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Abstract 

 

The main aim of this thesis is oriented about finding the approximate 

solution of fuzzy integral equations of fractional order as follows: 

First studying the basic concept of the main subjects related to the 

work of this thesis which are so called fractional calculus and fuzzy set 

theory. 

Second studying the existence and uniqueness of solutions of the 

fuzzy integral equations of fractional order. 

Third finding the approximate solutions of the fuzzy integral 

equations of fractional order using Adomian decomposition method. 
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Introduction 

The main subjects which deals with the work of this thesis are the so called 

fractional calculus and fuzzy set theory. 

The subject of fractional calculus (that is, calculus of integrals and 

derivatives of any arbitrary real or complex order) has gained considerable 

popularity and importance during the past three decades or so, due mainly to its 

demonstrated applications in numerous seemingly diverse and widespread fields of 

science and engineering. It does indeed provide several potentially useful tools for 

solving differential and integral equations, and various other problems involving 

special functions of mathematical physics as well as their extensions and 

generalizations in one and more variables [Kilbas, 2006]. 

The concept of fractional calculus is popularly believed to have stemmed 

from a question raised in the year 1695 by Marquis de L‟Hopital (1661-1704) to 

Gottfried wilhelm Leibniz (1646-1716)which sought the meaning of Leibniz‟s 

(currently popular) notation 
n

n

d y

dx
 for the derivatives of order  0n 0,1,2,...   

when 
1

n
2

  (what if 
1

n
2

 ). In his reply, dated 30 September 1695, Leibniz wrote 

to L‟Hopital as follows: “This is an apparent paradox form which, one day, useful 

consequences will be drown”, [Kilbas, 2006].  

Following L‟Hopital and Leibniz‟s first inquisition, fractional calculus was 

primary a study reserved for the best minds in mathematics. Fourier, Euler and 

Laplace are among the many that dabbled with fractional calculus and the 

mathematical consequences [Nishimoto, 1991]. 
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Many found, using their own notations and methodology, definitions that 

fit the concept of a non-integer order integral or derivative. 

The most famous of these definitions that have been popularized in the 

world of fractional calculus are the Rimann-Liouville and Grunwald-Letnikov 

definition. 

Most of the mathematical theory applicable to the study of fractional 

calculus was developed prior to the turn of the 20
th

 century. However, it is in the 

past 100 years that the most intriguing leaps in engineering and scientific 

application have been found. [Nishimoto, 1991]. 

The mathematics has in some cases to change to meet the requirements of 

physical reality. Caputo reformulated the more „classic‟ definition of the Riemann-

Liouville fractional derivative in order to use integer order initial conditions to 

solve his fractional order differential equations [Podlubny, 1999]. Kolowankar 

reformulated again, the Riemann- Liouville fractional derivative in order to 

differentiate no-where differentiable fractional functions.  

This subject of fractional calculus, devoted exclusively to the subject of 

fractional calculus in the book by Oldham and Spanir [Oldham, 1974] published in 

1974. 

Today there exist at least two international journals which are devoted 

almost entirely to the subject of fractional calculus: (i) Journal of fractional 

Calculus. (ii) Fractinal Calculus and Applied Analysis. 

The second subject which deals to this work is the so called fuzzy set 

theory: 

Zadeh had introduced fuzzy set theory in 1965, in which, Zadeh‟s original 

definition of fuzzy sets could be given as follows “a fuzzy set is a class of objects 
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with a continuum grades of membership. Such a set is characterized by a 

membership value ranging between zero and one” [Zadeh,1965]. 

The concept of fuzzy sets which was introduced by Zadeh [Zadeh, 1965] 

led to the definition of the fuzzy number and implementation in fuzzy control 

[Chang, 1972] and approximate reasoning problems [Zadeh, 1965], [Zadeh, 1983]. 

The basic arithmetic structure for fuzzy numbers was later developed by Mizumoto 

and Tanaka [Mizumoto, 1976], [Mizumoto, 1979], Nahmias [Nahmias, 1978], 

Dubios and Prade [Dubios, 1978], [Dubios,1980],[ Dubios,1982] and Ralescu 

[Ralescu, 1979] all of which observed the fuzzy number as a location of -levels 

0 <  < 1, [Chang, 1972]. 

Further applications such as solving integral equations required appropriate 

and applicable definitions of fuzzy function and fuzzy integral of fuzzy function. 

The fuzzy function was introduced by Chang and Zadeh [Chang, 1972]. Later 

Dubois and Prade [Dubois, 1982] presented an elementary fuzzy calculus based on 

extension principle [Zadeh, 1965]. The concept of integration of fuzzy functions 

was first introduced by Dubois and Prade in 1980[Dubois and Prade, 1980]. 

Alternative approaches were later suggested by Goetschel and Voxman [Goetschel 

and Voxman, 1986], Kaleva [Kaleva, 1987], Matloka[Matloka,1987], Nanda 

[Nanda,1989], and others. While Goetschel and Voxman [Goetschel, 1986] and 

later Matloka[Matloka,1987], preferred a Riemann integral type approach, 

Kaleva[Kaleva, 1987] chose to define the integral of fuzzy function, using the 

Lebesgue type concept for integration.  

One of the first applications of fuzzy integration was given by [Wu, 1991] 

who investigated the Fuzzy Fredholm integral equations of the second kind.  

Later many authors investigated the numerical solution of fuzzy integral 

equation among them Babolian [Babolian, 2005] solve linear Fredholm fuzzy 
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integral equations of the second kind by Adomian method, Jahantigh and et al.,  

[Jahantigh and et al., 2008] proposed a numerical procedure for solving fuzzy 

integral equations, Allahviranloo and et al. [Allahviranloo and et al.,2010] used a 

Homotopy perturbation method for fuzzy voltera integral equations and 

Allahviranloo and et al. [Allahviranloo and et al., 2011] solved linear Fredholm 

fuzzy integral equations of the second kind by Modified Trapezoidal method. 

The present thesis concerns with the approximate solution of  fuzzy integral 

equations of fractional order by using Adomian decomposition method. 

This thesis consists of three chapters as well as this introduction. In chapter 

one, the basic concepts of fractional calculus and fuzzy set theory are given. While 

in chapter two the existence and uniqueness theorem for fuzzy integral equations 

of fractional order is presented. Finally the approximate solution of fuzzy integral 

equations of fractional order by using Adomian decomposition method will be 

given in chapter three. It is important to notice that, the computer programs are 

coded in MATHCAD 14 computer software and the results are presented in a 

tabulated form. 
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CHAPTER ONE 

Basic Concepts 

1.1 Introduction: 

In this chapter we presented some necessary basic concepts and 

notations, that  needed later  to define and illustrate some subjects related to 

the work of the thesis, which including fractional calculus and fuzzy set 

theory. 

1.2 Fractional Calculus: 

In this section some of the basic and fundamental concepts and 

definitions concerning to fractional calculus will be introduced for 

completeness purpose. 

 

1.2.1 The Gamma Function, [Oldham,1974]: 

Gamma function is one of the most important notation in fractional 

calculus, since it is play an important role in fractional differentiation and 

integration. 

The gamma function (x) of a positive real x, is defined by:  

1

0

( )
x y

x y e dy


    , x > 0...................................................... (1.2)  

Following are some of the most important properties of the gamma function:  

1. (1)  1. 

2. (x + 1)  x(x). 

3. (x + 1)  x!, x  . 

4. 
!)n2(

!n)4(
n

2

1 n 









 . 
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5. 
!n4

!)n2(
n

2

1
n











 . 

6. 
csc( )

( ) , 1,2,3,...
( 1)

x
x x

x

 
   

 
. 

7. 



























1n

0k

x

n

k
n

2

n

n

2
)nx( . 

1.2.2 Fractional Integral 

There are many literatures introduces different definitions of fractional 

integrations, such as: 

1. Riemann-Liouville fractional integral, [Oldham, 1974]:  

The generalization to non-integer q of Riemann-Liouville integral can 

be written for suitable function f(x) (x  R) as:  

xq
q 1

q
0

d 1
f (x) (x y) f (y)dy

( q)dx

  
   , q < 0 ............................... (1.3)  

2. Wely fractional integral, [Oldham, 1974]:  

The left hand fractional order integral of order q > 0 of a given 

function f is defined as: 

x
q
x 1 q

1 f (y)
D f (x) dy

(q) (x y)
 




 

 , x >  .................................. (1.4)  

And the right hand fractional order integral of order q > 0 of a given 

function f is defined as:  

q
x 1 q

x

1 f (y)
D f (x) dy,x

(q) (y x)



 
 
 

  

3. Abel-Riemann fractional integral, [Mittal, 2008]:  
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The Abel-Riemann (A-R) fractional integral of any order q > 0 for a 

function f(t) with t    is defined as  

t
q q 1

0

1
J f (t) (t ) f ( )d

(q)

    
  , t > 0 q > 0................................. (1.5)  

1.2.3 Fractional Derivatives:  

Many literatures discussed and presented fractional derivatives of 

certain functions; therefore in this subsection some definitions of fractional 

derivatives are presented:  

1. Riemann-Liouville fractional derivetive, [Oldham, 1974]:  

Among the most important formulae used in fractional calculus is the 

Riemann-Liouville formula. For a given function f(x),  x  [a, b], the left 

and right hand Riemann-Liouville fractional derivatives of order q > 0 and m 

is a natural number, are given by:  

xm
q

x a m q m 1
a

1 d f (t)
D f (x) dt

(m q) dx (x t)
  


  

   ................................ (1.6)  

bm m
q

x b m q m 1
x

( 1) d f (t)
D f (x) dt

(m q) dx (x t)
  



  

   ................................ (1.7)  

where m  1 < q  m, m  . These equations are usually named as the 

Riemann-Liouville fractional derivatives. 

