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     Stochastic and random integral equations are of great importance that 

may be used in modeling certain type of problems that contains random 

process and noise. Therefore, the main objectives of this thesis may be 

oriented as follows: 

        The first objective is to study the theoretical side of stochastic calculus 

and stochastic processes, which include the basic definitions and 

fundamental concepts related to this topic, such as stochastic processes, 

stochastic differentiation and stochastic integration the existence and 

uniqueness theorem. 

        The second objective is to compare between stochastic differential and 

integral equations and then provides analytical methods to evaluate the 

stochastic integrals. 

        The third objective, which is the main goal, that includes numerical 

and approximate methods for solving stochastic integral equations in both 

cases, linear and nonlinear, with some illustrative examples for each case. 
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 The sample space. 

A  -Algebra of subsets of a sample space . 

(,A ) Probability measurable space. 

X() Random variables. 

{Xn()} Sequence of random variables. 

P Probability measure of A . 

w.p.1, p-w.p.1 P converges with probability one. 

Ac The complement of a set A in A . 

{An} Sequence of events such that {An}  A . 

 The element of the sample space . 

E( 2
nX ) < Converge in the mean square. 

X(t,w), Xt(w) Stochastic process. 

(,A ,P) The probability sample space. 

t The parameter of time. 

A t Filtrartion, which is an increasing family of -algebra fields. 

Wt Brownian motion or Weiner process on time t. 

t The white noise process 

E(|Xt|
2) < Strictly stationary. 
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SDE Stochastic Differential Equation. 

SIE Stochastic Integral Equation. 

B The -algebra of Borel subset of m . 

(n)
i  The mid point of the interval [

(n)
it ,

(n)
i 1t  ]. 

L All expectation functions, such that 
t

2
s

0

E X ds
 

  
 
 . 

2L [ , ]    
The set of all square integrable non-anticipating 
functions. 

n Sequence of partitions, n .  

a.s. Almost sure convergence. 

SODE Stochastic Ordinary Differential Equation. 

Cg[
 ,L2(,A ,P)] The subspace of all mappings X(t,w) o X(t,w). 

B Banach space. 

(B,D) Admissible with respect to the operator. 

 

 

BBaassiicc  NNoottaattiioonnss  aanndd  AAbbbbrreevviiaattiioonnss 



ix 
 

 

 

 

Introduction ………………………………………………………….. xi 

Chapter One: Fundamental Concepts 

1.1 Introduction  ……………………………..………………..….. 1 

1.2 Basic Concepts of Stochastic Calculus  ……...…………….... 1 

 1.2.1 Stochastic Process  …………………..……………...…… 2 

1.3 Stochastic Differentiation and Integration ……………..…... 5 

1.4 Stochastic Differential and Integral Equations  ………..…... 9 

1.5 The Existence and Uniqueness Theorem ……………………   11 

Chapter Two: Approximate Methods for Solving Integral 
Equations and Approximation of Stochastic Integrals 

2.1 Introduction  ……………………………………………….…. 13 

2.2 Approximate Methods for Solving Integral Equations  …… 13 

 2.2.1 The Collocation Method  ………………………………... 13 

 2.2.2 Approximation of the Integral  ……...…………………… 15 

 2.2.3 Other Numerical and Approximate Methods  …………… 16 

2.3 Certain Types of Stochastic Integrals  ………….................... 16 

 2.3.1 The Simples of  Stochastic Integrals  ……………………. 17 

 2.3.2 More Complicated  Stochastic Integrals  ………..………. 19 

2.4 Other Types of Stochastic Integrals  …………………..……. 22 

 

 

CCoonntteennttss 



x 
 

 

 

Chapter Three: Approximate and Numerical Solutions 

of Stochastic Integral Equations 

3.1 Introduction  ……………………………..………………..….. 24 

3.2 Solution of Special Types of Linear Stochastic Integral 

Equations ……...…………………………………………….... 

 

24 

 3.2.1 The Collocation Method for Solving Linear Stochastic  

          Integral Equations  …….…….………..………………… 

 

25 

 3.2.2 Approximation of Integrals Method for Solving Linear  

          Stochastic Integral Equations  ……...…………………… 30 

3.3 The General Form of Stochastic Linear and Nonlinear 

Stochastic Integral Equations …….……….………….……... 

 

34 

3.4 Second Kind Volterra Stochastic Integral Equations ..….… 39 

Conclusions and Future Work …………………………...…………. 46 

References  ………………………….……………….……………….. 47 

Appendix Computer Programs .……………………………….. A-1 

 

CCoonntteennttss  



xi 
 

 

 

         In recent years, stochastic process and stochastic calculus have been 

applied to a wide range of scientific disciplines, such as physics, 

engineering and finance. Stochastic calculus concerns with a specific class 

of stochastic process that are stochastically integrable and are often 

expressed as a solution to the stochastic differential equations, [Lin,  2006].            

         They are typically describing the time dynamics of the evolution of a 

state vector, based on the (approximate) physics of the real system,  

together with a driving noise process. It is often represents processes not 

included in the model, but represented in the real system, the aim of these 

notes is to introduce the theory of random or stochastic integral equations 

of the Volterra Fredholm types and to apply the results to certain general 

problems in system theory. We hope to convey the manner in which such 

equations arise and to develop some general theory using tools of the 

methods of probability theory, functional analysis and topology, 

[Archambeau, 2007]. 

         Due to the nondeterministic nature of phenomenon in the general 

areas of the engineering, biological, oceanographic and physical sciences, 

the mathematical descriptions of such phenomena frequently result in 

random or stochastic equations. These equations arise in various ways and 

in order to understand better the importance of developing the theory of 

such equations and its application, it is of interest to consider how such 

theory arise. Sometime, the mathematical models or equations that describe 

physical phenomena of the parameters or coefficients, which are specific 

physical interpretations, but those values are unknown, [Adomian, 1970]. 

         As an example, we have the volume-scattering coefficient under 

water acoustics, the coefficient of viscosity in fluid mechanics, the  
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coefficient of diffusion in the theory of elasticity. Many times, this 

unknown value is regarded as the true state of nature and is estimated by 

using the mean value of a set of observations obtained experimentally. The 

equation must be solved as a random equation, and its random solution 

must be obtained. Once such a solution is obtained then its statistical 

properties should be studied, [Ahmed, 1969]. 

         There are many other ways in which random stochastic equations 

arise, stochastic differential equations appear in the study of diffusion 

process and Brownian motion which is studied by [Gikhman and 

Skorokhod, 1969]. The classical Itô random integral equations [Itô, 1946]   

which is a Stieltjes integral with respect to the Brownian motion process 

that may be found in many texts, for example in [Doob, 1953]. 

         Integral equations with random kernels arise in random eigenvalue 

problems, [Bharucha-Reid, 1964]. Stochastic integral equations describe 

the wave propagation in random media, [Bharncha-Ried , 1968]  and the 

total number of conversations held at a given time in telephone traffic 

theory, [Fortet, 1956], [Padgett  and  Tsokos, 1971]. 

         In the theory of stochastic calculus, stochastic integral equations arise 

in describing the motion of a point in a continuous fluid in turbulent 

motion, [Lumley, 1962], [Padgett  and  Tsokos, 1971]. Integral equations 

were used by Bellman, Jacquez and Kalaba, in deterministic sense in the 

development of mathematical models for chemotherapy. However, due to 

the random nature of diffusion processes from the blood plasma in body 

tissue, the stochastic versions of these equations are more realistic and 

should be used, [Padgett and Toskos, 1970].  

         Stochastic and random equations also arise in systems theory, for so 

many example, [Morozan, 1966], [Morozan 1967], [Morozan 1969], 

[Tsokos, 1969], and [Tsokos, 1971]. 
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         Begun by Spacek A. in Czechosolvakia, there have been recent 

attempts by many scientists and mathematicians develop to and unify the 

concepts and methods of probability theory and functional analysis, 

[Adomian, 1970],  [Anderson, 1966], [Baharucha Ried, 1964], [Baharucha 

Ried, 1968], [Bharucha-Reid and Arnold, 1968], and [Tsokos, 1969].   

      In this thesis, we study the numerical and approximate solutions of 

stochastic integral equations, in which a combination of methods of the 

numerical solution of an integral equation and stochastic integral inference 

including examples and programs written in Mathcad 2014 computer 

program are given. 

         This thesis includes three chapters: 

         In chapter one, the basic definitions belong to the concepts of 

stochastic calculus, stochastic processes, stochastic different and 

integration and the theory of existence and uniqueness of stochastic 

solution of a stochastic integral equation are given.  
 

         Chapter two consists of the numerical and approximate methods of 

providing the integral equations and stochastic integrals. 

         Chapter three which presents the numerical and approximate 

methods, namely the collocation method and the method of approximating 

the integrals for solving stochastic integral equations of both types, linear 

and nonlinear. Then we have been discussed the numerical solution of the 

generalized form of the stochastic integral equations. 

          Finally, some appendices are given in order to present the large scale 

results and the computer programs which are coded in Mathcad 14 

computer software. 
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CHAPTER ONE 

FUNDAMENTAL CONCEPTS 

 

1.1  Introduction: 

 The basic primitive concepts and results of probability and stochastic 

processes needed later in this work are presented here in this chapter. 

Therefore this chapter consists of four sections. In section (1.2), some basic 

concepts related to probability theory and then to stochastic process are 

reviewed in several definitions. In section (1.3), and because of their basic 

role in stochastic process, the theory of stochastic differentiation and 

integration which are related to each other are given. Also, their 

discretization is also given for the sake of numerical and approximate 

solution of stochastic differential or stochastic integral equations. Finally, in 

section (1.4), stochastic differential and integral equations and their 

relationship are studied. 

 

1.2  Basic Concepts of Stochastic Calculus: 

  Stochastic calculus is concerned with the study of stochastic process, 

which involves randomness or noise. Therefore, in this section some 

preliminary concepts related to such topic will be presented for 

completeness purpose. 

 

Definition (1.1), [Arnold, 1974]: 

The -algebra A  of subsets of a sample space  satisfies the 

following: 

1.  A . 

2. If A  A , then Ac  {   |   A} A . 

3. For any sequence {An}  A , then nn 1A
  A  and nn 1A

  A  
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The elements of A  are events and the pair (,A ) is called a 

probability measurable space. 

 

Sequences and their convergence plays an important role in the theory 

of stochastic calculus, and it is remarkable that the convergence of such 

sequences may be defined using different criterions and among them are 

given in the next three definitions: 

 

Definition (1.2), [Kloeden, 1995]: 

A sequence of random variables {Xn(ω)}, n    converges with 

probability one (denoted by P-w.p.1 or w.p.1) to X(ω) if : 

P({ω   : 
n
lim


Xn(ω)  X(ω)})  1 

This is also called almost sure convergence, (a.s.). 

