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Summary

This thesis developed three defuzzification approaches to convert the

coefficients and the variables of the fuzzy linear programming problems

(FLPP) into crisp (deterministic) linear programming problems (CLPP) and

obtain the critical path with the optimal completion time for the different

fuzzy network problems.

The three defuzzification approaches are based respectively on the

philosophies of probability density function, ranking measures and the

program evaluation and review technique (PERT).

Finally, the critical path method (CPM) has been used to compare its

results with our obtained results to give more credit to our approaches.

The case study is considered from a real problem to verify our results

that obtained using “Matlab2010R” software.



Nomenclatures and Notations

LP Linear Programming

FLP Fuzzy Linear Programming

FLPP Fuzzy Linear Programming Problems

CLPP Crisp Linear Programming Problems

PERT Program Evaluation and Review Technique

CPM Critical Path Method

AoA Activity on Arrow

to Optimistic time

tp Pessimistic time

tm Most likely time

TE Earliest expected time

TL Latest allowable time

COG Center of Gravity

FM Fuzzy Mean

WFM Weighted Fuzzy Mean

QT Quality Technique

EQT Extended Quality Technique

FOM First of Maxima

MOM Middle of Maxima

LOM Last of Maxima

RCOM Random Choice of Maxima

COA Center of Area

( ,݅ )݆ Activity between the nodes ,݅ ݆

ܷ Universal set

ሚܣ Fuzzy set, Fuzzy number

ሚܣ̅ Fuzzy stochastic variable



Nomenclatures and Notations

μ஺෨(ݔ) Membership of the fuzzy set ሚܣ

෨ܲ Fuzzy Critical Path

ℜ൫ܣሚ൯ Ranking function

(ݏ)௑ܯ Mellin transform

[ݔ]ܧ Expected value of the random variable ݔ
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Introduction

In recent years, the range of project management applications has

greatly expanded. Project management concerns the scheduling and

controlling of activities (tasks) in such a way that the project can be

completed in a little time as possible. To ensure the project's success, the

project management team must identify the stakeholders, determine and

manage their needs and expectations. A project network is defined as a set of

activities that must be performed according to precedence constraints stating

that the activities must start after the completion of specified other activities.

In the project network, the nodes represent activities and the arcs represent

precedence relations. A path through a project network is one of the routes

from the starting node to the ending node. The length of a path is the sum of

the durations of the activities on the path. The project duration equals the

length of the longest path through the project network. The longest path is

called the critical path of the network. In order to specify the critical path in

project networks in the traditional models, the durations of activities are

represented as crisp numbers. However, the operation time for each activity is

usually difficult to define and estimate precisely in a real situation.

The longest path problem is concentrate on finding the path with

maximum distance, time or benefit or other variables, and it is one of the

basic problems in networks and is widely applied in transportation,

communication and computer network and has been studied extensively in the

field of computer science, operation research, transportation engineering and

so on.

The aim of the longest path problem is to find the longest path between:

(1) two given nodes of a graph,

(2) a given node to all other nodes,
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(3) all pair of nodes.

The Bellman algorithm is one of the efficient algorithms used to

determine the longest and/or shortest path in a crisp network.

In real problems, uncertainty cannot be avoided and usually, the arc

lengths cannot be determined precisely. For instance, on road networks, for

several reasons, e.g., traffic, accidents, arc lengths representing the vehicle

travel time are subject to uncertainty. In these cases, deterministic values for

representing the arc weights cannot be used. A typical way of expressing

these uncertainties in the arc weights is to utilize probability theory. However,

sometimes the probability distributions of the lengths of arc are difficult to

acquire due to lack of historical data. In dealing with such case, the expert,

using the fuzzy theory as a powerful tool, estimate the approximate length of

the arc. Fuzzy set theory has been proposed to handle non crisp (fuzzy)

parameters by generalizing the notion of membership in a set. Essentially, in a

fuzzy set each element is associated with a point value selected from the unit

interval [0,1], which is an arbitrary grade of truth referred to as the grade of

membership in the set [1].

Many previous studies on fuzzy project management network are

reviewed before. Prade (1979) first applied fuzzy set theory into the project

scheduling problem. Furthermore, Dubios and Prade (1979), Chanas and

Kamburowski (1981), Kaufmann and Gupta (1988), Hapke and Kaufmann

(1993) and Ke and Liu (2010) discussed various types of project scheduling

problems with fuzzy activity duration times. Furthermore, randomness and

fuzziness may coexist in project scheduling problem. Ke and Liu (2007)

proposed project scheduling models with mixed uncertainty of randomness

and fuzziness using the tool of random fuzzy variable.

Linear programming (LP) is the most widely used and understood

mathematical optimization technique employed by the business and industrial

community. The conventional LP deals with crisp parameters. However,
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managerial decision making is subject to professional judgments usually

based on imprecise, vague, uncertain or incomplete information (Leung,

1988).

The main objective in FLP is to find the best solution possible with

imprecise, vague or uncertain. There are many sources of imprecision in FLP,

for example, sometimes the coefficient variables are not known precisely,

other times constraints satisfaction limits may be vague. The challenge in FLP

is to construct an optimization model that can produce the optimal solution

with subjective professional judgments.

The theory of fuzzy mathematical programming was first proposed by

Tanaka et al. (1974) based on the fuzzy decision framework of Bellman and

Zadeh, [11], to address the impreciseness and vagueness of the parameters in

problems with fuzzy constraints and objective functions. Zimmermann (1978)

introduced the first formulation of FLP. He constructed a crisp model of the

problem and obtained its crisp results using an existing algorithm. He then

used the crisp results and fuzzified the problem by considering subjective

constants of admissible deviations for the goal and the constraints. Finally, he

defined an equivalent crisp problem using an auxiliary variable that

represented the maximization of the minimization of the deviations on the

constraints. Zimmermann (1978, 1987) used Bellman and Zadeh’s, [11],

interpretation that a fuzzy decision is a union of goals and constraints.

In the past decade, researchers have discussed various properties of

FLP problems and proposed an assortment of models (Luhandjula, 1989).

Zhang et al. (2003) proposed a FLP with fuzzy numbers for the coefficients of

objective functions. They introduced a number of optimal solutions to the

FLP problems and developed a number of theorems for converting the FLP

problems to multi-objective optimization problems with four-objective

functions. Stanciulescu (2003) proposed a FLP model with fuzzy coefficients

for the objectives and the constraints. He used fuzzy decision variables with a
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joint membership function instead of crisp decision variables and linked the

decision variables together to sum them up to a constant. He considered

lower-bounded fuzzy decision variables that set up the lower bounds of the

decision variables. He then generalized the method to lower–upper-bounded

fuzzy decision variables that set up also the upper bounds of the decision

variables. Ganesan and Veeramani (2006) proposed a FLP model with

symmetric trapezoidal fuzzy numbers. They proved fuzzy analogues of some

important LP theorems and obtained some interesting results which in turn led

to the solution for FLP problems without converting them into crisp LP

problems.

Mahdavi-Amiri and Nasseri (2006) proposed a FLP model where a

linear ranking function was used to order trapezoidal fuzzy numbers. They

established the dual problem of the LP problem with trapezoidal fuzzy

variables and deduced some duality results to solve the FLP problem directly

with the primal simplex tableau.

Zadeh et al. (2009) considered full FLP problems where all parameters

and variables were triangular fuzzy numbers. They pointed out that there is no

method in the literature for finding the fuzzy optimal solution of full FLP

problems and proposed a new method to find the fuzzy optimal solution of

full FLP problems with equality constraints. They used the concept of the

symmetric triangular fuzzy numbers and introduced an approach to defuzzify

a general fuzzy quantity. They first approximated the fuzzy triangular

numbers to its nearest symmetric triangular numbers, with the assumption that

all decision variables were symmetric triangular, then they converted every

FLP model into two crisp complex LP models and used a special ranking for

fuzzy numbers to transform their full FLP model into a multi-objective linear

programming where all variables and parameters were crisp. Ebrahimnejad

(2010) introduced a new primal-dual algorithm for solving FLP problems by

using the duality results proposed by Mahdavi-Amiri and Nasseri, [21].
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Kumar et al. (2011) further studied the full FLP problems with equality

introduced by Hosseinzadeh Lotfi et al., [19], and proposed a new method for

finding the fuzzy optimal solution in these problems.

Ebrahimnejad (2011) showed that the method proposed by Ganesan

and Veermani, [17], stops in a finite number of iterations and proposed a

revised version of their method that was more efficient and robust in practice.

He also proved the absence of degeneracy and showed that if an FLP problem

has a fuzzy feasible solution, it also has a fuzzy basic feasible solution and if

an FLP problem has an optimal fuzzy solution, it also has an optimal fuzzy

basic solution. Ebrahimnejad (2011) has also generalized the concept of

sensitivity analysis in FLP problems by applying fuzzy simplex algorithms

and using the general linear ranking functions on fuzzy numbers.

The aim of this thesis is to solve fuzzy network projects by developing

three mathematical approaches using the features of probability theory.

This thesis consists of four chapters, as well as the introduction. In

chapter one, the basic concepts that are needed and related to the network and

linear programming problem, are presented. In chapter two, the fuzzy models

related to the fuzzy set theory, fuzzy network and fuzzy linear programming

problems are presented. In chapter three, some of proposed defuzzification

techniques are discussed and three modified approaches are constructed based

on Mellin transform, ranking method and program evaluation review

technique (PERT) respectively.

Finally, in chapter four, the case study is considered and solved by our

constructed methods. Our results are compared with the results obtained from

the classical critical path method (CPM).





Chapter One Basic Concepts

1

Basic Concepts

In this chapter, we are discussed a brief presentation of specific

deterministic models such as Networks Projects and Linear Programming

Problems, as the basic concepts which are needed in this thesis.

1.1 Networks Projects:

In this section we will present the following definitions:

Definition (1.1) Network, [24]:

The network is a flow diagram showing the sequence of operations of a

process. Each individual operation is known as an activity and each meeting

point or transfer stage between one activity and another is an event or node. If

the activities are represented by straight lines and the events by circles, it is

very simple to draw their relationships graphically, and the resulting diagram

is known as the Network (Figure 1.1).

In order to show whether an activity has to be performed before or after

its neighbour, arrowheads are placed on the straight lines, but it must be

explained that the length or orientation of these lines is quite arbitrary. This

format of network is called activity on arrow (AoA), as the activity

description is written over the arrow.

It can be seen, therefore, that each activity has two nodes or events; one

at the beginning and one at the end (Figure 1.2).

We can now describe the activity in two ways:

1. By its activity title (in this case .(ܣ

2. By its starting and finishing event nodes (in this case ( ,݅ )݆).

11
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Definition (1.2) Dummy Activity, [24]:

An activity which has the duration of zero time that does not affect the

logic or overall time of the project. Dummy are usually represented by dotted

line arrows.

Definition (1.3) Path, [24]:

It is a series of connected activities between any two events in a

network.

Definition (1.4) Critical Path, [25]:

The critical path is the longest path through a network and determines

the earliest completion of project work.

A distinguishing feature of PERT is in its ability to deal with

uncertainty in activity completion time. For each activity it is usually includes

three time estimates:

1

2

3

4

5

6

Figure (1.1) Network

Figure (1.2) Activity

i j
A
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Definition (1.5) Optimistic Time, [26]:

It is the shortest possible time in which an activity can be completed,

denoted by to.

Definition (1.6) Pessimistic Time, [26]:

It is the best guess of the longest possible time that would be required

to complete the activity, denoted by tp.

Definition (1.7) Most Likely Time, [26]:

It represents the time that the activity would most often under normal

condition, it is estimated lies between the optimistic and pessimistic time

estimates, denoted by tm.

Program evaluation and review technique (PERT) is one of the

common scheduling techniques. It assumes a Beta Probability Distribution

for the time estimate the expected time for each activity which can be

approximated using the following weighted average:-

Expected time (௘ݐ) = ௢ݐ) + ௠ݐ4 + .௣)/6ݐ (1.1)

which is explain in figure (1.3)

Figure (1.3): Expected Time
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Definition (1.7) Earliest Expected Time, [27]:

It is the time when an event can be expected to occur, denoted by TE. If

we considered two events ݅and ݆in which ݅is the predecessor event and ݆is

the successor event, and (݅→ )݆ is the activity connecting the two events,

then ாܶ
௝

for a successor event ݆is equal to ாܶ
௜ for the predecessor event ݅plus

the expected activity time ாݐ
௜௝

, such that:

ாܶ
௝

= ாܶ
௜+ ாݐ

௜௝
(1.2)

if more than one activity path leads to that event then the maximum ( ாܶ
௜ =

ாܶ
௝

+ ாݐ
௜௝

) along various activity paths.

Definition (1.8) Latest Allowable Time, [27]:

It is the time by which an event must occur, to keep the project on

schedule is called the latest allowable occurrence time, denoted by symbol TL.

If we considered two events ݅and ݆in which ݅is the predecessor event and ݆

is the successor event such that the latest occurrence time ௅ܶ
௝

be known, then

the latest occurrence time ௅ܶ
௜for predecessor event is given by:

௅ܶ
௜= ௅ܶ

௝
− ாݐ

௜௝
(1.3)

if there are more than one successor event, the minimum of ( ௅ܶ
௝
− ாݐ

௜௝
) will be

appropriate latest occurrence time ௅ܶ
௜for the event .݅

Since there exist only one path through the network that is the longest,

the other paths must be either equal in length to or shorter than path.

Therefore, there must be exist events and activities that can be completed

before the time when they are actually needed.
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Definition (1.9) Slack Time:

The difference between the latest and earliest times of any event is

called slack. Since each activity has two events, a beginning event and an end

event, it follows that there are two slacks for each activity. Thus the slack of

the beginning event can be expressed as ௅್ܶ − ா್ܶ and called beginning slack,

the slack of the end event can be expressed as ௅ܶ೐ − ாܶ೐ is called end slack

[24].

So far we are discussed two event times: the earliest event time TE and

the latest allowable time TL. Since CPM networks are activity times oriented,

the following activity times are useful for network computations:

1- The Earliest Starting time (ES).

2- The Earliest Finishing time (EF).

3- The Latest Starting time (LS).

4- The Latest Finishing time (LF).

If we set TE = 0 for the initial event of the project, then the Forward

Pass, using (1.2) to calculate the total TE for the final event of the project.

Then if we set TL = TE on the final event of the project, then Backword Pass,

using (1.3) to calculate TL at the initial event.

1.2 Linear Programming Problem, [27]:

Programming problems in general are concerned with the use or

allocation of scarce resource-labor, materials, machines, and capital-in the

“best” possible manner so that costs are minimized or profits are maximized.