2. The Abel-Riemann fractional derivative [Mittal, 2008]: 

The Abel-Riemann fractional derivative (of order q > 0) is defined as 

the left inverse of corresponding A-R fractional integral, i.e.,  

q qD J I  ................................................................................... (1.8)  

For positive integer m such that m  1 < q  m, m  
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m m q q m m q q(D J )J D (J J ) I,    i.e.,  

tm

m q 1 m
q 0

m

m

1 d x(t)
d , m 1 q m

(m q) dt (t )
D x(t)

d
x(t) q m

dt

 


   

   
 






...... (1.9)  

Properties of the operator 
qJ  and qD  can be found in [Podulbny, 

1999], we mention the following: 

q p p q(p 1)
J t t

(p 1 q)

 

  

 

q p p q(p 1)
D t t

(p 1 q)

 

  

 

for t > 0, q  0, p  1. 

3. Caputo fractional derivative, [Caputo, 1967]: 

In the late sixties an alternative definition of fractional derivatives was 

introduced by Caputo. Caputo and Mirandi used this definition in their work 

on the theory of viscoelasticity. According to Caputo’s definition  

q m q m
*D J D , for  m  1 < q  m 

which means that: 

t (m)

q 1 m
q 0
*

m

m

1 x ( )
d , m 1 q m

(m q) (t )
D x(t)

d
x(t) q m

dt

 

 
   

   
 






  

The basic properties of the Caputo fractional derivative are:  
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1. Caputo introduced an alternative definition, which has the advantage of 

defining integer order initial conditions for fractional order differential 

equations.  

2. 
km 1

qq (k)
*

k 0

t
J D x(t) x(t) x (0 )

k!






   . 

3. Caputo’s fractional differentiation is a linear operator, similar to integer 

order differentiation  

q q q
1 2 1 2* * *D [a f (t) a g(t)] a D f (t) a D g(t)   . 

where 1a  and 2a  are constants. 

4. Gruünwald fractional derivatives, [Oldham, 1974]: 

The Gruünwald derivatives of any integer order to any fraction order 

derivative takes the form:  

q

q N 1

q N j 0

x

d ( j q) xN
f (x) lim f x j

( q) ( j 1) Ndx





 

  
             
       

 
 

  .................(1.10) 

 

1.3 Fuzzy Sets Theory: 

Fuzzy sets theory is a generalization of abstract set theory it has a 

wider scope of applicability than abstract set theory in solving problems that 

involve to some degree subjective evaluation [Kandel, 1986]. 

Let X be the space of objects and x be the generic element of X, a 

classical set A, A  X is defined as the collection of elements or objects  

x  X such that each element x can either belong or not to the set A [Kandel, 

1986]. By defining a characteristic (or membership) function for each element 
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x in X, we can represent a classical set A by a set of order pairs (x, 0) or  

(x, 1), which indicates x  A or x A, respectively [Kandel, 1986]. 

A fuzzy set express the degree to which an element belongs to a set. 

Hence, for simplicity, a membership function of a fuzzy set is allowed to have 

values between (0 and 1) which reflect the degree of membership of an 

element in the given set [Kandel, 1986]. 

Definition (1.1): 

In mathematical symbols, the membership function is given by 

A
:X [0,1]   and the fuzzy set (denoted by A ) in   is defined as a set of 

ordered pairs, [Zadeh, 1965]: 

 A
A (x, (x)) x X    

 

1.3.1 Some Basic Concepts of Fuzzy Sets[Dubios,1980],[Zimmermann, 

1985]: 

Let X be the space of objects and let A  be a fuzzy set in X, then one 

can define the following concepts: 

1. The support of A  in the universal set X is a crisp set, denoted by: 

 AS(A) x (x) 0, x X      

2. The core (uncleus) of a fuzzy set A  is the set of all points x  X, such that: 

A(x) 1.   

3. The height of a fuzzy set A  is the largest membership grade over X, i.e., 

A
x X

hgt(A) sup (x).


   
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4. The crossover point of a fuzzy set A  is the point in X, whose grade of 

membership in A  is 0.5. 

5. Fuzzy singleton is a fuzzy set whose support is a single point in X, with 

A(x) , (0,1]   . 

6. A fuzzy set A  is called normalized, if its height is 1,otherwise it is 

subnormal, i.e., hgt (A) 1   

Remark (1.1) [Dubios, 1980]: 

A non-empty fuzzy set A  can always be normale by letting: 

* A
A

A
x X

(x)
(x)

Sup (x)



 


 

7. The empty fuzzy set   and the universal set X are fuzzy sets, where

x X   (x) 0


   and X(x) 1  , respectively.  

8. If A  and B  are any two fuzzy subsets of X, then A B  if and only if  

BA(x) (x), x X.     

9. If A  and B  are any two fuzzy subsets of X, then A B  if and only if  

BA(x) (x), x X.     

10. cA  (the complement of fuzzy set A ) is a fuzzy set whose membership 

function is defined by: 

c AA
(x) 1 (x), x X.      

11. Given two fuzzy sets A  and B  their standard intersection A B , and 

standard union A B , are fuzzy sets and their membership functions are 

defined for simplicity for all x  X, by the equations: 

BA B A
(x) max{ (x), (x)}


     
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BA B A
(x) min{ (x), (x)}


     

Remark (1.2) [Zimmermann, 1985]: 

It is important to notice that the only law of contradiction is 

cA A X   and the law of excluded middle cA A  . Both laws are 

broken for the fuzzy sets, since cA A X   and cA A  , indeed 

x A  such that
A(x)  , then according to point (7), we have: 

cA A
(x) max{ ,1 } 1


      

cA A
(x) min{ ,1 } 0


      

12.  The Cartesian product of fuzzy sets is defined as follows: let 

1 1 nA ,A ,...,A  be fuzzy sets in 1 2 nX ,X ,...,X .  

The Cartesian product is then a fuzzy set in the product space 

1 2 nX X ... X    with the membership function: 

 
1 2 n i i 1 2 n i i(A A ... A ) A

(x) min (x ) x (x ,x ,...,x ),x X
  

      

13. The m
th

 power of a fuzzy set A is a fuzzy set with the membership 

function: 

m

m

AR
(x) (x) , x X       

14. The algebraic sum C A B   is defined as:  

 A BC (x, (x) x X    

where:  

B BA B A A
(x) (x) (x) (x) (x)


      

15. The bounded sum C A B   is defined as: 
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  A BC x, (x) x X    

where: 

 BA B A(x) min 1, (x) (x)     

16. The bounded difference C   A    B  is defined as 

  A BC x, (x) x X    

where  

 BA B A
(x) max 0, (x) (x) 1


      

17. The algebraic product of two fuzzy sets C A B  is defined as: 

  BA
C x, (x) (x) x X   

 

 

Example (1.1) [Zimmermann, 1985]: 

Let  A (3,0.5),(5,1),(7,0.6)

 
and   

 B (3,1),(5,0.6)  

Then 

            A B (3,3),0.5 , (5,3),1 , (7,3),0.6 , (3,5),0.5 , (5,5),0.6 , (7,5),0.6   

 2A (3,0.25),(5,1),(7,0.36)  

 A B (3,1),(5,1),(7,0.6)   

 A B (3,1),(5,1),(7,0.6)   

 A B (3,0.5),(5,0.6) 
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 A.B (3,0.5),(5,0.6)  

1.3.2 -Cut Set [Georege, 1995]: 

Among the basic concepts in fuzzy set theory is the concept of an -

cut or “-level set” and its variant, a strong -cut or “strong -level set”. 

Given a fuzzy set A  defined on X and any number   (0, 1], the -cut A is 

the crisp set that contain all elements of the universal set X, whose 

membership grades in A  are greater than or equal to the specified value of  

 AA x X: (x) , x X        

while 

 AA x X: (x) , x X
      , 

is called “strong -cut” 

The following properties are satisfied for all   (0, 1]: 

1. If 1 2, (0,1]   , and 1 2  , then 
1 2

A A  . 