 

Definition (1.3), [Burrage, 1999]: 

A sequence of random variables {Xn(ω)}, n such that E( 2
nX )  , 

for all n is said to be converges in the mean square to X() if: 

 2
n

n
lim E X X 0


   

 

Definition (1.4), [Kloeden, 1995]: 

A sequence of random variables {Xn(ω)}, n converges in 

probability to X(ω), if: 

n
lim


P({ω   : |Xn(ω)  X(ω)|  })  0,   > 0 

 

1.2.1 Stochastic Process, [Kloeden, 1995]: 

 In many physical applications, there are many processes in which the 

random variables depends on the space and/or time and this introductory 

material will be the main subject of the present section. 
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Definition (1.5), [Kloeden, 1995]: 

A stochastic process X(t,ω), 0t [t , )  ,   is a family of random 

variables on a probability space (,A , P), which is denoted by Xt(ω) (or 

briefly Xt), and assumes real values and is p-measurable as a function of ω 

for each fixed t.  

The parameter t is interpreted as a time and Xt(.) represents a random 

variable on the probability space , while X.(ω) is called a sample path or 

trajectory of the stochastic process. 

Now, an important class of stochastic processes is that with 

independent increments; that is, where the difference Xt+1  Xt are 

independent for any finite strictly increasing sequence {ti}  [t0,T], t0,  

T    and T > t0. 

 

Definition (1.6), [Burrage, 1999]: 

The stochastic process Xt be a non-anticipating, by which it is mean 

that the information about  Xt at time t does not depend on events occurring 

after time t. 

 

Definition (1.7), [Burrage, 1999]: 

Let Xt, t  [a,b]    be a stochastic process on probability space  

(,A , P) and let t t [a,b]{ } A  be a non-decreasing family of -algebras of 

A, such that for each t  [a,b], Xt is tA -measurable. Then Xt is a 

martingale with respect to tA , if: 

E(Xt + s | tA )  Xt, for all s > 0. 

 

Definition (1.8), [Burrage,1999]: 

A stochastic process Wt, t 0 , is said to be a Brownian motion or 

Wiener process, if: 
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1. p({ω  Ω | W0(ω)  0})  1, i.e., p(W0  0)  1. 

2. For 0 < t0 < t1 < … < tn, the increments 
1 0t tW W , 

2 1t tW W …, 

n n 1t tW W


 are independent. 

3. For an arbitrary t and h > 0, is the discretization step size implies  

Wt + h  Wt  has a normal distribution with mean 0 and variance h. 

 

Definition (1.9), [Arnold, 1974]: 

A stochastic process Xt such that E(|Xt|
2) < , t  [t0,T] is said to be 

strictly stationary if its distribution is invariant under time displacements, 

i.e.,  

1 2 n 1 2 nt h,t h,...,t h 1 2 n t ,t ,...,t 1 2 nF (x , x ,..., x ) F (x , x ,..., x )     

In other words, the distribution of Xt is the same for all t  [t0,T]. 

 

Remark (1.1), [Burrage, 1999]: 

In general, a standard Wiener process has the properties that: 

W0  0 w.p.1,   E(Wt)  0,   Var(Wt  Ws)  t  s 

for all 0  s  t; and so the increments are stationary. 

The property E(WsWt)  min{s,t} can be used to demonstrate the 

independence of Wiener increments. Suppose that 0  t0 < … < ti1 < ti < … 

< tj1 < tj < … < tn; then: 

E[(
i i 1t tW W


 )(

j j 1t tW W


 )]  E(
i jt tW W )  E(

i j 1t tW W


)  

E(
i 1 jt tW W


) + E(
i 1 j 1t tW W
 

)  

 ti  ti ti1 + ti1  0 

and hence the increments 
i i 1t tW W


  and 

j j 1t tW W


  are 

independent. 
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Definition (1.10), [Burrage, 1999]: 

The white noise process t is formally defined as the derivative of non 

anticipating Wiener process, i.e.,  

t dt  dWt 

         This derivative does not exist as a function of t in the usual sense, 

since a Wiener process is nowhere differentiable function. 

Sometimes, this derivative is called Gaussian white noise, which is an 

important example of stochastic process of a purely random process. 

 

1.3   Stochastic Differentiation and Integration:[Karatzas,1999] 

A stochastic differentiation and stochastic integral are related to each 

other and each of them has certain advantages in the theory of stochastic 

calculus, therefore it is preferable to discuss each of them and give their 

connection in the next section with stochastic differential equations (SDE’s) 

and stochastic integral equations (SIE’s). 

A sequence of node points which discretized the time interval  

I  [t0,T] and given by: 

t0  (n)
0t  < (n)

1t  < … < 
n

(n)
Nt   T 

with the property that they are refinements for increasing n and with: 

n0 i N 1
max

  
 (n) (n)

i 1 it t    0  as  n   

        If we define (n)
i    (n)

i 1t   + (1  ) (n)
it , for a fixed  [0, 1], then the 

following series of random variables is called an approximation of 

stochastic integral: 

n
(n) (n) (n) (n)
i i i 1 i

0

T
N 1

t i 0 t t
t

X dW X (W W )




 
   …(1.1) 

 

converges as n   in probability if (n)t
W , t(n)  0 be a Wiener process 
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and (n)W


 a real-valued stochastic process (sometimes, called a stochastic 

function or briefly a function) with respect to the Wiener process Wt. It is 

necessary that X and Wt are both defined on the same probability space 

(,A , p). 

Now, let tA  be an increasing family of -algebra fields, which is 

called also filtration, for all t  0, i.e., 
1 2t tA A  if t1 < t2, such that 

t A A , where s(W ,  0 s t) A  is in tA  and t t(W –  W , 0)  A  

is independent of tA , for all t  0. One can take, for instance, 

t s(W ,0 s t)  A A , [Friedman,1975]. If the filtration ( tA )tI satisfy 

the usual conditions, i.e., ( tA )tI is a right-continuous filtration (satisfies  

tA  t0  A for all t 0 ) and 0A  contains all p-negligible events in 

A . Furthermore, let ( tA )tI be such that Wt is a martingale of ( tA )tI,  

[Röbler, 2003]. 

 

Definition (1.11), [Krishnan,1984]: 

Let Xt, t  I be a stochastic process defined on a probability space  

(,A , p) and let ( tA )tI be a filtration -algebra. The process Xt is 

adapted to the family ( tA )tI if  Xt is tA -measurable for every t  I, or: 

t t tE(X |  ) X , t I A  

where tA  -adapted random processes and also tA -measurable. 

      

Definition (1.12), [Burrage, 1999]: 

Consider a probability space (,A ,P) with filtration ( tA )tI then a 

nonnegative random variable τ() on (,A , P) is called a Markov time (or 

stopping time) if the event {   : τ()  t}  tA , for each t ≥ 0. 
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Definition (1.13), [Röler, 2003]: 

Let (,A ,P) be a probability space with filtration ( tA )tI for  

I  [0,). The set L be the class of all ßA -measurable, tA -adapted 

processes Xt : I     ,where ß is the Borel set on I, for which: 

2t

s
0

E X ( ) ds
 

  
 
  < ,   t > 0 ...(1.2) 

holds and the set P is the class of all ßA -measurable tA -adapted 

processes Xt : I     , satisfying: 

2t

s
0

p X ( ) ds 1
 

     
 
 ,   t > 0 ... (1.3) 

Now, back to equation (1.1) which is converges as n   in 

probability if (n)
i

X


P and in the mean-square sense if (n)
i

X


L,  

 i  0, 1, …, Nn  1, n    

However, the integral for dWs are unlike the Riemann-Stieltjes 

integral, here is the selection of which makes a difference. For   0, which 

means that (n)
i  represent the left end point (n)

it , we have the Itô calculus. 

The limit of equation (1.1), denotes the first model given by: 

0

t

s s
t

X dW  

and is called the Itô stochastic integral.  

At Stratonovich calculus, we have to set   
1

2
 and (n)

i  described the 

mid point of [ (n)
it , (n)

i 1t  ]. Now, the limit of equation (1.1) denotes the second 

model, which is given by: 

0

t

s s
t

X dW   
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and is called the Stratonovich stochastic integral. 

To determine a value for the integral 
b

t t
a

W dW , approximate Wt by 

the function ( )
n (t) , where: 

( )
n (t)    (n)

i 1t
W



+ (1  ) (n)
it

W ,   (n)
it  t  (n)

i 1t   ...(1.4) 

for   [0,1], and then the integration of ( )
n (t)  over [a,b] equals to the 

approximate stochastic integral given in equation (1.1): 

b

a


( )
n (t)  dWt  nN 1

i 0


 ( )
n i(t ) ( (n)

i 1t
W



  (n)
it

W ) ...(1.5) 

The right hand side of equation (1.5) may be written as: 

 nN 1
i 0


 (n)

i 1t
W



( (n)
i 1t

W


 (n)
it

W ) + (1) nN 1
i 0


 (n)

it
W  ( (n)

i 1t
W



 (n)
it

W ) 

and by rearranging the terms algebraically, when n  :  

n n
(n) (n) (n) (n) (n) (n)

ti i 1 i i i 1 i

N 1 N 1 2
i 0 i 0t t t t tn n

lim W [ W W ] lim [ W W W ]
 

 
 

 
     

n
(n) (n) (n) (n) (n)

t t ti i 1 i i 1 i 1

N 1 2 2 2
i 0 t tn

1
lim 2W W 2W W W

2   





     

n
(n) (n)(n) (n)

t t i 1 ii 1 i

N 1 2 2 2
i 0 t tn

1
lim [W W [W W ] ]

2 





     

such that: 

n
(n) (n) (n) (n)

t t t t0i 1 i Nn

N 1 2 2 2 2
i 0

n n
lim [W W ] lim[W W ]






 
    

b a

2 2W W   

where 
n
lim


 is taken as the limit in probability, then: 

n
(n) (n) (n) b a
i i 1 i

n
(n) (n)
i 1 i

N 1 2 2
i 0 t t tn

N 1 2
i 0 t tn

1 1
lim W (W W ) W W

2 2

1
lim [W W ]

2















   






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In a similar manner with nN 1
i 0


 (n)

i 1t
W



( (n)
i 1t

W


 (n)
it

W ), such that: 

n
(n) (n) (n) b a
i 1 i 1 i

n
(n) (n)
i 1 i

N 1 2 2
i 0 t t t

2N 1
k 0 t tn

1 1
W (W W ) W W

2 2

1
lim (W W )

2

 











   







 

Thus: 

n
(n) (n) b a
i 1 i

n
(n) (n) b a
i 1 i

n
(n) (n)
i 1 i

N 1 ( ) 2 2
ni 0 t t

2N 1 2 2
i 0 t tn

2N 1
i 0 t tn

1 1
(t)(W W ) W W

2 2

1 1 1
lim (W W ) (1 ) W W

2 2 2

1
lim (W W )

2







 













     



 
     

 


 









 

n
(n) (n)b a
i 1 i

2N 12 2
i 0 t tn

1 1 1
W W (2 1) lim (W W )

2 2 2 





      ...(1.6) 

 

1.4 Stochastic Differential and Integral Equations [Karatzas, 1999]: 

 Stochastic differential equations (SDE’s) incorporate white noise and 

however, it should be mentioned that other types of random fluctuation are 

possible, [Arnold, 1974]. Solution of SDE’s from a very large class of 

stochastic process, this class includes the Brownian motion and many other 

stochastic processes used in stochastic modeling, [Lin, 2006]. 

