gateway (MG). MG is characterized by a
collection of endpoints and connections. The MG is a box of various
morphologies depending on the number of users, trunks and services it
supports. The gateway provides translation between VolP and non-VolP
networks such as the Public Switched Telephone Network (PSTN). Gateways
also provide physical access for local analog and digital voice devices, such
as telephones, fax machines, and Private Branch eXchange (PBX) [Ant06,
Bil00].

1.2.3 Gateway Controller (GC)
The most important components of distributed architecture are

gateways and gateway controllers. The gateway controllers are sometimes
called Media Gateway Controller (MGC) or ‘softswitches’, even though they
are not actually switches in the sense of switching the voice traffic from input
ports to output ports. They are servers that control the gateways. The gateway
controller focuses on making routing decision and communicating them to the
gateway. The voice traffic never entered the gateway controller, instead it is
switched by the gateway. It is only the signaling messages that enter the

gateway controller. [Dav01].

1.2.4 Endpoints (EPS)
Endpoint is defined as a point of entry and exit of media flows, such as

Chapter One: Overview of VoI® Technology 4

IP-Phone, analog phone, softphone, PC, fax [Bil00].

1.3 VolP Functional Components
In the traditional PSTN, all the elements that are required to complete

the call are transparent to the end user. Migration to VoIP necessitates an
awareness of these required elements and a thorough understanding of the
protocols and components that provide the same functionality in an IP
network [Ken07].

Required VolP functionality includes the following features:

« Signaling
« Bearer control
« CODECs

o Database service

1.3.1 Signaling
Signaling is the ability to generate and exchange control information to

establish, monitor, and release connections between two endpoints. Voice
signaling requires the ability to provide supervisory, address, and alerting
functionality between nodes. VoIP presents several options for signaling,
including H.323, Session Initiation Protocol (SIP), and Media Gateway
Control Protocol (MGCP) [Ant06].

Signaling protocols are classified either as peer-to-peer or client/server
architectures. SIP and H.323 are examples of peer-to-peer signaling protocols
where the end devices or gateways contain the intelligence to initiate and
terminate calls and interpret call control messages. MGCP is an example of

client/server protocol where the endpoints or gateways do not contain call

Chapter One: Overview of VoI®P Technology 5

control intelligence but send or receive event notifications to the server

commonly referred to as the call agent [Ken07].

1.3.2 Bearer Channel Control
Bearer channels are the channels that carry voice calls. Proper

Supervision of these channels requires that the appropriate call connect and
call disconnect signaling be passed between end devices. Correct signaling
ensures that the channel is allocated to the current voice call and that the
channel is properly de-allocated when either side terminates the call. These
connect and disconnect messages are carried in SIP, H.323, or MGCP within
an IP network [Ken07].

1.3.3 Coders/Decoders (CODECS)
A CODEC (which stands for Coder/Decoder or Compress/Decompress)

Is the hardware or software that samples analog sound, converts it to digital
bits, and outputs it at a predetermined data rate. Each CODEC type defines
the method of voice coding and the compression mechanism that is used to
convert the voice stream. For example: G.711 creates a 64-kbps digitized
voice stream and the most widely used CODEC in the Wide Area Network
(WAN) environment is G.729, which compresses the voice stream (that is, the

voice payload only) to 8 kbps [Joh04, Ken07].

1.3.4 Database Service
Access to services such as toll-free numbers or caller IDentifier (ID)

requires the ability to query a database to determine whether the call can be
placed. This database must be loaded in the MG in order to make efficient use
of messaging with the MGC during digit collection. [Ant06, Bil00].

Chapter One: Overview of VoI®P Technology 6

1.4 VolP Isn’t Just Another Data Protocol
VolP utilizes the Internet architecture, similar to any other data

application. However, particularly VolP is different. There are three

significant reasons for this [ThoO6]:-

1. Separation of data and signaling. Sessions, particularly unknown
inbound sessions, which define addressing information for the data
(media) channel in a discrete signaling channel do not interact well

with Network Address Translation (NAT) and encryption.

2. The real-time nature of VVolP—gets there a second too late, and the
packet is worthless. Each VolP packet represents about 20 ms of
voice on average. A single lost packet may not be noticeable, but the
loss of multiple packets is interpreted by the user as bad voice
quality. The simple math indicates that even a short VolP call
represents the transport of large numbers of packets. Network
latency, jitter (interpacket latency variation), and packet loss

critically affect the perceived quality of voice communications.

3. Voice conversations can be initiated from outside the firewall. Most
client-driven protocols initiate requests from inside the firewall.
Figure (1.2) shows the basic message flow of a typical Web
browsing, or e-mail, a request is initiated by a client on the internal
side of the firewall to a server daemon residing on a host external to
the firewall. Firewalls that are capable of stateful inspection will
monitor the connection and open inbound ports if that port is
associated with an established session. For the firewall administrator
and the user, the session completes normally, and is as secure as the

firewall’s permissions allow. In Figure (1.3), the request-response

Chapter One: Overview of VoI®P Technology 7

topology is different from the message flow shown in Figure (1.2).
In this figure, an external host (IP Phone, PC softphone, etc.)
attempts to place a call to an internal host. Since no session is

established, firewalls will not allow this connection to complete.

INTERNAL |

by

>

REQUEST

/

/

~ EXTERMAL

RESPONSE

EJ

Figure 1.2 Normal Message Flow [Tho06]

INTERNAL |

&

REQUEST LL

RESPONSE

> g

Figure 1.3 VoIP Message Flow [Tho06]

EXTERNAL

-

w

1.5 VolP Applications
For any new technology to be accepted by the telecommunications
industry, it must have a clear business benefit not just to a single player in the

industry, but also to many other players as well. VolIP promises to

Chapter One: Overview of VoI®P Technology 8

revolutionize the most familiar of technologies, the telephone. The Internet
Protocol, analog telephony, digital telephony, digital audio signal processing,
high-availability networking, and a host of other concerns are all touched by

growing borders of the vast, ambitious realm of VVolP [Dav01, Ted05].

The first kind of application is the 'telephone alternative'. This means
that you would use some kind of VVoIP system to make a voice call to another
person. When voice is packetised all the way to the desktop, it opens up vast
possibilities for new applications and features to be added onto Plain Old

Telephony Service (POTS), such as instance messaging [Dav01, Jor00].

The second application is the use of VolP techniques to create an on-
line radio station, or perhaps even an on-line jukebox, where you can select
the song you want to hear, which is then played almost immediately. If
enough bandwidth is available, it would even be possible to add video data to
all this. This way, television broadcasts and video on demand over IP
networks could be made possible. In a similar way, we could extend a VVolP
telephone conversation with video information about the persons involved in

the call, creating a videophone application.

Another kind of application would be Fax over IP (FolP). This is a bit
different since we are no longer transmitting speech data, but a digitised
image. Like with VolP, this service could be made possible by connecting a
computer network to the telephone network using a gateway. For FolP, this

gateway would perform similar functions as with voice over IP.

Note that the list of applications presented here is certainly not
complete. A wide range of applications using VolP related techniques are

conceivable, but many of them will resemble the ones discussed [Jor00].

Chapter One: Overview of VoI®P Technology 9

1.6 Literature Survey

[Jor00] Voice over IP in Networked Virtual Environments
The PH.D. thesis goal is to create a VoIP application includes an

Internet Telephony application and a 3D environment. This done by first,
developing a Real-time Transport Protocol (RTP) library, named by JRTPLIB
(Jori's RTP LIBrary). It is proved to be both fast and simple to use. Second,
developing a VolP framework in which different VolP components can be
easily used, tested, and made the VoIP part of an application portable to
several platforms (MS-Windows, Linux, Free Berkeley Software Distribution
(FreeBSD), Solarism, Hewlett Packard UniX (HP-UX), and VxWorks). This
is because normally only the reconstruction components need to be rewritten

for a new platform.

The use of Internet telephony application and the 3D environment are
quite useful. But when using a dial-up link, the necessary bandwidth might
simply not be available, even when severe compression is used. So as a
conclusion, the solution of this problem is to place a machine which mixes the

signals for a specific participant before the link.

[Fre00] SIP, NAT, and Firewalls
The problem is extended with this MS.c. thesis by the fact that it is

common today to use “private addresses” on the Local Area Network (LAN).
These addresses are not allowed to exist on the Internet and thus the firewall
software must remove this address and replace it with an address that is
allowed on the Internet. NAT in the firewall normally does this together with

Application Level Gateways (ALGS).

Chapter One: Overview of VoI®P Technology 10

Two goals of this thesis have been achieved. The first one was to study
what was required by the firewall in order to pass SIP signaling in and out of
a private network that uses NAT. This is a problem that can only be solved by
having some software analyzing all the SIP messages that pass the firewall on
the well-known SIP port and then letting that software what it should do with
packets to/from a certain address, e.g. let it through or deny and drop it. The
second goal was to implement an application layer gateway for SIP. In the
case of incoming SIP INVITE messages from external clients intended for
internal clients it is clear that some kind of location service must be available
in the SIP ALG in order to direct the message to the correct host on the inside.
Implementing a simple SIP registrar server together with the SIP ALG solves
this problem. The internal clients would have to register at the registrar server
in order for the server to get the clients internal IP address. For outgoing calls

it is not necessary for the internal client to be registered at the server.

[Siv01] Voice over Internet Protocol (VolP)
The MS.c. thesis aims to investigate VVoice over IP based on the RTP

and Real-Time Control Protocol (RTCP). It studies the key technical issues
and develops software to demonstrate how Voice over IP can be implemented
using Java (2) Software Development Kit (SDK) and Java Media Framework
2.1.1 Application Programming Interface (JMF 2.1.1 API). Also, It has
examined the Quality of Service (QoS) associated with voice transfer through

Internet (Internet Protocol).

Taking the above into account, this thesis used and made an
enhancement to the functional capabilities of the VTEL (video TELephony)
implementation from just merely transmitting the real-time video to both

voice and video transmissions with enhanced user friendliness. Apparently,

Chapter One: Overview of VoI®P Technology 11

from the users’ point of view, what they are much concerned about is the
performance of the voice and video transfer between the end users. Therefore,
the working on “vTEL” and “VideoConference” programs was provided
everything that is deemed necessary, and also developed the in-depth

knowledge of VVolIP principles.

[Joh02] Security in VolP-Telephony Systems
This MS.c. thesis deals with the security of a VoIP telephony system.

The involved components are EPs, GateKeeper (GK) and the Back-End
Service (BES). The underlying protocol of these components is H.323, a
standard for IP telephony.

The goals of the thesis are (1) the used protocol had to be analyzed

according to existing threats, which was mainly the ability of attackers to call
for free, (2) the implementation of mutual authentication on the connection

between two GKSs.

As a result all interfaces require the security services authentication and
data integrity. The interface between a GK and the BES additionally demands
privacy because of the sensitivity of the transmitted data. The result for the
proposals of the security framework must be seen for each interface or
connection separately. The Registration Admission Status (RAS) protocol
between EP-GK was already equipped with authentication and data integrity
according to H.235v2. The authentication is implemented for H.235 based
authentication between two GKs. The key management has been kept simple
since the GKs are using a Local Service Interface (LocalSl), which is a
service interface realized by local sockets or UNIX sockets. A connection to

these interfaces does not impose much overhead to the execution time.

Chapter One: Overview of VoI®P Technology 12

[Lin0O4] Speech Quality Prediction for Voice over Internet Protocol
Networks

The main goal of this MS.c. thesis is to develop novel and efficient
models for non-intrusive speech quality prediction to overcome the
disadvantages of current subjective-based methods and to demonstrate their

usefulness in new and emerging VVolP applications.

An important conclusion of this thesis is that it is possible to exploit
perceptually more accurate intrusive speech quality measurement (e.g.
Perceptual Evaluation of Speech Quality (PESQ)) for non-intrusive
applications. This is an important development as it avoids time-consuming
subjective tests and removes a major obstacle in the development of models
for non-intrusive prediction of voice quality. This is applicable to audio,
image and video applications over packet networks. The novelty in this work
Is in a new methodology to predict voice quality non-intrusively, nonlinear
regression and neural network models for speech quality prediction, adaptive
and perceived quality optimized jitter buffer algorithms, a new QoS control
scheme that combines the strengths of adaptive rate and speech priority
marking QoS control techniques, and Internet based subjective test

methodology.

[Zia05] High Level Audio Communications API for the Unicon Language.
This MS.c. thesis presents a VolP facility developed for unicon, a high

level language to simplify the task of writing programs, reducing their

development cost, and programming time.

Unicon’s VolIP interface is made as part of an audio communications
APl and designed to be minimal and consistent with the rest of the language.

These goals keep the Virtual Machine (VM) size reasonable and reduce time a

Chapter One: Overview of VoI®P Technology 13

programmer spends learning how to write VVolP applications by building a set
of extended and added built-in functions (open(), close(), VAttrib(),
PlayAudio(), StopAudio()). These functions were accomplished using an open

source cross platform library called “Jori’s VVolIP LIBrary” (JVOIPLIB).

Also unicon has been extended by the thesis to support VolP

application, a Collaborative Virtual Environment (CVE).

[Jos05] Using the Session Initiation Protocol as a Networking Protocol for
Home Applications

Home appliances have evolved from being single task devices to
integrating several tasks in a particular device. The next step for home
appliances is to transform into networked appliances and accelerate the

development of home automation.

This work has demonstrated the capabilities of the SIP and how, by the
addition of a single method, called DO, in order to control these networked
appliances. The ability of SIP being a protocol independent of the transport
protocol underneath it, as well as the benefit that it uses existing
infrastructure, makes it an ideal protocol to interwork devices that use
different networking protocols. This is critical for home appliances since there
are existing home automation protocols but none of them can interact with

one another.

The study suggests that the only additional hardware needed is an
appliance controller that works as a SIP user agent to connect an appliance or
a network of appliances of similar technology to the home LAN. This
controller, besides being SIP compliant, should have some kind of routing
capability and it needs to translate the action received in a SIP message to the

given technology.

Chapter One: Overview of VoI®P Technology 14

[Dav05] Analysis and Implementation of TCP Friendly Rate Control in
the Context of VolP

In order to provide to User Datagram Protocol (UDP) a suitable
congestion control mechanism for the media flow using it, a mechanism
called Transmission Control Protocol (TCP) Friendly Rate Control (TFRC)
has been developed. The main characteristics of this mechanism are
throughput steadiness in short periods of time and long term fairness in the
bandwidth sharing with TCP.

Based on this study TFRC represents a better option for VolP
applications than other TCP-LIKE smoothed mechanisms, but the proper
implementation of it is through a new transport protocol such as Datagram
Congestion Control Protocol (DCCP). Because of the lack of a standardized
transport protocol that implements TFRC, so the most particular way to
implement TFRC over a VoIP is through an RTP. The main problem of TFRC
on the VolP context is the difference in size between the VVolP packets and the
TCP packets. This difference in the size makes extremely difficult to get the
right values of the parameters that models the TCP behavior. If the parameters
are not accurate then fairness would not be achieved. For the specific case of
the virtual packets alternative, it is conclusive to say that this solution will not
scale very well on the Internet because of the heterogeneous configuration of
the routers. Another conclusion is that the suitability of TFRC regarding
steadiness in relative short periods of time was verified, and it is very

sensitive to variations in the delay.

[Jua07] Patterns for VolP Signaling Protocol Architectures.
The paper presented two patterns that describe the architectures implied

by the two main VolP protocols. The Hybrid Signaling Protocol pattern

Chapter One: Overview of VoI®P Technology 15

allows architectural and protocol flexibility by supporting both H.323 and SIP.
These patterns complement the work in VVoIP security patterns and provide a
model of the environment where specific VolP security patterns can be
implemented, thus adding security to the structure. Patterns describing generic

architectures can guide systems development.

1.7 Aim of the work
Study and analyze the architecture of new telecommunication

telephony technology, which is VolP. Specify the more suitable signaling
protocol to be implemented on TCP/IP model, and apply a pre-shared key
encryption method on the key field in the session description of signaling

part.

1.8 Thesis Outlines
The thesis is organized in five chapters summarized as follows:

Chapter two analyzes the structure of TCP/IP model for VolIP
technology and explains VolP protocols place on the application layer.
Chapter Three explains the three levels of VolP security. Chapter Four
illustrate the implementation of this thesis. Chapter Five includes the
conclusions drown from this work followed by a list of suggestions for future

works.

Chapter Two

VolP Network Architecture and Protocols

2.1 Introduction

At the beginning of VVolIP study is important to know the basic structure

of the network with all the related protocols, which fall within the application

layer.

When finishing this chapter, the following points will be clear:

8.

1. Requirements for voice transport in data networks.

2. The functionality of TCP/IP model layers in context of using VolP,
3.
4

. Characteristics of IP protocol that makes it the base for VolP

The best encapsulation in data link layer for the new technology.

Technology.

Which transport protocol suitable for sending signaling, and data
packets?

Responsibility of application layer for signaling and media

processing.

. Signaling part

a. Define the concept of call signaling in VVoIP.

b. Identify how Session Initiation Protocol (SIP) works?

c. ldentify Session Description Protocol (SDP), which used by SIP
signaling protocol.

d. Identify H.323 signaling protocol, as another option for
signaling.