2. (A B) A B     . 

3. (A B) A B      

4. (A B) gives A B    . 

5. A B  if and only if A B , (0,1].     

 

Remarks (1.3) [George, 1995]: 

1. The set of all levels (0,1] , is the image of a fuzzy set that represent 

distinct  -cuts of a given fuzzy set A  is called a level set of A , which is 

denoted by: 

 A(A) (x) , forsome x X       
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2. The support of A  is exactly the same as the strong -cut of A for   0, 

0
A S(A).   

3. The core of A  is exactly the same as the -cut of A  for   1  

[i.e., 1A core(A) ]. 

4. The height of A may also be viewed as the supremum of -cut for which 

A . 

 

1.3.3 Convex Fuzzy Sets [George, 1995]: 

As important property of fuzzy sets defined on n  (for some n ) 

is their convexity; this property is viewed as a generalization of the classical 

concept of convexity of crisp sets.  

Remark (1.4): 

The definition of convexity for fuzzy set does not necessarily mean 

that the membership function of a convex fuzzy set is also convex function. 

 

Definition (1.2) [George, 1995]: 

A fuzzy set A  on  is convex if and only if: 

   1 2 1 2A A Ax (1 )x min (x ), (x )        ............................(1.11) 

for all 1 2x ,x  , and all [0,1].  

 

Remark (1.5) [George, 1995]:  

A is convex for any   (0, 1]. 
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1.3.4 Fuzzy Number [Zimmermann, 1985], [Kandel, 1986]: 

A fuzzy number M  is a convex normalized fuzzy set M  of the real 

line , such that: 

1. There exist exactly one 0x  , with 0M(x ) 1   (x0 is called the mean 

value of M ). 

2. 
M(x)  is piecewise continuous. 

Definition (1.3) [Dubois, 1980]: 

A fuzzy number M is called positive (negative) if its membership 

function is such that M(x) 0, x 0 ( x 0).       

Definition (1.4) [Dubois, 1987]: 

A fuzzy number M  is of LR-type if there exists functions L (called 

the left function), R (called the right function), such that L(x) M(x) R(x),  

 x  X and scalars a > 0, b > 0 with: 

M

m x
L , for x m

a
(x)

x m
R , for x m

b

  
 

  
  

     

 

m is a real number called the mean value of M , a and b are called the left and 

right spreads of m respectively. Symbolically M is denoted by LR(m,a,b) . 

 

Remark (1.6) [Nguyem, 2000]: 

In fact, fuzzy number is fuzzy interval, the only difference is that 

fuzzy number contain the value 1 at only one place while a fuzzy interval can 

have several value of 1 on many places, (see Fig. (1.1) and Fig (1.2)). 
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For fig. (1.1): 

 A

0 ,0 x a

x 1 ,a x b

(x) 1
x 2 ,b x c

2

0 ,x c

 
   


  
   




 

For fig. (1.2): 

 A

0 ,x a

x a
,a x b

b a

(x) 1 ,b x c

c x
,c x d

d c

0 ,x d


 
  




   
 
  


 

 

Now, in applications, the representation of a fuzzy number in terms of 

its membership function is so difficult to use, therefore two approaches are 

given for representing the fuzzy number in terms of its -level set, as in the 

following remarks: 

 

 

 

Fig. (1.1) the triangular 

membership function 

1 

0 

a X0 b X 

1 

0 a c d X b 

Fig. (1.2) the trapezoidal 

membership function 
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Remark (1.7) [Mohammed, 2010]: 

A fuzzy number M  may be uniquely represented in terms of its -

level set, as the following closed intervals of the real line: 

1
M [m 1 ,m 1 ] or M [ m, m]       


 

where m is the mean value of M  and   (0, 1]. This fuzzy number may be 

written as M [M,M]  , where M  refers to the lower bound of M 
and M  to 

the upper bound of M. 

 

Remark (1.8) [Mohammed, 2010]:  

Similar to the second approach given in remark (1.7), one can fuzzyfy 

any crisp or nonfuzzy function f, by letting:  

1
f (x) f (x), f (x) f (x), x X, (0,1]     


 and hence the fuzzy function  

f  in terms of its  -levels is given by f [f , f ].   

 

1.3.5 The Extension Principle of Fuzzy Sets [Zimmermann, 1985]: 

One of the most basic concepts of fuzzy set theory, which can be used 

to generalize crisp mathematical concepts to fuzzy sets, is the extension 

principle. 

Let X be a Cartesian product of universes 1 2 rX ,X ,X  and

1 2 rA ,A ,A  be r-fuzzy sets in 1 2 rX ,X ,X , respectively, f is a mapping 

from X to a universe Y 1 2 ry f (x ,x ,x ) . Then the extension principle 

allows us to define a fuzzy set B  in Y  by: 

1 2 r 1 2 rBB {(y, (y)) y f (x ,x ,x ),(x ,x ,x ) X}     

where  
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 
1

1 r1 r1

1 2 r

A A

(x ,x ,...,x ) f (y)B

sup min (x ),..., (x ) ,if f (y)

(y)

0, otherwise






   


  



 

where f
1 is the inverse image of f. 

For r  1, the extension principle, of course, reduces to: 

 BB f (A) (y, (y)) y f (x),x X      

where: 

1

1
A

x f (y)B

sup (x), if f (y)

(y)

0, otherwise






  


  



 

                                   

 

Example (1.2) [Zimmermann, 1985]: 

Let          2A 1,0.5 , 0,0.8 , 1,1 , 2,0.4 and f (x) x    

Then by applying the extension principle we obtain: 

      B f (A) 0,0.8 , 1,1 , 4,0.4   

Fig (1.4) illustrates the relationship 

 

 

 

 

 

 

 

The relationship of example (1.2) 

4 

3 

2 

1 

0 

-1 

4 

3 

2 

1 

0 

-1 

Fig. (1.4) 
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1.3.6 Fuzzy Integral Equations: 

As we know, the main aim of this thesis is to find the approximate 

solution of fuzzy integral equations of fractional order, therefore it is 

important here to give a short summary about the meaning of fuzzy integral 

equation first and then we will treat the approximate solution of fuzzy integral 

equations of  fractional order in chapter two and three respectively. 

The integral equations which are discussed in this section are the 

Fredholm equations of the second kind. 

The Fredholm integral equation of the second kind is [Hochstadt, 

1973] 

b

a

F(t) f (t) K(s, t)F(s)ds   ......................................................(1.12) 

where  > 0, K(s, t) is an arbitrary kernel function over the square a  s, t  b 

and f(t) is a function of t : a  t  b. If f(t) is a crisp function then the solutions 

of eq. (1.12) are crisp as well. However, if f(t) is a fuzzy function these 

equations may only possess fuzzy solutions. Sufficient conditions for the 

existence of a unique solution to the fuzzy Fredholm integral equation of the 

second kind, i.e., to eq. (1.12) where f(t) is a fuzzy function, are given in [Wu, 

1990]. 

Now, we introduce parametric form of a Fredholm integral equation 

of the second kind with respect to section (1.3.4) 

Let (f (t,r),f (t,r))  and (u(t,r),u(t,r)), 0 r 1   and t  [a, b] are 

parametric form of f(t) and u(t), respectively then, parametric form of 

Fredholm integral equation of the second kind is as follows: 
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 

 

b

1

a

b

2

a

u(t, r) f (t, r) v s, t,u(s,r),u(s,r) ds,

u(t, r) f (t, r) v s, t,u(s,r),u(s,r) ds


  





  






 ..............................(1.13)

 where                 1

K(s, t)u(s,r), K(s,r) 0
v s, t,u(s,r),u(s,r)

K(s, t)u(s,r), K(s,r) 0


 



 

and                             2
K(s, t)u(s,r), K(s,r) 0

v s, t,u(s,r),u(s,r)
K(s, t)u(s,r), K(s,r) 0

 
 


 

for each 0  r  1 and a  t  b. We can see that (1.13) is a system of linear 

Fredholm integral equations in crisp case for each 0  r  1 and a  t  b. 

The work of this thesis is concerned with the approximate solution of 

fuzzy integral equations of fractional order given by the following form: 

qy(t) f (t) I g(t,y(t)) , t 0.    

Where f  is assumed to be fuzzy function and 0 < q  1.  

Studying the existence and uniqueness of such equations will be 

treated in chapter two while chapter three will be oriented towards the 

approximate solution of such equations using Adomian decomposition 

method. 
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CHAPTER TWO 

The Existence and Uniqueness Theorem for Fuzzy Integral 

Equations of Fractional Order 

2.1 Introduction 

This chapter concerned with the existence and the uniqueness of the 

solution of fuzzy integral equations of fractional order. Also, some necessary 

definitions and theorems related to the prove of the existence and uniqueness 

theorem are included in order to make this chapter of self contained as 

possible. 

