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Summary

This thesis developed three defuzzification approaches to convert the
coefficients and the variables of the fuzzy linear programming problems
(FLPP) into crisp (deterministic) linear programming problems (CLPP) and
obtain the critical path with the optimal completion time for the different

fuzzy network problems.

The three defuzzification approaches are based respectively on the
philosophies of probability density function, ranking measures and the

program evaluation and review technique (PERT).

Finally, the critical path method (CPM) has been used to compare its

results with our obtained results to give more credit to our approaches.

The case study is considered from a real problem to verify our results
that obtained using “Matlab2010R” software.



Nomenclatur es and Notations

LP Linear Programming

FLP Fuzzy Linear Programming

FLPP Fuzzy Linear Programming Problems
CLPP Crisp Linear Programming Problems
PERT Program Eval uation and Review Technique
CPM Critical Path Method

AOA Activity on Arrow

to Optimistic time

t, Pessimistic time

tm Most likely time

Te Earliest expected time

T, Latest allowable time

COG Center of Gravity

M Fuzzy Mean

WFM Weighted Fuzzy Mean

QT Quality Technique

EQT Extended Quality Technique

FOM First of Maxima

MOM Middle of Maxima

LOM Last of Maxima

RCOM Random Choice of Maxima

COA Center of Area

(i,)) Activity between the nodes i, j

U Universal set

A Fuzzy set, Fuzzy number

e

Fuzzy stochastic variable
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wa(x)

R(4)
My (s)
E[x]

Member ship of the fuzzy set A
Fuzzy Critical Path

Ranking function

Méellin transform

Expected value of the random variable x
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In recent years, the range of project management applications has
greatly expanded. Project management concerns the scheduling and
controlling of activities (tasks) in such a way that the project can be
completed in a little time as possible. To ensure the project's success, the
project management team must identify the stakeholders, determine and
manage their needs and expectations. A project network is defined as a set of
activities that must be performed according to precedence constraints stating
that the activities must start after the completion of specified other activities.
In the project network, the nodes represent activities and the arcs represent
precedence relations. A path through a project network is one of the routes
from the starting node to the ending node. The length of a path is the sum of
the durations of the activities on the path. The project duration equals the
length of the longest path through the project network. The longest path is
called the critical path of the network. In order to specify the critical path in
project networks in the traditiona models, the durations of activities are
represented as crisp numbers. However, the operation time for each activity is
usually difficult to define and estimate precisely in areal situation.

The longest path problem is concentrate on finding the path with
maximum distance, time or benefit or other variables, and it is one of the
basic problems in networks and is widely applied in transportation,
communication and computer network and has been studied extensively in the
field of computer science, operation research, transportation engineering and
so on.

The aim of the longest path problem isto find the longest path between:

(1) two given nodes of a graph,

(2) agiven nodeto all other nodes,
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(3) al pair of nodes.

The Bellman algorithm is one of the efficient algorithms used to
determine the longest and/or shortest path in a crisp network.

In real problems, uncertainty cannot be avoided and usually, the arc
lengths cannot be determined precisely. For instance, on road networks, for
severa reasons, e.g., traffic, accidents, arc lengths representing the vehicle
travel time are subject to uncertainty. In these cases, deterministic values for
representing the arc weights cannot be used. A typical way of expressing
these uncertainties in the arc weights is to utilize probability theory. However,
sometimes the probability distributions of the lengths of arc are difficult to
acquire due to lack of historical data. In dealing with such case, the expert,
using the fuzzy theory as a powerful tool, estimate the approximate length of
the arc. Fuzzy set theory has been proposed to handle non crisp (fuzzy)
parameters by generalizing the notion of membership in aset. Essentidly, in a
fuzzy set each element is associated with a point value selected from the unit
interval [0,1], which is an arbitrary grade of truth referred to as the grade of
membership in the set [1].

Many previous studies on fuzzy project management network are
reviewed before. Prade (1979) first applied fuzzy set theory into the project
scheduling problem. Furthermore, Dubios and Prade (1979), Chanas and
Kamburowski (1981), Kaufmann and Gupta (1988), Hapke and Kaufmann
(1993) and Ke and Liu (2010) discussed various types of project scheduling
problems with fuzzy activity duration times. Furthermore, randomness and
fuzziness may coexist in project scheduling problem. Ke and Liu (2007)
proposed project scheduling models with mixed uncertainty of randomness
and fuzziness using the tool of random fuzzy variable.

Linear programming (LP) is the most widely used and understood
mathematical optimization technique employed by the business and industrial

community. The conventional LP deas with crisp parameters. However,
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managerial decison making is subject to professiona judgments usualy
based on imprecise, vague, uncertain or incomplete information (Leung,
1988).

The main objective in FLP is to find the best solution possible with
imprecise, vague or uncertain. There are many sources of imprecision in FLP,
for example, sometimes the coefficient variables are not known precisely,
other times constraints satisfaction limits may be vague. The challengein FLP
IS to construct an optimization model that can produce the optimal solution
with subjective professional judgments.

The theory of fuzzy mathematical programming was first proposed by
Tanaka et a. (1974) based on the fuzzy decision framework of Bellman and
Zadeh, [11], to address the impreciseness and vagueness of the parametersin
problems with fuzzy constraints and objective functions. Zimmermann (1978)
introduced the first formulation of FLP. He constructed a crisp model of the
problem and obtained its crisp results using an existing algorithm. He then
used the crisp results and fuzzified the problem by considering subjective
constants of admissible deviations for the goal and the constraints. Finally, he
defined an equivalent crisp problem using an auxiliary variable that
represented the maximization of the minimization of the deviations on the
congtraints. Zimmermann (1978, 1987) used Bellman and Zadeh's, [11],
interpretation that a fuzzy decision is a union of goals and constraints.

In the past decade, researchers have discussed various properties of
FLP problems and proposed an assortment of models (Luhandjula, 1989).
Zhang et a. (2003) proposed a FL P with fuzzy numbers for the coefficients of
objective functions. They introduced a number of optimal solutions to the
FLP problems and developed a number of theorems for converting the FLP
problems to multi-objective optimization problems with four-objective
functions. Stanciulescu (2003) proposed a FLP model with fuzzy coefficients

for the objectives and the constraints. He used fuzzy decision variables with a
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joint membership function instead of crisp decision variables and linked the
decision variables together to sum them up to a constant. He considered
lower-bounded fuzzy decision variables that set up the lower bounds of the
decision variables. He then generalized the method to lower—upper-bounded
fuzzy decision variables that set up also the upper bounds of the decision
variables. Ganesan and Veeramani (2006) proposed a FLP mode with
symmetric trapezoidal fuzzy numbers. They proved fuzzy analogues of some
important L P theorems and obtained some interesting results which in turn led
to the solution for FLP problems without converting them into crisp LP
problems.

Mahdavi-Amiri and Nasseri (2006) proposed a FLP model where a
linear ranking function was used to order trapezoidal fuzzy numbers. They
established the dua problem of the LP problem with trapezoida fuzzy
variables and deduced some duality results to solve the FLP problem directly
with the primal simplex tableau.

Zadeh et a. (2009) considered full FLP problems where all parameters
and variables were triangular fuzzy numbers. They pointed out that thereis no
method in the literature for finding the fuzzy optimal solution of full FLP
problems and proposed a new method to find the fuzzy optimal solution of
full FLP problems with equality constraints. They used the concept of the
symmetric triangular fuzzy numbers and introduced an approach to defuzzify
a genera fuzzy quantity. They first approximated the fuzzy triangular
numbersto its nearest symmetric triangular numbers, with the assumption that
al decision variables were symmetric triangular, then they converted every
FLP model into two crisp complex LP models and used a special ranking for
fuzzy numbers to transform their full FLP model into a multi-objective linear
programming where al variables and parameters were crisp. Ebrahimngad
(2010) introduced a new primal-dual algorithm for solving FLP problems by
using the duality results proposed by Mahdavi-Amiri and Nasseri, [21].

A
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Kumar et a. (2011) further studied the full FLP problems with equality
introduced by Hosseinzadeh Lotfi et al., [19], and proposed a new method for
finding the fuzzy optimal solution in these problems.

Ebrahimnejad (2011) showed that the method proposed by Ganesan
and Veermani, [17], stops in a finite number of iterations and proposed a
revised version of their method that was more efficient and robust in practice.
He also proved the absence of degeneracy and showed that if an FLP problem
has a fuzzy feasible solution, it also has a fuzzy basic feasible solution and if
an FLP problem has an optimal fuzzy solution, it also has an optimal fuzzy
basic solution. Ebrahimnejad (2011) has also generalized the concept of
sensitivity analysis in FLP problems by applying fuzzy simplex algorithms
and using the general linear ranking functions on fuzzy numbers.

The am of this thesis is to solve fuzzy network projects by developing
three mathematical approaches using the features of probability theory.

This thesis consists of four chapters, as well as the introduction. In
chapter one, the basic concepts that are needed and related to the network and
linear programming problem, are presented. In chapter two, the fuzzy models
related to the fuzzy set theory, fuzzy network and fuzzy linear programming
problems are presented. In chapter three, some of proposed defuzzification
techniques are discussed and three modified approaches are constructed based
on Médlin transform, ranking method and program evauation review
technique (PERT) respectively.