A system of SDE’s which arise when a random noise is introduced 

into ordering differential equations, [Klebaner, 2005]: 

Consider the SDE: 

dXt  f(t, Xt) dt + g(t, Xt) dWt,  0t 0 tX (w ) X  ...(1.7) 

where f : I  , g : I     be a Borel-measurable functions, 

f is called the drift function and g the diffusion function.  

A solution tX of  the SDE (1.7) must also satisfy equation (1.7) when 

it is written as a SIE of the form: 
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tX  
0t

X  + 

0

t

s
t

f (s,X )ds  + 

0

t

s
t

g(s,X )  dWs ...(1.8) 

However, the second integral given in equation (1.8) cannot be 

defined in the usual sense, where Ws is the Wiener process. The variance of 

the Wiener process satisfies Var(Wt)  t, and so this increases as time 

increases even thought the mean stays at 0. Because of this, typical sample 

paths of n Wiener process attain larger values in magnitude as time 

progresses, and consequently the sample paths of the Wiener process are 

not bounded, hence the second integral in equation (1.8) cannot be 

considered as a Riemann-Stieltjes integral.  

Note that, more general processes which has the martingale property 

can be used in place of Ws, but in this thesis only Wiener process will be 

used in the formulation given in equation (1.8) of SIE. Also, note that there 

is only single given scalar Wiener process, so the SDE is then represented 

by rewriting the SIE (1.8) as: 

tX  
0t

X  + 

0

t

s
t

f (s,X )ds  + 

0

t

s
t

g(s,X ) dWs ...(1.9) 

or 

tX   
0t

X + 

0 0

t t

s s s
t t

f (s, X ) ds g(s, X ) dW    ...(1.10) 

Where

0

t

s
t

g(s,X ) dWs refers to either Itô stochastic integral 

0

t

s s
t

g(s, X ) dW  , such that the first integral in equation (1.9) is pathwise 

Lebseque-integrable since the paths of the Wiener process are almost sure 

of unbounded variation, we cannot interpret the second integral in equation 

(1.9) in the sense of a pathwise Riemann-Stieltijes integral. 
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1.5  The Existness and Unqinneces Theorem, [Fridman,1975]: 

Consider the SDE: 

d tX   f( tX , t) dt + g( tX , t) dWt                                               …(1.11) 

with initial condition: 

0t
X  X0                                                                                 …(1.12) 

where  f( tX , t) and g( tX , t) are measurable functions satisfies : 

||f(X, t)  f(X , t) ||  K*||X  X || 

||g(X, t)  g(X , t) ||  K*||X  X || 
                                                                                               …(1.13) 
||f(X, t) ||  K(1 + ||X||) 

||g(X, t) ||  K(1 + ||X||) 

Where K*, K are constants. 

Hence, to find the equivalent SIE, integrate both sides of eq. (1.11) 

and use the initial condition (1.12) 

 

Xt  Xt0 + 
t

0
 f(Xs, s) ds + 

t

0
 g(Xs, s) dWs                           …(1.14) 

and hence an iterated sequence of solutions of the resulting integral 

equation may be evaluated as follows: 

Xt1  X0+
t

0
 f(Xs0,s) ds+

t

0
 g(Xs0,s) dWs 

X t2  X0+
t

0
 f(X1(s),s) ds+

t

0
 g(Xs1,s) dWs 

 …(1.15) 
     

Xtm+1  X0+
t

0
 f(Xsm,s) ds+

t

0
 g(Xsm,s) dWs3 
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Theorem (1.1) (The Existence Theorem). 

        Suppose that f(Xt, t),  g(Xt, t) are measurable functions in (,A , P) 

and f(Xt, t), g(Xt, t) satisfies the equation(1.13). Let X0 be any  

n-dimensional random vector independent of tA , 0  t  T, such that  

E|x0|
2 < . Then there exist a unique solution of equation (1.11), and 

equation (1.12) in 2L[0, T]. 

Proof: See [Jassim, 2009]. 
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CHAPTER TWO 

APPROXIMATE METHODS FOR SOLVING 

INTEGRAL EQUATIONS AND APPROXIMATION 

OF STOCHASTIC INTEGRALS 

 

2.1  Introduction: 

 In general, for stochastic deterministic integral equations, the 

approximation of the solution and/or integrals plays a fundamental role in 

the numerical solution of such type of problems. Therefore, this chapter 

consists of four sections. In section (2.2), two elementary methods used for 

solving integral equations are discussed, namely the collocation method and 

the method of approximation of the integral. In section (2.3), we use the 

theory of stochastic integrals to approximate some easy stochastic integrals 

analytically that will be included in some types of SIE’s in the next chapter. 

While in section (2.4), more complicated stochastic integrals are 

considered, which will set the basis for the general methods for solving 

SIE’s. 

 

2.2   Approximate Methods for Solving Integral Equations: 

        In this section, the concerne will be on the approximate and numerical 

methods for solving Fredholm and Volterra integral equations, in which 

two approaches will be considered. 

 

2.2.1 The Collocation Method, [Chambers,1976]: 

 The collocation method is one of the approximate methods that may 

be used to solve Fredholm integral equations of the first and second kinds, 

and also can be used to find an approximate solution for nonlinear integral 

equations.  
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To illustrate this method, consider the first kind linear Fredholm 

integral equation: 

f(t)  
b

a

K(t, x)y(x)dx, t [0,T]  …(2.1) 

and let: 

R(,t)  
b

a

K(t, x) (x)dx   f(t) …(2.2) 

so, if (t) is the exact solution of equation (2.1), then R(,x)  0. 

Suppose, now for approximation that: 

(t)  
m

k k
k 1

a B (t)

  …(2.3) 

where Bk(t), k  1, 2, …, m; m are any linearly independent set of 

known functions and ak, k  1, 2, …, m; are constants to be determined. 

Substituting equation (2.3) in to equation (2.2), then the problem is 

reduced to the problem of finding the values of ak, k  1, 2, …, m; that 

make R(,t)  0 at a number of selected points within the domain of 

definition of the integral equation. Thus: 

R(,t)  
bm

k k
k 1 a

a K(t, x)B (x) dx f (x)


 
  

 
   …(2.4) 

and hence: 

bm

k k k k
k 1 a

a K(t , x)B (x) dx f (t ) 0


 
   

 
   …(2.5) 

Where tk, k  1, 2, …, m; are some selected grid points in the domain of 

definition of the integral equation. 

Now, by solving the above system of linear algebraic equations for ak, 

k  1, 2, …, m; we will get an approximate solution for the integral 

equation, and for the nonlinear integral equation one must solve the 

resulting system of nonlinear algebraic equations. 
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2.2.2 Approximation of the Integral, [Arfken, 1978]: 

 This method is also one of the approximate methods that may be used 

to solve both Fredholm and Volterra integral equations and sometimes it 

can be used to solve nonlinear integral equations. In this method, the 

integral operator is approximated by a sum of  N+1 terms where N . So, 

as a result, the integral equation is reduced to a set of N+1 linear or 

nonlinear algebraic equations. 

The basis for this method is that it is possible to approximate the 

following integral: 

b

a

p(x)dx   
N

k k k
k 0

c p (x )

  …(2.6) 

where ck, k 0,1,....., m   are the weighting coefficients associated with 

the selected points xk, k  0, 1, …, N; that are called the roots of the integral 

approximation. 

For simplicity, we will take the trapezoidal rule, and consider the 

linear Volterra integral equation of the second kind: 

y(t)  f(t) + 
t

a

K(t, x)y(x) dx , x  [t0,T] 

and by dividing the interval of integration (a,t) into N-equal subintervals, 

the following discretized equation is obtained: 

t

a

K(t, x)y(x)dx   
h

2
{K(t,t0)y(t0) + 2K(t,t1)y(t1) + … + 

2K(t,tN1)y(tN1) + K(t,tN)y(tN)} …(2.7) 

where h  0T t

N


, ti  a + ih, i  0, 1, …, N; so: 

y(t)  f(t) + 
h

2
{K(t,t0)y(t0) + 2K(t,t1)y(t1) + … + 2K(t,tN1)y(tN1) + 

K(t,tN)y(tN)} …(2.8) 

Now, consider N+1 samples of y(t), namely: 
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y(t0)  f(t0) 

y(ti)  f(ti) + 
h

2
{K(ti,t0)y(t0) + 2K(ti,t1)y(t1) + … + 2K(ti,tN1)y(tN1) +  

          K(ti,tN)y(tN)} …(2.9) 

which are N linear algebraic equations in y(ti), i  1, 2, …, N; which have 

to be solved to find the numerical solution of the integral equation. 

 

2.2.3 Other Numerical and Approximate Methods: 

 There are so many other approximate and numerical methods that 

may be used to solve integral equations. These methods may be classified 

according to the type of the integral equation and the kernel of the equation. 

The following is a list of some of these methods: 

1. Least square method, [Al-Shather, 1999]. 

2. Iterated solution of Fredholm integral equations with symmetric kernel 

by quasi-Newton method, [Sadhen, 1981]. 

3. The solution of the integral equations with symmetric kernel, [Jerri, 

1985]. 

4. Iterative approximates the characteristic function, [Hildbrand, 1965]. 

5. Linear and nonlinear programming methods to solve integral equations, 

[Delves, 1973]. 

 

2.3  Certain Types of Stochastic Integrals: 

  In this section, we shall consider the stochastic integral and its 

properties from a more mathematical perspective at some time extending 

the definition to wider class of integrals. For this, it is supposed that the  

a probability space (,A ,P), a Wiener process W  {Wt: t  0} and an 

increasing family { tA : t  0} of sub -algebras ofA , such that Wt is    

tA  -measurable with E(Wt| 0A )  0 and E(Wt  Ws| sA )  0 w.p.1, for all 

0  s  t, [Kloeden, 1995]. 
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Definition (2.1), [Friedman, 1975]: 

A stochastic process Xt defined on [a,b] is called a step function if 

there exist a partition a  t0 < t1 < … < tN  b of [a,b], such that 
it tX X  if 

ti < t  ti+1, i  0, 1, …, N  1. 