Media transport part

a. ldentify Real-time Transport Protocol (RTP).

Chapter Two: VoIP Network Architecture and Protocols 17

b. lIdentify Real-time Transport Control Protocol (RTCP).
9. Clarifying the idea behind the separation of call control and media

transport.

2.2 VoIP Network Architecture
The data network differs from other networks in that its sole purpose is

providing connectivity. The purpose of the PSTN, for instance, is providing
telephone services and the purpose of the TeleVision (TV) network is

providing broadcasts. A variety of services such as e-mail, the World Wide
Web, videoconferencing, and file transfer are implemented based on end-to-

end IP connectivity [Gon02].

The requirements transporting voice over data networks drive the
choice of transport protocol. It should be clear that TCP/IP is not appropriate
because it favors reliability over timeliness, and our applications require
timely delivery. A UDP/IP-based transport should be suitable, provided that
the variation in transit time of the network can be characterized and loss rates

are acceptable [Col03].

2.2.1 Requirements of Voice Transmission
When transmitting packets containing voice data, there must be some

mechanism to preserve synchronization within the speech signal. The
consecutive packets should be played at the right time, in the right order. This

type of synchronization is called intra-media synchronization [Jor00].

The primary requirement of real-time media places on the transport
protocol is for predictable variation in network transit time. Consider, for
example, a VolP system transporting encoded voice in 20-millisecond frames:

The source will transmit one packet every 20 milliseconds, and ideally we

Chapter Two: VoIP Network Architecture and Protocols 18

would like those to arrive with the same spacing so that the speech they
contain can be played out immediately. Some variation in transit time can be
accommodated by the insertion of additional buffering delay at the receiver,
but this is possible only if that variation can be characterized and the receiver

can adapt to match the variation.

A lesser requirement is reliable delivery of all packets by the network.
Clearly, reliable delivery is desirable, but many audio and video applications
can tolerate some loss: In previous VolIP example, loss of a single packet will
result in a dropout of one-fiftieth of a second, which, with suitable error
concealment, is barely noticeable. Because of the time-varying nature of
media streams, some loss is usually acceptable because its effects are quickly

corrected by the arrival of new data [Col03].

The speech data which has to be sent is typically generated at regular
small intervals. It is possible that a receiving end cannot cope with this data
flow, so somehow the sender should know whether the receiver can handle
the incoming stream or not. A method that does this is often called a flow
control method. Also, due to the fact that data is sent at a regular basis, it is
not unlikely that a link becomes overloaded and congestion occurs. In turn,
congestion causes the loss of packets and an increase in delay which are not
desirable features for voice communication. The transmission component
should be able to detect an arising congestion and take appropriate actions.
The mechanism to prevent and control congestions is called congestion

control.

The appropriate action for flow and congestion control is to decrease
the amount of data sent. Typically, this is done in cooperation with the

compression module. This will usually result in a degradation of speech

Chapter Two: VoIP Network Architecture and Protocols 19

quality, but it is still better than having a lot of lost packets and a large delay
[Jor00].

2.2.2 Network Multimedia Protocol Stack
The TCP/IP family of protocols forms the basis of the Internet and most

current corporate networks, where the layered design of TCP/IP is not
followed very strictly. Computer programs send and receive data over an IP
network by making program calls to the TCP/IP software, known as the
protocol stack, in their local computer. The TCP/IP stack in the local computer
exchanges information with the TCP/IP stack in the target computer to

accomplish the transfer of data from one side to the other [Joh04, Jor00].

Figure 2.1 shows the four-layer Internet Multimedia Protocol stack. The

layers shown and protocols identified will be discussed.

Media
SDP coding
\ 4 \ 4
Application layer [H323 | [siP | [RTP_|
\ 4 \ 4 \ 4 \ 4
Transport layer | TCP | | UDP |
\4 A\ 4
Internet layer | IP |
\ 4
\[X
Physical/Link IE]:
layer 4
| ATM | [Ethernet | [802.11]

Figure 2.1 Network Multimedia Protocol Stack [Ala04].

Chapter Two: VoIP Network Architecture and Protocols 20

2.2.2.1 Physical Layer/Link Layer
The lowest layer is the physical and link layer, which could be an

Ethernet LAN, a telephone line (V.90 or 56k modem) running Point-to-Point
Protocol (PPP), or a Digital Subscriber Line (DSL) running Asynchronous
Transport Mode (ATM), or even a wireless 802.11 network. This layer
performs such functions as symbol exchange, frame synchronization, and

physical interface specification [Ala04].

ATM was created for time-sensitive traffic, providing simultaneous
transmission of voice, video, and data. ATM uses cells that are a fixed 53
bytes long instead of packets. It also can use isochronous clocking (external
clocking) to help the data move faster. Transit delays are reduced because the
fixed-length cells permit processing to occur in the hardware. ATM is

designed to maximize the benefits of high-speed transmission media [Ken07].

2.2.2.2 Internet Layer
The network layer connects links, unifying them into a single network.

It provides addressing and routing of messages through the network. It may
also provide control of congestion in the switches, prioritization of certain

messages, billing, and so on [Col03].

In order to achieve true end-to-end connectivity, a common end-to-end
protocol is implemented at the network layer, the IP protocol. IP itself is a
connectionless protocol. A connectionless packet switched network is the
packet header contains the address of the ultimate destination to which the
packet should be sent, on the other side of the network. The intermediate

switches figure out the output port for the packet from routing tables based on

Chapter Two: VoIP Network Architecture and Protocols 21

this ultimate destination address, which means that no reliability mechanisms,

flow control, sequencing, or acknowledgments are present [Dav01, Gon02].

At this stage someone may be wondering why anyone would consider a
packet-based audio or video application over an IP network. Such a network
clearly poses challenges to the reliable delivery of real-time media streams.
Although these challenges are real, an IP network has some distinct
advantages that lead to the potential for significant gains in efficiency and

flexibility, which can outweigh the disadvantages [Col03].

This protocol was designed mostly for data transport, and it has only
limited QoS support. The main reason IP is so important is because of its
omnipresence. The TCP/IP architecture has proved to be very popular and
nowadays it is very widely used. This fact gives IP a great advantage over

other protocols [Jor00].

You can address an IP packet in three general ways: through unicast,
multicast, or broadcast mechanisms. Briefly explained, these three
mechanisms provide the means for every IP packet to be labeled with a
destination address, each in its unigue way. Unicast packets enable two
stations to communicate with each other, regardless of physical location.
Broadcast packets are used to communicate with everyone on a subnetwork
simultaneously. Multicast packets enable applications, such as

videoconferencing, that have one transmitter and multiple receivers.

IP networks also offer the potential for higher reliability because IP
networks automatically re-route packets around problems such as
malfunctioning routers or damaged lines. Also, IP networks do not rely on a

separate signaling network, which is vulnerable to outages [Jon00].

Chapter Two: VoIP Network Architecture and Protocols 22

IP is used by both routers and hosts, relegating intelligence to the end
systems. It tends to keep the state information stored inside the network at
minimum in order to scale better and to be more robust. This lack of state in
the network makes node failures less dramatic because they do not store any

state information necessary for end-to-end communication [Gon02].

Another advantage is the possibility of compression. With the
compression methods available today, it is possible to reduce the requirement
of (64 kbps) for uncompressed telephone-quality voice communication to
amounts which are far lower. However, a high compression ratio often means

that the voice signal will be of lesser quality [Ken07].

2.2.2.3 Transport Layer
The transport layer is the first real end-to-end layer. It takes

responsibility for delivery of messages from one system to another, using the
services provided by the network layer. This responsibility includes providing
reliability and flow control if they are needed by the application layer and not

provided by the network layer [Col03, Jor00].

There are two commonly used transport layer protocols, Transmission
Control Protocol (TCP), and User Datagram Protocol (UDP).

A. TCP
TCP is known as a connection-oriented protocol because the two sides

of the data exchange maintain strong tracking of everything that is sent and
received. Connection-oriented messages are sent through the network from
source to destination requesting a connection to be set up. These may be
signaling messages from the customer or messages initiated by the network

management system. [Col03, Joh04].

Chapter Two: VoIP Network Architecture and Protocols 23

If TCP were utilized for VolIP, the latency incurred waiting for
acknowledgments and retransmissions would render voice quality
unacceptable. TCP transport makes the assumption that packet loss is a signal
that the bottleneck bandwidth has been reached, congestion is occurring, and
it should reduce its sending rate. A TCP flow will increase its sending rate
until loss is observed, and then back off, as a way of determining the
maximum rate a particular connection can support. Of course, the result is a
temporary overloading of the bottleneck link, which may affect other traffic.
Also, since TCP preserves the order of the packets. The application has to
output speech data at regular intervals, so if one packet stays lost for a
sufficient amount of time, this will block the playback of other packets, even

when they have already arrived [Col03, Jor00].

TCP is used to ensure the reliability of the setup of a call. Due to the
methods by which TCP operates, it is not feasible to use TCP as the
mechanism to carry the actual voice in a VolIP call. With VolIP and other real-
time applications, controlling latency is more important than ensuring the
reliable delivery of each packet. Besides, the protocol is designed for
communication between two hosts, so it only supports unicasting. If data has
to distributed to several destinations, it has to be done using separate TCP

connections. This, of course, wastes a lot of bandwidth [Jon00, Jor00].

B. UDP
UDP is called a connectionless protocol, since there is no

acknowledgment of sent datagrams. Most of the complexity of TCP is not
present, including sequence numbers, acknowledgments, and window sizes.

UDP does detect errored datagrams with a checksum. It is up to higher layer

Chapter Two: VoIP Network Architecture and Protocols 24

protocols, however, to detect this datagram loss and initiate a retransmission
if desired [Ala04, Joh04].

The protocol has the advantage of not having to wait for
retransmissions of lost packets. Also, since it is only a small extension to IP, it
can make use of the IP multicasting features and save bandwidth when data
has to be sent to multiple destinations. As good as all this may seem, there are
also some disadvantages: UDP provides no mechanism for synchronization

whatsoever and there are no means for flow or congestion control [Jor00].

Applications which do not require the functionality that TCP provides
can use UDP. To transmit data, the UDP module simply passes a UDP header
followed by that data to the internet layer which then sends the datagram on
its way. This means that just like IP itself, UDP is a best-effort service. No
guarantees about delivery are given, datagrams can get reordered and
datagrams can be duplicated. So that UDP is used in VoIP to carry the actual

voice traffic (the bearer channels) [JonQ0].

2.2.2.4 Application Layer
The top layer shown in Figure (2.1) is the application layer. This

includes signaling protocols such as Session Initiation Protocol (SIP) and
media transport protocols such as Real-time Transport Protocol (RTP), which
is introduced in chapter three. Figure (2.1) includes H.323, which is an
alternative signaling protocol to SIP developed by the International
Telecommunication Union (ITU). Session Description Protocol (SDP) is
shown above SIP in the protocol stack because it is carried in a SIP message
body. HyperText Transfer Protocol (HTTP), Simple Mail Transfer Protocol
(SMTP), File Transfer Protocol (FTP), and TELecommunications NETwork

Chapter Two: VoIP Network Architecture and Protocols 25

(Telnet) are all examples of application layer protocols. Because SIP can use
any transport protocol, it is shown interacting with both TCP, and UDP in
Figure 2.1 [Ala04].

Using VolP, those silent intervals can be detected. The VolP
application can examine each packet and detect whether it contains speech
information or only silence. If the latter is the case, the packet can simply be
discarded [Jor00].

2.2.3 Client\Server versus Peer-to-Peer Architecture
When users communicate with one another, they send requests and

responses to one another directly or through a specific server. However, this
reflects two different types of architectures used in network communications
[ThoO6]:

1. Client\Server

2. Peer-to-peer

2.2.3.1 Client\Server
The client/server architecture uses a call agent to control signaling on

behalf of the endpoint devices, such as gateways. The central control device
participates in the call setup only. Voice traffic still flows directly from

endpoint to endpoint [Ant06].

In client\server architecture, the relationship of the computers is

separated into two roles:

1. The client, which requests specific services or resources.

2. The server, which is dedicated to fulfilling requests by responding

(or attempting to respond) with requested services or resources.

Chapter Two: VoIP Network Architecture and Protocols 26

An easy-to-understand example of a client/server relationship is seen
when using the Internet. When using an Internet browser to access a web site,
the client would be the computer running the browser software, which would
request a web page from a web server. The web server receives this request
and then responds to it by sending the web page to the client computer. In
VolP, this same relationship can be seen when a client sends a request to
register with a registrar server, or makes a request to a proxy server or redirect
server that allows it to connect with another user agent. In all these cases, the
client’s role is to request services and resources, and the server’s role is to
listen to the network and await requests that it can process or pass onto other

SEervers.

The servers that are used on a network acquire their abilities to service
requests by the programs installed on it. Because a server may run a number
of services or have multiple server applications installed on it, a computer
dedicated to the role of being a server may provide several functions on a
network. For example, a web server might also act as an e-mail server. In the
same way, SIP servers also may provide different services. A Registrar can
register clients and also run the location service that allows clients and other
servers to locate other users who have registered on the network. In this way,
a single server may provide diverse functionality to a network that would

otherwise be unavailable

Another important function of the server is that, unlike clients that may
be disconnected from the Internet or shutdown on a network when the person
using it is done, a server is generally active and awaiting client requests.
Problems and maintenance aside, a dedicated server is up and running, so that

it is accessible. The IP address of the server generally doesn’t change,

Chapter Two: VoIP Network Architecture and Protocols 27

meaning that clients can always find it on a network, making it important for

such functions as finding other computers on the network [ThoO6].

2.2.3.2 Peer-to-Peer
A peer-to-peer (P2P) architecture is different from the client/server

model, as the computers involved have similar capabilities, and can initiate
sessions with one another to make and service requests from one another.
Each computer provides services and resources, so if one becomes
unavailable, another can be contacted to exchange messages Or access
resources. In this way, the user agents act as both client and server, and are

considered peers.

Once a user agent is able to establish a communication session with
another user agent, a P2P architecture is established where each machine
makes requests and responds to the other. One machine acting as the user
agent client will make a request, while the other acting as the user agent
server will respond to it. Each machine can then swap roles, allowing them to
interact as equals on the network. For example, if the applications being used
allowed file sharing, a user agent client could request a specific file from the
user agent server and download it. During this time, the peers could also be
exchanging messages or talking using VolP, and once these activities are
completed, one could send a request to terminate the session to end the
communications between them. As seen by this, the computers act in the roles
of both client and server, but are always peers by having the same

functionality of making and responding to requests [Tho06].

Chapter Two: VoIP Network Architecture and Protocols 28

2.3 VolIP Protocols
Over the years, a need was seen for a standard protocol that could allow

participants in a chat, videoconference, interactive gaming, or other media to
Initiate user sessions with one another. In other words, a standard set of rules
and services was needed that defined how computers would connect to one

another so that they could share media and communicate [Tho06].

The variables in VVoIP are the signaling methods. H.323 and SIP define
end-to-end call signaling methods. MGCP and H.248 define a method to
separate the signaling function from the voice call function. This approach is

referred to as client\server architecture for voice signaling.

A constant in VVolP implementation is that voice uses RTP inside UDP
to carry the payload across the network. IP voice packets can reach the
destination out of order and unsynchronized; the packets must be reordered
and resynchronized before playing them out to the user. Because UDP does
not provide services such as sequence numbers or time stamps, RTP provides

the sequencing functionality [Ant06].

It is necessary to make sure that standards-based protocols are used, so
the bearers (RTP streams) are separated from the call-control. Data
networking is unique in the fact that multiple protocols can co-exist in a
network and you can tailor them to the particular needs of the network
[JonO0].

2.3.1 Call Signaling
Signaling is the fundamental to the call establishment, management,

and administration of voice communication in an IP network. The term

“signaling” is not self-explanatory in VolP telephony and clarifications are

Chapter Two: VoIP Network Architecture and Protocols 29

always necessary, depending on the application. The typical way to make call
on the PSTN is to dial digits on the keypad. If the call is going to be
successfully completed, it will hear a ringing tone until the party which is
trying to reach answers the phone. By introducing VolIP into the call path, the
end-to-end path involves at least one call leg that uses an IP internetwork. As
in a traditional voice call, support for this VolP call leg requires two paths
[Bil0O, Kev07]:

1. A protocol stack that includes RTP, which provides the audio call leg.

2. One or more call control models that provide the signaling path, such as
SIP, H.323, or MGCP.

So that the signaling is independent set of actions to the media flow,
illustrated in Figure (2.2); it controls the type of media used in a call.
Signaling does not necessarily stop when the call is set up, until one or more
participants in a call depart. Signaling can occur while a call is active, for
example to modify session parameters, and can be concurrent with the media
flow [Ala04, Bil00].

The main signaling functions of the protocol are as follows:

1. User location: Location of an end point to be used for communication;

2. User availability: Contacting an end point to determine willingness to

establish a session;

3. User capability: Exchange of media information to allow session to be
established. Example, SIP uses the Session Description Protocol (SDP)
for negotiating media parameters, while H.323 uses Abstract Syntax
Notation One (ASN.1);

Chapter Two: VoIP Network Architecture and Protocols 30

Server

IP Network

I:I Media exchange

/
< | Y
| =
Media exchange
PC PC

Figure 2.2 Packet-Switched Call [Chr02]

L]

4. Session setup: "ringing", establishment of session parameters at both

called and calling party;

5. Session management: including transfer and termination of sessions,

modifying session parameters, and invoking services.

