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Abstract

The main aim of this thesis is oriented about finding the approximate
solution of fuzzy integral equations of fractional order as follows:

First studying the basic concept of the main subjects related to the
work of this thesis which are so called fractional calculus and fuzzy set

theory.

Second studying the existence and uniqueness of solutions of the
fuzzy integral equations of fractional order.

Third finding the approximate solutions of the fuzzy integral

equations of fractional order using Adomian decomposition method.
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Introduction

The main subjects which deals with the work of this thesis are the so called
fractional calculus and fuzzy set theory.

The subject of fractional calculus (that is, calculus of integrals and
derivatives of any arbitrary real or complex order) has gained considerable
popularity and importance during the past three decades or so, due mainly to its
demonstrated applications in numerous seemingly diverse and widespread fields of
science and engineering. It does indeed provide several potentially useful tools for
solving differential and integral equations, and various other problems involving
special functions of mathematical physics as well as their extensions and

generalizations in one and more variables [Kilbas, 2006].

The concept of fractional calculus is popularly believed to have stemmed
from a question raised in the year 1695 by Marquis de L’Hopital (1661-1704) to
Gottfried wilhelm Leibniz (1646-1716)which sought the meaning of Leibniz’s

n

. d
(currently popular) notation dx—?‘/ for the derivatives of order n€Ng={0,1,2,...}

when N :% (what if N :%). In his reply, dated 30 September 1695, Leibniz wrote

to L’Hopital as follows: “This is an apparent paradox form which, one day, useful

consequences will be drown”, [Kilbas, 2006].

Following L’Hopital and Leibniz’s first inquisition, fractional calculus was
primary a study reserved for the best minds in mathematics. Fourier, Euler and
Laplace are among the many that dabbled with fractional calculus and the
mathematical consequences [Nishimoto, 1991].



%1 troduction

Many found, using their own notations and methodology, definitions that
fit the concept of a non-integer order integral or derivative.

The most famous of these definitions that have been popularized in the
world of fractional calculus are the Rimann-Liouville and Grunwald-Letnikov

definition.

Most of the mathematical theory applicable to the study of fractional
calculus was developed prior to the turn of the 20" century. However, it is in the
past 100 years that the most intriguing leaps in engineering and scientific

application have been found. [Nishimoto, 1991].

The mathematics has in some cases to change to meet the requirements of
physical reality. Caputo reformulated the more “classic’ definition of the Riemann-
Liouville fractional derivative in order to use integer order initial conditions to
solve his fractional order differential equations [Podlubny, 1999]. Kolowankar
reformulated again, the Riemann- Liouville fractional derivative in order to

differentiate no-where differentiable fractional functions.

This subject of fractional calculus, devoted exclusively to the subject of
fractional calculus in the book by Oldham and Spanir [Oldham, 1974] published in
1974,

Today there exist at least two international journals which are devoted
almost entirely to the subject of fractional calculus: (i) Journal of fractional

Calculus. (ii) Fractinal Calculus and Applied Analysis.

The second subject which deals to this work is the so called fuzzy set
theory:

Zadeh had mtroduced fuzzy set theory in 1965, in which, Zadeh’s original
definition of fuzzy sets could be given as follows ““a fuzzy set is a class of objects
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with a continuum grades of membership. Such a set is characterized by a

membership value ranging between zero and one” [Zadeh,1965].

The concept of fuzzy sets which was introduced by Zadeh [Zadeh, 1965]
led to the definition of the fuzzy number and implementation in fuzzy control
[Chang, 1972] and approximate reasoning problems [Zadeh, 1965], [Zadeh, 1983].
The basic arithmetic structure for fuzzy numbers was later developed by Mizumoto
and Tanaka [Mizumoto, 1976], [Mizumoto, 1979], Nahmias [Nahmias, 1978],
Dubios and Prade [Dubios, 1978], [Dubios,1980],] Dubios,1982] and Ralescu

[Ralescu, 1979] all of which observed the fuzzy number as a location of o.-levels
0<a <1, [Chang, 1972].

Further applications such as solving integral equations required appropriate
and applicable definitions of fuzzy function and fuzzy integral of fuzzy function.
The fuzzy function was introduced by Chang and Zadeh [Chang, 1972]. Later
Dubois and Prade [Dubois, 1982] presented an elementary fuzzy calculus based on
extension principle [Zadeh, 1965]. The concept of integration of fuzzy functions
was first introduced by Dubois and Prade in 1980[Dubois and Prade, 1980].
Alternative approaches were later suggested by Goetschel and Voxman [Goetschel
and Voxman, 1986], Kaleva [Kaleva, 1987], Matloka[Matloka,1987], Nanda
[Nanda,1989], and others. While Goetschel and Voxman [Goetschel, 1986] and
later Matloka[Matloka,1987], preferred a Riemann integral type approach,
Kaleva[Kaleva, 1987] chose to define the integral of fuzzy function, using the
Lebesgue type concept for integration.

One of the first applications of fuzzy integration was given by [Wu, 1991]

who investigated the Fuzzy Fredholm integral equations of the second kind.

Later many authors investigated the numerical solution of fuzzy integral

equation among them Babolian [Babolian, 2005] solve linear Fredholm fuzzy
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integral equations of the second kind by Adomian method, Jahantigh and et al.,
[Jahantigh and et al., 2008] proposed a numerical procedure for solving fuzzy
integral equations, Allahviranloo and et al. [Allahviranloo and et al.,2010] used a
Homotopy perturbation method for fuzzy voltera integral equations and
Allahviranloo and et al. [Allahviranloo and et al., 2011] solved linear Fredholm

fuzzy integral equations of the second kind by Modified Trapezoidal method.

The present thesis concerns with the approximate solution of fuzzy integral
equations of fractional order by using Adomian decomposition method.

This thesis consists of three chapters as well as this introduction. In chapter
one, the basic concepts of fractional calculus and fuzzy set theory are given. While
in chapter two the existence and uniqueness theorem for fuzzy integral equations
of fractional order is presented. Finally the approximate solution of fuzzy integral
equations of fractional order by using Adomian decomposition method will be
given in chapter three. It is important to notice that, the computer programs are
coded in MATHCAD 14 computer software and the results are presented in a
tabulated form.



Chapter One

;

Basic
Concepts
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CHAPTER ONE

Basic Concepts

1.1 Introduction:

In this chapter we presented some necessary basic concepts and
notations, that needed later to define and illustrate some subjects related to
the work of the thesis, which including fractional calculus and fuzzy set

theory.

1.2 Fractional Calculus:

In this section some of the basic and fundamental concepts and
definitions concerning to fractional calculus will be introduced for

completeness purpose.

1.2.1 The Gamma Function, [Oldham,1974]:

Gamma function is one of the most important notation in fractional
calculus, since it is play an important role in fractional differentiation and
integration.

The gamma function I'(x) of a positive real x, is defined by:

Following are some of the most important properties of the gamma function:
1. T(1) =1
2. T'(x+1)=x1(x).

3. I'(x+1)=x! xeN,

4. 1”(1 — nj :m_
2 (2n)!
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5. FG + nj = (2n)!\/E :

4" n!

—mCsc(mX)
I'(x +1)

7. T'(nx)= Zn{m}ﬁ(n+gj.

1.2.2 Fractional Integral

6. I'(—x)= #1,2,3,...

There are many literatures introduces different definitions of fractional

integrations, such as:

1. Riemann-Liouville fractional integral, [Oldham, 1974]:

The generalization to non-integer g of Riemann-Liouville integral can

be written for suitable function f(x) (x € R) as:

Lt - I(X y) " H(y)dy, q<0 (1.3)
qu F( ) ............................... .

