

Republic of Iraq
Ministry of Higher Education
and Scientific Research
Al-Nahrain University
College of Science

Security in Voice over
Internet Protocol (VoIP)

A Thesis
Submitted to the College of Science, Al-Nahrain University

In Partial Fulfillment of the Requirements for
The Degree of Master of Science in Computer Science

By

Kawthar Abed Al-Elah Abed Al-Rasul

Mashkour

(B.Sc. 2004)

Supervisor

Dr. Ban N. Al-Kallak
April 2008 Rabi' Thani 1429

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

ِٱاللهِٱمِ بس لرحٰٱنِ ميمحِلر ِ

 لَّذِي هدٰنَا لِهٰذَاٱ اللهِد حملْٱ(
ا كُنَّا لِنَهمتَدِولَى أَ لآون

)اللهُٱهدٰنَا

 صدق االله العظيم

)43 (الاعراف

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

 I

Dedication
I would like to dedicate this work to the member of my beloved family and

all those who supported me in finishing this thesis.

Kawthar

 II

Acknowledgement

First, I would like to thank God, for all the blessings that have given us.

Second, I would like to express my sincere gratitude and appreciation to

my supervisor Dr. Ban N. Al-Kallak for her valuable guidance, supervision and

untiring efforts during the course of this work.

Grateful thanks for the Head of Department of Computer Science Dr. Taha

S. Bashaga, all staff and employees.

Finally, my very special thanks to my family, my friends for their

encouragement during the period of my studies.

 III

Abstract

In today’s environment nearly all end-to-end telephone connections are set

up via circuit-switching using Public Switched Telephone Network (PSTN),

whereby node-to-node links in an origin/destination connection are set up via

interconnects, and the connection is maintained exclusively for exchanges of

information between the origin and destination until it is torn down. An alternate

way of setting up end-to-end connections that is widely used for transmission of

data is packet-switching, whereby origin-to-destination connections are effected

by node-to-node, store-and-forward relay of small segments of data sets that are

reassembled at the destination; this technique is called Voice over Internet

Protocol (VoIP). VoIP is considered as the third generation of

telecommunication telephony after the analog and digital telecommunication

technology.

This thesis study the architecture of packet-switched telephone networks

and then analyzes the structure of VoIP technology, which is the Transmission

Control Protocol/Internet Protocol (TCP/IP) model, some protocols reside in the

application layer (i.e., Session Initiation Protocol (SIP) for call control, Session

Description Protocol (SDP) for description media stream, and Real-time

Transport Protocol (RTP) for media exchange).

Over years, Interest of security is increasing. To provide privacy for user's

conversation in VoIP, there is a need to implement a security for media

transmission. A Secure Real-time Transport Protocol (SRTP) is designated to

provide security for real-time media transmission using an encryption method,

 IV

but it does not provide key agreement between participants. This thesis

implemented SIP protocol and a key agreement using pre-shared key protocol

within SDP protocol used by SIP. The implementation is done using UNICON

language.

 V

List of Abbreviations

AALx Asynchronous transfer mode Adaptation Layer

(1,2, or 5)

ACK ACKnowledgement

AES-CTR Advanced Encryption Standard in Counter Mode

AH Authentication Header

AIN Advanced Intelligent Network

ALG Application Layer Gateway

AOR Address Of Record

API Application Programming Interface

APP Application-sPecific Packet

ARPANET Advanced Research Projects Agency Network

ASN.1 Abstract Syntax Notation One

ATM Asynchronous Transfer Mode

BES Back-End Service

BNF Backus-Naur Form

CAN Content Addressable Network

CODEC Coder/Decoder

CRLF Carriage Return Line Feed

CVE Collaborative Virtual Environment

DCCP Datagram Congestion Control Protocol

DHT Distributed Hash Table

DSL Digital Subscriber Line

 VI

EBCDIC Extended Binary Coded Decimal Interchange

Code

EP EndPoint

ESP Encapsulating Security Payload

FoIP Fax over IP

FreeBSD Free Berkeley Software Distribution

FSM Finite State Machine

FSR Feedback Shift Register

FTP File Transfer Protocol

GC Gateway Controller

GK GateKeeper

GW GateWay

HP-UX Hewlett Packard UniX

HTAB Horizontal TAB

HTTP HyperText Transfer Protocol

ID IDentifier

IETF Internet Engineering Task Force

IKE Internet Key Exchange

IP Internet Protocol

IPsec IP security protocol

ISDN Integrated Services Digital Network

ITU International Telecommunication Union

ITU-T International Telecommunication Union-

Telecommunication

 VII

IV Initialization Vector

JMF Java Media Framework

JRTPLIB Jori’s Real-time Transport Protocol LIBrary

JVOIPLIB Jori’s Voice Over Internet Protocol LIBrary

LAN Local Area Network

LFSR Linear Feedback Shift Register

LocalSI Local Service Interface

LWS Linear White Space

MCU Multipoint Control Unit

MG Media Gateway

MGC Media Gateway Controller

MGCP Media Gateway Control Protocol

MPEG II video Moving Picture Experts Group II video

MS-Windows MicroSoft-Windows

NAT Network Address Translation

NVP Network Voice Protocol

P2P Peer-to-Peer

PBX Private Branch Exchange

PC Personal Computer

PCM Pulse Code Modulation

PESQ Perceptual Evaluation of Speech Quality

POTS Plain Old Telephony Service

PPP Point-to-Point Protocol

PSTN Public Switched Telephone Network

 VIII

PT Payload Type

QoS Quality of Service

RAS Registration Admission and Status

RFC Request For Comment

RR Receiver Report

RTCP Real-time Transport Control Protocol

RTP Real-time Transport Protocol

SDES Source DEScription

SDK Software Development Kit

SDP Session Description Protocol

SIP Session Initiation Protocol

SIPS Secure Session Initiation Protocol

SMTP Simple Mail Transfer Protocol

SP SPace

SR Sender Report

SRTP Secure Real-time Transport Protocol

SS7 Signaling System 7

SSRC Synchronization SouRCe

TCP Transmission Control Protocol

TCP/IP Transmission Control Protocol/Internet Protocol

TDM Time-Division Multiplexed

Telnet TELecommunications NETwork

TFRC Transmission control protocol Friendly Rate

Control

 IX

TLS Transport Layer Security

TU Transaction User

TV TeleVision

UA User Agent

UAC User Agent Client

UAS User Agent Server

UDP User Datagram Protocol

UDP/IP User Datagram Protocol/Internet Protocol

Unicon Unified Extended Dialect of Icon

URI Uniform Resource Identifier

URL Uniform Resource Locator

VM Virtual Machine

VoATM Voice over Asynchronous Transfer Mode

VoFR Voice over Frame Relay

VoIP Voice over Internet Protocol (Voice over IP)

VPN Virtual Private Network

vTEL video TELephony

WAN Wide Area Network

WSP White Space

XOR eXclusive-OR

http://www.cs.arizona.edu/icon/

 X

List of Figures

Figure (1.1) Basic Components of Packet Network 2

Figure (1.2) Normal Message Flow 7

Figure (1.3) VoIP Message Flow 7

Figure (2.1) Network Multimedia Protocol Stack 19

Figure (2.2) Packet-Switched Call 30

Figure (2.3) H.323 Protocol Stack 31

Figure (2.4) SIP Protocol Operations 37

Figure (3.1) Encryption using AES in Counter Mode 45

Figure (3.2) Session Key Derivation 47

Figure (3.3) Pre-Shared Key Agreement Protocol 49

Figure (3.4) Feedback Shift Register 50

Figure (3.5) Linear Feedback Shift Register 52

Figure (4.1) Implementation Structure 56

Figure (4.2) SIP Message 58

Figure (4.3) SIP-URI 59

Figure (4.4) SIP Response Types 60

Figure (4.5) SIP Message Headers (Part1) 61

Figure (4.6) SIP Message Headers (Part2) 62

Figure (4.7) SIP Message Headers (Part3) 63

Figure (4.8) SIP Message Headers (Part4) 64

Figure (4.9) SIP Message Headers (Part5) 65

Figure (4.10) SIP Message Headers (Part6) 66

 XI

Figure (4.11) SDP Message (Part1) 67

Figure (4.12) SDP Message (Part2) 68

Figure (4.13) SDP Message (Part2) Continued 69

Figure (4.14) SDP Message (Part2) Continued 70

Figure (4.15) SDP Message (Part3) 71

Figure (4.16) SDP Message (Part4) 72

Figure (4.17) SDP Message (Part4) Continued 73

Figure (4.18) SDP Message (Part5) 74

Figure (4.19) INVITE Client Transaction 84

Figure (4.20) Non-INVITE Client Transaction 89

Figure (4.21) INVITE Server Transaction 93

Figure (4.22) Non-INVITE Server Transaction 96

Figure (4.23) Invite Session 108

Figure (4.24) INVITE Request 109

Figure (4.25) Accepting INVITE Resquest 111

 XII

Contents

Dedication I
Acknowledgements II
Abstract III
List of Abbreviations V
List of Figures X
Contents XII

Chapter One: Overview of VoIP Technology
1.1 Introduction 1
1.2 Components of a VoIP Network 2

1.2.1 IP-based Network 3
1.2.2 Gateway (GW) 3
1.2.3 Gateway Controller (GC) 3
1.2.4 Endpoints (EPs) 3

1.3 VoIP Functional Components 4
1.3.1 Signaling 4
1.3.2 Bearer Channel Control 5
1.3.3 Coders/Decoders (CODECs) 5
1.3.4 Database Service 5

1.4 VoIP Isn’t Just Another Data Protocol 6
1.5 VoIP Applications 7
1.6 Literature survey 9
1.7 The Aim of the Work 15
1.8 Thesis Outlines 15

Chapter Two: VoIP Network Architecture and Protocols
2.1 Introduction 16
2.2 VoIP Network Architecture 17

2.2.1 Requirements of Voice Transmission 17
2.2.2 Network Multimedia Protocol Stack 19

2.2.2.1 Physical/Link Layer 20

 XIII

2.2.2.2 Internet Layer 20
2.2.2.3 Transport Layer 22
2.2.2.4 Application Layer 24

2.2.3 Client/Server versus Peer-to-Peer Architecture 25
2.2.3.1 Client/Server 25
2.2.3.2 Peer to Peer 27

2.3 VoIP Protocols 28
2.3.1 Call Signaling 28
2.3.2 H.323 30

2.3.2.1 H.323 Components 32
2.3.2.2 H.323 Operation 32

2.3.3 Session Initiation Protocol (SIP) 33
2.3.3.1 SIP Entities 34
2.3.3.2 How SIP Works 36

2.3.4 Session Description Protocol (SDP) 38
2.3.5 Real-time Transport Protocol (RTP) 39

2.3.5.1 RTP 39
2.3.5.2 RTCP 40

Chapter Three: SIP-Based VoIP Security
3.1 Introduction 42
3.2 Encryption Protocols 42

3.2.1 IPsec: Network Layer Encryption 42
3.2.2 TLS: Transport Layer Encryption 43
3.2.3 SRTP: Application Layer Encryption 44

3.2.3.1 Default Encryption Algorithms 45
3.2.3.2 Session Key Derivation 46
3.2.3.3 Master Key Distribution 48

3.3 Key Agreement 48
3.3.1 Pre-Shared Key Agreement 49

3.3.1.1 Feedback Shift Registers 50

Chapter Four: Implementation and Result
4.1 Introduction 54
4.2 Call Control 54
4.3 Proposed Structure 55

 XIV

4.3.1 SIP Structure 55
4.2.1.1 Syntax and Encoding Layer 57
4.2.1.2 Transport Layer 77
4.2.1.3 Transaction Layer 81
4.2.1.4 Transaction User Layer 98

4.4 Result of Work 106

Chapter Five: Conclusions and Suggestions for Future works
5.1 Conclusions 113
5.2 Suggestions for Future Works 114

References 115
Appendix A: Unicon Language 119
Appendix B: Parsing Rules of SIP and SDP 123

Chapter One
Overview of VoIP Technology

1.1 Introduction

The impact of continuing advances in communications technology on

our ability to exchange information in new ways, places us at threshold of a

new era. The promise of ubiquitous high-speed networks carrying voice, data,

and multimedia services is happening today [Bil00].

The idea of using packet networks such as the Internet to transport

voice is not new. Experiments with voice over packet networks stretch back

to the early 1970s. The first Request For Comment (RFC) on this subject, the

Network Voice Protocol (NVP) dates from 1977. The initial developers of

NVP were researchers transmitting packet voice over the Advanced Research

Projects Agency Network (ARPANET), the predecessor to the Internet, but

today voice is transported over packet networks using individual transport

technologies: Voice over IP (VoIP), Voice over Asynchronous Transfer Mode

(VoATM), and Voice over Frame Relay (VoFR). However, VoFR and

VoATM technologies are not used as widely as IP [Col03, Jon00].

This thesis is related to the VoIP technology. In the late 1990s, VoIP

was lauded as a way to save on long-distance charges by calling Grandma and

Grandpa using a Personal Computer (PC) with a headset and a microphone.

VoIP is a generic term that refers to all types of voice communication using

Internet Protocol (IP) technology. As a technology, VoIP is a pretty simple

ideas packet-switched data encapsulation instead of the tried-and-true Time-

Division Multiplexed (TDM), circuit-switched methods that telephony has

Chapter One: Overview of VoIP Technology 2

used since its creation. Also VoIP is a family of technologies that has

sweeping implications for everybody who uses telephones, the Internet, fax

machines, email, and the Web. VoIP borrows from, and enhances, many

disciplines of communications technology [Jim02, Ted05].

Advances in packet communication technologies are now making that

model obsolete, permitting more efficient use of bandwidth resources while

providing mobility and the integration of voice, video, and other information,

saving cost, and possibility of adding a new features [Ted05].

When finishing this chapter, the following points will be clear:

1. What is VoIP?

2. General VoIP components and there functions.

3. General functional components of VoIP technology.

4. How VoIP technology is different than other data protocol.

5. The most common applications of this new technology.

1.2 Components of a VoIP Network
This topic introduces the basic components of a packet voice network

as shown in Figure (1.1).

IP-based network

GW GW

PSTN

 GC

PBX

Analog
Phone

PC
IP-Phone Fax

PBX

Analog
 Phone

Fax

Figure 1.1 Basic Components of Packet Network [Ant06]

Chapter One: Overview of VoIP Technology 3

1.2.1 IP-based Network
From the viewpoint of telephony, IP is the major Protocol that can be

used to deliver voice to the desktop [Dav01].

1.2.2 Gateway (GW)
Gateways are called different things by different people. The IP

community calls them Media Gateway (MG). MG is characterized by a

collection of endpoints and connections. The MG is a box of various

morphologies depending on the number of users, trunks and services it

supports. The gateway provides translation between VoIP and non-VoIP

networks such as the Public Switched Telephone Network (PSTN). Gateways

also provide physical access for local analog and digital voice devices, such

as telephones, fax machines, and Private Branch eXchange (PBX) [Ant06,

Bil00].

1.2.3 Gateway Controller (GC)
The most important components of distributed architecture are

gateways and gateway controllers. The gateway controllers are sometimes

called Media Gateway Controller (MGC) or ‘softswitches’, even though they

are not actually switches in the sense of switching the voice traffic from input

ports to output ports. They are servers that control the gateways. The gateway

controller focuses on making routing decision and communicating them to the

gateway. The voice traffic never entered the gateway controller, instead it is

switched by the gateway. It is only the signaling messages that enter the

gateway controller. [Dav01].

1.2.4 Endpoints (EPs)
Endpoint is defined as a point of entry and exit of media flows, such as

Chapter One: Overview of VoIP Technology 4

IP-Phone, analog phone, softphone, PC, fax [Bil00].

1.3 VoIP Functional Components
In the traditional PSTN, all the elements that are required to complete

the call are transparent to the end user. Migration to VoIP necessitates an

awareness of these required elements and a thorough understanding of the

protocols and components that provide the same functionality in an IP

network [Ken07].

Required VoIP functionality includes the following features:

• Signaling

• Bearer control

• CODECs

• Database service

1.3.1 Signaling
Signaling is the ability to generate and exchange control information to

establish, monitor, and release connections between two endpoints. Voice

signaling requires the ability to provide supervisory, address, and alerting

functionality between nodes. VoIP presents several options for signaling,

including H.323, Session Initiation Protocol (SIP), and Media Gateway

Control Protocol (MGCP) [Ant06].

Signaling protocols are classified either as peer-to-peer or client/server

architectures. SIP and H.323 are examples of peer-to-peer signaling protocols

where the end devices or gateways contain the intelligence to initiate and

terminate calls and interpret call control messages. MGCP is an example of

client/server protocol where the endpoints or gateways do not contain call

Chapter One: Overview of VoIP Technology 5

control intelligence but send or receive event notifications to the server

commonly referred to as the call agent [Ken07].

1.3.2 Bearer Channel Control
Bearer channels are the channels that carry voice calls. Proper

Supervision of these channels requires that the appropriate call connect and

call disconnect signaling be passed between end devices. Correct signaling

ensures that the channel is allocated to the current voice call and that the

channel is properly de-allocated when either side terminates the call. These

connect and disconnect messages are carried in SIP, H.323, or MGCP within

an IP network [Ken07].

1.3.3 Coders/Decoders (CODECs)
A CODEC (which stands for Coder/Decoder or Compress/Decompress)

is the hardware or software that samples analog sound, converts it to digital

bits, and outputs it at a predetermined data rate. Each CODEC type defines

the method of voice coding and the compression mechanism that is used to

convert the voice stream. For example: G.711 creates a 64-kbps digitized

voice stream and the most widely used CODEC in the Wide Area Network

(WAN) environment is G.729, which compresses the voice stream (that is, the

voice payload only) to 8 kbps [Joh04, Ken07].

1.3.4 Database Service
Access to services such as toll-free numbers or caller IDentifier (ID)

requires the ability to query a database to determine whether the call can be

placed. This database must be loaded in the MG in order to make efficient use

of messaging with the MGC during digit collection. [Ant06, Bil00].

Chapter One: Overview of VoIP Technology 6

1.4 VoIP Isn’t Just Another Data Protocol
VoIP utilizes the Internet architecture, similar to any other data

application. However, particularly VoIP is different. There are three

significant reasons for this [Tho06]:-

1. Separation of data and signaling. Sessions, particularly unknown

inbound sessions, which define addressing information for the data

(media) channel in a discrete signaling channel do not interact well

with Network Address Translation (NAT) and encryption.

2. The real-time nature of VoIP—gets there a second too late, and the

packet is worthless. Each VoIP packet represents about 20 ms of

voice on average. A single lost packet may not be noticeable, but the

loss of multiple packets is interpreted by the user as bad voice

quality. The simple math indicates that even a short VoIP call

represents the transport of large numbers of packets. Network

latency, jitter (interpacket latency variation), and packet loss

critically affect the perceived quality of voice communications.

3. Voice conversations can be initiated from outside the firewall. Most

client-driven protocols initiate requests from inside the firewall.

Figure (1.2) shows the basic message flow of a typical Web

browsing, or e-mail, a request is initiated by a client on the internal

side of the firewall to a server daemon residing on a host external to

the firewall. Firewalls that are capable of stateful inspection will

monitor the connection and open inbound ports if that port is

associated with an established session. For the firewall administrator

and the user, the session completes normally, and is as secure as the

firewall’s permissions allow. In Figure (1.3), the request-response

Chapter One: Overview of VoIP Technology 7

topology is different from the message flow shown in Figure (1.2).

In this figure, an external host (IP Phone, PC softphone, etc.)

attempts to place a call to an internal host. Since no session is

established, firewalls will not allow this connection to complete.

industry, but also to many other players as well. VoIP promises to

Figure 1.2 Normal Message Flow [Tho06]

Figure 1.3 VoIP Message Flow [Tho06]

1.5 VoIP Applications
For any new technology to be accepted by the telecommunications

industry, it must have a clear business benefit not just to a single player in the

Chapter One: Overview of VoIP Technology 8

revolutionize the most familiar of technologies, the telephone. The Internet

other

person

elect

the so

ing speech data, but a digitised

image

chniques are

conceivable, but many of them will resemble the ones discussed [Jor00].