232 H.323

H.323 is developed by International Telecommunication Union-
Telecommunication (ITU-T). H.323 is an umbrella-like specification that
encompasses a large number of state machines that interact in different ways
depending relationship of participating entities and the type of session (for
example, audio or video). There are many subprotocols within the H.323

specification. In order to understand the overall message flows within an

Chapter Two: VoIP Network Architecture and Protocols 31

H.323 VolIP transaction, figure 2.3 shows the relevant protocols and their

relationships.

H.323 protocols are binary protocols. There functionalities are [Eri02]:

1. H.225/Registration Admission and Status (RAS): used over
UDP to transmit registration, admission, bandwidth changes, and

status messages to the GateKeeper.

APPLICATION
CODECS
H.245 CALL H.225 H.225 RTCP
CONTROL SIGNALING RAS
RTP
TCP upp
IP

Figure 2.3 H.323 Protocol Stack [Eri02]

2. H.225 signaling: Defines signaling for call setup and teardown,
including source and destination IP addresses, ports, country

code, and H.245 port information.

3. H.245: Specifies messages that negotiate the terminal
capabilities set, the master/slave relationship, and logical channel

information for the media streams.

Chapter Two: VoIP Network Architecture and Protocols 32

2.3.2.1 H.323 Components
The overall H.323 protocol has been introduced; let’s now turn the

attention to components that make up the H.323 protocol. These components
are [ThoO6]:

1. Terminals: it also referred to as endpoints, provide the user
interface into the H.323 protocol and provide real-time, two-way
multimedia communications. Typically, the devices (telephones,
softphones, voice mail, etc.) are that end-users interact with;
Microsoft NetMeeting is an example of an H.323 endpoint.

2. GateKeepers (GKSs): which are optional provide call control
functions such as address translation and bandwidth management
and are often considered to be the most important component in
the H.323 stack.

3. Multipoint Control Units (MCUs):.provide conference
facilities for users who want to conference three or more

endpoints together.

2.3.2.2 H.323 Operation
H.323 signaling exchanges typically are routed via gatekeeper or

directly between the participants as chosen by the gatekeeper. Media
exchanges normally are routed directly between the participants of a call.
H.323 data communications utilizes both TCP and UDP. TCP ensures reliable
transport for control signals and data, because these signals must be received
in proper order and cannot be lost. UDP is used for audio and video streams,
which are time-sensitive but are not as sensitive to an occasional dropped

packet. Consequently, the H.225 call signaling channel and the H.245 call

Chapter Two: VoIP Network Architecture and Protocols 33

control channel typically run over TCP, whereas audio, video, and RAS

channel exchanges rely on UDP for transport [Eri02].

2.3.3 Session Initiation Protocol (SIP)
SIP was originally developed by the Internet Engineering Task Force

(IETF) working group. Version 1.0 was submitted as an Internet-Draft in
1997. Significant changes were made to the protocol and resulted in a second
version, version 2.0, which was submitted as an Internet-Draft in 1998. The
protocol achieved proposed standard status in March 1999 and was published
as RFC 2543 in April 1999. The Internet-Draft containing bug fixes and
clarifications to SIP were submitted beginning in July 2000, referred to as
RFC (2543) “bis”. This document was eventually published as RFC (3261),
which obsoletes (or replaces) the original RFC (2543) specification [Ala04].

SIP is described as an application-layer control protocol that can
establish, modify and terminate multimedia sessions or calls. Although no real
assumptions are made about the underlying network and protocols, SIP has
been designed with the TCP/IP architecture in mind; SIP is a text based
signaling protocol. It incorporates elements of two widely used Internet
protocols: HTTP used for web browsing and SMTP used for e-mail. From
HTTP, SIP borrowed a client-server design and the use of URLs and Uniform
Resource ldentifiers (URIs). From SMTP, SIP borrowed a text-encoding
scheme and header style. For example, SIP reuses SMTP headers such as To,
From, Date, and Subject [Ala04].

It supports features of the Advanced Intelligent Network (AIN). Such
as name mapping, call forwarding and call redirection. This is very useful if

SIP is to gain acceptance as a signaling protocol in the public network, where

Chapter Two: VoIP Network Architecture and Protocols 34

telephony feature offering is major part of the business of telephone
companies. Another significant feature of SIP is support for user mobility. So,
SIP is the early signaling protocols intended for serious VolIP telephony

signaling in the wide area [Bil00].

2.3.3.1 SIP Entities
The SIP protocol defines several entities, and it’s vital to understand

their role inside any architecture that uses SIP [Gon02]. These entities are:

A. User Agents

A User Agent (UA) is an application which resides at a SIP end station.
A SIP UA must support UDP transport and also TCP if it sends messages
greater than 1,000 octets in size, also must support SDP for media description.
Other types of media description protocols can be used in bodies, but SDP

support is mandatory [Ala04].

UA consists of two parts: a User Agent Client (UAC) and a User Agent
Server (UAS). A UAC is capable of generating a request based on some
external stimulus (the user clicking a button, or a signal on a PSTN line) and
processing a response. The UAS is a server application which contacts the
user when there is an incoming request and responds to it, it is capable of
receiving a request and generating a response based on user input, external
stimulus, the result of a program execution, or some other mechanism. In
most cases, the user will be a human, but the user could be another protocol,
as in the case of a gateway. A user agent must be capable of establishing a

media session with another user agent [Ala04, Ros02].

Chapter Two: VoIP Network Architecture and Protocols 35

B. SIP Servers

SIP servers are applications that accept SIP requests and respond to
them. The types of SIP servers discussed in this section are logical entities.
Actual SIP server implementations may contain a number of server types, or
may operate as a different type of server under different conditions. Because
servers provide services and features to user agents, they must support both
TCP, Transport Layer Security (TLS), and UDP for transport [Ala04].

Three types of network servers are defined. The first one is a redirect
server. A user can send a call invitation request for another person to a
redirect server. This server will then locate the user and return the necessary

information to enable the caller to establish a call with the intended person.

The second type of server is a proxy server. SIP proxies are elements
that route SIP requests to user agent servers and SIP responses to user agent
clients. It is like with a redirect server, a user can send an invitation request to
a proxy server. The proxy server will also try to locate the destination of the
call, but unlike with a redirect server, it will not simply return possible
locations of the called person. Instead, based upon that information, a proxy
server will try to establish a connection on behalf of the caller. A proxy can
operate in either a stateful or stateless mode for each new request. When
stateless, a proxy acts as a simple forwarding element. But in a stateful proxy
remembers information about each incoming request and any requests it sends
as a result of processing the incoming request. It uses this information to

affect the processing of future messages associated with that request [Gon02].

Finally, the last server type is a called a registrar. A registrar is usually

co-located with a redirect server or a proxy server. A user can send

Chapter Two: VoIP Network Architecture and Protocols 36

information about its current location to a registrar; the user can register
himself. This information can then be used to contact him. Thanks to
registration information, personal mobility is allowed, which means that a
person should be able to accept calls directed to him at any end system. The
information sent to a registrar describes at which system a user should be
contacted [Jor0Q0].

2.3.3.2 How SIP Works
Any user must specify to whom he want to make a call. A SIP user is

identified by a SIP-URI, example: ‘sip:user2@there.com’. SIP has two broad
categories of URIs: ones that correspond to a user, and ones that correspond
to a single device or end point. The user URI is known as an Address Of
Record (AOR) and a request sent to an address of record will require database
lookups and service and feature operations and can result the request being
sent to one or more end devices. A device URI is known as a contact, and

typically does not require database lookups [Ala04].

When a user wants to invite someone into a session or wants to make a
call to someone, the user can send an invitation request to the end system
specified in the destination's SIP-URI. The request would be sent to
‘there.com’. If the called user is available at that system, he can send a
response, indicating whether he wants to participate in the communication or
not. When the caller receives this response, he sends an acknowledgement to

the other system.

As shown in figure (2.4), the caller could also send its invitation
request to a proxy server. This proxy server then looks for possible locations

of the other user and tries to invite that user itself. When the proxy knows that

Chapter Two: VoIP Network Architecture and Protocols 37

the invitation was either accepted or denied, it can send an appropriate
response back to the caller. This way, a proxy acts as both a client and a

server.

sip:user2@there.com

SIP Stateless Proxy

SIP Redirect Server

Media (RTP) Path

sip:userl@there.com

Figure 2.4 SIP Protocol Operations [Gon02]

Finally, the invitation request could also be sent to a redirect server.
This redirect server would then look for possible locations of the called user
and send the corresponding SIP-URIs back to the caller. Based upon this
information, the caller could then try to contact the other user directly, as
described in figure (2.4).

Chapter Two: VoIP Network Architecture and Protocols 38

The invitation request normally contains information about the media
that will be sent. If the invitation was successful, the response will also
contain a description about the media that the other user will use. The SIP
specification does not demand a specific format, but the SDP was designed

for this purpose [JorQ0].

2.3.4 Session Description Protocol (SDP)
The SDP protocol was developed by the IETF work group. The original

purpose of SDP was to describe multicast sessions set up over the Internet’s
multicast backbone. SDP specifies how the information necessary to describe
a session should be encoded. It does not include any transport mechanism or
any kind of parameter negotiation. A SDP description is simply a chunk of
information that a system can use to join a multimedia session [Gon02]. It

contains the following information about the media session:

1. IP Address (IPv4 address, IPv6 address, or host name);

2. Port number (used by UDP or TCP for transport);

3. Media type (audio, video, fax, and so forth);

4. Media encoding scheme (Pulse Code Modulation (PCM),
Moving Picture Experts Group Il video (MPEG Il video), and so
forth).

In addition, SDP contains information about the following:

1. Subject of the session;
2. Start and stop times;

3. Contact information about the session.

Chapter Two: VoIP Network Architecture and Protocols 39

Like SIP, SDP uses text coding. A SDP message is composed of a
series of lines, called fields, whose names are abbreviated by a single lower-

case letter, and are in a required order to simplify parsing [Ala04].

2.3.5 Real-time Transport Protocol (RTP)
The Real-time Transport Protocol is defined as a protocol which

provides end-to-end delivery services for data with real-time characteristics,
such as interactive audio and video. So this protocol can also be used for
VolIP applications. It is the key standard for audio/video transport in IP

networks along with its associated profiles and payload formats [Col03].

As shown in the protocol stack of Figure (2.1), RTP is an application
layer protocol that uses UDP for transport over IP. RTP is not text encoded,
but uses a bit-oriented header similar to UDP and IP [Ala04].

The RTP specification actually defines two separate protocols: the RTP
protocol, and Real-time Transport Control Protocol (RTCP). The protocols
themselves do not provide mechanisms to ensure timely delivery. They also
do not give any QoS guarantees. These things have to be provided by some
other mechanism. Flow and congestion control are not directly supported
[Jor00].

The strength of RTP is that it provides a unifying framework for real-
time audio/video transport, it has proven useful for a range of other
applications: in H.323 video conferencing, and TV distribution; and in both

wired and cellular telephony [Col03].

2.35.1 RTP
RTP aims to provide services useful for the transport of real-time

media, such as audio and video, over IP networks. These services include

Chapter Two: VoIP Network Architecture and Protocols 40

timing recovery, loss detection and correction, payload and source
identification, media synchronization, and membership management. RTP
was originally designed for use in multicast conferences, using the

lightweight session's model.

A session consists of a group of participants who are communicating
using RTP. A participant may be active in multiple RTP sessions—for
instance, one session for exchanging audio data and another session for
exchanging video data. For each participant, the session is identified by a
network address and port pair to which data should be sent, and a port pair on
which data is received. The send and receive ports may be the same. Each
port pair comprises two adjacent ports: an even-numbered port for RTP data
packets, and the next higher (odd-numbered) port for RTCP control packets.
The RTP Payload data in a typical voice-over-IP application sending an audio
in 20-millisecond packets [Ala04, Col03].

2.35.2 RTCP
The RTP is accompanied by a control protocol, RTCP protocol. The

control protocol supplies information about the participants in the session.
Each participant of a RTP session periodically sends RTCP packets to all

other participants in the session. RTCP has three basic functions:

1. The primary function is to provide feedback on the quality of
data distribution. Such information can be used by the
application to perform flow and congestion control functions.

2. RTCP distributes an identifier which can be used to group

different streams audio and video for example together. Such a

Chapter Two: VoIP Network Architecture and Protocols 41

mechanism is necessary since RTP itself does not provide this
information.

3. By periodically sending RTCP packets, each session can observe
the number of participants. The RTP data cannot be used for this
since it is possible that somebody does not send any data, but
does receive data from other participants. For example, this is the

case in an on-line lecture.

Also, RTCP provides information about reception quality which the
application can use to make local adjustments. For example if a congestion is

forming, the application could decide to lower the data rate [Jor00].

RTCP defines several different packet types [Joh02]:

1. Sender Report (SR): is a sender report and conveys statistical
data of an active sender.

2. Receiver Report (RR): is a report of a receiver for statistics of a
participant that does not actively send data.

3. Source DEScription (SDES): it is contains source description
items.

4. (BYE): it is indicates the end of participation.

5. Application-sPecific Packet (APP): it is consists of application

specific data.

Chapter Three
SIP-Based VolIP Security

3.1 Introduction
The security becoming an increasingly important issue in modern day

computer environment, it is becoming vital to consider how to protect a
system before incorporating it in daily business operations. Due to the
increasing interest in computer based media communication. (e.g., VoIP
application) there is need for security solutions which makes these

technologies reliable enough to carry important information.
The ideas produced by this chapter are:

1. Identify four levels of VVoIP security that can be implemented.
2. Producing two common key agreement protocols

3. Clarify the point of using key agreement protocol with SDP.
4

. Identify the reason of using SDP in security media description.

3.2 Encryption Protocols
One encryption protocol can be used in different context for slightly

different purposes. There are some common encryption protocols for

encryption at different layers as described in later sections.

3.2.1 IPsec: Network Layer Encryption
The IP security protocol suite known as (IPsec), which provides a

security level at the IP level (in network layer). The preferred form of Virtual
Private Network (VPN) tunneling across the internet, IPsec defines two basic

protocols: Encapsulating Security Payload (ESP) and Authentication Header

Chapter Three: SIP-Based VoIP Security 43

(AH). IPsec provide connectionless integrity, source authentication,
confidentiality and replay protection. Given that IPsec can provide these

services to an entire IP packet, including the header [Tha98].

The SIP protocol does not specify a framework for the use of IPsec and
no key management is suggested. The most common use of IPsec is in
collaborative with the Internet Key Exchange (IKE) protocol to provide
automated cryptographic key exchange and management mechanisms
[Ros02].

3.2.2 TLS: Transport Layer Encryption
Transport Layer Security (TLS) is a security protocol which provides

encryption at the transport layer. The protocol specifically requires a
connection oriented, reliable delivery transmission protocol which means it
will not work with protocols using UDP transmission. TLS provides integrity
protection, authenticity and confidentiality of sent data without needing

additional key management.

TLS is compromised of two layers; the TLS Record Protocol and the
TLS Handshake Protocol. The Handshake Protocol is used to authenticate the
participants and negotiate security parameters while the Record Protocol

provides confidentiality and integrity to the actual data transfer [Die99].

The SIPS (Secure SIP) in SIP specification implies the use of TLS
there is a great probability that an application securing SIP messages makes
use of TLS. This is might make TLS seem like a good alternative for
encryption of media stream because no other security protocol would need to
be implemented. This would be false assumption since TLS uses the reliable

transport protocol, such as TCP. While this might not be a great problem

Chapter Three: SIP-Based VoIP Security 44

where SIP messages is concerned it is devastating in the context of real-time
media encryption. The nature of streaming media simply does not allow the
use of a reliable delivery protocol such as TCP for transportation due to time

constraints [Ros02].

3.2.3 SRTP: Application Layer Encryption
The Secure Real-time Transport Protocol (SRTP) is an extension to the

RTP Audio/Video profile and provides confidentiality, authenticity, integrity
and replay protection for RTP and RTCP packets, providing all the important
elements to secure the media stream. The RTP packets are used to carry the
session contents while the control packets, RTCP, are used for session
statistics and control. A secure session key derivation function is used to
produce pseudo-random session keys using only a master key and an optional
(highly recommended) master salt [SC03, Bau04].

The key derivation function in SRTP enables session keys to be created
using a master key, and to protect against pre-computation attacks, a master
salt. This function is used to create a session encryption key, session
authentication key and session salt to use when processing packets. In fact,
both the SRTCP and SRTP stream can be provided with session keys using
only the master key and salt. This function also enables the definition of the
optional key derivation rate in the SRTP protocol which specifies how often
new keys are to be generated. This is useful because an application sending
data for along period of time might wish to use several session keys so that
one leaked or cryptographically broken key will only compromise part of the
packet stream. This is then easily done by defining a key derivation rate
higher than zero [Bau04].