In using the term “best” it is implied that some choice or a set of

alternative courses of actions is available for making the decision. In general,

the best decision is found by solving a mathematical problem. The term linear

programming merely defines a particular class of programming problems that



Chapter One Basic Concepts

6

meet the following conditions:

(1) The decision variables involved in the problem are nonnegative (i.e.,

positive or zero).

(2) The criterion for selecting the “best” values of the decision variables can

be described by a linear function of these variables, that is, a

mathematical function involving only the first powers of the variables

with no cross products. The criterion function is normally referred to as

the objective function.

(3) The operating rules governing the process (e.g., scarcity of resources)

can be expressed as a set of linear equations or linear inequalities. This

set is referred to as the constraint set.

The last two conditions are the reasons for the use of the term linear

programming.

Linear programming techniques are widely used to solve a number of

military, economic, industrial, and social problems. Three primary reasons for

its wide use are:

(1) A large variety of problems in diverse fields can be represented or at

least approximated as linear programming models.

(2) Efficient techniques for solving linear programming problems are

available.

(3) Ease through which data variation (Sensitivity Analysis) can be handled

through linear programming models.

The three basic steps in constructing a linear programming model are as

follows:

Step I: Identify the unknown variables to be determined (decision

variables), and represent them in terms of algebraic symbols.

Step II: Identify all the restrictions or constraints in the problem and

express them as linear equations or inequalities which arc linear
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functions of the unknown variables.

Step III: Identify the objective or criterion and represent it as a linear

function of the decision variables, which is to be maximized or

minimized.

1.2.1 Linear Programming in Standard Form, [27]:

The linear form of linear programming problem with m constraint and

n variables can be represented as follows:

Maximize (Minimize) �ܼ = ଵܿݔଵ + ଶܿݔଶ + ⋯+ ௡ܿݔ௡,

Subject to ଵܽଵݔଵ + ଵܽଶݔଶ + ⋯+ ଵܽ௡ݔ௡ = ଵܾ,

ଶܽଵݔଵ + ଶܽଶݔଶ + ⋯+ ଶܽ௡ݔ௡ = ଶܾ,
⋮ ⋮

௠ܽ ଵݔଵ + ௠ܽ ଶݔଶ + ⋯+ ௠ܽ ௡ݔ௡ = ௠ܾ ,

ଵݔ ≥ ଶݔ,0 ≥ 0, … ௡ݔ, ≥ 0,

ଵܾ ≥ 0, ଶܾ ≥ 0, … , ௠ܾ ≥ 0,݉ ≤ ݊ ⎭
⎪
⎪
⎬

⎪
⎪
⎫

(1.4)

the main features of the standard form are:

1- The objective function is of maximization or minimization type.

2- All constraint are expressed as equations.

3- All variables are restricted to be nonnegative.

4- The right-hand side constant of each constraint is nonnegative.

In the matrix-vector notation, the standard linear programming problem

can be expressed in a compact form as:

Maximize (Minimize) �ܼ = ,ݔܿ
Subject to =ݔܣ� ,ܾ

≤ݔ� 0,
�ܾ ≥ 0.

ൢ (1.5)
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where ܣ is an (m×n) matrix, ݔ is an (n×1) column vector, ܾ is an (m×1)

column vector, and ܿis an (1×n) row vector.

In other words,

௠)ܣ ×௡) = ൦

ଵܽଵ ଵܽଶ
… ଵܽ௡

ଶܽଵ ଶܽଶ
… ଶܽ௡

⋮

௠ܽ ଵ

⋮

௠ܽ ଶ
…

⋮

௠ܽ ௡

൪, (௡×ଵ)ݔ = ൦

ଵݔ
ଶݔ
⋮
௡ݔ

൪, (ܾ௠ ×ଵ) = ൦

ଵܾ

ଶܾ

⋮

௠ܾ

൪

and

(ܿଵ×௡) = ( ଵܿ, ଶܿ, … , ௡ܿ)

In practice, ܣ is called the coefficient matrix, ݔ is the decision vector, ܾ

is the requirement vector and ܿ is the profit (cost) vector of linear

programming.
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Fuzzy Models

In this chapter, we will present the basic concepts of fuzzy set theory,

fuzzy network and fuzzy linear programming problems.

2.1 Basic Fuzzy Sets Theory, [28]:

This section deals with naive set theory when membership is no longer

an all-or-nothing notion. There is no unique way to build such a theory. But,

all the alternative approaches presented previously include ordinary set theory

as a particular case. However Zadeh’s fuzzy set theory may appear to be the

most intuitive among them, although such concept as inclusion or set equality

may seem too strict in this particular framework. Usually the structures

embedded in fuzzy set theory are less rich than the Boolean lattice of classical

set theory. Moreover, there is also some arbitrariness in the choice of the

valuation set for the elements: the real interval [0,1] is most commonly used,

but other choices are possible and even worth considering: these are

structured set, such as fuzzy groups and convex fuzzy sets, are also presented.

Definition (2.1) Fuzzy Sets, [29],[30],[31]:

Let ܷ be the universal set. A fuzzy set ሚܣ of ܷ is defined by a

membership function μ஺෨(ݔ) ↦ [0,1], where μ஺෨(ݔ) indicates the degree of ݔ

in ሚwhichܣ defined as follows:

μ஺෨(ݔ) =

⎩
⎪
⎨

⎪
⎧

0, (−∞, ଵܽ)

ଵ݂(ݔ), [ ଵܽ, ଶܽ]

1, [ ଶܽ, ଷܽ]

ଶ݂(ݔ), [ ଷܽ, ସܽ]

0, ( ସܽ, +∞)

(2.1)

where ଵܽ, ଶܽ, ଷܽ and ସܽ are real number, note that ଵ݂(ݔ) and�݂ଶ(ݔ) may be

22
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linear or convex nonlinear functions.

The fuzzy sets can be expressed by =ሚܣ ൛൫ݔ, μ஺෨(ݔ)൯:ݔ ∈ ܷൟ.

Definition (2.2) Normal Fuzzy Subset, [29],[30],[31]:

A fuzzy subset ሚofܣ universal set ܷ is normal if (ݔ)஺෨ߤ௫∈௎݌ݑݏ = 1

Definition (2.3) Convex Fuzzy Subset, [29],[30],[31]:

A fuzzy subset ሚܣ of universal set ܷ is convex iff μ஺෨(ݔߣ+ (1 − (ݕ(ߣ ≥

(μ஺෨(ݔ) ∧ μ஺෨(ݕ)), ݕ,ݔ∀ ∈ ܷ, ∋ߣ∀ [0,1].

Definition (2.4) Fuzzy Number, [28]:

A fuzzy number ሚisܣ a convex normalized fuzzy set ሚofܣ the real line R

such that:

1. It exists exactly one ଴ݔ ∈ R with (଴ݔ)஺෨ߤ = 1 ଴ݔ) is called the median value

of .(ܣ

2. (ݔ)஺෨ߤ is piecewise continuous.

Definition (2.5) Triangular Fuzzy Number, [29],[30],[31]:

A triangular fuzzy number ሚisܣ a fuzzy number with a piecewise

linear membership function μ஺෨defined by:

μ஺෨(ݔ) =

⎩
⎪
⎨

⎪
⎧
−ݔ ଵܽ

ଶܽ− ଵܽ
, ଵܽ ≤ >ݔ ଶܽ

=ݔ���������������������,1 ଶܽ

ଷܽ− ݔ

ଷܽ− ଶܽ
, ଶܽ < ≥ݔ ଷܽ

ℎݐ݋����������������������,0 ݓݎ݁ ݏ݅݁ .

(2.2)

which can be denoted as triplet ( ଵܽ, ଶܽ, ଷܽ).
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Definition (2.6) Trapezoidal Fuzzy Number, [29],[30],[31]:

A trapezoidal fuzzy number ሚisܣ a fuzzy number with a membership function

μ஺෨defined by:

μ஺෨(ݔ) =

⎩
⎪
⎨

⎪
⎧
−ݔ ଵܽ

ଶܽ− ଵܽ
, ଵܽ ≤ >ݔ ଶܽ

1,��������������������ܽଶ ≤ >ݔ ଷܽ

ସܽ− ݔ

ସܽ− ଷܽ
, ଷܽ < ≥ݔ ସܽ

ℎݐ݋����������������������,0 ݓݎ݁ ݏ݅݁ .

(2.3)

which can be denoted as quartet ( ଵܽ, ଶܽ, ଷܽ, ସܽ).

µ

X

1

ଵܽ ଶܽ ଷܽ

Figure (2.1): Traingular Fuzzy
Number

µ

X
ଵܽ ଶܽ ଷܽ ସܽ

1

Figure (2.2): Trapezoidal Fuzzy
Number
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2.2 The Concept of a Network with Fuzzy Activity Times, [32]:

A network ܵ= ,ܣ,ܸ〉 ෨ܶ〉, being a project model, is given. ܸ is a set of

nodes (event) and ܣ ⊂ ܸ × ܸ is a set of arcs (activities). The network ܵ is a

directed, compact, acyclic graph. The set ܸ = {1,2, … , }݊ is labeled in such a

way that the following condition holds: ( ,݅ )݆ ∈ ⇒ܣ ݅< .݆ By means of

function ෨ܶ which is defined in the following way, ෨ܶ:ܣ → ,(ℝା)ܨ where

(ℝା)ܨ is the set of nonnegative fuzzy numbers. Fuzzy number ෨ܶ( ,݅ )݆ ≝ ෨ܶ
௜௝

determines imprecisely a duration time of activity ( ,݅ )݆ ∈ .ܣ Membership

function ෨்೔ೕߤ generates a possibility distribution for the duration time of

activity ( ,݅ )݆ ∈ ,ܣ i.e. value (௜௝ݐ)෨்೔ೕߤ means a possibility degree of

performance of activity ( ,݅ )݆ in time ௜௝ݐ ∈ ℝ
ା .

Definition (2.7) Fuzzy Critical Path, [32]:

The fuzzy set ෨ܲ in set ܲ with the membership function :௉෨ߤ P → [0; 1]

determined by:

(݌)௉෨ߤ = sup ௧೔ೕ∈ℝ
శ ,(௜,௝)∈஺

ୟ୬ୢ�୮�୧ୱ�ୡ୰୧୲୧ୡୟ୪�୵ ୧୲୦�
ୟୡ୲୧୴୧୲୷�୲୧୫ ୱୣ

୯ୣ୳ୟ୪�୲୭�௧೔ೕ,(௜,௝)∈஺

min(௜,௝)∈஺ ݌�,௜௝൯ݐ෨்೔ೕ൫ߤ ∈ ܲ, (2.4)

is called the fuzzy critical path in S.

We say that a path p is fuzzy critical with the degree .(݌)௉෨ߤ The value

(݌)௉෨ߤ stands for the path degree of criticality, possibility of the criticality of

path .݌ To put it in another way, ௉෨ߤ determines a possibility distribution of

the criticality of the path in the set ܲ which is generated by possibility

distributions of activities duration times ,෨்೔ೕߤ� ( ,݅ )݆ ∈ ܣ (generated according

to extension principle of Zadeh if the criticality, or lack of it, is treated as the

activities duration times function in the network).
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Definition (2.8) Fuzzy Critical Activity, [32]:

The fuzzy set (෨ܧ)ሚܣ in set (ܸ)ܣ with the membership function

determined by:

)஺෨ߤ ,݇ )݈ = sup
௧೔ೕ∈ℝ

శ ,(௜,௝)∈஺

ୟ୬ୢ�(௞,௟)�୧ୱ�ୡ୰୧୲୧ୡୟ୪�୵ ୧୲୦�
ୟୡ୲୧୴୧୲୧ୣ ୱ�୲୧୫ ୱୣ
୯ୣ୳ୟ୪�୲୭�௧೔ೕ,(௜,௝)∈஺

min
(௜,௝)∈஺

,௜௝൯ݐ෨்೔ೕ൫ߤ ( ,݇ )݈ ∈ ,ܣ (2.5)

⎝

⎜
⎜
⎜
⎛

)ா෨ߤ )݇ = sup
௧೔ೕ∈ℝ

శ ,(௜,௝)∈஺

ୟ୬ୢ�୩�୧ୱ�ୡ୰୧୲୧ୡୟ୪�୵ ୧୲୦�
ୟୡ୲୧୴୧୲୧ୣ ୱ�ୢ ୳୰ୟ୲୧୭୬�୲୧୫ ୱୣ

୯ୣ୳ୟ୪�୲୭�௧೔ೕ,(௜,௝)∈஺

min
(௜,௝)∈஺

,௜௝൯ݐ෨்೔ೕ൫ߤ �݇ ∈ ܸ,

⎠

⎟
⎟
⎟
⎞

(2.6)

is called the fuzzy critical activity (event) in S.

Also, the following theorems are stated in order to give the relations

between a criticality degree of a path and criticality degrees of activities

forming this path.

Theorem (2.1), [32]:

For any path ∋�݌ ܲ the following relation holds:

(݌)௉෨ߤ ≤ )஺෨ߤ ,݇ )݈, for each( ,݇ )݈ ∈ .݌ (2.7)

Theorem (2.2), [32]:

For any path ∋�݌ ܲ the following relation holds:

(݌)௉෨ߤ ≤ )ா෨ߤ )݇ for each ݇ ∈ .݌ (2.8)

Theorem (2.3), [32]:

The following equality is true:

)஺෨ߤ ,݇ )݈ = max
௣∈௉(௞,௟)

(݌)௉෨ߤ , ( ,݇ )݈ ∈ ,ܣ (2.9)

where

ܲ( ,݇ )݈ = ݌} ∣ ݌ ∈ ܲ and ( ,݇ )݈ ∈ {݌ ⊆ ܲ.



Chapter Two Fuzzy Models

14

Theorem (2.4), [32]:

The following equality is true:

)ா෨ߤ )݇ = max
௣∈௉(௞)

(݌)௉෨ߤ ,݇ ∈ ܸ, (2.10)

where

ܲ( )݇ = ݌} ∣ ݌ ∈ ܲ and ݇ ∈ {݌ ⊆ ܲ.

2.3 Fuzzy Linear Programming, [33]:

The fuzzy sets theory proposed by Zadeh (1965) and further developed

by Dubois and Prade (1988) is a popular method for dealing with decision

problems that are formulated as linear programming models with imprecise,

vague or uncertain variables and coefficients of the constraints.