Finally, in chapter four, the case study is considered and solved by our
constructed methods. Our results are compared with the results obtained from
the classical critical path method (CPM).






l Basic Concepts

In this chapter, we are discussed a brief presentation of specific
deterministic models such as Networks Projects and Linear Programming

Problems, as the basic concepts which are needed in this thesis.

1.1 Networ ks Projects.

In this section we will present the following definitions:

Definition (1.1) Network, [24]:

The network is aflow diagram showing the sequence of operations of a
process. Each individual operation is known as an activity and each meeting
point or transfer stage between one activity and another is an event or node. If
the activities are represented by straight lines and the events by circles, it is
very simple to draw thelir relationships graphically, and the resulting diagram
iIsknown as the Network (Figure 1.1).

In order to show whether an activity has to be performed before or after
its neighbour, arrowheads are placed on the straight lines, but it must be
explained that the length or orientation of these lines is quite arbitrary. This
format of network is caled activity on arrow (AOA), as the activity
description is written over the arrow.

It can be seen, therefore, that each activity has two nodes or events; one
at the beginning and one at the end (Figure 1.2).

We can now describe the activity in two ways:

1. By itsactivity title (in this case A).

2. By its starting and finishing event nodes (in this case (i, j)).
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e

Figure (1.1) Network

OO

Figure (1.2) Activity

Definition (1.2) Dummy Activity, [24]:
An activity which has the duration of zero time that does not affect the
logic or overall time of the project. Dummy are usually represented by dotted

line arrows.

Definition (1.3) Path, [24]:
It is a series of connected activities between any two events in a

network.

Definition (1.4) Critical Path, [25]:
The critical path is the longest path through a network and determines
the earliest completion of project work.

A distinguishing feature of PERT is in its ability to deal with
uncertainty in activity completion time. For each activity it is usually includes

three time estimates;
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Definition (1.5) Optimistic Time, [26]:
It is the shortest possible time in which an activity can be completed,
denoted by t,.

Definition (1.6) Pessimistic Time, [26]:
It is the best guess of the longest possible time that would be required
to complete the activity, denoted by t,.

Definition (1.7) Most Likely Time, [26]:

It represents the time that the activity would most often under normal
condition, it is estimated lies between the optimistic and pessimistic time
estimates, denoted by t,,

Program evaluation and review technique (PERT) is one of the
common scheduling techniques. It assumes a Beta Probability Distribution
for the time estimate the expected time for each activity which can be

approximated using the following weighted average:-

Expected time (t,) = (t, + 4ty + t,)/6. (1.1)

which isexplainin figure (1.3)

N
7

Activity Distribution

[ T U

3
<t

1
H
Lo

Figure (1.3): Expected Time
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Definition (1.7) Earliest Expected Time, [27]:

It is the time when an event can be expected to occur, denoted by Te. If
we considered two events i and j in which i is the predecessor event and j is
the successor event, and (i — j) is the activity connecting the two events,
then TEj for a successor event j is equal to TE for the predecessor event i plus
the expected activity time tY such that;

T) =T} +t) (1.2)
if more than one activity path leads to that event then the maximum (T} =

TEj + t,if ) dong various activity paths.

Definition (1.8) Latest Allowable Time, [27]:

It is the time by which an event must occur, to keep the project on
scheduleis called the latest allowable occurrence time, denoted by symbol T, .
If we considered two eventsi and j in which i is the predecessor event and j
is the successor event such that the latest occurrence time TLj be known, then
the latest occurrence time T} for predecessor event is given by:

Ti=T/ —t] (1.3)
if there are more than one successor event, the minimum of (TLj — t,ij ) will be
appropriate latest occurrencetime T} for the event i.

Since there exist only one path through the network that is the longest,
the other paths must be ether equal in length to or shorter than path.

Therefore, there must be exist events and activities that can be completed
before the time when they are actually needed.
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Definition (1.9) Slack Time:

The difference between the latest and earliest times of any event is
called slack. Since each activity has two events, a beginning event and an end
event, it follows that there are two dacks for each activity. Thus the slack of
the beginning event can be expressed as T;, — Tg, and called beginning slack,
the slack of the end event can be expressed as T}, — T, is caled end slack
[24].

So far we are discussed two event times:. the earliest event time T and
the latest alowable time T.. Since CPM networks are activity times oriented,
the following activity times are useful for network computations:

1- The Earliest Starting time (ES).
2- The Earliest Finishing time (EF).
3- The Latest Starting time (LS).

4- The Latest Finishing time (LF).

If we set Te = O for the initial event of the project, then the Forward
Pass, using (1.2) to calculate the total Tg for the final event of the project.
Then if we set T, = Tg on the fina event of the project, then Backword Pass,
using (1.3) to calculate T, at theinitia event.

1.2 Linear Programming Problem, [27]:

Programming problems in general are concerned with the use or
alocation of scarce resource-labor, materials, machines, and capital-in the
“best” possible manner so that costs are minimized or profits are maximized.

In using the term “best” it is implied that some choice or a set of
alternative courses of actions is available for making the decision. In general,
the best decision is found by solving a mathematical problem. The term linear

programming merely defines a particular class of programming problems that
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meet the following conditions:

(1) The decision variables involved in the problem are nonnegative (i.e.,
positive or zero).

(2) Thecriterion for selecting the “best” values of the decision variables can
be described by a linear function of these variables, that is, a
mathematical function involving only the first powers of the variables
with no cross products. The criterion function is normally referred to as
the objective function.

(3) The operating rules governing the process (e.g., scarcity of resources)
can be expressed as a set of linear equations or linear inequalities. This
set isreferred to as the constraint set.

The last two conditions are the reasons for the use of the term linear
programming.

Linear programming techniques are widely used to solve a number of
military, economic, industrial, and social problems. Three primary reasons for
itswide use are:

(1) A large variety of problems in diverse fields can be represented or at
least approximated as linear programming models.

(2) Efficient techniques for solving linear programming problems are
available.

(3) Easethrough which data variation (Sensitivity Analysis) can be handled

through linear programming models.

The three basic stepsin constructing alinear programming model are as
follows:
Step I: Identify the unknown variables to be determined (decision
variables), and represent them in terms of algebraic symbols.
Step 11: Identify all the restrictions or constraints in the problem and

express them as linear equations or inequalities which arc linear
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functions of the unknown variables.
Step I11: Identify the objective or criterion and represent it as a linear
function of the decision variables, which is to be maximized or

minimized.

1.2.1 Linear Programming in Standard Form, [27]:
The linear form of linear programming problem with m constraint and

n variables can be represented as follows:

Maximize (Minimize) Z = cyx; + Xy + -+ cpXy, )
Subject to A11X1 + aq3%, + -+ aypnx, = by,
Ay1X1 + AxpXp + o+ AypXxy = by,
: : > (1.4)
Am1X1 + ApaXy + o+ QX = by
x1=20,x,20,..,x, =20,
b, >0,b,>0,..,b,>0m<n J

the main features of the standard form are:
1- The objective function is of maximization or minimization type.
2_ All constraint are expressed as equations.
3- All variables are restricted to be nonnegative.

4- Theright-hand side constant of each constraint is nonnegative.

In the matrix-vector notation, the standard linear programming problem

can be expressed in acompact form as:

Maximize (Minimize) Z = cx,
Subject to Ax =b
’ 1.5
x =0, (1:5)
b = 0.
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where A is an (mxn) matrix, x is an (nx1) column vector, b is an (mx1)
column vector, and c isan (1xn) row vector.

In other words,

aiq ai, e Aip X1 bl
A _ axq ar, e Aop _ X2 b _ b2
(mxn) = | : ;P Xmxy) T s [ Pemxy) T |
Am1 Amz2 " Amn Xn bm
and
Caxny) = (€1, €2, =2 Cn)

In practice, A is called the coefficient matrix, x isthe decision vector, b
Is the requirement vector and c¢ is the profit (cost) vector of linear

programming.






2 Fuzzy Models

In this chapter, we will present the basic concepts of fuzzy set theory,

fuzzy network and fuzzy linear programming problems.

2.1 Basic Fuzzy Sets Theory, [28]:

This section deals with naive set theory when membership is no longer
an all-or-nothing notion. There is no unique way to build such a theory. But,
al the aternative approaches presented previoudly include ordinary set theory
as a particular case. However Zadeh's fuzzy set theory may appear to be the
most intuitive among them, although such concept as inclusion or set equality
may seem too strict in this particular framework. Usually the structures
embedded in fuzzy set theory are less rich than the Boolean lattice of classica
set theory. Moreover, there is also some arbitrariness in the choice of the
valuation set for the elements: the real interval [0,1] is most commonly used,
but other choices are possible and even worth considering: these are

structured set, such as fuzzy groups and convex fuzzy sets, are also presented.

Definition (2.1) Fuzzy Sets, [29],[30],[31]:
Let U be the universal set. A fuzzy set A of U is defined by a
membership function pz(x) = [0,1], where pz(x) indicates the degree of x

in A which defined as follows:

(0, (—OO, al)
i), lay,ar]
UA(X) = 9 1r [aZ'a3] (21)
f2 (X), [a3r a4]
\0, (a4, +00)

where a4, a,, a; and a, are real number, note that f;(x) and f,(x) may be



Chapter Two
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linear or convex

The fuzzy sets can be expressed by A = {(x, pz(x)): x € U}.