Chapter Three: SIP-Based VoIP Security 45

3.2.3.1 Default Encryption Algorithms
In principle any encryption scheme can be used with SRTP. As default

algorithms the NULL cipher (no confidentiality) and the Advanced
Encryption Standard in Counter Mode (AES-CTR) are defined. The AES-
CTR encryption setup is shown in Figure (3.1).

v IV=f(salt_key, SSRC, packet index)
112 bits

keystream generator

128 bits | encr_key AES-CTR

@ XOR

v
v

RTP/RTCP payload encrypted payload

Figure 3.1 Encryption using AES in Counter Mode [And04].

AES in counter mode acts as a keystream generator producing a
pseudo-random keystream of arbitrary length that is applied in a bit-wise
fashion to the RTP/RTCP payload by means of a logical XOR function, thus
working as a classical stream cipher. AES itself is a block cipher with a block
size of 128 bits and a key size of 128, 192, or 256 bits. In order to work as a
pseudo-random generator AES is loaded at the start of each RTP/RTCP
packet with a distinct Initialization Vector (IV) that is derived by hashing a
112 bit salt_key, the Synchronization SouRCe identifier (SSRC) of the media

Chapter Three: SIP-Based VoIP Security 46

stream and the packet index (header fields of the media packet header).
Encrypting this IV results in an output of 128 pseudo-random bits. Next the
IV is incremented by one and again encrypted, thus generating the next 128
bits of the keystream. By counting the IV up by increments of one as many
keystream blocks can be generated as are required to encrypt the whole
RTP/RTPC payload. Any remaining bits from the last keystream block are

simply discarded.

AES used in counter mode instead of the more common cipher block
chaining mode (CBC) has the big advantage that the keystream can be
precomputed before the payload becomes available thus minimizing the delay
introduced by encryption. And of course by using a stream cipher instead of
block cipher there is no need to pad the payload up to a multiple of the block
size which would add 15 overhead bytes to the RTP/RTCP packet in the
worst case [And04].

3.2.3.2 Session Key Derivation
The encryption algorithm described in sections (3.2.3.1) require secret

symmetric session keys that must be known to all user agents participating in
a SIP session. This raises the logistical problem of session key generation and

distribution.

The SRTP standard offers a partial solution by deriving all needed
session keys from a common master key but leaves open the distribution of
the master key itself. Figure (3.2) shows how the session keys are computed
starting out from a single master key. Again the AES block cipher is used in
counter mode to generate the necessary keying material. The master key
which can have a size of 128, 192, or 256 bits plays the role of the AES

Chapter Three: SIP-Based VoIP Security 47

encryption key. The pseudo-random generator is loaded with an IV that is
itself a function of a 112 bit master_salt value, a one byte label and a session
key number. By applying the labels 0x00 up to 0x05, encryption,
authentication and salting keys for both SRTP and SRTCP are derived from
the same master key. If a key derivation rate has been defined then every time
a number of packets equivalent to the key derivation rate have been sent, a
new set of either SRTP or SRTCP session keys are computed. If the key
derivation rate is set to zero then the same set of keys is used for the whole

duration of the session.

AV
label
master_key > [0x00 » encr_key | 128 bits
128 bits SRTP
192 bItS session < 0x01 > auth_key 160 bits
256 bits keys
L 0x02 » salt_ key | 112 bits
key derivation
AES-CTR
[0x03 » encr_key | 128 bits
SRTCP
session { 0x04 » auth_key | 160 bits
keys
| 0x05 —» salt_key | 112 bits

Figure 3.2 Session Key Derivation [And04]

Chapter Three: SIP-Based VoIP Security 48

3.2.3.3 Master Key Distribution
We turn now to the crucial issue of distributing the master key to the

user agents as part of the session initiation where no key management is
defined in SRTP, external key management mechanisms are used to exchange
keys and cipher-suite information and parameters. This makes SRTP used
within a SIP context reliant on external key management protocol or SDP
negotiation. Because of this dependency, and because SRTP is such a useful
protocol for secure real time media transmission purposes, the SDP protocol
IS geared towards providing this information to SRTP. This is not to say it
cannot be used with other protocols, but the intended use upon their creation
was with SRTP [Ark05].

By requiring external key management using SRTP creates requirement
for an encrypted exchange of key data which cannot be satisfied by SRTP
itself. However, since SDP tunneling of this information is possible the
encryption of SDP data or SIP messages, which should be present, would also
serve to protect tunneled key agreement information. The benefit of doing
this, in addition to piggyback in the SIP security, is that using the SDP
information makes configuration of or changes to the security mechanisms

easy to implement [Ark05].

3.3 Key Agreement
All types of encrypted communication require both participants to

agree upon how to perform encryption and decryption. Specifically,
participants need to know what crypto-suite, keys and crypto-suite parameters
are being used. To provide these services to protocols that do not themselves

cover this area (such as SRTP or IPsec) key agreement protocols are needed.

Chapter Three: SIP-Based VoIP Security 49

When it comes to exchange of the actual keying information there are a
few well known and common mechanisms used within key management
protocols. These mechanisms are needed because of the paradox that the key
information must not be sent in the clear but the information itself is needed
for encryption. Exactly how these mechanisms are applied is up to the key
management protocol that uses them, but the basics of the methods are
described below [Ark05].

3.3.1 Pre-Shared Key Agreement
It is the most basic of key agreement protocol, pre-shared key requires

that both participants share a secret key. Both participants use this key to
provide an encryption key. The initiator creates and sends a randomly
generated session key encrypted with the generated encryption key and thus

gets access to the session key included in the message.

This mechanism as in figure (3.3) requires of maintaining a shared
secret key with an intended participant. This scheme does not scale well
because each user would need to maintain a key for each possible recipient, in
addition to requiring some means of obtaining these keys. A pre-shared key
scheme is therefore only suitable in a scenario where few users need to

communicate.

Initiator Recipient

Knows secret key: S Knows secret key: S
Encryption key ke = g(S) Encryption key ke = g(S)
Session key K = random MSG >

K = MSG decrypted with ke
MSG = Encrypt K using ke or K =D(ke, MSG)
or MSG = E(ke, K)

Figure 3.3 Pre-Shared Key Agreement Protocol [Ark05]

Chapter Three: SIP-Based VoIP Security 50

Because a pre-shared key can be used for a long period of time, and
because refreshing this key can be arduous, many key exchanges can be
performed using the same key. What this means is that if the secret key is
disclosed to an authorized party all future transactions using that key are

compromised until the key is replaced [Ark05].

3.3.1.1 Feedback Shift Registers
A finite state machine (FSM) consists of finite sets of (internal) states

{s}, input and output alphabets {a} and {5}, an output function T determining
the output
T:(s,a) — b,
and a state function) determining the successor state.
2 (s, @) > sF=3(s, a).
Given an initial internal state s,, and sequence of input states ay, a;, ...,
the functions 7"and) determine the output sequence by, b, . . ., according to

the recursion
bi = T(si, ai) si+1 =Y (si, ai), i=01,...

Flothn @h- .. 0]
i

'Tum '1(‘) "Hw "H.lm

Stage 0 Stagelfe—— - g - Stupe - 1.

gﬁ

t

Figure 3.4 Feedback Shift Register

Figure (3.4) depicts a feedback shift register (FSR) with feedback
function £, an FSM with null input consisting of N stages (each capable of

storing one bit), a feedback register, and a single output port, where

Chapter Three: SIP-Based VoIP Security 51

4.

. The content of Stage i at time 7 is sj(£) = 0 or 1,
. The output s,(¢) is the content of Stage 0 at time ¢,
. The state of the FSR at time ¢ is the N-vector s(z) = (so(2), s;(?), . . .,

sn1()) € Zy.> (Where Zy , is the set of 2" vectors of length N with
components 0 or 1), and
The feedback value at time tis £ (sy(2), s;(2), . . . , Snv.:(2)).

The states of the FSR change only when a clocking signal is applied

and then as follows:

1.

2.

The content s,(7) of Stage i+1 at time t is shifted to the left, meaning

it becomes the new content of Stage i at time ¢+1; s,(t+1) = s,.,(¢) for
0<=i<N-1, and

The value f (sq(7), 5,(?), . . ., sy.;(¢)) in the feedback register at time ¢

becomes the new content of Stage N-1 at time r+1; sy.;(t+1)= 1 (s4(2),

si(®), .. ., sn(2)).

Figure (3.5) depicts a linear feedback shift register (LFSR), the special

case of a feedback shift register with linear feedback function f

where

Fso(), 5100, - . ., sna(D)) :z (cnnsa(®)),

. Co Chv e cy are the feedback coefficients or taps [cy = 1],

. The output of the AND-gate A[;] is the (current) content of Stage ;

if cy; =1, and O, otherwise, and

. The feedback bit entering Stage N-1 when a clock pulse is applied is

the eXclusive-OR (XOR) of the current outputs of the N AND-

gates.

Chapter Three: SIP-Based VoIP Security 52

e P -+ .-_-_J/:\\
Al] Al AY-2] AN-1]
] 1] 1
Cx X 5D 50} c1 Bl o Sk
g'.ntpnt Stage 0 (- Stage]l fe—-— - - oot Stage N—2 f-t Stage N—1 |-
Figure 3.5 Linear Feedback Shift Register
The state of the LFSR at times tand t 1 are related by
s(#) = (so(®), 51(8), . . ., sn-1(?))
S(t+1) = (so(t+1), s,(t+1), . . ., sy4(2+1)). (4.1)
As s;(t+1) = s;4,(¢) for 0 <=i < N-1
g(t'l'l) = (S](t), Sz(t), ey SN_z(t), SN_I(t), SN_I(t+1)) (42)
where

it D) =X v, (43)

the addition in Equation (4.3) being modulo 2. As s,(t+k) = s;(f) for 0<= k <N,
Equations (4.2) and (4.3) give

SAttN) =Y. (exasoft+n)), 0<=1<w (44)

Equation (4.4) is a forward recursion, because the future output s,(z+N)
Is determined by the most recent N outputs (sy(z), (so(¢+1), . . ., so(t+N-1)).
When ¢y = 1, Equation (4.4) may be rearranged such that

Chapter Three: SIP-Based VoIP Security 53

SoD) = ¥ (exasolt+n). (4.5)

Equation (4.5) is a backward reclirsion, because the N outputs (sy(r+1),

(so(t+2), . . ., so(t+N)) from time ¢+1 on determine the past output s,(?).

It may always assume that cy = 1, for if cx=cn.; = ... = enper) = 0, e
=1, the LFSR essentially contains N-k active stages and the output sequence
consists of the k-bit prefix determined by the contents of the leftmost k-stages
concatenated with the output of a (NV-k)-stage LFSR [Ala07].

Chapter Four
Implementation and Result

4.1 Introduction

Voice over Internet Protocol (VVolP) is a method of using the Internet to
talk to people. It result from implementation of a common networking
infrastructure to carry voice trafic over TCP/IP. This technology can be either

software or hardware; for example, Skype and IP-Phone.

This thesis use SIP as the signaling protocol, SDP as a descriptor
protocol and RTP as the media transport protocol in the application layer. For
the network layer is use absolutely the IP protocol of version (4). As
mentioned previously, the work use only one signaling protocol, which means
the network type is homogenous. The application made by this work is a
voice conversation between two PCs over LAN network. It's programming is
done using unicon version (11.4) (Unified Extended Dialect of Icon)
language, which is high level, goal directed, object oriented, general purpose

applications programming language. More details are found in appendix A.

4.2 Call Control

Call control with SIP gives more facilities, such an easy to scalability

especially when applied on public networks.

Although SIP is a client-server protocol, but it also work as P2P. This
thesis built the application using SIP version (2.0) with P2P communication.
More details are found in (RFC 3261).

http://www.cs.arizona.edu/icon/

Chapter Four: Work and Result 55

4.3

Proposed Structure

The proposed structure of the implementation of this thesis is illustrated

in figure (4.1). This structure is installed in each UA

4.2.1 SIP Structure

To understand how SIP programming is done, it is important to know

that the protocol is consists of four layers, these are:

Syntax and encoding: it is the lowest layer of SIP. It specifies the SIP
message syntax. Its encoding is specified using an augmented Backus-
Naur Form grammar (BNF) in RFC 2234,

Transport layer: It defines how a client sends requests and receives
responses and how a server receives requests and sends responses over
the network. Both UAC and UAS have this layer.

Transaction layer: The transaction layer has a client component
(referred to as a client transaction) and a server component (referred to
as a server transaction). A transaction is a request sent by a client
transaction (using the transport layer) to a server transaction, along with
all responses to that request sent from the server transaction back to the
client. Both UAC and UAS have this layer.

Transaction User layer (TU): The layer of protocol processing that
resides above the transaction layer. Transaction users include the UAC
core, UAS core, and proxy core (Core designates the functions specific
to a particular type of SIP entity, i.e., specific to either a stateful or
stateless proxy, a user agent or registrar. All cores, except those for the

stateless proxy, are transaction users). The behavior of UAC and UAS

36

Chapter Four: Work and Result

a1monus uoieuswsadw| Ty 84nbi4

MA0MIBN-d|

1asied das

Jasied
abessaN dIS

Buipoou3

asuodsay
Buipuas

1S9nbay
Buinlgey

uoinoesuel |
J19AIBS YIleN

yiodsued | 19A19S

N

uornoesuel |
3LIANI-UON

uornoesuel |
3LIANI

uoilldesueld | JIaAIlS

! \ /

P
<«

uonoesuel |
1sanbay 18AISS uolneal) asuodsay
$5920.d JO uoneai)

9102 SN

uonoesuel |
1D YdFeN

asuodsay
Buinlgey

1sanbay
Buipuasg

1iodsueu] usiD

N

uornoesuel |
3LIANI-UON

uornoesuel |
3LIANI

uonoesued] usiD

asuodsay
$S8201d

uonoesuel |
sId
JO uoneal)

uoIeIauas) pue
uoneal) 1sanbay

~N_

9102 OVN

Chapter Four: Work and Result 57

cores are method dependent, there are some common rules for all methods

as it will discuss later.

4.2.1.1 Syntax and Encoding Layer

This layer helps understanding the parse construction of any SIP
message using a standard rules, these rules are described as a tree for better
understand. The doted lines means an optional field while a solid lines refer to
a non-optional field, and the doted curves means (OR) while solid curves

refer to (AND). More details are found in appendix B.

In this layer, trees must be read carefully, it identify how can messages
(request, response) be distinguished as shown in figure (4.2) also identify SIP
methods of requests. The purposes of request methods are indicated in table
(4.1). This work uses only three methods (INVITE, ACK, and BYE).

Response types and there meanings are identified in figure (4.3). Figure

(4.4) through figure (4.9) shows the message header fields.

Table 4.1 Methods Purpose

Method Purpose

INVITE Invites a user to join a call.

ACK Confirms that a client has received a final response to an INVITE.
BYE Terminates the call between two of the users on a call.

OPTIONS Requests information on the capabilities of a server.

CANCEL Ends a pending request, but does not end the call.

REGISTER Prov[des the map for address resolution, this lets a server know the
location of a user.

SIP message header fields are all case-insensitive except some
parameters for some header fields (ex: value of "branch" parameter for "Via"
header field).

38

Chapter Four: Work and Result

(LIDIA)T v’ (LIDIA)LT ofs
aseayd-uoseay dS 9poa-smels ds
(13100)4

Apog-abesssiN 4740 (19pesy-abesssiN) .

abessa|N dIS Z'1 84nbi4

' .dIS..

UOISI9A-d[S

aUI|-SNJeIS

asuodsay

wSNOILdO., ..,d431SI914.... T3ONVI.. «3AL.. & HOV. LILIANL,

474D UoIsIen-dIS dS | 1dN-senbay dS poylsin
(13100)4
47uo | (18PeaY-8BESSAIN) . 5uy1-1sanbay

Apoqg-abessan

1Sonbay

abessaw d1S

39

Chapter Four: Work and Result

I4N-dIS €+ 84nbi

aneAy .=, aweuy
Jesnasyro dl,,=J8sn,, ddn 4ol .=uodsuen,, aweu-urewop
TN
e|dol urewo
poyrew ,,=poysew,, IS0U ,.=1ppuw,, M .= Igel (urewop),,
weJed weJed wreJed weJed weJsed
Jopesy . -poyrew -lppew -13sn -m -J1odsueay Jppe-pAdl sweulsoy paomssed

\/

(19peay-ppe),,

N

l—mvmmc ..ﬂ.\- E.@L.@Ql_l_: HLOQ ..”.. HWO—!— -@: awreuJasn

. 1

, |
AY

\ [

\ 1

“—

\ 1

\ |

AN

(swreaed-1an) ¥

Hodisoy IS,

Slapeay

19N-1senbay

60

Chapter Four: Work and Resul

151X3 10N $90Q
uonoesuel | /6o

a1aH sdoH
Asng Auen 00)
W87 L8P I8,

sadA | asuodsay dIS ' 84nbiH

palinbay
a|ge|leAe JoU BWIBYIS YN Jnoswi | uolneanuayIny 1s9nbay
Ajuesodwsy pauoddnsun 3sanbay Ax01d pazLIoyINeuN peq
087, n9lY. w807, wlOV. W IOV, 007,

alaymAue
151X
a|qe1dadde jou alaymAlana
10N sso@ °ulPed Asng

..@O@: -.VO@.. ..mow: :ooo-

94n|e}-eqo|o

papJemio-

ssalbo.d Bulag
MO uoIssas panan® sI e puibury Bulkiy
.00¢.. €8T, .,28T.. .T8T.. ..08T.. ..00T..