In this section we introduce a fuzzy LP (FLP) problem where the

decision variables, the coefficients of the constraints and resources (right-

hand-side values) are fuzzy quantities. We then define the feasible and the

optimal solution based on some fuzzy relations. Contrary to the classical LP

problems, defined in section (1.2.1), ,ݔ ܣ and ܾ are the fuzzy numbers

denoted by symbols with the tilde. Let ܴ:௕෨ߤ → ܴ:஺෨ߤ,[0,1] → ܴ:௫෤ߤ,[0,1] →

[0,1] be the membership functions of the fuzzy numbers, ,ܾ෩ܣሚ and ,෤ݔ

respectively. To define a FLP problem, the following proposition will be

used:

Proposition (2.1): Let ∋෤ݔ (ܴ)ܨ where F(R) presents the set of all fuzzy

subsets. Then, the fuzzy set ෤ݔܿ is a fuzzy number based on the extension

principle.

The FLP problem associated with the standard LP problem (1.5) can be

expressed as follows:

Minimize �ܼ = ,෤ݔܿ

Subject to ≤෤ݔሚܣ ෨ܾ,
≤෤ݔ 0.

ൡ (2.11)
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where =෤ݔ ,෤ଶݔ,෤ଵݔ) (෤௡ݔ… are fuzzy decision variables, ෨ܾ= ( ෨ܾଵ, ෨ܾଶ, … ෨ܾ
௠ ) and

=ሚܣ ൣܽ෤௜௝൧௠ ×௡
represent the fuzzy parameters involved in the objective

function and constraints while ܿ= ( ଵܿ, ଶܿ, … ௡ܿ) are the crisp parameters in

the objective function.

Definition (2.9) Feasible Solution, [33]:

The feasible solution is a set of values of the fuzzy variables ෤whichݔ

satisfies all of the constraints in model (2.11).

Definition (2.10) Optimal Solution, [33]:

The optimal solution for model (2.11) is ∗෤ݔ if for all feasible solutions

,෤ݔ we have ∗෤ݔܿ ≤ ,෤ݔܿ where c is a parameter.

Definition (2.11), [33]:

Assuming that =ሚܣ ( ଵܽ, ଶܽ, ଷܽ, ସܽ) represents a trapezoidal fuzzy

number, ሚcanܣ be changed into the following crisp value:

ܣ =
( ଷܽ− ଶܽ) + ( ସܽ− ଵܽ)

2
. (2.12)

Next, we discuss the fuzzy basic feasible solution and the optimal

solution.

Consider the FLP problem (2.11). After using (2.12), let ݎܽ ݊ (ܣ݇) = ݉ and

define the partition of ܣ as ܰ��ܤ] ] where ,ܤ ݉ × ݉ , is non-singular matrix of

basic variable and N, ݉ × ݉ , is non-singular matrix of non-basic variable.

Let y be the solution to =ݕܤ ௝ܽ where ௝ܽ is the ݆௧௛ column of the coefficient

matrix. Thus, ෤஻ݔ = ,෤஻భݔ) ෤஻೘ݔ… )் = ଵ෨ܾିܤ and ෤ேݔ = 0 is a solution of

=෤ݔܣ ෨ܾ. =෤ݔ ෤஻ݔ)
் 0) is called a fuzzy basic solution (FBS) corresponding to
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the basic ܤ when ෤஻ݔ ≥ 0. It is valid that the FBS is feasible, therefore, the

fuzzy objective value is =ǁݖ ஻ܿݔ෤஻ where ஻ܿ = ( ஻ܿభ, … ஻ܿ೘ ). Then:

−௝ݖ ௝ܿ = ஻ܿܤ
ିଵ

௝ܽ− ௝ܿ

= ஻ܿ ௝݁− ௝ܿ = ஻ܿ೔− ௝ܿ

= ௝ܿ− ௝ܿ = 0.

Note that ଵିܤ ௝ܽ = ௝݁ where ௝݁ = (0, … ,1, … ,0)். If <෤ݔ 0, then ෤ݔ iscalled a

no degenerate fuzzy basic feasible solution, and if one component of ෤ݔ is

zero, then is called a degenerate basic feasible solution. A fuzzy solution is

optimal if and only if ௝ݖ = ஻ܿܤ
ିଵ

௝ܽ≤ ௝ܿ. In other words, the FLP problem

can be rewritten as follows:

Minimize����ܼ෨= ஻ܿݔ෤஻ + ேܿݔ෤ே
Subject toݔܤ���෤஻ + ෤ேݔܰ = ෨ܾ,ݔ���෤஻ ෤ேݔ, ≥ 0.

ቋ����������������������������������������(2.13)

If ∗෤ݔ ≤ ෤஻ݔ)
ேݔ��்

்) = ଵ෨ܾିܤ) 0) is a fuzzy basic feasible solution, then,

∗ݖ = ஻ܿݔ෤஻ = ஻ܿܤ
ିଵ෨ܾ.

Now, we can have

=ǁݖ =෤ݔܿ ஻ܿݔ෤஻ + ேܿݔ෤ே

= ஻ܿܤ
ିଵ෨ܾ− ( ஻ܿܤ

ିଵܰ − ேܿ ෤ேݔ(

= ஻ܿܤ
ିଵ෨ܾ− ෍ ( ஻ܿܤ

ିଵ
௝ܽ− ௝ܿ)ݔ෤௝

௡

௝ୀଵ

= ஻ܿܤ
ିଵ෨ܾ− ෍ −௝ݖ) ௝ܿ)ݔ෤௝

௡

௝ୀଵ

= ∗ǁݖ − ෍ ൫ݖ௝− ௝ܿ൯ݔ෤௝
௝ୀ஻೔
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for each feasible ,෤ݔ ௝ݖ is smaller than or equal to ௝ܿ; therefore, ൫ݖ௝− ௝ܿ൯ݔ෤௝≤ 0

and

෍ ൫ݖ௝− ௝ܿ൯ݔ෤௝
௝

≤ 0 → ∗ǁݖ ≤ .ǁݖ

That is to say, ∗෤ݔ is an optimal solution.
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Defuzzification Techniques

From an application point of view the following features are important:

defuzzification result continuity, computational efficiency and design

suitability.

Under defuzzification result continuity is considered the following

feature: small changes in membership values of the output fuzzy set should

not give large changes in the results of defuzzification. This feature is

important in the case of fuzzy controllers, which require input-output

continuity: small changes of input parameters should give small changes of

output values.

Computational efficiency depends mostly on a kind and a number of

operations required for obtaining the result of defuzzification.

Design suitability expresses the impact of a defuzzification technique

on a software or hardware implementation and tuning of fuzzy system [34].

Definition (3.1) Defuzzification, [35]:

Deffuzification is a mapping from space of fuzzy action defined over

an output universe into a space of nonfuzzy (crisp) actions.

3.1 The Overview of Defuzzification Techniques, [36],[38]:

The most often used defuzzification techniques are grouped according

to the basic methods used in them: a group is made of the basic technique and

of the all techniques extended from that basic technique. Extended techniques

differ from the basic ones by introducing additional parameters. A fuzzy

system designer defines more precisely the defuzzification process by

defining those additional parameters. In the general case, defuzzification

33
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techniques can be formulated in a discrete form (using ∑ ) or in a continuous 

form (using ∫ ). For the sake of simplicity, only discrete form is considered as 

follows:

3.1.1 Distribution Techniques:

The characteristic of that group of techniques is that the output fuzzy

set membership function is treated as a distribution, for which the average

value is evaluate. Due to that heuristic approach, the output has continuous

and smooth change for the change of values of input variable in the universe

of discourse. The basic technique of this group is the center-of- gravity

technique, denoted by COG and given by the following expression.

଴ݕ = ݂݀݁ ݖ݅ݖݑ ݂݅ (ߤ)ݎ݁ =
∑ (௜ݕ)ߤ
ே೜
௜ୀଵ

௜ݕ

∑ (௜ݕ)ߤ
ே೜
௜ୀଵ

= ݃ܿ݋ (ߤ) (3.1)

where: Nq is the number of quantizing samples ,௜ݕ used in order to get the

discrete form of the membership function µ(y) of the output fuzzy set µ. This

technique is less convenient for a hardware implementation, because it

requires large number of multipliers, as well as it requires passing through the

whole universe of discourse of the output variable. Nevertheless, due to

continuity and, often smoothness of changes of defuzzified values, this

technique is used with fuzzy controllers [37].

Many best other extended techniques based on COG are proposed,

such as specific distribution techniques. The main characteristic of the

specific techniques is that the processes of aggregation, [35], and

defiizzification are combined in one process, in order to improve the

computational efficiency. The basic technique from that group of techniques

is one referenced as the fuzzy mean FM. For every output fuzzy set βi in the

process of fuzzy reasoning, the degree of applicability βi for that set is

calculated. Those values, in the FM technique, are not used for aggregation,
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but are, with bi the numerical values of output sets βi, directly used for

calculating of defuzzified value:

଴ݕ =
∑ β௜
௡
௜ୀଵ ௜ܾ

∑ β௜
௡
௜ୀଵ

= ݂݉ (ߤ) (3.2)

where n is the number of the output fuzzy sets.

Due to its computational efficiency, the FM technique is one of the

most widely used techniques in fuzzy controllers. This technique gives

relatively faster operation of the block implementing it and smaller area of its

hardware implementation. It is the base for the following extended

techniques: weighted fuzzy mean technique WFM, as well as quality

technique QT, and extended quality technique EQT.

3.1.2 Maxima Techniques:

Maxima techniques give as a result of defuzzification of an element

from a fuzzy set core. A fuzzy set core (denoted as core) consists of elements

of a universe of discourse on which that set is defined with the highest degree

of membership to the fuzzy set. As the basic representative of that group, the

first-of-maxima technique FOM, can be considered, given by the expression

(3.3):

଴ݕ = min ݎ݁ܿ݋ (μ) = ݂݉݋ (μ) (3.3)

Those techniques are convenient for the general fuzzy expert systems.

Maxima techniques belong to the group of the fastest defuzzification

techniques, because they require passing through values of the core only.

According to the element with the maximal membership which is extracted as

the defuzzification result, there are also the following maxima techniques:

middle-of-maxima MOM, last-of-maxima LOM, and random-choice-of-

maxima RCOM. The techniques are compatible with the max operation.
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3.1.3 Area Techniques:

Area defuzzification techniques use the area under the membership

function to determine the defuzzification value. The center-of-area technique

COA, minimizes the following expression:

ቮ෍ (ݕ)ߤ

௖௢௔(ఓ)

௜௡௙௬

− ෍ (ݕ)ߤ

௦௨௣௬

௖௢௔(ఓ)

ቮ (3.4)

where: inf is the greatest lower bond, and sup is the least upper bound of the

support of the fuzzy set µ, respectively. The expression (3.4) gives numerical

value y0 = ycoa(µ), which divides an area under the membership function in two

(approximately) equal parts. The value ycoa(µ) differs from the defuzzification

value obtained by the COG technique. The method is fast, because only

simple operations are used in it, it gives continual change of defuzzification

value, hence it is convenient to be used in fuzzy controllers [34].

3.1.4 Ranking Approach:

Yager (1981) proposed a procedure for ordering fuzzy sets in which a

ranking index ℜ(ܣሚ) is calculated for the fuzzy number from its cut-ߙ interval:

I. ఈܣ = [ ଵܽ + ( ଶܽ− ଵܽ)ߙ, ଷܽ− ( ଷܽ− ଶܽ)ߙ,[ߙ ∈ [0,1] (3.5)

by considering the triangular case where =ሚܣ ( ଵܽ, ଶܽ, ଷܽ),

then the following formula is considered:

ℜ൫ܣሚ൯=
1

2
ቆන ( ଵܽ + ( ଶܽ− ଵܽ)ߙ݀(ߙ

ଵ

଴

+ න ( ଷܽ− ( ଷܽ− ଶܽ)ߙ݀(ߙ
ଵ

଴

ቇ

=
ଵܽ + 2 ଶܽ + ଷܽ

4
. (3.6)

II. ఈܣ = [ ଵܽ + ( ଶܽ− ଵܽ)ߙ, ସܽ− ( ସܽ− ଷܽ)ߙ,[ߙ ∈ [0,1] (3.7)

by considering the trapezoidal case where =ሚܣ ( ଵܽ, ଶܽ, ଷܽ, ସܽ),

then the following formula is considered:

ℜ൫ܣሚ൯=
1

2
ቆන ( ଵܽ + ( ଶܽ− ଵܽ)ߙ݀(ߙ

ଵ

଴

+ න ( ସܽ− ( ସܽ− ଷܽ)ߙ݀(ߙ
ଵ

଴

ቇ
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=
ଵܽ + ଶܽ + ଷܽ + ସܽ

4
. (3.8)

3.2 Proposed Defuzzification Techniques:

In the situations in which there are several output fuzzy variables,

defuzzification can be considered as decision-making problem under fuzzy

constraints.

Based on philosophies of probability and ranking theories we

developed the following defuzzification techniques:

3.2.1 Defuzzification with Probability Density Function from Membership

Function :

3.2.1.1 Fuzzy Number with Linear Membership Function:

If we consider ሚisܣ a fuzzy number with membership function defined

as (2.1), where ଵ݂(ݔ) and ଶ݂(ݔ) are linear functions.

Let the function ݂ defined by (ݔ݂) = μܿ஺෨(ݔ) is a probability density

function associated with ,ሚܣ where c can be obtained by the property that

∫ =ݔ݀(ݔ݂) 1
ஶ

ିஶ
as follows:

Case (I) By considering ሚܣ as a triangular fuzzy number where =ሚܣ

( ଵܽ, ଶܽ, ଷܽ), with the membership function:

μ஺෨(ݔ) =

⎩
⎪
⎨

⎪
⎧
−ݔ ଵܽ

ଶܽ− ଵܽ
, ଵܽ ≤ >ݔ ଶܽ

=ݔ���������������������,1 ଶܽ

ଷܽ− ݔ

ଷܽ− ଶܽ
, ଶܽ < ≥ݔ ଷܽ

ℎݐ݋����������������������,0 ݓݎ݁ ݏ݅݁ .

(3.9)

and since
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1 = න ݔ݀(ݔ݂)
௔య

௔భ

= න μܿ݀ݔ
௔య

௔భ

= ܿቈන
−ݔ ଵܽ

ଶܽ− ଵܽ
+ݔ݀ න 1

௔మ

௔మ

+ݔ݀ න
ଷܽ− ݔ

ଷܽ− ଶܽ
ݔ݀

௔య

௔మ

௔మ

௔భ

቉

= ܿቈ
( ଶܽ− ଵܽ)

2
+

( ଷܽ− ଶܽ)

2
቉

=
ܿ

2
[ ଷܽ− ଵܽ]

then

ܿ=
2

ଷܽ− ଵܽ
(3.10)

Case (II) By considering ሚܣ as a trapezoidal fuzzy number where =ሚܣ

( ଵܽ, ଶܽ, ଷܽ, ସܽ), with the membership function:

μ஺෨(ݔ) =

⎩
⎪
⎨

⎪
⎧
−ݔ ଵܽ

ଶܽ− ଵܽ
, ଵܽ ≤ >ݔ ଶܽ

1,����������������������ܽଶ ≤ ≥ݔ ଷܽ

ସܽ− ݔ

ସܽ− ଷܽ
, ଷܽ < ≥ݔ ସܽ

ℎݐ݋����������������������,0 ݓݎ݁ ݏ݅݁ .