Definition (2.2) Normal Fuzzy Subset, [29],[30],[31]:
A fuzzy subset A of universal set U isnormal if sup,eypz(x) =1

Definition (2.3) Convex Fuzzy Subset, [29],[30],[31]:

nonlinear functions.

A fuzzy subset A of universa set U is convex iff pz(Ax + (1 —2A)y) =
(wa(x) Apz (), Vx,y € U, VA € [0,1].

Definition (2.4)

Fuzzy Number, [28]:

A fuzzy number A is a convex normalized fuzzy set A of thereadl line R

such that:

1. It exists exactly one x, € R with pz(xy) = 1 (x, is called the median value

of A).

2. uz(x) is piecewise continuous.

Definition (2.5) Triangular Fuzzy Number, [29],[30],[31]:

A triangular fuzzy number 4 is a fuzzy number with a piecewise

linear membership function p; defined by:

wa(x) = 5

fx - al
, a, <x<a,
a, —ag
1, XxX=a
2
a3 — X
, a, <x < as
as — az
\0, otherwise.

which can be denoted astriplet (aq, a,, a3).

10

(2.2)
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Q ——————————— -

a

Figure (2.1): Traingular Fuzzy

Definition (2.6) Trapezoidal Fuzzy Number, [29],[30],[31]:
A trapezoidal fuzzy number A4 is afuzzy number with a membership function
wz defined by:

fx - a1
, a, <x<a,

a, —a

1, a, <x<as

1a(0 =14 4 _ x (23)

) az; < x < ay

a, —as

\0, otherwise.

which can be denoted as quartet (aq, a,, as, a,).

[<) [
)

a; 2

Figure (2.2): Trapezoidal Fuzzy

11
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2.2 The Concept of a Network with Fuzzy Activity Times, [32]:

A network S = (V, A, T), being a project model, is given. V is a set of
nodes (event) and A c V X V is a set of arcs (activities). The network S isa
directed, compact, acyclic graph. Theset V = {1,2, ...,n} islabeled in such a
way that the following condition holds: (i,j) € A= i <j. By means of
function T which is defined in the following way, T:4 - F(R"), where
F(R") is the set of nonnegative fuzzy numbers. Fuzzy number T(i,j) & T; i
determines imprecisely a duration time of activity (i,j) € A. Membership

function ur,; generates a possibility distribution for the duration time of
activity (i,j) € A, i.e. value pz (t;;) means a possibility degree of

performance of activity (i,j) intimet;; € R¥.

Definition (2.7) Fuzzy Critical Path, [32]:
The fuzzy set P in set P with the membership function ps: P - [0;1]
determined by:

I’lﬁ(p) = Sup tijER+,(i,j)EA mln(l,])EA luTl](tl])l p € P’ (2'4)
and p is critical with
activity times
equal to t;;,(i,j)€EA
is called the fuzzy critical pathin S,

We say that a path p is fuzzy critical with the degree us(p). The value
us(p) stands for the path degree of criticality, possibility of the criticality of
path p. To put it in another way, us determines a possibility distribution of
the criticality of the path in the set P which is generated by possibility

distributions of activities duration times ur,, (i, ) € A (generated according

to extension principle of Zadeh if the criticality, or lack of it, is treated as the

activities duration times function in the network).

12
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Definition (2.8) Fuzzy Critical Activity, [32]:
The fuzzy set A(E) in set A(V) with the membership function
determined by:

ui(k,l) = sup min ,Llrfl.j(tij), (k,1) €A, (2.5)
tijER+,(i,j)EA (i,))eA
and (k,l) is critical with
activities times
equal to tl-j,(i,j)EA

ug(k) = sup min #Tij(tij): keVv, (2.6)
t;jER*,(i,j)€EA (L,))EA
and k is critical with
activities duration times
equal to tl-j,(i,j)EA

is called the fuzzy critical activity (event) in S.
Also, the following theorems are stated in order to give the relations
between a criticality degree of a path and criticality degrees of activities

forming this path.

Theorem (2.1), [32]:
For any path p € P thefollowing relation holds:

s (D) < uz(k, 1), for each(k, 1) € p. 2.7)

Theorem (2.2), [32]:
For any path p € P the following relation holds:
us(p) < ug(k) foreach k € p. (2.8)

Theorem (2.3), [32]:
The following equality istrue:

na(k,l) = X ip (), (k1) € 4, (2.9)

where
P(k,l)={p|pePand(kl) €p}cP.

13
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Theorem (2.4), [32]:
The following equality istrue:

pg(k) = max up (p),keV, (2.10)

where

P(k)={plpePandk ep}cP.

2.3 Fuzzy Linear Programming, [33]:

The fuzzy sets theory proposed by Zadeh (1965) and further devel oped
by Dubois and Prade (1988) is a popular method for dealing with decision
problems that are formulated as linear programming models with imprecise,
vague or uncertain variables and coefficients of the constraints.

In this section we introduce a fuzzy LP (FLP) problem where the
decision variables, the coefficients of the constraints and resources (right-
hand-side values) are fuzzy quantities. We then define the feasible and the
optimal solution based on some fuzzy relations. Contrary to the classical LP
problems, defined in section (1.2.1), x, A and b are the fuzzy numbers
denoted by symbols with the tilde. Let uz: R = [0,1], u5: R = [0,1], us: R —
[0,1] be the membership functions of the fuzzy numbers, b,A and %,
respectively. To define a FLP problem, the following proposition will be
used:

Proposition (2.1): Let ¥ € F(R) where F(R) presents the set of all fuzzy
subsets. Then, the fuzzy set cx is a fuzzy number based on the extension
principle.

The FLP problem associated with the standard LP problem (1.5) can be
expressed as follows:

Minimize Z =¢c¢

Subjectto A% > b, (2.11)

X

14



Chapter Two Fuzzy Models

where ¥ = (%, %,, ... X,) are fuzzy decision variables, b = (by, b,, ... b,,,) and
A= [dij]mxn represent the fuzzy parameters involved in the objective

function and constraints while ¢ = (¢4, ¢,, ...c,) are the crisp parameters in

the objective function.

Definition (2.9) Feasible Solution, [33]:
The feasible solution is a set of values of the fuzzy variables ¥ which
satisfies al of the constraints in model (2.11).

Definition (2.10) Optimal Solution, [33]:
The optimal solution for model (2.11) is x* if for al feasible solutions

X,wehavecx® < cX, where cisaparameter.

Definition (2.11), [33]:
Assuming that A = (ay,a,,as,a,) represents a trapezoidal fuzzy
number, A can be changed into the following crisp value;

(az —az) + (a, — ay)

A=
2

(2.12)

Next, we discuss the fuzzy basic feasible solution and the optimal
solution.
Consider the FLP problem (2.11). After using (2.12), let rank(A) = m and
define the partition of A as [B N] where B, m X m, is non-singular matrix of
basic variable and N, m X m, is non-singular matrix of non-basic variable.
Let y be the solution to By = a; where q; isthe j th column of the coefficient
matrix. Thus, %z = (Xp,,..%5_ )" =B™'b and %y =0 is a solution of

AX¥ = b. ¥ = (%% 0) is cdled a fuzzy basic solution (FBS) corresponding to

15
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the basic B when Xz > 0. It is valid that the FBS is feasible, therefore, the
fuzzy objectivevalueis Z = cgXg Where cg = (cp,, ... Cg, ). Then:

—_ . = -1 P
zZj—cj=cgB a; — ¢

= CBej - Cj == CB'

v

—c; = 0.

]

Note that B~'a; = e; where ¢; = (0, ...,1,...,0)". If ¥ > 0, then ¥ iscelled a
no degenerate fuzzy basic feasible solution, and if one component of X is
zero, then is called a degenerate basic feasible solution. A fuzzy solution is
optimal if and only if z; = cBB‘laj < ¢;. In other words, the FLP problem

can be rewritten as follows:

Minimize Z = cgXp + cyXy } (2.13)

Subjectto BXp + NXy = b, X, &%y = 0.

If ¥* < (%% x1) = (B~'b 0) is a fuzzy basic feasible solution, then,
z* = cgXg = cgB~h.
Now, we can have

Z = cX = cgXp + cyXy

= CBB_]'B - (CBB_lN - CN)ij

16
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for each feasible %, z; is smaller than or equal to c;; therefore, (z; — ¢;)%; < 0
and
YE-g)r=<o-z<s
J
That isto say, X* isan optimal solution.

17






3 Defuzzification Techniques

From an application point of view the following features are important:
defuzzification result continuity, computational efficiency and design
suitability.

Under defuzzification result continuity is considered the following
feature: small changes in membership values of the output fuzzy set should
not give large changes in the results of defuzzification. This feature is
important in the case of fuzzy controllers, which require input-output
continuity: small changes of input parameters should give small changes of
output values.

Computational efficiency depends mostly on a kind and a number of
operations required for obtaining the result of defuzzification.

Design suitability expresses the impact of a defuzzification technique
on a software or hardware implementation and tuning of fuzzy system [34].

Definition (3.1) Defuzzfication, [35]:
Deffuzification is a mapping from space of fuzzy action defined over

an output universe into a space of nonfuzzy (crisp) actions.