Protocol, analog telephony, digital telephony, digital audio signal processing,

high-availability networking, and a host of other concerns are all touched by

growing borders of the vast, ambitious realm of VoIP [Dav01, Ted05].

The first kind of application is the 'telephone alternative'. This means

that you would use some kind of VoIP system to make a voice call to an

. When voice is packetised all the way to the desktop, it opens up vast

possibilities for new applications and features to be added onto Plain Old

Telephony Service (POTS), such as instance messaging [Dav01, Jor00].

The second application is the use of VoIP techniques to create an on-

line radio station, or perhaps even an on-line jukebox, where you can s

ng you want to hear, which is then played almost immediately. If

enough bandwidth is available, it would even be possible to add video data to

all this. This way, television broadcasts and video on demand over IP

networks could be made possible. In a similar way, we could extend a VoIP

telephone conversation with video information about the persons involved in

the call, creating a videophone application.

Another kind of application would be Fax over IP (FoIP). This is a bit

different since we are no longer transmitt

. Like with VoIP, this service could be made possible by connecting a

computer network to the telephone network using a gateway. For FoIP, this

gateway would perform similar functions as with voice over IP.

Note that the list of applications presented here is certainly not

complete. A wide range of applications using VoIP related te

Chapter One: Overview of VoIP Technology 9

1.6 Literature Survey

[Jor00] Voice over IP in Networked Virtual Environments
The PH.D. thesis goal is to create a VoIP application includes an

n cation and a 3D environment. This done by first,

d by JRTPLIB

(Jori's

able, even when severe compression is used. So as a

conclu

. thesis by the fact that it is

common today to use “private addresses” on the Local Area Network (LAN).

 exist on the Internet and thus the firewall

softwa

Inter et Telephony appli

developing a Real-time Transport Protocol (RTP) library, name

 RTP LIBrary). It is proved to be both fast and simple to use. Second,

developing a VoIP framework in which different VoIP components can be

easily used, tested, and made the VoIP part of an application portable to

several platforms (MS-Windows, Linux, Free Berkeley Software Distribution

(FreeBSD), Solarism, Hewlett Packard UniX (HP-UX), and VxWorks). This

is because normally only the reconstruction components need to be rewritten

for a new platform.

The use of Internet telephony application and the 3D environment are

quite useful. But when using a dial-up link, the necessary bandwidth might

simply not be avail

sion, the solution of this problem is to place a machine which mixes the

signals for a specific participant before the link.

[Fre00] SIP, NAT, and Firewalls
The problem is extended with this MS.c

These addresses are not allowed to

re must remove this address and replace it with an address that is

allowed on the Internet. NAT in the firewall normally does this together with

Application Level Gateways (ALGs).

Chapter One: Overview of VoIP Technology 10

Two goals of this thesis have been achieved. The first one was to study

is a problem that can only be solved by

having

l issues

ce over IP can be implemented

using

erely transmitting the real-time video to both

voice and video transmissions with enhanced user friendliness. Apparently,

what was required by the firewall in order to pass SIP signaling in and out of

a private network that uses NAT. This

 some software analyzing all the SIP messages that pass the firewall on

the well-known SIP port and then letting that software what it should do with

packets to/from a certain address, e.g. let it through or deny and drop it. The

second goal was to implement an application layer gateway for SIP. In the

case of incoming SIP INVITE messages from external clients intended for

internal clients it is clear that some kind of location service must be available

in the SIP ALG in order to direct the message to the correct host on the inside.

Implementing a simple SIP registrar server together with the SIP ALG solves

this problem. The internal clients would have to register at the registrar server

in order for the server to get the clients internal IP address. For outgoing calls

it is not necessary for the internal client to be registered at the server.

[Siv01] Voice over Internet Protocol (VoIP)
The MS.c. thesis aims to investigate Voice over IP based on the RTP

and Real-Time Control Protocol (RTCP). It studies the key technica

and develops software to demonstrate how Voi

Java (2) Software Development Kit (SDK) and Java Media Framework

2.1.1 Application Programming Interface (JMF 2.1.1 API). Also, It has

examined the Quality of Service (QoS) associated with voice transfer through

Internet (Internet Protocol).

Taking the above into account, this thesis used and made an

enhancement to the functional capabilities of the vTEL (video TELephony)

implementation from just m

Chapter One: Overview of VoIP Technology 11

from

teKeeper (GK) and the Back-End

Service (BES). The underlying protocol of these components is H.323, a

according to existing threats, which was mainly the ability of attackers to call

for free, (2) the implementation of mutual authentication on the connection

As a result all interfaces require the security services authentication and

ecurity framework must be seen for each interface or

conne

the users’ point of view, what they are much concerned about is the

performance of the voice and video transfer between the end users. Therefore,

the working on “vTEL” and “VideoConference” programs was provided

everything that is deemed necessary, and also developed the in-depth

knowledge of VoIP principles.

[Joh02] Security in VoIP-Telephony Systems
This MS.c. thesis deals with the security of a VoIP telephony system.

The involved components are EPs, Ga

standard for IP telephony.

The goals of the thesis are (1) the used protocol had to be analyzed

between two GKs.

data integrity. The interface between a GK and the BES additionally demands

privacy because of the sensitivity of the transmitted data. The result for the

proposals of the s

ction separately. The Registration Admission Status (RAS) protocol

between EP-GK was already equipped with authentication and data integrity

according to H.235v2. The authentication is implemented for H.235 based

authentication between two GKs. The key management has been kept simple

since the GKs are using a Local Service Interface (LocalSI), which is a

service interface realized by local sockets or UNIX sockets. A connection to

these interfaces does not impose much overhead to the execution time.

Chapter One: Overview of VoIP Technology 12

[Lin04] Speech Quality Prediction for Voice over Internet Protocol

e their

usefulness in new and emerging VoIP applications.

percep

e development of models

for non-intrusive prediction of voice quality. This is applicable to audio,

image and video applications over packet

 VoIP interface is made as part of an audio communications

These goals keep the Virtual Machine (VM) size reasonable and reduce time a

Networks
The main goal of this MS.c. thesis is to develop novel and efficient

models for non-intrusive speech quality prediction to overcome the

disadvantages of current subjective-based methods and to demonstrat

An important conclusion of this thesis is that it is possible to exploit

tually more accurate intrusive speech quality measurement (e.g.

Perceptual Evaluation of Speech Quality (PESQ)) for non-intrusive

applications. This is an important development as it avoids time-consuming

subjective tests and removes a major obstacle in th

 networks. The novelty in this work

is in a new methodology to predict voice quality non-intrusively, nonlinear

regression and neural network models for speech quality prediction, adaptive

and perceived quality optimized jitter buffer algorithms, a new QoS control

scheme that combines the strengths of adaptive rate and speech priority

marking QoS control techniques, and Internet based subjective test

methodology.

[Zia05] High Level Audio Communications API for the Unicon Language.
This MS.c. thesis presents a VoIP facility developed for unicon, a high

level language to simplify the task of writing programs, reducing their

development cost, and programming time.

Unicon’s

API and designed to be minimal and consistent with the rest of the language.

Chapter One: Overview of VoIP Technology 13

progra

 were accomplished using an open

source

ome

applia

addition of a single method, called DO, in order to control these networked

applia

 is critical for home appliances since there

are ex

gy.

mmer spends learning how to write VoIP applications by building a set

of extended and added built-in functions (open(), close(), VAttrib(),

PlayAudio(), StopAudio()). These functions

 cross platform library called “Jori’s VoIP LIBrary” (JVOIPLIB).

Also unicon has been extended by the thesis to support VoIP

application, a Collaborative Virtual Environment (CVE).

[Jos05] Using the Session Initiation Protocol as a Networking Protocol for
Home Applications

Home appliances have evolved from being single task devices to

integrating several tasks in a particular device. The next step for h

nces is to transform into networked appliances and accelerate the

development of home automation.

This work has demonstrated the capabilities of the SIP and how, by the

nces. The ability of SIP being a protocol independent of the transport

protocol underneath it, as well as the benefit that it uses existing

infrastructure, makes it an ideal protocol to interwork devices that use

different networking protocols. This

isting home automation protocols but none of them can interact with

one another.

The study suggests that the only additional hardware needed is an

appliance controller that works as a SIP user agent to connect an appliance or

a network of appliances of similar technology to the home LAN. This

controller, besides being SIP compliant, should have some kind of routing

capability and it needs to translate the action received in a SIP message to the

given technolo

Chapter One: Overview of VoIP Technology 14

[Dav0

ed. The main characteristics of this mechanism are

throughput steadiness in short periods of time and long term fairness in the

is through an RTP. The main problem of TFRC

on the VoIP context is the difference in size between the VoIP packets and the

TCP p

5] Analysis and Implementation of TCP Friendly Rate Control in
the Context of VoIP

In order to provide to User Datagram Protocol (UDP) a suitable

congestion control mechanism for the media flow using it, a mechanism

called Transmission Control Protocol (TCP) Friendly Rate Control (TFRC)

has been develop

bandwidth sharing with TCP.

Based on this study TFRC represents a better option for VoIP

applications than other TCP-LIKE smoothed mechanisms, but the proper

implementation of it is through a new transport protocol such as Datagram

Congestion Control Protocol (DCCP). Because of the lack of a standardized

transport protocol that implements TFRC, so the most particular way to

implement TFRC over a VoIP

ackets. This difference in the size makes extremely difficult to get the

right values of the parameters that models the TCP behavior. If the parameters

are not accurate then fairness would not be achieved. For the specific case of

the virtual packets alternative, it is conclusive to say that this solution will not

scale very well on the Internet because of the heterogeneous configuration of

the routers. Another conclusion is that the suitability of TFRC regarding

steadiness in relative short periods of time was verified, and it is very

sensitive to variations in the delay.

[Jua07] Patterns for VoIP Signaling Protocol Architectures.
The paper presented two patterns that describe the architectures implied

by the two main VoIP protocols. The Hybrid Signaling Protocol pattern

Chapter One: Overview of VoIP Technology 15

allows architectural and protocol flexibility by supporting both H.323 and SIP.

These patterns complement the work in VoIP security patterns and provide a

model of the environment where specific VoIP security patterns can be

implemented, thus adding security to the structure. Patterns describing generic

ate the implementation of this thesis. Chapter Five includes the

l this work followed by a list of suggestions for future

works

architectures can guide systems development.

1.7 Aim of the work
Study and analyze the architecture of new telecommunication

telephony technology, which is VoIP. Specify the more suitable signaling

protocol to be implemented on TCP/IP model, and apply a pre-shared key

encryption method on the key field in the session description of signaling

part.

1.8 Thesis Outlines
The thesis is organized in five chapters summarized as follows:

Chapter two analyzes the structure of TCP/IP model for VoIP

technology and explains VoIP protocols place on the application layer.

Chapter Three explains the three levels of VoIP security. Chapter Four

illustr

conc usions drown from

.

Chapter Two
VoIP Network Architecture and Protocols

2.1 Introduction

At the beginning of VoIP study is important to know the basic structure

of the network with all the related protocols, which fall within the application

layer.

When finishing this chapter, the following points will be clear:

1. Requirements for voice transport in data networks.

2. The functionality of TCP/IP model layers in context of using VoIP.

3. The best encapsulation in data link layer for the new technology.

4. Characteristics of IP protocol that makes it the base for VoIP

Technology.

5. Which transport protocol suitable for sending signaling, and data

packets?

6. Responsibility of application layer for signaling and media

processing.

7. Signaling part

a. Define the concept of call signaling in VoIP.

b. Identify how Session Initiation Protocol (SIP) works?

c. Identify Session Description Protocol (SDP), which used by SIP

signaling protocol.

d. Identify H.323 signaling protocol, as another option for

signaling.

8. Media transport part

a. Identify Real-time Transport Protocol (RTP).

Chapter Two: VoIP Network Architecture and Protocols 17

b. Identify Real-time Transport Control Protocol (RTCP).

9. Clarifying the idea behind the separation of call control and media

transport.

2.2 VoIP Network Architecture
The data network differs from other networks in that its sole purpose is

providingR Rconnectivity. The purpose of the PSTN, for instance, is providing

telephoneR Rservices and the purpose of the TeleVision (TV) network isR

Rproviding broadcasts.R RA variety of services such as e-mail, the World Wide

Web, videoconferencing, and file transfer are implemented based on end-to-

end IP connectivity [Gon02].

The requirements transporting voice over data networks drive the

choice of transport protocol. It should be clear that TCP/IP is not appropriate

because it favors reliability over timeliness, and our applications require

timely delivery. A UDP/IP-based transport should be suitable, provided that

the variation in transit time of the network can be characterized and loss rates

are acceptable [Col03].

2.2.1 Requirements of Voice Transmission
When transmitting packets containing voice data, there must be some

mechanism to preserve synchronization within the speech signal. The

consecutive packets should be played at the right time, in the right order. This

type of synchronization is called intra-media synchronization [Jor00].

The primary requirement of real-time media places on the transport

protocol is for predictable variation in network transit time. Consider, for

example, a VoIP system transporting encoded voice in 20-millisecond frames:

The source will transmit one packet every 20 milliseconds, and ideally we

Chapter Two: VoIP Network Architecture and Protocols 18

would like those to arrive with the same spacing so that the speech they

contain can be played out immediately. Some variation in transit time can be

accommodated by the insertion of additional buffering delay at the receiver,

but this is possible only if that variation can be characterized and the receiver

can adapt to match the variation.

A lesser requirement is reliable delivery of all packets by the network.

Clearly, reliable delivery is desirable, but many audio and video applications

can tolerate some loss: In previous VoIP example, loss of a single packet will

result in a dropout of one-fiftieth of a second, which, with suitable error

concealment, is barely noticeable. Because of the time-varying nature of

media streams, some loss is usually acceptable because its effects are quickly

corrected by the arrival of new data [Col03].

The speech data which has to be sent is typically generated at regular

small intervals. It is possible that a receiving end cannot cope with this data

flow, so somehow the sender should know whether the receiver can handle

the incoming stream or not. A method that does this is often called a flow

control method. Also, due to the fact that data is sent at a regular basis, it is

not unlikely that a link becomes overloaded and congestion occurs. In turn,

congestion causes the loss of packets and an increase in delay which are not

desirable features for voice communication. The transmission component

should be able to detect an arising congestion and take appropriate actions.

The mechanism to prevent and control congestions is called congestion

control.

The appropriate action for flow and congestion control is to decrease

the amount of data sent. Typically, this is done in cooperation with the

compression module. This will usually result in a degradation of speech

Chapter Two: VoIP Network Architecture and Protocols 19

quality, but it is still better than having a lot of lost packets and a large delay

[Jor00].

2.2.2 Network Multimedia Protocol Stack
The TCP/IP family of protocols forms the basis of the Internet and most

current corporate networks, where the layered design of TCP/IP is not

followed very strictly. Computer programs send and receive data over an IP

network by making program calls to the TCP/IP software, known as the

Tprotocol stack,T in their local computer. The TCP/IP stack in the local computer

exchanges information with the TCP/IP stack in the target computer to

accomplish the transfer of data from one side to the other [Joh04, Jor00].

Figure 2.1 shows the four-layer Internet Multimedia Protocol stack. The

layers shown and protocols identified will be discussed.

Figure 2.1 Network Multimedia Protocol Stack [Ala04].

xPhysical/Link
 layer

Application layer

Transport layer

Internet layer

UDP TCP

SDP

H.323 SIP RTP

Media
coding

IP

AALx

ATM Ethernet 802.11

Chapter Two: VoIP Network Architecture and Protocols 20

2.2.2.1 Physical Layer/Link Layer
The lowest layer is the physical and link layer, which could be an

Ethernet LAN, a telephone line (V.90 or 56k modem) running Point-to-Point

Protocol (PPP), or a Digital Subscriber Line (DSL) running Asynchronous

Transport Mode (ATM), or even a wireless 802.11 network. This layer

performs such functions as symbol exchange, frame synchronization, and

physical interface specification [Ala04].

ATM was created for time-sensitive traffic, providing simultaneous

transmission of voice, video, and data. ATM uses cells that are a fixed 53

bytes long instead of packets. It also can use isochronous clocking (external

clocking) to help the data move faster. Transit delays are reduced because the

fixed-length cells permit processing to occur in the hardware. ATM is

designed to maximize the benefits of high-speed transmission media [Ken07].

2.2.2.2 Internet Layer
The network layer connects links, unifying them into a single network.

It provides addressing and routing of messages through the network. It may

also provide control of congestion in the switches, prioritization of certain

messages, billing, and so on [Col03].

In order to achieve true end-to-end connectivity, a common end-to-endR

Rprotocol is implemented at the network layer, the IP protocol. IP itself is a

connectionless protocol. A connectionless packet switched network is the

packet header contains the address of the ultimate destination to which the

packet should be sent, on the other side of the network. The intermediate

switches figure out the output port for the packet from routing tables based on

Chapter Two: VoIP Network Architecture and Protocols 21

this ultimate destination address, which means that no reliability mechanisms,

flow control, sequencing, or acknowledgments are present [Dav01, Gon02].

At this stage someone may be wondering why anyone would consider a

packet-based audio or video application over an IP network. Such a network

clearly poses challenges to the reliable delivery of real-time media streams.

Although these challenges are real, an IP network has some distinct

advantages that lead to the potential for significant gains in efficiency and

flexibility, which can outweigh the disadvantages [Col03].

This protocol was designed mostly for data transport, and it has only

limited QoS support. The main reason IP is so important is because of its

omnipresence. The TCP/IP architecture has proved to be very popular and

nowadays it is very widely used. This fact gives IP a great advantage over

other protocols [Jor00].

You can address an IP packet in three general ways: through unicast,

multicast, or broadcast mechanisms. Briefly explained, these three

mechanisms provide the means for every IP packet to be labeled with a

destination address, each in its unique way. Unicast packets enable two

stations to communicate with each other, regardless of physical location.

Broadcast packets are used to communicate with everyone on a subnetwork

simultaneously. Multicast packets enable applications, such as

videoconferencing, that have one transmitter and multiple receivers.

IP networks also offer the potential for higher reliability because IP

networks automatically re-route packets around problems such as

malfunctioning routers or damaged lines. Also, IP networks do not rely on a

separate signaling network, which is vulnerable to outages [Jon00].

Chapter Two: VoIP Network Architecture and Protocols 22

IP is used by both routers and hosts, relegating intelligence to the end

systems. It tends to keep the state information stored inside the network at

minimum in order to scale better and to be more robust. This lack of state in

the network makes node failures less dramatic because they do not store any

state information necessary for end-to-end communication [Gon02].

Another advantage is the possibility of compression. With the

compression methods available today, it is possible to reduce the requirement

of (64 kbps) for uncompressed telephone-quality voice communication to

amounts which are far lower. However, a high compression ratio often means

that the voice signal will be of lesser quality [Ken07].

2.2.2.3 Transport Layer
The transport layer is the first real end-to-end layer. It takes

responsibility for delivery of messages from one system to another, using the

services provided by the network layer. This responsibility includes providing

reliability and flow control if they are needed by the application layer and not

provided by the network layer [Col03, Jor00].

There are two commonly used transport layer protocols, Transmission

Control Protocol (TCP), and User Datagram Protocol (UDP).

A. TCP
TCP is known as a connection-oriented protocol because the two sides

of the data exchange maintain strong tracking of everything that is sent and

received. Connection-oriented messages are sent through the network from

source to destination requesting a connection to be set up. These may be

signaling messages from the customer or messages initiated by the network

management system. [Col03, Joh04].

Chapter Two: VoIP Network Architecture and Protocols 23

If TCP were utilized for VoIP, the latency incurred waiting for

acknowledgments and retransmissions would render voice quality

unacceptable. TCP transport makes the assumption that packet loss is a signal

that the bottleneck bandwidth has been reached, congestion is occurring, and

it should reduce its sending rate. A TCP flow will increase its sending rate

until loss is observed, and then back off, as a way of determining the

maximum rate a particular connection can support. Of course, the result is a

temporary overloading of the bottleneck link, which may affect other traffic.