(3.11)

and since

1 = න ݔ݀(ݔ݂)
௔ర

௔భ

= න μܿ݀ݔ
௔ర

௔భ

= ܿቈන
−ݔ ଵܽ

ଶܽ− ଵܽ
+ݔ݀ න 1

௔య

௔మ

+ݔ݀ න
ସܽ− ݔ

ସܽ− ଷܽ
ݔ݀

௔ర

௔య

௔మ

௔భ

቉

= ܿቈ
−ݔ) ଵܽ)ଶ

2( ଶܽ− ଵܽ)
+ ( ଷܽ− ଶܽ) +

( ସܽ− ଷܽ)ଶ

2( ସܽ− ଷܽ)
቉

= ܿ൤
2

ସܽ + ଷܽ− ଶܽ− ଵܽ
൨

then
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ܿ=
2

ସܽ + ଷܽ− ଶܽ− ଵܽ
. (3.12)

3.2.1.2 Fuzzy Number with Convex Nonlinear Membership Function:

If we consider ሚasܣ a fuzzy number with membership function defined

by (2.1), where ଵ݂(ݔ) and ଶ݂(ݔ) are convex nonlinear functions.

In this case, we may use any approximate method to linearize ଵ݂(ݔ)

and ଶ݂(ݔ), and then we processed as in section (3.2.1.1)

Now, we are using the following transformation called Mellin

Transform to find the expected value.

Definition (3.2) Mellin Transform, [39]:

The Mellin transform (ݏ)௑ܯ of a probability density function ,(ݔ݂)

where ݔ is positive, is defined as

(ݏ)௑ܯ = න ௦ିݔ ଵ ݔ݀(ݔ݂)
ஶ

଴

. (3.13)

whenever the integral exist.

Now, it is possible to think of the Mellin transform in terms of expected

values recall that the expected value of any function (ݔ)݃ of the random

variable X, whose distribution is�݂ ,(ݔ) is given by

[(ݔ)݃]ܧ = න (ݔ)݃ ݔ݀(ݔ݂)
ஶ

ିஶ

(3.14)

Therefor it follows that

(ݏ)௑ܯ = ௦ିݔ]ܧ ଵ] = න ௦ିݔ ଵ (3.15)��������������������������������������������������ݔ݀(ݔ݂)
ஶ

଴

Hence

[௦ݔ]ܧ = +ݏ)௑ܯ 1) (3.16)

Thus, the expectation of random variable X is [ݔ]ܧ = .௑(2)ܯ
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Now, if we let =ሚܣ ( ଵܽ, ଶܽ, ଷܽ, ସܽ) an arbitrary trapizoidal fuzzy

number, then the density function (ݔ݂) corresponding to ሚisܣ as follows:

஺݂෨(ݔ) =

⎩
⎪
⎪
⎨

⎪
⎪
⎧

−ݔ)2 ଵܽ)

( ସܽ + ଷܽ− ଶܽ− ଵܽ)( ଶܽ− ଵܽ)
, ଵܽ ≤ >ݔ ଶܽ

2

ସܽ + ଷܽ− ଶܽ− ଵܽ
, �ܽ ଶ ≤ ≥ݔ ଷܽ

2( ସܽ− (ݔ

( ସܽ + ଷܽ− ଶܽ− ଵܽ)( ସܽ− ଷܽ)
, ଷܽ < ≥ݔ ସܽ

ℎݐ݋����������������������������������������������������������������,0 ݓݎ݁ ݏ݅݁ .

(3.17)

The Mellin transform is the obtained by:

ܯ ஺෨(ݏ) = න ௦ିݔ ଵ
஺݂෨(ݔ)݀ݔ

ஶ

଴

=
2

( ସܽ + ଷܽ− ଶܽ− ଵܽ)(ݏଶ + (ݏ
ቈ
( ସܽ

௦ାଵ− ଷܽ
௦ାଵ)

ସܽ− ଷܽ
−

( ଶܽ
௦ାଵ− ଵܽ

௦ାଵ)

ଶܽ− ଵܽ
቉

and

ܧ =ሚ൧ܣൣ ܯ ஺෨(2)

=
1

3
൤( ଵܽ + ଶܽ + ଷܽ + ସܽ) +

ଵܽ ଶܽ− ଷܽ ସܽ

ସܽ + ଷܽ− ଶܽ− ଵܽ
൨ (3.18)

3.2.2 Extended Ranking Method:

Based on Ranking method, we built the following approach:

3.2.2.1 Fuzzy Number with Linear Membership Function:

If we consider ሚasܣ a fuzzy number with membership function defined

by (2.1), where ଵ݂(ݔ) and ଶ݂(ݔ) are linear functions, then our approach can be

illustrated into the following two cases:
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Case (I) By consider ሚasܣ a triangular fuzzy number where =ሚܣ ( ଵܽ, ଶܽ, ଷܽ),

with the membership function:

μ஺෨(ݔ) =

⎩
⎪
⎨

⎪
⎧
−ݔ ଵܽ

ଶܽ− ଵܽ
, ଵܽ ≤ >ݔ ଶܽ

=ݔ����������������������,1 ଶܽ

ଷܽ− ݔ

ଷܽ− ଶܽ
, ଶܽ < ≥ݔ ଷܽ

ℎݐ݋����������������������,0 ݓݎ݁ ݏ݅݁ .

(3.19)

By setting ஺݂̅෨
(ݔ) = μܿ஺෨ , where

ܿ=
2

ଷܽ + 2 ଶܽ− ଵܽ

then

஺݂̅෨
(ݔ) =

⎩
⎪
⎪
⎨

⎪
⎪
⎧

−ݔ)2 ଵܽ)

( ଷܽ + 2 ଶܽ− ଵܽ)( ଶܽ− ଵܽ)
, ଵܽ ≤ >ݔ ଶܽ

2

ଷܽ + 2 ଶܽ− ଵܽ
, =ݔ� ଶܽ

2( ଷܽ− (ݔ

( ଷܽ + 2 ଶܽ− ଵܽ)( ଷܽ− ଶܽ)
, ଶܽ < ≥ݔ ଷܽ

ℎݐ݋�����������������������������������������������,0 ݓݎ݁ ݏ݅݁ .

(3.20)

By setting

ଵ݂(ݔ) =
−ݔ)2 ଵܽ)

( ଷܽ + 2 ଶܽ− ଵܽ)( ଶܽ− ଵܽ)
(3.21)

ଶ݂(ݔ) =
2( ଷܽ− (ݔ

( ଷܽ + 2 ଶܽ− ଵܽ)( ଷܽ− ଶܽ)
(3.22)

then

(ሚܣ̅)ଵܧ = න ଵ݂
ିଵ(ߤ)݀ߤ

ଵ

଴

= න ቈ
( ଷܽ + 2 ଶܽ− ଵܽ)( ଶܽ− ଵܽ)ߤ

2
+ ଵܽ቉

ଵ

଴

ߤ݀

=
( ଷܽ + 2 ଶܽ− ଵܽ)( ଶܽ− ଵܽ)

4
+ ଵܽ (3.23)
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(ሚܣ̅)ଶܧ = න ଶ݂
ିଵ(ߤ)݀ߤ

ଵ

଴

= න ቈܽ ଷ−
( ଷܽ− ଵܽ)( ଷܽ− ଶܽ)ߤ

2
቉

ଵ

଴

ߤ݀

= �ܽ ଷ−
( ଷܽ + 2 ଶܽ− ଵܽ)( ଷܽ− ଶܽ)

4
(3.24)

where ሚisܣ̅ the fuzzy stochastic variable of the fuzzy number .ሚܣ

Then the expected interval of fuzzy stochastic variable ሚcanܣ̅ be expressed as:

=ሚ൯ܣ൫̅ܫܧ ܣଵ൫̅ܧൣ
ሚ൯,ܧଶ൫̅ܣ

ሚ൯൧ (3.25)

and the expected value is given by:

=ሚ൯ܣ൫ܸ̅ܧ
ܣଵ൫̅ܧ

ሚ൯+ ܣଶ൫̅ܧ
ሚ൯

2

=
(2 ଶܽ− ଷܽ− ଵܽ)(2 ଶܽ + ଷܽ− ଵܽ)

8
+

ଵܽ + ଷܽ

2
(3.26)

Case (II) By considering ሚܣ is a trapezoidal fuzzy number where =ሚܣ

( ଵܽ, ଶܽ, ଷܽ, ସܽ), with the membership function of :ሚisܣ

μ஺෨=

⎩
⎪
⎨

⎪
⎧
−ݔ ଵܽ

ଶܽ− ଵܽ
, ଵܽ ≤ >ݔ ଶܽ

1,����������������������ܽଶ ≤ ≥ݔ ଷܽ

ସܽ− ݔ

ସܽ− ଷܽ
, ଷܽ < ≥ݔ ସܽ

ℎݐ݋����������������������,0 ݓݎ݁ ݏ݅݁ .

(3.27)

By setting ஺݂̅෨
(ݔ) = μܿ஺෨ , where

ܿ=
2

ସܽ + ଷܽ− ଶܽ− ଵܽ

then
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஺݂̅෨
(ݔ) =

⎩
⎪
⎪
⎨

⎪
⎪
⎧

−ݔ)2 ଵܽ)

( ସܽ + ଷܽ− ଶܽ− ଵܽ)( ଶܽ− ଵܽ)
, ଵܽ ≤ >ݔ ଶܽ

2

ସܽ + ଷܽ− ଶܽ− ଵܽ
, �ܽ ଶ ≤ ≥ݔ ଷܽ

2( ସܽ− (ݔ

( ସܽ + ଷܽ− ଶܽ− ଵܽ)( ସܽ− ଷܽ)
, ଷܽ < ≥ݔ ସܽ

ℎݐ݋����������������������������������������������������������������,0 ݓݎ݁ ݏ݅݁ .

(3.28)

By setting

ଵ݂(ݔ) =
−ݔ)2 ଵܽ)

( ସܽ + ଷܽ− ଶܽି ଵܽ)( ଶܽ− ଵܽ)
(3.29)

ଶ݂(ݔ) =
2( ସܽ− (ݔ

( ସܽ + ଷܽ− ଶܽି ଵܽ)( ସܽ− ଷܽ)
(3.30)

then

(ሚܣ̅)ଵܧ = න ଵ݂
ିଵ(ߤ)݀ߤ

ଵ

଴

= න ቈ
( ସܽ + ଷܽ− ଶܽି ଵܽ)( ଶܽ− ଵܽ)ߤ

2
+ ଵܽ቉

ଵ

଴

ߤ݀

=
( ସܽ + ଷܽ− ଶܽି ଵܽ)( ଶܽ− ଵܽ)

4
+ ଵܽ. (3.31)

(ሚܣ̅)ଶܧ = න ଶ݂
ିଵ(ߤ)݀ߤ

ଵ

଴

= න ቈܽ ସ−
( ସܽ + ଷܽ− ଶܽି ଵܽ)( ସܽ− ଷܽ)ߤ

2
቉

ଵ

଴

ߤ݀

= �ܽ ସ−
( ସܽ + ଷܽ− ଶܽି ଵܽ)( ସܽ− ଷܽ)

4
. (3.32)

where ሚisܣ̅ the fuzzy stochastic variable of the fuzzy number .ሚܣ

Then the expected interval of fuzzy stochastic variable ሚܣ̅ can be

expressed as:

=ሚ൯ܣ൫̅ܫܧ ܣଵ൫̅ܧ]
ሚ൯,ܧଶ൫̅ܣ

ሚ൯] (3.33)

and the expected value is given by:
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=ሚ൯ܣ൫ܸ̅ܧ
ܣଵ൫̅ܧ

ሚ൯+ ܣଶ൫̅ܧ
ሚ൯

2

=
( ସܽ + ଷܽ− ଶܽି ଵܽ)[( ଶܽ− ଵܽ) − ( ସܽ− ଷܽ)

8
+

ଵܽ + ସܽ

2
(3.34)

3.2.2.2 Fuzzy Number with Convex Nonlinear Membership Function:

If we consider ሚasܣ a fuzzy number with membership function defined

by (2.1), where ଵ݂(ݔ) and ଶ݂(ݔ) are convex nonlinear functions.

In this case, we must use any approximate method to linearize ଵ݂(ݔ)

and ଶ݂(ݔ), and then we processed as in section (3.2.2.1).

3.2.3 Interval Method:

3.2.3.1 Fuzzy Number with Linear Membership Function:

Recall (3.7), we calculate the following:

1) The optimistic time ௢ݐ = ଵܽ + ( ଶܽ− ଵܽ)ߤ,

2) The pessimistic time ௣ݐ = ସܽ− ( ସܽ− ଷܽ)ߤ, and setting

3) The most likely time ௠ݐ = ௢ݐ) + .௣)/2ݐ

Now, the expected time ௘ݐ which is crisp is calculated as follows:

௘ݐ =
௢ݐ + ௠ݐ4 + ௣ݐ

6

=
( ଵܽ + ସܽ) − ( ଵܽ− ଶܽ− ଷܽ + ସܽ)ߤ

2
(3.35)

3.2.2.2 Fuzzy Number with Convex Nonlinear Membership Function:

If we consider ሚasܣ a fuzzy number with membership function defined

by (2.1), where ଵ݂(ݔ) and ଶ݂(ݔ) are convex nonlinear functions.

In this case, we may use any approximate method to linearize ଵ݂(ݔ)

and ଶ݂(ݔ), and then we processed as in section (3.2.3.1).
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Case Study

Foreign multinational companies are willing to invest in construction

and building projects in Egypt, many factors help this type of projects to be

developed and expanded over time in Egypt. Makro is a German company

that works in hyper supermarkets, specialized in mass trade, selling food

stuffs like: meats, fishes, vegetables, fruits, sugar, macaroni, rice, and many

other commodities. It has many branches in several countries like Turkey,

Germany, France, Italy and more than 30 other countries. A feasibility study

was done by the company to enter the Egyptian market by investing 4.5

milliards dollars, and building 45 branches all over Egypt in the next five

years; the estimated budgeted cost for each mall is 100 millions dollars, the

first branch is planned to be built in Al-Salam City, the mall consists of one

floor store of 15000 m2 steel structure building, a 30000 m2 parking area, and

5000 m2 backyard for trucks maneuvering [40].