S$S922NS B[eXPERIIE e} |euolyewldojul

9p03J-snjels

—
o

Chapter Four: Work and Result

(THed) siopesH abessaN dIS S 84nbi-

weaed-o11ausb weaed-bey weaed- o_ 18usb Em Jed-bey

N>

(sweted-woyy), 1N3S Ippe-awep deds-ppy ?Em Jed- oc IWN3S lppe-aweN

=N

(sweded-wouy),, 99ds-Wod4 NOTOOH ..Wwoid, (sweted-01) 99ds-0)

pouyrsN SMT (LIDIA)4T NOTODH ..b3sD.,

4740 wos4 L. bas)

(1opeay-abessaN) .

Jads-ppv

NO100H WOl

.SpJemuoy
(LI191A)xT NOTOOH -Xei,,

SpJeMIO0)-XeA]

62

Chapter Four: Work and Result

youeag-eIA PaAIBdaI-BIA

(21req) siapeaH abesssN dIS 9'7 84nbi14

«dOLl.,

//Im<|_m

11odsueu |

-&DD-
HSVIS

Appew-eIA TN-BIA 1uod NOT0ODH

N L

UOISJIaA-dIS

.dIS..

PIOMN @)
sweaed-eIA IINS appe
/AI‘ \J\ |020304d
uolsue1x3 PA0/ wesed-eIA VINWOD (swesed-ppy) x Ag-1uss SM -Juss
pI-|[eD NO102H «adl-led., (weued-ppy) weded-eIn NO102H WBIAL
ai-ed

(19pesy-abessain)

63

Chapter Four: Work and Result

(sueq) siepeaH abessaw d|S /'t 84nbi-

spuodss-eyag 1VNO3 ,,saa10%s,, anpeab vNnoO3 .b.. SM1 ua 0}
saa1dxe-d-o d-b-2 IdN-1senbay Bulis-pajonb (sewreu),,

sweaed-10e1U0D 1sNOVvY 99ds-1ppy 1LONOVT awreu-Ae|dsip

weaed-10e3U0D VINWOD (swe.ted-ppy) . 99ds-ppy Appe-aweN
(10e1U09-ppVY) . weJaed-10e1U0D NOTOOH . JOBJU0D,,
10e1U0D

(1apeay-abesssiN) .

Chapter Four: Work and Result

anfeAr vNnO3

(yureqd) siepeaH abessaw d|S 8't 84nbi-

aIngue

-w -w .uoneoldde,, ,.ol1pne,, Bulis-palonb 1soy usxol ,.padinbal,, ,.Jeuondo,,
«Medninw,, -, abessaul,, an[eA-usD TvNO3A uax o0} anjea avnO3 |, Bulpuey,,
\\\Ill //zz\j\)\
d- 5 _Mm% 09 weaed weaed
weed-l ! u ~913.9SIp I BEIVE] -Bulpuey ,M9je,, ,.uoIssas,, ,,dapual,,

6\

(swesed),, °dAgns-w HSVIS adAi-w weed-dsip INS /\\

ad/A 1 -eipaw

ad/Ay-dsip
W9dAL ..y1bus ..uonisodsig
NOTOOH -wawo),, (LIDIA)xT NOTOJH -jusuo),, @Em;ma.ﬁ NOTOOH -usuo),,
\vd\ /\vlu\ CO_H_mOQw_ﬁ_
adA] -1usuo) y1bus|-1usiuo)d -Jusluo)d

(19peay-abessain)

65

Chapter Four: Work and Result

(Gueqd) siepeaH abessaw d|S 6t 84nbi-

(VUdTV) 8T w™n (WudTIV) 8«T

Be)

-abenbue| VAWOD (sBer-gns), -Arewnd

\X ¥\
Bel .,obenbue]

AmEEmQ-mcm_v* -abenbue] NOTOOH

abenbue1-1usiuo)d

-Jusu0Y,,

Buipoo
-]Us1u0)D VINWNOO uayo)
Buipoo ,.Buipooug
(sweaed-usiuo0g),, -luaquo) NOTOOH -sjuo),,

Bulpoouz-1ULU0D

(1epeay-abessain)

66

Chapter Four: Work and Result

(9ueq) siapeaH abessaw d|IS 0T 7 84nbi4

uax o0}
fey-uondo VINWOD U0}
N\
sbel-aloN Bel-uondo POUISIN VINNOD
N\
MO|IV

(1epeay-abessaiN)

67

Chiapter Four: Work and Result

(L191a) €41 w'w

ssaappeyAd|

47140

appe

(L191Q) £xT

-.v>a—-

dS adAuppe

(Tured) abesss|N dAS TT'v 84nbi

W (I91a) exT L (L191Q) €41
«Nl.. (LI191Q)«T (LI191Q)«T
dS 8dAneu 4SS uoisian-ssass dS pi-sses S sweudssn =0,

474D (L191Q)«T w=A,

—

play-ulbrio UOIS19A-0104d

Juswisdunouue

68

Chapter Four: Work_and Result

-A-

[rews

¢3

=l b=10)

W, 9Jes-jlews

ssaappe-|lew3

(splay-jrews)

ne

(2ured) abesss|N dAS ZT ¥ 84nbi4

ajes-llewsy)., |rews

" 4740 1Xo)

PIRY-1dN plaij-uollew.iou|

47140 1Xa1

palj-aWeU-UoISsas

Juswisdunouue

-”m-

69

Chapter Four: Work and Result

panunuo) (zued) sbesssN dds €T v 94nbi-4

yaJeas uta

yoaJaess-ppy seydjex yred wlas

seydjex cowmmw b yred-ppv pIOA eydjel

N\

pruswbe.y e Buiyoaess yred awiayos

7N

juswbea)-1an

47140

PIR_Y-1dN

10

Chapter Four: Work and Result

panunuo) (zued) sbesssN dds vT'v 94nbi-4

L_S-nﬁo/ 1Xa1p
n .. AHX@H UU.@V»«. .. n \FCOH@

[eJa| Jal .

urewopqgns -Emcﬁ/-@ﬂ plom "o
(urewopgns- _on<v* urewopqgns (p1om-ppe)y piom w<u 09ds-ssauppy W

urewop ®.. 14ed-edo] Jppe-a1noy PJIOMT
7N

99ds-ssa1ppy Jads-ssaappe-aweN

1

Chapter Four: Work_and Result

47140

(gured) abessa|N dAS ST 84nbig

ssedppeyAd|
(L191Q)«T d
’ (wnueydre),T appe AL, .NI..
sseppe
yipimpueq adAimg w=0., 47140 -uond’3uu0d dS adAuppe dS dAnsu
(SpIay-uyapmpueq) PI31}-UOI198ULI0D

Jjuswisdunouue

-“Q-

72

Chapter Four: Work and Resuli

(1red) abesss|N dAS 9T+ 84nbi

awn-padAy dS
LN, elepAey ..p9esed,, elepAey wAE910,, (BWIN-240W) 42 [eAsaqul-1eadal W=l
M \ < w M splaly-readay 4740
. Jdwoud,,
(pwn swn awin

474D | juswnsalpe-suoz = 418D -PpVY)« -do}s dS -ueis L=,

4740 adA1-Aay| o= 5\

awI1-auoz (PlBY-8WIN)«T

p1ay-Ao3 aWI11-Ssas

Juswisdunouue

13

Chapter Four: Work and Result

padAl
-owil L

dS awn

dS

x(dwn-ppe)

panunuo (y1ed) sbesssiN 4As LT v 84nbi4

-U-

Jun-awin
-UaJ-paxi (LI1D1Q)~T

1uswisalpe-auoz

(LI191A)«6

awn

1191d-s0d

74

Chiapter Four: Work and Result

(Gured) abessa|N dAS 8T ¥ 84nbi4

(wnueyde)«T

wy dS (wnueydie),T Jabarul ol
(wnueydje)«T aneA-le . plal-ne
wnu
(srewo))«T oj04d dS -ppvy wod dS eppaw -w,,
plal-ne ne

N

splay JJEIN Spisiy (PI1dY pIal} plaly
-nque Ay -UIPIMpueg -UOIDBUUOD)y -UOHBULIOMU| -elpsWl 440 aInqrane =e.,
suondi1osap-eIpaw) (splay-sInqLine)
—
JuswisduNouUe

Chapter Four: Work and Result 75

SIP message body might be a descriptor (SDP). Its syntax tree is shown
in figure (4.11) through figure (4.17). SDP fields' names are all small letters

and fields' bodies are case-insensitive.

To parse SIP protocol messages, it can use the procedure (4.1).

4.1 SIP Message Parser

Step A: Create an SIP message structure which consist of several header
fields' structures, the first line structure (request line, or status line),

and field to save the Message body contents.

Step B: Parse the first line (request-line, or status-line) to distinguish if it is a

request or response message respectively.

Step C: Because of each header field is in only one line ending with Carriage
Return Line Feed (CRLF), so parse the first token of each line.
From this it will have a list of all header field names included in the
message header. Also the condition below must be executed:
If not understanding a header field name and it is not mandatory
header field Then
Ignore this header field.

Else Silently discard the message.

Step D: Parse the body for first "Via" header field and the other mandatory
header fields.
If any parameter of a header field is not understood Then

Ignore the parameter.

Step E: To parse SIP message body, check the following:

If "Content-Disposition” header field is exist Then

Chapter Four: Work and Result 76

If "Content-disposition” header field body doesn't parsed
Then
Parse "Content-disposition"” header field body.
If content-disposition is "session™ Then
Parse the body using SDP syntax.
Else If "Content-Type" has media type is "application" and media
subtype is "sdp" Then
Parse the body using SDP syntax.
Else if "Content-Type" has media type is "audio™ Then
Copy the content of SIP message body to a
(.wav) file type.

A valid SIP request formulated by a UAC must, at a minimum contains
the following header fields: To, From, CSeq, Call-ID, Max-Forwards, and
Via; all of these header fields are mandatory in all SIP requests. These six
header fields are the fundamental building blocks of a SIP message. Parsing
only mandatory header fields as a beginning, this is because of other header
fields may not needed, so parsing only the necessary header fields and the rest

can be requested to be parsed as needed.

Step (D) is carried out when SIP message body information is needed
in processing. SIP protocol must support SDP protocol, because it is the
default descriptor protocol. So that, parsing process of SDP is will be put it

within the parsing layer of SIP.

To parse an SDP messages that resides in SIP message body, follow the

steps in procedure (4.2).

Chapter Four: Work and Result 77

4.2 SDP Parser

Step A: create two data structure, one for saving session description and the

other is for media description of that session.

Step B: parse all SDP header fields in the same order as shown in SDP

message tree.

4.2.1.2 Transport Layer

The transport layer is responsible for the actual transmission of requests
and responses over network. It is used for managing persistent connections for
transport protocols like TCP, and UDP. This includes connections opened by
the client or server transports, so that connections are shared between client
and server transport functions. Also, this layer filters requests and responses
according to procedures (4.3, 4.4). These procedures matching the request or

response to a transaction they belong to.

4.3 Match Response to Client transaction (match_CT)

If "branch™ in response = "branch™ of the first "Via" in request that
creates the transaction and "Cseq" method of response = "Cseq" of
the request Then

Response is match to that client transaction.

4.4 Match Request to Server Transaction (match_ST)

If "branch™ in first "Via" in received request = "branch" in the transaction

Chapter Four: Work and Result 78

and "sent-by" in first "Via" in received request = "sent-by" in the
transaction and request method in received request = request method in

the transaction of the original request Then

Request is matched to that server transaction.

Now Procedures described later are the processing steps in transport

layer for UAC and UAS.

UAC: client side of the transport layer is responsible for:

Sending request
The request is received from the client transaction of caller to be

sending to the transport layer of UAS of callee. The process is as in

procedure (4.5).

4.5 Sending Request

Step A: Insert “sent-by" parameter in first "Via" header field (IP
address of caller, and port=5060).
Step B : If destination address is multicast Then
Add "maddr" parameter in "Via" header field.
"maddr" = destination multicast address.
If IPv4 Then
Add "ttl" parameter
"ttl" =1
Step C : If message size > 1300 byte Then
"transport” parameter in "Via" header field = "TCP".

Else "transport™ parameter in "Via" header field = "UDP".

Chapter Four: Work and Result 79

Step D : Open connection using destination (IP, port, transport).
Step E : Send the request.

If error happens in sending Then

Inform transaction layer.

"sent-by" is useful when UAS send response in a new connection
(different than connection that send request). Port (5060) is used with
TCP, or UDP transport protocol. It is considered as a well-known port

for VoIP application.

The opened connection is preferred to still opened and waiting to

receive response on it. This is to made something called a transaction

Receiving response

The response is received from the transport layer of the callee and
sends it to the client transaction of the caller. The process is as in

procedure (4.6).

4.6 Receiving Response

Step A: Receive response from an opened connection that used to send
the request. UAC might prepare to receive any response in
any IP, port, and transport. When this connection accepted by
the transport layer for receiving the response, it almost does

not used again.

Step B: If "sent_by" of the response = "sent_by" of the original
request Then
If match_CT ("sent-by") Then

Chapter Four: Work and Result 80

Pass to the matched transaction.
Else Pass to the core in TU layer.

Else Discard the response.

e UAS: server side of the transport layer is responsible for:

Receiving Request

The request is received from the transport layer of UAC of caller
to be sent to the client transaction or to TU layer of the callee.
Sometimes requests are received from transport layer of callee to the
transport layer of the caller (ex: BYE request). The process is as in

procedure (4.7).

4.7 Receiving Request

Step A: UAS must ready to receive any request in any IP, port, and
transport. It is preferred to listen for requests on default port
(5060).

Step B: If "sent-by" has IP address <> source packet IP address Then

Add "received" and set to IP of source packet.

Step C: If match_ST Then
Pass to the matched transaction.
Else Pass to TU.

In step (C) is used to send to TU layer for ACK request, where
were no transaction for ACK, because client transaction is destroyed
after receiving final responses (2xx). So ACK request has its own

transaction other than INVITE request transaction.

Chapter Four: Work and Result 81

Sending Response

Responses are received from client transaction of callee. Through
the transport layer of callee, responses will send to transport layer of

caller. The process is as in procedure 4.8.

4.8 Sending Response

Step A: If sent-protocol = "TCP" Then
If connection that sends the request is still exist Then
Send response on the same connection.
Else Open new connection using IP in "received”, port
from "sent-by" or using default port (5060).
Send response.
Else If first "Via" has "maddr" Then
Send response using IP in "maddr", port in "sent-
by" or default port (5060).
Else If "received" is exist Then
Send response using IP in "received, port in
"sent-by" or default port (5060).
Else send response using IP and port in "sent-by".
Step B: If error happens in sending Then

Inform transaction layer.

4.2.1.3 Transaction Layer

UAC executes the client transaction, which sends the request to a
server transaction that is executed in UAS. Processing of both client
transaction and server transaction are method dependent (INVITE, or Non-
INVITE).

Chapter Four: Work and Result 82

e Client Transaction

The client transaction is responsible for:

1. Receive request from TU, then reliably deliver the request to a server
transaction.

2. Receiving responses and delivering them to TU.

3. Filter any response (retransmission or disallowed).

4. In case of INVITE request, it will generate (ACK request) for any final
response accepting 2xx response

INVITE Client Transaction

The INVITE transaction consists of a three-way handshake:

1. The client transaction sends an INVITE.
2. Receive responses from server transaction.

3. The client transaction sends an ACK.

The procedure (4.9) which illustrated in figure (4.19) uses some timer
as in table (4.2) that summarizes the meaning and defaults of the various

timers used by this specification.

Table 4.2 Table of Timer Values

Timer Value Meaning
Tl 500ms Estimate of round-trip time
Timer_ A initially T1 INVITE request retransmit interval, for UDP only
Timer B 64*T1 INVITE transaction timeout timer
Timer_D > 32s for UDP, | Wait time for response retransmits
Os for TCP

Chapter Four: Work and Result 83

4.9 INVITE-Client Transaction

Step A: Calling state
Step A.1: Receive INVITE request and its transaction from TU
T1 =500 ms
Timer_ B = 64*T1
Step A.2: If "transport" in first "Via" = "UDP" Then
Send the received request to transport layer
If error in sending request Then
Inform TU
Go to Terminated state
Timer A=T1
Repeat until (Timer_B is fires or receive a
response)
If Timer_A is fires Then
Resend the request to the transport
layer.
If error in sending request Then
Inform TU.
Go to Terminated state.
Timer A =T1*2
T1=Timer A
Go to Step A4,
Else Send the request to the transport layer.
Step A.3: If a response (100-199) is received Then
Send the response to TU.

Go to Proceeding state.

Chapter Four: Work and Result

300-699
response

INVITE from TU

Timer A fires v
Calling
200-299
response
100-199
response
100-199 v
response
Proceeding >
> 200-299
response
300-699
response
300-699, 200-299 Transport
responses ¥ P
error
Completed >

A 4

\4

Terminated

Timer D fires

Timer B fires
or Transport
error

Figure 4.19 INVITE Client Transaction

Chapter Four: Work and Result

85

If a response (300-699) is received Then
Create_ ACK.
Send ACK to transport layer.
If error in sending request Then
Inform TU.