2. Wely fractional integral, [Oldham, 1974]:

The left hand fractional order integral of order g > 0 of a given
function f is defined as:

1% f(y)
Af(x) =
H =T I( Yo

And the right hand fractional order integral of order q > 0 of a given

function f is defined as:

wDﬂf(x):F(lq)]?( f_(y)) dy, x < oo

3. Abel-Riemann fractional integral, [Mittal, 2008]:
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The Abel-Riemann (A-R) fractional integral of any order q > 0 for a

function f(t) with t € R™ is defined as

t
Jqf(t)=%j(t—r)q—1f(r)dr, £5 00> Oooroooeooeoooo (1.5)
0

1.2.3 Fractional Derivatives:

Many literatures discussed and presented fractional derivatives of
certain functions:; therefore in this subsection some definitions of fractional

derivatives are presented:

1. Riemann-Liouville fractional derivetive, [Oldham, 1974]:

Among the most important formulae used in fractional calculus is the
Riemann-Liouville formula. For a given function f(x), V x € [a, b], the left
and right hand Riemann-Liouville fractional derivatives of order g > 0 and m

is a natural number, are given by:

1 d" X ()
r(m-g)dx™; (x—t)4 ™

DY, f(x) =

0 eron (D™ d™ 2 £(D)
DR 0= F g o | I o | ST (1.7)

where m — 1 < g <m, m e N. These equations are usually named as the

Riemann-Liouville fractional derivatives.

2. The Abel-Riemann fractional derivative [Mittal, 2008]:

The Abel-Riemann fractional derivative (of order g > 0) is defined as

the left inverse of corresponding A-R fractional integral, i.e.,

For positive integer msuchthatm—-1<qg<m, meN
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(DMIM=A)d =pMM9N =1, ie.,

dt ,m-1<g<m

1 d" j X (t)
0

m +1-m
DY x(t) = r(: SO AT -t (L.9)
S X g=m

Properties of the operator J9 and DY can be found in [Podulbny,

1999], we mention the following:

J9¢P — I'(p+1) {P+a
I'(p+1+q)

DItP — F'(p+1) P
I'(p+1-q)

fort>0,9>0,p>-1.
3. Caputo fractional derivative, [Caputo, 1967]:

In the late sixties an alternative definition of fractional derivatives was
introduced by Caputo. Caputo and Mirandi used this definition in their work

on the theory of viscoelasticity. According to Caputo’s definition
DI=J"9D" for m—1<qg<m

which means that:

t
- J' X(m;(:i)_m dr,m-1<g<m
DY x(t) = '(m-q) o (t—1)
ﬂx(t) g=m
dt™

The basic properties of the Caputo fractional derivative are:
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1. Caputo introduced an alternative definition, which has the advantage of
defining integer order initial conditions for fractional order differential

equations.

m-1 K tk
2. 19D x(t) =x(t) - > x! )(O+)F'
k=0 :

3. Caputo’s fractional differentiation is a linear operator, similar to integer

order differentiation
Dd[a, f(t) +a,g(t)] =a,D¥ (t) +a,DIg(t) .
where a, and a, are constants.

4. Gruinwald fractional derivatives, [Oldham, 1974]:

The Gruiinwald derivatives of any integer order to any fraction order
derivative takes the form:

&)
Nl N=L
ﬂf(x)zlim N ZF(J_q)f(x—j(%D ................. (1.10)

dx? N—o | I'(-0q) 5 F'(1+1)

1.3 Fuzzy Sets Theory:

Fuzzy sets theory is a generalization of abstract set theory it has a
wider scope of applicability than abstract set theory in solving problems that

involve to some degree subjective evaluation [Kandel, 1986].

Let X be the space of objects and x be the generic element of X, a
classical set A, A — X is defined as the collection of elements or objects
X € Xsuch that each element x can either belong or not to the set A [Kandel,

1986]. By defining a characteristic (or membership) function for each element
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x in X, we can represent a classical set A by a set of order pairs (x, 0) or

(X, 1), which indicates x € A or xg A, respectively [Kandel, 1986].

A fuzzy set express the degree to which an element belongs to a set.
Hence, for simplicity, a membership function of a fuzzy set is allowed to have
values between (0 and 1) which reflect the degree of membership of an

element in the given set [Kandel, 1986].
Definition (1.1):

In mathematical symbols, the membership function is given by

nz :X——>[0,1] and the fuzzy set (denoted by A) in X is defined as a set of
ordered pairs, [Zadeh, 1965]:

A={(x,pz(x)|xeX}

1.3.1 Some Basic Concepts of Fuzzy Sets[Dubios,19801],[Zimmermann,

1985]:

Let X be the space of objects and let A be a fuzzy set in X, then one

can define the following concepts:

1. The support of A in the universal set X is a crisp set, denoted by:

S(A)z{x\pA(x)>o,vXex}

2. The core (uncleus) of a fuzzy set A is the set of all points x € X, such that:
HA (X)=1.

3. The height of a fuzzy set A is the largest membership grade over X, i.e.,

hgt(A) = sup p (x).
XxeX
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4. The crossover point of a fuzzy set A is the point in X, whose grade of
membership in A is 0.5.

5. Fuzzy singleton is a fuzzy set whose support is a single point in X, with
ni(X)=a, ae(0,].
6. A fuzzy set A is called normalized, if its height is 1,otherwise it is

subnormal, i.e., hgt(A) <1.

Remark (1.1) [Dubios, 1980]:

A non-empty fuzzy set A can always be normale by letting:

7. The empty fuzzy set & and the universal set X are fuzzy sets, where

VxeX ug(x)=0 and px(x)=1, respectively.
8. If A and B are any two fuzzy subsets of X, then A =B if and only if
na (X) =pg(x), vxeX
9. If A and B are any two fuzzy subsets of X, then A < B if and only if

Ha(X) <pg(X), vV xe X

10. A® (the complement of fuzzy set A) is a fuzzy set whose membership

function is defined by:
Hac (X)=1-px(X), VxeX
11. Given two fuzzy sets A and B their standard intersection A~B, and

standard union AU B, are fuzzy sets and their membership functions are

defined for simplicity for all x € X, by the equations:

HaLg (X) =max{ua (X), ug (X)}
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Ha~g(¥) =min{pz (X), ug(X)}

Remark (1.2) [Zimmermann, 1985]:

It is important to notice that the only law of contradiction is
AUA® =X and the law of excluded middle AA°®=¢. Both laws are
broken for the fuzzy sets, since AUA®=X and ANA® =&, indeed

v x e Asuch thatp z (x) = a, then according to point (7), we have:

Hx - Ac (X) =min{a,,1—o}=0

12. The Cartesian product of fuzzy sets is defined as follows: let

AL A,,..., A, befuzzy sets in Xy, X,,...,X,,.

The Cartesian product is then a fuzzy set in the product space

X1 x X9 x...x X, with the membership function:
K (AgxAgx.xA,) X)) = min{MAi (Xi)|X = (Xg, X2,1., X ), X € Xi}

13. The m™ power of a fuzzy set Ais a fuzzy set with the membership

function:

Ham () =[ra0]", xeX
14. The algebraic sum C=A+ B is defined as:
C={0cua,a09xe X}
where:
Harg () =Ha () +rg(X) —pa () ng(X)

15. The bounded sum C=A ® B is defined as:
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C= {(x,uAeaB(x))\x e X}

where:
MA@E(¥) =min{Lug (X)+ng ()}
16. The bounded difference € = A © B is defined as
C= {(x,p;@g(x))\x € X}
where
Maes (X) = Max{0,uz (X) +pg(x) -1
17. The algebraic product of two fuzzy sets C=A © B is defined as:

C= {(X,HA(X)HE(X))‘X e X}

Example (1.1) [Zimmermann, 1985]:

Let A={(3,0.5),(5,1),(7,0.6)}

and
B={(31),(50.6)}
Then
AxB={[(33),0.5],[(5.3).1],[(7.3),0.6],[(3,5),0.5],[(5,5),0.6],[(7.5),0.6]}

A% ={(3,0.25),(5,1),(7,0.36)}
A+B={(31),(51),(7,0.6)}
A®B={(31),(51,(7,0.6)}

A®B={(3,0.5),(5,0.6)}
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A.B={(3,0.5),(50.6)}

1.3.2 a-Cut Set [Georege, 1995]:

Among the basic concepts in fuzzy set theory is the concept of an a-

cut or “a-level set” and its variant, a strong a-cut or “strong o-level set”.