 

Lemma (2.1), [Friedman, 1975]: 

Let f  2L [ , ]   , where  2L [ , ]     is the space of all functions f, 

such that 2| f (t) | dt




    

1. There exist a sequence of continuous functions gn in 2L [ , ]   , such that: 

2
n

n
lim | f (t) g (t) | dt 0






    a.s. …(2.10) 

2. There exists a sequence of step functions fn in 2L [ , ]   , such that: 

2
n

n
lim | f (t) f (t) | dt 0






    a.s. …(2.11) 

 

Definition (2.2), [Friedman, 1975]: 

Let Xt be a step function in 2L [ , ]   , say: 

Xt  
it

X , if ti < t < ti+1, 0  i  N 1 

where a  t0 < t1 < … < tN  b. The random variable: 

k k 1 k

N 1

t t t
k 0

X X X






    

is denoted by: 

b

t t
a

X dW  

and is called the stochastic integral with respect to the Brownian motion Wt, 

which is also called the Itô integral. 
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Theorem (2.1), [Friedman, 1975]: 

Let Xt and 
nt

X  be in 2L [ , ]    and suppose that: 

n

b 2 p
t t

a

X X dt 0      as    n   …(2.12) 

Then: 

n

b b
p

t t
a a

X dt X dt   as n   …(2.13) 

where 
p  refers that the converge is in probability. 

 

Lemma (2.2), [Friedman, 1975]: 

If Xt  2L [ , ]    and Xt is continuous, then for any sequence n of 

partitions a  tn,0 < tn,1 < … < tn,m  b of [a,b] with |n |  0 

n

n,k n,k 1 n,k

bm 1
p

t t t t t
k 0 a

X W W X dW






  
      as   n   …(2.14) 

 

Theorem (2.2), [Friedman, 1975]: 

If Xt is a step function in 2L [ , ]   , where 2L [ , ]   , and Wt is the 

Brownian motion, then: 

b

t t
a

E X dW 0
 

 
 
  …(2.15) 

2b b
2

t t t
a a

E X dW E X dt
   
        
   …(2.16) 

 

2.3.1 The Simples of Stochastic Integrals: 

 Let us start with the easiest possible stochastic integral of the form: 

       
b

t
a

dW  …(2.17) 
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         This type of stochastic integral is with respect to Wt, which is more 

exactly represents, the Wiener process. The Itô integral of the function 

which is always equals 1, because this is a definite integral. 

This work chose any set of time-points ti, i  0, 1,…, N  1; we like, 

and treat 1 as an elementary function with those descritized times as its 

break-points. Then using our definition of the Itô integral for elementary 

function: 

b

t
a

dW   
j 1 j

N 1

t t
j 0

W W






  

 b aW W                                                                     …(2.18) 

Following are some fundamental and necessary concepts in the theory 

of stochastic integrals that will be used in the solution of SIE’s. 

 

2.3.2 More Complicated Stochastic Integrals. 

 Another type of simple stochastic integrals which is more complicated 

than the stochastic integral given subsection (2.3.1) which arises from the 

following SODE: 

dXt  Wt dWt …(2.19) 

where the behavior of Wt is governed by the rules of the Brownian motion. 

Integrating both sides, one may get: 

Xt  
t

s s
0

W dW  …(2.20) 

where it is assumed for simplicity that X0  0. 

In the Itô integral, equation (2.20) is approximated with the following 

stochastic sum: 

Xt  
N 1

j j 1 j
j 0

W (W W )





  …(2.21) 
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where it is assumed that t  Nt, t  
b a

N


 and WN  W(tN), with W0  

W(0), which is just the discrete form of the variance of a random variable 

with zero mean, i.e., 

E(Wj)  0, Var(Wj)  W( 2
jW ) …(2.22) 

 

Equation (2.21) may be rewritten as: 

Xt  
N 1

2 2 2 2
j 1 j j 1 j 1 j j

j 0

1
W W (W 2W W W )

2



  


     

 
N 1

2 2 2
j 1 j j 1 j

j 0

1
W W (W W )

2



 


      

  2 2 2 2 2 2
1 0 2 1 N N 1

1
(W W ) (W W ) ... (W W )

2


          

N 1
2

j 1 j
j 0

(W W )






 


  

 
N 1

2 2 2
N 0 j 1 j

j 0

1
(W W ) (W W )

2






 
   

 
  

 
N 1

2 2 2
N 0 j

j 0

1 1
(W W ) W

2 2





    

The sum can be written as: 

N 1
2
j

j 0

W




   N
N 1

2
j

j 0

1
W

N





 
 

 
  …(2.23) 

 

Since it is known that Wj  Wj+1  Wj is normally distributed with mean 0 

and variance t, because it governs the jump for Brownian motion, then as 

N   and by equation (2.22): 

Var(W)  E(W2)  
N 1

2
j

j 0

1
W

N





   t …(2.24) 
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So that the approximation to the equation (2.20) becomes: 

Xt  2 2
N 0

1
(W W )

2
   

1

2
Nt …(2.25) 

From the definition of the Brownian motion, W0  W(0)  0 and after 

substituting for WN  W(tN) and Nt  t, we have: 

Xt  2
N

1
W

2
  

1

2
t …(2.26) 

 

In the Stranovich integral, equation (2.20) is approximated with midpoint 

rules as: 

Xt  
N 1

j j 1
j 1 j

j 0

t t
W (W W )

2







 
 

 
  …(2.27) 

where the value of 
j 1t

W
2

 
 
 

 is approximated by: 

j 1t
W

2

 
 
 

  
1

2
(Wj + Wj+1) + Cj , j=0,1,…..,N-1 

where Cj, j = 0,1,…..,N-1 must be determined so that the above 

approximation still satisfies the values of Brownian motion. Then: 

Xt  2
t

1
W

2
 …(2.28) 

 
 

Theorem (2.3), [Friedman, 1975]: 

Let Xt be a Weiner process and n = { (n)
1t , (n)

2t ,…,
n

(n)
Nt } be a sequence 

of partitions of the finite closed interval [a,b] with |n|  0 as n  . 

Let: 

Sn   
n

k k 1

N 2
(n) (n)
t t

k 1

X X




  

Then Sn  b  a in the mean. 
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2.4   Other Types of Stochastic Integrals, [Al-Afif, 2012] 

We shall give some remarks concerning the development the 

discussed certain types of stochastic integrals, in which it is pointed out the 

essential difference between them. Historically, in 1930 N. Weiner 

introduced an integrals of the form: 

b

t
a

g(t) dW  

where g(t) is a deterministic real-valued function and {Wt : t  [a,b]} is a 

scalar Brownian motion process. Auther [Itô, 1944] generalized the integral 

include those cases were the integrand is random. That is he obtained an 

integrals of the form: 

t

s s
0

g(s, W ) dW , t  [0,1]. 

which is referred to as the Itô stochastic integral or simply the stochastic 

integral. 

Let {Wt : t  [a,b]} be a scalar Brownian process. In this subsection, 

we shall be concerned with the integral: 

b

s s
a

g(s, W ) dW , a < b …(2.29) 

        For a fairly general class of functions g. As it is well known, almost all 

the sample functions of Brownian motion process are of unbounded 

variation and hence the integral (2.29) cannot be defined as an ordinary 

Stieltjes integral. 

First, equation (2.29) will be defined for the class of step functions, 

that is, the function g is rewritten in the form: 

g(t,Wt)  i t i i 1

0, t a

g (W ), t t t

0, t b






 
 

 …(2.30) 
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where a  t0 < t1 < … < tN1 < tN  b, gi(Wt) are measurable with respect to 

the -algebra tA , and: 

E{|gi(Wt)|
2} <  

for such function, define the Itô integral by: 

b

t t
a

g(t, W ) dW   
i 1 i

N 1

i t t t
i 0

g (W )(W W )






  …(2.31) 

where it is supposed that g(t,Wt) is any function satisfying the following 

conditions: 

1. g(t,Wt) is a P-measurable function from [a,b] into  , assuming 

the usual Lebsegue measure on  . 

2. For each t  [a,b], g(t,Wt) is measurable with respect to -algebra 

tA ,is the smallest -algebra on , such that Ws, s  t; is measurable. 

3. 2
tE | g(t, W ) | dt




  < . 

In view of equation (2.30) it is evident that the classes of step 

functions satisfy the above conditions. 

For the function g(t,Wt) satisfying last conditions 1-3, their norm will 

be defined as follows: 

||g(t,Wt)||  

1/ 2b
2

t
a

E(| g(t, W ) | ) dt
 
 
 
  …(2.32) 

For this case Doob has shown the following [Doob, 1953]:  

1. g(t,Wt) can approximated in the mean-square sense by a sequence of 

step functions {gn(t,Wt)}, that is: 

||g(t,Wt)  gn(t,Wt)||  0  as  n   

2. The sequence of integrals: 

b

t t
a

g(t, W ) dW  

possesses a mean square limit. 
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CHAPTER THREE 

APPROXIMATE AND NUMERICAL 

SOLUTIONS OF STOCHASTIC INTEGRAL 

EQUATIONS 

 

3.1   Introduction: 

To introduce the concepts and main issues concerning the time 

discrete approximation of the solution of SIE’s, we shall concern in this 

chapter with the collocation method and approximating the integrals for 

solving SIE’s in linear and nonlinear cases and for all the cases of 

stochastic integrals that are defined and discussed in chapter two. 

       This chapter consists of five sections. In section (3.2), either numerical 

or approximate solutions of certain types of SIE’s are considered. In section 

(3.3), the general form of SIE’s and its approximate and numerical 

solutions, as well as a modified approach, using the same methods used in 

section (3.2) will be considered. In section (3.4), nonlinear SIE’s are given 

and discussing its approximate and numerical solutions. Finally, in section 

(3.5), a special type of SIE’s is considered, which is called random integral 

equations. 