Also, since TCP preserves the order of the packets. The application has to

output speech data at regular intervals, so if one packet stays lost for a

sufficient amount of time, this will block the playback of other packets, even

when they have already arrived [Col03, Jor00].

TCP is used to ensure the reliability of the setup of a call. Due to the

methods by which TCP operates, it is not feasible to use TCP as the

mechanism to carry the actual voice in a VoIP call. With VoIP and other real-

time applications, controlling latency is more important than ensuring the

reliable delivery of each packet. Besides, the protocol is designed for

communication between two hosts, so it only supports unicasting. If data has

to distributed to several destinations, it has to be done using separate TCP

connections. This, of course, wastes a lot of bandwidth [Jon00, Jor00].

B. UDP
UDP is called a connectionless protocol, since there is no

acknowledgment of sent datagrams. Most of the complexity of TCP is not

present, including sequence numbers, acknowledgments, and window sizes.

UDP does detect errored datagrams with a checksum. It is up to higher layer

Chapter Two: VoIP Network Architecture and Protocols 24

protocols, however, to detect this datagram loss and initiate a retransmission

if desired [Ala04, Joh04].

The protocol has the advantage of not having to wait for

retransmissions of lost packets. Also, since it is only a small extension to IP, it

can make use of the IP multicasting features and save bandwidth when data

has to be sent to multiple destinations. As good as all this may seem, there are

also some disadvantages: UDP provides no mechanism for synchronization

whatsoever and there are no means for flow or congestion control [Jor00].

Applications which do not require the functionality that TCP provides

can use UDP. To transmit data, the UDP module simply passes a UDP header

followed by that data to the internet layer which then sends the datagram on

its way. This means that just like IP itself, UDP is a best-effort service. No

guarantees about delivery are given, datagrams can get reordered and

datagrams can be duplicated. So that UDP is used in VoIP to carry the actual

voice traffic (the bearer channels) [Jon00].

2.2.2.4 Application Layer
The top layer shown in Figure (2.1) is the application layer. This

includes signaling protocols such as Session Initiation Protocol (SIP) and

media transport protocols such as Real-time Transport Protocol (RTP), which

is introduced in chapter three. Figure (2.1) includes H.323, which is an

alternative signaling protocol to SIP developed by the International

Telecommunication Union (ITU). Session Description Protocol (SDP) is

shown above SIP in the protocol stack because it is carried in a SIP message

body. HyperText Transfer Protocol (HTTP), Simple Mail Transfer Protocol

(SMTP), File Transfer Protocol (FTP), and TELecommunications NETwork

Chapter Two: VoIP Network Architecture and Protocols 25

(Telnet) are all examples of application layer protocols. Because SIP can use

any transport protocol, it is shown interacting with both TCP, and UDP in

Figure 2.1 [Ala04].

Using VoIP, those silent intervals can be detected. The VoIP

application can examine each packet and detect whether it contains speech

information or only silence. If the latter is the case, the packet can simply be

discarded [Jor00].

2.2.3 Client\Server versus Peer-to-Peer Architecture
When users communicate with one another, they send requests and

responses to one another directly or through a specific server. However, this

reflects two different types of architectures used in network communications

[Tho06]:

1. Client\Server

2. Peer-to-peer

2.2.3.1 Client\Server
The client/server architecture uses a call agent to control signaling on

behalf of the endpoint devices, such as gateways. The central control device

participates in the call setup only. Voice traffic still flows directly from

endpoint to endpoint [Ant06].

In client\server architecture, the relationship of the computers is

separated into two roles:

1. The client, which requests specific services or resources.

2. The server, which is dedicated to fulfilling requests by responding

(or attempting to respond) with requested services or resources.

Chapter Two: VoIP Network Architecture and Protocols 26

An easy-to-understand example of a client/server relationship is seen

when using the Internet. When using an Internet browser to access a web site,

the client would be the computer running the browser software, which would

request a web page from a web server. The web server receives this request

and then responds to it by sending the web page to the client computer. In

VoIP, this same relationship can be seen when a client sends a request to

register with a registrar server, or makes a request to a proxy server or redirect

server that allows it to connect with another user agent. In all these cases, the

client’s role is to request services and resources, and the server’s role is to

listen to the network and await requests that it can process or pass onto other

servers.

The servers that are used on a network acquire their abilities to service

requests by the programs installed on it. Because a server may run a number

of services or have multiple server applications installed on it, a computer

dedicated to the role of being a server may provide several functions on a

network. For example, a web server might also act as an e-mail server. In the

same way, SIP servers also may provide different services. A Registrar can

register clients and also run the location service that allows clients and other

servers to locate other users who have registered on the network. In this way,

a single server may provide diverse functionality to a network that would

otherwise be unavailable

Another important function of the server is that, unlike clients that may

be disconnected from the Internet or shutdown on a network when the person

using it is done, a server is generally active and awaiting client requests.

Problems and maintenance aside, a dedicated server is up and running, so that

it is accessible. The IP address of the server generally doesn’t change,

Chapter Two: VoIP Network Architecture and Protocols 27

meaning that clients can always find it on a network, making it important for

such functions as finding other computers on the network [Tho06].

2.2.3.2 Peer-to-Peer
A peer-to-peer (P2P) architecture is different from the client/server

model, as the computers involved have similar capabilities, and can initiate

sessions with one another to make and service requests from one another.

Each computer provides services and resources, so if one becomes

unavailable, another can be contacted to exchange messages or access

resources. In this way, the user agents act as both client and server, and are

considered peers.

Once a user agent is able to establish a communication session with

another user agent, a P2P architecture is established where each machine

makes requests and responds to the other. One machine acting as the user

agent client will make a request, while the other acting as the user agent

server will respond to it. Each machine can then swap roles, allowing them to

interact as equals on the network. For example, if the applications being used

allowed file sharing, a user agent client could request a specific file from the

user agent server and download it. During this time, the peers could also be

exchanging messages or talking using VoIP, and once these activities are

completed, one could send a request to terminate the session to end the

communications between them. As seen by this, the computers act in the roles

of both client and server, but are always peers by having the same

functionality of making and responding to requests [Tho06].

Chapter Two: VoIP Network Architecture and Protocols 28

2.3 VoIP Protocols
Over the years, a need was seen for a standard protocol that could allow

participants in a chat, videoconference, interactive gaming, or other media to

initiate user sessions with one another. In other words, a standard set of rules

and services was needed that defined how computers would connect to one

another so that they could share media and communicate [Tho06].

The variables in VoIP are the signaling methods. H.323 and SIP define

end-to-end call signaling methods. MGCP and H.248 define a method to

separate the signaling function from the voice call function. This approach is

referred to as client\server architecture for voice signaling.

A constant in VoIP implementation is that voice uses RTP inside UDP

to carry the payload across the network. IP voice packets can reach the

destination out of order and unsynchronized; the packets must be reordered

and resynchronized before playing them out to the user. Because UDP does

not provide services such as sequence numbers or time stamps, RTP provides

the sequencing functionality [Ant06].

It is necessary to make sure that standards-based protocols are used, so

the bearers (RTP streams) are separated from the call-control. Data

networking is unique in the fact that multiple protocols can co-exist in a

network and you can tailor them to the particular needs of the network

[Jon00].

2.3.1 Call Signaling
Signaling is the fundamental to the call establishment, management,

and administration of voice communication in an IP network. The term

“signaling” is not self-explanatory in VoIP telephony and clarifications are

Chapter Two: VoIP Network Architecture and Protocols 29

always necessary, depending on the application. The typical way to make call

on the PSTN is to dial digits on the keypad. If the call is going to be

successfully completed, it will hear a ringing tone until the party which is

trying to reach answers the phone. By introducing VoIP into the call path, the

end-to-end path involves at least one call leg that uses an IP internetwork. As

in a traditional voice call, support for this VoIP call leg requires two paths

[Bil00, Kev07]:

1. A protocol stack that includes RTP, which provides the audio call leg.

2. One or more call control models that provide the signaling path, such as

SIP, H.323, or MGCP.

So that the signaling is independent set of actions to the media flow,

illustrated in Figure (2.2); it controls the type of media used in a call.

Signaling does not necessarily stop when the call is set up, until one or more

participants in a call depart. Signaling can occur while a call is active, for

example to modify session parameters, and can be concurrent with the media

flow [Ala04, Bil00].

The main signaling functions of the protocol are as follows:

1. UUser locationU: Location of an end point to be used for communication;

2. UUser availabilityU: Contacting an end point to determine willingness to

establish a session;

3. UUser capabilityU: Exchange of media information to allow session to be

established. Example, SIP uses the Session Description Protocol (SDP)

for negotiating media parameters, while H.323 uses Abstract Syntax

Notation One (ASN.1);

Chapter Two: VoIP Network Architecture and Protocols 30

Figure 2.2 Packet-Switched Call [Chr02]

4. USession setupU: "ringing", establishment of session parameters at both

called and calling party;

5. USession managementU: including transfer and termination of sessions,

modifying session parameters, and invoking services.

2.3.2 H.323
H.323 is developed by International Telecommunication Union-

Telecommunication (ITU-T). H.323 is an umbrella-like specification that

encompasses a large number of state machines that interact in different ways

depending relationship of participating entities and the type of session (for

example, audio or video). There are many subprotocols within the H.323

specification. In order to understand the overall message flows within an

Server

PC PC

IP Network

IP Network

Chapter Two: VoIP Network Architecture and Protocols 31

H.323 VoIP transaction, figure 2.3 shows the relevant protocols and their

relationships.

H.323 protocols are binary protocols. There functionalities are [Eri02]:

1. H.225/Registration Admission and Status (RAS): used over

UDP to transmit registration, admission, bandwidth changes, and

status messages to the GateKeeper.

Figure 2.3 H.323 Protocol Stack [Eri02]

2. H.225 signaling: Defines signaling for call setup and teardown,

including source and destination IP addresses, ports, country

code, and H.245 port information.

3. H.245: Specifies messages that negotiate the terminal

capabilities set, the master/slave relationship, and logical channel

information for the media streams.

Chapter Two: VoIP Network Architecture and Protocols 32

2.3.2.1 H.323 Components
The overall H.323 protocol has been introduced; let’s now turn the

attention to components that make up the H.323 protocol. These components

are [Tho06]:

1. Terminals: it also referred to as endpoints, provide the user

interface into the H.323 protocol and provide real-time, two-way

multimedia communications. Typically, the devices (telephones,

softphones, voice mail, etc.) are that end-users interact with;

Microsoft NetMeeting is an example of an H.323 endpoint.

2. GateKeepers (GKs): which are optional provide call control

functions such as address translation and bandwidth management

and are often considered to be the most important component in

the H.323 stack.

3. Multipoint Control Units (MCUs):.provide conference

facilities for users who want to conference three or more

endpoints together.

2.3.2.2 H.323 Operation
H.323 signaling exchanges typically are routed via gatekeeper or

directly between the participants as chosen by the gatekeeper. Media

exchanges normally are routed directly between the participants of a call.

H.323 data communications utilizes both TCP and UDP. TCP ensures reliable

transport for control signals and data, because these signals must be received

in proper order and cannot be lost. UDP is used for audio and video streams,

which are time-sensitive but are not as sensitive to an occasional dropped

packet. Consequently, the H.225 call signaling channel and the H.245 call

Chapter Two: VoIP Network Architecture and Protocols 33

control channel typically run over TCP, whereas audio, video, and RAS

channel exchanges rely on UDP for transport [Eri02].

2.3.3 Session Initiation Protocol (SIP)
SIP was originally developed by the Internet Engineering Task Force

(IETF) working group. Version 1.0 was submitted as an Internet-Draft in

1997. Significant changes were made to the protocol and resulted in a second

version, version 2.0, which was submitted as an Internet-Draft in 1998. The

protocol achieved proposed standard status in March 1999 and was published

as RFC 2543 in April 1999. The Internet-Draft containing bug fixes and

clarifications to SIP were submitted beginning in July 2000, referred to as

RFC (2543) “bis”. This document was eventually published as RFC (3261),

which obsoletes (or replaces) the original RFC (2543) specification [Ala04].

SIP is described as an application-layer control protocol that can

establish, modify and terminate multimedia sessions or calls. Although no real

assumptions are made about the underlying network and protocols, SIP has

been designed with the TCP/IP architecture in mind; SIP is a text based

signaling protocol. It incorporates elements of two widely used Internet

protocols: HTTP used for web browsing and SMTP used for e-mail. From

HTTP, SIP borrowed a client-server design and the use of URLs and Uniform

Resource Identifiers (URIs). From SMTP, SIP borrowed a text-encoding

scheme and header style. For example, SIP reuses SMTP headers such as To,

From, Date, and Subject [Ala04].

It supports features of the Advanced Intelligent Network (AIN). Such

as name mapping, call forwarding and call redirection. This is very useful if

SIP is to gain acceptance as a signaling protocol in the public network, where

Chapter Two: VoIP Network Architecture and Protocols 34

telephony feature offering is major part of the business of telephone

companies. Another significant feature of SIP is support for user mobility. So,

SIP is the early signaling protocols intended for serious VoIP telephony

signaling in the wide area [Bil00].

2.3.3.1 SIP Entities
The SIP protocol defines several entities, and it’s vital to understand

their role inside any architecture that uses SIP [Gon02]. These entities are:

A. User Agents

A User Agent (UA) is an application which resides at a SIP end station.

A SIP UA must support UDP transport and also TCP if it sends messages

greater than 1,000 octets in size, also must support SDP for media description.

Other types of media description protocols can be used in bodies, but SDP

support is mandatory [Ala04].

UA consists of two parts: a User Agent Client (UAC) and a User Agent

Server (UAS). A UAC is capable of generating a request based on some

external stimulus (the user clicking a button, or a signal on a PSTN line) and

processing a response. The UAS is a server application which contacts the

user when there is an incoming request and responds to it, it is capable of

receiving a request and generating a response based on user input, external

stimulus, the result of a program execution, or some other mechanism. In

most cases, the user will be a human, but the user could be another protocol,

as in the case of a gateway. A user agent must be capable of establishing a

media session with another user agent [Ala04, Ros02].

Chapter Two: VoIP Network Architecture and Protocols 35

B. SIP Servers

SIP servers are applications that accept SIP requests and respond to

them. The types of SIP servers discussed in this section are logical entities.

Actual SIP server implementations may contain a number of server types, or

may operate as a different type of server under different conditions. Because

servers provide services and features to user agents, they must support both

TCP, Transport Layer Security (TLS), and UDP for transport [Ala04].

Three types of network servers are defined. The first one is a redirect

server. A user can send a call invitation request for another person to a

redirect server. This server will then locate the user and return the necessary

information to enable the caller to establish a call with the intended person.

The second type of server is a proxy server. SIP proxies are elements

that route SIP requests to user agent servers and SIP responses to user agent

clients. It is like with a redirect server, a user can send an invitation request to

a proxy server. The proxy server will also try to locate the destination of the

call, but unlike with a redirect server, it will not simply return possible

locations of the called person. Instead, based upon that information, a proxy

server will try to establish a connection on behalf of the caller. A proxy can

operate in either a stateful or stateless mode for each new request. When

stateless, a proxy acts as a simple forwarding element. But in a stateful proxy

remembers information about each incoming request and any requests it sends

as a result of processing the incoming request. It uses this information to

affect the processing of future messages associated with that request [Gon02].

Finally, the last server type is a called a registrar. A registrar is usually

co-located with a redirect server or a proxy server. A user can send

Chapter Two: VoIP Network Architecture and Protocols 36

information about its current location to a registrar; the user can register

himself. This information can then be used to contact him. Thanks to

registration information, personal mobility is allowed, which means that a

person should be able to accept calls directed to him at any end system. The

information sent to a registrar describes at which system a user should be

contacted [Jor00].

2.3.3.2 How SIP Works
Any user must specify to whom he want to make a call. A SIP user is

identified by a SIP-URI, example: ‘sip:user2@there.com’. SIP has two broad

categories of URIs: ones that correspond to a user, and ones that correspond

to a single device or end point. The user URI is known as an Address Of

Record (AOR) and a request sent to an address of record will require database

lookups and service and feature operations and can result the request being

sent to one or more end devices. A device URI is known as a contact, and

typically does not require database lookups [Ala04].

When a user wants to invite someone into a session or wants to make a

call to someone, the user can send an invitation request to the end system

specified in the destination's SIP-URI. The request would be sent to

‘there.com’. If the called user is available at that system, he can send a

response, indicating whether he wants to participate in the communication or

not. When the caller receives this response, he sends an acknowledgement to

the other system.

As shown in figure (2.4), the caller could also send its invitation

request to a proxy server. This proxy server then looks for possible locations

of the other user and tries to invite that user itself. When the proxy knows that

Chapter Two: VoIP Network Architecture and Protocols 37

the invitation was either accepted or denied, it can send an appropriate

response back to the caller. This way, a proxy acts as both a client and a

server.

Figure 2.4 SIP Protocol Operations [Gon02]

Finally, the invitation request could also be sent to a redirect server.

This redirect server would then look for possible locations of the called user

and send the corresponding SIP-URIs back to the caller. Based upon this

information, the caller could then try to contact the other user directly, as

described in figure (2.4).

sip:user2@there.com

sip:user1@there.com

SIP Redirect Server

SIP Stateful Proxy 2

SIP Stateful Proxy 1

SIP Stateless Proxy

Chapter Two: VoIP Network Architecture and Protocols 38

The invitation request normally contains information about the media

that will be sent. If the invitation was successful, the response will also

contain a description about the media that the other user will use. The SIP

specification does not demand a specific format, but the SDP was designed

for this purpose [Jor00].

2.3.4 Session Description Protocol (SDP)
The SDP protocol was developed by the IETF work group. The original

purpose of SDP was to describe multicast sessions set up over the Internet’s

multicast backbone. SDP specifies how the information necessary to describe

a session should be encoded. It does not include any transport mechanism or

any kind of parameter negotiation. A SDP description is simply a chunk of

information that a system can use to join a multimedia session [Gon02]. It

contains the following information about the media session:

1. IP Address (IPv4 address, IPv6 address, or host name);

2. Port number (used by UDP or TCP for transport);

3. Media type (audio, video, fax, and so forth);

4. Media encoding scheme (Pulse Code Modulation (PCM),

Moving Picture Experts Group II video (MPEG II video), and so

forth).

In addition, SDP contains information about the following:

1. Subject of the session;

2. Start and stop times;

3. Contact information about the session.

Chapter Two: VoIP Network Architecture and Protocols 39

Like SIP, SDP uses text coding. A SDP message is composed of a

series of lines, called fields, whose names are abbreviated by a single lower-

case letter, and are in a required order to simplify parsing [Ala04].

2.3.5 Real-time Transport Protocol (RTP)
The Real-time Transport Protocol is defined as a protocol which

provides end-to-end delivery services for data with real-time characteristics,

such as interactive audio and video. So this protocol can also be used for

VoIP applications. It is the key standard for audio/video transport in IP

networks along with its associated profiles and payload formats [Col03].

As shown in the protocol stack of Figure (2.1), RTP is an application

layer protocol that uses UDP for transport over IP. RTP is not text encoded,

but uses a bit-oriented header similar to UDP and IP [Ala04].

The RTP specification actually defines two separate protocols: the RTP

protocol, and Real-time Transport Control Protocol (RTCP). The protocols

themselves do not provide mechanisms to ensure timely delivery. They also

do not give any QoS guarantees. These things have to be provided by some

other mechanism. Flow and congestion control are not directly supported

[Jor00].

The strength of RTP is that it provides a unifying framework for real-

time audio/video transport, it has proven useful for a range of other

applications: in H.323 video conferencing, and TV distribution; and in both

wired and cellular telephony [Col03].