Given a fuzzy set A defined on X and any number o € (0, 1], the a.-cut A, is

the crisp set that contain all elements of the universal set X, whose

membership grades in A are greater than or equal to the specified value of o
Ag ={xeXiuz(x)za}, ¥xeX

while
A ={XeX:uA(X)>a}, vXx e X,

is called “strong o.-cut”
The following properties are satisfied for all o € (0, 1]:
1. If oy,0,€(0,1], and ay <o, then Aal QA(XZ.
2. (AUB) =A,UB,.
(AnB) ,=A, "B,
(AcB), gives A, cB,.

o &~ W

A=B ifand only if A, =B,V ae(0,1].

Remarks (1.3) [George, 1995]:

1. The set of all levelsa €(0,1], is the image of a fuzzy set that represent

distinct o -cuts of a given fuzzy set A is called a level set of A, which is

denoted by:

A(A) = {OL‘HA(X) = a., forsome x e X}

10
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2. The support of A is exactly the same as the strong a.-cut of A for o =0,
A =S(A).
3. The core of A is exactly the same as the a-cut of A for o = 1
[ie., A;=core(A)].

4. The height of Amay also be viewed as the supremum of o.-cut for which
Ay #D.

1.3.3 Convex Fuzzy Sets [George, 1995]:

As important property of fuzzy sets defined on R" (for some neN)
Is their convexity; this property is viewed as a generalization of the classical

concept of convexity of crisp sets.

Remark (1.4):

The definition of convexity for fuzzy set does not necessarily mean

that the membership function of a convex fuzzy set is also convex function.

Definition (1.2) [George, 1995]:

A fuzzy set A on R is convex if and only if:

g (Axg + @=2)X2) = min{uz (X)), LA (X2} wovvervrrrrrririisneee (1.11)

for all x;,x, €R, and all A <[0,1].

Remark (1.5) [George, 1995]:

A, is convex for any a € (0, 1].

11
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1.3.4 Fuzzy Number [Zimmermann, 1985], [Kandel, 1986]:

A fuzzy number M is a convex normalized fuzzy set M of the real
line R, such that:

1. There exist exactly one xpeR, with pg(Xg) =1 (X is called the mean

value of M).

2. ugy(x) is piecewise continuous.

Definition (1.3) [Dubois, 1980]:

A fuzzy number Mis called positive (negative) if its membership

function is such that g (x) =0, vx<0 (Vx> 0).

Definition (1.4) [Dubois, 19871:

A fuzzy number M is of LR-type if there exists functions L (called

the left function), R (called the right function), such that L(X)<p g (X) <R(X),

V x € X and scalars a> 0, b > 0 with:

L(m—xj’ for x<m
a

R(X;mj, for x>m

g (X) =

m is a real number called the mean value of M, a and b are called the left and

right spreads of m respectively. Symbolically M is denoted by (m,a,b), .

Remark (1.6) [Nguyem, 2000]:

In fact, fuzzy number is fuzzy interval, the only difference is that
fuzzy number contain the value 1 at only one place while a fuzzy interval can

have several value of 1 on many places, (see Fig. (1.1) and Fig (1.2)).

12
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N N ——

N

I
I
1
1
I
I
1

b

0 > >
a X b X 0 a X
Fig. (1.1) the triangular Fig. (1.2) the trapezoidal
membership function membership function
For fig. (1.1):
,0<x<a
x-1 ,a<x<b
X)=3 1
HA(X) —=X+2 ,b<x<c
0 ,X2>C
For fig. (1.2):
0 ,X<a
x-a ,a<x<bh
—a
ua(x)=41 ,b<x<c
=X c<x<d
d-c
0 X >d

Now, in applications, the representation of a fuzzy number in terms of
its membership function is so difficult to use, therefore two approaches are

given for representing the fuzzy number in terms of its a-level set, as in the

following remarks:

13
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Remark (1.7) [Mohammed, 20101:

A fuzzy number M may be uniquely represented in terms of its o-

level set, as the following closed intervals of the real line:
M, =[m-vl-a,m++1-a] or M, =[ocm,1m]
(04

where m is the mean value of M and o € (0, 1]. This fuzzy number may be
written as M, =[M,M], where M refers to the lower bound of M, and M to

the upper bound of M,,.

Remark (1.8) [Mohammed, 20101:

Similar to the second approach given in remark (1.7), one can fuzzyfy

any crisp or nonfuzzy function f, by letting:
f(x)=af(x),f(x) = if (x),Vx e X, ae(0,1] and hence the fuzzy function
(00

f in terms of its a -levels is given by f, =[f.f].

1.3.5 The Extension Principle of Fuzzy Sets [Zimmermann, 1985]:

One of the most basic concepts of fuzzy set theory, which can be used
to generalize crisp mathematical concepts to fuzzy sets, is the extension
principle.

Let X be a Cartesian product of universes Xi,X,...,X, and
Ay, A,... A, be rfuzzy sets in X1,X5...,X,, respectively, f is a mapping
from X to a universe Y y=f(Xq,X5...,X;). Then the extension principle
allows us to define a fuzzy set B in Y by:

B={(y,ng(M)|y =F (X1, X2, X;), (X1, X5.... X)) € X}

where

14
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sup min{uAl(Xl),...,uAr(Xr)},if f‘l(y)¢®

0, otherwise

where 1 is the inverse image of f.

For r =1, the extension principle, of course, reduces to:

B=f(A)={(yng()ly=f(x),x e X]

where:

sup pa(x), iff (y) =@
ng(y) =1 xef " (y)

0, otherwise

Example (1.2) [Zimmermann, 1985]:

Let A={(-1,05),(0,0.8),(11),(2,0.4)} and f(x) =x*
Then by applying the extension principle we obtain:
B=f(A)={(0,0.8),(11),(4,0.4)}

Fig (1.4) illustrates the relationship

Fig. (1.4)

The relationship of example (1.2)

15
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1.3.6 Fuzzy Inteqral Equations:

As we know, the main aim of this thesis is to find the approximate
solution of fuzzy integral equations of fractional order, therefore it is
important here to give a short summary about the meaning of fuzzy integral
equation first and then we will treat the approximate solution of fuzzy integral
equations of fractional order in chapter two and three respectively.

The integral equations which are discussed in this section are the

Fredholm equations of the second kind.

The Fredholm integral equation of the second kind is [Hochstadt,
1973]

b
F(E) = F (1) + B K(SDF(S)AS oo (1.12)

where B > 0, K(s, t) is an arbitrary kernel function over the square a<s,t<b
and f(t) is a function of t :a <t <b. If f(t) is a crisp function then the solutions
of eq. (1.12) are crisp as well. However, if f(t) is a fuzzy function these
equations may only possess fuzzy solutions. Sufficient conditions for the
existence of a unique solution to the fuzzy Fredholm integral equation of the
second kind, i.e., to eq. (1.12) where f(t) is a fuzzy function, are given in [Wu,
1990].

Now, we introduce parametric form of a Fredholm integral equation

of the second kind with respect to section (1.3.4)

Let (f(t,r),f(t,r)) and (u(t,r),u(t,r)),0<r<1 and t € [a b] are

parametric form of f(t) and u(t), respectively then, parametric form of
Fredholm integral equation of the second kind is as follows:

16
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b
ut,r) =f(t,)+Bfvy(s.t,u(s,r,u(s,r)ds,

b
u(t,r)=f(t,r) + ijz (s,t,g(s, r),u(s, r)) ds

K(s,t)u(s,r), K(s,r)>0

where V1(S’t’!(s’r)’a(s’r)):{K(s Hues.r), K(sr) <0

K(s,t)u(s,r), K(s,r) =0

and Va(s.Lu(sn.uEn) :{K(s,t)g(s,r), K(s.r) <0

foreach 0 <r<land a<t<b. Wecan see that (1.13) is a system of linear

Fredholm integral equations in crisp case foreach0<r<landa<t<bh.