Go to Terminated state.

Send the response to TU.
Go to Completed sate.
If a response (200-299) is received Then
Send the response to TU.
Go to Terminated state.
Step A.4: If Timer_B is fires Then
Advertise TU of transaction timeout.
Go to Terminated state.
Else Go to Step A.3

Step B: Proceeding state
Step B.1: If a response (100-199) is received Then
Send the response to TU.
If a response (300-699) is received Then
Create_ ACK.
Send ACK to transport layer.
Send the response to TU.
Go to Completed state.
If a response (200-299) is received Then
Send the response to TU.

Go to Terminated state.

Chapter Four: Work and Result

Step C: Completed state
Step C.1: If "transport” in first "Via" = "UDP" Then
Timer_D = 32 sec.
Else Timer_D =0 sec.
Step C.2: If a response (300-699) is received for the first time Then
Pass the response to TU.
Create ACK.
Save ACK.
Send ACK to transport layer.
If error in sending request Then
Inform TU.
Go to Terminated state.
Else Resend ACK.
If error in sending request Then
Inform TU.
Go to Terminated state.
Discard the response.
If a response (200-299) is received Then
Pass the response to UAC core in TU.

Step C.3: If Timer_D is fires Then
Advertise TU for timeout of transaction.

Go to Terminated state.

Step D: Terminated state
Step D.1: Destroy the client transaction.

Chapter Four: Work and Result 87

Non-INVITE Client Transaction

The procedure (4.10) which illustrated in figure (4.20) uses some timer
as in table (4.3) that summarizes the meaning and defaults of the various

timers used by this specification.

Table 4.3 Timer Values

Timer Value Meaning
T1 500 ms. Estimate of round-trip time
T 4s The maximum retransmit interval for non-INVITE
' requests
Maximum duration a message will remain in the
T4 5s.
network
Timer E initially T1 Non-INVITE request retransmit interval, for UDP only
Timer F 64*T1 Non-INVITE transaction timeout timer
Timer_K T4 for UDP, | Wait time for response retransmits
Os for TCP

4.10 Non-INVITE Client Transaction

Step A: Trying state

Step A.1: Receive Non-INVITE request and its transaction from TU.
T1 =500 ms
Timer_F =64*T1
Send the request to transport layer.
If error happens in sending Then
Inform TU.
Go to Terminated state.
Step A.2: If "transport” in first "Via" = "UDP" then
Timer E=T1

Chapter Four: Work and Result 88

T2 =4 sec.
Repeat until (Timer_F is fires or receive a
response)
If Timer_E is fires Then
Resend request to transport layer
If error happens in sending Then
Inform TU
Go to Terminated state
T1 = Min(2*T1,T2)
Timer E=T1
If Timer_F is fires Then
Advertise TU of transaction timeout
Go to Terminated state
Else Send request to transport layer
If error happens in sending Then
Inform TU.

Go to Terminated state.

Step A.3: If a response (100-199) is received Then
Send the response to TU.
Go to Proceeding state.
If a response (200-699) is received Then
Send the response to TU.
Go to Completed state.

Chapter Four: Work and Result

200-699
response

Timer E fires v

Trying

\4

Request from TU

Timer E fires v

Proceeding

v

Timer F fires
or Transport error

100-199 response

Timer F fires
or Transport error

A

200-699
Response

VL

Completed

A\ 4

Timer K

Terminated

100-199 response

\4

Figure 4.20 Non-INVITE Client Transaction

Chapter Four: Work and Result

90

Step B: Proceeding state
Step B.1: If Timer_E is fires Then
Resend the request to transport layer.
If error happens in sending Then
Inform TU.
Go to Terminated state.
Timer E=T2
Step B.2: If a response (200-699) is received Then
Send the response to TU.
Go to Completed state.
If a response (100-199) is received Then
Send the response to TU.
Step B.3: If Timer_F is fires Then
Advertise TU of transaction timeout.
Go to Terminated state.
Else Go to Step B.1

Step C: Completed state

Step C.1: T4 =5 sec.
If "transport™ in first "Via" = "UDP" Then
Timer K=T4
Else Timer K=0

Step C.2: Discard all received responses from server transaction

Step C.3: If Timer_K is fires Then

Go to Terminated state

Chapter Four: Work and Result 91

Step D: Terminated state
Step D.1: Destroy the client transaction

e Server Transaction

The server transaction is responsible for:

1. Receive request from (transport layer) and deliver them to TU.

2. Filter any request retransmissions from the network.

3. Accepts responses from TU and deliver them to transport layer.

4. In case of (INVITE transaction), it absorbs the ACK request for any

final response (non-1xx) excepting response (2xx).

INVITE Server Transaction

The procedure (4.11) as shown in figure (4.21) has number of timers

there meaning in table (4.4)

Values of timers

Timer Value Meaning
Tl 500 ms. Estimate of round-trip time
The maximum retransmit interval for non-
T2 4s.

INVITE requests
Maximum duration a message will remain in

T4 SS. the network
Timer_G initially T1 Non-INVITE request retransmit interval, for
UDP only
Timer_H 64*T1 Non-INVITE transaction timeout timer

Timer | T4 for UDP, Os for TCP | Wait time for response retransmits

Chapter Four: Work and Result 92

4.11 INVITE Server Transaction

Step A: Proceeding state

Step A.1: T1 =500 ms
If receive new INVITE request from transport layer Then
Pass the request to TU.
T =200 ms
If T is fires Then
Create response (100).
Send response (100) to transport layer.
If rereceive INVITE request from transport layer Then
Resend last response received from TU to

transport layer.

Step A.2: If a response (100-99) is received from TU Then
Send the response to transport layer.
If a response (200) is received from TU Then
Send the response to transport layer.
Go to Terminated state.
If a response (300-699) is received from TU Then
Send the response to transport layer.
If "transport™ in first "Via" = "UDP" Then
Timer G=T1
Else Timer G=0
Go to Completed state

Step B: Completed state

Step B.1: Timer H=64*T1

Chapter Four: Work and Result

INVITE
request

A\ 4

INVITE from transport layer

100-199 from TU

\4

300-699 from TU

INVITE
request

Proceeding

A

Transport error inform TU

\4

200-299 from TU

Timer G fires

v

Completed

A

ACK

A 4

\4

v

Timer H fires or Transport

Confirmed

\4

Timer | fires

Terminated

Figure 4.21 INVITE Server Transaction

93

Chapter Four: Work and Result

94

If Timer_G is fires Then
Resend response (300-699) to transport layer.
Repeat until (Timer_H is timeout or receive a
ACK request)
If Timer_G is fires Then
Resend response (300-699) to
transport layer.
If error happens in sending Then
Inform TU.
Go to Terminated state.
T1=Min(2*T1,T2)
Timer G=T1
Goto Step B.4

Step B.2: If rereceive INVITE request from transport layer Then
Resend last response received from TU

to transport layer

Step B.3: If receive ACK request Then
Timer G=0

Go to Confirm state

Step B.4: If Timer_H is fires Then
Advertise TU for transaction failure.
Go to Terminated state.
Else Go to Step B.2

Chapter Four: Work and Result 95

Step C: Confirm state

Step C.1: Timer_|1 =T4
If Timer_1 is fires Then

Go to Terminated state.

Step D: Terminated state

Step D.1: Destroy the server transaction

Non-INVITE Server Transaction

The procedure (4.12) as shown in figure (4.22) has one timer

(Timer_J is useful for controlling transaction timeout).

4.12 Non-INVITE Server Transaction

Step A: Trying state
Step A.1: Receive Non-INVITE (not an ACK request) from transport layer

along with transaction it belongs to.

Step A.2: If a response (100-199) is received from TU Then
Send the response to transport layer.
Go to Proceeding state.
If a response (200-699) is received from TU Then
Send the response to transport layer.

Go to Complete state.
Step B: Proceeding state

Step B.1: If Non-INVITE request (not ACK request) is received Then

Send last response to transport layer

Chapter Four: Work and Result

Request received

200-699 from TU

100-199 from TU

Trying

100-199 from

TU
Request
received

Proceeding
Transport error

Request
received v

v

A

Transport error

Completed

A

200-699 from TU

'

\4

Terminated

Timer J fires

Figure 4.22 Non-INVITE Server Transaction

96

Chapter Four: Work and Result

97

Step B.2: If a response (100-199) is received from TU Then
Send the response to transport layer.
If error happens in sending Then
Inform TU.
Go to Terminated state.
If a response (200-699) is received from TU Then
Send the response to transport layer.
If error happens in sending Then
Inform TU.
Go to Terminated state.

Go to Complete state.
Step C: Completed state

Step C.1: If "transport” in first "Via" = "UDP" Then
Timer_J=64*T1
Else Timer J=0
Step C.2: If receive Non-INVITE request Then
Send final response to transport layer.
If error happens in sending Then
Inform TU.
Go to Terminated state.
Discard any other received responses (200-699).
Step C.3: If Timer_J is fires Then
Inform TU of transaction timeout.

Go to Terminated state.

Chapter Four: Work and Result 98

Step D: Terminated state

Step D.1: Destroy the server transaction

4.2.1.4 Transaction User Layer

Here is the processing behavior of UAC and UAS.
UAC : client side of the transaction user layer is responsible for:

e Creating or Generating Request
For creating a request for the first time, follow the steps of procedure (4.13).

4.13 Create a Request

Step A: Case "Request-URI": Initiated by same value of "To"
Set version by 2.0
Case "To": take value by different ways
e Human interface, or
e Choose from address book
Case "From": Initiated by the current user address
Add "tag" parameter
Case "Call-1D": Generate a unique text
Case "Cseq": Choose unsigned integer 32-bit random number>0
Initiate method by the same method of the request
Case "Max-Forwards": initiated by 70
Case "via": Set the protocol name by "SIP
Set version by 2.0
A:= Generate a unique text
Add "Branch" parameter and set it with value of

Chapter Four: Work and Result 99

("z9hg4bk" && A)
Case "Contact": initiated by same value of "To"

Case "Supported": list the supported features

Step B: if creating an initial INVITE request , follow these steps
Step B.1: construct a general request.
Step B.2: Allow ="INVITE", "ACK", "BYE"

Supported = empty

Step B.3: Add headers for description body
Content-Disposition = "session”
Parameter "handling"” = "required"
Content-Length =no.>=0
Content-Type = "application/sdp"

Step B.3: Add an offer SDP description to body of INVITE request. Add key
field in media description, it has value of master key, encrypted by
linear feedback shift register (LFSR) as illustrated in chapter (3)
section (3.3.1.1).

Step C: Create a client transaction by saving values of ("branch™ of the first
"Via", and "Cseq" of the first "Via"), add it to the list of client

transactions.

For generating a request, usually an ACK request message, do the

following:

4.14 Generating a Request

Step A: Add request line, which means adding method name, request URI =

destination IP address, and SIP version (2.0).

Chapter Four: Work and Result 100

Step B: Add mandatory header fields

Add "Via" header field
To = add user name and (may or may not add final destination IP

address)
From = IP address of user that created the request
Add "tag" parameter
Call-1D = unique text for each call (case-sensitive)
Cseq = add same method name that added in first line
add random number <=(0< | >= 2731)
Max-Forwards = 70

Contact = final destination IP address

4.15 Generate ACK Request (Create_ ACK)

Step A: Set "Call-ID", "From", and "Request-URI" in ACK request to same
values exist in the request sent by client transaction.
Set "To" in ACK request to same value of "To" in the response to
be acknowledged.
Set "Via" of ACK to the value of the first "Via" in the original
request.
Set "Cseq" number to that "Cseq" in the original request.
Set "Cseq" method to "ACK".

Step B: Add "Tag" parameter to "To" header field of ACK request.
If INVITE request has "Route™ header field Then
Set "Route"” of ACK request to the value if "Route" in INVITE request.

Step C: Create a client transaction by saving values of ("branch" of the first

101

Chapter Four: Work and Result

"Via", and "Cseq" of the first "Via"), add it to the list of client

transactions.

e Processing Response
UAS process all responses as in procedure (4.16) except the

retransmitted responses.

4.16 Processing Response

If there is more than one "Via" header field Then
Discard the response
Exit

Else If unrecognized provisional response different than 100 Then

Process responses (100 and 183)
Exit
If response is within 3xx Then
Initiate target set with "Request-URI" value of the
original request
to make request based on this response do the following
While target set is not empty do
Set "Request-URI" of request by the value of URI in
target set
If connection is failed Then
Take new value from target set
Begin a new transaction for request
If all connections are failed Then
The request is failed

Chapter Four: Work and Result 102

Generate response with status code >399
"To" of response = "To" of original request
"From" of response = "From" of original request
"Call-1D" of response = "Call-ID" of original request
Construct the new request
Send the Request
If response within (400-499) Then
If response (401 or 407) Then
UAC must use authorization procedure
If response (413) Then
Retry request by omitting msg. body OR use smaller
body
If response (415) Then
Retry send request within media type, encoding, and
languages that supported by UAS
If response (416) Then
Retry send request within using SIP-URI
If response (420) Then
Retry send request by omitting any extension listed in

"Unsupported”

UAS: server side of the transaction user layer process request and create

responses as in procedure (4.17).

4.17 Process Request or Create a Response

Step A: method inspection
If request method doest not supported by UAS Then

Chapter Four: Work and Result 103

Generate response (405)
Add "Allow" header field listing the allowed methods
Else Go to step3

Step B: header inspection
If extension header field is not supported or understood Then
Ignore this header field
If malformed header field & it not necessary in process Then
Ignore this header field
If "Require" header field is present Then
Ignore this header field
If not recognize URI of "To" or it not known add. Or it not the current
user of this UAS Then
Accept the request
If reject the request Then
Generate response (403)
Pass response to server transaction
If "Request-URI" use scheme not supported Then
Reject request with response (416)
Else if "Request-URI" does not identify add. Accepted by UAS Then
Reject request with response (404)
If no "tag™ in "To" Then
If ("tag" of "From" & "Call-ID" & "Cseq") match with
ongoing transaction & not matched that transaction Then
Generate response (482)
Pass response to server transaction

If it is the proper UAS to process request &

104

Chapter Four: Work and Result

"Require™ is present & "option-tag" does not understood Then

Generate response (420)
Add "Unsupported" and list it with unsupported
options
Step C: Content processing
If "Content-type" is not understood & msg. body is not
optional as indicated in "Content-disposition" Then
Reject request with response (415)
Add "Accept" and list the accepted types
Else If "Content-encoding” is not understood & msg. body is
not optional as indicated in "Content-disposition™
Then
Reject request with response (415)
Add "Accept-encoding" and list the accepted
encodings
Else If "Content-language" is not understood & msg.
body is not optional as indicated in "Content-
disposition” Then
Reject request with response (415)
Add "Accept-language" and list the accepted

languages
Step D: Apply extensions
If no "Supported™ in request Then

Generate response (421)
Add "Require" to the response

Step E: Processing request

Chapter Four: Work and Result 105

If INVITE request Then
If user accepts the call Then
If INVITE req. has session description Then
If all description parameters is understood Then
Accept the request
Generate response (200)
Add "Allow" header field
Add "Supported™ header field
Pass response (200) to transport layer, this is
done directly to not destroy the server
transaction.

Else Generate response (200) and must contain an offer (SDP
description contain Key field encrypted using LFSR as
illustrated in chapter (3) section (3.3.1.1).

Add "Allow" header field
Add "Supported" header field
Pass response (200) to transport layer, this is done directly to
not destroy the server transaction.
If user not willing or able to answer the call Then

Generate response (486)

Pass the generated response to server transaction
If user reject the call Then

Generate response (488)

Pass the generated response to server transaction
If ACK request Then

Open media connection

Chapter Four: Work and Result 106

If BYE request Then
Close the media connection

Generate response (200)

Step F: Generating response
If non-invite request Then
Generate final response (200) and add the SDP answer
If response (100) Then
Copy "timestamp™ of request to response (100)
If there is a delay in response generation Then
Delay time + timestamp
"From" of response = "from" of request
"Call-1D" of response = "Call-ID" of request
"Cseq" of response = "Cseq" of request
"Via" values of response = "Via" values of request
If request has "tag" in "To" Then
"To" of response = "To" of request
Else URI of "To" of response = URI of "To" of request
Add "tag" to "To" of response
Step G: Create a server Transaction by saving values of ("branch” of the first
"Via", "sent-by" of the first "Via", and request method), add it to the
list of server transactions.

Step H: send response to transport layer

4.3 Result of Work

Simple version of UserA invites UserB to an SIP session. It begins by

examining the details of session setup as in figure (4.19).