 

3.2  Solution of Special Types of Linear Stochastic Integral Equations: 

This section concerns with the numerical and approximate solution of 

linear SIE’s using two approaches, the first one is an approximation method 

which is based on the collocation method and the second approach  is based 

on the numerical method by approximating the integrals using certain 

numerical integration methods, which is for simplicity here is the 

trapezoidal rule. 
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3.2.1  The Collocation Method For Solving Linear Stochastic Integral 

Equations: 

  As it is said previously, this method is one of the easiest and earliest 

approximate methods to solve SIE’s. To illustrate this method, consider the 

second kind linear SIE: 

0

0 0

t t

t t s s
t t

X X K(t,s)X ds dW     , 0t   …(3.1) 

where Wt is the Wiener process with mean zero and variance h, K is an 

integrable function. Then applying equation (2.11), the second integral 

equals to 
0t tW W  and therefore equation (3.1) will be reduced to the 

following easiest form: 

0 0

0

t

t t s t t
t

X X K(t,s)X ds W W     

  0 0

0

t

t t t
t

X W W K(t,s)X(s)ds     …(3.2) 

and hence equation (3.2) may be written as: 

0

t

t t s
t

X g(t,W ) K(t,s)X ds    …(3.3) 

where: 

0 0t t t tg(t,W ) X W W    

Suppose for approximation that: 

Xt  
0t

X  + 
m

k k
k 1

c B (t)

  …(3.4) 

where Bk(t), k  1,2,…,m; m    are any linearly independent set of 

known functions satisfying k 0B (t ) = 0 and ck, k  1,2,…,m; are constants 

to be determined. Substituting equation (3.4) in to equation (3.3), yields to: 
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0t
X  + 

m

k k
k 1

c B (t)

   g(t,Wt) + 

0

0

t m

t k k
k 1t

K(t,s) X c B (s) ds


 
 

 
  

or equivalently: 

m

k k
k 1

c B (t)

   

0

tm

k k
k 1 t

c K(t,s)B (s)ds

    

0

0

t

t
t

K(t,s)X ds   g(t,Wt)  0t
X  

and hence: 

m

k k k
k 1

c [B (t) h (t)]


   
0

0

t

t
t

K(t,s)X ds   g(t,Wt)  0t
X  …(3.5) 

where: 

hk(t)  

0

t

k
t

K(t,s)B (s)ds  

and upon evaluating equation (3.5) at m-distinct discritzed  points t1,t2,…,tm 

in [a,b], we get a linear system of algebraic equations Ac  b in c1,c2,…,cm 

that can be solved to get the solution of the linear SIE given by equation 

(3.1), where: 

1 1 1 1 2 1 2 1 m 1 m 1

1 2 1 2 2 2 2 2 m 2 m 2

1 m 1 m 2 m 2 m m m m m

B (t ) h (t ) B (t ) h (t ) B (t ) h (t )

B (t ) h (t ) B (t ) h (t ) B (t ) h (t )
A

B (t ) h (t ) B (t ) h (t ) B (t ) h (t )

   
   
 
 
 

   





   



 

 

c  [c1  c2  …  cm]T, 

 b  [g(t1, 1t
W ) 

0t
X   g(t2, 2t

W ) 
0t

X   …  g(tm,
mt

W ) 
0t

X ]T 

As an illustration, consider the following example: 

 

Example (3.1): 

Consider the following linear SIE: 

t t

t s s
0 0

X 1 (t s)X ds dW      
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and in order to use the collocation method to approximate the solution we 

start by letting Bi(t) ti, i  1,2,…,m; and if m  10 then the approximate 

solution will be of the form: 

Xt  1 + 
10

i
i

i 1

c t

  

and hence  

t10 10
i i

i 10 0 i
i 0 i 00

1 c t (1 W W ) (t s)[1 c s ]ds
 

         

or equivalently: 

t t10
i i

i 10 0
i 1 0 0

c [t (t s)s ds] (t s)ds W W


           

and hence the following linear system is obtained Ac  b, where: 

-30.084   -5.06 10   -0.014 -0.015 -0.015 -0.015 -0.015 -0.015 -0.015 -0.015

0.133   -0.021 -0.052 -0.058 -0.06           - 0.06         -0.06   -0.06 -0.06           -0.06  

0.142    -0.05 -0.109 -0.127 -0.133 -0.1

A





34 -0.135 -0.135 -0.135 -0.135   

0.107   -0.095 -0.181 -0.216 -0.23 -0.236 -0.238 -0.239 -0.24 -0.24

0.021   -0.161 -0.264 -0.318 -0.346 -0.36 -0.368 -0.371 -0.373 -0.374

-0.12   -0.256 -0.359 -0.428 -0.471 -0.498 -0.514 -0.524 -0.531 -0.534

-0.321  -0.385 -0.468 -0.538 -0.592 -0.633 -0.662 -0.683 -0.698 -0.709  

-0.587  -0.559 -0.595 -0.647 -0.697 -0.743 -0.782 -0.815 -0.842 -0.865 

-0.923  -0.788 -0.752 -0.754 -0.773 -0.799 -0.828 -0.858 -0.887 -0.916

-1.333  -1.083 -0.95          -0.867         -0.81 -0.768 -0.736 -0.711 -0.691 -0.674

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

b  [0.867  0.867  0.867  0.867  0.867  0.867  0.867  0.867  0.867  0.867]T 

and upon solving this linear system, we get the solution: 

c  [25.358  303.58  2.00103  8.13103  2.15104  3.75104  4.31104  

3.13104  1.30104  2.37103]T 

Hence the solution: 

1 2 3 4 5
t

6 7 8 9 10

X 1 [(25.352)t  (303.58)t  (2.00 103)t  (8.13 103)t  (2.15 104)t

        (3.75 104)t  (4.31 104)t  (3.13 104)t   (1.30 104)t    (2.37 103)t ]

 

    

        In applications, another type of linear SIE’s it’s be encountered, which 

is more complicated to be evaluated where this complexity is due to the 

A =    
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stochastic integral part. To illustrate such type of equations, consider the 

linear SIE: 

0

0 0

t t

t t s s s
t t

X X K(t,s)X ds W dW     …(3.6) 

where K is an integrable function, t0    and Wt is the Weiner process. 

Then applying equation (2.28) on the second integral, which is equal to 

 0

2 2
t t

1
W W

2
  and therefore equation (3.6) is given by: 

 0 0

0

t
2 2

t t s t t
t

1
X X K(t,s)X ds W W

2
     

  0 0

0

t
2 2

t t t s
t

1
X W W K(t,s)X ds

2

 
    

  …(3.7) 

and hence equation (3.7) may be written as: 

 

0

t

t t s
t

X g(t,W ) K(t,s)X ds    …(3.8) 

where: 

 0 0

2 2
t t t t

1
g(t,W ) X W W

2
    

By applying the collocation method for solving the linear SIE, we get 

a linear system of algebraic equations in c1,c2,…,cm that may solved to get 

the solution of the linear SIE given by equation (3.3). 

The resulting linear system may be derived as follows: 

0

m

t k k
k 1

X c B (t)


    tg(t,W )  + 
0

0

t m

t k k
k 1t

K(t,s) X c B (s) ds


 
 

 
  

Hence, the related linear system: 

 
m

k k k
k 1

c B (t) h (t)


   
0

0

t

t
t

K(t,s)X ds   
0t tg(t, W ) X  
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where: 

hk(t)  

0

t

k
t

K(t,s)B (s)ds  

which may be written in matrix form as Ac  b, where: 

1 1 1 1 2 1 2 1 m 1 m 1

1 2 1 2 2 2 2 2 m 2 m 2

1 m 1 m 2 m 2 m m m m m

B (t ) h (t ) B (t ) h (t ) B (t ) h (t )

B (t ) h (t ) B (t ) h (t ) B (t ) h (t )
A

B (t ) h (t ) B (t ) h (t ) B (t ) h (t )

   
   
 
 
 

   





   



 

c  [c1  c2  …  cm]T, 

b  [g(t1, 1t
W )

0t
X   g(t2, 2t

W )
0t

X   …  g(tm,
mt

W )
0t

X ]T 

 

As an illustration, consider the following example: 

 

 

Example (3.2): 

Consider the following linear SIE: 

t t
2

t s s s
0 0

X 1 (t 2s)X ds W dW      

Hence in order to use the collocation method to approximate the 

solution, we let Bk(t)  tk, i  1,2,…,m; and if m  10 with approximate 

solution: 

Xt  1 + 
m

k k
k 1

c B (t)

  

and hance 

0

t10 10
k 2 2 2 k

k t t k
k 1 k 10

1
1 c t (1 [W W ]) (t 2s)[1 c s ]ds

2 

          

or equivalently: 
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0

t t10
k 2 k 2 2 2

k t t
k 1 0 0

1
c [t (t 2s)s ds] (t 2s)ds [W W ]

2

         

and hence the following linear system of algebraic equation Ac  b is 

obtained, where: 

     

1.077 0.988 0.979 0.978 0.978 0.978 0.978 0.978 0.978 0.978

1.098 0.943 0.912 0.906 0.904 0.904 0.904 0.904  0.904 0.904

1.044 0.851 0.792 0.774 0.768 0.767 0.766 0.766 0.766 0.766

0.897 0.696 0.611 0.

A 

576 0.562 0.556 0.554 0.553 0.552 0.552

0.635 0.458 0.359 0.306 0.278 0.264 0.257 0.254 0.252 0.251

0.239 0.117 0.021 -0.044 -0.085 -0.111 -0.127 -0.137 -0.143 -0.146

-0.315 -0.352 -0.42 -0.482 -0.531 -0.569 -0.596 -0.616 -0.631 -0.641

-1.05  -0.978 -0.989 -1.024 -1.064 -1.103 -1.138 -1.167 -1.192 -1.213

-1.992 -1.793 -1.718 -1.695 -1.696 -1.71 -1.729 -1.752 -1.776 -1.8

-3.167 -2.833 -2.65 -2.533 -2.452 -2.393 -2.347 -2.311 -2.282 -2.258









 
 
 
 
 
 
 
 
 
 
 
 
 

 

      b  [1.001  1.002  1.001  1.005  1.014  1  1  1.002  1.024 1.003]T 

and upon solving this linear system, we get the solution: 

    

3 3 4 5

5 5 3 4 4

   96.321    -1.23 10    8.71 10 -3.81 10     1.08 10
c

-2.03 10 2.49 10 -1.92 10 8.44 10 -1.61 10

    
  

      

 

Hence the solution: 

    

1 3 2 3 3 4 4
t

5 5 5 6 5 7 3 8

4 9 4 10

X 1 [(96.321)t  (-1.23 10 )t  (8.71 10 )t  (-3.81 10 )t

              (1.08 10 )t  (-2.03 10 )t  (2.49 10 )t  (-1.92 10 )t

              (8.44 10 )t    (-1.61 10 )t ]

                     

    

   

 

3.2.2 Approximation of Integrals Method for Solving Linear Stochastic 

         Integral Equations: 

 The two special types of linear SIE’s discussed in subsection (3.2.1) 

may be solved using the method of approximating the integrals based on 

the trapezoidal rule, i.e., solving the linear SIE’s (3.3) and (3.8) using 

numerical integration methods, as follows: 

For the first type of the integral equations given by equation (3.1), 

which may be written equivalently as equation (3.3), namely: 
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Xt  tg(t, W )  + 

0

t

s 0
t

K(t, s)X ds , t [t ,T] , T    

where: 

tg(t, W )   
0t

X  + Wt  
0t

W  

and upon using the trapezoidal rule, we get: 

Xt  tg(t, W )+ 
h

2
{

00 tK(t, t )X  +
11 t2K(t, t )X  + … + 

 

               N 1N 1 t2K(t, t )X
  +

NN tK(t, t )X } 

where h  0T t

N


, ti  t0 + ih, i  0,1,…,N; and N   . 