The work of this thesis is concerned with the approximate solution of

fuzzy integral equations of fractional order given by the following form:
y(t) =F(t) +19(t, 9(t)) , t>0.

Where f is assumed to be fuzzy functionand 0 < q < 1.

Studying the existence and uniqueness of such equations will be
treated in chapter two while chapter three will be oriented towards the
approximate solution of such equations using Adomian decomposition

method.
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CHAPTER TWO

The Existence and Uniqueness Theorem for Fuzzy Integral

Equations of Fractional Order

2.1 Introduction

This chapter concerned with the existence and the uniqueness of the
solution of fuzzy integral equations of fractional order. Also, some necessary
definitions and theorems related to the prove of the existence and unigqueness
theorem are included in order to make this chapter of self contained as

possible.

2.2 Preliminaries:

Let P .(R") denote the collection of all nonempty compact convex
subset of R" and define the addition and scalar multiplication in P, (R") as

usual. Let 1 = [0,1] € R be a compact interval and let E"be defined as

follows:

E" :{u :R" —[0,1]: u satisfies (i) —(iv) below},

where
(i) u is normal, that is, there exists an X e R" such that u(x,) = 1,

(i) uis fuzzy convex,

(i) u is upper semicontinuous,

(iv) [u]O: closure of {x eR" : A (X) > 0} is compact.

For 0<a <1 denote [u]* Z{XE R" T (X) >oc} IS compact. Then from (i)-

(iv) it follows that the o -level set [u]* e P (R") for all0<a. <1.

18
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let A and B be two nonempty bounded subsets of R". The distance
between A and B is defined by the Housdorff metric:

Hq (A, B) = max {supd(a, B),sup d(b,A)}
acA beB

where

d(b,A)=inf {d(b,a):a A}

Its clear that (P, (R"),d) is a complete metric space [Kisielewicz, 1991]

Remarks (2.1) [Benchohra, 2008]:

1. Suppose that the closure of {x eR": A (X) > 0} , which is denoted by Aq is

compact since Ay is the smallest closed set containing {x eR":u A(X)> O}

2. A, P (R") forall 0<a<1.

Now suppose if g:R"xR"——R" is a function, then according to

the Zadeh’s extension principle [Zadeh, 1965] we can extend g to

E"xE"——E" by the equation:

gAB)@) = sup min{uz(x)usy)|
z=g(x,y)

where g is any relation between A and B.

Define 0:R"—[0,1] by:

~ (1, ift=0
10, otherwise

and let D:E" xE"——][0,0) be defined by:

19
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D(A.B)= sup Hy(A,.B,)

0<o<l

Where d is the Housdorff metric define in P, (R")

Then (E",D) is a complete metric space [Fadhel, 1997].

Remark(2.1) [Kaleva, 1987]:

1. D(A+Z,B+2)=D(A,B) for A B,Zc E

2. DLA,AB)=[A|D(A,B) forall A,Be E' L.eR.

Now, the following definitions and theorems concerning integrability
properties for the set-valued mapping of a real variable whose values are in

(E",D) [Kaleva, 1987], [Puri, 1986]:

Definition (2.1) [Park,1999]:

Suppose T=[c,d]lcR be compact interval, then a mapping

F:T——>E" is called levelwise continuous at t, € T if the set-valued

mapping F, (t) =[F(t)]* is continuous at t = t, with respect to the Housdorff

metric d for all o € [0, 1].

Definition (2.2) [Park, 1999]:

Suppose that T=[c,d]cR be a compact interval, then a mapping

F:T——E" is strongly measurable if for all o e [0, 1], the set-valued

mapping F,:T——P (R") defined by F,(t)=[F(t)]* is Lebesgue

measurable functions.

Definition (2.3) [Park, 1999]:
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A mapping F: T——E" is called integrably bounded if there exists
an integrable function h such that |y[<h(t), for all yeFRy(t), where

T=[c,d]c R be a compact interval.

Definition (2.4) [Park,1999]:

Let F:T——E". The integral of F over T denoted by J' F(t) or
T

d
JF(t), is defined levelwise forall 0 < o <1, by:
C

d d
( | F(t)j = [F, (t)dt

= {jf(t) dt‘f :T — R"is Lebesegue measurable selection for Fa}
T

Theorem (2.1) [Park, 1999]:

If F:T——E" is strongly measurable and integrably bounded, then
F is integrable.

Theorem (2.2) [Park, 1999]:

If F:T——E" is levelwise continuous, then it is strongly

measurable.

Theorem (2.3) [Park, 1999]:

If F:T——E" is levelwise continuous then it is integrable.

Theorem (2.4) [Park, 1999]:

Let F:T——E" be integrable and ¢ € T, then :
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to+p c to+p
[ Fydt=[Fdt+ | Ftydt, celt,to+pl, p>0
to to c

Theorem (2.5) [Park, 1999]:

Let F,G:T——E" be integrable, and A e R, then:

(i) [(F(t)+G(t))dt = [F(t)dt+ [G(t)dt.
T T T
(i) [AF(t)dt=2[F(t)dt.
T T
(iii) (D(F,G))(t)is integrable.
(iv) D(IF(t)dt,jG(t)dthJ'D(F,G)(t)dt.
T T T

2.3 The Existence and Unigueness Theorem [Benchohra, 2008]:

In this subsection, the existence and uniqueness of the following

equation:

§() =T (1) +199(E, T(1)), 1[0, TT, woverereeeeeeeeeeeeee e (2.1)

where f:[0,T]——E" and §:[0,T]xE"——E". Will be proved by
assuming that the following assumptions are satisfied:

Let L and T be positive numbers:
(1) f:[0,T]——E" is continuous and bounded.

(2) §:[0, T]xE"——E" is continuous and satisfies the Lipschitz condition,

Le.,

D(a(t, ¥2(1),9(t, §1(1))) < LD(Y (1), y1(1)),  t<[0,T],

22



Cﬁé]ﬂ?er Two The Existence and ﬂniguene&s Thecrem ﬁr Fu.,z.,z}/ C%‘ﬂ?ejraf fyuation& ?f Fractional Order

where ¥;:[0,T]—E", i=12

(3) g(t,0) is bounded on [0, T]

Theorem (2.6):

Let the assumptions (1) — (3) be satisfied. If:
1/q
T« (F(qL+ 1))

then eq.(2.1) has a unique solution ¥ on [0, T] and the successive iterations

Yot)=T(1),
V.10 =F() +1%(t,9,(1), n=012, ..

are uniformly convergentto § on [0, T].

Proof: First we prove that §, are bounded on [0,T]. We have y,(t) =f(t) is

bounded, which comes from (1). Assume that y,_4(t) is bounded. From (2)

we have;
D(¥,(t),0) =D(f (t) + 1%(t, 7,41 (1)),0)

<D(f(t),0) + D(1%(t, ¥,,_1(1)),0)

a1 (9(5,904(9) j
< D(f(1),0 ,01d
=Pt )+F(q)£D( (t-s)" i

t

= A 1 A ds
_Df ,0 — D ,~n_ ,O
<D0+ 5 sUp DG4 (1) )g o

But

D(9(t, ¥,1(1)),0) < D(9(t, ¥,_1(1)),9(t,0)) + D(g(t,0),0)
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<LD(¥,_,(1),0) + D(g(t,0),0)
So

(5, (0.0) <DED.0) +

sup [LD(¥,_4(t),0) + D(g(t,0),0)]
+1) o<t<T

<DF(1).0)+ sup D(Fy_1(1).0)+ —— sup D(g(t.0),0)
0<t<T ( )0<t<T

This proves that ¢, is bounded vneN. Therefore, {¥, } is a sequence of

bounded functions on [0, T].