Chapter Four: Work and Result 107

Messagel:

INVITE sip:UserB@192.168.0.2 SIP/2.0

Via: SIP/2.0/UDP 192.168.0.1:5060;branch=z29hG4bK74bf9
Max-Forwards: 70

From: UserA <sip:UserA@192.168.0.1>;tag=9fxced76sl
To: UserB <sip:UserB@192.168.0.2>

Call-ID: 3848276298220188511@192.168.0.1

CSeq: 1 INVITE

Contact: <sip:UserA@192.168.0.1>

Content-Type: application/sdp

Content-Length: 151

v=0

0=UserA 2890844526 2890844526 IN 1P4 192.168.0.1

s= Meeting

c=IN 1P4 192.168.0.1

t=00

m=audio 49172 RTP/UDP 0
k=clear:910bc4defa71eb6190008762fcabae2f1d959e87cdf3c0c5¢5076ad38e8
a=rtpmap:0 PCM/8000

Message 2:

SIP/2.0 180 Ringing

Via: SIP/2.0/ UDP 192.168.0.1:5060;branch=z9hG4bK74bf9;
received=192.168.0.1

From: UserA <sip:UserA@192.168.0.1>;tag=9fxced76sl

To: UserB <sip:UserB@192.168.0.2>;tag=8321234356

Chapter Four: Work and Result 108

Call-1D: 3848276298220188511@192.168.0.1
CSeq: 1 INVITE

Contact: <sip:UserB@192.168.0.2>
Content-Length: 0

UserA UserB

INVITE
180 Ringing

200 OK

ACK

Both way RTP Media_

BYE
200 OK

Figure 4.23 Invite Session

Message 3:

SIP/2.0 200 OK

Via: SIP/2.0/ UDP 192.168.0.1:5060;branch=z9nG4bK74bf9;
received=192.168.0.1

From: UserA <sip:UserA@192.168.0.1>;tag=9fxced76sl

To: UserB <sip:UserB@192.168.0.2>;tag=8321234356
Call-1D: 3848276298220188511@192.168.0.1

CSeq: 1 INVITE

1sonbay JLIANI 2’7 84nbi-

PRT

-—

dI

d1ds | doL

| dan

R e _

*

aBAIRTIEL Plas

!

Hodsues] Jodsuen

Juand dBauas

15anbal asuodsar
UOIIIESURL]
Jaaass
TE-10,/ANT 4
asanbay d
m:..H:: 021 mmH_H_ a7
[] 1
=¥ {en] a403
o%n Swh

dan

_ doL _ dan

d14

BAIIID pUDs
i
uodsuel] podsuesl _
JaAdas waa !
I

—

aguodzar 15anbad

!

1
UOIIESUE] _
s |
B- 0 AN +
1sanbas
(EwEund) 0g] JLTAMNI
[T |
2402 2400
swhn %N

IVl aas

Chapter Four: Work and Result 110

Contact: <sip:UserB@192.168.0.2>
Content-Type: application/sdp
Content-Length: 147

v=0

0=bob 2890844527 2890844527 IN IP4 192.168.0.2
s= Meeting

c=IN 1P4 192.168.0.2

t=00

m=audio 3456 RTP/UDP 0

a=rtpmap:0 PCM/8000

Message 4:

ACK sip:UserB@192.168.0.2 SIP/2.0

Via: SIP/2.0/ UDP 192.168.0.1:5060;branch=z9nG4bK74bd5
Max-Forwards: 70

From: UserA <sip:UserA@192.168.0.1>;tag=9fxced76sl

To: UserB <sip:UserB@192.168.0.2>;tag=8321234356
Call-ID: 3848276298220188511@192.168.0.1

CSeq: 1 ACK

Content-Length: 0

Now a successful set-up sequence is done. INVITE is the only method
in SIP that involves a 3-way handshake with ACK.

1s9nbay J11ANI Bundsooy Gz 8anbi

-

4oL _ 4an

dld

Jodsues)
Janias

JHodsues]
B2

asuodsas

|PESUBL]
IBAIDS

KO AN ==t

4.

wanhad asuodsal
Ao {HO) 00E

¢

L]
2uo3
SYN

a0l
N

JESLY
dds

CVIl

BAIBDRS puas
Hodsues] Hodsueay
U2 JBalas
_ A
asundsal
_»uh |||||||
I ouoioes UO|IIESUE]
m JuEa sanas
__.._la EX-0 O %= ANT
& T 1sanbes
qHﬂ .x_u_&.
=
210 a0
YN SN

IVl

Chapter Four: Work and Result 112

Message 5:

BYE sip:UserA@192.168.0.1 SIP/2.0

Via:SIP/2.0/ UDP 192.168.0.2:5060;branch=z9hG4bKnashds7
Max-Forwards: 70

From: UserB <sip:UserB@192.168.0.2>;tag=8321234356

To: UserA <sip:UserA@192.168.0.1>;tag=9fxced76sl
Call-ID: 3848276298220188511@192.168.0.1

CSeq: 1 BYE

Content-Length: 0

Message 6:

SIP/2.0 200 OK

Via:SIP/2.0/UDP 192.168.0.2:5060;branch=z9hG4bKnashds7
;received=192.168.0.2

From: UserB <sip:UserB@192.168.0.2>;tag=8321234356
To: UserA <sip:UserA@192.168.0.1>;tag=9fxced76sl
Call-ID: 3848276298220188511@192.168.0.1

CSeq: 1 BYE

Content-Length: 0

5.1

Chapter Five

Conclusions and Suggestions for Future

works

Conclusions

. While there are some similarities between the protocols in call setup,

there is a philosophy of purpose design for each one. In taking place,
H.323 and SIP as two different encoding protocols. H.323 design and
implementation reflects its PSTN background and heritage, utilizing
binary encoding and reusing parts of Integrated Services Digital
Network (ISDN) signaling, this is because H.323 is base on Signaling
System 7 (SS7) signaling protocol of the PSTN. On the other hand, SIP
was developed with an Internet perspective, this is because of SIP is
based on HTTP 1.1 protocol, designed to be scalable over the Internet
and work in an interdomain way utilizing the full set of Internet utilities
and functions. So SIP with its text encoding, and Internet architecture,
Is poised to be the signaling and “rendezvous” protocol of choice for
TCP/IP model.

. Signaling part of VVoIP consist of SIP and it description protocol (SDP),

both of them are text encoding. It observed from the programming
perspective, syntax and encoding layer of SIP takes more time than
other layers. From processing perspective, parsing the total packet for
(new received, or rereceived) makes consuming much more time for
parsing than other layers, so it have to limit parsing process to only the

necessary header fields.

Chapter Five: Conclusions and Suggestions for Future works 114

5.2

3. SIP protocol does not have a robust on private networks because of
retransmission of request and responses when using UDP transport
protocol. UDP protocol is the default transport protocol even with
SIPV1.

Suggestions for Future Works
1. Implement a P2P registration.

2. Implement the SRTP protocol then calculate the QoS that affect for

the implementation of application layer security.

3. Implement SIPS then analyze the security strength.

References

[Ala04] Alan B., Understanding the Session Initiation Protocol, second edition,
Artech House, 2004.

[Ala07] Alan G., Computer Security and Cryptography, John Wiley & Sons,
2007.

[And04] Andreas S., Daniel K., SIP Security, Security Group, 2004,
[Ant06] Antonio R., and Michael C., Cisco Voice over IP, Cisco Press, 2006.

[Ark05] Arkko J., Carrara E., Lindholm F., et.al., Key Management Extensions
for Session Description Protocol (SDP) and Real Time Stream
Protocol (SRTP), Internet Engineering Task Force (IETF), March 2005.

[BauO4] Baugher M., McGrew D., Naslund M., et.al.,, The Secure Real-time
Transport Protocol (SRTP), RFC 37, Internet Engineering Task Force
(IETF), March 2004.

[Bil00] Bill D., IP Telephony: Integration of Robust VOIP services, Hewlett-
Packard, 2000.

[Chr02] Chris P., Johne A., Anne S., et.al., Cisco CallManager Fundamentals,
Cisco Press, 2002.

[Cli06] Clinton J., and Ziad S., Adding High Level VolP Facilities to the
Unicon Languag, IEEE, 2006.

[Col03] Colin P., RTP: Audio and Video for the Internet, Pearson Education,
2003.

References 116

[Dav01] David J., Voice over Packet Networks, John Wiley & Sons, 2001.

[Dav05] David A., Analysis and Implementation of TCP Friendly Rate Control
in the Context of VolP, Royal institute of technology, M.Sc. thesis,
2005.

[Die99] Dierks T., and Allen C., The TLS Protocol Version 1.0, Internet
Engineering Task Force (IETF), January 1999.

[Eri02] Eric K., and Paul J., Configuring Cisco Voice over IP, second edition,

Syngress Publishing, 2002.

[Fre00] Fredrik T., SIP, NAT, and Firewalls, Royal institute of technology,
department of Teleinformatics, M.Sc. thesis, 2000.

[Gon02] Gonzalo C., SIP Demystified, McGraw-Hill, 2002.
[Jam05] James E., Talk is Cheap, O'Reilly Media, 2005.

[Jim02] Jim D., Gerard J.,, etal, Voice-over-IP: The Future of
Communications, Global Internet Policy Initiative (GIPI), 2002.

[Joh02] Johann T., Security in VolP-Telephony Systems, GRAZ university of
technology, department of IP-Telephony, M.Sc. thesis, 2002.

[Joh04] John Q., and Jeffrey T., Taking Charge of Your VOIP Project, Cisco
Press, 2004.

[Jon00] Jonathan D., and James P., Voice over IP fundamentals, Cisco Press,
2000.

[Jor00] Jori L., Voice over IP in networked virtual environments, Maastricht

university, department of Computer Science, PhD thesis, 2000.

http://www.informit.com/safari/author_bio.asp?ISBN=1587200929
http://www.informit.com/safari/author_bio.asp?ISBN=1587200929
http://www.unimaas.nl/
http://www.unimaas.nl/

References 117

[Jos05] Josué A., Using the Session Initiation Protocol as a Networking
Protocol for Home Applications, university of Puerto Rico, department

of Computer Engineering, M.Sc. thesis, 2005.

[Jua07] Juan C., Eduardo B., et.al., Patterns for VolP Signaling Protocol
Architectures, Florida Atlantic university, department of Computer
Science and Engineering, and university of Oulu, department of

Electrical and Information Engineering, 2007.

[Ken07] Kevin W., Authorized Self-Study Guide Cisco Voice over IP (CVoice),
Cisco Press, 2007.

[Lin04] Lingfen S., Speech Quality Prediction for Voice over Internet Protocol
Networks, university of Plymouth, department of Communications and
Electronics, PH.D. thesis, 2004.

[Pau97] Paul O., and David H. Crocker, Augmented BNF for Syntax
Specifications: ABNF, RFC 2234, Internet Engineering Task Force
(IETF), November 1997.

[Ras99] Rescorla E., Diffie-Hellman Key Agreement Method, RFC 2631,
Internet Engineering Task Force (IETF), 1999.

[Ros02] Rosenberg J., Schulzrinne H., Camarillo G., etal., SIP: Session
Initiation Protocol, RFC 3261, Internet Engineering Task Force (IETF),
June 2002.

[SCO3] Schulzrinne, H.; Casner, S., RTP Profile for Audio and Video
Conferences with Minimal Control, RFC 3551, Internet Engineering
Task Force (IETF), 2003.

References 118

[Sha04] Shamim M., Clinton J., Ray P., et.al., Programming with Unicon, 2004.
http://www.unicon.org/book/ub.pdf

[Siv01] Sivavakeesar S., Voice over Internet Protocol (VOIP), university of
Surrey, department of Electronic and Electrical Engineering, M.Sc.
thesis, 2001.

[Ted05] Ted W., Switching to VOIP, O'Reilly Media, 2005.

[Tha98] Thayer R., Doraswamy N., and Glenn R., IP Security Document
Roadmap, RFC 2411, Internet Engineering Task Force (IETF),
November 1998.

[ThoO6] Thomas P., Jan K., Andy Z., et.al., Practical VOIP security, Syngress,
2006.

[Tim94] Tim B., Universal Resource Identifiers in WWW: A Unifying Syntax
for the Expression of Names and Addresses of Objects on the Network
as used in the World-Wide Web, RFC 1630, Internet Engineering Task
Force (IETF),June 1994

[Zia05] Zian S., High Level Audio Communications APl for the Unicon
Language, New Mexico State university, department of Computer
Science, M.Sc. thesis, 2005.

Appendix A: Unicon Language

Unicon is stand for Unified Extended Dialect of Icon, The name unicon
refers to the descendant of Icon. It can be pronounced it either (a) "lexicon", or

(b) is pronounced as if it stands for "un-Icon".

Unicon's predecessor is icon language, a highly portable language; it runs
on everything from mainframes to Unix machines to Amigas and Macs. It is a
very high level, goal-directed, object-oriented, general purpose applications
language. This language is extended with capabilities such as object-oriented
programming and database management that are useful in many programs,

especially larger programs that use the Internet.

In short these are the features of unicon language:-

e Packaging, it is similar to a class with only one instance.
e Loadable child programs

e Ministering of child programs

e Dynamic loading of C modules (some platforms)

e Multiple inheritance

e DBM files can be used associative arrays

e POSIX system interface.

Be aware that unicon performs automatic storage management, also
known as garbage collection. If you have used a language like C or C++, you

know that one of the biggest headaches in writing programs in these languages is

119

http://www.cs.arizona.edu/icon/

tracking down bugs caused by memory allocation, especially dynamic heap

memory allocation. unicon transparently takes care of those issues for you.

Another big source of bugs in languages like C and C++ are pointers,
values that contain raw memory addresses. Used properly, pointers are powerful
and efficient. The problem is that they are easy to use incorrectly by accident;
this is true for students and practicing software engineers alike. It is easy in C to
point at something that is off-limits, or to trash some data through a pointer of

the wrong type.

Unicon has no pointer types. Instead, all structure values implicitly use
pointer semantics. A reference is a pointer for which type information is

maintained and type safety is strictly enforced.

Unicon's system facilities provide a high-level interface to the most
common features of modern operating systems, such as directories and network
connections. This interface is vital to most applications, and it also presents the
main portability challenges, since unicon has a design goal that most applications
should require no source code changes and no conditional code needed to run on
most operating systems. Of course some application domains such as system

administration are inevitably platform dependent.

This language provides object-oriented programming facilities as a
collection of tools to reduce the complexity of large programs. These tools are
encapsulation, inheritance, and polymorphism. Since a primary goal of unicon is
to promote code sharing and reuse, various specific programming problems have

elegant solutions available in the unicon class library.

120

Also its string processing facilities are extensive. Simple operations are
very easy, while more complex string analysis has the support of a special
control structure, string scanning. String scanning is not as concise as regular
expression pattern matching, but it is fundamentally more general because the
code and patterns are freely intermixed [Sha0O4]. There is some main differences
between the C-based lexical analyzer and the Unicon lexical analyzer for this

language include:

« The C lexical analyzer has to process string escapes; Unicon does not

because its output is processed by icont/iconc.

. The C lexical analyzer does not use hash tables, it uses static arrays and

sneaky tricks to make lookups fast.

« The C lexical analyzer has code to worry about Extended Binary
Coded Decimal Interchange Code (EBCDIC)!

. Small inhale, character preprocessor interface: the C version reads 1
character at a time from a function named ppch(), while the Unicon
version was grabbing input from the preprocessor a line at a time using
a single call to a generator (apparently that 2000000 bug was in "dead

code"):

A programming language with built-in VolP functions can accelerate the
development of voice enabled applications. Most programmers are familiar with
manipulating files; making VoIP connections as simple to create and use as local

files simplifies VoIP programming and its applications.

121

Recently unicon facilitated with VVoIP, a very high level supporting peer-
to-peer, one-to-many, and many-to-many VolP sessions. Unicon's VolIP facilities
provide full duplex voice conversations by having each client as a destination in

the other's voice session [Cli06].

122

Appendix B: Parsing Rules of SIP and SDP

B.1 SIP

All of the mechanisms specified in this document are described in both
prose and an augmented Backus-Naur Form (BNF) defined in RFC (2234).
Section 6.1 of RFC (2234) defines a set of core rules that are used by this

specification. Implementers need to be familiar with the notation and content

of RFC (2234) in order to understand this specification. Certain basic rules
are in uppercase, such as SP (SPace), LWS (Linear White Space), HTAB
(Horizontal TAB), CRLF (Carriage Return Line Feed), DIGIT, ALPHA, etc.

Angle brackets are used within definitions to clarify the use of rule names.

The use of square brackets is redundant syntactically. It is used as a

semantic hint that the specific parameter is optional to use [Pau97, Ros02].