2.2 Preliminaries: 

Let n
kP ( )  denote the collection of all nonempty compact convex 

subset of n  and define the addition and scalar multiplication in n
kP ( )  as 

usual. Let I = [0,1] ⊆ R be a compact interval and let nE be defined as 

follows: 

 n nE u : R [0,1]: u satisfies (i) (iv) below ,    

where 

(i) u is normal, that is, there exists an 
n

0x R  such that u( 0x ) = 1, 

(ii) u is fuzzy convex, 

(iii) u is upper semicontinuous, 

(iv) 0[u] = closure of {x ∈ nR  : 
A

(x) > 0} is compact. 

For 0 1   denote  n
A

[u] x R : (x)       is compact. Then from (i)-

(iv) it follows that the  -level set 
n

k[u] P ( ) for all0 1  . 
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let A and B be two nonempty bounded subsets of n . The distance 

between A and B is defined by the Housdorff metric: 

d
a A b B

H (A,B) max supd(a,B),supd(b,A)
 

 
  

 
 

where 

 d(b,A) inf d(b,a) :a A   

Its clear that n
k(P ( ),d)  is a complete metric space [Kisielewicz, 1991] 

Remarks (2.1) [Benchohra, 2008]: 

1. Suppose that the closure of  n
A

x : (x) 0   , which is denoted by A0 is 

compact since A0 is the smallest closed set containing  n
A

x : (x) 0  

. 

2. n
kA P ( ) forall 0 1.    

Now suppose if n n ng :    is a function, then according to 

the Zadeh’s extension principle [Zadeh, 1965] we can extend g to 

n n nE E E   by the equation: 

 BA
z g(x,y)

g(A,B)(z) sup min (x), (y)


    

where g is any relation between A  and B . 

Define n0: [0,1]  by: 

1, if t 0
0

0, otherwise


 


 

and let 
n nD: E E [0, )    be defined by: 
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d
0 1

D(A,B) sup H (A ,B ) 


  

Where d is the Housdorff metric define in n
kP ( )  

Then n(E ,D)  is a complete metric space [Fadhel, 1997]. 

Remark(2.1) [Kaleva, 1987]: 

1. nD(A Z,B Z) D(A,B) for A,B,Z E .     

2. 
nD( A, B) D(A,B) forall A,B E ,      . 

 

Now, the following definitions and theorems concerning integrability 

properties for the set-valued  mapping of a real variable whose values are in 

n(E ,D)  [Kaleva, 1987], [Puri, 1986]: 

 

Definition (2.1) [Park,1999]: 

Suppose T [c,d]   be compact interval, then a mapping 

nF:T E  is called levelwise continuous at t0  T if the set-valued 

mapping F (t) [F(t)]   is continuous at t  t0 with respect to the Housdorff 

metric d for all   [0, 1]. 

 

Definition (2.2) [Park, 1999]: 

Suppose that T [c,d]   be a compact interval, then a mapping 

nF:T E  is strongly measurable if for all   [0, 1], the set-valued 

mapping 
n

kF :T P ( )   defined by F (t) [F(t)]   is Lebesgue 

measurable functions. 

 

Definition (2.3) [Park, 1999]: 
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A mapping nF:T E  is called integrably bounded if there exists 

an integrable function h such that y h(t) , for all 0y F (t) , where 

T [c,d]   be a compact interval. 

 

Definition (2.4) [Park,1999]: 

Let nF:T E . The integral of F over T denoted by 

T

F(t)  or 

d

c

F(t),  is defined levelwise for all 0 <   1, by: 

d d

c c

n

T

F(t) F (t)dt

f (t)dt f : T is Lebesegue measurable selection for F







 
 

 
 

  
  
  

 



 

Theorem (2.1) [Park, 1999]: 

If 
nF:T E  is strongly measurable and integrably bounded, then 

F is integrable. 

Theorem (2.2) [Park, 1999]: 

If 
nF:T E  is levelwise continuous, then it is strongly 

measurable.  

Theorem (2.3) [Park, 1999]: 

If 
nF:T E  is levelwise continuous then it is integrable. 

Theorem (2.4) [Park, 1999]: 

Let 
nF:T E  be integrable and c  T, then : 
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0 0

0 0

t p t pc

0 0

t t c

F(t)dt F(t)dt F(t)dt , c [t , t p], p 0

 

      
 

Theorem (2.5) [Park, 1999]: 

Let nF,G :T E  be integrable, and  , then: 

(i)  
T T T

F(t) G(t) dt F(t)dt G(t)dt     . 

(ii) 

T T

F(t)dt F(t)dt    . 

(iii)  D(F,G) (t) is integrable. 

(iv)  
T T T

D F(t)dt, G(t)dt D F,G (t)dt
 

  
 
   . 

2.3 The Existence and Uniqueness Theorem [Benchohra, 2008]: 

In this subsection, the existence and uniqueness of the following 

equation: 

qy(t) f (t) I g(t,y(t)), t [0,T],   ............................................ (2.1) 

where nf :[0,T] E  and 
n ng :[0,T] E E  . Will be proved by 

assuming that the following assumptions are satisfied: 

Let L and T be positive numbers: 

(1) nf :[0,T] E  is continuous and bounded. 

(2) 
n ng :[0,T] E E   is continuous and satisfies the Lipschitz condition, 

i.e., 

2 1 2 1D(g(t,y (t)),g(t,y (t))) LD(y (t),y (t)), t [0,T],   
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where n
iy :[0,T] E , i 1,2.   

(3) 
ˆg(t,0)  is bounded on [0, T] 

 

Theorem (2.6):  

Let the assumptions (1) − (3) be satisfied. If: 

1/q
(q 1)

T
L

  
  
 

 

then eq.(2.1) has a unique solution y  on [0, T] and the successive iterations 

0

q
n 1 n

y (t) f (t) ,

y (t) f (t) I g(t, y (t)) , n 0,1,2, ...

 


   

............................... (2.2) 

are uniformly convergent to y  on [0,T].  

Proof: First we prove that ny  are bounded on [0,T]. We have 0y (t) f (t) is 

bounded, which comes from (1). Assume that n 1y (t)  is bounded. From (2) 

we have: 

q
n n 1

ˆ ˆD(y (t),0) D(f (t) I g(t,y (t)),0)   

 
q

n 1
ˆ ˆD(f (t),0) D(I g(t,y (t)),0)   

 

t
n 1

1 q
0

1 g(s,y (s))ˆ ˆD(f (t),0) D ,0 ds
(q) (t s)




 
   

  
  

 

t

n 1 1 q
0 t T 0

1 dsˆ ˆD(f (t),0) sup D(g(t, y (t)),0)
(q) (t s)

 
 

 
 

  

But 

n 1 n 1
ˆ ˆ ˆ ˆD(g(t,y (t)),0) D(g(t,y (t)),g(t,0)) D(g(t,0),0)    
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n 1
ˆ ˆ ˆLD(y (t),0) D(g(t,0),0)   

So 

q

n n 1
0 t T

Tˆ ˆ ˆ ˆ ˆD(y (t),0) D(f (t),0) sup [LD(y (t),0) D(g(t,0),0)]
(q 1)


 

  
 

 

q

n 1
0 t T 0 t T

Tˆ ˆ ˆ ˆD(f (t),0) sup D(y (t),0) sup D(g(t,0),0)
(q 1)


   

  
 

 

This proves that ny  is bounded n  . Therefore, { ny } is a sequence of 

bounded functions on [0, T].  

Second, we prove that ny  are continuous on [0, T]. For 0 t T   , 

we have: 

t
n 1 n 1

n n 1 q 1 q
0 0

1 g(s,y (s)) g(s,y (s))
D(y (t), y ( )) D(f (t),f ( )) D ds, ds

(q) (t s) ( s)


 
 

 
     

     
   

t t
n 1 n 1

1 q 1 q
0 0

n 1
1 q

t

1 g(s, y (s)) g(s, y (s))
D(f (t),f ( )) D ds, ds

(q) (t s) ( s)

1 g(s, y (s)) ˆD ds,0
(q) ( s)

 
 





 
    

     

 
 
    

 



 

t
n 1 n 1

1 q 1 q
0

n 1
1 q

t

1 g(s, y (s)) g(s, y (s))
D(f (t),f ( )) D , ds

(q) (t s) ( s)

1 g(s, y (s)) ˆD ,0 ds
(q) ( s)

 
 





 
    

    

 
 

   





 

t
q 1

n 1
0 t T 0

q 1
n 1 1 q

0 t T t

1 ˆD(f (t),f ( )) sup D(g(t, y (t),0) | (t s)
(q)

1 dsˆ( s) |ds sup D(g(t, y (t),0)
(q) ( s)




 




 
 

    


  
  




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q q q
n 1

0 t T

q
n 1

0 t T

1 ˆD(f (t),f ( )) [| t | | t |] sup D(g(t, y (t),0)
(q 1)

1 ˆ| t | sup D(g(t, y (t),0)
(q 1)


 


 

       
 

  
 

 

q q q

n 1
0 t T

1
D(f (t),f ( )) [2 | t | | t |]

(q 1)

ˆsup D(g(t, y (t),0)
 

       
 

 

q q q

n 1
0 t T

1
D(f (t),f ( )) [2 | t | | t |]

(q 1)

ˆ ˆ ˆsup [LD(g(t, y (t)),0) D(g(t,0),0)].
 