2.3.5.1 RTP
RTP aims to provide services useful for the transport of real-time

media, such as audio and video, over IP networks. These services include

Chapter Two: VoIP Network Architecture and Protocols 40

timing recovery, loss detection and correction, payload and source

identification, media synchronization, and membership management. RTP

was originally designed for use in multicast conferences, using the

lightweight session's model.

A session consists of a group of participants who are communicating

using RTP. A participant may be active in multiple RTP sessions—for

instance, one session for exchanging audio data and another session for

exchanging video data. For each participant, the session is identified by a

network address and port pair to which data should be sent, and a port pair on

which data is received. The send and receive ports may be the same. Each

port pair comprises two adjacent ports: an even-numbered port for RTP data

packets, and the next higher (odd-numbered) port for RTCP control packets.

The RTP Payload data in a typical voice-over-IP application sending an audio

in 20-millisecond packets [Ala04, Col03].

2.3.5.2 RTCP
The RTP is accompanied by a control protocol, RTCP protocol. The

control protocol supplies information about the participants in the session.

Each participant of a RTP session periodically sends RTCP packets to all

other participants in the session. RTCP has three basic functions:

1. The primary function is to provide feedback on the quality of

data distribution. Such information can be used by the

application to perform flow and congestion control functions.

2. RTCP distributes an identifier which can be used to group

different streams audio and video for example together. Such a

Chapter Two: VoIP Network Architecture and Protocols 41

mechanism is necessary since RTP itself does not provide this

information.

3. By periodically sending RTCP packets, each session can observe

the number of participants. The RTP data cannot be used for this

since it is possible that somebody does not send any data, but

does receive data from other participants. For example, this is the

case in an on-line lecture.

Also, RTCP provides information about reception quality which the

application can use to make local adjustments. For example if a congestion is

forming, the application could decide to lower the data rate [Jor00].

RTCP defines several different packet types [Joh02]:

1. Sender Report (SR): is a sender report and conveys statistical

data of an active sender.

2. Receiver Report (RR): is a report of a receiver for statistics of a

participant that does not actively send data.

3. Source DEScription (SDES): it is contains source description

items.

4. (BYE): it is indicates the end of participation.

5. Application-sPecific Packet (APP): it is consists of application

specific data.

Chapter Three
SIP-Based VoIP Security

3.1 Introduction

The security becoming an increasingly important issue in modern day

computer environment, it is becoming vital to consider how to protect a

system before incorporating it in daily business operations. Due to the

increasing interest in computer based media communication. (e.g., VoIP

application) there is need for security solutions which makes these

technologies reliable enough to carry important information.

The ideas produced by this chapter are:

1. Identify four levels of VoIP security that can be implemented.

2. Producing two common key agreement protocols

3. Clarify the point of using key agreement protocol with SDP.

4. Identify the reason of using SDP in security media description.

3.2 Encryption Protocols
One encryption protocol can be used in different context for slightly

different purposes. There are some common encryption protocols for

encryption at different layers as described in later sections.

3.2.1 IPsec: Network Layer Encryption
The IP security protocol suite known as (IPsec), which provides a

security level at the IP level (in network layer). The preferred form of Virtual

Private Network (VPN) tunneling across the internet, IPsec defines two basic

protocols: Encapsulating Security Payload (ESP) and Authentication Header

Chapter Three: SIP-Based VoIP Security 43

(AH). IPsec provide connectionless integrity, source authentication,

confidentiality and replay protection. Given that IPsec can provide these

services to an entire IP packet, including the header [Tha98].

The SIP protocol does not specify a framework for the use of IPsec and

no key management is suggested. The most common use of IPsec is in

collaborative with the Internet Key Exchange (IKE) protocol to provide

automated cryptographic key exchange and management mechanisms

[Ros02].

3.2.2 TLS: Transport Layer Encryption
Transport Layer Security (TLS) is a security protocol which provides

encryption at the transport layer. The protocol specifically requires a

connection oriented, reliable delivery transmission protocol which means it

will not work with protocols using UDP transmission. TLS provides integrity

protection, authenticity and confidentiality of sent data without needing

additional key management.

TLS is compromised of two layers; the TLS Record Protocol and the

TLS Handshake Protocol. The Handshake Protocol is used to authenticate the

participants and negotiate security parameters while the Record Protocol

provides confidentiality and integrity to the actual data transfer [Die99].

The SIPS (Secure SIP) in SIP specification implies the use of TLS

there is a great probability that an application securing SIP messages makes

use of TLS. This is might make TLS seem like a good alternative for

encryption of media stream because no other security protocol would need to

be implemented. This would be false assumption since TLS uses the reliable

transport protocol, such as TCP. While this might not be a great problem

Chapter Three: SIP-Based VoIP Security 44

where SIP messages is concerned it is devastating in the context of real-time

media encryption. The nature of streaming media simply does not allow the

use of a reliable delivery protocol such as TCP for transportation due to time

constraints [Ros02].

3.2.3 SRTP: Application Layer Encryption
The Secure Real-time Transport Protocol (SRTP) is an extension to the

RTP Audio/Video profile and provides confidentiality, authenticity, integrity

and replay protection for RTP and RTCP packets, providing all the important

elements to secure the media stream. The RTP packets are used to carry the

session contents while the control packets, RTCP, are used for session

statistics and control. A secure session key derivation function is used to

produce pseudo-random session keys using only a master key and an optional

(highly recommended) master salt [SC03, Bau04].

The key derivation function in SRTP enables session keys to be created

using a master key, and to protect against pre-computation attacks, a master

salt. This function is used to create a session encryption key, session

authentication key and session salt to use when processing packets. In fact,

both the SRTCP and SRTP stream can be provided with session keys using

only the master key and salt. This function also enables the definition of the

optional key derivation rate in the SRTP protocol which specifies how often

new keys are to be generated. This is useful because an application sending

data for along period of time might wish to use several session keys so that

one leaked or cryptographically broken key will only compromise part of the

packet stream. This is then easily done by defining a key derivation rate

higher than zero [Bau04].

Chapter Three: SIP-Based VoIP Security 45

3.2.3.1 Default Encryption Algorithms

In principle any encryption scheme can be used with SRTP. As default

algorithms the NULL cipher (no confidentiality) and the Advanced

Encryption Standard in Counter Mode (AES-CTR) are defined. The AES-

CTR encryption setup is shown in Figure (3.1).

Figure 3.1 Encryption using AES in Counter Mode [And04].

AES in counter mode acts as a keystream generator producing a

pseudo-random keystream of arbitrary length that is applied in a bit-wise

fashion to the RTP/RTCP payload by means of a logical XOR function, thus

working as a classical stream cipher. AES itself is a block cipher with a block

size of 128 bits and a key size of 128, 192, or 256 bits. In order to work as a

pseudo-random generator AES is loaded at the start of each RTP/RTCP

packet with a distinct Initialization Vector (IV) that is derived by hashing a

112 bit salt_key, the Synchronization SouRCe identifier (SSRC) of the media

encr_key

IV

keystream generator
AES-CTR

RTP/RTCP payload encrypted payload +

IV=f(salt_key, SSRC, packet index)

 112 bits

128 bits

XOR

Chapter Three: SIP-Based VoIP Security 46

stream and the packet index (header fields of the media packet header).

Encrypting this IV results in an output of 128 pseudo-random bits. Next the

IV is incremented by one and again encrypted, thus generating the next 128

bits of the keystream. By counting the IV up by increments of one as many

keystream blocks can be generated as are required to encrypt the whole

RTP/RTPC payload. Any remaining bits from the last keystream block are

simply discarded.

AES used in counter mode instead of the more common cipher block

chaining mode (CBC) has the big advantage that the keystream can be

precomputed before the payload becomes available thus minimizing the delay

introduced by encryption. And of course by using a stream cipher instead of

block cipher there is no need to pad the payload up to a multiple of the block

size which would add 15 overhead bytes to the RTP/RTCP packet in the

worst case [And04].

3.2.3.2 Session Key Derivation
The encryption algorithm described in sections (3.2.3.1) require secret

symmetric session keys that must be known to all user agents participating in

a SIP session. This raises the logistical problem of session key generation and

distribution.

The SRTP standard offers a partial solution by deriving all needed

session keys from a common master key but leaves open the distribution of

the master key itself. Figure (3.2) shows how the session keys are computed

starting out from a single master key. Again the AES block cipher is used in

counter mode to generate the necessary keying material. The master key

which can have a size of 128, 192, or 256 bits plays the role of the AES

Chapter Three: SIP-Based VoIP Security 47

encryption key. The pseudo-random generator is loaded with an IV that is

itself a function of a 112 bit master_salt value, a one byte label and a session

key number. By applying the labels 0x00 up to 0x05, encryption,

authentication and salting keys for both SRTP and SRTCP are derived from

the same master key. If a key derivation rate has been defined then every time

a number of packets equivalent to the key derivation rate have been sent, a

new set of either SRTP or SRTCP session keys are computed. If the key

derivation rate is set to zero then the same set of keys is used for the whole

duration of the session.

Figure 3.2 Session Key Derivation [And04]

master_key

IV

encr_key

auth_key

salt_key

encr_key

auth_key

salt_key

128 bits

112 bits

160 bits

128 bits

160 bits

112 bits

0x00

0x01

0x02

0x03

0x04

0x05

SRTP
session

keys

SRTCP
session

keys

key derivation
AES-CTR

128 bits
192 bits
256 bits

label

Chapter Three: SIP-Based VoIP Security 48

3.2.3.3 Master Key Distribution
We turn now to the crucial issue of distributing the master key to the

user agents as part of the session initiation where no key management is

defined in SRTP, external key management mechanisms are used to exchange

keys and cipher-suite information and parameters. This makes SRTP used

within a SIP context reliant on external key management protocol or SDP

negotiation. Because of this dependency, and because SRTP is such a useful

protocol for secure real time media transmission purposes, the SDP protocol

is geared towards providing this information to SRTP. This is not to say it

cannot be used with other protocols, but the intended use upon their creation

was with SRTP [Ark05].

By requiring external key management using SRTP creates requirement

for an encrypted exchange of key data which cannot be satisfied by SRTP

itself. However, since SDP tunneling of this information is possible the

encryption of SDP data or SIP messages, which should be present, would also

serve to protect tunneled key agreement information. The benefit of doing

this, in addition to piggyback in the SIP security, is that using the SDP

information makes configuration of or changes to the security mechanisms

easy to implement [Ark05].

3.3 Key Agreement
All types of encrypted communication require both participants to

agree upon how to perform encryption and decryption. Specifically,

participants need to know what crypto-suite, keys and crypto-suite parameters

are being used. To provide these services to protocols that do not themselves

cover this area (such as SRTP or IPsec) key agreement protocols are needed.

Chapter Three: SIP-Based VoIP Security 49

When it comes to exchange of the actual keying information there are a

few well known and common mechanisms used within key management

protocols. These mechanisms are needed because of the paradox that the key

information must not be sent in the clear but the information itself is needed

for encryption. Exactly how these mechanisms are applied is up to the key

management protocol that uses them, but the basics of the methods are

described below [Ark05].

3.3.1 Pre-Shared Key Agreement
It is the most basic of key agreement protocol, pre-shared key requires

that both participants share a secret key. Both participants use this key to

provide an encryption key. The initiator creates and sends a randomly

generated session key encrypted with the generated encryption key and thus

gets access to the session key included in the message.

This mechanism as in figure (3.3) requires of maintaining a shared

secret key with an intended participant. This scheme does not scale well

because each user would need to maintain a key for each possible recipient, in

addition to requiring some means of obtaining these keys. A pre-shared key

scheme is therefore only suitable in a scenario where few users need to

communicate.

Figure 3.3 Pre-Shared Key Agreement Protocol [Ark05]

Initiator
Knows secret key: S
Encryption key ke = g(S)
Session key K = random

MSG = Encrypt K using ke
 or MSG = E(ke, K)

Recipient
Knows secret key: S
Encryption key ke = g(S)

K = MSG decrypted with ke
 or K = D(ke, MSG)

MSG

Chapter Three: SIP-Based VoIP Security 50

Because a pre-shared key can be used for a long period of time, and

because refreshing this key can be arduous, many key exchanges can be

performed using the same key. What this means is that if the secret key is

disclosed to an authorized party all future transactions using that key are

compromised until the key is replaced [Ark05].

3.3.1.1 Feedback Shift Registers
A finite state machine (FSM) consists of finite sets of (internal) states

{s}, input and output alphabets {a} and {b}, an output function T determining

the output

T : (s, a) → b,

and a state function ∑ determining the successor state.

∑ : (s, a) → s* = ∑(s, a).

Given an initial internal state s0, and sequence of input states a0, a1, ...,

the functions T and ∑ determine the output sequence b0, b1, . . . , according to

the recursion

bi = T(si, ai) si +1 = ∑ (si, ai), i = 0, 1, . . .

Figure 3.4 Feedback Shift Register

Figure (3.4) depicts a feedback shift register (FSR) with feedback

function f, an FSM with null input consisting of N stages (each capable of

storing one bit), a feedback register, and a single output port, where

Chapter Three: SIP-Based VoIP Security 51

1. The content of Stage i at time t is si(t) = 0 or 1,

2. The output s0(t) is the content of Stage 0 at time t,

3. The state of the FSR at time t is the N-vector s(t) = (s0(t), s1(t), . . . ,
N of length N with

Th ed

and then

, meaning

, and

 f

case of a

if cN-j = 1, and 0, otherwise, and

0 1(t), . . . , sN-1(t)) = ∑ (cN-nsn(t)),
 N-1

sN-1(t)) € ZN,2 (where ZN,2 is the set of 2 vectors

components 0 or 1), and

4. The feedback value at time t is f (s0(t), s1(t), . . . , sN-1(t)).

e states of the FSR change only when a clocking signal is appli

as follows:

1. The content si(t) of Stage i+1 at time t is shifted to the left

it becomes the new content of Stage i at time t+1; si(t+1) = si+1(t) for

0 <= i < N-1

2. The value f (s0(t), s1(t), . . . , sN-1(t)) in the feedback register at time t

becomes the new content of Stage N-1 at time t+1; sN-1(t+1)= (s0(t),

s1(t), . . . , sN-1(t)).

Figure (3.5) depicts a linear feedback shift register (LFSR), the special

feedback shift register with linear feedback function f

f (s (t), s

where

n=0

1. c0, c1, . . . , cN are the feedback coefficients or taps [c0 = 1],

2. The output of the AND-gate A[j] is the (current) content of Stage j

3. The feedback bit entering Stage N-1 when a clock pulse is applied is

the eXclusive-OR (XOR) of the current outputs of the N AND-

gates.

Chapter Three: SIP-Based VoIP Security 52

Figure 3.5 Linear Feedback Shift Register

The state of the LFSR at times t and t 1 are related by

s(t) = (s0(t), s1(t), . . . , sN-1(t))

s(t+1) = (s (t+1), s (t+1), . . . , s (t+1)). (4.1)

As si(t+1) = si+1(t) for 0 <= i < N-1

s

0 1 N-1

(t+1) = (s (t), s (t), . . . , s (t), s (t), s (t+1)) (4.2)

where

ition in Equation (4.3) being modulo 2. As s0(t+k) = sk(t) for 0<= k <N,

Equation (4.4) is a forward recursion, because the future output s0(t+N)

When N

 N-1

1 2 N-2 N-1 N-1

the add

Equations (4.2) and (4.3) give

 S0(t+N)) = ∑ (cN-ns0(t+n)), 0 <= t < ∞ (4.4)
n=0

 sN-1(t+1)) = ∑ (cN-nsn(t)), (4.3)
 N-1

n=0

is determined by the most recent N outputs (s0(t), (s0(t+1), . . ., s0(t+N-1)).

c = 1, Equation (4.4) may be rearranged such that

Chapter Three: SIP-Based VoIP Security 53

 N outputs (s0(t+1),

(s0(t+2), . . ., s0(t+N)) from time t+1 on determine the past output s0(t).

= 1, the LFSR essentially contains

concatenated with the output of a (N-k)-stage LFSR [Ala07].

Equation (4.5) is a backward recursion, because the
 S

It may always assume that cN = 1, for if cN = cN-1 = … = cN-(k-1) = 0, cN-k

N-k active stages and the output sequence

consists of the k-bit prefix determined by the contents of the leftmost k-stages

0(t)) = ∑ (cN-ns0(t+n)). (4.5)
 N

n=1

Chapter Four
Implementation and Result

4.1 Introduction

Voice over Internet Protocol (VoIP) is a method of using the Internet to

talk to people. It result from implementation of a common networking

infrastructure to carry voice trafic over TCP/IP. This technology can be either

software or hardware; for example, Skype and IP-Phone.

This thesis use SIP as the signaling protocol, SDP as a descriptor

protocol and RTP as the media transport protocol in the application layer. For

the network layer is use absolutely the IP protocol of version (4). As

mentioned previously, the work use only one signaling protocol, which means

the network type is homogenous. The application made by this work is a

voice conversation between two PCs over LAN network. It's programming is

done using unicon version (11.4) (Unified Extended Dialect of Icon)

language, which is high level, goal directed, object oriented, general purpose

applications programming language. More details are found in appendix A.

4.2 Call Control

Call control with SIP gives more facilities, such an easy to scalability

especially when applied on public networks.

Although SIP is a client-server protocol, but it also work as P2P. This

thesis built the application using SIP version (2.0) with P2P communication.

More details are found in (RFC 3261).

http://www.cs.arizona.edu/icon/

Chapter Four: Work and Result 55

4.3 Proposed Structure

The proposed structure of the implementation of this thesis is illustrated

in figure (4.1). This structure is installed in each UA

4.2.1 SIP Structure

To understand how SIP programming is done, it is important to know

that the protocol is consists of four layers, these are:

• Syntax and encoding: it is the lowest layer of SIP. It specifies the SIP

message syntax. Its encoding is specified using an augmented Backus-

Naur Form grammar (BNF) in RFC 2234.

• Transport layer: It defines how a client sends requests and receives

responses and how a server receives requests and sends responses over

the network. Both UAC and UAS have this layer.

• Transaction layer: The transaction layer has a client component

(referred to as a client transaction) and a server component (referred to

as a server transaction). A transaction is a request sent by a client

transaction (using the transport layer) to a server transaction, along with

all responses to that request sent from the server transaction back to the

client. Both UAC and UAS have this layer.

• Transaction User layer (TU): The layer of protocol processing that

resides above the transaction layer. Transaction users include the UAC

core, UAS core, and proxy core (Core designates the functions specific

to a particular type of SIP entity, i.e., specific to either a stateful or

stateless proxy, a user agent or registrar. All cores, except those for the

stateless proxy, are transaction users). The behavior of UAC and UAS

U
A

C
 c

or
e

R
eq

ue
st

 C
re

at
io

n
an

d
G

en
er

at
io

n
C

re
at

io
n

of

C
lie

nt

Tr
an

sa
ct

io
n

Pr
oc

es
s

R
es

po
ns

e

U
A

S
co

re

R
es

po
ns

e
C

re
at

io
n

C

re
at

io
n

of

Se
rv

er

Tr
an

sa
ct

io
n

Pr
oc

es
s

R
eq

ue
st

C
lie

nt
 T

ra
ns

ac
tio

n

IN
V

IT
E

Tr
an

sa
ct

io
n

N
on

-I
N

V
IT

E
Tr

an
sa

ct
io

n

Se
rv

er
 T

ra
ns

ac
tio

n

IN
V

IT
E

Tr
an

sa
ct

io
n

N
on

-I
N

V
IT

E
Tr

an
sa

ct
io

n

C
lie

nt
 T

ra
ns

po
rt

 M
at

ch
 C

lie
nt

Tr

an
sa

ct
io

n
Se

nd
in

g
R

eq
ue

st

R
ec

ei
vi

ng

R
es

po
ns

e

Se
rv

er
 T

ra
ns

po
rt

M
at

ch
 S

er
ve

r
Tr

an
sa

ct
io

n
Se

nd
in

g
R

es
po

ns
e

R
ec

ei
vi

ng

R
eq

ue
st

E
nc

od
in

g

SI
P

M
es

sa
ge

Pa

rs
er

SD

P
Pa

rs
er

IP
-N

et
w

or
k

Fi
gu

re
 4

.1
 Im

pl
em

en
ta

tio
n

St
ru

ct
ur

e

Chapter Four: Work and Result 57

cores are method dependent, there are some common rules for all methods

as it will discuss later.