ALPHA
DIGIT
HEXDIG
WSP
CRLF

SP
HTAB
OCTET
DQUOTE
alphanum
reserved

unreserved

= %x41-5A [%x61-7A ; A-Z [a-z

= %x30-39; 0-9
=DIGIT/"A"/"B"/"C"/"D" ["E" | "F"
= SP / HTAB; White SPace (WSP)

= %d13.10; Internet standard newline

= %x20

= %x09; horizontal tab

= %x00-FF; 8 bits of data

= %x22

= ALPHA / DIGIT

e A A A A R O A A A A

= alphanum / mark

123

mark
escaped
LWS
SWS
HCOLON

R A A B B B B B A T
="%" HEXDIG HEXDIG
= [*WSP CRLF] 1*WSP ; linear whitespace
= [LWS] ; sep whitespace
= *(SP / HTAB) ":" SWS

UTF8-NONASCII = %xCO0-DF 1UTF8-CONT

UTF8-CONT

token

separators

word

SLASH
EQUAL
LPAREN
RPAREN
RAQUOT
LAQUOT
COMMA
SEMI

| %XEOQ-EF 2UTF8-CONT
| %xFO0-F7 3UTF8-CONT
| %xF8-Fb 4UTF8-CONT
| %xFC-FD 5UTF8-CONT
= %x80-BF
= 1*(alphanum ["-" ["0][N [R e
[
= eyt @ 1\ DQUOTE
(e et =t 1Y 1 SP/HTAB
= 1*(alphanum /"-" /"GN [R [e
ety <t st M\ DQUOTE /M
T A B i B B A
= SWS "/" SWS ; slash
= SWS "=" SWS ; equal
= SWS "(" SWS; left parenthesis
= SWS ")" SWS ; right parenthesis
=">" SWS ; right angle quote
SWS "<"; left angle quote
=SWS"," SWS ; comma
= SWS ";" SWS ; semicolon

124

COLON = SWS ™" SWS; colon
quoted-string = SWS DQUOTE *(qdtext / quoted-pair) DQUOTE

qdtext = LWS / %x21 / %x23-5B / %x5D-7E
/| UTF8-NONASCII

quoted-pair ="\" (%x00-09 / %x0B-0C / %x0E-7F)

SIP-URI = "sip:" [userinfo] hostport uri-parameters
[headers]

SIPS-URI = "sips:" [userinfo] hostport uri-parameters
[headers]

userinfo = user [":" password] "@"

user = 1*(unreserved / escaped / user-unreserved)

user-unreserved = "&" /"= [/UG [

password = *(unreserved / escaped / "&" ["="["+" ["$" M)
hostport = host [":" port]

host = hostname / IPv4address

hostname = *(domainlabel ".") toplabel ["."]

domainlabel = alphanum / alphanum *(alphanum / *-") alphanum
toplabel = ALPHA / ALPHA *(alphanum / "-") alphanum
IPv4address = 1*3DIGIT "." 1*3DIGIT "." 1*3DIGIT "." 1*3DIGIT
port = 1*DIGIT

uri-parameters = *(*;" uri-parameter)

uri-parameter = transport-param / user-param / method-param / ttl-param
/ maddr-param

transport-param = "transport="("udp" / "tcp")

user-param = "user=" ("ip" / other-user)

125

other-user = token

method-param = "method=" Method

ttl-param = "ttl=""ttl

maddr-param = "maddr="host

headers ="?" header *("&" header)

header = hname "=" hvalue

hname = 1*(hnv-unreserved / unreserved / escaped)

hvalue = *(hnv-unreserved / unreserved / escaped)

hnv-unreserved — ="["/"]"/"/" /""" 1+

SIP-message = Request / Response

Request = Request-Line *(message-header) CRLF
[message-body]

Request-Line = Method SP Request-URI SP SIP-Version CRLF

Request-URI = SIP-URI / SIPS-URI

SIP-Version ="SIP" "/" 1*DIGIT "." 1*DIGIT

message-header = (Call-ID / Call-Info / Contact
/ Content-Disposition / Content-Encoding
/ Content-Language / Content-Length
/ Content-Type / CSeq / From / Max-Forwards
/ To / Allow / Supported / Via) CRLF

INVITEmM = %x49.4E.56.49.54.45 ; INVITE in caps

ACKm = %x41.43.4B ; ACK in caps

OPTIONSmM = %x4F.50.54.49.4F .4E.53 ; OPTIONS in caps
BYEm = %x42.59.45 ; BYE in caps

CANCELmM = %x43.41.4E.43.45.4C ; CANCEL in caps
REGISTERM = %x52.45.47.49.53.54.45.52 ; REGISTER in caps

126

Method

Response

Status-Line

Status-Code

Reason-Phrase

Informational

Success

Client-Error

= INVITEm/ACKm/OPTIONSm /BYEm
/| CANCELmM / REGISTERmM

= Status-Line *(message-header) CRLF
[message-body]

= SIP-Version SP Status-Code SP Reason-Phrase
CRLF

= Informational / Success / Client-Error / Global-Failure

= *(reserved / unreserved / escaped

[UTF8-NONASCII / UTF8-CONT / SP / HTAB)

="100" ; Trying

/"180" ; Ringing
/"181" ; Call Is Being Forwarded
/182" ; Queued

/"183" ; Session Progress

="200"; OK
="400" ; Bad Request

/"401" ; Unauthorized

/"402" ; Payment Required

/ "403" ; Forbidden

/"'404" ; Not Found

/ "405" ; Method Not Allowed

/406" ; Not Acceptable

/"407" ; Proxy Authentication Required
/"408" ; Request Timeout

/"410" ; Gone

/"413" ; Request Entity Too Large

127

Global-Failure

Call-ID
callid

Contact

contact-param

/"414" ; Request-URI Too Large
/"415" ; Unsupported Media Type
/"416" ; Unsupported URI Scheme
/"420" ; Bad Extension

/"421" ; Extension Required
/"423" ; Interval

/"480" ; Temporarily not available
/"481" ; Call Leg/Transaction Does Not Exist
/482" ; Loop Detected

/483" ; Too Many Hops

/484" ; Address Incomplete
/"485" ; Ambiguous

/"486" ; Busy Here

/ "487" ; Request Terminated
/"488" ; Not Acceptable Here
/"491" ; Request Pending

/493" ; Undecipherable

"600" ; Busy Everywhere

/"603" ; Decline

/604" ; Does not exist anywhere
/"606" ; Not Acceptable

= ("Call-ID" / "i") HCOLON callid
=word ["'@" word]
= ("Contact" / "m") HCOLON (contact-param

*(COMMA contact-param))

= (name-addr / addr-spec) *(SEMI contact-params)

128

name-addr = [display-name] LAQUOT addr-spec RAQUOT

addr-spec = SIP-URI / SIPS-URI

display-name = *(token LWS) / quoted-string

contact-params = c-p-q / c-p-expires

Cc-p-q ="g" EQUAL gvalue

C-p-expires = "expires" EQUAL delta-seconds

qvalue =("0" ["." 0*3DIGIT]) / ("1™ ["." 0*3("0™)])

delta-seconds = 1*DIGIT

Content-Disposition = "Content-Disposition" HCOLON disp-type *(SEMI
disp-param)

disp-type = "render" / "session" / "alert"

disp-param = handling-param / generic-param

generic-param = token [EQUAL gen-value]

gen-value = token / host / quoted-string

handling-param = "handling" EQUAL ("optional" / "required")

Content-Encoding = ("Content-Encoding” / "e") HCOLON
content-coding *(COMMA content-coding)

content-coding = token

Content-Language = "Content-Language” HCOLON
language-tag *(COMMA language-tag)

language-tag = primary-tag *("-" subtag)

primary-tag = 1*8ALPHA

subtag = 1*8ALPHA

Content-Length = ("Content-Length™" / "I") HCOLON 1*DIGIT
Content-Type = ("Content-Type" / "c") HCOLON media-type
media-type = m-type SLASH m-subtype *(SEMI m-parameter)

129

m-type
discrete-type

composite-type

m-subtype

extension-token

ietf-token
x-token
m-parameter
m-attribute
m-value
CSeq

From
from-spec
from-param
tag-param
Max-Forwards
To

to-param
Allow

Supported

option-tag
Via

via-parm

= discrete-type / composite-type

= "text" / "image" / "audio" / "video" / "application"

= "message” / "multipart"

= extension-token

= ietf-token / x-token

= token

= "x-" token

= m-attribute EQUAL m-value

= token

= token / quoted-string

="CSeq" HCOLON 1*DIGIT LWS Method

= ("From" / "f") HCOLON from-spec

= (name-addr / addr-spec) *(SEMI from-param)

= tag-param / generic-param

= "tag" EQUAL token

= "Max-Forwards" HCOLON 1*DIGIT

= ("To" /"t") HCOLON (name-addr / addr-spec)
*(SEMI to-param)

= tag-param / generic-param

= "Allow" HCOLON [Method *(COMMA Method)]

= ("Supported” / "k") HCOLON [option-tag
*(COMMA option-tag)]

= token

= ("Via" /"v") HCOLON via-parm *(COMMA

via-parm)

= sent-protocol LWS sent-by *(SEMI via-params)

130

via-params = via-ttl / via-maddr / via-received / via-branch

via-ttl = "ttI" EQUAL ttl

via-maddr = "maddr" EQUAL host

via-received = "received" EQUAL (IPv4address)

via-branch = "branch™ EQUAL token

sent-protocol = protocol-name SLASH protocol-version SLASH
transport

protocol-name ="SIP" / token

protocol-version = token

transport ="UDP" /"TCP"

sent-by = host [COLON port]

ttl = 1*3DIGIT ; 0 to 255

message-body =*0OCTET

B.2 SDP

This section provides an Augmented BNF grammar for Session
Description Protocol (SDP) [Ark05, Tim94].

announcement = proto-version
origin-field
session-name-field
information-field
URI-field
email-fields
connection-field
bandwidth-fields
time-fields
key-field

131

attribute-fields

media-descriptions

proto-version ="v="1*DIGIT CRLF ;this memo describes version 0

origin-field = "0=" username SP sess-id SP sess-version SP
nettype SP addrtype SP addr CRLF

session-name-field = "s=" text CRLF

information-field = ["i=" text CRLF]

URI-field = ["u=" URI CRLF]

email-fields = *("e=" email-address CRLF)

connection-field ["c=" nettype SP addrtype SP connection-address
CRLF] ;a connection field must be present

in every media description or at the

session-level
bandwidth-fields = *("b=" bwtype ":" bandwidth CRLF)
time-fields = 1*("t=" start-time SP stop-time *(CRLF
repeat-fields) CRLF) [zone-adjustments CRLF]
repeat-fields = "r=" repeat-interval SP typed-time

1*(SP typed-time)
zone-adjustments = time SP ["-"] typed-time *(SP time SP ["-"]

typed-time)
key-field = ["k="key-type CRLF]
key-type = "prompt"

/ "clear:" key-data
/ "base64:" key-data
/"uri:" URI

key-data = email-safe / "™

132

attribute-fields = *("a=" attribute CRLF)
media-descriptions = *(media-field information-field *(connection-field)
bandwidth-fields key-field attribute-fields)

media-field ="m=" media SP port ["/" integer] SP proto 1*(SP fmt)
CRLF
media = 1*(alphanum) ;typically "audio"”, "video",

"application";or "data"

fmt = 1*(alphanum) ;typically an RTP payload type for
audio ;and video media
proto = 1*(alphanum) ;typically "RTP/AVP" or "udp" for
IP4
port = 1*(DIGIT) ;should in the range "1024" to "65535"
inclusive for UDP based media
attribute = (att-field ":" att-value) / att-field
att-field = 1*(alphanum)
att-value = byte-string
sess-id = 1*(DIGIT) ;should be unique for this originating
username/host
sess-version = 1*(DIGIT) ;0 is a new session

connection-address = addr

start-time =time /"0"

stop-time =time /"0"

time = POS-DIGIT 9*(DIGIT) ;sufficient for 2 more
centuries

repeat-interval = typed-time

typed-time = 1*(DIGIT) [fixed-len-time-unit]

133

fixed-len-time-unit ="d" /"h" / "m" / "'s"

bwtype = 1*(alphanum)

bandwidth = 1*(DIGIT)

username = safe ;pretty wide definition, but doesn’t include space
email-address = email / email "(" email-safe ")" /

email-safe "<" email ">"
email = address-spec ; simple address

/ 1*word route-addr ; name & addr-spec

route-addr = "<" address-spec ">"

address-spec = local-part "@" domain ; global address

local-part = word *("." word)

domain = sub-domain *("." sub-domain)

sub-domain = domain-ref / domain-literal

domain-ref = atom ; symbolic reference

domain-literal ="[" *(dtext / quoted-pair) "]"

dtext = <any CHAR excluding "[", "]", "\" & CR, &
including linear-white-space>

atom = 1*<any CHAR except specials, SPACE and CTLs>

URI = uri ["#" fragmentid]

uri = scheme ":" path ["?" search]

scheme = ialpha

path = void / xpalphas ["/" path]

search = xalphas [+ search]

fragmentid = xalphas

xalpha = ALPHA / DIGIT / safechar / extra / escaped

xalphas = xalpha [xalphas]

134

xpalpha = xalpha / +

xpalphas = xpalpha [xpalpha]

lalpha = ALPHA [xalphas]

safechar R R A A 0 AR Y

extra = A S R B A G A Y

void

nettype ="IN" ;list to be extended

addrtype = "IP4" ;list to be extended

addr = unicast-address

unicast-address = IPv4address

text = byte-string ;default is to interpret this as 1S0-10646

UTF8 ISO 8859-1 requires a
a=charset:1SO-8859-1" session-level

attribute to be used

byte-string = 1*(0x01..0x09/0x0b/0x0c/0x0e..0xff) ;any byte
except NUL,
CRor LF

integer = POS-DIGIT *(DIGIT)

POS-DIGIT ="1m2n 34 s e T8O

email-safe =safe /SP / tab

safe =alphanum /™" [g et g

= B S A A A e B A @ A A B A A
/A A A A VA S A
tab = %0d9

135

UM‘
plis (diolg-dI-Llg) Ladldl odladl JS Losdd | pesdl Lo @
S el =) Ll Lot GSlgl L pl el JosF-u00s e
Loty LSl gu Lo (owde-di-oude) Asiudl byt ol dus o (ol
Olowgdall Jold | pa> aude dadlz Jlai¥ly chayly Hlex Gasb plis
L olsy sy L dyyb .Jla ¥l d I3 sl gl s> Ladlly LSl gu Lo
J—iid gwly Gldad e pddiuy iy (Liolg-di-iLg) &Y Lasl
O—e pid (wadll-gl-Liddl) oYladl dus> ¢ (pio-Jdolal) o oLl dl
Ol—slhs Jde d_adzoy JLw)yYl-o-0)3 1 (odde—-dl-oude) byt Gosb
oYl Tl fwadll § Lgxaaf slzxy I 0Lt g de g o b yow
(— 6T o1 —8) (= T 51 B) JsSsigim cjOYl e Opadl oy
OV Lo 3Y I Lassdeiss uxy L adilgdl aYlai¥l g SIUI Jad| sy

cadp) g Aoyl Lo
JAE Fy LGl (pi—a-dold) plaxll dwljyuy BLS 4ogubdl oda
e Bohuw Il JeSeTgsm 9py (o T ol —B) Lazsdeiss Ly
Js—Ssis s pluriwly (= ¢l/e— o 5) S5V JeSsis /Iyl
Js—Soigsmy 4L Ao byhuadl J2l oo (= o w!) daddl il
J—iidl JeSeigsmg cdudaxld 54 =il b3l well diwsd La J3| Gy
Lisb § bdfue O¥ySeigydl oda bdlwgdl Joluid (2 5 1) ey eid

yobeid Lol el @ S oY a3 L aladaYl O phw sdo e
G s g Dl LR (2 ol gl) & Dol plhiul 4o gadl
pros 92 (= o 3T i) o091 gyeddl JEI JeSsios Ogall Jluyy
bl weldl yii 33 4 _dyyb ol laiwly yeddl Jdl gl yd Go¥ 1 ydgeid
odn .SyLic Ll gy GLaSYI plLihe pdiy ¥ 40ST ¢ (Ogaldl) sadxidl
clill L850 g0y (— of @) daddl gils JgSaig sy 1iil dog by
dudd| diwoy JeSsigsmn o Gwdl FLAYI zLAe JsSeigsm pl dxdwly
Gl s Lo L dadd) S JeSeig s Jud gw purdedl (2 ¢ wl)

ol =0T) LY pl iy

ol 4 ggan

é,.alf.f/ Gall g é,.fo.f/ ﬁ,l.w/ s
Crgl deals

pplell s

G AN) Ao cigall A ol
(2) 9 B) JsSsisn

Wy
Gl Axala B aglal) 43S L) dadiad da o Joi cldlaia ¢a 5
Gyulall agle A agle piuals

Ji (e
Js8dia Jpu e AdY)se 3 gS
(2004 oulad) agle () 5l<y)

A piall
ML) andi Gl 9

1429 A4 2wy 2008 Sl

	0 fp.prn.pdf
	1 Abstruct & Content Table.pdf
	
	
	
	
	
	
	
	
	
	
	Acknowledgement
	
	
	
	
	
	
	
	Abstract
	Over years, Interest of security is increasing. To provide privacy for user's conversation in VoIP, there is a need to implement a security for media transmission. A Secure Real-time Transport Protocol (SRTP) is designated to provide security for real-time media transmission using an encryption method, but it does not provide key agreement between participants. This thesis implemented SIP protocol and a key agreement using pre-shared key protocol within SDP protocol used by SIP. The implementation is done using UNICON language.
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	List of Abbreviations

	2 Chapter1 - Overview of VOIP Technology.pdf
	3 Chapter2 - VoIP Network Architecture and Protocols.pdf
	4 Chapter 3 - SIP-Based VoIP Security.pdf
	5 Chapter 4 - Implementation and Results.pdf
	9 Chapter 5 - Conclusions and Future Works.pdf
	10 References.pdf
	11 Appendix A - Unicon Language.pdf
	12 Appendix B - Parsing Rules of SIP & SDP.pdf
	13 Abstruct in arabic.pdf
	14 First Page in arabic.pdf
	
	جمهورية العراق