       
 



 

The last inequality, by symmetry, is valid for all t,  [0, T] 

regardless whether or not t  . Thus n nD(y (t),y ( )) 0 as t .    

Therefore, the sequence { ny } is continuous on [0,T]. 

For n  1, we have: 

t t
n n 1

n 1 n 1 q 1 q
0 0

t
n n 1
1 q 1 q

0

t

n n 1 1 q
0

0

1 g(s, y (s)) g(s, y (s))
D(y (t), y (t)) D ds, ds

(q) (t s) (t s)

1 g(s, y (s)) g(s, y (s))
D , ds

(q) (t s) (t s)

1 ds
D(g(s, y (s)),g(s, y (s)))

(q) (t s)

1
sup

(q)


  


 

 

 
  

    

 
  
   


 




 





t

n n 1 1 q
t T 0

ds
D(g(t, y (t)),g(t, y (t)))

(t s)
 

  


 

  

q

n n 1
0 t T

2
q

n 1 n 2
0 t T

LT
sup D(y (t), y (t))

(q 1)

LT
sup D(y (t), y (t))

(q 1)


 

 
 


 

 
     
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n
q

1 0
0 t T

LT
sup D(y (t), y (t))

(q 1)  

 
     

..................... (2.3) 

But: 

t

1 0 1 q
0

t

1 q
0

t

1 q
0 t T 0

1 g(s,f (s)) ˆD(y (t), y (t)) D ds,0
(q) (t s)

1 g(s,f (s)) ˆD ,0 ds
(q) (t s)

1 dsˆsup D(g(t,f (t)),0)
(q) (t s)






 

 
  

   

 
  
  


 







 

Thus: 

q

1 0
0 t T

LT
sup D(y (t), y (t)) [LM N] R

(q 1) 

  
 

 

where: 

0 t T 0 t T

ˆ ˆ ˆM sup D(f (t),0) and N sup D(g(t,0),0)
   

   

Therefore (2.3) will takes the form: 

n
q

n 1 n
LT

D(y (t), y (t)) R
(q 1)



 
     

 ............................................... (2.4) 

Next, we show that for each t  [0, T] the sequence { ny } is a Cauchy 

sequence in E
n
 

Let r, s be integers such that s > r and t  [0, T]. Then, by using (2.4), we 

have: 

s r s s 1 s 1 s 2 r 1 rD(y (t),y (t)) D(y (t),y (t)) D(y (t),y (t)) ... D(y (t),y (t))        
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s 1 s 2 r
q q qLT LT LT

R R ... R
(q 1) (q 1) (q 1)

 
     

                       

 

s 1 2q

q q

s r 1

q

LT (q 1) (q 1)
R 1 ...

(q 1) LT LT

(q 1)

LT



 

      
             

  
 

  

  

s r

s 1
q q

q

(q 1)
1

LT LTR
(q 1)(q 1)

1
LT




   
                

  

 

The right hand side of the last inequality tends to zero as r, s  . This 

implies that { ny (t)} is a Cauchy sequence. Consequently, the sequence  

{ ny (t)} is convergent, since the metric space (E
n
, D) is complete. 

If we denote n
n

y(t) lim y (t)


 . Then y(t)  satisfies (2.1), it is continuous and 

bounded on [0, T].  

To prove the uniqueness, let x(t)be any other continuous solution of (2.1) on 

[0, T]. Then: 

qx(t) f (t) I g(t,x(t)), t 0,    

Now, for n  1, we have: 
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q q
n n 1

t
n

1 q 1 q
0

t

n 1 q
0

t

n 1 q
0 t T 0

D(x(t), y (t)) D(I g(t,x(t)), I g(t, y (t)))

1 g(s,x(s)) g(s, y (s))
D , ds

(q) (t s) (t s)

1 ds
D(g(s,x(s)),g(s, y (s)))

(q) (t s)

1 ds
sup (g(t,x(t)),g(t, y (t)))

(q) (t s)

L



 




 



 
  
   


 


 









q

n
0 t T

n
q

0
0 t T

T
sup D(x(t), y (t))

(q 1)

LT
sup D(x(t), y (t))

(q 1)

 

 

 

 
     

 

since 
qLT

1
(q 1)


 

 

n
n
lim y (t) x(t) y(t), t [0,T]


  

 
This complete the proof. 
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CHAPTER THREE 

Adomian Decomposition Method for Solving Fuzzy Integral 

Equations of Fractional Order 

 

3.1 Introduction: 

In this chapter, we present the application of Adomian Decomposition 

method (ADM) for solving Fuzzy integral equations of fractional order 

3.2 Historical Background of the Adomian Decomposition 

Method: 

Most phenomena’s that arise in real world problems are describe by 

nonlinear differential and integral equations. However, most of the methods 

developed in mathematics are usually used in solving linear differential and 

integral equations. 

In recent years, the decomposition method has emerged as an 

alternative method for solving a wide range of problems whose mathematical 

models involve algebraic, differential, integral, integro–differential.  

The convergence of this method has investigated by Cherruault and 

cooperators. In [Cherruault, 1989], Cherruault proposed a new definition of 

the method and then he insisted that it will become possible to prove the 

convergence of the decomposition method. In [Cherruault, 1993], Cherruault 

and Adomian proposed a new convergence proof of Adomian method based 

on properties of convergence series.  

In this method, the solution is considered as the sum of an infinite 

series, rapidly converging to an accurate solution. In [Abbaoui, 2001], 

Abbaoui et al. proposed a new approach of decomposition which is obtained 

in a more natural way in the classical representation. Lesnic [Lesnic, 2002] 

investigated convergence of Adomian's method to periodic temperature fields 
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in heat conductors. The advantage of this method is that it provides a direct 

scheme for solving the problem without any need for linearization or 

discritization. Essentially, the method provides a systematic computational 

procedure for equations of physical significance.  

El–Sayed and Kaya proposed Adomian Decomposition method 

(ADM) to approximate the numerical and analytical solution of system of 

two–dimensional Burger’s equations with initial conditions in [El–Sayed, 

2004], and the advantages of this work is that the decomposition method 

reduces the computational work and improves with regards to its accuracy 

and rapid convergence. The nonlinear solution of one–dimensional nonlinear 

Burgers equation and convergence of decomposition method is proved as 

[Inc, 2005], in [Celik and et al., 2006] applied Adomian Decomposition 

method (ADM) to obtain the approximate solution for the differential 

algebraic equations system and the results obtained by this method indicate a 

high degree of accuracy through the comparison with the analytic solutions. 

In [Hosseini, 2006 a], [Hosseini, 2006 b] standard and modified Adomian 

Decomposition method are applied to solve non–linear differential algebraic 

equations. While, the error analysis of Adomian series solution to a class of 

nonlinear differential equation, where as numerical experiments show that 

Adomian solution using this formula converges faster is discussed in [El–

Kala, 2007]. Also, a new discrete Adomian Decomposition method (ADM) to 

approximate the  theoretical solution of discrete nonlinear Schrodinger 

equations is presented in [Bratsos, 2008], where this examined for plane 

waves and single solution waves in case of continuous, semi discrete and fully 

discrete Schrodinger equations. Momani, [Momani, 2008] presented 

numerical study of system of fractional differential equations by Adomian 

Decomposition method. 
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3.3 The Adomian Decomposition Method [   ]: 

To introduce the basic idea of the ADM, we consider the operator 

equation Fu = G, where F represents a general nonlinear ordinary differential 

operator and G is a given function. The linear part of F can be decomposed as: 

Lu Ru Nu G    ...................................................................... (3.1) 

where, N is a nonlinear operator, L is the highest–order derivative which is 

assumed to be invertible, R is a linear differential operator of order less than L 

and G is the nonhomogeneous term. 

The method is based by applying the operator L
1 formally to the 

expression 

Lu = G – Ru  Nu ...................................................................... (3.2) 

so by using the given conditions, we obtain: 

1 1 1

u h L G L Ru L Nu
  

     .................................................... (3.3) 

where, h is the solution of the homogeneous equation Lu  0, with the initial–

boundary conditions. The problem now is the decomposition of the nonlinear 

term Nu. To do this, Adomian developed a very elegant technique as follows: 

The Adomian technique consists of approximating the solution of (3.1) as an 

infinite series: 

n
n 0

u u




 
 

and decomposing the nonlinear term Nu as n
n 0

f (u) Nu A




    where An are 

the so called Adomian polynomials of 0 1 nu ,u ,...,u  that are the terms of the 

analytical expansion of Nu, where 
i

i
i 0

u u




   , around   0. That is: 
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n
i

n in
i 0 0

1 d
A f u

n! d



 

  
   

    
  ................................................... (3.4) 

The Adomian polynomials are not unique and can be generated from the 

Taylor expansion of f(u) about the first component u0, i.e., 

 
(n)

n0
0

n 0

f (u )
f (u) u u

n!