Second, we prove that §, are continuous on [0, T]. For 0<t<t<T,

we have:

D(¥,(t), ¥, (1)) < DE(t), F () + F(lq) DUQ(S,VM(S)) jg(s ¥.4(5) dSJ
0

(t—s)td (t—s)td

< D(f(t),f(f)) + D[j‘g S yn—l(s)) ’J'g(s yn—l(s)) dS}
0

I'(a) —s) g (r-9)T
196.9,4())
F(q)Du —— ds, Oj
SD(f(t),f(’L’))-l— 1 j'D(g(S'YHl(S)) g(s’ynl(s))]ds-i-

r@y \ (-9 " (-9

1 jD(g(s,yn_i(s»,@ .
1_‘(Q)t (T_S) a

<D () f(r))+% sup D(G(t, (1), 0) J (t-5)*" -

q) o<t<T

1 ds
(t—s)¢ 1|ds+mos<ltJI<OTD(g(t Yo (b), O)I( T
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<D(f(1).f() + [lt—<[®=|t"—<"]] sup D(g(t,¥p4(t),0)

(q ) 0<t<T

|t—1|% sup D(g(t,¥,_4(t),0)
F(q 1) 0<t<T n

<DE®.F1) + - [2]t—[ —|t7 -]
(g

+1)

Sup D(g(t, yn_l(t), 6)
0<t<T

[2[t—7['—|t? =]

o 1
<DF®).F()+ - D

sup [LD(g(t,¥,4(1)),0) + D(g(t,0),0)].

0<t<T

The last inequality, by symmetry, is valid for all t, te [0, T]

regardless whether or not t < t. Thus D(¥,(t),¥,(t))——0 as t——t.

Therefore, the sequence { ¥, } is continuous on [0, T].

Forn>1, we have:

965.95(5) 4 jg<s I016) ]

POnall) yn“”‘m“’(f (t-s)0 g (t-9)t

SLjD[g@ ORI yn11<s))] .
F(q)o (t-s)y” % (t-s)
t

L [D(G(5, 5 ()).9(5, T_1())

r() (—)1q
1
= D(g(t, ¥, (1), a(t, ¥n_q(t
< Fg SUp Dty (0).0(ty 1()»1( o
q

<

fa+D) oilffT D(¥, (1), ¥n_1(1))

2
LT . .
: [F(q +1)] ossltJET POn0):3n-2()
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) 20030 -
But:
D050 = [if’ji’;(ﬁg d ,OJ
<F1 I (g(sf(ls» ]
@y ((t-s)
<moifp D(g(t.f(t)),0) j - )1_
Thus:
Td
Os<ltJET D(y1(t), Yo (1)) < Ca+D) [LM+N]=R
where:
M= sup D(f(t),0) and N= sup D(g(t,0),0)
0<t<T 0<t<T
Therefore (2.3) will takes the form:
D(¥,,.1(), ¥, (1)) <R (F(Lqul)} ............................................... (2.4)

Next, we show that for each t € [0, T] the sequence {¥,} is a Cauchy

sequence in E"

Let r, s be integers such that s > r and t € [0, T]. Then, by using (2.4), we
have:

D(¥s(1), ¥, (1)) <D(¥s(1), Vs-1(1)) + D(¥s_1(1), Ys_2(1)) +... + D(¥r41(1), ¥, (1)
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(i) *#[rars) ~+*{riae)
<R +R +...+R
I'g+1) rig+1 r{g+1

_RL LTY T_l {1+F(q+1)+(1“(q+1)j2+“_+

'(q+1) LTY LTY
(F(q +1) js‘r‘l
LT
| (T
_gp| LT 1k ( LT )
I'(q+1) 1 @+
L LTq -

The right hand side of the last inequality tends to zero as r, s —— oo. This
implies that {¥,(t)} is a Cauchy sequence. Consequently, the sequence

{¥, ()} is convergent, since the metric space (E", D) is complete.

If we denote §(t) = lim ¥, (t). Then §(t) satisfies (2.1), it is continuous and
n—oo

bounded on [0, T].

To prove the uniqueness, let X(t) be any other continuous solution of (2.1) on
[0, T]. Then:

%(t) =F(t) + 19(t, %(t)), t=0,

Now, for n > 1, we have:
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D(X(1), ¥, (t))=D(|qu(t (1), 1%9(t, ¥ 1 (1))

1 ID g(s.X(s)) 9(s:9n () | 4
@y ((t-9)F9 (t-s)F

j D(9(5,%(5)),9(5, 9 (5)))

F() (—)1‘

1
_— t, X(t t,
<r( )Oil:ET(g( X(1)),9(t, ¥,

LTY
(@ 1) Oit:ETD(x(t) ,Yn (1))

q n
s[ LT j sup D(X(1), ¥o (1))

I(a+1) ) o<t<t
. LT
since <1
g+l
lim ¥, (t) =%(t) =y(t), t<[0,T]
n—o0

This complete the proof.
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CHAPTER THREE

Adomian Decomposition Method for Solving Fuzzy Integral

Equations of Fractional Order

3.1 Introduction:

In this chapter, we present the application of Adomian Decomposition
method (ADM) for solving Fuzzy integral equations of fractional order

3.2 Historical Background of the Adomian Decomposition
Method:

Most phenomena’s that arise in real world problems are describe by
nonlinear differential and integral equations. However, most of the methods
developed in mathematics are usually used in solving linear differential and

integral equations.

In recent years, the decomposition method has emerged as an
alternative method for solving a wide range of problems whose mathematical
models involve algebraic, differential, integral, integro—differential.

The convergence of this method has investigated by Cherruault and
cooperators. In [Cherruault, 1989], Cherruault proposed a new definition of
the method and then he insisted that it will become possible to prove the
convergence of the decomposition method. In [Cherruault, 1993], Cherruault
and Adomian proposed a new convergence proof of Adomian method based

on properties of convergence series.

In this method, the solution is considered as the sum of an infinite
series, rapidly converging to an accurate solution. In [Abbaoui, 2001],
Abbaoui et al. proposed a new approach of decomposition which is obtained
in a more natural way in the classical representation. Lesnic [Lesnic, 2002]

investigated convergence of Adomian's method to periodic temperature fields
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in heat conductors. The advantage of this method is that it provides a direct
scheme for solving the problem without any need for linearization or
discritization. Essentially, the method provides a systematic computational
procedure for equations of physical significance.

El-Sayed and Kaya proposed Adomian Decomposition method
(ADM) to approximate the numerical and analytical solution of system of
two—dimensional Burger’s equations with initial conditions in [El-Sayed,
2004], and the advantages of this work is that the decomposition method
reduces the computational work and improves with regards to its accuracy
and rapid convergence. The nonlinear solution of one—dimensional nonlinear
Burgers equation and convergence of decomposition method is proved as
[Inc, 2005], in [Celik and et al., 2006] applied Adomian Decomposition
method (ADM) to obtain the approximate solution for the differential
algebraic equations system and the results obtained by this method indicate a
high degree of accuracy through the comparison with the analytic solutions.
In [Hosseini, 2006 a], [Hosseini, 2006 b] standard and modified Adomian
Decomposition method are applied to solve non-linear differential algebraic
equations. While, the error analysis of Adomian series solution to a class of
nonlinear differential equation, where as numerical experiments show that
Adomian solution using this formula converges faster is discussed in [E-
Kala, 2007]. Also, a new discrete Adomian Decomposition method (ADM) to
approximate the theoretical solution of discrete nonlinear Schrodinger
equations is presented in [Bratsos, 2008], where this examined for plane
waves and single solution waves in case of continuous, semi discrete and fully
discrete Schrodinger equations. Momani, [Momani, 2008] presented
numerical study of system of fractional differential equations by Adomian

Decomposition method.
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3.3 The Adomian Decomposition Method [ 1:

To introduce the basic idea of the ADM, we consider the operator
equation Fu = G, where F represents a general nonlinear ordinary differential
operator and G is a given function. The linear part of F can be decomposed as:

LUFRUANUSG o (3.1)

where, N is a nonlinear operator, L is the highest—order derivative which is
assumed to be invertible, R is a linear differential operator of order less than L

and G is the nonhomogeneous term.