4.1 Problem definition, [40]:

As being the responsible of the co-ordination between the companies

working in the project and scheduling the whole project's activities, the

Egyptian consultant should be so precise in scheduling the times of the

activities and the whole project duration. The consultant should have

interactive discussions, agreements, and decisions with the executive

companies to optimize both the time and the cost of the project, any deviation

in the assessment of the activitie's times will lead to extra cost and time. The

activitie's duration times in the project are not deterministic and imprecise so

the concept of fuzziness is employed to deal with the vague activity times.

The Egyptian consultant scheduled the project into 30 activities and

4
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represented their times by fuzzy sets after asking the experts, interacting with

the companies to build the membership functions used. As shown in table

(4.1); the 30 activity are listed with their fuzzy operation time.

Table (4.1): Construction Project

Activity
Item

Activity Description Precedence
Item

Fuzzy Operation
Time (per day)

P1 Concrete works foundation - (25,28,30,35)
P2 Insulation works P1 (3,4,4,5)
P3 Parking area + Roads + Landscape P2 (25,29,30,35)
P4 Back filling works P3 (3,7,12,15)
P5 Sub-base P4 (5,6,6,10)
P6 Steel structure erection P5 (26,30,35,40)
P7 Under ground drainage system P5 (7,10,10,13)
P8 Water tank - civil works - (15,21,21,25)
P9 Steel structure testing P6 (2,3,4,5)
P10 Roofing works P6 (9,10,12,15)
P11 Water tank – finishing P8 (6,7,8,10)
P12 HVAC works - 1st fix P9 (12,14,14,16)
P13 Fire fighting works 1st fix P9 (7,9,11,12)
P14 Electrical system works - 1st fix P12, P13 (5,6,7,10)
P15 Flooring P14 (7,9,11,12)
P16 HVAC work-2nd fix P9 (12,14,14,16)
P17 Fire fighting works – 2nd fix P9 (7,9,11,12)
P18 Cladding works P9 (15,24,25,30)
P19 Electrical system works - 2nd fix P16,P17 (5,6,7,10)
P20 Water tank – MEP P11 (9,11,12,14)
P21 Finishing works P15 (15,18,18,20)
P22 HVAC works - 3rd P9 (12,14,14,16)
P23 Fire fighting work - 3rd fix P9 (7,9,11,12)
P24 Electrical system works -3rd fix P22,P23 (5,6,7,10)
P25 Plumbing works - 1st fix P14 (5,6,6,8)
P26 Plumbing works – 2nd fix P19 (5,6,6,8)
P27 Plumbing works - 3rd fix P24 (5,6,6,8)
P28 Water tank testing P20 (1,2,2,3)
P29 Testing and commissioning P28 (1,2,2,3)
P30 Snag list and Initial handling P29 (5,7,7,9)
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In order to solve such problem, two methods are derived in [40] to
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convert the fuzzy time number into crisp time number and find the optimum

value for objective function and the critical path for activities by using two

different linear programming models.

In this thesis, three defuzzification approaches are implemented using

FLPP to solve this problem and compared these results with the results

obtained by using CPM technique.

4.2 First Approach :

In this approach our problem can be expressed as the following (0-1)

integer model (one objective function) with fuzzy time number, which can be

written as:

Maximize

Z = (25,28,30,35)P1 + (3,4,4,5)P2 + (25,29,30,35)P3 + (3,7,12,15)P4 +

(5,6,6,10)P5 + (26,30,35,40)P6 + (7,10,10,13)P7 + (15,21,21,25)P8 +

(2,3,4,5)P9 + (9,10,12,15)P10 + (6,7,8,10)P11 + (12,14,14,16)P12 +

(7,9,11,12)P13 + (5,6,7,10)P14 + (7,9,11,12)P15 + (12,14,14,16)P16 +

(7,9,11,12)P17 + (15,24,25,30)P18 + (5,6,7,10)P19 + (9,11,12,14)P20 +

(15,18,18,20)P21 + (12,14,14,16)P22 + (7,9,11,12)P23 + (5,6,7,10)P24 +

(5,6,6,8)P25 + (5,6,6,8)P26 + (5,6,6,8)P27 + (1,2,2,3)P28 + (1,2,2,3)P29 +

(5,7,7,9)P30

Subject to

P1 + P8 =1

P1 = P2

P2 = P3

P3 = P4

P4 = P5

P5 = P6 + P7

P6 = P9 + P10
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P8 = P11

P11 = P20

P20 = P28

P28 = P29

P29 = P30

P9 = P12 + P13 + P16 + P17 + P18 + P22 + P23

P12 + P13 = P14

P14 + P15 = P25

P15 = P21

P16 + P17 = P19

P19 = P26

P22 + P23 = P24

P24 = P27

P7 + P10 + P18 + P21 + P25 + P26 + P27 + P30 = 1

P୨≥ 0, j = 1,2, … ,30.

Now, by using the first method that we constructed in (3.2.1) to convert

the FLPP into CLPP with crisp obtained numbers, as shown in table (4.2), we

can rewrite the objective function with crisp numbers as:

Maximize

Z = 29.611P1 + 4P2 + 29.818P3 + 9.215P4 + 7P5 + 32.789P6 + 10P7 +

20.333P8 + 3.5P9 + 11.583P10 + 7.8P11 + 14P12 + 9.714P13 + 7.111P14 +

9.714P15 + 14P16 + 9.714P17 + 23.208P18 + 7.111P19 + 11.5P20 +

17.666P21 + 14P22 + 9.714P23 + 7.111P24 + 6.333P25 + 6.333P26 +

6.333P27 + 2P28 + 2 P29 + 7P30

Subject to

P1 + P8 =1

P1 = P2
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P2 = P3

P3 = P4

P4 = P5

P5 = P6 + P7

P6 = P9 + P10

P8 = P11

P11 = P20

P20 = P28

P28 = P29

P29 = P30

P9 = P12 + P13 + P16 + P17 + P18 + P22 + P23

P12 + P13 = P14

P14 + P15 = P25

P15 = P21

P16 + P17 = P19

P19 = P26

P22 + P23 = P24

P24 = P27

P7 + P10 + P18 + P21 + P25 + P26 + P27 + P30 = 1

P୨≥ 0, j = 1,2, … ,30.

Table (4.2): Problem Crisp Operation Time
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Activity
Item

Activity Description Precedence
Item

Fuzzy Operation
Time (per day)

Crisp Operation
Time (per day)

P1 Concrete works foundation - (25,28,30,35) 29.611
P2 Insulation works P1 (3,4,4,5) 4
P3 Parking area + Roads + Landscape P2 (25,29,30,35) 29.818
P4 Back filling works P3 (3,7,12,15) 9.215
P5 Sub-base P4 (5,6,6,10) 7
P6 Steel structure erection P5 (26,30,35,40) 32.789
P7 Under ground drainage system P5 (7,10,10,13) 10
P8 Water tank - civil works - (15,21,21,25) 20.333
P9 Steel structure testing P6 (2,3,4,5) 3.5
P10 Roofing works P6 (9,10,12,15) 11.583
P11 Water tank – finishing P8 (6,7,8,10) 7.8
P12 HVAC works - 1st fix P9 (12,14,14,16) 14
P13 Fire fighting works 1st fix P9 (7,9,11,12) 9.714
P14 Electrical system works - 1st fix P12, P13 (5,6,7,10) 7.111
P15 Flooring P14 (7,9,11,12) 9.714
P16 HVAC work-2nd fix P9 (12,14,14,16) 14
P17 Fire fighting works – 2nd fix P9 (7,9,11,12) 9.714
P18 Cladding works P9 (15,24,25,30) 23.208
P19 Electrical system works - 2nd fix P16,P17 (5,6,7,10) 7.111
P20 Water tank – MEP P11 (9,11,12,14) 11.5
P21 Finishing works P15 (15,18,18,20) 17.666
P22 HVAC works - 3rd P9 (12,14,14,16) 14
P23 Fire fighting work - 3rd fix P9 (7,9,11,12) 9.714
P24 Electrical system works -3rd fix P22,P23 (5,6,7,10) 7.111
P25 Plumbing works - 1st fix P14 (5,6,6,8) 6.333
P26 Plumbing works – 2nd fix P19 (5,6,6,8) 6.333
P27 Plumbing works - 3rd fix P24 (5,6,6,8) 6.333
P28 Water tank testing P20 (1,2,2,3) 2
P29 Testing and commissioning P28 (1,2,2,3) 2
P30 Snag list and Initial handling P29 (5,7,7,9) 7

On solving CLP problem, the following feasible solutions are obtained:

1- P1 = P2 = P3 = P4 = P5 = P7 = 1



Chapter Four Case Study

37

and

P6 = P9 = P10 = P12 = P13 = P16 = P17 = P18 = P22 = P23 = P24 = P27 = P19 = P26

= P14 = P15 = P25 = P21 = P8 = P11 = P20 = P28 = P29 = P30 = 0

that mean the path solution is:

with path time value =89.644 days.

2- P1 = P2 = P3 = P4 = P5 = P6 = P10 =1

and

P7 = P9 = P12 = P13 = P16 = P17 = P18 = P22 = P23 = P24 = P27 = P19 = P26 = P14

= P15 = P25 = P21 = P8 = P11 = P20 = P28 = P29 = P30 = 0

that mean the path solution is:

with path time value =124.016 days.

3- P1 = P2 = P3 = P4 = P5 = P6 = P9 = P23 = P22 = P24 = P27 = 1

and

P7 = P10 = P18 = P17 = P19 = P26 = P16 = P13 = P14 = P15 = P25 = P21 = P12 =

P8 = P11 = P20 = P28 = P29 = P30 = 0

that mean the path solution is:

with path time value =153.091 days.

4- P1 = P2 = P3 = P4 = P5 = P6 = P9 = P18 = 1

and

P7 = P10 = P23 = P22 = P24 = P27 = P17 = P19 = P26 = P16 = P13 = P14 = P15 =

P25 = P21 = P12 = P8 = P11 = P20 = P28 = P29 = P30 = 0

1 2 3 4 5 6 24

1 2 3 4 5 6 7 24

241 2 3 4 5 6 7 9

1 2 3 4 5 6 7 9

17 18 20 24
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that mean the path solution is:

with path time value =139.141 days.

5- P1 = P2 = P3 = P4 = P5 = P6 = P9 = P17 = P16 = P19 = P26 = 1

and

P7 = P10 = P23 = P22 = P24 = P27 = P18 = P13 = P12 = P14 = P15 = P21 = P25 = P8

= P11 = P20 = P28 = P29 = P30 = 0

that mean the path solution is:

with path time value =153.091 days.

6- P1 = P2 = P3 = P4 = P5 = P6 = P9 = P12 = P14 = P15 = P21 = 1

and

P7 = P10 = P13 =P23 = P22 = P24 = P27 = P18 = P17 = P16 = P19 = P26 = P8 = P11

= P20 = P28 = P29 = P25 = P30 = 0

that mean the path solution is:

with path time value =164.424 days.

7- P1 = P2 = P3 = P4 = P5 = P6 = P9 = P13 = P14 = P25 = 1

and

P7 = P10 = P23 = P22 = P24 = P27 = P18 = P17 = P16 = P15 = P19 = P26 = P8 = P11

= P20 = P28 = P29 = P21 = P30 = 0

that mean the path solution is:

13 14 19 24

1 2 3 4 5 6 7 9

10 11 12 16

1 2 3 4 5 6 7 9

24
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with path time value =153.091 days.

8- P8 = P11 = P20 = P28 = P29 = P30 = 1

and

P1 = P2 = P3 = P4 = P5 = P6 = P7 = P9 = P10 = P23 = P22 = P24 = P27 = P18 =

P17 = P19 = P26 = P16 = P13 = P12 = P14 = P15 = P25 = P21 = 0

that mean the path solution is:

with path time value =50.633 days.

There for from the above results the optimal path solution (critical path) is:

which has the maximum time value = 164.424 days.

4.3 Second Approach:

In this approach the extended ranking method is implemented to

transform the problem fuzzy data into a crisp values as follows:

The problem can be illustrated using the following standard model with

fuzzy time numbers in the right-hand-side of all constraints, which can be

written as:

Minimize

Z = tଶସ− tଵ

Subject to

11 12 24

1 2 3 4 5 6 7 9

1 8 15 21 22 23 24

10 11 12 16 24

1 2 3 4 5 6 7 9
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tଶ− tଵ ≥ Pଵ

tଷ− tଶ ≥ Pଶ

tସ− tଷ ≥ Pଷ

tହ− tସ ≥ Pସ

t଺− tହ ≥ Pହ

t଻− t଺ ≥ P଺

tଶସ− t଺ ≥ P଻

t଼− tଵ ≥ P଼

tଽ− t଻ ≥ Pଽ

tଶସ− t଻ ≥ Pଵ଴

tଵହ− t଼ ≥ Pଵଵ

tଵ଴− tଽ ≥ Pଵଶ

tଵଵ− tଽ ≥ Pଵଷ

tଵଶ− tଵଵ ≥ Pଵସ

tଵ଺− tଵଶ ≥ Pଵହ

tଵଷ− tଽ ≥ Pଵ଺

tଵସ− tଽ ≥ Pଵ଻

tଶସ− tଽ ≥ Pଵ଼

tଵଽ− tଵସ ≥ Pଵଽ

tଶଵ− tଵହ ≥ Pଶ଴

tଶସ− tଵ଺ ≥ Pଶଵ

tଵ଻− tଽ ≥ Pଶଶ

tଵ଼− tଽ ≥ Pଶଷ

tଶ଴− tଵ଼ ≥ Pଶସ

tଶସ− tଵଶ ≥ Pଶହ

tଶସ− tଵଽ ≥ Pଶ଺

tଶସ− tଶ଴ ≥ Pଶ଻

tଶଶ− tଶଵ ≥ Pଶ଼
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tଶଷ− tଶଶ ≥ Pଶଽ

tଶସ− tଶଷ ≥ Pଷ଴

where t୧≥ 0, i = 1,2,3, … ,24, which represent the events (nodes) of the

network problem and P୨, j=1,2,…,30, is the activity fuzzy time number.