   

In [Adomian, 1995], Adomian’s polynomials are arranged to have the form: 

0 0

1 1 0

2
1

2 2 0 0

3
1

3 3 0 1 2 0 0

A f (u )

A u f (u )

u
A u f (u ) f (u )

2

u
A u f (u ) u u f (u ) f (u )

3!


 


 




   



     



 ................................... (3.5) 

Now, we parameterize eq.(3.3) in the form: 

1 1 1

u h L G L Ru L Nu
  

     ................................................ (3.6) 

where,  is just an identifier for collecting terms in a suitable way such that un 

depends on 0 1 nu ,u ,...,u  and we will later set   1. 

1 1 1n n n
n n n

n 0 n 0 n 0

u h L G L R u L A
    

  

          ................ (3.7) 

Equating the coefficients of equal powers of , we obtain: 
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1

1 1

1 1

0

1 0 0

2 1 1

u h L G

u L (Ru ) L (A )

u L (Ru ) L (A )



 

 

 

  

  



 ........................................................ (3.8) 

and in general 

1 1

n n 1 n 1u L (Ru ) L (A ), n 1,2,3,...
 

      

Finally, an N–term that approximates the solution is given by: 

N 1

N n
n 0

(x) u (x), N 1,2,3,...




    

and the exact solution is N
N

u(x) lim .


   

 

3.4 The Application of ADM for Solving Fuzzy Integral Equations 

of Fractional Order: 

In this section ADM will be applied to find the solution of the fuzzy 

integral equation of fractional order and to do this, first we shall consider the 

linear case, i.e., the fuzzy integral equation of fractional order of the form: 

qy(t) f (t) J y(t), t [0,T]   , nf :[0,T] E  

or equivalently: 

t
q 1

0

1
y(t) f (t) (t s) y(s)ds

(q)

  
  ............................................. (3.9) 

where 0 q 1  , f (t)  is assumed to be fuzzy function which may be 

represented as f [f ,f ],  and therefore the solution of equation (3.9) will be a 
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fuzzy solution which may be given by the form y [y,y]  where y  represent 

the solution of the equation: 

t
q 1

0

1
y(t) f (t) (t s) y(s)ds

(q)

  
   ...........................................(3.10)  

while y  is the solution of the following equation: 

t
q 1

0

1
y(t) f (t) (t s) y(s)ds

(q)

  
   ...........................................(3.11) 

which are called the lower and upper solutions of eq.(3.9), respectively. 

Adomian’s method defines the solution y(t)  by the series: 

n
n 0

y(t) y (t)




   ........................................................................(3.12) 

Hence from (3.10) we obtain that: 

0

t
q q 1

1 0 0
0

t
q q 1

n n 1 n 1
0

y (t) f (t),

1
y (t) J y (t) (t s) y (s)ds,

(q)

1
y (t) J y (t) (t s) y (s)ds

(q)




 



  


  






 

where the components will be determined recursively. 

Similarly, Adomian’s method defines the upper solution y(t)  by the 

series: 

n
n 0

y(t) y (t)




   .........................................................................(3.13) 
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Thus from (3.11), we obtain that: 

0

t
q q 1

1 0 0

0

t
q q 1

n n 1 n 1

0

y (t) f ,

1
y (t) J y (t) (t s) y (s)ds

(q)

1
y (t) J y (t) (t s) y (s)ds

(q)




 



  


  






 

Also, the components will be determined, recursively. 

Second the (ADM) may be used to solve the nonlinear fuzzy integral 

equation of fractional order of the form: 

 t
n

1 q
0

N y(s)1
y(t) f (t) ds, t [0,T], f :[0,T] E

(q) (t s) 
   

 
 ........(3.14) 

which may be considered as a special case of eq.(2.1), where 0 q 1  , f (t)  is 

assumed to be fuzzy function and then the solution y(t)  will be a fuzzy 

solution given by the form y [y,y] , where y  represent the solution of the 

equation: 

 t

1 q
0

N y(s)1
y(t) f ds

(q) (t s) 
 

 
 ......................................................(3.15) 

While y  will be the solution of the equation: 

 t

1 q
0

N y(s)1
y(t) f ds

(q) (t s) 
 

 
 ......................................................(3.16) 

The nonlinear terms  N y(s)  and  N y(s)  are Lipschitzian with: 

1 2 1 2
| N(y ) N(y ) | L | y y |    
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and  

1 2 1 2| N(y ) N(y ) | L | y y |    

and may be decomposed in the form: 

n
n 0

N(y) A (t)




   ......................................................................(3.17) 

n

n 0

N(y) A (t)




   ......................................................................(3.18) 

where nA  and nA  are the Adomian polynomials given by: 

n
i

n in
i 0 0

1 d
A N y

n! d



 

  
   

    
  ................................................(3.19) 

and 

n
i

n in
i 0 0

1 d
A N y

n! d



 

  
   

    
  ................................................(3.20) 

Then  N y(t)  and  N y(t)  will be a functions of 0 10 1
, y ,y ,..., y ,y ,...  

respectively. 

Now substituting (3.17) and (3.18) into (3.15) and (3.16), yields to: 

t
q 1

n
n 00

1
y(t) f (t) (t s) A (s) ds

(q)






 
    

   
  ..............................(3.21) 

and 

t
q 1

n

n 00

1
y(t) f (t) (t s) A (s) ds

(q)






 
    

   
  ..............................(3.22) 

The components 
0 1

y ,y ,...  and 0 1y ,y ,...
 
are determined recursively by: 
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0

q
k ,k 0,1,2,...k 1

y f ,

y J A 

 



 

 ..........................................................(3.23) 

Hence the Adomian’s method defines the lower solution y  by the series  

i
i 0

y y




  ..................................................................................(3.24) 

And for the upper case, we have  

0

q
k ,k 0,1,2,...k 1

y f ,

y J A 

 


 

 ..........................................................(3.25) 

By the same manner the Adomian’s method defines the upper solution 

y  by 

i
i 0

y y




  ..................................................................................(3.26) 

 

3.4.1 Modification of Adomian's Polynomials [El-Kala, 2007]: 

Here, we will use the modified version proposed by El-Kala, [El-Kala, 

2007] in order to improve the approximate solution given by the Adomian’s 

method where the Adomian polynomials are given by: 

 

 

*
0 0

2 3
* (1) (2) (3)1 1

1 1 0 0 0

* (1) 2 (2)
2 2 0 2 1 2 0

2 2 2 (3)
1 1 2 3 0

A N(y )

y y
A y N (y ) N (y ) N (y ) ...

2! 3!

1
A y N (y ) y 2y y N (y )

2!

1
3y 3y y y N (y ) ...

3!



   

   

  
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 

 

* (1) 2 (2)
3 3 0 3 1 3 2 3 0

3 2 2 (3)
3 3 1 2 3 1 2 0

1
A y N (y ) y 3y y 2y y N (y )

2!

1
y 3y (y y ) 3y (y y ) N (y ) ...

3!

    

    

 

Define the partial sum 
n

n i
i 0

S y


 , from the modified polynomials, then one 

can write:  

*
0 0 0

2 3
* * (1) (2) (3)1 1

0 1 0 1 0 0 0

0 1

1

A N(y ) N(s )

y y
A A N(y ) y N (y ) N (y ) N (y ) ...

2! 3!

N(y y )

N(s )

 

     

 



 

Similarly: 

* * *
0 1 2 0 1 2

2

A A A N(y y y )

N(s )

    


 

And by induction the following sum is obtained: 

n
*

i 0 1 i n
i 0

A (y ,y ,..., y ) N(s )


  

Therefore, in general: 

n 1
* *

n n i
i 0

A N(s ) A




   ...............................................................(3.27) 

Hence one can define the lower Adomian polynomials by the following form: 
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 

 

 

 

*
0 0

2 3
* (1) (2) (3)1 1

1 1 0 0 0

* 2(1) (2)
2 2 0 2 1 2 0

2 2 2 (3)

1 1 2 3 0

* 2(1) (2)
3 3 0 3 1 3 2 3 0

3 2 2 (3)

3 3 1 2 3 1 2 0

A N(y )

y y
A y N (y ) N (y ) N (y ) ...

2! 3!

1
A y N (y ) y 2y y N (y )

2!

1
3y 3y y y N (y ) ...

3!