3.1 The Overview of Defuzzification Techniques, [36],[38]:

The most often used defuzzification techniques are grouped according
to the basic methods used in them: a group is made of the basic technique and
of the al techniques extended from that basic technique. Extended techniques
differ from the basic ones by introducing additional parameters. A fuzzy
system designer defines more precisely the defuzzification process by

defining those additional parameters. In the general case, defuzzification

18
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techniques can be formulated in a discrete form (using ) ) or in a continuous
form (using | ). For the sake of simplicity, only discrete form is considered as

follows:

3.1.1 Distribution Techniques:

The characteristic of that group of techniques is that the output fuzzy
set membership function is treated as a distribution, for which the average
value is evaluate. Due to that heuristic approach, the output has continuous
and smooth change for the change of values of input variable in the universe
of discourse. The basic technique of this group is the center-of- gravity

technique, denoted by COG and given by the following expression.

S n) v
Yo = defuzzifier(u) = i=N1q“ YOIt cog(w) (3.1
Zl‘:l.u(yi)

where: N, is the number of quantizing samples y;, used in order to get the

discrete form of the membership function pu(y) of the output fuzzy set p. This
technique is less convenient for a hardware implementation, because it
requires large number of multipliers, as well asit requires passing through the
whole universe of discourse of the output variable. Nevertheless, due to
continuity and, often smoothness of changes of defuzzified values, this
technique is used with fuzzy controllers [37].

Many best other extended techniques based on COG are proposed,
such as specific distribution techniques. The main characteristic of the
specific techniques is that the processes of aggregation, [35], and
defiizzification are combined in one process, in order to improve the
computationa efficiency. The basic technique from that group of techniques
Is one referenced as the fuzzy mean FM. For every output fuzzy set f; in the
process of fuzzy reasoning, the degree of applicability g for that set is
calculated. Those values, in the FM technique, are not used for aggregation,

19



Chapter Three Defuzzfication Techniques

but are, with b, the numerical values of output sets f;, directly used for
calculating of defuzzified value:
Yo = i=1 Bi b;
Y}

where n isthe number of the output fuzzy sets.

= fmw) (3.2)

Due to its computational efficiency, the FM technique is one of the
most widely used techniques in fuzzy controllers. This technique gives
relatively faster operation of the block implementing it and smaller area of its
hardware implementation. It is the base for the following extended
techniques. weighted fuzzy mean technique WFM, as well as quality
technique QT, and extended quality technique EQT.

3.1.2 Maxima Techniques:

Maxima techniques give as a result of defuzzification of an element
from afuzzy set core. A fuzzy set core (denoted as core) consists of elements
of auniverse of discourse on which that set is defined with the highest degree
of membership to the fuzzy set. As the basic representative of that group, the
first-of-maxima techniqgue FOM, can be considered, given by the expression
(3.3):

Yo = mincore(p) = fom(p) (3.3)

Those techniques are convenient for the genera fuzzy expert systems.
Maxima techniques belong to the group of the fastest defuzzification
techniques, because they require passing through values of the core only.
According to the element with the maxima membership which is extracted as
the defuzzification result, there are also the following maxima techniques:
middle-of-maxima MOM, last-of-maxima LOM, and random-choice-of-

maxima RCOM. The techniques are compatible with the max operation.
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3.1.3 Area Techniques:
Area defuzzification techniques use the area under the membership
function to determine the defuzzification value. The center-of-area technique

COA, minimizes the following expression:

coa(u) supy
D um - Y ) (3:4)
infy coa(u)

where: inf is the greatest lower bond, and sup is the least upper bound of the
support of the fuzzy set U, respectively. The expression (3.4) gives numerica
value Yo = Yeoaq), Which divides an area under the membership function in two
(approximately) equal parts. The value ycoq) differs from the defuzzification
value obtained by the COG technique. The method is fast, because only
simple operations are used in it, it gives continual change of defuzzification

value, henceit is convenient to be used in fuzzy controllers[34].

3.1.4 Ranking Approach:

Y ager (1981) proposed a procedure for ordering fuzzy sets in which a
ranking index R(A) is calculated for the fuzzy number fromits a-cut interval:
l. A, =la; + (a, —a))a,a; — (a3 — ay)a],a € [0,1] (3.5)
by considering the triangular case where A = (a4, a,, as),

then the following formulais considered:

. 1 1 1
%(A) = E(jo (a; + (a, —a))a)da + L (as — (az — az)a)da>

_a;+2a; t+as
a 4
IL. Ag =lay + (a; — apa, a4 — (a4 — az)a], a € [0,1] (3.7)

(3.6)

by considering the trapezoidal case where A = (a4, a,, a3, a,),

then the following formulais considered:

. 1 1 1
%(A) = E(jo (a; + (a, —a))a)da + L (as — (a, — a3)a)da>
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_a;ta;taztay
= 2 ,

(3.8)

3.2 Proposed Defuzzification Techniques:

In the situations in which there are several output fuzzy variables,
defuzzification can be considered as decision-making problem under fuzzy
constraints.

Based on philosophies of probability and ranking theories we
developed the following defuzzification techniques:

3.2.1 Defuzzfication with Probability Density Function from Membership
Function :
3.2.1.1 Fuzzy Number with Linear Membership Function:

If we consider A is a fuzzy number with membership function defined
as (2.1), where f; (x) and f, (x) are linear functions.

Let the function f defined by f(x) = cpz (x) is a probability density
function associated with A, where ¢ can be obtained by the property that
IZ f(x)dx = 1 asfollows:

Case (1) By considering A as a triangular fuzzy number where A =

(a4, a,, az), with the membership function:

rx —aq
, a, <x<a,

a; —aq

1, X =a,

wa(x) = as; —Xx (3.9)

) a, < x < as

asz —da;

\0, otherwise.

and since
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as as
1= j f(x)dx = j cudx
a; a;

then

CcC =

aZx_al a a3a3—x
dx + 1dx + dx
LV aq az - al a a, a3 - aZ

((a; —a;)  (az —ay)
2 T 2 ]
%[a3 — ay]

2

10
p— (3.10)

Case (I1) By considering A as a trapezoida fuzzy number where A =

(a4, a,, as, a,), with the membership function:

fx_al
, a, <x<a,
a, —a
1, a, <x<a
wa(x) = a, —x 2 ’ (3.11)
, az < x < ay
a, —as
\0, otherwise.
and since
a4_ a4_
1 =j f(x)dxzj cudx
a a;
[ (%2 x —a, 4 “oa,—x
=cj dx+j 1dx+j dx]
LY aAq az_al a, as a4_a3
i 2 2
X—a a, — a
_Jma L )
_2(a2 —ay) 2(ay —az)
]
=c
_a4+a3_a2_a1

then
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2
c = . (3.12)
a,+az;—a, — a4

3.2.1.2 Fuzzy Number with Convex Nonlinear Membership Function:

If we consider 4 as a fuzzy number with membership function defined
by (2.1), where f; (x) and f, (x) are convex nonlinear functions.

In this case, we may use any approximate method to linearize f;(x)
and £, (x), and then we processed as in section (3.2.1.1)

Now, we are using the following transformation called Meéllin

Transform to find the expected value.

Definition (3.2) Méllin Transform, [39]:
The Médlin transform My (s) of a probability density function f(x),

where x is positive, is defined as

(00

My (s) =j x5 (x)dx. (3.13)

0
whenever the integral exist.

Now, it is possible to think of the Méllin transform in terms of expected
values recall that the expected value of any function g(x) of the random

variable X, whose distribution is f (x), isgiven by

FlgGl = [ gCarCadx (3.14)
Therefor it foIIows;:at

My (s) = E[xs1] = j e ()dx (3.15)
Hence O

E[x5] = My(s + 1) (3.16)

Thus, the expectation of random variable X is E[x] = My (2).
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Now, if we let A = (a;,a,,a3a,) an arbitrary trapizoidal fuzzy

number, then the density function f(x) corresponding to 4 is as follows:

( 2(x —ay)
(ay +az —a, —a;)(a, —ay)
2
<x<
fi) ={a,+as —a, —a;’ B2=X=% (3717
2(a, — x
(s ) ) az; <x < ay
(ay +as; —a, —ay)(as — as)
\0, otherwise.
The Méllin transform is the obtained by:
M) = | 27 i
0
2 (aS+1 a§+1) (aS+1 +1)
(a4+a3—a2—a1)(52+s)! 4 — Qa3 , — ]
and
E[A] = Mz(2)
1 a1a2 - a3a4
==|(ay +az +as +a,) + 3.18
3 [(al aZ a3 a4) a4 + a3 - az - al] ( )

3.2.2 Extended Ranking Method:
Based on Ranking method, we built the following approach:

3.2.2.1 Fuzzy Number with Linear Membership Function:

If we consider 4 as a fuzzy number with membership function defined

by (2.1), where f; (x) and f, (x) are linear functions, then our approach can be

illustrated into the following two cases:
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Case (1) By consider A as atriangular fuzzy number where A = (a4, a,, as),

with the membership function:

(X4
, a <x<a,

a; —ag

1, X =a,

wa(x) = as; —x (3.19)

, a, <x < as

as — a;

\0, otherwise.