4.2.1.1 Syntax and Encoding Layer

This layer helps understanding the parse construction of any SIP

message using a standard rules, these rules are described as a tree for better

understand. The doted lines means an optional field while a solid lines refer to

a non-optional field, and the doted curves means (OR) while solid curves

refer to (AND). More details are found in appendix B.

In this layer, trees must be read carefully, it identify how can messages

(request, response) be distinguished as shown in figure (4.2) also identify SIP

methods of requests. The purposes of request methods are indicated in table

(4.1). This work uses only three methods (INVITE, ACK, and BYE).

Response types and there meanings are identified in figure (4.3). Figure

(4.4) through figure (4.9) shows the message header fields.

Table 4.1 Methods Purpose

Method Purpose
INVITE Invites a user to join a call.
ACK Confirms that a client has received a final response to an INVITE.
BYE Terminates the call between two of the users on a call.
OPTIONS Requests information on the capabilities of a server.
CANCEL Ends a pending request, but does not end the call.

REGISTER Provides the map for address resolution, this lets a server know the
location of a user.

SIP message header fields are all case-insensitive except some

parameters for some header fields (ex: value of "branch" parameter for "Via"

header field).

*(
M

es
sa

ge
-h

ea
de

r)

*(
M

es
sa

ge
-h

ea
de

r)

"R
IG

IS
T

E
R

"

R
eq

ue
st

-U
R

I
SI

P-
ve

rs
io

n
SP

SP
C

R
L

F
St

at
us

-c
od

e

"O
PT

IO
N

S"

"C
A

N
C

E
L

"
"B

Y
E

"
"A

C
K

"

R
eq

ue
st

SI
P

m
es

sa
ge

R
es

po
ns

e

"I
N

V
IT

E
"

*(
O

C
T

E
T

)

C
R

L
F

M
es

sa
ge

-b
od

y
C

R
L

F
M

es
sa

ge
-b

od
y

R
eq

ue
st

-li
ne

M
et

ho
d

R
ea

so
n-

ph
ra

se

SP
SP

St
at

us
-li

ne

1*
(D

IG
IT

)
".

"
1*

(D
IG

IT
)

"/
"

SI
P-

ve
rs

io
n

"S
IP

"

*(
O

C
T

E
T

)

Fi
gu

re
 4

.2
 S

IP
 M

es
sa

ge

R
eq

ue
st

-U
R

I

he
ad

er
s

ho
st

po
rt

":
"

*(
ur

i-p
ar

am
s)

tr
an

sp
or

t-
pa

ra
m

us

er
-

pa
ra

m

us
er

na
m

e

us
er

-in
fo

tt
l-

pa
ra

m

he
ad

er

"&
"

*(
do

m
ai

n)

to
pl

ab
l

"."

"S
IP

:"

ho
st

pa

ss

"@
"

":
"

po
rt

do
m

ai
n-

na
m

e
"."

";
"

"?
"

*(
ad

d-
he

ad
er

)

m
et

ho
d-

pa
ra

m

m
ad

dr
-

pa
ra

m

"t
tl=

"
tt

l

hn
am

e
"=

"
hv

al
ue

"m
dd

r=
"

ho
st

 "
m

et
ho

d=
"

m
et

ho
d

IP
v4

-a
dd

r
ho

st
na

m
e

ur
i-p

ar
am

he
ad

er

pa
ss

w
or

d

"u
se

r=
"

IP

ot
he

ru
se

r
"t

ra
ns

po
rt

="

U
D

P
T

C
P

Fi
gu

re
 4

.3
 S

IP
-U

R
I

"
20

0
"

G
lo

ba
l-f

ai
lu

re

St
at

us
-c

od
e

"
60

3
"

"
60

4
"

"
60

6
"

"
60

0
"

"
18

1
"

"
18

2
"

"
18

3
"

"
18

0
"

"
10

0
" Tr
yi

ng

R
in

gi
ng

C

al
l I

s
B

ei
ng

Fo

rw
ar

de
d Q

ue
ue

d
Se

ss
io

n
Pr

og
re

ss

O
K

"
48

1
"

"

48
3

"

"
48

0
"

"
48

6
"

C
lie

nt
-e

rr
or

B
us

y
ev

er
yw

he
re

 D
ec

lin
e

D
oe

s
 n

ot

ex
is

t
an

yw
he

re

N
ot

ac

ce
pt

ab
le

Su
cc

es
s

In
fo

rm
at

io
na

l

"
41

6
"

B
ad

R

eq
ue

st

U
na

ut
ho

riz
ed

R
eq

ue
st

Ti

m
eo

ut

U
ns

up
po

rte
d

U
R

I S
ch

em
e

Te
m

po
ra

ril
y

no
t a

va
ila

bl
e

C
al

l
Le

g/
Tr

an
sa

ct
io

n
D

oe
s N

ot
 E

xi
st

To
o

M
an

y
H

op
s

Pr
ox

y
A

ut
he

nt
ic

at
io

n
R

e q
ui

re
d

B
us

y
H

er
e

"
40

1
"

"

40
7

"

"
40

0
"

"
40

8
"

...

Fi
gu

re
 4

.4
 S

IP
 R

es
po

ns
e

Ty
pe

s

Fi
gu

re
 4

.5
 S

IP
 M

es
sa

ge
 H

ea
de

rs
 (P

ar
t1

)

C
R

L
F

T
O

Fr

om

H
C

O
L

O
N

M

et
ho

d
"C

se
q"

 H
C

O
L

O
N

1*

(D
IG

IT
)

L
W

S
"M

ax
-

fo
rw

ar
ds

"

)
M

es
sa

ge
-h

ea
de

r
(*

M
ax

-f
or

w
ar

ds

C
se

q

to
-s

pe
c

"T
o"

H

C
O

L
O

N

Fr
om

-s
pe

c
"F

ro
m

"
H

C
O

L
O

N

A
dd

-s
pe

c
N

am
e-

ad
dr

...
...

.

*(
to

-p
ar

am
s)

SE
M

I
*(

to
-p

ar
am

s)

ta
q-

pa
ra

m

ge
ne

ri
c-

pa
ra

m

A
dd

-s
pe

c
N

am
e-

ad
dr

ta
q-

pa
ra

m

*(
fr

om
-p

ar
am

s)

1*
(D

IG
IT

)

SE
M

I
*(

fr
om

-p
ar

am
s)

ge
ne

ri
c-

pa
ra

m

 (M
es

sa
ge

-h
ea

de
r)

*

"C
al

l-I
D

"
C

al
l-i

d
H

C
O

L
O

N

V
ia

"V
ia

"
*

(A
dd

-p
ar

am
)

H
C

O
L

O
N

V

ia
-p

ar
am

L
W

S
Se

nt
-b

y
C

O
M

M
A

V

ia
-p

ar
am

*

(A
dd

-p
ar

am
s)

SL
A

SH
 SI
P-

ve
rs

io
n

"S
IP

"
T

ra
ns

po
rt

W
or

d
E

xt
en

si
on

@

W
or

d

H
os

t
ad

dr

H
C

O
L

O
N

Po

rt

Se
nt

-
pr

ot
oc

ol

SM
I

V
ia

-p
ar

am
s

SL
A

SH

"T
C

P"

V
ia

-t
t1

V
ia

-m
ad

dr

V
ia

-r
ec

ei
ve

d
V

ia
-b

ra
nc

h

C
al

l-I
D

"U
D

P"

Fi
gu

re
 4

.6
 S

IP
 M

es
sa

ge
 H

ea
de

rs
 (P

ar
t2

)

Fi
gu

re
 4

.7
 S

IP
 m

es
sa

ge
 H

ea
de

rs
 (P

ar
t3

)

C
O

M
M

A

"C
on

ta
ct

"
C

on
ta

ct
-p

ar
am

*(

A
dd

-c
on

ta
ct

)

*(
A

dd
-p

ar
am

s)

H
C

O
L

O
N

C
on

ta
ct

-p
ar

am

N
am

e-
ad

dr

A
dd

-s
pe

c

C
on

ta
ct

)
M

es
sa

ge
-h

ea
de

r
(

 *

SM
I

qv
al

ue

"q
"

E
Q

U
A

L

c-
q-

p

R
A

Q
U

O
T

L

A
Q

U
O

T

A
dd

r-
sp

ec

di
sp

la
y-

na
m

e

*(
na

m
es

)
qu

ot
ed

-s
tr

in
g

R
eq

ue
st

-U
R

I

L
W

S
to

ke
n

C
on

ta
ct

-p
ar

am
s

c-
p-

ex
pi

re
s

"e
xp

ir
es

"
E

Q
U

A
L

D

el
ta

-s
ec

on
ds

SM
I

E
Q

U
A

L

H
C

O
L

O
N

"C

on
te

nt
-

L
en

gt
h"

1 *

(D
IG

IT
)

C
on

te
nt

-le
ng

th
)

M
es

sa
ge

-h
ea

de
r

(
 *

C
on

te
nt

-T
yp

e

H
C

O
L

O
N

di
sp

-t
yp

e *(
di

sp
-p

ar
am

s)

"C
on

te
nt

-
T

yp
e"

H

C
O

L
O

N

m
ed

ia
-T

yp
e

di
sp

-p
ar

am

ha
nd

lin
g-

pa
ra

m

"a
le

rt
"

"s
es

si
on

"
"r

en
de

r"

ge
ne

ri
c-

pa
ra

m

"h
an

dl
in

g"

va
lu

e

"o
pt

io
na

l"

"r
eq

ui
re

d"

m
-t

yp
e

SL
A

SH

m
-s

ub
ty

pe

SM
I

*(
Pa

ra
m

s)

m
-p

ar
am

di

sc
re

te
-

ty
pe

co

m
po

si
te

-
ty

pe

"a
ud

io
"

"a
pp

lic
at

io
n"

"m
es

sa
ge

"
"m

ul
tip

ar
t"

C
on

te
nt

-
D

is
po

si
tio

n

…
E

Q
U

A
L

m

-
at

tr
ib

ut
e

E
Q

U
A

L

to
ke

n
G

en
-v

al
ue

ho
st

to

ke
n

qu
ot

ed
-s

tr
in

g
m

-
va

lu
e

"C
on

te
nt

-
D

is
po

si
tio

n"

Fi
gu

re
 4

.8
 S

IP
 m

es
sa

ge
 H

ea
de

rs
 (P

ar
t4

)

)
M

es
sa

ge
-h

ea
de

r
(

 *

C
on

te
nt

-L
an

gu
ag

e

H
C

O
L

O
N

C

on
te

nt
-

co
di

ng

*(
co

nt
en

t-
pa

ra
m

s)

"C
on

te
nt

-
L

an
gu

ag
e"

H

C
O

L
O

N

*(
la

ng
-p

ar
am

s)

"C
on

te
nt

-
E

nc
od

in
g"

C
on

te
nt

-E
nc

od
in

g

la
ng

ua
ge

-
ta

g

pr
im

ar
y-

ta
g

*(
su

b-
ta

gs
)

C
O

M
M

A

la
ng

ua
ge

-
ta

g

1*
8

(A
L

Ph
A

)
"-

"
1*

8
(A

L
Ph

A
)

C
O

M
M

A
to

ke
n

C
on

te
nt

-
co

di
ng

Fi
gu

re
 4

.9
 S

IP
 m

es
sa

ge
 H

ea
de

rs
 (P

ar
t5

)

Fi
gu

re
 4

.1
0

SI
P

m
es

sa
ge

 H
ea

de
rs

 (P
ar

t6
)

)
M

es
sa

ge
-h

ea
de

r
(

 *

Su
pp

or
te

d

H
C

O
L

O
N

M

et
ho

d
*(

ad
d-

m
et

ho
d)

"S

up
po

rt
ed

"
H

C
O

L
O

N

A
dd

-t
ag

"A

llo
w

"

A
llo

w

C
O

M
M

A

O
pt

io
n-

ta
g

M
or

e-
ta

gs

C
O

M
M

A
M

et
ho

d

to
ke

n

to
ke

n

O
pt

io
n-

ta
g

1*
(D

IG
IT

)

us
er

na
m

e
se

ss
-id

Pr
ot

o-
ve

rs
io

n

an
no

un
ce

m
en

t

C
R

L
F

"v
="

ne
tt

yp
e

SP
SP

"o
="

se

ss
-v

er
si

on

SP
SP

ad
dr

ty
pe

SP

ad
dr

C

R
L

F

O
ri

gi
n-

fie
ld

1*
(D

IG
IT

)
1*

(D
IG

IT
)

"I
N

"
"I

Pv
4"

IP

v4
ad

dr
es

s

1*
3

(D
IG

IT
)

1*
3

(D
IG

IT
)

1*
3

(D
IG

IT
)

1*
3

(D
IG

IT
)

".
"

".
"

".
"

 F
ig

ur
e

4.
11

 S
D

P
M

es
sa

ge
 (P

ar
t1

)

an
no

un
ce

m
en

t

em
ai

l

te
xt

C

R
L

F
"s

="

em
ai

l
"(

"
E

m
ai

l-s
af

e

U
R

I-
fie

ld

te
xt

C

R
L

F
"i

="

E
m

ai
l-a

dd
re

ss

C
R

L
F

"e
="

*(
em

ai
l-f

ie
ld

s)

In
fo

rm
at

io
n-

fie
ld

Se

ss
io

n-
na

m
e-

fie
ld

")
"

em
ai

l
"<

"
E

m
ai

l-s
af

e
">

"

E
1

E
2

Fi

gu
re

 4
.1

2
SD

P
M

es
sa

ge
 (P

ar
t2

)

U
R

I-
fie

ld

C
R

L
F

ur
i

"u
="

ia
lp

ha

vo
id

A

dd
-p

at
h U
R

I

ur
i-f

ra
gm

en
t

"#
"

fr
ag

m
en

tid

"/
"

pa
th

"?
"

se
ar

ch

se
ar

ch
in

g
pa

th

":
"

sc
he

m
e

xa
lp

ha
s

A
dd

-s
ea

rc
h xa

lp
ha

s

se
ar

ch

"+
"

Fi
gu

re
 4

.1
3

SD
P

M
es

sa
ge

 (P
ar

t2
) C

on
tin

ue
d

N
am

e-
ad

dr
es

s-
sp

ec

"<
"

A
dd

re
ss

-s
pe

c
">

"

em
ai

l

A
dd

re
ss

-s
pe

c

"@
"

do
m

ai
n

w
or

d
*(

ad
d-

w
or

d)

L
oc

al
-p

ar
t

R
ou

te
-a

dd
r

1*
w

or
d

su
bd

om
ai

n
*(

A
dd

-s
ub

do
m

ai
n)

w
or

d
".

"
".

"
su

bd
om

ai
n

D
om

ai
n-

re
f

D
om

ai
n-

lit
er

al

at
om

"[

"
*(

ad
d-

te
xt

)
"]

"

dt
ex

t
Q

uo
te

d-
pa

ir

Fi
gu

re
 4

.1
4

SD
P

M
es

sa
ge

 (P
ar

t2
) C

on
tin

ue
d

Fi
gu

re
 4

.1
5

SD
P

M
es

sa
ge

 (P
ar

t3
)

an
no

un
ce

m
en

t

"I
Pv

4"

SP

"I
N

"

IP
v4

ad
dr

es
s

ad
dr

co
nn

ec
tio

n-
ad

dr
es

s
C

R
L

F
SP

1*
(D

IG
IT

)
1*

(a
lp

ha
nu

m
)

*(
ba

nd
w

id
th

-f
ie

ld
s)

co

nn
ec

tio
n-

fie
ld

"b
="

bw

ty
pe

":

"
ba

nd
w

id
th

ne

tt
yp

"c

="

ad
dr

ty
pe

C

R
L

F

an
no

un
ce

m
en

t

SP

Z
on

e-
tim

e

C
R

L
F

*(
A

dd
-

tim
e)

K
ey

-f
ie

ld

1*
(t

im
e-

fie
ld

)
"k

="

K
ey

-t
yp

e

St
ar

t-
tim

e
"t

="

St
op

-
tim

e

C
R

L
F

"p
ro

m
pt

"
K

2

ke
yd

at
a

"b
as

e6
4:

"

K
1 ke

yd
at

a
"c

le
ar

:"

C
R

L
F

Z
on

e-
ad

je
st

m
en

t

Se
ss

-t
im

e

C
R

L
F

R
ep

ea
t-

fie
ld

s

re
pe

at
-in

te
rv

al

"r
="

2*

(m
or

e-
tim

e)

ty
pe

d-
tim

e
SP

Fi
gu

re
 4

.1
6

SD
P

M
es

sa
ge

 (P
ar

t4
)

K
3

"u
ri

:"

U
R

I

Z
on

e-
ad

je
st

m
en

t

SP

(a
dd

-t
im

e)
*

T
yp

ed
-

tim
e

tim
e

"-
"

Fi
xe

d-
le

n-
tim

e-
un

it
1*

(D
IG

IT
)

9*
(D

IG
IT

)
PO

S-
D

IG
IT

"h
"

"s
"

"d
"

"m
"

SP

T
im

e-
ty

pe
d

tim
e

SP

" -
"

Fi
gu

re
 4

.1
7

SD
P

M
es

sa
ge

 (P
ar

t4
) C

on
tin

ue
d

an
no

un
ce

m
en

t

*(
m

ed
ia

-d
es

cr
ip

tio
ns

)

In
fo

rm
at

io
n-

fie
ld

*(
co

nn
ec

tio
n-

fie
ld

)

"m
="

m

ed
ia

m
ed

ia
-

fie
ld

po
rt

A

dd
-

nu
m

SP

SP

pr

ot
o

"/
"

in
te

ge
r

*(
at

tr
ib

ut
e-

fie
ld

s)

at
t

at
t-

fie
ld

at
tr

ib
ut

e
C

R
L

F
"a

=

1*
(a

lp
ha

nu
m

)
":

"
at

t-
va

lu
e

at
t-

fie
ld

K
ey

-
fie

ld

B
an

dw
id

th
-

fie
ld

s
at

tr
ib

ut
e-

fie
ld

s

1*
(a

lp
ha

nu
m

)
SP

fm

t

1*
(f

or
m

at
s)

1*
(a

lp
ha

nu
m

)

Fi
gu

re
 4

.1
8

SD
P

M
es

sa
ge

 (P
ar

t5
)

Chapter Four: Work and Result 75

SIP message body might be a descriptor (SDP). Its syntax tree is shown

in figure (4.11) through figure (4.17). SDP fields' names are all small letters

and fields' bodies are case-insensitive.

To parse SIP protocol messages, it can use the procedure (4.1).

4.1 SIP Message Parser

Step A: Create an SIP message structure which consist of several header

fields' structures, the first line structure (request line, or status line),

and field to save the Message body contents.

Step B: Parse the first line (request-line, or status-line) to distinguish if it is a

request or response message respectively.

Step C: Because of each header field is in only one line ending with Carriage

Return Line Feed (CRLF), so parse the first token of each line.

From this it will have a list of all header field names included in the

message header. Also the condition below must be executed:

If not understanding a header field name and it is not mandatory

header field Then

Ignore this header field.

Else Silently discard the message.

Step D: Parse the body for first "Via" header field and the other mandatory

header fields.

If any parameter of a header field is not understood Then

Ignore the parameter.

Step E: To parse SIP message body, check the following:

If "Content-Disposition" header field is exist Then

Chapter Four: Work and Result 76

If "Content-disposition" header field body doesn't parsed

Then

Parse "Content-disposition" header field body.

If content-disposition is "session" Then

 Parse the body using SDP syntax.

Else If "Content-Type" has media type is "application" and media

subtype is "sdp" Then

 Parse the body using SDP syntax.