1
A y N (y ) y 3y y 2y y N (y )

2!

1
y 3y (y y ) 3y (y y ) N (y

3!



   

   

  

    

    ) ...

 

and define the lower partial sum 
n

n i
i 0

S y


  from the lower polynomials, then 

one can write: 

*
0 00

2 3
* * (1) (2) (3)1 1

0 1 0 1 0 0 0

0 1

1

A N(y ) N(s )

y y
A A N(y ) y N (y ) N (y ) N (y ) ...

2! 3!

N(y y )

N(s )

 

     

 



 

By the same process  

* * *
0 1 2 0 1 2

2

A A A N(y y y )

N(s )

    


 

and by induction, the following sum is obtained: 

n
*

i n0 1 i
i 0

A (y ,y ,..., y ) N(s )




 

Therefore, in general: 
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n 1
* *

n in
i 0

A N(s ) A




   ...............................................................(3.28) 

Hence the approximate solutions of equations (3.15) using the modified 

Adomian’s polynomials are given by: 

0

*q
kk 1

y f ,

y J A , k 0,1,2,...


 



  

 ......................................................(3.29) 

Thus the Adomian’s method defines the lower solution y  by the series 

i
i 0

y y




  ..................................................................................(3.30) 

and similarly for the upper case, the solution y  will be given by the series: 

i
i 0

y y




  ..................................................................................(3.31) 

 

3.4.2 Convergence Analysis: 

In chapter two, we prove the existence and uniqueness theorem of 

fuzzy integral equations of fractional order. Now in this section, the 

convergence of the series solutions (3.30) and (3.31) of equations (3.15) and 

(3.16) are also proved. 

Theorem(3.1): 

The series solutions (3.30) and (3.31) of equations (3.15) and (3.16) 

respectively using ADM converges whenever 0 < k < 1, where k 

qLT

(q 1) 
. 
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Proof: Let ns  and ms  be an arbitrary partial sums with n  m, and to prove 

that { ns } is a Cauchy sequence in the Banach space B  (C[I],|| . ||) of all 

continuous functions of I. Therefore: 

|| ns   ms ||  
t I

max


| ns   ms | 

 
t I

max


n

i
i m 1

y (t)
 

  

 
t I

max


n
*q
i 1

i m 1

J A (t)
 

  

 
t I

max


tn
*q 1
i 1

i m 1 0

1
(t s) A (s) ds

(q)




 

 
   

   

 
t I

max


t n
*q 1
i 1

i m 10

1
(t s) A (s) ds

(q)




 





 

 
t I

max


t n 1
*q 1
i

i m0

1
(t s) A (s) ds

(q)









  

but we have: 

n 1
*
i

i m

A




   N( n 1s  )  N( m 1s  ) 

Then: 

|| ns   ms ||  
t I

max


 
t

q 1
n 1 m 1

0

1
(t s) N(s ) N(s ) ds

(q)


  


  

 
t I

max


t
q 1

n 1 m 1

0

1
N(s ) N(s ) (t s) ds

(q)


  


  
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|| ns   ms ||  
qLT

(q 1)  t I
max


n 1 m 1s s   

 
qLT

(q 1) 
|| n 1 m 1s s  || 

Hence: 

|| ns   ms ||  k|| n 1 m 1s s  ||, where k=
qLT

(q 1) 
 

Let n  m + 1, then: 

|| m 1 ms s  ||  k|| m m 1s s  || 

  k
2
|| m 1 m 2s s  || 

          

  k
m
|| 1 0s s || 

and from the triangle inequality: 

|| ns   ms ||  || m 1 ms s  || + || m 2 m 1s s  || + … + || n n 1s s  || 

 (k
m
 + k

m+1
 + … + k

n1
)|| 1 0s s || 

 
mk

1 k
||

1
y || , k 1  

and then: 

|| ns   ms ||  

mk

1 k t I
max


|
1

y | 

But |
1

y | <  , so as m  , then || ns   ms ||  0 
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So { ns } is a Cauchy sequence in B, and therefore the series 
i

i 0

y (t)




  

converges. 

Similarly as we do in the lower case, we get i
i 0

y (t)




 converges and this 

complete the proof of the theorem. 

 

Numerical Examples: 

Example (3.1): 

Consider the linear fuzzy integral equation of fractional order 

qy(t) f (t) J y(t), t [0,1]    

where q will be chosen to be 
1

q
2

 . 

In this case the fuzzy function f  will be given as f [f ,f ] , 

3 5 7

2 2 2
2t

3 5 7

2 2 2
2t

2 t 8t 32t 128t
where f e , and

3 15 105

1 2 t 8t 32t 128t
f e , 0 1

3 15 105

 
 

      
    

 

 
 

        
     
 

 

According to the Adomian decomposition method the fuzzy solution will be 

given as y [y,y]
 
where 

i
i 0

y y




  and

 
i

i 0

y y




 , the components
 i
y  and iy ,

i 0,1,2,... ; will be determined as follows: 
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3 5 7

2 2 2
2t

0

1

2
1 0

1

2
2 1

2 t 8t 32t 128t
y e

3 15 105

y J y

y J y

 
 

      
    

 
 





 

Similarly: 

3 5 7

2 2 2
2t

0

1

2
1 0

1

2
2 1

1 2 t 8t 32t 128t
y e

3 15 105

y J y

y J y

 
 

     
     
 
 





 

Following up to 10 terms tables (3.1) and (3.2) represent the lower and 

upper solution of example (3.1) for different values of  with a comparison 

with the exact solution at   1 which is y(t)  e
2t

. 
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Table (3.1) 

Lower solution when q  0.5. 

xi
 

 
Exact solution 

  1 0.25 0.5 0.75 1 

0.1 3.054021345x10
–1

 6.10804269x10
–1

 9.162064034x10
–1

 1.221608538 1.221402758 

0.2 3.734213668x10
–1

 7.468427336x10
–1

 1.1202641 1.493685467 1.491824698 

0.3 4.572815298x10
–1

 9.145630595x10
–1

 1.371844589 1.829126119 1.8221188 

0.4 5.609855689x10
–1

 1.121971138 1.682956707 2.243942276 2.225540928 

0.5 6.894725418x10
–1

 1.378945084 2.068417625 2.757890167 2.718281828 

0.6 8.488043331x10
–1

 1.697608666 2.546412999 3.395217332 3.320116923 

0.7 1.046387845 2.092775691 3.139163536 4.185551382 4.055199967 

0.8 1.291240538 2.582481077 3.873721615 5.164962154 4.953032424 

0.9 1.594309066 3.188618132 4.782927197 6.377236263 6.049647464 

1 1.968852934 3.937705867 5.906558801 7.875411735 7.389056099 

 

Table (3.2) 

Upper solution when q  0.5. 

xi
 

 
Exact solution 

  1 0.25 0.5 0.75 1 

0.1 4.886434152 2.443217076 1.628811384 1.221608538 1.221402758 

0.2 5.974741869 2.987370935 1.991580623 1.493685467 1.491824698 

0.3 7.316504476 3.658252238 2.438834825 1.829126119 1.8221188 

0.4 8.975769103 4.487884551 2.991923034 2.243942276 2.225540928 

0.5 10.103156067 5.515780334 3.67718689 2.757890167 2.718281828 

0.6 10.358086933 6.790434665 4.526956443 3.395217332 3.320116923 

0.7 10.674220553 8.371102763 5.580735175 4.185551382 4.055199967 

0.8 20.065984861 10.032992431 6.886616205 5.164962154 4.953032424 

0.9 20.550894505 10.275447253 8.502981684 6.3772362 6.049647464 

1 30.150164694 10.575082347 10.050054898 7.875411735 7.389056099 
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Example(3.2) 

Consider the nonlinear fuzzy integral equation of fractional order 

q 2y(t) f (t) J y (t), t [0,1]    

where q will be chosen to be 
1

q
2

   

In this case the fuzzy function f  will be given as f [f ,f ] , 

5 5

2 2
2 1 2

where f t t and f t t , 0 1
7 7

2 2

   
   
         

             
      

 

According to the Adomian decomposition method the fuzzy solution will be 

given as y [y,y] where 
i

i 0

y y




  and i
i 0

y y




 , the components 
i

y  and iy ,

i 0,1,2,... ; will be determined as follows: 

 

5

2
0

1 1
22 2

01 0

1 1

2 2
12 0 1

21 n
i2

n n nn 1 i
i 0

0

2
y t t

7

2

y J A J y

y J A J 2y y

1 d
y J A , where A y

n! d








 
 
   

    
  

 

 

  
         



 

 

Similarly: 
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 

5

2
0

1 1
2

2 201 0

1 1

2 212 0 1

21 n
i2 n nn 1 in

i 0
0

1 2
y t t

7

2

y J A J y

y J A J 2y y

1 d
y J A , where A y

n! d








 
 
  

     
  

 

 

  
         



 

Following up to 4 terms tables (3.3) and (3.4) represent the lower and 

upper solution of example (3.2) for different values of  with a comparison 

with the exact solution at   1, which is y(t)  t. 