By setting f;(x) = cuz , where
B 2
B as + 2a, —a,

then
( 2(x —ay)
,ap <x<a
(as +2a; —a))(a; —ay)’ 2
2
fz(x) =1as;+2a,—a,’ re & (3.20)
2(a; — x)
,a, <x<a
(a3 +2a; —ay)(az —ay) 2 3
\ 0, otherwise.
By setting
2(x —ay)
xX) = 3.21
fix) (az + 2a;, — a;)(a; — ay) ( )
2(az —x)
x) = 3.22
f2(%) (az + 2a, —a;)(az; — ay) ( )
then
. 1
B = | f7 (du
0
1 + 2 _ _
_ (as a; —a)(a; —a)du +ay|du
2
0
_ (az + 2a;, — a;)(a; — ay) +ay (3.23)

4
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3 1
E, () = jﬂ i wdp

_ jll (az —ay)(az —azx)u
= . as — 5 du
— q,— (az + 2a; —4a1)(a3 — ay) (3.24)

where 4 isthe fuzzy stochastic variable of the fuzzy number 4.

Then the expected interval of fuzzy stochastic variable A can be expressed as.
EI(A) = [E1(4),E,(4)] (3.25)
and the expected value is given by:

E,(A) + E,(A)
2
(Zaz - a3 - al)(zaz + a3 - al) a1 + a3
B 8 T

EV(A) =

(3.26)

Case(Il) By considering A is a trapezoidal fuzzy number where 4 =

(ay,a,, as, a,), with the membership function of 4 is:

(X T4
, a, <x<a,

a; —aq

1, a, <x<a

Ma=1aq, —x 2 3 (3.27)

, az; < x < ay

a, —as

\0, otherwise.

By setting f;(x) = cuz , where
2

a,+az;—a, — a4

then
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( 2(x —ayq) 4 <x<a
(as +as—a; —a;)(a; —a;)’ te 2
2
<x<
frx)={a,+as—a,—a;’ 2=%=03 (328
2(a, — x)
, az<x<a
(as +az —a; —ay)(a, — as) ; *
\ 0, otherwise.
By setting
2(x —ay)
X) = 3.29
h(x) (ay +az —a-a;)(a; — ay) ( )
2(as —x)
x) = 3.30
f2() (ag +az —az-a;)(a, — az) ( )
then
. 1
B = | f7 (du
0
1 M _
_ j [(a4 as — az_ay)(a; —a,)p 4 al] du
0 2
+ — _ —
_ (ay + as a24 ai)(a; —a;) +ay (3.31)
. 1
B0 = | (e
0
_ ! (ay + az —az_ay)(a, — az)u
= a4 —_ 2 d‘u
0
+ — _ —
— (as +as a24 ay)(a, a3). (3.32)

where 4 isthe fuzzy stochastic variable of the fuzzy number A.

Then the expected interval of fuzzy stochastic variable A can be
expressed as:

EI(A) = [E1(A), E,(4)] (3.33)
and the expected value is given by:
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Ei(A) + E;(4)
2
(ag +az —az_a;)[(a; —a;) —(ay —az) a; +ay
N 8 T

EV(A) =

(3.34)

3.2.2.2 Fuzzy Number with Convex Nonlinear Membership Function:

If we consider 4 as a fuzzy number with membership function defined
by (2.1), where f; (x) and f, (x) are convex nonlinear functions.

In this case, we must use any approximate method to linearize f;(x)
and £, (x), and then we processed asin section (3.2.2.1).

3.2.3 Interval Method:
3.2.3.1 Fuzzy Number with Linear Membership Function:
Recall (3.7), we ca culate the following:
1) Theoptimistictimet, = a; + (a, — a;)u,
2) The pessimistictimet, = a, — (a4 — a3)u, and setting
3) Themost likely time t,,, = (t, + t,)/2.

Now, the expected time t, which iscrisp is calculated as follows:

to + 4tp + t,
te = 6
(a1t ay) —(ag—a; —az+ay)p

. (3.35)

3.2.2.2 Fuzzy Number with Convex Nonlinear Membership Function:

If we consider A as a fuzzy number with membership function defined
by (2.1), where f; (x) and f, (x) are convex nonlinear functions.

In this case, we may use any approximate method to linearize f; (x)
and £, (x), and then we processed asin section (3.2.3.1).
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4 Case Study

Foreign multinational companies are willing to invest in construction

and building projects in Egypt, many factors help this type of projects to be
developed and expanded over time in Egypt. Makro is a German company
that works in hyper supermarkets, specialized in mass trade, selling food
stuffs like: meats, fishes, vegetables, fruits, sugar, macaroni, rice, and many
other commodities. It has many branches in several countries like Turkey,
Germany, France, Italy and more than 30 other countries. A feasibility study
was done by the company to enter the Egyptian market by investing 4.5
milliards dollars, and building 45 branches all over Egypt in the next five
years, the estimated budgeted cost for each mall is 100 millions dollars, the
first branch is planned to be built in Al-Salam City, the mall consists of one
floor store of 15000 m® steel structure building, a 30000 m? parking area, and

5000 m* backyard for trucks maneuvering [40].

4.1 Problem definition, [40]:

As being the responsible of the co-ordination between the companies
working in the project and scheduling the whole project's activities, the
Egyptian consultant should be so precise in scheduling the times of the
activities and the whole project duration. The consultant should have
interactive discussions, agreements, and decisions with the executive
companies to optimize both the time and the cost of the project, any deviation
in the assessment of the activitie's times will lead to extra cost and time. The
activitie's duration times in the project are not deterministic and imprecise so
the concept of fuzziness is employed to deal with the vague activity times.

The Egyptian consultant scheduled the project into 30 activities and
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Case Study

represented their times by fuzzy sets after asking the experts, interacting with

the companies to build the membership functions used. As shown in table

(4.1); the 30 activity are listed with their fuzzy operation time.

Activity
ltem

Table (4.1): Construction Project

Activity Description

Precedence
Item

Fuzzy Operation
Time (per day)

Concrete works foundation

(25,28,30,35)

I nsulation works

(3,445

Parking area + Roads + L andscape

(25,29,30,35)

Back filling works

(3,7,12,15)

Sub-base

(5,6,6,10)

Steel structure erection

(26,30,35,40)

Under ground drainage system

(7,10,10,13)

Water tank - civil works

(15,21,21,25)

Sted structure testing

(2,345

Roofing works

(9,10,12,15)

Water tank — finishing

(6,7,8,10)

HVAC works - 1% fix

(12,14,14,16)

Fire fighting works 1 fix

(7,9,11,12)

Electrical system works - 1% fix

(5,6,7,10)

Flooring

(7,9,11,12)

HVAC work-2" fix

(12,14,14,16)

Fire fighting works — 2™ fix

(7,911,12)

Cladding works

(15,24,25,30)

Electrical system works - 2™ fix

(5,6,7,10)

Water tank — MEP

(9,11,12,14)

Finishing works

(15,18,18,20)

HVAC works - 3™

(12,14,14,16)

Fire fighting work - 3 fix

(7,9,11,12)

Electrical system works -3" fix

(5,6,7,10)

Plumbing works - 1% fix

(5,6,6,8)

Plumbing works — 2™ fix

(5,6,6,8)

Plumbing works - 3" fix

(5,6,6,8)

Water tank testing

(1,2,2,3)

Testing and commissioning

(1,2,2,3)

Snag list and Initial handling
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In order to solve such problem, two methods are derived in [40] to
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convert the fuzzy time number into crisp time number and find the optimum
value for objective function and the critical path for activities by using two
different linear programming models.

In this thesis, three defuzzification approaches are implemented using
FLPP to solve this problem and compared these results with the results
obtained by using CPM technique.

4.2 First Approach :
In this approach our problem can be expressed as the following (0-1)
integer model (one objective function) with fuzzy time number, which can be

written as;

Maximize
Z = (25,28,30,35)P; + (3,4,4,5)P, + (25,29,30,35)P; + (3,7,12,15)P, +
(5,6,6,10)P; + (26,30,35,40)P; + (7,10,10,13)P; + (15,21,21,25)Ps +
(234,5P, + (9,10,12,15P + (6,7,8,100P; + (12,14,14,16)Py, +
(7,9,11,12)P;3 + (5,6,7,10)P4 + (7,9,11,12)P;s + (12,14,14,16)P;5 +
(7,9,11,12)Py; + (15,24,25,30)Pys + (5,6,7,10)Py + (9,11,12,14)P, +
(15,18,18,20)P»;, + (12,14,14,16)P,, + (7,9,11,12)P» + (5,6,7,10)P,, +
(5,6,6,8)P + (5,6,6,8)Py + (5,6,6,8)Px7 + (1,2,2,3)P2g + (1,2,2,3)Py9 +
(5,7,7,9)P5

Subject to
P+ Pg=1
Pi=P,
P,=P;
Ps= P,
Ps=Ps
Ps=Ps+ P;
Ps= P+ Pio
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Pg= Py

P11=Pao

P2 = Pag

Pag = Pag

P29 = P3o

Po=Pia+ P13 + Pig+ Pi7 + Pig+ Py + Py
P2+ P13= Py

P14+ Pis=Pss

Pis= Pz

Pie+ P17= Pig

P1o= Pz

P2+ P3= Py

P24= Py

P7+ Pio+ Pig + Poy + Pos + Pos + Py + Pyp=1

r=0,j=12..,30.