Using (3.34) to convert the 30 fuzzy time activities into crisp numbers,

as shown in table (4.3), the standard model can be rewritten into a

deterministic model as follows:

Minimize

Z = tଶସ− tଵ

Subject to

tଶ− tଵ ≥ 7

tଷ− tଶ ≥ 4

tସ− tଷ ≥ 28.625

tହ− tସ ≥ 11.125

t଺− tହ ≥ 5.625

t଻− t଺ ≥ 30.625

tଶସ− t଺ ≥ 10

t଼− tଵ ≥ 22.5

tଽ− t଻ ≥ 3.5

tଶସ− t଻ ≥ 10

tଵହ− t଼ ≥ 7.375

tଵ଴− tଽ ≥ 14

tଵଵ− tଽ ≥ 10.375

tଵଶ− tଵଵ ≥ 6

tଵ଺− tଵଶ ≥ 10.375

tଵଷ− tଽ ≥ 14

tଵସ− tଽ ≥ 10.375

tଶସ− tଽ ≥ 30.5
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tଵଽ− tଵସ ≥ 6

tଶଵ− tଵହ ≥ 10.75

tଶସ− tଵ଺ ≥ 16.875

tଵ଻− tଽ ≥ 14

tଵ଼− tଽ ≥ 10.375

tଶ଴− tଵ଼ ≥ 6

tଶସ− tଵଶ ≥ 6.125

tଶସ− tଵଽ ≥ 6.125

tଶସ− tଶ଴ ≥ 6.125

tଶଶ− tଶଵ ≥ 2

tଶଷ− tଶଶ ≥ 2

tଶସ− tଶଷ ≥ 7

where t୧≥ 0, i = 1,2,3, … ,24

The critical activities are determined and the optimal value of the

objective function is calculated using “Matlab R2010b” software. The results

are shown in the table (4.4).

It’s clear that from the table (4.4) the optimal path solution (critical

path) is:

which has the minimum time value = 154.125 days.

Table (4.3): Problem Crisp Operation Time

11 12 24

1 2 3 4 5 6 7 9
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Activity
Item

Activity Description Precedence
Item

Fuzzy Operation
Time (per day)

Crisp Operation
Time (per day)

P1 Concrete works foundation - (25,28,30,35) 27
P2 Insulation works P1 (3,4,4,5) 4
P3 Parking area + Roads + Landscape P2 (25,29,30,35) 28.625
P4 Back filling works P3 (3,7,12,15) 11.125
P5 Sub-base P4 (5,6,6,10) 5.625
P6 Steel structure erection P5 (26,30,35,40) 30.625
P7 Under ground drainage system P5 (7,10,10,13) 10
P8 Water tank - civil works - (15,21,21,25) 22.5
P9 Steel structure testing P6 (2,3,4,5) 3.5
P10 Roofing works P6 (9,10,12,15) 10
P11 Water tank – finishing P8 (6,7,8,10) 7.375
P12 HVAC works - 1st fix P9 (12,14,14,16) 14
P13 Fire fighting works 1st fix P9 (7,9,11,12) 10.375
P14 Electrical system works - 1st fix P12, P13 (5,6,7,10) 6
P15 Flooring P14 (7,9,11,12) 10.375
P16 HVAC work-2nd fix P9 (12,14,14,16) 14
P17 Fire fighting works – 2nd fix P9 (7,9,11,12) 10.375
P18 Cladding works P9 (15,24,25,30) 30.5
P19 Electrical system works - 2nd fix P16,P17 (5,6,7,10) 6
P20 Water tank – MEP P11 (9,11,12,14) 10.75
P21 Finishing works P15 (15,18,18,20) 16.875
P22 HVAC works - 3rd P9 (12,14,14,16) 14
P23 Fire fighting work - 3rd fix P9 (7,9,11,12) 10.375
P24 Electrical system works -3rd fix P22,P23 (5,6,7,10) 6
P25 Plumbing works - 1st fix P14 (5,6,6,8) 6.125
P26 Plumbing works – 2nd fix P19 (5,6,6,8) 6.125
P27 Plumbing works - 3rd fix P24 (5,6,6,8) 6.125
P28 Water tank testing P20 (1,2,2,3) 2
P29 Testing and commissioning P28 (1,2,2,3) 2
P30 Snag list and Initial handling P29 (5,7,7,9) 7



Table (4.4) :Implementing results for the second approach

Time of
nodes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

68.98 95.98 99.98 128.61 139.73 145.36 175.98 108.68 179.48 296.37 189.86 195.86 296.37 196.90 132.85 206.23 296.37 196.90 210.46 210.46 160.49 179.85 199.99 223.11

-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 Min Z = 154.125

P1=t2-t1 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27 =27
P2=t3-t2 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 =4
P3=t4-t3 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28.625 =28.625
P4=t5-t4 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11.125 =11.125
P5=t6-t5 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5.625 =5.625
P6=t7-t6 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30.625 =30.625
P7=t24-t6 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 77.75 ≥10 
P8=t8-t1 -1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 39.6963 ≥22.5
P9=t9-t7 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.5 =3.5
P10=t24-t7 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 47.125 ≥10 
P11=t15-t8 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 24.176 ≥7.375 
P12=t10-t9 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 116.891 ≥14 
P13=t11-t9 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 10.375 =10.375
P14=t12-t11 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 6 =6
P15=t16-t12 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 0 0 0 0 0 0 0 0 10.375 =10.375
P16=t13-t9 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 116.891 ≥14 
P17=t14-t9 0 0 0 0 0 0 0 0 -1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 17.42 ≥10.375
P18=t24-t9 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 43.625 ≥30.5
P19=t19-t14 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 0 0 0 13.554 ≥6 
P20=t21-t15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 0 0 27.64 ≥10.75
P21=t24-t16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 1 16.875 =16.875
P22=t17-t9 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 116.89 ≥14 
P23=t18-t9 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 17.42 ≥10.375 
P24=t20-t18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 13.554 ≥6
P25=t24-t12 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 1 27.25 ≥6.125 
P26=t24-t19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 1 12.649 ≥6.125 
P27=t24-t20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 12.649 ≥6.125 
P28=t22-t21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 19.358 ≥2
P29=t23-t22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 20.136 ≥2 
P30=t24-23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 23.117 ≥7 
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4.4 Third Approach:

In this approach, the activities expected times ௘ݐ for each cut-ߤ are

calculated using (3.35), and the optimal critical path is obtained for each

=ߤ 0,0.1,0.25,0.5,0.75,1 by implementing the following standard linear

programming model for each cut-ߤ value:

Minimize

Z = tଶସ− ଵݐ

Subject to

−ଶݐ tଵ ≥ t ଵୣ

tଷ− tଶ ≥ t ଶୣ

tସ− tଷ ≥ t ଷୣ

tହ− tସ ≥ t ସୣ

t଺− tହ ≥ t ହୣ

−଻ݐ t଺ ≥ t ଺ୣ

tଶସ− ଺ݐ ≥ t ଻ୣ

t଼− tଵ ≥ tୣ଼

−ଽݐ t଻ ≥ t ଽୣ

tଶସ− t଻ ≥ t ଵୣ଴

tଵହ− t଼ ≥ t ଵୣଵ

tଵ଴− tଽ ≥ t ଵୣଶ

−ଵଵݐ tଽ ≥ t ଵୣଷ

tଵଶ− tଵଵ ≥ t ଵୣସ

tଵ଺− tଵଶ ≥ t ଵୣହ

tଵଷ− ଽݐ ≥ t ଵୣ଺

tଵସ− tଽ ≥ t ଵୣ଻

−ଶସݐ tଽ ≥ t ଵୣ଼

tଵଽ− tଵସ ≥ t ଵୣଽ

tଶଵ− tଵହ ≥ t ଶୣ଴
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tଶସ− tଵ଺ ≥ t ଶୣଵ

tଵ଻− ଽݐ ≥ t ଶୣଶ

−ଵ଼ݐ tଽ ≥ t ଶୣଷ

tଶ଴− tଵ଼ ≥ t ଶୣସ

tଶସ− tଵଶ ≥ t ଶୣହ

tଶସ− tଵଽ ≥ t ଶୣ଺

tଶସ− tଶ଴ ≥ t ଶୣ଻

tଶଶ− tଶଵ ≥ t ଶୣ଼

−ଶଷݐ tଶଶ ≥ t ଶୣଽ

tଶସ− tଶଷ ≥ t ଷୣ଴

t୧≥ 0, i = 1,2,3,… ,24.

where t ୨ୣ, j = 1,2, … ,30 is the expected time that obtained using (3.35).

The critical path activities are determined and the optimal value of the

objective function is calculated for each value of ,cut-ߤ using “Matlab

R2010b” software. The results are shown in the following tables:
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Table (4.5): problem data at ࣆ = ૙

Activity
Item

Fuzzy Operation
Time (in day)

Optimistic
Time ௢ݐ

Pessimistic
Time ௣ݐ

Most Likely
Time ௠ݐ

Expected
Time ௘ݐ

P1 (25,28,30,35) 25 35 30 30
P2 (3,4,4,5) 3 5 4 4
P3 (25,29,30,35) 25 35 30 30
P4 (3,7,12,15) 3 15 9 9
P5 (5,6,6,10) 5 10 7.5 7.5
P6 (26,30,35,40) 26 40 33 33
P7 (7,10,10,13) 7 13 10 10
P8 (15,21,21,25) 15 25 20 20
P9 (2,3,4,5) 2 5 3.5 3.5
P10 (9,10,12,15) 9 15 12 12
P11 (6,7,8,10) 6 10 8 8
P12 (12,14,14,16) 12 16 14 14
P13 (7,9,11,12) 7 12 9.5 9.5
P14 (5,6,7,10) 5 10 7.5 7.5
P15 (7,9,11,12) 7 12 9.5 9.5
P16 (12,14,14,16) 12 16 14 14
P17 (7,9,11,12) 7 12 9.5 9.5
P18 (15,24,25,30) 15 30 22.5 22.5
P19 (5,6,7,10) 5 10 7.5 7.5
P20 (9,11,12,14) 9 14 11.5 11.5
P21 (15,18,18,20) 15 20 17.5 17.5
P22 (12,14,14,16) 12 16 14 14
P23 (7,9,11,12) 7 12 9.5 9.5
P24 (5,6,7,10) 5 10 7.5 7.5
P25 (5,6,6,8) 5 8 6.5 6.5
P26 (5,6,6,8) 5 8 6.5 6.5
P27 (5,6,6,8) 5 8 6.5 6.5
P28 (1,2,2,3) 1 3 2 2
P29 (1,2,2,3) 1 3 2 2
P30 (5,7,7,9) 5 9 7 7



Table (4.6): Implementing results at ࣆ = ૙

Time of
nodes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

68.87 98.87 102.87 132.87 141.87 149.37 182.37 106.98 185.87 302.65 195.37 202.87 302.65 202.34 133.05 212.37 302.65 202.34 217.31 217.31 162.81 183.58 205.24 229.87

-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 Min Z = 161

P1=t2-t1 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30 =30
P2=t3-t2 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 =4
P3=t4-t3 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30 =30
P4=t5-t4 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 =9
P5=t6-t5 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7.5 =7.5
P6=t7-t6 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33 =33
P7=t24-t6 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 80.5 ≥10
P8=t8-t1 -1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 38.1119 ≥20
P9=t9-t7 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.5 =3.5
P10=t24-t7 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 47.5 ≥12 
P11=t15-t8 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 26.0675 ≥8
P12=t10-t9 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 116.778 ≥14 
P13=t11-t9 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9.5 =9.5
P14=t12-t11 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 7.5 =7.5
P15=t16-t12 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 0 0 0 0 0 0 0 0 9.5 =9.5
P16=t13-t9 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 116.778 ≥14 
P17=t14-t9 0 0 0 0 0 0 0 0 -1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 16.4741 ≥9.5
P18=t24-t9 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 44 ≥22.5 
P19=t19-t14 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 0 0 0 14.9697 ≥7.5 
P20=t21-t15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 0 0 29.7626 ≥11.5 
P21=t24-t16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 1 17.5 =17.5
P22=t17-t9 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 116.778 ≥14 
P23=t18-t9 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 16.4741 ≥9.5 
P24=t20-t18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 14.9697 ≥7.5
P25=t24-t12 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 1 27 ≥6.5
P26=t24-t19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 1 12.5562 ≥6.5 
P27=t24-t20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 12.5562 ≥6.5
P28=t22-t21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 20.7674 ≥2
P29=t23-t22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 21.6584 ≥2 
P30=t24-23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 24.6322 ≥7 
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Table (4.7): problem data at ࣆ = ૙.૚

Activity
Item

Fuzzy Operation
Time (in day)

Optimistic
Time ௢ݐ

Pessimistic
Time ௣ݐ

Most Likely
Time ௠ݐ

Expected
Time ௘ݐ

P1 (25,28,30,35) 25.3 34.3 29.9 29.9
P2 (3,4,4,5) 3.1 4.9 4 4
P3 (25,29,30,35) 25.4 34.5 29.95 29.95
P4 (3,7,12,15) 3.4 14.7 9.05 9.05
P5 (5,6,6,10) 5.1 9.6 7.35 7.35
P6 (26,30,35,40) 26.4 39.5 32.95 32.95
P7 (7,10,10,13) 7.3 12.7 10 10
P8 (15,21,21,25) 15.6 24.6 20.1 20.1
P9 (2,3,4,5) 2.1 4.9 3.5 3.5
P10 (9,10,12,15) 9.1 14.7 11.9 11.9
P11 (6,7,8,10) 6.1 9.8 7.95 7.95
P12 (12,14,14,16) 12.2 15.8 14 14
P13 (7,9,11,12) 7.2 11.9 9.55 9.55
P14 (5,6,7,10) 5.1 9.7 7.4 7.4
P15 (7,9,11,12) 7.2 11.9 9.55 9.55
P16 (12,14,14,16) 12.2 15.8 14 14
P17 (7,9,11,12) 7.2 11.9 9.55 9.55
P18 (15,24,25,30) 15.9 29.5 22.7 22.7
P19 (5,6,7,10) 5.1 9.7 7.4 7.4
P20 (9,11,12,14) 9.2 13.8 11.5 11.5
P21 (15,18,18,20) 15.3 19.8 17.55 17.55
P22 (12,14,14,16) 12.2 15.8 14 14
P23 (7,9,11,12) 7.2 11.9 9.55 9.55
P24 (5,6,7,10) 5.1 9.7 7.4 7.4
P25 (5,6,6,8) 5.1 7.8 6.45 6.45
P26 (5,6,6,8) 5.1 7.8 6.45 6.45
P27 (5,6,6,8) 5.1 7.8 6.45 6.45
P28 (1,2,2,3) 1.1 2.9 2 2
P29 (1,2,2,3) 1.1 2.9 2 2
P30 (5,7,7,9) 5.2 8.8 7 7



Table (4.8): Implementing results at ࣆ = ૙.૚

Time of
nodes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

68.86 98.76 102.76 132.71 141.76 149.11 182.06 107.04 185.56 302.34 195.11 202.51 302.34 202.13 133.01 212.06 302.34 202.13 217.06 217.06 162.72 183.44 205.04 229.61