Now, consider N + 1 samples of Xt 

it
X  i tg(t , W ) +

h

2
{

0i 0 tK(t , t )X +
1i 1 t2K(t , t )X +…+ 

         
Ni N tK(t , t )X }                                                                  …(3.9)                 

 

and upon evaluating equation (3.9) at N equations in 
it

X ,i  1,2,…,N; and 

t1,t2,…,tN in [t0,T], a linear system of algebraic equations is obtained and 

may be solved to find the approximate solution of the linear SIE (3.9). 

The following linear system AXt  b is obtained, where: 

1 1

2 1 2 2

N 1 N 2 N N

1 hK(t , t ) 0 0

h
K(t , t ) 1 hK(t , t ) 0

2A

h
K(t , t ) hK(t , t ) 1 hK(t , t )

2

 
 
 
 
 
 
  

  





   



 

Xt  [
1t

X  
2t

X  … 
Nt

X ]T and b  [g(t1, 1t
W ) g(t2, 2t

W ) … g(tm,
mt

W )]T 

Also, for the second type of integral equation given in equation (3.6), 

which is equivalent to equation (3.8), namely: 
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Xt  g(t,Wt) + 

0

t

s
t

K(t,s)X ds  

where: 

g(t,Wt)  
0t

X  + 
1

2
 0

2 2
t tW W  

and upon using the trapezoidal rule, the following discredited equation is 

obtained:  

Xt  g(t,Wt) + 
h

2
{K(t,t0) 0t

X  + 2K(t,t1) 1t
X  + … + 2K(t,tN1) N 1tX


 + 

K(t,tN)
Nt

X } …(3.10) 

and therefore similarly a linear system of algebraic equations in 
it

X ,           

i  1,2,…,N; is obtained that can be solved to find approximate solution of 

the SIE (3.10). 

 

Example (3.3): 

Consider the following linear SIE: 

t t

t s s
0 0

X 1 sX ds dW  , t [1,T]       

Solving the linear SIE’s using numerical integration methods. Thus we can 

rewrite the integral equation as: 

Xt  1 + Wt  
0t

W + 
t

s
0

s.X ds  

and upon using the trapezoidal rule, we get: 

Xt  1+Wt  
0t

W + 
h

2
{

00 tt X  + 2
11 tt X  + … + 2

N 1N 1 tt X
 + 

NN tt X } 

where h  0.1  , ti  ih, i  1,2,…,N and N  10. 

Now, consider N samples of Xt, namely:  
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it
X   1+

it
W  

0t
W + 

h

2
{

00 tt X  + 2
11 tt X  + … + 2

N 1N 1 tt X
 + 

NN tt X , 

 i 1,2,…,10 

and upon evaluating 10 equations in 
it

X , i  1,2,..,10, we get a linear 

system AXt  b of algebraic equations that may be solved to find the 

approximate solution of the linear SIE, where: 

0.99    0         0        0          0        0                0                  0        0 0 0

-0.01    0.98    0        0        0        0        0                0        0        0

-0.015 -0.015 

A

0.97    0         0        0           0         0        0        0

-0.02   -0.02   -0.02   0.96    0         0         0        0         0        0

-0.025          -0.025             -0.025 -0.025 0.

-1

95    0         0        0        0        0

-0.03           -0.03      -0.03            -0.03  -0.03  9.40 10 0        0         0        0

-0.035         -0.035              -0.035 -0.035 -0.035 -3.5



-2

-2

0 10 0.93    0        0        0

-0.04           -0.04       -0.04  -0.04  -0.04  -4.00 10 -0.04  0.92   0         0

-0.045         -0.045              -0.045 -0.045 -0.045 -0.045  -0.045  -0.045 0.91





   0

-0.05           -0.05       -0.05  -0.05  -0.05  -0.05  -0.05  -0.05  -0.05  0.9

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 Tb 1.056 1.086 1.007 0.936  0.976  1   0.784  1.01  0.924 1.102  

which is based upon using 1000 trials for the Weiner process, we get the 

following results: 

 TtX  1.0711.129 1.086 1.062 1.165 1.269 1.133 1.481 1.524 1.881  

 

Example (3.4): 

Consider the following linear SIE: 

t t

t s s s
0 0

X 1 (s 1)X ds W dW , t [0,1]       

Hence by the approximation method of integrals for solving linear SIE’s 

based on the trapezoidal rule, Thus: 

Xt  g(t,Wt) + 
h

2
{ 0(t 1)

0t
X  + 2 1(t 1)

1t
X  + … + 2 N 1(t 1) 

N 1tX


 + N(t 1)
Nt

X } 

where h  0.1, ti  ih, i  1,2,…,N and N  10. 
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Now, consider N samples of Xt, namely:  

it
X   

ii tg(t , W ) + 
h

2
{ 0(t 1)

0t
X  + 2 1(t 1)

1t
X  + … + 2 N 1(t 1) 

N 1tX


 + N(t 1)
Nt

X },   i  1,2,…,10 

and upon evaluating 10 equations in 
it

X , i  1,2,..,10, we get a linear 

system of algebraic equations AXt  b that may be solved to find the 

approximate solution of the linear SIE, where: 

0.89         0        0        0         0         0         0         0         0 0

-0.06        0.88   0        0          0         0         0          0         0 0

-0.065      -0.065 0.87   0     

A 

     0          0         0         0         0 0

-0.07        -0.07  -0.07  0.86    0         0         0           0          0 0

-0.075      -0.075 -0.075 -0.075  0.85    0          0         0         0 0

-0.08        -0.08  -0.08  -0.08   -0.08    0.84    0         0         0 0

-0.085      -0.085 -0.085 -0.085 -0.085  -0.085    0.83    0         0 0

-0.09        -0.09  -0.09  -0.09   -0.09   -0.09   -0.09   0.82    0 0

-0.095      -0.095 -0.095 -0.095 -0.095 -0.095 -0.095 -0.095 0.81    0

-0.1          -0.1    -0.1    -0.1     -0.1     -0.1     -0.1     -0.1     -0.1    0.8

 
 
 
 
 
 
 
 
 
 




 







 

       Tb 1.001 1.002 1.001 1.005 1.014 1    1 1.002 1.024 1.003  

which is based upon using 1000 trials for the Weiner process, we get the 

following results: 

       TtX 1.193 1.296 1.42 1.577 1.775 1.988 2.266 2.607 3.051 3.54  

 

 

3.3  The General Form of Stochastic Linear and Nonlinear Stochastic 

Integral Equations: 

The general form of a scalar linear SDE is given by: 

dXt  (f1(t)Xt + f2(t))dt + (g1(t)Xt + g2(t))dWt …(3.11) 

and the equivalent linear SIE is given by: 

Xt  
0t

X  + 

0

t

1 s 2
t

(f (s)X f (s))ds  + 

0

t

1 s 2 s
t

(g (s)X g (s))dW …(3.12) 

where the coefficients f1, f2, g1 and g2 are specified functions of the time t or 

constants, provided that they are Lebsegue measurable and bounded on an 
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interval 0 < t < T, ensuring the existence of a unique solution Xt on 0  t0  

t  T and each tA -measurable initial value 
0t

X  corresponding to a given 

Wiener process {Wt, t  0} and associated family of -algebras{ tA , t  0}. 

When the coefficients are all constants, then equation (3.11) is autonomous 

and its solution, which exist for all t, t0  0; are homogeneous Markov 

process. In this case, it suffices to consider t0  0 and when f2(t)  g2(t)  0 

and, then the linear SIE (3.12) will be reduced to: 

Xt  
0t

X  + 

0

t

1 s
t

f (s)X ds  + 

0

t

1 s s
t

g (s)X dW  …(3.13) 

Equation (3.11) and hence equation (3.12) may be generalized, as it is 

illustrated next. 

 

Definition (3.1), [Arnold, 1974]: 

The SDE: 

dXt  f(t,Xt) dt + g(t,Xt) dWt, t  [t0,T] 

for the d-dimensional process Xt is said to be linear, if the functions f and g 

are linear functions of Xt  d  on [t0,T] d , in other words if: 

f(t,Xt)  A(t)Xt + a(t) 

g(t,Xt)  [B1(t)Xt+b1(t), B2(t)Xt+b2(t), …, Bn(t)Xt+bn(t)] 

where A(t) and Bk(t), k  1,2…,n; are dd-real valued matrices, a(t) and 

bk(t) are d  vector valued functions, a linear SDE has the form: 

dXt  (A(t)Xt + a(t)) dt +  
m

i
i i t

i 1

B (t)Xt b (t) dW


  …(3.14) 

where Wt  [ 1
tW     2

tW  … m
tW ]T and is said to be homogeneous if a(t)  

b1(t)  …  bm(t)  0. Also, it is said to be linear in the narrow sense if B1(t) 

 B2(t)  …  Bm(t)  0. 
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Theorem (3.1), [Arnold, 1974]: 

Equation (3.14) has the solution: 

0 0

t tm m
1 1 i

t t s i i s i s
i 1 i 1t t

X c a(s) B (s)b (s) ds b (s)dW 

 

  
           

    

where c  
0t

X  and: 

0 0

2t tm m
ii

t i s
i 1 i 1t t

B (s)
exp A(s) ds B (s)dW

2 

  
     

   
    

is the solution of the homogeneous equation related to equation (3.14): 

dt  A(t)t dt + 
m

i
i t t

i 1

B (t) dW


  

with initial value 
0t

   I. 

 

Remark (3.1): 

1. In equation (3.14) if d  m  1, then equation (3.14) will be reduced to: 

dXt  (A(t)Xt + a(t))dt + (B(t)Xt + b(t))dWt …(3.15) 

2. When a(t)  0 and b(t)  0, then the SDE given in equation (3.15) 

reduced to the following homogeneous linear SDE: 

dXt  A(t)Xt dt + B(t)Xt dWt …(3.16) 

Integrating both sides of equation (3.16), the following LSIE is 

obtained: 

Xt  
0t

X  + 

0

t

s
t

A(s)X ds  + 

0

t

s s
t

B(s)X dW  …(3.17) 

by theorem (3.1) and equation (3.17), the solution is given by: 

Xt  tc …(3.18) 

     where c  
0t

X  and 

0 0

2t t

t s
t t

B (s)
exp A(s) ds B(s)dW

2

  
     

   
   …(3.19) 



Chapter Three                           Approximate and Numerical Solutions of Stochastic 
                                                                                Integral Equations 

 
37 

with initial value 
0t

X   c. 

Now to study the solution of nonlinear SIE’s of the form: 

Xt  h(t,Xt)+
t

1 s 1 s
0

K (t,s,W )f (s,X )ds +
t

2 s 2 s s
0

K (t,s,W )f (s,X )dW      …(3.20) 

in which sufficient conditions are given to ensure the existence and 

uniqueness of a random solution, which are: 

(i) The supporting set of a complete probability measure space  

(,A ,P) withA being the -algebra and P is the probability 

measure. 