Else if "Content-Type" has media type is "audio" Then

Copy the content of SIP message body to a

(.wav) file type.

A valid SIP request formulated by a UAC must, at a minimum contains

the following header fields: To, From, CSeq, Call-ID, Max-Forwards, and

Via; all of these header fields are mandatory in all SIP requests. These six

header fields are the fundamental building blocks of a SIP message. Parsing

only mandatory header fields as a beginning, this is because of other header

fields may not needed, so parsing only the necessary header fields and the rest

can be requested to be parsed as needed.

Step (D) is carried out when SIP message body information is needed

in processing. SIP protocol must support SDP protocol, because it is the

default descriptor protocol. So that, parsing process of SDP is will be put it

within the parsing layer of SIP.

To parse an SDP messages that resides in SIP message body, follow the

steps in procedure (4.2).

Chapter Four: Work and Result 77

4.2 SDP Parser

Step A: create two data structure, one for saving session description and the

other is for media description of that session.

Step B: parse all SDP header fields in the same order as shown in SDP

message tree.

4.2.1.2 Transport Layer

The transport layer is responsible for the actual transmission of requests

and responses over network. It is used for managing persistent connections for

transport protocols like TCP, and UDP. This includes connections opened by

the client or server transports, so that connections are shared between client

and server transport functions. Also, this layer filters requests and responses

according to procedures (4.3, 4.4). These procedures matching the request or

response to a transaction they belong to.

4.3 Match Response to Client transaction (match_CT)

If "branch" in response = "branch" of the first "Via" in request that

creates the transaction and "Cseq" method of response = "Cseq" of

the request Then

Response is match to that client transaction.

4.4 Match Request to Server Transaction (match_ST)

If "branch" in first "Via" in received request = "branch" in the transaction

Chapter Four: Work and Result 78

and "sent-by" in first "Via" in received request = "sent-by" in the

transaction and request method in received request = request method in

the transaction of the original request Then

 Request is matched to that server transaction.

Now Procedures described later are the processing steps in transport

layer for UAC and UAS.

• UAC: client side of the transport layer is responsible for:

Sending request

The request is received from the client transaction of caller to be

sending to the transport layer of UAS of callee. The process is as in

procedure (4.5).

4.5 Sending Request

Step A: Insert "sent-by" parameter in first "Via" header field (IP

address of caller, and port=5060).

Step B : If destination address is multicast Then

Add "maddr" parameter in "Via" header field.

"maddr" = destination multicast address.

If IPv4 Then

Add "ttl" parameter

"ttl" = 1

Step C : If message size > 1300 byte Then

"transport" parameter in "Via" header field = "TCP".

Else "transport" parameter in "Via" header field = "UDP".

Chapter Four: Work and Result 79

Step D : Open connection using destination (IP, port, transport).

Step E : Send the request.

 If error happens in sending Then

Inform transaction layer.

"sent-by" is useful when UAS send response in a new connection

(different than connection that send request). Port (5060) is used with

TCP, or UDP transport protocol. It is considered as a well-known port

for VoIP application.

The opened connection is preferred to still opened and waiting to

receive response on it. This is to made something called a transaction

Receiving response

The response is received from the transport layer of the callee and

sends it to the client transaction of the caller. The process is as in

procedure (4.6).

4.6 Receiving Response

Step A: Receive response from an opened connection that used to send

the request. UAC might prepare to receive any response in

any IP, port, and transport. When this connection accepted by

the transport layer for receiving the response, it almost does

not used again.

Step B: If "sent_by" of the response = "sent_by" of the original

request Then

If match_CT ("sent-by") Then

Chapter Four: Work and Result 80

 Pass to the matched transaction.

Else Pass to the core in TU layer.

Else Discard the response.

• UAS: server side of the transport layer is responsible for:

Receiving Request

The request is received from the transport layer of UAC of caller

to be sent to the client transaction or to TU layer of the callee.

Sometimes requests are received from transport layer of callee to the

transport layer of the caller (ex: BYE request). The process is as in

procedure (4.7).

4.7 Receiving Request

Step A: UAS must ready to receive any request in any IP, port, and

transport. It is preferred to listen for requests on default port

(5060).

Step B: If "sent-by" has IP address <> source packet IP address Then

Add "received" and set to IP of source packet.

Step C: If match_ST Then

Pass to the matched transaction.

Else Pass to TU.

In step (C) is used to send to TU layer for ACK request, where

were no transaction for ACK, because client transaction is destroyed

after receiving final responses (2xx). So ACK request has its own

transaction other than INVITE request transaction.

Chapter Four: Work and Result 81

Sending Response

Responses are received from client transaction of callee. Through

the transport layer of callee, responses will send to transport layer of

caller. The process is as in procedure 4.8.

4.8 Sending Response

Step A: If sent-protocol = "TCP" Then

If connection that sends the request is still exist Then

Send response on the same connection.

Else Open new connection using IP in "received", port

from "sent-by" or using default port (5060).

Send response.

Else If first "Via" has "maddr" Then

Send response using IP in "maddr", port in "sent-

by" or default port (5060).

Else If "received" is exist Then

 Send response using IP in "received, port in

"sent-by" or default port (5060).

Else send response using IP and port in "sent-by".

Step B: If error happens in sending Then

Inform transaction layer.

4.2.1.3 Transaction Layer

UAC executes the client transaction, which sends the request to a

server transaction that is executed in UAS. Processing of both client

transaction and server transaction are method dependent (INVITE, or Non-

INVITE).

Chapter Four: Work and Result 82

• Client Transaction

The client transaction is responsible for:

1. Receive request from TU, then reliably deliver the request to a server

transaction.

2. Receiving responses and delivering them to TU.

3. Filter any response (retransmission or disallowed).

4. In case of INVITE request, it will generate (ACK request) for any final

response accepting 2xx response

INVITE Client Transaction

The INVITE transaction consists of a three-way handshake:

1. The client transaction sends an INVITE.

2. Receive responses from server transaction.

3. The client transaction sends an ACK.

The procedure (4.9) which illustrated in figure (4.19) uses some timer

as in table (4.2) that summarizes the meaning and defaults of the various

timers used by this specification.

Table 4.2 Table of Timer Values

Timer Value Meaning

T1 500ms Estimate of round-trip time

Timer_A initially T1 INVITE request retransmit interval, for UDP only

Timer_B 64*T1 INVITE transaction timeout timer

Timer_D > 32s for UDP,
0s for TCP

Wait time for response retransmits

Chapter Four: Work and Result 83

4.9 INVITE-Client Transaction

Step A: Calling state

Step A.1: Receive INVITE request and its transaction from TU

T1 = 500 ms

Timer_B = 64*T1

Step A.2: If "transport" in first "Via" = "UDP" Then

Send the received request to transport layer

If error in sending request Then

Inform TU

Go to Terminated state

Timer_A = T1

Repeat until (Timer_B is fires or receive a

response)

 If Timer_A is fires Then

Resend the request to the transport

layer.

If error in sending request Then

 Inform TU.

 Go to Terminated state.

Timer_A = T1*2

T1 = Timer_A

Go to Step A.4.

 Else Send the request to the transport layer.

Step A.3: If a response (100-199) is received Then

 Send the response to TU.

Go to Proceeding state.

Chapter Four: Work and Result 84

Calling

Proceeding

Completed

Terminated

INVITE from TU

100-199
response

200-299
response

100-199
response

200-299
response

300-699
response

Figure 4.19 INVITE Client Transaction

Timer A fires

Transport
error

300-699
response

300-699, 200-299
responses

Timer D fires
Timer B fires
or Transport
error

Chapter Four: Work and Result 85

If a response (300-699) is received Then

 Create_ACK.

 Send ACK to transport layer.

 If error in sending request Then

 Inform TU.

 Go to Terminated state.

 Send the response to TU.

 Go to Completed sate.

If a response (200-299) is received Then

 Send the response to TU.

 Go to Terminated state.

Step A.4: If Timer_B is fires Then

 Advertise TU of transaction timeout.

 Go to Terminated state.

Else Go to Step A.3

Step B: Proceeding state

Step B.1: If a response (100-199) is received Then

 Send the response to TU.

If a response (300-699) is received Then

 Create_ACK.

 Send ACK to transport layer.

 Send the response to TU.

 Go to Completed state.

If a response (200-299) is received Then

 Send the response to TU.

 Go to Terminated state.

Chapter Four: Work and Result 86

Step C: Completed state

Step C.1: If "transport" in first "Via" = "UDP" Then

Timer_D = 32 sec.

 Else Timer_D = 0 sec.

Step C.2: If a response (300-699) is received for the first time Then

 Pass the response to TU.

 Create_ACK.

 Save ACK.

 Send ACK to transport layer.

 If error in sending request Then

 Inform TU.

 Go to Terminated state.

Else Resend ACK.

 If error in sending request Then

 Inform TU.

 Go to Terminated state.

 Discard the response.

If a response (200-299) is received Then

 Pass the response to UAC core in TU.

Step C.3: If Timer_D is fires Then

 Advertise TU for timeout of transaction.

 Go to Terminated state.

Step D: Terminated state

Step D.1: Destroy the client transaction.

Chapter Four: Work and Result 87

Non-INVITE Client Transaction

The procedure (4.10) which illustrated in figure (4.20) uses some timer

as in table (4.3) that summarizes the meaning and defaults of the various

timers used by this specification.

Table 4.3 Timer Values

Timer Value Meaning

T1 500 ms. Estimate of round-trip time

T2 4 s. The maximum retransmit interval for non-INVITE
requests

T4 5 s. Maximum duration a message will remain in the
network

Timer_E initially T1 Non-INVITE request retransmit interval, for UDP only

Timer_F 64*T1 Non-INVITE transaction timeout timer

Timer_K T4 for UDP,

0s for TCP

Wait time for response retransmits

4.10 Non-INVITE Client Transaction

Step A: Trying state

Step A.1: Receive Non-INVITE request and its transaction from TU.

T1 = 500 ms

 Timer_F = 64*T1

 Send the request to transport layer.

 If error happens in sending Then

 Inform TU.

 Go to Terminated state.

Step A.2: If "transport" in first "Via" = "UDP" then

 Timer_E = T1

Chapter Four: Work and Result 88

 T2 = 4 sec.

 Repeat until (Timer_F is fires or receive a

 response)

 If Timer_E is fires Then

 Resend request to transport layer

 If error happens in sending Then

 Inform TU

 Go to Terminated state

 T1 = Min(2*T1,T2)

 Timer_E = T1

 If Timer_F is fires Then

 Advertise TU of transaction timeout

 Go to Terminated state

 Else Send request to transport layer

 If error happens in sending Then

 Inform TU.

 Go to Terminated state.

Step A.3: If a response (100-199) is received Then

 Send the response to TU.

 Go to Proceeding state.

 If a response (200-699) is received Then

 Send the response to TU.

 Go to Completed state.

Chapter Four: Work and Result 89

Trying

Proceeding

Completed

Terminated

Request from TU

Timer E fires

Timer F fires
or Transport error

100-199 response

100-199 response

200-699
response

Figure 4.20 Non-INVITE Client Transaction

Timer E fires

200-699
Response

Timer K

Timer F fires
or Transport error

Chapter Four: Work and Result 90

Step B: Proceeding state

Step B.1: If Timer_E is fires Then

 Resend the request to transport layer.

 If error happens in sending Then

 Inform TU.

 Go to Terminated state.

 Timer_E = T2

Step B.2: If a response (200-699) is received Then

 Send the response to TU.

 Go to Completed state.

 If a response (100-199) is received Then

 Send the response to TU.

Step B.3: If Timer_F is fires Then

 Advertise TU of transaction timeout.

 Go to Terminated state.

Else Go to Step B.1

Step C: Completed state

Step C.1: T4 = 5 sec.

If "transport" in first "Via" = "UDP" Then

 Timer_K = T4

 Else Timer_K = 0

Step C.2: Discard all received responses from server transaction

Step C.3: If Timer_K is fires Then

 Go to Terminated state

Chapter Four: Work and Result 91

Step D: Terminated state

Step D.1: Destroy the client transaction

• Server Transaction

The server transaction is responsible for:

1. Receive request from (transport layer) and deliver them to TU.

2. Filter any request retransmissions from the network.

3. Accepts responses from TU and deliver them to transport layer.

4. In case of (INVITE transaction), it absorbs the ACK request for any

final response (non-1xx) excepting response (2xx).

INVITE Server Transaction

The procedure (4.11) as shown in figure (4.21) has number of timers

there meaning in table (4.4)

 Values of timers

Timer Value Meaning

T1 500 ms. Estimate of round-trip time

T2 4 s. The maximum retransmit interval for non-
INVITE requests

T4 5 s. Maximum duration a message will remain in
the network

Timer_G initially T1 Non-INVITE request retransmit interval, for
UDP only

Timer_H 64*T1 Non-INVITE transaction timeout timer

Timer_I T4 for UDP, 0s for TCP Wait time for response retransmits

Chapter Four: Work and Result 92

4.11 INVITE Server Transaction

Step A: Proceeding state

Step A.1: T1 = 500 ms

 If receive new INVITE request from transport layer Then

 Pass the request to TU.

 T = 200 ms

 If T is fires Then

 Create response (100).

 Send response (100) to transport layer.

 If rereceive INVITE request from transport layer Then

Resend last response received from TU to

transport layer.

Step A.2: If a response (100-99) is received from TU Then

 Send the response to transport layer.

 If a response (200) is received from TU Then

 Send the response to transport layer.

 Go to Terminated state.

 If a response (300-699) is received from TU Then

 Send the response to transport layer.

 If "transport" in first "Via" = "UDP" Then

 Timer_G = T1

 Else Timer_G = 0

 Go to Completed state

Step B: Completed state

Step B.1: Timer_H = 64 * T1

Chapter Four: Work and Result 93

Proceeding

Completed

Confirmed

Terminated

INVITE from transport layer

INVITE
request

200-299 from TU

300-699 from TU

Figure 4.21 INVITE Server Transaction

INVITE
request

Timer H fires or Transport
ACK

Timer I fires

Transport error inform TU

Timer G fires

100-199 from TU

Chapter Four: Work and Result 94

If Timer_G is fires Then

 Resend response (300-699) to transport layer.

 Repeat until (Timer_H is timeout or receive a

ACK request)

 If Timer_G is fires Then

 Resend response (300-699) to

 transport layer.

 If error happens in sending Then

 Inform TU.

 Go to Terminated state.

 T1 = Min(2*T1,T2)

 Timer_G = T1

 Go to Step B.4

Step B.2: If rereceive INVITE request from transport layer Then

 Resend last response received from TU

to transport layer

Step B.3: If receive ACK request Then

 Timer_G = 0

 Go to Confirm state

Step B.4: If Timer_H is fires Then

 Advertise TU for transaction failure.

 Go to Terminated state.

Else Go to Step B.2

Chapter Four: Work and Result 95

Step C: Confirm state

Step C.1: Timer_I = T4

 If Timer_I is fires Then

 Go to Terminated state.

Step D: Terminated state

Step D.1: Destroy the server transaction

Non-INVITE Server Transaction

The procedure (4.12) as shown in figure (4.22) has one timer

(Timer_J is useful for controlling transaction timeout).

4.12 Non-INVITE Server Transaction

Step A: Trying state

Step A.1: Receive Non-INVITE (not an ACK request) from transport layer

along with transaction it belongs to.

Step A.2: If a response (100-199) is received from TU Then

 Send the response to transport layer.

 Go to Proceeding state.

 If a response (200-699) is received from TU Then

 Send the response to transport layer.

 Go to Complete state.

Step B: Proceeding state

Step B.1: If Non-INVITE request (not ACK request) is received Then

 Send last response to transport layer

Chapter Four: Work and Result 96

Trying

Proceeding

Completed

Terminated

Request
received 100-199 from TU

100-199 from
TU

Figure 4.22 Non-INVITE Server Transaction

200-699 from TU

Timer J fires

Request received

200-699 from TU

Transport error

Transport error

Request
received

Chapter Four: Work and Result 97

Step B.2: If a response (100-199) is received from TU Then

 Send the response to transport layer.

 If error happens in sending Then

 Inform TU.

 Go to Terminated state.

 If a response (200-699) is received from TU Then

 Send the response to transport layer.

 If error happens in sending Then

 Inform TU.

 Go to Terminated state.

 Go to Complete state.

Step C: Completed state

Step C.1: If "transport" in first "Via" = "UDP" Then

 Timer_J = 64*T1

 Else Timer_J = 0

Step C.2: If receive Non-INVITE request Then

 Send final response to transport layer.

 If error happens in sending Then

 Inform TU.

 Go to Terminated state.

Discard any other received responses (200-699).

Step C.3: If Timer_J is fires Then

 Inform TU of transaction timeout.

 Go to Terminated state.

Chapter Four: Work and Result 98

Step D: Terminated state

Step D.1: Destroy the server transaction

4.2.1.4 Transaction User Layer

Here is the processing behavior of UAC and UAS.

UAC : client side of the transaction user layer is responsible for:

• Creating or Generating Request

For creating a request for the first time, follow the steps of procedure (4.13).

4.13 Create a Request

Step A: Case "Request-URI": Initiated by same value of "To"

 Set version by 2.0

Case "To": take value by different ways

• Human interface, or

• Choose from address book

Case "From": Initiated by the current user address

 Add "tag" parameter

Case "Call-ID": Generate a unique text

Case "Cseq": Choose unsigned integer 32-bit random number>0

 Initiate method by the same method of the request

Case "Max-Forwards": initiated by 70

Case "via": Set the protocol name by "SIP

 Set version by 2.0

 A:= Generate a unique text

 Add "Branch" parameter and set it with value of

Chapter Four: Work and Result 99

 ("z9hg4bk" && A)

Case "Contact": initiated by same value of "To"

Case "Supported": list the supported features

Step B: if creating an initial INVITE request , follow these steps

Step B.1: construct a general request.

Step B.2: Allow = "INVITE", "ACK", "BYE"

Supported = empty

Step B.3: Add headers for description body

Content-Disposition = "session"

 Parameter "handling" = "required"

Content-Length = no. >= 0

Content-Type = "application/sdp"

Step B.3: Add an offer SDP description to body of INVITE request. Add key

field in media description, it has value of master key, encrypted by

linear feedback shift register (LFSR) as illustrated in chapter (3)

section (3.3.1.1).

Step C: Create a client transaction by saving values of ("branch" of the first

"Via", and "Cseq" of the first "Via"), add it to the list of client

transactions.

For generating a request, usually an ACK request message, do the

following:

4.14 Generating a Request

Step A: Add request line, which means adding method name, request URI =

destination IP address, and SIP version (2.0).

Chapter Four: Work and Result 100

Step B: Add mandatory header fields

Add "Via" header field
To = add user name and (may or may not add final destination IP

address)

From = IP address of user that created the request

 Add "tag" parameter

Call-ID = unique text for each call (case-sensitive)

Cseq = add same method name that added in first line

add random number <=(0< I >= 2^31)

Max-Forwards = 70

Contact = final destination IP address

4.15 Generate ACK Request (Create_ACK)

Step A: Set "Call-ID", "From", and "Request-URI" in ACK request to same

values exist in the request sent by client transaction.

Set "To" in ACK request to same value of "To" in the response to

be acknowledged.

Set "Via" of ACK to the value of the first "Via" in the original

request.

Set "Cseq" number to that "Cseq" in the original request.

Set "Cseq" method to "ACK".

Step B: Add "Tag" parameter to "To" header field of ACK request.

 If INVITE request has "Route" header field Then

Set "Route" of ACK request to the value if "Route" in INVITE request.

Step C: Create a client transaction by saving values of ("branch" of the first

Chapter Four: Work and Result 101

"Via", and "Cseq" of the first "Via"), add it to the list of client

transactions.

• Processing Response

UAS process all responses as in procedure (4.16) except the

retransmitted responses.