-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 Min Z = 160.75

P1=t2-t1 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30.1 ≥29.9 
P2=t3-t2 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 =4
P3=t4-t3 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29.95 =29.95
P4=t5-t4 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9.05 =9.05
P5=t6-t5 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7.35 =7.35
P6=t7-t6 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32.95 =32.95
P7=t24-t6 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 80.5 ≥10
P8=t8-t1 -1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 38.181 ≥20.1
P9=t9-t7 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.5 =3.5
P10=t24-t7 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 47.55 ≥11.9 
P11=t15-t8 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 25.969 ≥7.95
P12=t10-t9 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 116.779 ≥14 
P13=t11-t9 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9.55 =9.55
P14=t12-t11 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 7.4 =7.4
P15=t16-t12 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 0 0 0 0 0 0 0 0 9.55 =9.55
P16=t13-t9 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 116.779 ≥14 
P17=t14-t9 0 0 0 0 0 0 0 0 -1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 16.572 ≥9.55
P18=t24-t9 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 44.05 ≥22.7 
P19=t19-t14 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 0 0 0 14.921 ≥7.4 
P20=t21-t15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 0 0 29.711 ≥11.5 
P21=t24-t16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 1 17.55 =17.55
P22=t17-t9 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 116.779 ≥14 
P23=t18-t9 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 16.572 ≥9.55 
P24=t20-t18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 14.921 ≥7.4
P25=t24-t12 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 1 27.1 ≥6.45
P26=t24-t19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 1 12.556 ≥6.45 
P27=t24-t20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 12.556 ≥6.45
P28=t22-t21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 20.713 ≥2
P29=t23-t22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 21.599 ≥2 
P30=t24-23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 24.575 ≥7 
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Table (4.9): problem data at ࣆ = ૙.૛૞

Activity
Item

Fuzzy Operation
Time (in day)

Optimistic
Time ௢ݐ

Pessimistic
Time ௣ݐ

Most Likely
Time ௠ݐ

Expected
Time ௘ݐ

P1 (25,28,30,35) 25.75 33.75 29.75 29.75
P2 (3,4,4,5) 3.25 4.75 4 4
P3 (25,29,30,35) 26 33.75 29.875 29.875
P4 (3,7,12,15) 4 14.25 9.125 9.125
P5 (5,6,6,10) 5.25 9 7.125 7.125
P6 (26,30,35,40) 27 38.75 32.875 32.875
P7 (7,10,10,13) 7.75 12.25 10 10
P8 (15,21,21,25) 16.5 24 20.25 20.25
P9 (2,3,4,5) 2.25 4.75 3.5 3.5
P10 (9,10,12,15) 9.25 14.25 11.75 11.75
P11 (6,7,8,10) 6.25 9.5 7.875 7.875
P12 (12,14,14,16) 12.5 15.5 14 14
P13 (7,9,11,12) 7.5 11.75 9.625 9.625
P14 (5,6,7,10) 5.25 9.25 7.25 7.25
P15 (7,9,11,12) 7.5 11.75 9.625 9.625
P16 (12,14,14,16) 12.5 15.5 14 14
P17 (7,9,11,12) 7.5 11.75 9.625 9.625
P18 (15,24,25,30) 17.25 28.75 23 23
P19 (5,6,7,10) 5.25 9.25 7.25 7.25
P20 (9,11,12,14) 9.5 13.5 11.5 11.5
P21 (15,18,18,20) 15.75 19.5 17.625 17.625
P22 (12,14,14,16) 12.5 15.5 14 14
P23 (7,9,11,12) 7.5 11.75 9.625 9.625
P24 (5,6,7,10) 5.25 9.25 7.25 7.25
P25 (5,6,6,8) 5.25 7.5 6.375 6.375
P26 (5,6,6,8) 5.25 7.5 6.375 6.375
P27 (5,6,6,8) 5.25 7.5 6.375 6.375
P28 (1,2,2,3) 1.25 2.75 2 2
P29 (1,2,2,3) 1.25 2.75 2 2
P30 (5,7,7,9) 5.5 8.5 7 7



Table (4.10): Implementing results at ࣆ = ૙.૛૞

Time of
nodes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

68.87 98.62 102.62 132.5 141.62 148.75 181.62 107.16 185.12 301.90 194.75 202.00 301.90 201.71 132.98 211.62 301.90 201.71 216.42 216.42 162.61 183.25 204.76 229.25

-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 Min Z = 160.375

P1=t2-t1 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29.75 =29.75
P2=t3-t2 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 =4
P3=t4-t3 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29.875 =29.875
P4=t5-t4 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9.125 =9.125
P5=t6-t5 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7.125 =7.125
P6=t7-t6 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32.875 =32.875
P7=t24-t6 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 80.5 ≥10
P8=t8-t1 -1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 38.2840 ≥20.25
P9=t9-t7 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.5 =3.5
P10=t24-t7 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 47.625 ≥11.75 
P11=t15-t8 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 25.8241 ≥7.875
P12=t10-t9 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 116.778 ≥14 
P13=t11-t9 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9.625 =9.625
P14=t12-t11 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 7.25 =7.25
P15=t16-t12 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 0 0 0 0 0 0 0 0 9.625 =9.625
P16=t13-t9 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 116.778 ≥14 
P17=t14-t9 0 0 0 0 0 0 0 0 -1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 16.584 ≥9.625
P18=t24-t9 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 44.125 ≥23 
P19=t19-t14 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 0 0 0 14.712 ≥7.25 
P20=t21-t15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 0 0 29.632 ≥11.5 
P21=t24-t16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 1 17.625 =17.625
P22=t17-t9 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 116.778 ≥14 
P23=t18-t9 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 16.584 ≥9.625 
P24=t20-t18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 14.712 ≥7.25
P25=t24-t12 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 1 27.25 ≥6.375
P26=t24-t19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 1 12.827 ≥6.375 
P27=t24-t20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 12.827 ≥6.375
P28=t22-t21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 20.631 ≥2
P29=t23-t22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 21.512 ≥2 
P30=t24-23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 24.491 ≥7 
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Table (4.11): problem data at ࣆ = ૙.૞

Activity
Item

Fuzzy Operation
Time (in day)

Optimistic
Time ௢ݐ

Pessimistic
Time ௣ݐ

Most Likely
Time ௠ݐ

Expected
Time ௘ݐ

P1 (25,28,30,35) 26.5 32.5 29.5 29.5
P2 (3,4,4,5) 3.5 4.5 4 4
P3 (25,29,30,35) 27 32.5 29.75 29.75
P4 (3,7,12,15) 5 13.5 9.25 9.25
P5 (5,6,6,10) 5.5 8 6.75 6.75
P6 (26,30,35,40) 28 37.5 32.75 32.75
P7 (7,10,10,13) 8.5 11.5 10 10
P8 (15,21,21,25) 18 23 20.5 20.5
P9 (2,3,4,5) 2.5 4.5 3.5 3.5
P10 (9,10,12,15) 9.5 13.5 11.5 11.5
P11 (6,7,8,10) 6.5 9 7.75 7.75
P12 (12,14,14,16) 13 15 14 14
P13 (7,9,11,12) 8 11.5 9.75 9.75
P14 (5,6,7,10) 5.5 8.5 7 7
P15 (7,9,11,12) 8 11.5 9.75 9.75
P16 (12,14,14,16) 13 15 14 14
P17 (7,9,11,12) 8 11.5 9.75 9.75
P18 (15,24,25,30) 19.5 27.5 23.5 23.5
P19 (5,6,7,10) 5.5 8.5 7 7
P20 (9,11,12,14) 10 13 11.5 11.5
P21 (15,18,18,20) 16.5 19 17.75 17.75
P22 (12,14,14,16) 13 15 14 14
P23 (7,9,11,12) 8 11.5 9.75 9.75
P24 (5,6,7,10) 5.5 8.5 7 7
P25 (5,6,6,8) 5.5 7 6.25 6.25
P26 (5,6,6,8) 5.5 7 6.25 6.25
P27 (5,6,6,8) 5.5 7 6.25 6.25
P28 (1,2,2,3) 1.5 2.5 2 2
P29 (1,2,2,3) 1.5 2.5 2 2
P30 (5,7,7,9) 6 6 7 7



Table (4.12): Implementing results at ࣆ = ૙.૞

Time of
nodes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

68.86 98.36 102.36 132.11 141.36 148.11 180.86 107.32 184.36 301.14 194.11 201.11 301.14 201.18 132.89 210.86 301.14 201.18 215.77 21.77 162.40 182.90 204.26 228.61

-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 Min Z = 159.75

P1=t2-t1 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29.5 =29.5
P2=t3-t2 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 =4
P3=t4-t3 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29.75 =29.75
P4=t5-t4 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9.25 =9.25
P5=t6-t5 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6.75 =6.75
P6=t7-t6 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32.75 =32.75
P7=t24-t6 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 80.5 ≥10
P8=t8-t1 -1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 38.4551 ≥20.5
P9=t9-t7 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.5 =3.5
P10=t24-t7 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 47.75 ≥11.5 
P11=t15-t8 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 25.5773 ≥7.75
P12=t10-t9 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 116.778 ≥14 
P13=t11-t9 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9.75 =9.75
P14=t12-t11 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 7.0696 ≥7 
P15=t16-t12 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 0 0 0 0 0 0 0 0 9.6804 ≥9.75
P16=t13-t9 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 116.778 ≥14 
P17=t14-t9 0 0 0 0 0 0 0 0 -1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 16.8196 ≥9.75
P18=t24-t9 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 44.25 ≥23.5 
P19=t19-t14 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 0 0 0 14.5889 ≥7 
P20=t21-t15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 0 0 29.5055 ≥11.5 
P21=t24-t16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 1 17.75 =17.75
P22=t17-t9 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 116.778 ≥14 
P23=t18-t9 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 16.8196 ≥9.75 
P24=t20-t18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 14.5899 ≥7
P25=t24-t12 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 1 27.4304 ≥6.25
P26=t24-t19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 1 12.8405 ≥6.25 
P27=t24-t20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 12.8405 ≥6.25
P28=t22-t21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 20.4962 ≥2
P29=t23-t22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 21.3659 ≥2 
P30=t24-23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 24.35 ≥7 
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Table (4.13): problem data at ࣆ = ૙.ૠ૞

Activity
Item

Fuzzy Operation
Time (in day)

Optimistic
Time ௢ݐ

Pessimistic
Time ௣ݐ

Most Likely
Time ௠ݐ

Expected
Time ௘ݐ

P1 (25,28,30,35) 27.25 31.25 29.25 29.25
P2 (3,4,4,5) 3.75 4.25 4 4
P3 (25,29,30,35) 27 32.5 29.75 29.75
P4 (3,7,12,15) 6 12.75 9.375 9.375
P5 (5,6,6,10) 5.75 7 6.375 6.375
P6 (26,30,35,40) 29 36.25 32.625 32.625
P7 (7,10,10,13) 9.25 10.75 10 10
P8 (15,21,21,25) 19.5 22 20.75 20.75
P9 (2,3,4,5) 2.75 4.25 3.5 3.5
P10 (9,10,12,15) 9.75 12.75 11.25 11.25
P11 (6,7,8,10) 6.75 8.5 7.625 7.625
P12 (12,14,14,16) 13.5 14.5 14 14
P13 (7,9,11,12) 8.5 11.25 9.875 9.875
P14 (5,6,7,10) 5.75 7.75 6.75 6.75
P15 (7,9,11,12) 8.5 11.25 9.875 9.875
P16 (12,14,14,16) 13.5 14.5 14 14
P17 (7,9,11,12) 8.5 11.25 9.875 9.875
P18 (15,24,25,30) 21.75 26.25 24 24
P19 (5,6,7,10) 5.75 7.75 6.75 6.75
P20 (9,11,12,14) 10.5 12.5 11.5 11.5
P21 (15,18,18,20) 17.25 18.5 17.875 17.875
P22 (12,14,14,16) 13.5 14.5 14 14
P23 (7,9,11,12) 8.5 11.25 9.875 9.875
P24 (5,6,7,10) 5.75 7.75 6.75 6.75
P25 (5,6,6,8) 5.75 6.5 6.125 6.125
P26 (5,6,6,8) 5.75 6.5 6.125 6.125
P27 (5,6,6,8) 5.75 6.5 6.125 6.125
P28 (1,2,2,3) 1.75 2.25 2 2
P29 (1,2,2,3) 1.75 2.25 2 2
P30 (5,7,7,9) 6.5 7.5 7 7



Table (4.14): Implementing results at ࣆ = ૙.ૠ૞

Time of
nodes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

68.84 98.09 102.09 131.84 141.21 147.59 180.21 107.48 183.71 300.50 193.59 200.34 300.50 200.78 132.83 210.21 300.50 200.78 215.26 215.26 162.23 182.61 203.86 228.09

-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 Min Z = 159.25

P1=t2-t1 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29.25 =29.25
P2=t3-t2 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 =4
P3=t4-t3 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29.75 =29.75
P4=t5-t4 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9.375 =9.375
P5=t6-t5 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6.375 =6.375
P6=t7-t6 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32.625 =32.625
P7=t24-t6 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 80.5 ≥10
P8=t8-t1 -1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 38.6404 ≥20.75
P9=t9-t7 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.5 =3.5
P10=t24-t7 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 47.875 ≥11.25 
P11=t15-t8 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 25.3514 ≥7.625
P12=t10-t9 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 116.788 ≥14 
P13=t11-t9 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9.875 =9.875
P14=t12-t11 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 6.75 =6.75
P15=t16-t12 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 0 0 0 0 0 0 0 0 9.875 =9.875
P16=t13-t9 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 116.788 ≥14 
P17=t14-t9 0 0 0 0 0 0 0 0 -1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 17.067 ≥9.875
P18=t24-t9 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 44.375 ≥24 
P19=t19-t14 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 0 0 0 14.4735 ≥6.75 
P20=t21-t15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 0 0 29.3973 ≥11.5 
P21=t24-t16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 1 17.875 =17.875
P22=t17-t9 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 116.778 ≥14 
P23=t18-t9 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 17.067 ≥9.875 
P24=t20-t18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 14.4735 ≥6.75
P25=t24-t12 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 1 27.7500 ≥6.125
P26=t24-t19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 1 12.8345 ≥6.125 
P27=t24-t20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 12.8345 ≥6.125
P28=t22-t21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 20.3825 ≥2
P29=t23-t22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 21.2444 ≥2 
P30=t24-23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 24.2340 ≥7 
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Table (4.15): problem data at ࣆ = ૚