Now, by using the first method that we constructed in (3.2.1) to convert
the FLPP into CLPP with crisp obtained numbers, as shown in table (4.2), we

can rewrite the objective function with crisp numbers as:

Maximize
Z = 29.611P; + 4P, + 29.818P; + 9.215P, + 7Ps + 32.789P; + 10P; +
20.333Pg + 3.5P; + 11.583Py¢ + 7.8Py; + 14Py, + 9.714P;3 + 7.111Py, +
0.714P;s + 14Pj + 9.714Py; + 23.208P;3 + 7.111P;g + 11.5P, +
17.666P,; + 14P,, + 9.714P,; + 7.111P,, + 6.333P, + 6.333P +
6.333P,7 + 2P + 2 Py + 7P3

Subject to
P+ Ps=1
P=P,
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P,=Ps
P;=P,
Ps=Ps
Ps=Ps+ P;
Ps= P+ Pio
Pg= Py
P11= P2

P20 = Pag

Pag = Pag

P29 = P3o

Po= P+ P13+ Pig+ P17 + Pig+ Py + Pos
P12+ Pi3= P4

Pia+ Pis= Py

Pis= Pz
P+ P17= Pig
P1o= Pz
Pao+ Py3= Py
P2s= P

P7+ Pio+ Pig + Poy+ Pos + Pog+ Py + Pyg= 11

P >0,j=12,..,30.

Table (4.2): Problem Crisp Operation Time
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Activity Activity Description Fuzzy Operation | Crisp Operation
Item Time (per day) | Time (per day)
Concrete works foundation (25,28,30,35) 29.611
Insulation works (3,445 4
Parking area + Roads + L andscape (25,29,30,35) 290.818
Back filling works (3,7,12,15) 9.215
Sub-base (5,6,6,10) 7
Sted structure erection (26,30,35,40) 32.789
Under ground drainage system (7,10,10,13) 10
Water tank - civil works (15,21,21,25) 20.333
Sted structure testing (2,345 3.5
Roofing works (9,10,12,15) 11.583
Water tank — finishing (6,7,8,10) 7.8
HVAC works - 1% fix (12,14,14,16) 14
Fire fighting works 1 fix (7,9,11,12) 9.714
Electrical system works - 1% fix (5,6,7,10) 7.111
Flooring (7,9,11,12) 9.714
HVAC work-2" fix (12,14,14,16) 14
Fire fighting works — 2™ fix (7,9,11,12) 9.714
Cladding works (15,24,25,30) 23.208
Electrical system works - 2™ fix (5,6,7,10) 7.111
Water tank — MEP (9,11,12,14) 11.5
Finishing works (15,18,18,20) 17.666
HVAC works - 3" (12,14,14,16) 14
Fire fighting work - 3 fix (7,9,11,12) 9.714
Electrica system works -3" fix (5,6,7,10) 7.111
Plumbing works - 1% fix (5,6,6,8) 6.333
Plumbing works — 2™ fix (5,6,6,8) 6.333
Plumbing works - 3" fix (5,6,6,8)
Water tank testing (1,2,2,3)
Testing and commissioning (1,2,2,3)
Snag list and Initial handling (5,7,7,9)

On solving CLP problem, the following feasible solutions are obtained:
1- P]_: P2 = P3= P4= P5= P7 =1
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and

Pe= Po= P1o= P12 = P13= P1g = P17 = P1g= Py = P33 = Py = P57 = P19 = P
= P1a= P1is= Py = Py =Pg= P11 = Py = Ppg = Py = P3 =0

that mean the path solution is:

olororoTolorfe

with path time value =89.644 days.

P1=P,=P3=P;=Ps=Ps = Pp=1

and

P7=Py=P1o=P13=Pis=P17= P1g= Py = Pj3= Py = P57 = P19 = Ps = P14
= P15= Pos= Py =Pg= P11 = Py = Pg = Pg=P3=0

that mean the path solution is:

00,050,000

with path time value =124.016 days.

Pi=P, =P3=Py=Ps=Ps = Py=Py3= Py =Py =Py=1

and

P7=Pio = Pig=P17=P1o=P=Pig = Pi3= P1y= Pis= Ps =Py = P, =
Pg= P11= Po= P =Px=P3x =0

that mean the path solution is:

OO0 00000
()= )= ()=

with path time value =153.091 days.

Pi=P,=P3=P;=Ps=Ps =Py=Pyg=1

and

P7=Pio= Py = Pn=Py=P;y=P17=Pig=Py=Pg=Pi3=Py=P;s=
Pas= P21 = Po= Ps= P11 = Pro= Pyg = Prg=P3=0
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that mean the path solution is:
with path time value =139.141 days.

P1=P; = P3=Py=Ps=Ps = Py= P17= Pig = P1g= Py=1

and

P7=P1o= Pi3= Py =Py =Py =Pig=P13= P = Py = Pis=P;; = Ps=Pg
= P11 = Py= Py =Py=P3=0

that mean the path solution is:

A D DAHDAH DD
PO OSOFD

with path time value =153.091 days.

Pi=P, =P3=Py=Ps=Ps = Pg= P2 = Pyy=P;s=Py =1

and

P7= Pio= P13 =P = P = Py =Py = Pig= P17 = Pig= Pio= Py =Ps =Py
= P=Px=Py=Px=P3xp=0

that mean the path solution is:

DA DAHDAH DD
N OSOSOSOND

with path time value =164.424 days.

Pi=P,=P3=Py=Ps=Ps =Py=Pi3 =Pyy=Px=1

and

P7= P1o= Py3= Py =Py =Py =Pig= P17 = Pig= Pi5s= Pig= P =Ps=Pp;
= Po=Px=Py=P; =P3=0

that mean the path solution is:
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O OO OO0 O
()= )=

with path time value =153.091 days.

8- Pg=Py =Pp=Py=Py=Pyp=1
and
Pi=Py=P3=Py=Ps=Ps=P7=Po=Pio= P = P = Py = Py7 = Pig =
P17= P1g= P = P1g= P13= P12 = P1y= Pis= Px=P;; =0

that mean the path solution is:

O ONOr O ONONO

with path time value =50.633 days.

There for from the above results the optimal path solution (critical path) is:

D DADAH D DD
RO O

which has the maximum time value = 164.424 days.

4.3 Second Approach:

In this approach the extended ranking method is implemented to
transform the problem fuzzy datainto a crisp values as follows:

The problem can beillustrated using the following standard model with
fuzzy time numbers in the right-hand-side of all constraints, which can be

written as;

Minimize
Z == t24 - t1
Subject to
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t24_t62P7
t8_t12P8
tg_t72P9
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ty3 — 1ty 2 Py

try —t23 2 Py
where t; = 0,i = 1,2,3, ...,24, which represent the events (nodes) of the
network problem and P}, j=1,2,...,30, is the activity fuzzy time number.

Using (3.34) to convert the 30 fuzzy time activities into crisp numbers,
as shown in table (4.3), the standard model can be rewritten into a
deterministic model as follows:
Minimize

Z=1,—1
Subject to

t,—t, =7

t, —t, > 4

t, —t; > 28.625

ts —t, > 11.125

tg —ts = 5.625
t; —tg = 30.625
tyy — tg = 10
tg—t, =225
ty—t; > 3.5

tyy — t; > 10

tys — tg = 7.375
tio — to > 14

ty; — tg = 10.375
tyy —tyy =6

t6 — typ = 10.375
ty3 —tg > 14

t14_ - tg 2 10.375
t24 - tg 2 305
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tig—t14 26
t21 - t15 2 1075
t24 - t16 2 16875

t17 - tg 2 14
t18 - tg 2 10.375
t20 - t18 2 6

t24 - tlZ 2 6125
t24 - t19 2 6125
t24 - t20 2 6125

t22 _t21 2 2
tys =ty =2
try —t33 =7

wheret; > 0, i =1,2,3,...,24

The critical activities are determined and the optimal vaue of the
objective function is calculated using “Matlab R2010b” software. The results
are shown in thetable (4.4).

It's clear that from the table (4.4) the optimal path solution (critical
path) is.

(=G0

which has the minimum time value = 154.125 days.

Table (4.3): Problem Crisp Operation Time
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Activity
Item

Chapter Four

Case Study

Activity Description

Fuzzy Operation
Time (per day)

Crisp Operation
Time (per day)

Concrete works foundation

(25,28,30,35)

27

I nsul ation works

(3,445

4

Parking area + Roads + L andscape

(25,29,30,35)

28.625

Back filling works

(3,7,12,15)

11.125

Sub-base

(5,6,6,10)

5.625

Sted structure erection

(26,30,35,40)

30.625

Under ground drainage system

(7,10,10,13)

10

Water tank - civil works

(15,21,21,25)

22.5

Sted structure testing

(2,345

3.5

Roofing works

(9,10,12,15)

10

Water tank — finishing

(6,7,8,10)

7.375

HVAC works - 1% fix

(12,14,14,16)

14

Fire fighting works 1 fix

(7,9,11,12)

10.375

Electrical system works - 1% fix

(5,6,7,10)

6

Flooring

(7,9,11,12)

10.375

HVAC work-2" fix

(12,14,14,16)

14

Fire fighting works — 2™ fix

(7,9,11,12)

10.375

Cladding works

(15,24,25,30)

30.5

Electrical system works - 2™ fix

(5,6,7,10)

6

Water tank — MEP

(9,11,12,14)

10.75

Finishing works

(15,18,18,20)

16.875

HVAC works - 3™

(12,14,14,16)

14

Fire fighting work - 3 fix

(7,9,11,12)

10.375

Electrical system works -3" fix

(5,6,7,10)

6

Plumbing works - 1% fix

(5,6,6,8)

6.125

Plumbing works — 2™ fix

(5,6,6,8)

6.125

Plumbing works - 3 fix

(5,6,6,8)