(ii) Xt is the unknown random process. 

(iii) h(t, Xt) is a map from     into  . 

(iv) K1(t,s,Wt) and K2(t,s,Wt) are the scalar stochastic kernels which are 

random valued functions defined for 0  s  t <  . 

(v) f1(s,Xt) and f2(s,Xt) are maps from     into  . 

(vi) t    and Wt is a stochastic process, [Dominik, 1984]. 

 

Also, as it is known there are two basic classes of SIE’s currently 

under study, namely probabilistic and deterministic. Those integral 

equations involving Itô type stochastic integrals and those which can  

be considered as probabilistic analogue of classical deterministic integral 

equations, whose formulation involves only the Lebsegue integral,  

[Tsokos, 1973].  

With respect to the process Wt, it is assumed that for each t   ,  

a minimal -algebra tA A is defined such that Wt is measurable with 

respect to tA . 

Furthermore, we shall assume that [Doob, 1953]: 

(i) The process {Wt, tA , t   } is a real martingale. 
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(ii) There is a continuous monotone non-decreasing function F(t),            

t   , such that for s < t. 

  E|Wt  Ws|
2  E{|Wt  Ws|

2 | A}  F(t)  F(s) 

 

Remark (3.2): 

The same approaches followed previously in this chapter to find the 

numerical and approximate solution for solving linear SIE’s may be used to 

find the solution of nonlinear SIE’s, with the main difference that is the 

obtained linear system of algebraic equations will be nonlinear and hence 

may be solved using the standard methods for solving nonlinear algebraic 

equations. 

As an illustration, consider the following example: 

 

Example (3.5): 

Consider the following nonlinear SIE: 

Xt  
0t

X  + 
t

2
s

0

(X 1)ds  + 
2t
s

s
0

1 X
dW

10


  , t [0,1]  

Then upon using the numerical integration method based on trapezoidal and 

Itô stochastic integral, we have the related form: 

tX  
0t

X + 
0 N-1 N

2 2 2 2
t t1 t t

h
{(X -1)+2(X -1)+...+2(X -1)+(X -1)}

2
+  0

2
t1 X

10


 
 

          0t
W  + 1

2
t1 X

10


 

1t
W  + … + N 1

2
t1 X

10



 

N 1tW


  

where h is the discretization step size, t  [a,b], N=10. Therefore at the 

discretized points t0,t1,…,tN, we have: 

it
X 

0t
X - 

0 N-1 N

2 2 2 2
t t1 t t

h
{(X -1)+2(X -1)+...+2(X -1)+(X -1)}

2
 -  

0

2
t1 X

10

 



 
0t

W  + 1

2
t1 X

10


 

1t
W  + … +  N 1

N 1

2
t

t

1 X
W

10




 
 



= 0 
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and letting for each i  1,2,…,N: 

Hi( 0t
X ,

1t
X ,…,

Nt
X )  

it
X 

0t
X   

0

2 2
t t1

h
{(X -1)+2(X -1)+...

2
+

 

                                           N-1 N

2 2
t t+2(X -1)+(X -1)} 0

2
t1 X

10

 



 
0t

W  + 
 

                                            

1

2
t1 X

10


 

1t
W  + … +    N 1

N 1

2
t

t

1 X
W

10




 
 



 = 0 

        Then solution of the last system of nonlinear algebraic equations may 

be obtained by minimizing the objective function: 

H(
0t

X ,
1t

X ,…,
Nt

X )  
0 1 N

N
2
i t t t

i 0

H (X ,X ,...,X )

  …(3.21) 

The obtained results for minimizing equation (3.21) starting with the initial 

solution: 

X0.1  0.1, X0.2  0.2, X0.3  0.3, X0.4  0.4, X0.5  0.5, X0.6  0.6, 

X0.7  0.7, X0.8  0.8, X0.9  0.9, X1  1 

with 1000 trail for the Wiener process, are given by: 

Xt  [0.981    0.972    0.97    0.957    0.951    0.939    0.92    0.901    

0.881    0.853    0.837]T 

 

3.4   Second Kind Volterra Stochastic Integral Equations 

Random Volterra integral equations may be considered as a special 

type of stochastic Volterra integral equations of the second kind, which has 

the form: 

Xt  h(t,Wt) + 
t

t s
0

K(t, s, W )f (s, X ) ds , t  0. …(3.22) 

that is formulated in Hilbert space over the supporting set of a complete 

probability measure space is (,A ,P). A discrete version of the above 

random integral equation is given by: 
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n j j

n

t n t n, j t j t
j 1

X h (W ) c (W )f (X )


  , n  1, 2, … …(3.23) 

In this section, we shall study the second kind random integral 

equation of Volterra type in the discretized form given in equation (3.23), 

where: 

(i) The supporting set of a complete probability measure space(,A ,P). 

(ii) Xt is the unknown random variable for each t  0. 

(iii) h(t,Wt) is the random free term defined for each t  0. 

(iv) K(t,s,Wt) is the random kernel defined for 0  s  t < . 

(v) f(t,Xt) is a scalar function for each t 0  and scalar Xt. 

Equation (3.23) is useful in obtaining an approximation to the random 

solution of equation (3.22) by electronic digital computation. Also, 

equation (3.23) provides a description of physical systems, which yield 

observations or outputs only at discrete terms, [Padgett, 1973]. 

 

Remark (3.3), [Padgett, 1973]: 

1. We shall make the following assumptions in regarding the random 

functions in (3.22). The random solution Xt and the stochastic free term 

h(t,Wt) are functions of t    with values in L2(,A ,P). The function 

f(t,Xt) will also be a function of t    with values in L2(,A ,P) 

under certain conditions. The stochastic kernel K(t,s,Wt) for each            

0  s t<  is in the space L(,A ,P); that is, K(t,s,Wt) is an essentially 

bounded function with respect to p. Hence, the product of K(t,s,Wt) and 

f(s,Xt) will always be in L2(,A ,P). 

2. The following assumptions are made with respect to the random 

functions in the stochastic discrete equation (3.23). The random solution 

nt
X  and the stochastic free term hn(Wt) are functions of n    with 

values in the space L2(,A ,P). For each value of n   , fn( nt
X ) is in 
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L2(,A ,P), and for each value of 
nt

X  fn( nt
X ) is a scalar. For each 

value of n and j in  , 1  j  n, cn,j(W) is in the space L(,A ,P); that 

is, cn,j(W) is bounded in the ordinary sense except perhaps on a set 

probability zero for each n and j, 1  j  n. 

Now, two cases of random integral equations will be considered, as 

follows: 
 

Case I:  

In order to solve equation (3.22) using the collocation method, we let: 

Xt  
N

i i t
i 1

c B (t, W )

  …(3.24) 

Then substituting equation (3.24) in equation (3.22), yields to: 

N

i i t
i 1

c B (t, W )

   h(t,Wt) + 

t N

t i i t
i 10

K(t, s, W )f s, c B (s, W ) ds


 
 
 

  

and hence: 

N

i i t
i 1

c B (t, W )

   g(t,Wt)  h(t,Wt) …(3.25) 

where: 

g(t,Wt)  
t N

t i i t
i 10

K(t, s, W )f s, c B (s, W ) ds


 
 
 

  

 

Case II:  

To illustrate this approach, consider the SIE: 

Xt  h(t,Wt) + 
t

s s
0

K(t,s, W )f (s, X ) ds , t  0 

and upon taking the trapezoidal rule, then: 

Xt  h(t,Wt) + 
h

2
{K(t,s0,Wt0)f(s0, tX ) + 2K(t,s1,Wt1)f(s1, tX ) + … + 

2K(t,sN1,WtN-1)f(sN1, tX ) + K(t,sN,WtN)f(sN, tX )} 
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where h  
b a

N


, N   , t  [a,b]. 

Now, consider N + 1 samples of Xt namely 

         it
X   h(ti,Wti) + 

h

2
{K(ti,s0,Wt0)f(s0, it

X )+2K(ti,s1,Wt1)f(s1, it
X ) 

+…+  

                    2K(ti,sN1,WtN1)f(sN1, it
X ) + K(ti,sN,WtN)f(sN,

it
X )} 

and hence: 

it
X  h(ti,Wti)  

h

2
{K(ti,s0,Wt0)f(s0, it

X )+2K(ti,s1,Wt1)f(s1, it
X ) +…+   

 2K(ti,sN1,WtN1) f(sN1, it
X ) + K(ti,sN,WtN)f(sN,

it
X )}  0 

          Also, if f is lines then the last system will be liner which may be 

solved easily, but if f is nonlinear then by letting for each i  0,1,…,N: 

Hi ( 0t
X ,

1t
X ,…,

Nt
X )  

it
X  h(ti,Wti)  

h

2
{K(ti,s0,Wt0) f(s0, it

X ) +          

2K(ti,s1,Wt1) f(s1, it
X ) + … + 2K(ti,sN1,WtN1) f(sN1, it

X ) + 

K(ti,sN,WtN)f(sN,
it

X )} 

Then the solution of the last system of nonlinear algebraic equations 

may be obtained by minimizing the objective function: 

H(
0t

X ,
1t

X ,…,
Nt

X )  
0 1 N

N
2
i t t t

i 0

H (X ,X ,...,X )

  …(3.26) 

 

Example (3.6) (Case I): 

  Consider the following linear random integral equation: 

 
t

5 21
t s2

0

X t.W t W t.s X ds    , t[0,1] 

and upon taking the collocation method and let: 
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10
i i

t i
i 0

X c (t W )


   

Then 

          

t10 10
i i 5 2 i i1

i i2
i 0 i 00

c (t W ) t.W t W t.s c (s W ) ds 0
 

         
   

          

t10 10
i i i i 5 21

i i 2
i 0 i 00

c (t W ) t.s c (s W ) ds (t.W t W ) 0
 

 
    

 
   

which may be rewritten equivalent as  

        

t10
i i i i 1 5 21

i 2
i 0 0

c t .W t.W s ds (t.W t W ) 0



 
    

 
   

       

10
i i i 3 5 21 1

i i 2 2
i 1

c W t t (t.W t W ) 0




       

and letting 

10
i i 3 5 21 1

i 1 2 10 i i 2 2
i 1

H (c , c ,..., c ) c W t (1 t ) (t.W t W ),i 1, 2,....,10




      

        Then the solution of the last system of linear algabric equation may be 

obtained by the minimizing objectine function: 

10
2

1 2 10 i 1 2 10
i 1

H(c , c ,..., c ) H (c , c ,..., c )


   

and the following result are obtained: 

c11.00038, c257.7402, c3  1.3410-3, c4  5.18 410 , c5  1.37 510 ,  

c6  0.6, c7  1.4810-3, c8  156.807, c9  0.9, c10  1 

hence the solution  

t

2 3 3

4 4 5 5 6

3 7 8 9 10

X (1.00038)tW (57, 7402)(tW) (1, 34 10 )(tW)

(5.18 10 )(tW) (1.37 10 )(tW) (0.6)(tW)

(1.48 10 )(tW) (156.807)(tW) (0.9)(tW) (tW)



 



    

    

   
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Example (3.7) (Case II): 

    Consider the following linear Volterra random integral equation: 

t
5 21

t s2
0

X t.W t W 2t.s.W.X ds, t [0,1]     

and upon using the trapezoidal rule, then:  

0 1

9 10

5 2 21
t 0 0 0 t 1 1 1 t2

2 2
9 9 9 t 10 10 10 t

h
X t.W t W {2t s W X ) 4t .s .W .X ....