Activity
Item

Fuzzy Operation
Time (in day)

Optimistic
Time ௢ݐ

Pessimistic
Time ௣ݐ

Most Likely
Time ௠ݐ

Expected
Time ௘ݐ

P1 (25,28,30,35) 28 30 29 29
P2 (3,4,4,5) 4 4 4 4
P3 (25,29,30,35) 29 30 29.5 29.5
P4 (3,7,12,15) 7 12 9.5 9.5
P5 (5,6,6,10) 6 6 6 6
P6 (26,30,35,40) 30 35 32.5 32.5
P7 (7,10,10,13) 10 10 10 10
P8 (15,21,21,25) 21 21 21 21
P9 (2,3,4,5) 3 4 3.5 3.5
P10 (9,10,12,15) 10 12 11 11
P11 (6,7,8,10) 7 8 7.5 7.5
P12 (12,14,14,16) 14 14 14 14
P13 (7,9,11,12) 9 11 10 10
P14 (5,6,7,10) 6 7 6.5 6.5
P15 (7,9,11,12) 9 11 10 10
P16 (12,14,14,16) 14 14 14 14
P17 (7,9,11,12) 9 11 10 10
P18 (15,24,25,30) 24 25 24.5 24.5
P19 (5,6,7,10) 6 7 6.5 6.5
P20 (9,11,12,14) 11 12 11.5 11.5
P21 (15,18,18,20) 18 18 18 18
P22 (12,14,14,16) 14 14 14 14
P23 (7,9,11,12) 9 11 10 10
P24 (5,6,7,10) 6 7 6.5 6.5
P25 (5,6,6,8) 6 6 6 6
P26 (5,6,6,8) 6 6 6 6
P27 (5,6,6,8) 6 6 6 6
P28 (1,2,2,3) 2 2 2 2
P29 (1,2,2,3) 2 2 2 2
P30 (5,7,7,9) 7 7 7 7



Table (4.16): Implementing results at ࣆ = ૚

Time of
nodes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

68.83 97.83 101.83 131.33 140.83 146.83 179.33 107.63 182.83 299.61 192.83 199.33 299.61 200.15 132.71 209.33 299.61 200.15 214.51 214.51 161.96 182.19 203.26 227.33

-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 Min Z = 158.5

P1=t2-t1 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29 =29
P2=t3-t2 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 =4
P3=t4-t3 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29.5 =29.5
P4=t5-t4 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9.5 =9.5
P5=t6-t5 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 =6
P6=t7-t6 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32.5 =32.5
P7=t24-t6 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 80.5 ≥10
P8=t8-t1 -1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 38.7925 ≥21
P9=t9-t7 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.5 =3.5
P10=t24-t7 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 48 ≥11 
P11=t15-t8 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 25.088 ≥7.5
P12=t10-t9 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 116.774 ≥14 
P13=t11-t9 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 10 =10
P14=t12-t11 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 6.5 =6.5
P15=t16-t12 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 0 0 0 0 0 0 0 0 10 =10
P16=t13-t9 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 116.774 ≥14 
P17=t14-t9 0 0 0 0 0 0 0 0 -1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 17.3175 ≥10
P18=t24-t9 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 44.5 ≥24.5 
P19=t19-t14 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 0 0 0 14.3578 ≥6.5 
P20=t21-t15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 0 0 29.2493 ≥11.5 
P21=t24-t16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 1 18 =18
P22=t17-t9 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 116.774 ≥14 
P23=t18-t9 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 18 ≥10 
P24=t20-t18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 14.3578 ≥6.5
P25=t24-t12 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 1 28 ≥6
P26=t24-t19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 1 12.8247 ≥6 
P27=t24-t20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 12.8247 ≥6
P28=t22-t21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 20.2261 ≥2
P29=t23-t22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 21.0746 ≥2 
P30=t24-23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 24.0695 ≥7 



Table (4.17): The summary results for different cut-ࣆ values of the third approach

α-cut value Critical paths duration Criticality
state

0 t1→ t2→t3→t4→t5→t6→t7→t9→t11→t12→t16→t24 161 strong

0.1 t1→ t2→t3→t4→t5→t6→t7→t9→t11→t12→t16→t24 160.95 weak

0.25 t1→ t2→t3→t4→t5→t6→t7→t9→t11→t12→t16→t24 160.375 Strong
0.5 t1→ t2→t3→t4→t5→t6→t7→t9→t11→t12→t16→t24 159.75 Weak

0.75 t1→ t2→t3→t4→t5→t6→t7→t9→t11→t12→t16→t24 159.25 Strong

1 t1→ t2→t3→t4→t5→t6→t7→t9→t11→t12→t16→t24 158.5 Strong
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Now, we present a hybrid approach which consists of “PERT” and “CPM”.

4.5 Hybrid Approach, [4]:

For more satisfaction to our results, we will implement CPM which can

be explaining as follows:

For each activity ( ,݅ )݆ in the project network, considering the crisp

activity time ௜௝ݐ that calculated using (3.35) for each value of the μ-cut in

section (4.4).

Let ܧ ௜ܵ and ௜ܨܮ be the earliest start time event ,݅ and latest finish time

event ,݅ respectively. Let ௝ܦ be a set of events obtained from event ݅and ݅< .݆

We then obtain ܧ ௝ܵ using the following equations:

ܧ ௜ܵ= ݉ ܧ]௜∈஽ೕݔܽ ௜ܵ+ [௜௝ݐ and ܧ ଵܵ = ܮܵ ଵ = 0.

Similarly, let ௜beܪ a set of events obtained from event ݅and ݅< .݆

We obtain ௜usingܨܮ the following equations:

=௜ܨܮ ݉ ݅݊ ௝∈ு೔[ܨܮ௝− [௜௝ݐ and ௡ܨܮ = .௡ܨܧ

The interval ܧ] ௜ܵ,ܨܮ௝] is the time during which the activity ( ,݅ )݆ must

be completed. When the earliest event time and the latest event time have

been obtained, we can calculate the total slack on each node. For activity ( ,݅ )݆

in a project network, the slack ௜ܶ௝ of each node can be computed as follows:

௜ܶ௝ = −௝ܨܮ ܧ ௜ܵ− .௜௝ݐ

In the following tables (4.16) - (4.21) the earliest event time, the latest

event time and the slack of each node are obtained by using the above

equations and the critical events are identified corresponding to their zeros

values of the slack time for each value of .cut-ߤ
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Table (4.18): Critical Event with ࣆ = 0

Nodes Earliest Time TE Latest Time TL Slack Time

t1 0 0 0
t2 30 30 0
t3 34 34 0
t4 64 64 0
t5 73 73 0
t6 80.5 80.5 0
t7 113.5 113.5 0
t8 20 135 110
t9 117 117 0
t10 131 131 0
t11 131 131 0
t12 138.5 138.5 0
t13 131 151.5 20.5
t14 131 151.5 20.5
t15 28 143 115
t16 148 148 0
t17 131 151.5 20.5
t18 131 151.5 20.5
t19 138.5 159 20.5
t20 138.5 159 20.5
t21 39.5 154.5 115
t22 41.5 156.5 115
t23 43.5 158.5 115
t24 165.5 165.5 0



Chapter Four Case Study

62

Table (4.19): Critical Event with ࣆ = 0.1

Nodes Earliest Time TE Latest Time TL Slack Time

t1 0 0 0
t2 29.9 29.9 0
t3 33.9 33.9 0
t4 63.85 63.85 0
t5 72.9 72.9 0
t6 80.25 80.25 0
t7 113.2 113.2 0
t8 20.1 134.75 114.65
t9 116.7 116.7 0
t10 130.7 130.7 0
t11 130.7 130.7 0
t12 138.1 138.1 0
t13 130.7 151.35 20.65
t14 130.7 151.35 20.65
t15 28.05 142.7 114.65
t16 147.25 147.25 0
t17 130.7 151.35 20.65
t18 130.7 151.35 20.65
t19 138.1 158.75 20.65
t20 138.1 158.75 20.65
t21 39.55 154.2 114.65
t22 41.55 156.2 114.65
t23 43.55 158.2 114.65
t24 165.2 165.2 0
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Table (4.20): Critical Event with ࣆ = 0.25

Nodes Earliest Time TE Latest Time TL Slack Time

t1 0 0 0
t2 29.75 29.75 0
t3 33.75 33.75 0
t4 63.625 63.625 0
t5 72.75 72.75 0
t6 79.875 79.875 0
t7 112.75 112.75 0
t8 20.25 133.825 113.575
t9 116.25 116.25 0
t10 130.25 130.25 0
t11 130.25 130.25 0
t12 137.5 137.5 0
t13 130.25 150.875 20.625
t14 130.25 150.875 20.625
t15 28.125 141.7 113.575
t16 147.125 147.125 0
t17 130.25 150.875 20.625
t18 130.25 150.875 20.625
t19 137.5 158.125 20.625
t20 137.5 158.125 20.625
t21 39.625 153.2 113.575
t22 41.625 155.2 113.575
t23 43.625 157.2 113.575
t24 164.75 164.75 0
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Table (4.21): Critical Event with ࣆ = 0.5

Nodes Earliest Time TE Latest Time TL Slack Time

t1 0 0 0
t2 29.5 29.5 0
t3 33.5 33.5 0
t4 63.25 63.25 0
t5 72.5 72.5 0
t6 79.25 79.25 0
t7 112 112 0
t8 20.5 133.75 113.25
t9 115.5 115.5 0
t10 129.5 129.5 0
t11 129.5 129.5 0
t12 136.5 136.5 0
t13 129.5 150.75 21.25
t14 129.5 150.75 21.25
t15 28.25 141.5 113.25
t16 146.25 146.25 0
t17 129.5 150.75 21.25
t18 129.5 150.75 21.25
t19 136.5 157.75 21.25
t20 136.5 157.75 21.25
t21 39.75 153 113.25
t22 41.75 155 113.25
t23 43.75 157 113.25
t24 164 164 0
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Table (4.22): Critical Event with ࣆ = 0.75

Nodes Earliest Time TE Latest Time TL Slack Time

t1 0 0 0
t2 29.25 29.25 0
t3 33.25 33.25 0
t4 63 63 0
t5 72.375 72.375 0
t6 78.75 78.75 0
t7 113.375 113.375 0
t8 20.75 133.25 112.5
t9 114.875 114.875 0
t10 128.875 128.875 0
t11 128.875 128.875 0
t12 135.625 135.625 0
t13 128.875 150.5 21.625
t14 128.875 150.5 21.625
t15 28.375 140.875 112.5
t16 145.5 145.5 0
t17 128.875 150.5 21.625
t18 128.875 150.5 21.625
t19 135.625 157.25 21.625
t20 135.625 157.25 21.625
t21 39.875 152.375 112.5
t22 41.875 154.375 112.5
t23 43.875 156.375 112.5
t24 163.375 163.375 0
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Table (4.23): Critical Event with ࣆ = 1

Nodes Earliest Time TE Latest Time TL Slack Time

t1 0 0 0
t2 29 29 0
t3 33 33 0
t4 62.5 62.5 0
t5 72 72 0
t6 78 78 0
t7 110.5 110.5 0
t8 21 132.5 111.5
t9 114 114 0
t10 128 128 0
t11 128 128 0
t12 134.5 134.5 0
t13 128 150 22
t14 128 150 22
t15 28.5 140 111.5
t16 144.5 144.5 0
t17 128 150 22
t18 128 150 22
t19 134.5 156.5 22
t20 134.5 156.5 22
t21 40 151.5 111.5
t22 42 153.5 111.5
t23 44 155.5 111.5
t24 162.5 162.5 0



Table (4.24): The summary results from tables (4.18)-(4.23)

cut-ߤ
value

Earliest Expected Time
TE

Latest Allowable Time
TL

Slack Time Critical Path

0 165.5 165.5 0 t1→t2→t3→t4→t5→t6→t7→t9→t10→t11→t12→t16→t24

0.1 165.2 165.2 0 t1→t2→t3→t4→t5→t6→t7→t9→t10→t11→t12→t16→t24

0.25 164.75 164.75 0 t1→t2→t3→t4→t5→t6→t7→t9→t10→t11→t12→t16→t24

0.5 164 164 0 t1→t2→t3→t4→t5→t6→t7→t9→t10→t11→t12→t16→t24

0.75 163.375 163.375 0 t1→t2→t3→t4→t5→t6→t7→t9→t10→t11→t12→t16→t24

1 162.5 162.5 0 t1→t2→t3→t4→t5→t6→t7→t9→t10→t11→t12→t16→t24
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Conclusions and Future Works

Over the past few decades, researchers have proposed many FLP

models with different levels of sophistication. However, many of these

models have limited real-world applications because of their methodological

complexities and flexible assumptions.

In contrast, our proposed approaches in this study are straight forward

and flexible. The managerial of the proposed approaches are their

applicability to a wide range of real-word problems such as performance

evaluation.

From the obtained results we can conclude the following:

1- The defuzzification techniques are possible to be implementing or

solving fuzzy network problems.

2- The implementing of standard crisp model identifying the required

critical path when cut-ߤ equal one.

3- The weak and strong critical paths can be identified.

4- The four approaches give us the same optimal critical path and

different time values of the objective function.

5- Our computation results had been shown identically to the results in

[40] corresponding to each µ-cut values which are considered.

For future research we are suggested to concentrate on the comparison

of results obtained with those that might be obtained with other methods. In

addition, we plan to extend the FLP approach proposed here to deal with

fuzzy nonlinear optimization problems with multiple objectives where the

vagueness or impreciseness appears in all the components of the optimization

problem such as the objectives, constraints and coefficients.
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الملخص

)fuzzyتتضمن تحویل المسألة الضبابیة (ثلاثة طرقتطویري ھذه الرسالة تم ف

لحصول على المسار الحرج الذي یمثل ل )  deterministicالى مسألة محددة المعالم (

من خلال تحویل معاملات ومتغیرات الشبكة الضبایة مختلف مسائللوقت الانجازالامثل 

) الى مسائل النمذجة الغیر ضبابیة الخطیة FLPPمسائل النمذجة الضبابیة الخطیة (

)CLPP(.

فلسفة دالة  تعتمدمحددة  مسائلالمسائل الضبابیة الى تحویلل الثلاثةطرقال

)عة المشروع جتقییم ومراوتقنیة درجة القیاس،الكثافة الاحتمالیة PERT ).

نتائج نتائجھا مع لمقارنة(CPM)اخیرا، تم استخدام طریقة المسار الحرج 

الطرق ودقتھا.ھذه لاظھار قوة الطرق الثلاثة

قد تم اعتماد حالة دراسیة لاثبات صحة النتائج المستخرجة باستخدام نظام

“Matlab2010R”.
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