The method is based by applying the operator | ! formally to the

expression

LU= G —RU=NU.ccctiiii e (3.2)

so by using the given conditions, we obtain:

U=NAL GoL RU=L NU eooooooeeeeeeeeseeeeeeeeoeeee oo (3.3)

where, h is the solution of the homogeneous equation Lu = 0, with the initial-
boundary conditions. The problem now is the decomposition of the nonlinear

term Nu. To do this, Adomian developed a very elegant technique as follows:

The Adomian technique consists of approximating the solution of (3.1) as an

infinite series:
o0

u=> up
n=0

and decomposing the nonlinear term Nu as f(u)=Nu= > A, where A, are
n=0

the so called Adomian polynomials of ug,uy,...,u, that are the terms of the

analytical expansion of Nu, where u = inui , around A =0. That is:
i=0
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o ar(5)

The Adomian polynomials are not unique and can be generated from the

A=0

Taylor expansion of f(u) about the first component uj, i.e.,

f(n)(uo)(u B uo)n

f(u)= Z

In [Adomian, 1995], Adomian’s polynomials are arranged to have the form:

Ay =T(up)
Aq = Uqf'(up)

2
A, = U,f'(Ug) +%f”(uo) ................................... (3.5)

3
Az = usf'(ug) +uuof"(ug) + %f'"(uo)

Now, we parameterize eq.(3.3) in the form:

U=h4L GoAl RU=AL NU coooroooooeoeeeeeeeeeeeeeeeeeeeeeeseseseeen (3.6)

where, A is just an identifier for collecting terms in a suitable way such that u,

depends on ug,uy,...,u, and we will later set A = 1.
S Ay =h+L G-AL RY 2"y —AL Y A"A; oo (3.7)
n=0 n=0 n=0

Equating the coefficients of equal powers of A, we obtain:
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U0=h+L_1G
-1 -1
up=—L (Rup)—L (Ap)
1 1
up=—L (Rup))-L (A

and in general

U, =—L (Ru,_)—L (A,), N=123..

Finally, an N-term that approximates the solution is given by:
N-1
() =D up(x), N=123,...

n=0

and the exact solution is u(x) = lim ¢y.
N—o0

3.4 The Application of ADM for Solving Fuzzy Integral Equations

of Fractional Order:

In this section ADM will be applied to find the solution of the fuzzy
integral equation of fractional order and to do this, first we shall consider the
linear case, i.e., the fuzzy integral equation of fractional order of the form:

g(t) =f(t) +39(t), te[0,T], f:[0,T]—E"

or equivalently:
~ _F 1 t . q_]_,.,
y(t)_f(t)+m g (t=5)TI(S)AS e, (3.9)

where 0<q<1,f(t) is assumed to be fuzzy function which may be

represented as f =[f,f], and therefore the solution of equation (3.9) will be a
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fuzzy solution which may be given by the form y:[XS/] where y represent

the solution of the equation:
1 t
YO =F (1) + [ (t=8)TY(S)dS ovvvrmrrrriirrrnnsss (3.10)
- I'(a) 5 N

while y is the solution of the following equation:

- 1 t q-12
y(t)—f(t)+m£ (t=5)F7Y(S)AS e, (3.11)

which are called the lower and upper solutions of eq.(3.9), respectively.

Adomian’s method defines the solution y(t) by the series:

Y = DY (1) o (3.12)
n=0

Hence from (3.10) we obtain that:

Yo (0 =F(1),
1 ¢ ~

y, () =39y, (t) =——[(t=s)9 Ty (s)ds,

- -0 F(q)g -0

1 t
——[(t-5)%y__ (s)ds

Ya O =3I 1O =50
0

where the components will be determined recursively.

Similarly, Adomian’s method defines the upper solution y(t) by the

series:

y(t) = i Y (5 OO (3.13)
n=0
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Thus from (3.11), we obtain that:
g’o (t) =T,

t
V() =290 (0) = % [(t-991yo(s)ds

t
Ya® =39, 40 =% [(t-9)9Ty,_1(s)ds
0

Also, the components will be determined, recursively.

Second the (ADM) may be used to solve the nonlinear fuzzy integral
equation of fractional order of the form:

1 } N(¥(s))

()7 (t—s)t ds,t [0, T], f:[0,T]——E"........ (3.14)
o (t-

y(O)=F(t)+

which may be considered as a special case of eq.(2.1), where 0<q<1, f(t) is

assumed to be fuzzy function and then the solution §(t) will be a fuzzy
solution given by the form y:[XS/] , Where y represent the solution of the

equation:

t
1 | N e (3.15)

=f
Y= r @) s

While y will be the solution of the equation:

1 } N(y(s)) N

o
S YOy

The nonlinear terms N(y(s)) and N(y_/(s)) are Lipschitzian with:
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and
IN(y) = N(Y) ISL]y; - Y5

and may be decomposed in the form:

N(Y) = D7 AR (L) s (3.17)
n=0

N(Y) = D7 AR corrrrererreeiereeee s (3.18)
n=0

where A,, and A are the Adomian polynomials given by:

A, =— 720 3.19
N [ [Iz(;) ]LO .19
and

_ gn o L

A N SR Tl e, 3.20

n= nl l d)\‘n {Igo y| ]:| - ( )

Then N(y(t)) and N(y(t)) will be a functions of Ay, ¥y, Yo: Yy,
respectively.

Now substituting (3.17) and (3.18) into (3.15) and (3.16), yields to:

y(t) = f(t)+—j(t s)q—l(i n(s)}ds .............................. (3.21)
n=0
and
y(t) = f(t)+—j(t 5)d~ (i n(s)}als .............................. (3.22)
n=0

The components Yor ¥y and )_/0,3_/1,... are determined recursively by:
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y,=f,
0 } .......................................................... (3.23)

Yir1= ‘]qu k=012,...

Hence the Adomian’s method defines the lower solution y by the series

M

X:

Vi e (3.24)

=0

And for the upper case, we have

yo =f,
70 N S (3.25)
Vi =J9AKk  k=01.2...

3.4.1 Modification of Adomian's Polynomials [El-Kala, 2007]:

Here, we will use the modified version proposed by El-Kala, [El-Kala,
2007] in order to improve the approximate solution given by the Adomian’s

method where the Adomian polynomials are given by:

Ao =N(Yo)
* 1 y2 2 y3 3

A =Y1N()(YO)+%N( )(YO)+?N( )(YO)+---
. 1

A7 =YaNO (o) + 2 (v2" + 2v2y2 )N (yg) +

1

3|(3Y12 +3y1y,° + Y32) N® (yg) +...
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. 1
A3 =yaND(yo) + (va® +3y1ys + 2y5y5 NP (yo) +

1
S1Y3* + 3y +¥2) +3ys(v1 +¥2) INOyg) +...

n
Define the partial sum S, = Zyi , from the modified polynomials, then one
i=0

can write:
Ay =N(yg) = N(s)
* * 1 y2 2 y3 3
Ay +A¢ =N(Yo)+Y1N()(YO)+ﬁN( )(YO)+§N( )(yo) +..