6.125

Water tank testing

(1,2,2,3)

Testing and commissioning

(1,2,2,3)

Snag list and Initial handling

43
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Table (4.4) :Implementing results for the second approach

11 12 13 14 15 16 17 18 19 20 21 22 23 24

10

1

Time of

nodes

68.98 95.98 99.98 128.61 139.73145.36 175.98 108.68 179.48 296.37 189.86 195.86 296.37 196.90 132.85 206.23 296.37 196.90 210.46 210.46 160.49 179.85 199.99 223.11

Min Z = 154.125

27
4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0

0

-1

28.625

11.125

5.625

30.625
=10

3.5
>10

=27
=4

28.625

11.125

5.625

30.625

77.75

39.6963 >22.5
35
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Chapter Four Case Study

4.4 Third Approach:

In this approach, the activities expected times t, for each u-cut are
calculated using (3.35), and the optimal critical path is obtained for each
u = 0,0.1,0.25,0.5,0.75,1 by implementing the following standard linear

programming model for each u-cut value:

Minimize
L=t,—t

Subject to
ty =t 2ty
t3 — 1 = te
ty —t3 = te3
ts —ty = teyq
tg — 5 = tes
t; —tg = tes

trg —lg = tey
tg —t; = teg

tog —t7 = teg
tre —t7 2 tego
tis —tg = te1s
tio =t = ter
t11 —tg = tegs
ti2 =t 2 Te1y
tie — ti2 = tess
t13 =ty = tess
tig —tg = ey
24 —tg = tegg
t19 = t14 = te1o

t21 — tis = teno
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t2q —tis = te2s
t17 — tg = tea

t1g —tg = teps3

t20 — tig = teps
tag =tz = tegs
t24 —tio = teze
trq — T2 = te27
trz —ta1 = tezg
tr3 — Tz = tepg

trq — T3 = te3p

t;>0,i=1,23,..,24.
wheretej, j = 1,2, ...,30 is the expected time that obtained using (3.35).

The critical path activities are determined and the optimal value of the
objective function is calculated for each value of u-cut, using “Matlab

R2010b” software. The results are shown in the following tables:
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Table (4.5): problemdataat g = 0

Activity | Fuzzy Operation | Optimistic | Pessimistic | Most Likely
Item Time (in day) Timet, Time ¢ Time t,,

(25,28,30,35)
(3,4,4,5)
(25,29,30,35)
(3,7,12,15)
(5,6,6,10)
(26,30,35,40)
(7,10,10,13)
(15,21,21,25)
(2,3,4,5)
(9,10,12,15)
(6,7,8,10)
(12,14,14,16)
(7,9,11,12)
(5,6,7,10)
(7,.9,11,12)
(12,14,14,16)
(7,9,11,12)
(15,24,25,30)
(5,6,7,10)
(9,11,12,14)
(15,18,18,20)
(12,14,14,16)
(7,9,11,12)
(5,6,7,10)
(5,6,6,8)
(5,6,6,8)
(5,6,6,8)
(1,2,2,3)
(1,2,2,3)
(5,7,7,9)

N
(6)

= = = = = N N
gk |k lalalalua NG IGlololGINRINoNRKlolod iGN o|w| R w
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Table (4.6): Implementing resultsat u

11 12 13 14 15 16 17 18 19 20 21 22 23 24

10

1

Time of

nodes

68.87 98.87 102.87 132.87 141.87 149.37 182.37 106.98 185.87 302.65 195.37 202.87 302.65 202.34 133.05 212.37 302.65 202.34 217.31 217.31 162.81 183.58 205.24 229.87

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 Minz=161

0

-1
-1

=33
>10
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Table (4.7): problemdataat u = 0.1

Activity | Fuzzy Operation | Optimistic | Pessimistic | Most Likely
Item Time (in day) Timet, Timet Time t,,

(25,28,30,35)
(3,4,4,5)
(25,29,30,35)
(3,7,12,15)
(5,6,6,10)
(26,30,35,40)
(7,10,10,13)
(15,21,21,25)
(2,3,4,5)
(9,10,12,15)
(6,7,8,10)
(12,14,14,16)
(7,9,11,12)
(5,6,7,10)
(7,.9,11,12)
(12,14,14,16)
(7,9,11,12)
(15,24,25,30)
(5,6,7,10)
(9,11,12,14)
(15,18,18,20)
(12,14,14,16)
(7,9,11,12)
(5,6,7,10)
(5,6,6,8)
(5,6,6,8)
(5,6,6,8)
(1,2,2,3)
(1,2,2,3)
(5,7,7,9)
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Table (4.8): Implementing resultsat u

11 12 13 14 15 16 17 18 19 20 21 22 23 24
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Time of

nodes
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Chapter Four Case Study

Table (4.9): problendataat u = 0.25

Activity | Fuzzy Operation | Optimistic | Pessimistic | Most Likely
Item Time (in day) Timet, Timet Time t,,

(25,28,30,35)
(3,4,4,5)
(25,29,30,35)
(3,7,12,15)
(5,6,6,10)
(26,30,35,40)
(7,10,10,13)
(15,21,21,25)
(2,3,4,5)
(9,10,12,15)
(6,7,8,10)
(12,14,14,16)
(7,9,11,12)
(5,6,7,10)
(7,.9,11,12)
(12,14,14,16)
(7,9,11,12)
(15,24,25,30)
(5,6,7,10)
(9,11,12,14)
(15,18,18,20)
(12,14,14,16)
(7,9,11,12)
(5,6,7,10)
(5,6,6,8)
(5,6,6,8)
(5,6,6,8)
(1,2,2,3)
(1,2,2,3)
(5,7,7,9)
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0.25

Table (4.10): Implementing resultsat u

11 12 13 14 15 16 17 18 19 20 21 22 23 24

10
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Time of

nodes
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Chapter Four Case Study

Table (4.11): problem dataat u = 0.5

Activity [ Fuzzy Operation | Optimistic | Pessimistic | Most Likely
Item Time (in day) Timet, Timet Timet,,

(25,28,30,35)
(3,4,4,5)
(25,29,30,35)
(3,7,12,15)
(5,6,6,10)
(26,30,35,40)
(7,10,10,13)
(15,21,21,25)
(2,3,4,5)
(9,10,12,15)
(6,7,8,10)
(12,14,14,16)
(7,9,11,12)
(5,6,7,10)
(7,.9,11,12)
(12,14,14,16)
(7,9,11,12)
(15,24,25,30)
(5,6,7,10)
(9,11,12,14)
(15,18,18,20)
(12,14,14,16)
(7,9,11,12)
(5,6,7,10)
(5,6,6,8)
(5,6,6,8)
(5,6,6,8)
(1,2,2,3)
(1,2,2,3)
(5,7,7,9)
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=0.5

Table (4.12): Implementing resultsat u

11 12 13 14 15 16 17 18 19 20 21 22 23 24

10

1

Time of

nodes

68.86 98.36 102.36 132.11 141.36 148.11 180.86 107.32 184.36 301.14 194.11 201.11 301.14 201.18 132.89 210.86 301.14 201.18 215.77 21.77 162.40 182.90 204.26 228.61

=159.75
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Chapter Four Case Study

Table (4.13): problemdataat u = 0.75

Activity | Fuzzy Operation | Optimistic | Pessimistic | Most Likely
Item Time (in day) Timet, Timet Time t,,

(25,28,30,35)
(3,4,4,5)
(25,29,30,35)
(3,7,12,15)
(5,6,6,10)
(26,30,35,40)
(7,10,10,13)
(15,21,21,25)
(2,3,4,5)
(9,10,12,15)
(6,7,8,10)
(12,14,14,16)
(7,9,11,12)
(5,6,7,10)
(7,9,11,12)
(12,14,14,16)
(7,9,11,12)
(15,24,25,30)
(5,6,7,10)
(9,11,12,14)
(15,18,18,20)
(12,14,14,16)
(7,9,11,12)
(5,6,7,10)
(5,6,6,8)
(5,6,6,8)
(5,6,6,8)
(1,2,2,3)
(1,2,2,3)
(5,7,7,9)
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0.75

Table (4.14): Implementing resultsat u

11 12 13 14 15 16 17 18 19 20 21 22 23 24

10

1

Time of

nodes
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 MinZ=159.25

0

0

-1

32.625
>10

OO0 oO0oO0oo

[eNeololoNeNe)

OO0 oO0oO0oo

[eNeololoNeNe)

OO0 oO0oOooo

oOooooo

OO OoOOoOOo

[eoleoleloNeNe]

[eoleoleloNoNe]

oOooooo

[eoleoleloNeNo]

[eoleoleloNoNe]

oOooooo

[eoleoleloNoNe]

[eoleoleloNoNe]

[eoleoleloNoNe]

QOO OO-

coocod-

cocodio

cod< oo

odJooo

" Joocoo

T oocoocoo

U I ST )
TE YTy
oM S b o
IR
— N ™ g b _©
[a s a iy a Ry Yo

3.5
>11.25

38.6404 >20.75

80.5
35

1
0
0

[eoNele]

o oo

o oo

o oo

o oo

o oo

[eoNele]

[eoNele]

[eoNele]

o oo

[eoNele]