Table (3.3) 

Lower solution when q  0.5. 

xi
 


 Exact 

solution 

  1
 0.3 0.5 0.75 1 

0.1 3.290609477 x10
–2

 4.951687563x10
–2

 7.463482429x10
–2

 9.999999736x10
–2

 1x10
–1

 

0.2 6.420461733 x10
–2

 9.718898904x10
–2

 1.478432665x10
–1

 1.999991143x10
–1

 2x10
–1

 

0.3 9.305225394 x10
–2

 1.41964901x10
–1

 2.187035494x10
–1

 2.999748624x10
–1

 3x10
–1

 

0.4 1.186704145 x10
–1

 1.827722216x10
–1

 2.86110187x10
–1

 3.997433391x10
–1

 4x10
–1

 

0.5 1.402526862 x10
–1

 2.183818232x10
–1

 3.485263377x10
–1

 4.985156975x10
–1

 5x10
–1

 

0.6 1.569404931 x10
–1

 2.473459868x10
–1

 4.037151632x10
–1

 5.940494904x10
–1

 6x10
–1

 

0.7 1.678266973 x10
–1

 2.679807144x10
–1

 4.484926796x10
–1

 6.815862216x10
–1

 7x10
–1

 

0.8 1.719837748 x10
–1

 2.784119675x10
–1

 4.786547735x10
–1

 7.5311518x10
–1

 8x10
–1

 

0.9 1.685175568 x10
–1

 2.767103273x10
–1

 4.892599032x10
–1

 7.976668968x10
–1

 9x10
–1

 

1 1.566448654 x10
–1

 2.611222517x10
–1

 4.753729427x10
–1

 8.031211895x10
–1

 1 
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Table (3.4) 

Upper solution when q  0.5. 

xi
 

 
Exact solution 

  1
 

0.3 0.5 0.75 1 

0.1 3.125775193 x10
–1

 2.040544356 x10
–1

 1.342150497 x10
–1

 9.999999736 x10
–2

 1 x10
–1

 

0.2 6.868570097 x10
–1

 4.259793554 x10
–1

 2.720643419 x10
–1

 1.999991143 x10
–1

 2 x10
–1

 

0.3 1.217055368 6.849675977 x10
–1

 4.16482437 x10
–1

 2.999748624 x10
–1

 3 x10
–1

 

0.4 2.097941817 1.012756279 x10
–1

 5.710338932 x10
–1

 3.997433391 x10
–1

 4 x10
–1

 

0.5 3.642617476 1.452614991 7.382356157 x10
–1

 4.985156975 x10
–1

 5 x10
–1

 

0.6 6.205096295 2.041114972 9.142527416 x10
–1

 5.940494904 x10
–1

 6 x10
–1

 

0.7 9.996695805 2.759492178 1.078570097 6.815862216 x10
–1

 7 x10
–1

 

0.8 14.86658717 3.418282368 1.176708413 7.5311518 x10
–1

 8 x10
–1

 

0.9 20.17714369 3.359297548 1.089798861 7.976668968 x10
–1

 9 x10
–1

 

1 24.89370642 6.648447026 x10
–1

 5.718377498 x10
–1

 8.031211895 x10
–1

 1 

And if we apply the modified Adomian's method for this case, thus we 

have  

 

 

5

2
0

1 1
2*2 2

01 0

1 1
2*2 2

12 1 0 1

1 1
2*2 2

23 2 0 2 1 2

2
y t t

7

2

y J A J y

y J A J y +2y y

y J A J y +2y y 2y y

 
 
   

    
  

 

 

  

 

Similarly: 
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 

 

5

2
0

1 1
* 2

2 201 0

1 1
* 2

2 212 1 0 1

1 1
* 2

2 223 2 0 2 1 2

1 2
y t t

7

2

y J A J y

y J A J y +2y y

y J A J y +2y y +2y y

 
 
  

     
  

 

 

 

 

Following up to 4 terms tables (3.5) and (3.6) represent the modified 

lower and upper solution of example (3.2) respectively for different values of 

 with a comparison with the exact solution at   1 which is  

y(t)  t. 

 

Table (3.5)  

Modified lower solution when q  0.5. 

xi
 

 
Exact solution 

  1
 

0.3 0.5 5 1 

0.1 2.959667348 x10
–2

 4.951687566x10
–2

 7.463482463x10
–2

 9.999999924x10
–2

 1x10
–1

 

0.2 5.768014891 x10
–2

 9.718899864x10
–2

 1.478433776x10
–1

 1.999997311x10
–1

 2x10
–1

 

0.3 8.346979683 x10
–2

 1.419651679x10
–1

 2.18706661 x10
–1

 2.999918369x10
–1

 3x10
–1

 

0.4 1.062594473 x10
–1

 1.827749277x10
–1

 2.861416736x10
–1

 3.99909685x10
–1

 4x10
–1

 

0.5 1.253326666 x10
–1

 2.183978493x10
–1

 3.487087583x10
–1

 4.994274128x10
–1

 5x10
–1

 

0.6 1.39942898 x10
–1

 2.474153424x10
–1

 4.04463405x10
–1

 5.974569848x10
–1

 6x10
–1

 

0.7 1.493209879 x10
–1

 2.682305126x10
–1

 4.50946509x10
–1

 6.911999598x10
–1

 7x10
–1

 

0.8 1.52709941 x10
–1

 2.792211776x10
–1

 4.856312503x10
–1

 7.747426955x10
–1

 8x10
–1

 

0.9 1.494361204 x10
–1

 2.79160551x10
–1

 5.07465012x10
–1

 8.374869749x10
–1

 9x10
–1

 

1 1.390322156 x10
–1

 2.68136558x10
–1

 5.206116656x10
–1

 8.632416353ex10
–1

 1 
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Table (3.6) 

Modified upper solution when q  0.5. 

xi
 

 
Exact solution 

  1
 

0.3 0.5 0.75 1 

0.1 3.125697069 x10
–1

 2.040545586x10
–1

 1.342150631x10
–1

 9.999999924x10
–2

 1x10
–1

 

0.2 6.860596158x10
–1

 4.260215159x10
–1

 2.720688962x10
–1

 1.999997311x10
–1

 2x10
–1

 

0.3 1.207217828 6.861995885x10
–1

 4.166138901x10
–1

 2.999918369x10
–1

 3x10
–1

 

0.4 2.050911 1.02580653 5.724015623x10
–1

 3.99909685x10
–1

 4x10
–1

 

0.5 3.523931905 1.531592323 7.463022874x10
–1

 4.994274128x10
–1

 5x10
–1

 

0.6 6.048066118 2.376020454 9.472305179x10
–1

 5.974569848x10
–1

 6x10
–1

 

0.7 9.940316271 3.871499805 1.182533354 6.911999598x10
–1

 7x10
–1

 

0.8 14.70141535 6.517031707 1.44600423 7.747426955x10
–1

 8x10
–1

 

0.9 17.30000609 10.096973075 1.687379805 8.374869749x10
–1

 9x10
–1

 

1 8.621431358 10.778413579 1.744288777 8.632416353x10
–1

 1 
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Conclusions and Recommendations 

From the present study, one can conclude the following: 

1. Exact solution of fuzzy integral equation of fractional order may be in 

sometimes so difficult to be evaluated, especially in nonlinear case. 

2. The Adomian decomposition method gave us an acceptable solution to the 

fuzzy integral equation of fractional order although we are take a 

summation of 10 terms in the linear case and 4 terms for the nonlinear 

case. 

Also, we may recommend the following problems for future work: 

1. Using other approximate methods for solving fuzzy integral equations of 

fractional order such as the homotopy analysis method, the homotopy 

perturbation method, the variational iteration method and the differential 

transform method. 

2. Studying the approximate solution of fuzzy fredholm-voltera integral 

equations of fractional order. 

3. Studying the existence and uniqueness of fuzzy stochastic integral 

equations of fractional order. 
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 الخلاصه

 

اليدف الرئيسي ليذه الرسالو يدور حول ايجاد الحمول التقريبيو لممعادلات التكامميو الضبابيو 
 ذات الرتب الكسريو وكالتالي:

     اولًا دراسة المفاىيم الاساسيو لممواضيع الرئيسيو المتعمقو بعمل ىذه الرسالو والمذين ىما 
 الحسبان الكسوري ونظرية المجموعات الضبابيو.    

 ثانيا دراسة وجود و وحدانية الحل لممعادلات التكامميو الضبابيو ذات الرتب الكسريو.

     ثالثا ايجاد الحمول التقريبيو لممعادلات التكامميو الضبابيو ذات الرتب الكسريو باستخدام 
 طريقة أدومين لمتجزئو.      
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