=N(Yp + Y1)
=N(s;)

Similarly:

AO* + Al* + AZ* = N(yo + yl + y2)
=N(sy)
And by induction the following sum is obtained:
n *

AT (Yo Y ¥i) = NGp)

i=0
Therefore, in general:

* _1 *
An =NGR) = DLAT s (3.27)
i=0

Hence one can define the lower Adomian polynomials by the following form:
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AO* = N(Xo)
Y’ A
A =Y, N(l)(Xo) +iN(2)(XO) +%N(3)(XO) +o

Ay N(l)(yo)+ ( 2+2y,y, IN®(yg) +
1
5(33_/1 +33_/1¥2 +3_/32)N(3)(3_/0)+...
y3N”(y0)+ (y3 +3y,y, +2Y,Y, JNO(y ) +

3I(y3 +3y.7 (9, +Y,) +3Y5 (9, +¥,)? N y) .

n
and define the lower partial sum S, =>" y, from the lower polynomials, then
i=0

one can write:
Ao =N(y,)=N(sp)

2 3
o @ Y1 @y 42 NO
Ay +A _N(Xo)+XlN (Xo)+EN (Xo)+ 3 N (Xo)+'“

=N(y, +y,)
=N(s)

By the same process
Ao* +A1* +A2* =N(y,+y,+Y,)
=N(s,)
and by induction, the following sum is obtained:

%A (Vg Yy ¥, = N(5p)

Therefore, in general:
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n-1
A =N = DA (3.28)
i=0

Hence the approximate solutions of equations (3.15) using the modified

Adomian’s polynomials are given by:

Yo=1.
o P e ———————— (3.29)
Yot =J9A", , k=0,12,...
Thus the Adomian’s method defines the lower solution y by the series
o0
y=>, Y} e (3.30)

0

and similarly for the upper case, the solution y will be given by the series:

M8
<

Y = D Vi et (3.31)

=0

3.4.2 Convergence Analysis:

In chapter two, we prove the existence and uniqueness theorem of
fuzzy integral equations of fractional order. Now in this section, the
convergence of the series solutions (3.30) and (3.31) of equations (3.15) and
(3.16) are also proved.

Theorem(3.1):

The series solutions (3.30) and (3.31) of equations (3.15) and (3.16)
q
r+1

respectively using ADM converges whenever 0 < k < 1, where k =

40



‘(j/;qpter Tiree Fdomian ﬂecompom’tz’on :7[22#1‘6:[ for 30/1/1’11_7 ::Fu.zzy %ﬂqqra/ fquati’on&cf Tractional

Proof: Let s,, and s, be an arbitrary partial sums with n > m, and to prove

that {s,,} is a Cauchy sequence in the Banach space B = (C[l],|| . |)) of all

continuous functions of I. Therefore:

||§n - §m ” = max|§n - §m|
tel

= max Z y. ()

tel |i—ms1

n *
=max| >, A4

tel Jizm+1

n

=max| > [F( ).[(t S)CHA, 1(s) dS]

tel licms

= MaX

tel |T'(q )j(t 5)7 Z A. 4(s) ds

i=m+1

- rafe- i

but we have:

Z A" =N(sp_1) — N(Sm1)

Then:

mj(t S)q_l[N(Sn 1) = N(sy4)] ds

ISh — Sm |l = max

< max IN(s,_1) = N(Sp_1)|
(S

i}(t —5)97ds
I'(a)
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sy —s ||<L—Tqmax|s ~Sm_4|
M Q4D ter s

c T sy Sl

- F(q—'—l) —n—l —m4.

Hence:
LTY

Sn — Smll < K|l Sh_1—S , where k=——
Ish = Smll <Kl Sn1 —Small NCER

Let n=m + 1, then:
||§m+1 _§m ” < k”§m _§m—1”

2
<k ||§m—1 _§m—2 ”

<k"l$1 = So
and from the triangle inequality:
||§n —Sm ” < ||§m+1 ~Sm ” + ||§m+2 _§m+1|| Tt ||§n _§n—1||

<K+ K™+ L+ K8 S

km
< m”Xl” k=1
and then:
km
ISh — Smll < 1k r?gx Y, |

But |Xl| <ow,s0asm—> o, then [|s, — Sy||—> 0
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So {s,} is a Cauchy sequence in B, and therefore the series Zyi (t)
i=0

converges.
00 u—
Similarly as we do in the lower case, we get > y;(t) converges and this

i=0
complete the proof of the theorem.

Numerical Examples:

Example (3.1):

Consider the linear fuzzy integral equation of fractional order
y(t) = (t) + 3%(t), t[0,1]

1

where g will be chosen to be 4 = 5

In this case the fuzzy function f will be given as f=[f f],

3 5 7
2Jt 8t2  32t2 1282
where f=p|e?! - — — - . and

L R iy iy i TN
3 5 7
_ 2 2 2

e_ll 2t 2Vt 82 32t2 128t 0<ps<1
B Jr 3Jr 15Jdn 1054w

According to the Adomian decomposition method the fuzzy solution will be
given as y=[y,y] where y=> y, and y = > v;, the components y, and y;,
i=0 i=0

1=0,1,2,...; will be determined as follows:
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3 > !
C 2t 8t2 3212 128t2

Yo =Bl e? - - =TT
=0 Jr o 3Jn 15Jn 1050

1
-2
¥, =32y,

1

Similarly:

3 5 7
- 1] o 24t 812 3212 128t2

Yo= 5% T r adn 15¢n 1059

1
y1=J2yo
1

Y, =32y
Following up to 10 terms tables (3.1) and (3.2) represent the lower and

upper solution of example (3.1) for different values of B with a comparison

with the exact solution at = 1 which is y(t) = e*.
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Table (3.1)

Lower solution when g =0.5.

Admian ﬂecongpom’tz'on JZZMEJ for 30/1/1’11_7 ::Fu.zzy %ﬂqqra/ fquati’on&cf Tractiona)

B Exact solution
Xi
0.25 0.5 0.75 1 p=1
0.1 3.054021345x10°* 6.10804260x10° | 9.162064034x10°! 1.221608538 1.221402758
0.2 3.734213668x10°* 7.468427336x10°* 1.1202641 1.493685467 1.491824698
0.3 4.572815298x10"* 9.145630595x10™* 1.371844589 1.829126119 1.8221188
0.4 5.609855689x10 * 1.121971138 1.682956707 2.243942276 2.225540928
05 6.894725418x10"* 1.378945084 2.068417625 2.757890167 2.718281828
0.6 8.488043331x10°* 1.697608666 2.546412999 3.395217332 3.320116923
0.7 1.046387845 2.092775691 3.139163536 4.185551382 4.055199967
0.8 1.291240538 2582481077 3.873721615 5.164962154 4.953032424
0.9 1.594309066 3.188618132 4.782927197 6.377236263 6.049647464
1 1.968852934 3.937705867 5.906558801 7.875411735 7.389056099
Table (3.2)
Upper solution when g =0.5.
B Exact solution
Xi
0.25 0.5 0.75 1 =1
0.1 4.886434152 2.443217076 1.628811384 1.221608538 1.221402758
0.2 5.974741869 2.987370935 1.991580623 1.493685467 1.491824698
0.3 7.316504476 3.658252238 2.438834825 1.829126119 1.8221188
0.4 8.975769103 4.487884551 2.991923034 2.243942276 2.225540928
0.5 10.103156067 5.515780334 3.67718689 2.757890167 2.718281828
0.6 10.358086933 6.790434665 4526956443 3.395217332 3.320116923
0.7 10.674220553 8.371102763 5580735175 4.185551382 4055199967
0.8 20.065984861 10.032992431 6.886616205 5.164962154 4.953032424
0.9 20.550894505 10.275447253 8.502981684 6.3772362 6.049647464
1 30.150164694 10.575082347 10.050054898 7.875411735 7.389056099
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Example(3.2)

Consider the nonlinear fuzzy integral equation of fractional order

y(®) =F()+39°(0), te[o]
where g will be chosen to be g :%

In this case the fuzzy function f will be given as f=[f f],

5 5
where =8 t—it2 and f = t—it2 , 0<Bp<1

o) o)

According to the Adomian decomposition method the fuzzy solution will be

1
B

o0 . o0 .
given as y:[;_/,fl]where y= > y;, and y= D"y, the components Y; and yj,
i=0 i=0

1=0,12,...; will be determined as follows:

5
Yo=R|t- 27 2
Il —
2}
1 1
Y =3%A0 232202
1 1

Y, =328 =32(2y,y,

1

2
= 1] d" [ &,
y . =J2A,, where A,=— —(Zx y_J
Zn+l n! d?»n = i

Similarly:
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S
90_% t- 27 t2
Il —
9
1 1
yy=12R0 =02y’
1 1

y, =J2A1=02(2y,y, )

1 2
- — 1 d" (&=
=J2An, where Ap =— Ay
Ynu n n 1l o |=Zo Yi
A=0

Following up to 4 terms tables (3.3) and (3.4) represent the lower and
upper solution of example (3.2) for different values of  with a comparison

with the exact solution at 3 = 1, which is y(t) =t.
Table (3.3)

Lower solution when g =0.5.