[eoNele]

o oo

o oo

OO

O 0O

o oo

o oo

o oo

o oo

0
-1
0
0

oty
to-ty

P7=tos-te
Pg
Py

47.875

Pio=tos-t7

>14
9.875
6.75

253514 >7.625
116.788

9.875
6.75

o —0O0

o ocOO0o

o ocOOo

o ocOOo

o oOOo

o ocOOo

o ocO0OO0o

0
0
0
0

tioto
ti-to
tio-tyg
tie-tio
t13-1o

P1i=ti5-tg

Py
Pi3
P4

9.875
>14
>9.875

9.875
116.788
17.067
44375

0
0
0

o o O

-1

o o O

o o O

o oo

o oo

o oo

o oo

o oo

0
0
0

ta-to

P15
Pig
P17

>24

0 144735 2>6.75

0
1

(=N}

(=N}

S O

(=N}

- o

S O

(=N}

S O

S O

S O

S O

S O

0
0
0
0

tos-to
tio-ta

P18
Pig

>11.5
=17.875

29.3973
17.875

S O

S O

S O

S O

S O

S O

S O

S O

S O

S O

S O

S O

S O

S O

to1-tis
tos-tie

Pag
Pay

v v N N

S RS Ks!
<+ = = e
e R =NCENCRIVC I N I o
AL AL ALAL AL AL AL AL AL
2882983
CERBIIIIE
S QNN 0O MAN AN
—_—~E NN d <
— el N — NN
COO0OA—~d1 0O —~
coO0O0OcO0OH
coooocoHJo
cooooco Yoo
cOoOHOoOo JTo0o
cOoOO0OO0OTFTOOOO
ocdJToocoo0o0o
—0OO0OO0OcO0OO0O0Oo
YeNeoNoR-NolNoNall-)
YeNeNoR-NolNoNall-)
SNeNoNoN-NoloNoll-)
YeNeoNoR-NolNoNall-)
cooTJTocooooo
SNeNoNoN-NoloNoll-)
YeNeNoR-NolNoNall-)
—TJo00co0o0o0o
YeNeNoR-NolNoNall-)
YeNeoNoR-NolNoNall)
SYecNoNoR-NolNoNoll-)
SYecNoNoR-NolNoNoll-)
SYecNoNoR-NolNoNoll-)
SYecNoNoR-NolNoNoll-)
SYecNoNoR-NolNoNoll-)
SYecNoNoR-NolNoNoll-)
2 2.3 3428 o
0 4D 4 4 e 4 4 = N
Ko b s v by
PhruiFr O S L S L S RO
TR R TR T
N R8I QLK EEI
[ W N N o N W H Y M



Chapter Four Case Study

Table (4.15): problendataat u = 1

Activity [ Fuzzy Operation | Optimistic | Pessimistic | Most Likely
Item Time (in day) Timet, Time ¢ Timet,,

(25,28,30,35)
(3,4,4,5)
(25,29,30,35)
(3,7,12,15)
(5,6,6,10)
(26,30,35,40)
(7,10,10,13)
(15,21,21,25)
(2,3,4,5)
(9,10,12,15)
(6,7,8,10)
(12,14,14,16)
(7,9,11,12)
(5,6,7,10)
(7,.9,11,12)
(12,14,14,16)
(7,9,11,12)
(15,24,25,30)
(5,6,7,10)
(9,11,12,14)
(15,18,18,20)
(12,14,14,16)
(7,9,11,12)
(5,6,7,10)
(5,6,6,8)
(5,6,6,8)
(5,6,6,8)
(1,2,2,3)
(1,2,2,3)
(5,7,7,9)
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~NINDINOIOO|O| O
~NINDINOIOO|N
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=1

Table (4.16): Implementing resultsat u

11 12 13 14 15 16 17 18 19 20 21 22 23 24

10

1

Time of

nodes
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Table (4.17): The summary resultsfor different u-cut values of the third approach

a-cut value Critical paths duration Criticality
state

t1— otz ta—ts—ote—trotg—ti—tio—tis—tos 161

t1— tr—>tz—oty—ots—tg—tr—otgo—t11—t—ti5—124 160.95

11— tr—>tz—oty—ts—tg—tr—to—t11—tio—t15—124 160.375
11— tr—ot3—oty—ot5—otg—ot7—otg—t11—tio—tis—ts 159.75

t1—> t2—>t3—>t4—>t5—>t6—>t7—>t9—>t11—>t12—>t16—>t24 159.25

11— tr—>tz—oty—ts—tg—tr—oto— 11—t —tig— 124 158.5




Chapter Four Case Study

Now, we present a hybrid approach which consists of “PERT” and “CPM”.
4.5 Hybrid Approach, [4]:

For more satisfaction to our results, we will implement CPM which can
be explaining as follows:

For each activity (i,j) in the project network, considering the crisp
activity time t;; that calculated using (3.35) for each value of the p-cut in
section (4.4).

Let ES; and LF; be the earliest start time event i, and latest finish time
event i, respectively. Let D; be aset of events obtained fromevent i and i < j.

We then obtain ES; using the following equations:

ES; = maxep [ES; + t;] and ES; = LS; = 0.

Similarly, let H; be aset of events obtained fromevent i andi < j.

We obtain LF; using the following equations:

LF; = minjey [LF; — t;;] and LF, = EF,.

The interval [ES;, LF;] is the time during which the activity (i, ) must
be completed. When the earliest event time and the latest event time have
been obtained, we can calculate the total ack on each node. For activity (i, j)
in aproject network, the slack T;; of each node can be computed as follows:

T, = LF; — ES; — t;;.

In the following tables (4.16) - (4.21) the earliest event time, the latest
event time and the slack of each node are obtained by using the above
eguations and the critical events are identified corresponding to their zeros

values of the slack time for each value of u-cuit.
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Chapter Four Case Study

Table (4.18): Critical Event with u =0

Earliest Time Te

=
o

0
0
0
0
0
0
0
1
0
0
0
0
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Chapter Four Case Study

Table (4.19): Critical Event with u=0.1

Earliest Time Te

0
0
0
0
0
0
0
114.
0
0
0
0
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Chapter Four Case Study

Table (4.20): Critical Event with u =0.25

Earliest Time Te

0

0

29.75

29.75

33.75

33.75

63.625

63.625

72.75

72.75

79.875

79.875

112.75

112.75

O00000o|0o

20.25

133.825

113.575

116.25

116.25

130.25

130.25

130.25

130.25

137.5

137.5

0
0
0
0

130.25

150.875

20.625

130.25

150.875

20.625

28.125

141.7

113.575

147.125

147.125

0

130.25

150.875

20.625

130.25

150.875

20.625

137.5

158.125

20.625

137.5

158.125

20.625

39.625

153.2

113.575

41.625

155.2

113.575

43.625

157.2

113.575

164.75

63

164.75

0




Chapter Four Case Study

Table (4.21): Critical Event with u =0.5

Earliest Time Te

0
0
0
0
0
0
0
113.
0
0
0
0
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Chapter Four Case Study

Table (4.22): Critical Event with u =0.75

Earliest Time Te

0

0

29.25

29.25

33.25

33.25

63

63

72.375

72.375

78.75

78.75

113.375

113.375

20.75

133.25

1

114.875

114.875

128.875

128.875

128.875

128.875

135.625

135.625

0
0
0
0
0
0
0
12.
0
0
0
0

128.875

150.5

128.875

150.5

28.375

140.875

145.5

145.5

128.875

150.5

128.875

150.5

135.625

157.25

135.625

157.25

39.875

152.375

41.875

154.375

43.875

156.375

163.375
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163.375




Chapter Four Case Study

Table (4.23): Critical Eventwith p =1

Earliest Time Te

0
0
0
0
0
0
0
111.
0
0
0
0
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Earliest Expected Time

Table (4.24): The summary results from tables (4.18)-(4.23)

Latest Allowable Time

Slack Time

Critical Path

1>t >tz tsotgotrotg—otig ot —tio—tig—1ts

ti—t—ta—>ts—ts—te—tr—otg—tig >t —tio—tig—ts

ti—th—tz—>ty—ts—te—tr—otg—tig—oti—tio—tig—ts

1>t >tz tsotgotrotg—otig ot —tio—tig—1ts

163.375

163.375

1ot >tz tsoteotrotg—otig ot —tio—tig—1ts

162.5

162.5

ti— o>tz ts—ts—te—tr—otg—tig >t —tio—tig—tos






Conclusions and Future Works

Over the past few decades, researchers have proposed many FLP
models with different levels of sophistication. However, many of these
models have limited real-world applications because of their methodological
complexities and flexible assumptions.

In contrast, our proposed approaches in this study are straight forward
and flexible. The manageriad of the proposed approaches are their
applicability to a wide range of real-word problems such as performance
evaluation.

From the obtained results we can conclude the following:

1- The defuzzification techniques are possible to be implementing or

solving fuzzy network problems.

2

The implementing of standard crisp model identifying the required
critical path when u-cut equal one.
The weak and strong critical paths can be identified.

3
4

The four approaches give us the same optimal critical path and
different time values of the objective function.
5- Our computation results had been shown identically to the resultsin

[40] corresponding to each p-cut values which are considered.

For future research we are suggested to concentrate on the comparison
of results obtained with those that might be obtained with other methods. In
addition, we plan to extend the FLP approach proposed here to deal with
fuzzy nonlinear optimization problems with multiple objectives where the
vagueness or impreciseness appears in all the components of the optimization

problem such as the objectives, constraints and coefficients.
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