4.16 Processing Response

If there is more than one "Via" header field Then

 Discard the response

 Exit

Else If unrecognized provisional response different than 100 Then

 Process responses (100 and 183)

 Exit

If response is within 3xx Then

 Initiate target set with "Request-URI" value of the

original request

to make request based on this response do the following

 While target set is not empty do

 Set "Request-URI" of request by the value of URI in

 target set

 If connection is failed Then

 Take new value from target set

 Begin a new transaction for request

 If all connections are failed Then

 The request is failed

Chapter Four: Work and Result 102

 Generate response with status code >399

"To" of response = "To" of original request

"From" of response = "From" of original request

"Call-ID" of response = "Call-ID" of original request

Construct the new request

Send the Request

If response within (400-499) Then

 If response (401 or 407) Then

 UAC must use authorization procedure

 If response (413) Then

 Retry request by omitting msg. body OR use smaller

 body

 If response (415) Then

 Retry send request within media type, encoding, and

 languages that supported by UAS

 If response (416) Then

 Retry send request within using SIP-URI

 If response (420) Then

 Retry send request by omitting any extension listed in

 "Unsupported"

UAS: server side of the transaction user layer process request and create

responses as in procedure (4.17).

4.17 Process Request or Create a Response

Step A: method inspection

If request method doest not supported by UAS Then

Chapter Four: Work and Result 103

 Generate response (405)

 Add "Allow" header field listing the allowed methods

Else Go to step3

Step B: header inspection

 If extension header field is not supported or understood Then

 Ignore this header field

 If malformed header field & it not necessary in process Then

 Ignore this header field

 If "Require" header field is present Then

 Ignore this header field

 If not recognize URI of "To" or it not known add. Or it not the current

user of this UAS Then

 Accept the request

 If reject the request Then

 Generate response (403)

 Pass response to server transaction

 If "Request-URI" use scheme not supported Then

 Reject request with response (416)

Else if "Request-URI" does not identify add. Accepted by UAS Then

 Reject request with response (404)

 If no "tag" in "To" Then

 If ("tag" of "From" & "Call-ID" & "Cseq") match with

 ongoing transaction & not matched that transaction Then

 Generate response (482)

 Pass response to server transaction

 If it is the proper UAS to process request &

Chapter Four: Work and Result 104

 "Require" is present & "option-tag" does not understood Then

 Generate response (420)

 Add "Unsupported" and list it with unsupported

 options

Step C: Content processing

 If "Content-type" is not understood & msg. body is not

 optional as indicated in "Content-disposition" Then

 Reject request with response (415)

 Add "Accept" and list the accepted types

 Else If "Content-encoding" is not understood & msg. body is

 not optional as indicated in "Content-disposition"

 Then

 Reject request with response (415)

 Add "Accept-encoding" and list the accepted

 encodings

 Else If "Content-language" is not understood & msg.

 body is not optional as indicated in "Content-

 disposition" Then

 Reject request with response (415)

 Add "Accept-language" and list the accepted

 languages

Step D: Apply extensions

 If no "Supported" in request Then

 Generate response (421)

 Add "Require" to the response

Step E: Processing request

Chapter Four: Work and Result 105

 If INVITE request Then

 If user accepts the call Then

 If INVITE req. has session description Then

 If all description parameters is understood Then

 Accept the request

 Generate response (200)

 Add "Allow" header field

 Add "Supported" header field

Pass response (200) to transport layer, this is

done directly to not destroy the server

transaction.

 Else Generate response (200) and must contain an offer (SDP

description contain Key field encrypted using LFSR as

illustrated in chapter (3) section (3.3.1.1).

 Add "Allow" header field

 Add "Supported" header field

Pass response (200) to transport layer, this is done directly to

not destroy the server transaction.

If user not willing or able to answer the call Then

 Generate response (486)

 Pass the generated response to server transaction

 If user reject the call Then

 Generate response (488)

 Pass the generated response to server transaction

 If ACK request Then

 Open media connection

Chapter Four: Work and Result 106

 If BYE request Then

 Close the media connection

 Generate response (200)

Step F: Generating response

If non-invite request Then

Generate final response (200) and add the SDP answer

 If response (100) Then

 Copy "timestamp" of request to response (100)

 If there is a delay in response generation Then

 Delay time + timestamp

 "From" of response = "from" of request

 "Call-ID" of response = "Call-ID" of request

 "Cseq" of response = "Cseq" of request

 "Via" values of response = "Via" values of request

 If request has "tag" in "To" Then

 "To" of response = "To" of request

 Else URI of "To" of response = URI of "To" of request

 Add "tag" to "To" of response

Step G: Create a server Transaction by saving values of ("branch" of the first

"Via", "sent-by" of the first "Via", and request method), add it to the

list of server transactions.

Step H: send response to transport layer

4.3 Result of Work

Simple version of UserA invites UserB to an SIP session. It begins by

examining the details of session setup as in figure (4.19).

Chapter Four: Work and Result 107

Message1:

INVITE sip:UserB@192.168.0.2 SIP/2.0

Via: SIP/2.0/UDP 192.168.0.1:5060;branch=z9hG4bK74bf9

Max-Forwards: 70

From: UserA <sip:UserA@192.168.0.1>;tag=9fxced76sl

To: UserB <sip:UserB@192.168.0.2>

Call-ID: 3848276298220188511@192.168.0.1

CSeq: 1 INVITE

Contact: <sip:UserA@192.168.0.1>

Content-Type: application/sdp

Content-Length: 151

v=0

o=UserA 2890844526 2890844526 IN IP4 192.168.0.1

s= Meeting

c=IN IP4 192.168.0.1

t=0 0

m=audio 49172 RTP/UDP 0

k=clear:910bc4defa71eb6190008762fca6ae2f1d959e87cdf3c0c5c5076ad38e8

a=rtpmap:0 PCM/8000

Message 2:

SIP/2.0 180 Ringing

Via: SIP/2.0/ UDP 192.168.0.1:5060;branch=z9hG4bK74bf9;

received=192.168.0.1

From: UserA <sip:UserA@192.168.0.1>;tag=9fxced76sl

To: UserB <sip:UserB@192.168.0.2>;tag=8321234356

Chapter Four: Work and Result 108

Call-ID: 3848276298220188511@192.168.0.1

CSeq: 1 INVITE

Contact: <sip:UserB@192.168.0.2>

Content-Length: 0

UserA UserB

Figure 4.23 Invite Session

Message 3:

SIP/2.0 200 OK

Via: SIP/2.0/ UDP 192.168.0.1:5060;branch=z9hG4bK74bf9;

received=192.168.0.1

From: UserA <sip:UserA@192.168.0.1>;tag=9fxced76sl

To: UserB <sip:UserB@192.168.0.2>;tag=8321234356

Call-ID: 3848276298220188511@192.168.0.1

CSeq: 1 INVITE

Fi
gu

re
 4

.2
4

IN
V

IT
E

R
eq

ue
st

Chapter Four: Work and Result 110

Contact: <sip:UserB@192.168.0.2>

Content-Type: application/sdp

Content-Length: 147

v=0

o=bob 2890844527 2890844527 IN IP4 192.168.0.2

s= Meeting

c=IN IP4 192.168.0.2

t=0 0

m=audio 3456 RTP/UDP 0

a=rtpmap:0 PCM/8000

Message 4:

ACK sip:UserB@192.168.0.2 SIP/2.0

Via: SIP/2.0/ UDP 192.168.0.1:5060;branch=z9hG4bK74bd5

Max-Forwards: 70

From: UserA <sip:UserA@192.168.0.1>;tag=9fxced76sl

To: UserB <sip:UserB@192.168.0.2>;tag=8321234356

Call-ID: 3848276298220188511@192.168.0.1

CSeq: 1 ACK

Content-Length: 0

Now a successful set-up sequence is done. INVITE is the only method

in SIP that involves a 3-way handshake with ACK.

Fi
gu

re
 4

.2
5

A
cc

ep
tin

g
IN

V
IT

E
R

eq
ue

st

Chapter Four: Work and Result 112

Message 5:

BYE sip:UserA@192.168.0.1 SIP/2.0

Via:SIP/2.0/ UDP 192.168.0.2:5060;branch=z9hG4bKnashds7

Max-Forwards: 70

From: UserB <sip:UserB@192.168.0.2>;tag=8321234356

To: UserA <sip:UserA@192.168.0.1>;tag=9fxced76sl

Call-ID: 3848276298220188511@192.168.0.1

CSeq: 1 BYE

Content-Length: 0

Message 6:

SIP/2.0 200 OK

Via:SIP/2.0/UDP 192.168.0.2:5060;branch=z9hG4bKnashds7

;received=192.168.0.2

From: UserB <sip:UserB@192.168.0.2>;tag=8321234356

To: UserA <sip:UserA@192.168.0.1>;tag=9fxced76sl

Call-ID: 3848276298220188511@192.168.0.1

CSeq: 1 BYE

Content-Length: 0

Chapter Five
Conclusions and Suggestions for Future

works

5.1 Conclusions

1. While there are some similarities between the protocols in call setup,

there is a philosophy of purpose design for each one. In taking place,

H.323 and SIP as two different encoding protocols. H.323 design and

implementation reflects its PSTN background and heritage, utilizing

binary encoding and reusing parts of Integrated Services Digital

Network (ISDN) signaling, this is because H.323 is base on Signaling

System 7 (SS7) signaling protocol of the PSTN. On the other hand, SIP

was developed with an Internet perspective, this is because of SIP is

based on HTTP 1.1 protocol, designed to be scalable over the Internet

and work in an interdomain way utilizing the full set of Internet utilities

and functions. So SIP with its text encoding, and Internet architecture,

is poised to be the signaling and “rendezvous” protocol of choice for

TCP/IP model.

2. Signaling part of VoIP consist of SIP and it description protocol (SDP),

both of them are text encoding. It observed from the programming

perspective, syntax and encoding layer of SIP takes more time than

other layers. From processing perspective, parsing the total packet for

(new received, or rereceived) makes consuming much more time for

parsing than other layers, so it have to limit parsing process to only the

necessary header fields.

Chapter Five: Conclusions and Suggestions for Future works 114

3. SIP protocol does not have a robust on private networks because of

retransmission of request and responses when using UDP transport

protocol. UDP protocol is the default transport protocol even with

SIPv1.

5.2 Suggestions for Future Works

1. Implement a P2P registration.

2. Implement the SRTP protocol then calculate the QoS that affect for

the implementation of application layer security.

3. Implement SIPS then analyze the security strength.

References

[Ala04] Alan B., Understanding the Session Initiation Protocol, second edition,

Artech House, 2004.

[Ala07] Alan G., Computer Security and Cryptography, John Wiley & Sons,

2007.

[And04] Andreas S., Daniel K., SIP Security, Security Group, 2004.

[Ant06] Antonio R., and Michael C., Cisco Voice over IP, Cisco Press, 2006.

[Ark05] Arkko J., Carrara E., Lindholm F., et.al., Key Management Extensions

for Session Description Protocol (SDP) and Real Time Stream

Protocol (SRTP), Internet Engineering Task Force (IETF), March 2005.

[Bau04] Baugher M., McGrew D., Naslund M., et.al., The Secure Real-time

Transport Protocol (SRTP), RFC 37, Internet Engineering Task Force

(IETF), March 2004.

[Bil00] Bill D., IP Telephony: Integration of Robust VOIP services, Hewlett-

Packard, 2000.

[Chr02] Chris P., Johne A., Anne S., et.al., Cisco CallManager Fundamentals,

Cisco Press, 2002.

[Cli06] Clinton J., and Ziad S., Adding High Level VoIP Facilities to the

Unicon Languag, IEEE, 2006.

[Col03] Colin P., RTP: Audio and Video for the Internet, Pearson Education,

2003.

References 116

[Dav01] David J., Voice over Packet Networks, John Wiley & Sons, 2001.

[Dav05] David A., Analysis and Implementation of TCP Friendly Rate Control

in the Context of VoIP, Royal institute of technology, M.Sc. thesis,

2005.

[Die99] Dierks T., and Allen C., The TLS Protocol Version 1.0, Internet

Engineering Task Force (IETF), January 1999.

[Eri02] Eric K., and Paul J., Configuring Cisco Voice over IP, second edition,

Syngress Publishing, 2002.

[Fre00] Fredrik T., SIP, NAT, and Firewalls, Royal institute of technology,

department of Teleinformatics, M.Sc. thesis, 2000.

[Gon02] Gonzalo C., SIP Demystified, McGraw-Hill, 2002.

[Jam05] James E., Talk is Cheap, O'Reilly Media, 2005.

[Jim02] Jim D., Gerard J., et.al., Voice-over-IP: The Future of

Communications, Global Internet Policy Initiative (GIPI), 2002.

[Joh02] Johann T., Security in VoIP-Telephony Systems, GRAZ university of

technology, department of IP-Telephony, M.Sc. thesis, 2002.

[Joh04] John Q., and Jeffrey T., Taking Charge of Your VOIP Project, Cisco

Press, 2004.

[Jon00] Jonathan D., and James P., Voice over IP fundamentals, Cisco Press,

2000.

[Jor00] Jori L., Voice over IP in networked virtual environments, Maastricht

university, department of Computer Science, PhD thesis, 2000.

http://www.informit.com/safari/author_bio.asp?ISBN=1587200929
http://www.informit.com/safari/author_bio.asp?ISBN=1587200929
http://www.unimaas.nl/
http://www.unimaas.nl/

References 117

[Jos05] Josué A., Using the Session Initiation Protocol as a Networking

Protocol for Home Applications, university of Puerto Rico, department

of Computer Engineering, M.Sc. thesis, 2005.

[Jua07] Juan C., Eduardo B., et.al., Patterns for VoIP Signaling Protocol

Architectures, Florida Atlantic university, department of Computer

Science and Engineering, and university of Oulu, department of

Electrical and Information Engineering, 2007.

[Ken07] Kevin W., Authorized Self-Study Guide Cisco Voice over IP (CVoice),

Cisco Press, 2007.

[Lin04] Lingfen S., Speech Quality Prediction for Voice over Internet Protocol

Networks, university of Plymouth, department of Communications and

Electronics, PH.D. thesis, 2004.

[Pau97] Paul O., and David H. Crocker, Augmented BNF for Syntax

Specifications: ABNF, RFC 2234, Internet Engineering Task Force

(IETF), November 1997.

[Ras99] Rescorla E., Diffie-Hellman Key Agreement Method, RFC 2631,

Internet Engineering Task Force (IETF), 1999.

[Ros02] Rosenberg J., Schulzrinne H., Camarillo G., et.al., SIP: Session

Initiation Protocol, RFC 3261, Internet Engineering Task Force (IETF),

June 2002.

[SC03] Schulzrinne, H.; Casner, S., RTP Profile for Audio and Video

Conferences with Minimal Control, RFC 3551, Internet Engineering

Task Force (IETF), 2003.

References 118

[Sha04] Shamim M., Clinton J., Ray P., et.al., Programming with Unicon, 2004.

 http://www.unicon.org/book/ub.pdf

[Siv01] Sivavakeesar S., Voice over Internet Protocol (VOIP), university of

Surrey, department of Electronic and Electrical Engineering, M.Sc.

thesis, 2001.

[Ted05] Ted W., Switching to VOIP, O'Reilly Media, 2005.

[Tha98] Thayer R., Doraswamy N., and Glenn R., IP Security Document

Roadmap, RFC 2411, Internet Engineering Task Force (IETF),

November 1998.

[Tho06] Thomas P., Jan K., Andy Z., et.al., Practical VOIP security, Syngress,

2006.

[Tim94] Tim B., Universal Resource Identifiers in WWW: A Unifying Syntax

for the Expression of Names and Addresses of Objects on the Network

as used in the World-Wide Web, RFC 1630, Internet Engineering Task

Force (IETF),June 1994

[Zia05] Zian S., High Level Audio Communications API for the Unicon

Language, New Mexico State university, department of Computer

Science, M.Sc. thesis, 2005.

Appendix A: Unicon Language

Unicon is stand for Unified Extended Dialect of Icon, The name unicon

refers to the descendant of Icon. It can be pronounced it either (a) "lexicon", or

(b) is pronounced as if it stands for "un-Icon".

Unicon's predecessor is icon language, a highly portable language; it runs

on everything from mainframes to Unix machines to Amigas and Macs. It is a

very high level, goal-directed, object-oriented, general purpose applications

language. This language is extended with capabilities such as object-oriented

programming and database management that are useful in many programs,

especially larger programs that use the Internet.

In short these are the features of unicon language:-

• Packaging, it is similar to a class with only one instance.

• Loadable child programs

• Ministering of child programs

• Dynamic loading of C modules (some platforms)

• Multiple inheritance

• DBM files can be used associative arrays

• POSIX system interface.

Be aware that unicon performs automatic storage management, also

known as garbage collection. If you have used a language like C or C++, you

know that one of the biggest headaches in writing programs in these languages is

 119

http://www.cs.arizona.edu/icon/

tracking down bugs caused by memory allocation, especially dynamic heap

memory allocation. unicon transparently takes care of those issues for you.

Another big source of bugs in languages like C and C++ are pointers,

values that contain raw memory addresses. Used properly, pointers are powerful

and efficient. The problem is that they are easy to use incorrectly by accident;

this is true for students and practicing software engineers alike. It is easy in C to

point at something that is off-limits, or to trash some data through a pointer of

the wrong type.

Unicon has no pointer types. Instead, all structure values implicitly use

pointer semantics. A reference is a pointer for which type information is

maintained and type safety is strictly enforced.

Unicon's system facilities provide a high-level interface to the most

common features of modern operating systems, such as directories and network

connections. This interface is vital to most applications, and it also presents the

main portability challenges, since unicon has a design goal that most applications

should require no source code changes and no conditional code needed to run on

most operating systems. Of course some application domains such as system

administration are inevitably platform dependent.

This language provides object-oriented programming facilities as a

collection of tools to reduce the complexity of large programs. These tools are

encapsulation, inheritance, and polymorphism. Since a primary goal of unicon is

to promote code sharing and reuse, various specific programming problems have

elegant solutions available in the unicon class library.

 120

Also its string processing facilities are extensive. Simple operations are

very easy, while more complex string analysis has the support of a special

control structure, string scanning. String scanning is not as concise as regular

expression pattern matching, but it is fundamentally more general because the

code and patterns are freely intermixed [Sha04]. There is some main differences

between the C-based lexical analyzer and the Unicon lexical analyzer for this

language include:

• The C lexical analyzer has to process string escapes; Unicon does not

because its output is processed by icont/iconc.

• The C lexical analyzer does not use hash tables, it uses static arrays and

sneaky tricks to make lookups fast.

• The C lexical analyzer has code to worry about Extended Binary

Coded Decimal Interchange Code (EBCDIC)!

• Small inhale, character preprocessor interface: the C version reads 1

character at a time from a function named ppch(), while the Unicon

version was grabbing input from the preprocessor a line at a time using

a single call to a generator (apparently that 1000000 bug was in "dead

code"):

A programming language with built-in VoIP functions can accelerate the

development of voice enabled applications. Most programmers are familiar with

manipulating files; making VoIP connections as simple to create and use as local

files simplifies VoIP programming and its applications.

 121

Recently unicon facilitated with VoIP, a very high level supporting peer-

to-peer, one-to-many, and many-to-many VoIP sessions. Unicon's VoIP facilities

provide full duplex voice conversations by having each client as a destination in

the other's voice session [Cli06].

 122

Appendix B: Parsing Rules of SIP and SDP

B.1 SIP

All of the mechanisms specified in this document are described in both

prose and an augmented Backus-Naur Form (BNF) defined in RFC (2234).

Section 6.1 of RFC (2234) defines a set of core rules that are used by this

specification. Implementers need to be familiar with the notation and content

of RFC (2234) in order to understand this specification. Certain basic rules

are in uppercase, such as SP (SPace), LWS (Linear White Space), HTAB

(Horizontal TAB), CRLF (Carriage Return Line Feed), DIGIT, ALPHA, etc.

Angle brackets are used within definitions to clarify the use of rule names.