8 Exact
Xi solution
0.3 05 0.75 1 B=1
0.1 | 3.290609477 x1072 | 4.951687563x10°% | 7.463482429x1072 | 9.999999736x10 2 1x10°t
0.2 | 6.420461733 x1072 | 9.718898904x107° | 1.478432665x10°% | 1.999991143x10°* 2x10°t
0.3 | 9305225394 x1072 | 1.41964901x10°% | 2.187035494x10°! | 2.999748624x10* 3x10°?
04 | 1.186704145 x10°% | 1.827722216x10°* | 2.86110187x10' | 3.997433391x10* 4x10°t
0.5 | 1402526862 x10°! | 2.183818232x10°! | 3.485263377x10°! | 4.985156975x10°* 5x10°*
0.6 | 1569404931 x10! | 2.473459868x10°' | 4.037151632x10°} | 5.940494904x10°* 6x10°*
0.7 | 1678266973 x10°! | 2.679807144x10°" | 4.484926796x10°! | 6.815862216x10* 7x10°1
0.8 | 1719837748 x10! | 2.784119675x10°1 | 4.786547735x10°! | 7.5311518x10°* 8x107*
0.9 | 1.685175568 x10°! | 2.767103273x10°% | 4.892599032x10°! | 7.976668968x10* ox10°?
1 1566448654 x107 | 2.611222517x10°% | 4.753729427x107 | 8.031211895x10°* 1
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Table (3.4)

Upper solution when g =0.5.

Admian ﬂecompmn’t‘z’on JZZMBJ for 30/1/1’11_7 ::Fu.zzy %ﬂqqra/ fquati’on&cf Tractiona)

B Exact solution

5 0.3 05 0.75 1 B=1
0.1 | 3125775193 x10' | 2.040544356 x10* | 1.342150497 x10* | 9.999999736 X102 1x10"
0.2 | 6.868570097 x10* | 4.259793554 x10* | 2.720643419 x10' | 1.999991143 x10™* 2x10™"
0.3 1.217055368 6.849675977 x10 " | 4.16482437 x10 | 2.999748624 x10! 3x10t
0.4 2.097941817 1012756279 x10* | 5.710338932 x10' | 3.997433391 x10* 4x10™"
0.5 3.642617476 1452614991 7.382356157 x10* | 4.985156975 x10! 5x10*
0.6 6.205096295 2.041114972 0.142527416 x10" | 5940494904 x10! 6x10"
0.7 9.996695805 2759492178 1078570097 6.815862216 x10 7x10"
0.8 14.86658717 3.418282368 1176708413 75311518 x10°* 8x10™*
0.9 20.17714369 3.359297548 1089798861 7.976668968 x10* 9x10t
1 24.89370642 6.648447026 x10' | 5.718377498 x10' | 8.031211895 x10* 1

And if we apply the modified Adomian's method for this case, thus we

have
5
2 _
Yo=B|t-—=x 1t
o)
2
1 1
)_/1=J2A_0 :‘]23_/02
1 1
S S
Y, =927 =32 (y,*+2y,y, )
1 1
L =
Y3 =J2A =2 (3_/2 +2¥o¥2 + 2!1!2)
Similarly:
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5= 2

1

1

1

v, =02A1=92(y" 2y,

1

— % — [ — 2 —_ —_
y3=J2A 2 232(3/2 +2y0y2+2y1y2)

Admian ﬂecompmn’t‘z’on JZZMBJ for 30/1/1’11_7 ::Fu.zzy %ﬂqqra/ fquati’on&cf Tractiona)

Following up to 4 terms tables (3.5) and (3.6) represent the modified

lower and upper solution of example (3.2) respectively for different values of

B with a comparison with the exact solution at B = 1 which is

y(t) =t.
Table (3.5)
Modified lower solution when q =0.5.
Exact solution

Xi

0.3 0.5 5 1 p=1
0.1 | 2959667348 x102 | 4.951687566x1072 | 7.463482463x102 | 9.999999924x102 1x10t
0.2 | 5768014891 x1072 | 9.718899864x107> | 1.478433776x10* 1.999997311x10* 2x10°*
0.3 | 8346979683 x102 | 1.419651679x10' | 2.18706661 x10' | 2.999918369x10* 3x10°?
0.4 | 1062594473 x10°' | 1.827749277x10°! | 2.861416736x10* 3.99909685x10™* 4x10°t
0.5 | 1.253326666 x10°% | 2.183978493x10°! | 3.487087583x10' | 4.994274128x10* 5x10°*
0.6 | 1.39942898 x10°! | 2.474153424x10°1 | 4.04463405x10°" 5.974569848x10 6x107*
0.7 | 1.493209879 x10! | 2.682305126x10°* | 4.50946509x10* 6.911999598x10 7x10°t
0.8 | 152700941 x10! | 2.792211776x10°% | 4.856312503x10°1 | 7.747426955x10°* 8x10*
0.9 | 1.494361204 x10°! | 2.79160551x10°! 5.07465012x10°* 8.374869749x10* 9x10°*
1 1.390322156 x10°* | 2.68136558x1071 | 5.206116656x10} | 8.632416353ex10: 1
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Table (3.6)

Modified upper solution when q =0.5.

Admian ﬂecongpom’tz'on JZZMEJ for 30/1/1’11_7 ::Fu.zzy %ﬂqqra/ fquati’on&cf Tractiona)

B Exact solution

5 0.3 05 0.75 1 B=1
0.1 | 3125697069 x10* | 2.040545586x10% | 1.342150631x10' | 9.999999924x10 110
0.2 | 6.860596158x10" | 4.260215159x10! | 2.720688962x10* | 1.999997311x10* 2x10°"
0.3 1.207217828 6.861995885x10 * | 4.166138901x10' | 2.999918369x10 310"
0.4 2.050911 1.02580653 5.724015623x10" | 3.99909685x10 " 410
05 3.523931905 1531592323 7.463022874x10" | 4.994274128x10°* 5x10°*
0.6 6.048066118 2.376020454 9.472305179x10 " | 5.974569848x10* 6x10*
0.7 9.940316271 3.871499805 1182533354 6.911999598x10 7x10°*
0.8 14.70141535 6.517031707 1.44600423 7.747426955x10 8x10*
0.9 17.30000609 10.096973075 1687379805 8.374869749x10* 9x10™*

1 8.621431358 10.778413579 1744288777 8.632416353x10 1

50




Concons and
Recommencatons



Conclusions and’ cggcommen dations

Conclusions and Recommendations

From the present study, one can conclude the following:

. Exact solution of fuzzy integral equation of fractional order may be in
sometimes so difficult to be evaluated, especially in nonlinear case.

. The Adomian decomposition method gave us an acceptable solution to the
fuzzy integral equation of fractional order although we are take a
summation of 10 terms in the linear case and 4 terms for the nonlinear

case.
Also, we may recommend the following problems for future work:

. Using other approximate methods for solving fuzzy integral equations of
fractional order such as the homotopy analysis method, the homotopy
perturbation method, the variational iteration method and the differential
transform method.

. Studying the approximate solution of fuzzy fredholm-voltera integral
equations of fractional order.

. Studying the existence and uniqueness of fuzzy stochastic integral

equations of fractional order.
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