The use of square brackets is redundant syntactically. It is used as a

semantic hint that the specific parameter is optional to use [Pau97, Ros02].

ALPHA = %x41-5A / %x61-7A ; A-Z / a-z

DIGIT = %x30-39; 0-9

HEXDIG = DIGIT / "A" / "B" / "C" / "D" / "E" / "F"

WSP = SP / HTAB; White SPace (WSP)

CRLF = %d13.10; Internet standard newline

SP = %x20

HTAB = %x09; horizontal tab

OCTET = %x00-FF; 8 bits of data

DQUOTE = %x22

alphanum = ALPHA / DIGIT

reserved = ";" / "/" / "?" / ":" / "@" / "&" / "=" / "+" / "$" / ","

unreserved = alphanum / mark

 123

mark = "-" / "_" / "." / "!" / "˜" / "*" / "’" / "(" / ")"

escaped = "%" HEXDIG HEXDIG

LWS = [*WSP CRLF] 1*WSP ; linear whitespace

SWS = [LWS] ; sep whitespace

HCOLON = *(SP / HTAB) ":" SWS

UTF8-NONASCII = %xC0-DF 1UTF8-CONT

 / %xE0-EF 2UTF8-CONT

 / %xF0-F7 3UTF8-CONT

 / %xF8-Fb 4UTF8-CONT

 / %xFC-FD 5UTF8-CONT

UTF8-CONT = %x80-BF

token = 1*(alphanum / "-" / "." / "!" / "%" / "*" / "_" / "+" / "‘"

 / "’" / "˜")

separators = "(" / ")" / "<" / ">" / "@" / "," / ";" / ":" / "\" / DQUOTE

 / "/" / "[" / "]" / "?" / "=" / "{" / "}" / SP / HTAB

word = 1*(alphanum / "-" / "." / "!" / "%" / "*" / "_" / "+" / "‘"

/ "’" / "˜" / "(" / ")" / "<" / ">" / ":" / "\" / DQUOTE / "/"

/ "[" / "]" / "?" / "{" / "}")

SLASH = SWS "/" SWS ; slash

EQUAL = SWS "=" SWS ; equal

LPAREN = SWS "(" SWS ; left parenthesis

RPAREN = SWS ")" SWS ; right parenthesis

RAQUOT = ">" SWS ; right angle quote

LAQUOT = SWS "<"; left angle quote

COMMA = SWS "," SWS ; comma

SEMI = SWS ";" SWS ; semicolon

 124

COLON = SWS ":" SWS ; colon

quoted-string = SWS DQUOTE *(qdtext / quoted-pair) DQUOTE

qdtext = LWS / %x21 / %x23-5B / %x5D-7E

/ UTF8-NONASCII

quoted-pair = "\" (%x00-09 / %x0B-0C / %x0E-7F)

SIP-URI = "sip:" [userinfo] hostport uri-parameters

 [headers]

SIPS-URI = "sips:" [userinfo] hostport uri-parameters

 [headers]

userinfo = user [":" password] "@"

user = 1*(unreserved / escaped / user-unreserved)

user-unreserved = "&" / "=" / "+" / "$" / "," / ";" / "?" / "/"

password = *(unreserved / escaped / "&" / "=" / "+" / "$" / ",")

hostport = host [":" port]

host = hostname / IPv4address

hostname = *(domainlabel ".") toplabel ["."]

domainlabel = alphanum / alphanum *(alphanum / "-") alphanum

toplabel = ALPHA / ALPHA *(alphanum / "-") alphanum

IPv4address = 1*3DIGIT "." 1*3DIGIT "." 1*3DIGIT "." 1*3DIGIT

port = 1*DIGIT

uri-parameters = *(";" uri-parameter)

uri-parameter = transport-param / user-param / method-param / ttl-param

 / maddr-param

transport-param = "transport=" ("udp" / "tcp")

user-param = "user=" ("ip" / other-user)

 125

other-user = token

method-param = "method=" Method

ttl-param = "ttl=" ttl

maddr-param = "maddr=" host

headers = "?" header *("&" header)

header = hname "=" hvalue

hname = 1*(hnv-unreserved / unreserved / escaped)

hvalue = *(hnv-unreserved / unreserved / escaped)

hnv-unreserved = "[" / "]" / "/" / "?" / ":" / "+" / "$"

SIP-message = Request / Response

Request = Request-Line *(message-header) CRLF

 [message-body]

Request-Line = Method SP Request-URI SP SIP-Version CRLF

Request-URI = SIP-URI / SIPS-URI

SIP-Version = "SIP" "/" 1*DIGIT "." 1*DIGIT

message-header = (Call-ID / Call-Info / Contact

 / Content-Disposition / Content-Encoding

 / Content-Language / Content-Length

 / Content-Type / CSeq / From / Max-Forwards

 / To / Allow / Supported / Via) CRLF

INVITEm = %x49.4E.56.49.54.45 ; INVITE in caps

ACKm = %x41.43.4B ; ACK in caps

OPTIONSm = %x4F.50.54.49.4F.4E.53 ; OPTIONS in caps

BYEm = %x42.59.45 ; BYE in caps

CANCELm = %x43.41.4E.43.45.4C ; CANCEL in caps

REGISTERm = %x52.45.47.49.53.54.45.52 ; REGISTER in caps

 126

Method = INVITEm / ACKm / OPTIONSm / BYEm

 / CANCELm / REGISTERm

Response = Status-Line *(message-header) CRLF

 [message-body]

Status-Line = SIP-Version SP Status-Code SP Reason-Phrase

 CRLF

Status-Code = Informational / Success / Client-Error / Global-Failure

Reason-Phrase = *(reserved / unreserved / escaped

 / UTF8-NONASCII / UTF8-CONT / SP / HTAB)

Informational = "100" ; Trying

 / "180" ; Ringing

 / "181" ; Call Is Being Forwarded

 / "182" ; Queued

 / "183" ; Session Progress

Success = "200" ; OK

Client-Error = "400" ; Bad Request

 / "401" ; Unauthorized

 / "402" ; Payment Required

 / "403" ; Forbidden

 / "404" ; Not Found

 / "405" ; Method Not Allowed

 / "406" ; Not Acceptable

 / "407" ; Proxy Authentication Required

 / "408" ; Request Timeout

 / "410" ; Gone

 / "413" ; Request Entity Too Large

 127

 / "414" ; Request-URI Too Large

 / "415" ; Unsupported Media Type

 / "416" ; Unsupported URI Scheme

 / "420" ; Bad Extension

 / "421" ; Extension Required

 / "423" ; Interval

 / "480" ; Temporarily not available

 / "481" ; Call Leg/Transaction Does Not Exist

 / "482" ; Loop Detected

 / "483" ; Too Many Hops

 / "484" ; Address Incomplete

 / "485" ; Ambiguous

 / "486" ; Busy Here

 / "487" ; Request Terminated

 / "488" ; Not Acceptable Here

 / "491" ; Request Pending

 / "493" ; Undecipherable

Global-Failure = "600" ; Busy Everywhere

 / "603" ; Decline

 / "604" ; Does not exist anywhere

 / "606" ; Not Acceptable

Call-ID = ("Call-ID" / "i") HCOLON callid

callid = word ["@" word]

Contact = ("Contact" / "m") HCOLON (contact-param

 *(COMMA contact-param))

contact-param = (name-addr / addr-spec) *(SEMI contact-params)

 128

name-addr = [display-name] LAQUOT addr-spec RAQUOT

addr-spec = SIP-URI / SIPS-URI

display-name = *(token LWS) / quoted-string

contact-params = c-p-q / c-p-expires

c-p-q = "q" EQUAL qvalue

c-p-expires = "expires" EQUAL delta-seconds

qvalue = ("0" ["." 0*3DIGIT]) / ("1" ["." 0*3("0")])

delta-seconds = 1*DIGIT

Content-Disposition = "Content-Disposition" HCOLON disp-type *(SEMI

 disp-param)

disp-type = "render" / "session" / "alert"

disp-param = handling-param / generic-param

generic-param = token [EQUAL gen-value]

gen-value = token / host / quoted-string

handling-param = "handling" EQUAL ("optional" / "required")

Content-Encoding = ("Content-Encoding" / "e") HCOLON

 content-coding *(COMMA content-coding)

content-coding = token

Content-Language = "Content-Language" HCOLON

 language-tag *(COMMA language-tag)

language-tag = primary-tag *("-" subtag)

primary-tag = 1*8ALPHA

subtag = 1*8ALPHA

Content-Length = ("Content-Length" / "l") HCOLON 1*DIGIT

Content-Type = ("Content-Type" / "c") HCOLON media-type

media-type = m-type SLASH m-subtype *(SEMI m-parameter)

 129

m-type = discrete-type / composite-type

discrete-type = "text" / "image" / "audio" / "video" / "application"

composite-type = "message" / "multipart"

m-subtype = extension-token

extension-token = ietf-token / x-token

ietf-token = token

x-token = "x-" token

m-parameter = m-attribute EQUAL m-value

m-attribute = token

m-value = token / quoted-string

CSeq = "CSeq" HCOLON 1*DIGIT LWS Method

From = ("From" / "f") HCOLON from-spec

from-spec = (name-addr / addr-spec) *(SEMI from-param)

from-param = tag-param / generic-param

tag-param = "tag" EQUAL token

Max-Forwards = "Max-Forwards" HCOLON 1*DIGIT

To = ("To" / "t") HCOLON (name-addr / addr-spec)

 *(SEMI to-param)

to-param = tag-param / generic-param

Allow = "Allow" HCOLON [Method *(COMMA Method)]

Supported = ("Supported" / "k") HCOLON [option-tag

*(COMMA option-tag)]

option-tag = token

Via = ("Via" / "v") HCOLON via-parm *(COMMA

via-parm)

via-parm = sent-protocol LWS sent-by *(SEMI via-params)

 130

via-params = via-ttl / via-maddr / via-received / via-branch

via-ttl = "ttl" EQUAL ttl

via-maddr = "maddr" EQUAL host

via-received = "received" EQUAL (IPv4address)

via-branch = "branch" EQUAL token

sent-protocol = protocol-name SLASH protocol-version SLASH

 transport

protocol-name = "SIP" / token

protocol-version = token

transport = "UDP" / "TCP"

sent-by = host [COLON port]

ttl = 1*3DIGIT ; 0 to 255

message-body = *OCTET

B.2 SDP
This section provides an Augmented BNF grammar for Session

Description Protocol (SDP) [Ark05, Tim94].

announcement = proto-version

 origin-field

 session-name-field

 information-field

 URI-field

 email-fields

 connection-field

 bandwidth-fields

 time-fields

 key-field

 131

 attribute-fields

 media-descriptions

proto-version = "v=" 1*DIGIT CRLF ;this memo describes version 0

origin-field = "o=" username SP sess-id SP sess-version SP

 nettype SP addrtype SP addr CRLF

session-name-field = "s=" text CRLF

information-field = ["i=" text CRLF]

URI-field = ["u=" URI CRLF]

email-fields = *("e=" email-address CRLF)

connection-field = ["c=" nettype SP addrtype SP connection-address

 CRLF] ;a connection field must be present

 in every media description or at the

 session-level

bandwidth-fields = *("b=" bwtype ":" bandwidth CRLF)

time-fields = 1*("t=" start-time SP stop-time *(CRLF

 repeat-fields) CRLF) [zone-adjustments CRLF]

repeat-fields = "r=" repeat-interval SP typed-time

 1*(SP typed-time)

zone-adjustments = time SP ["-"] typed-time *(SP time SP ["-"]

 typed-time)

key-field = ["k=" key-type CRLF]

key-type = "prompt"

 / "clear:" key-data

 / "base64:" key-data

 / "uri:" URI

key-data = email-safe / "˜"

 132

attribute-fields = *("a=" attribute CRLF)

media-descriptions = *(media-field information-field *(connection-field)

 bandwidth-fields key-field attribute-fields)

media-field = "m=" media SP port ["/" integer] SP proto 1*(SP fmt)

 CRLF

media = 1*(alphanum) ;typically "audio", "video",

 "application";or "data"

fmt = 1*(alphanum) ;typically an RTP payload type for

 audio ;and video media

proto = 1*(alphanum) ;typically "RTP/AVP" or "udp" for

 IP4

port = 1*(DIGIT) ;should in the range "1024" to "65535"

 inclusive for UDP based media

attribute = (att-field ":" att-value) / att-field

att-field = 1*(alphanum)

att-value = byte-string

sess-id = 1*(DIGIT) ;should be unique for this originating

 username/host

sess-version = 1*(DIGIT) ;0 is a new session

connection-address = addr

start-time = time / "0"

stop-time = time / "0"

time = POS-DIGIT 9*(DIGIT) ;sufficient for 2 more

 centuries

repeat-interval = typed-time

typed-time = 1*(DIGIT) [fixed-len-time-unit]

 133

fixed-len-time-unit = "d" / "h" / "m" / "s"

bwtype = 1*(alphanum)

bandwidth = 1*(DIGIT)

username = safe ;pretty wide definition, but doesn’t include space

email-address = email / email "(" email-safe ")" /

 email-safe "<" email ">"

email = address-spec ; simple address

 / 1*word route-addr ; name & addr-spec

route-addr = "<" address-spec ">"

address-spec = local-part "@" domain ; global address

local-part = word *("." word)

domain = sub-domain *("." sub-domain)

sub-domain = domain-ref / domain-literal

domain-ref = atom ; symbolic reference

domain-literal = "[" *(dtext / quoted-pair) "]"

dtext = <any CHAR excluding "[", "]", "\" & CR, &

 including linear-white-space>

atom = 1*<any CHAR except specials, SPACE and CTLs>

URI = uri ["#" fragmentid]

uri = scheme ":" path ["?" search]

scheme = ialpha

path = void / xpalphas ["/" path]

search = xalphas [+ search]

fragmentid = xalphas

xalpha = ALPHA / DIGIT / safechar / extra / escaped

xalphas = xalpha [xalphas]

 134

xpalpha = xalpha / +

xpalphas = xpalpha [xpalpha]

ialpha = ALPHA [xalphas]

safechar = "$" / "-" / "_" / "@" / "." / "&"

extra = "!" / "*" / """ / "’" / "(" / ")" / ","

void

nettype = "IN" ;list to be extended

addrtype = "IP4" ;list to be extended

addr = unicast-address

unicast-address = IPv4address

text = byte-string ;default is to interpret this as IS0-10646

 UTF8 ISO 8859-1 requires a

 a=charset:ISO-8859-1" session-level

 attribute to be used

byte-string = 1*(0x01..0x09/0x0b/0x0c/0x0e..0xff) ;any byte

 except NUL,

 CR or LF

integer = POS-DIGIT *(DIGIT)

POS-DIGIT = "1"/"2"/"3"/"4"/"5"/"6"/"7"/"8"/"9"

email-safe = safe / SP / tab

safe = alphanum / "’" / "’" / "-" / "." / "/" / ":" / "?" / """ /

"#" / "$" / "&" / "*" / ";" / "=" / "@" / "[" / "]" / "^" / "_"

/ "‘" / "{" / "|" / "}" / "+" / "˜"

tab = %d9

 135

 الملخص
تقـام)ايـة -الى-اية (اتفيةاله آل الاتصالات تقريبا ,فى بيئة اليوم

ي أس تي پ(العامة حويلية تالتحويل باستخدام شبكة الهاتف -دائرةعبر

 قـصد المنشأ و الم ما بين)عقده-الى-عقده(الداخلي الربط ان ، حيث)أن

المعلومـات حصرا لتبادل عليهافظةيحالاتصال بط، و ار جهاز تقام طريق

 اخـرى لاقامـة طريقـة . ء ذلـك الاتـصال حتى اـا قصد والم المنشأبين ما

اسـع لنقـل يـستخدم علـى نطـاق و الـذي و)ايـة -الى-ايـة (اتصالات

 تـتم عـن)قصدالم-الى-نشأالم(اتصالات ، حيث)حزم-تبادل(البيانات هي

قطاعـات يعتمـد علـى لارسـال ا-و-زنالخ،)عقده-الى-عقده(الربط طريق

؛ هذا الاسلوب يعها في المقصدد تجماعيالبيانات التي من ةصغيرة من مجموع

) يپ ـي أو آي ڤ ـ). (يپي أو آي ڤ(الصوتِ على الإنترنتِ بروتوآول يسمى

 تكنولوجيـا الاتـصالات يعتبر الجيل الثالث من الاتصالات الهاتفيـة بعـد

 .الرقميهوالتناظريه

لـل تحالهـاتف وثم)حـزم -ادلتب ـ(دراسة المعماريه تاخذ ب هذه الاطروحه

 الـسيطرة علـى بروتوآـول ، وهـو)يپ ـي أو آي ڤ ـ(بنية تكنولوجيـا

 باسـتخدام بروتوآـول)يپ ـآي /يپ ـتي سي (بروتوآول الانترنت /الارسال

بروتوآـول ، ولمـه اكمن اجل السيطرة علـى الم) يپاس آي (لسة الجتلقين

 ، وبروتوآـول النقـل ط المتعـددة للجلـسة وسـائ ال لوصـف لـسة وصف الج

هذه البروتوآولات مستقرة في طبقة , طوسائال لتبادل)يپآر تي (الفوري

 .التطبيقات للشبكة

لتـوفير . اخـذ في الازديـاد الأمـني بالجانـب الاهتمـام ، على مدى سنوات

اجة الى تنفيذ الأمن الحثمة ،)يپي أو آي ڤ(الخصوصيه لمستخدم المحادثة في

 مصممهو) يپأس آر تي (من الفوري الآ ل النقل بروتوآو. الصوتلارسال

ط وسـائ الطريقـه لتـشفير باستخدام فوري النقل ال لبرامجلتوفير الامن

هـذه . ، لكنه لا يقدم مفتاح الاتفـاق بـين المـشارآين)الصوت(المتعددة

وموافقـة المفتـاح)يپ ـاس آي (بروتوآول تلقين الجلسة الاطروحة تنفذ

ضمن بروتوآول وصـف الجلـسة المسبق الاتفاق باستخدام بروتوآول مفتاح

 بناء التطبيقتم . المستخدم من قبل بروتوآول تلقين الجلسة)يپاس دي (

 .)ايقون-أن (لغةباستخدام

جمهورية العراق

 وزار التعليم العالي والبحث العلمي
 جامعة النهرين

 آلية العلوم

أمن في الصوتِ على الإنترنتِ
)يپي أو آي ڤ(بروتوآول

 رسالة
جزء من متطلبات نيل درجة كمقدمة الى آلية العلوم في جامعة النهرين

ماجستير علوم في علوم الحاسوب

 من قبل

آوثر عبدالاله عبدالرسول مشكور
)2004بكلوريوس علوم الحاسوب (

 المشرف

لاالكبان نديم . د ك

 1429ربيع الثاني 2008نيسان

	0 fp.prn.pdf
	1 Abstruct & Content Table.pdf
	
	
	
	
	
	
	
	
	
	
	Acknowledgement
	
	
	
	
	
	
	
	Abstract
	Over years, Interest of security is increasing. To provide privacy for user's conversation in VoIP, there is a need to implement a security for media transmission. A Secure Real-time Transport Protocol (SRTP) is designated to provide security for real-time media transmission using an encryption method, but it does not provide key agreement between participants. This thesis implemented SIP protocol and a key agreement using pre-shared key protocol within SDP protocol used by SIP. The implementation is done using UNICON language.
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	List of Abbreviations

	2 Chapter1 - Overview of VOIP Technology.pdf
	3 Chapter2 - VoIP Network Architecture and Protocols.pdf
	4 Chapter 3 - SIP-Based VoIP Security.pdf
	5 Chapter 4 - Implementation and Results.pdf
	9 Chapter 5 - Conclusions and Future Works.pdf
	10 References.pdf
	11 Appendix A - Unicon Language.pdf
	12 Appendix B - Parsing Rules of SIP & SDP.pdf
	13 Abstruct in arabic.pdf
	14 First Page in arabic.pdf
	
	جمهورية العراق