2

2(2t .s .W .X ) 2t .s .W .X }

     



 

where i

b a
h , t ih, i 0,1, 2,..., N, N 10, a 0 and b 1

N


       

Now, consider N+1 samples of  tX . namely: 

  

 

and letting for each i=0,1,2,…,10 

0 1 10 i 0

1 10

5 2 21
t t t t i i i i i 0 0 t2

2 2
i 1 1 t i 10 10 t

h
Hi(X ,X ,...,X ) X (t .W t .W ) {2t ,s .W .X

2

4t .s .W .X .... 2t .s .W .X } 0

    

  

 

         Then the solution of the last system of linear algabric equation may be 

obtained by minimizing the objective function: 

     
0 1 10 0 1 10

10
2

t t t t t t
i 0

H(X ,X ,...,X ) Hi (X ,X ,...,X )


                                  

and the following result are obtained: 

Xt0 = 0,  Xt1 = -4.389679762510-3,   Xt2 = -0.0135873391,                              

Xt3 = -0.0141961494,    Xt4 = -0.0390535228,     Xt5 = -0.0843213914, 

Xt6 = 3.01843636710-3,   Xt7 = -8.042584978410-3,   Xt8 = 0.0446755358, 

Xt9 = 0.1898116651,   Xt10 = 0.0850251144. 
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Example (3.8) (Case II): 

    Consider the following nonlinear Volterra random integral equation: 

              
t

5 2 2 21
t t4

0

X t.W t W t.s.W .X ds, t [0,1]     

and upon using the trapezoidal rule, then:  

0 1

9 10

5 2 2 2 21
t 0 0 0 t 1 1 1 t4

2 2 2
9 9 9 t 10 10 10 t

h
X t.W t W {(t .s .W X ) 2t .s .W .X ....

2

2(2t .s .W .X ) t .s .W .X }

      



 

where i

b a
h , t ih, i 0,1, 2,..., N, N 10, a 0 and b 1

N


       

    Now, consider N+1 samples of tX . namely: 

i 0 1

9 10

5 2 2 2 2 21
t i i i i i 0 0 t i 1 1 t4

2 2 2
i 9 9 t i 10 10 t

h
X (t .W t .W ) {t .s .W .X 2t .s .W .X ....

2

4t .s .W .X t .s .W .X } 0

     

 

 

and letting for each i=0,1,2,…,10 

0 1 10 i 0

1 10

5 2 2 21
t t t t i i i i i 0 0 t4

2 2 2 2
i 1 1 t i 10 10 t

h
Hi(X , X ,..., X ) X (t .W t .W ) {2t .s .W .X

2

2t .s .W .X .... t .s .W .X } 0

   

   

 

         Then the solution of the last system of linear algabric equation may be 

obtained by minimizing the objective function: 

0 1 10 0 1 10

10
2

t t t t t t
i 0

H(X ,X ,...,X ) Hi (X ,X ,...,X )


   

and the following result are obtained: 

Xt0=0,        Xt1=-4.3910-3,         Xt2=-0.013589462,        Xt3=-0.014199166, 

Xt4=0.038083829,     Xt5=-0.08450377,     Xt6=2.6110-3,       Xt7=-8.4510-3,  

Xt8=0.044263214 ,                  Xt9=0.190298792,                 Xt10=0.079495249 
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From the present work of this thesis, we may conclude that the 

obtained results for solving SIE’s by using the trapezoidal rule is more 

accurate than those results obtained by using the collocation method.  

In addition, the nonlinear programming method is the more 

simplest approach than the numerical or approximate method that may be 

used to solve SIE’s.  

 

Also from the present study, some recommendations for future 

work may be drawn: 

1. Using the present approaches of this thesis to solve SIE’s with multi- 

Weiner process, for linear and nonlinear cases. 

2. Using other numerical and approximate methods to solve SIE’s, such as 

the least square method, iterative methods, spline methods, variational 

iteration method, etc. 

3. Studying and solving stochastic integro-differential equations. 

 

CCoonncclluussiioonnss  aanndd  FFuuttuurree  WWoorrkk 
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APPENDIx 

(cOmPUTER PROgRAmS) 



Appendex Computer Programs

The method for solving example (3.1) using collocation method
of  linear stochastic integral equation, block for evaluating
the result 1000 times

sol

w2 rnorm 1 0, h, ( )

Q w2 0-

g yt0 Q+

A
i j, 

a i 0.1 j, ( )

j 1 N..for

b
j

g
1 1, 



i 1 N..for

sol A
1-

b

sol1
k 

sol

k 1 NN..for:=

avarege of the results

1

1 -1.055

2 29.807

3 -340.151

4 2.10E+03

av= 5 -7.80E+03

6 1.83E+04

7 -2.73E+04

8 2.51E+04

9 -1.30E+04

10 2.88E+03

av
kk

1

NN

ii

sol
kk ii, 

=

NN
:=

A-1



Appendex Computer Programs

The method for solving example (3.2) using collocation method  
of linear stochastic integral equation , block for evaluating  the 
result 1000 times

sso

w2 rnorm 1 0, h, ( )

Q
1

2
w2

2
0-( )

g yt0 Q+

A
i j, 

a i 0.1 j, ( )

j 1 10..for

b
j

g
1 1, 



i 1 10..for

sol A
1-

b

ssoo
k 

sol

k 1 NN..for:=

A-2

avarege of the results

1
1 -1.159
2 32.259
3 -365.705
4 2.24E+03

av = 5 -8.32E+03
6 1.95E+04
7 -2.90E+04
8 2.66E+04

9 -1.37E+04

10 3.04E+03

av
kk

1

NN

i

sso
kk i, 

=

NN
:=

sso

w2 rnorm 1 0, h, ( )

Q
1

2
w2

2
0-( )

g yt0 Q+

A
i j, 

a i 0.1 j, ( )

j 1 10..for

b
j

g
1 1, 



i 1 10..for

sol A
1-

b

ssoo
k 

sol

k 1 NN..for:=

A-2



Appendex Computer Programs

The method for solving example (3.3) using approximation 
method for solving stochastic integral equation ,block for 
evaluating the result 1000 times

sool

w2 rnorm 1 0, h, ( )

w0 0

Q w2 w0-

g x0 Q+

A
i j, 

p
i j, 

h-

2
f t

i( ) i j>if

p
i j, 

1 h f t
i( )- i j=if

p
i j, 

0 i j<if

p
i j, 

1 i 1= j 1=if

p
i j, 



i 1 N..for

b
j

g
1 1, 



j 1 N..for

k 1 NN..for:=

avarege of the results

1
1 1.004
2 1.034
3 1.066
4 1.11

av = 5 1.167
6 1.24
7 1.329
8 1.437
9 1.567

av
i

1

NN

jj

sool
i jj, 

=

NN
:=

sol A
1-

b

sool
k 

sol

sool

9 1.567

10 1.724

A-3



Appendex Computer Programs

The method for solving example (3.4) using approximation method for 
solving stochastic integral equation ,block for evaluating the result 1000 
times .

sool

w2 rnorm 1 0, h, ( )

Q
1

2
w2

2
0 

g x0 Q

A
i j,  

p
i j, 

h

2
f t

i  i jif

p
i j, 

1 h f t
i  i jif

p
i j, 

0 i jif

p
i j, 

1 i 1 j 1if

p
i j, 



i 1 Nfor

b g

j 1 Nfor

k 1 NNfor:=

avarege of the results

1
1 1.005
2 1.21
3 1.321
4 1.456

av = 5 1.623
6 1.826
7 2.075
8 2.38
9 2.753

av
i

1

NN

jj

sool
i jj, 

=

NN
:=

b
j

g
1 1, 



sol A
1

b

sool
k 

sol

sool

9 2.753

10 3.212

A-4



Chapter One                                                                          

 

(stochastic integral equation  

(random integral equation  اھمی��ة كبی��رة والت��ي

  غی��رات عش��وائیة ت الت��ي تتض��من 

  لھ��ذه الرس��الة   ول��ذلك ف��أن الأھ��داف الرئیس��یة  

  حس�����اب التفاض�����ل   ھ�����و لدراس�����ة الجان�����ب النظ�����ري لموض�����وع    

م اریف والمف�اھی التع�  ، وال�ذي یتض�من دراس�ة   

  لحل�����ولوحدانی�����ة ا د ومبرھن�����ة وج�����و 

  ھ���������و اج���������راء مقارن���������ة ب���������ین المع���������ادلات التفاض���������لیة  

 ةالتص��ادفیملی��ة والمع��ادلات التكا

الطرائ��ق التحلیلی��ة لأیج��اد   وم��ن ث��م إعط��اء بع��ض 

راس���ة الطرائ���ق العددی���ة  ي یعتب���ر ھ���دفنا الرئیس���ي، یتض���من د 

بع���ض الامثل���ة  م���ع.التص���ادفیة الخطی���ة والغی���ر خطی���ة 

 

 

 

Chapter One                                                                          Stochastic Calculus

1 

(equations ك المع�����ادلات التص�����ادفیة التكاملی�����ة

(random integral equations)والمع��ادلات التكاملی��ة العش��وائیة 

الت��ي تتض��من  ان��واع معین��ة م��ن المش��اكل   ان تس��تخدم ف��ي نمذج��ة   

 (random process) وضوض��اء(noise) .  ول��ذلك ف��أن الأھ��داف الرئیس��یة

ھ�����و لدراس�����ة الجان�����ب النظ�����ري لموض�����وع    : الھ�����دف الاول 

، وال�ذي یتض�من دراس�ة   (Stochastic calculus)والتكام�ل التص�ادفي   

مبرھن�����ة وج�����و ض�����افة ال�����ى  الأبالأساس�����یة ف�����ي ھ�����ذا الموض�����وع    

(The existence and uniqueness theorem). 

ھ���������و اج���������راء مقارن���������ة ب���������ین المع���������ادلات التفاض���������لیة  : الھ���������دف الث���������اني 

(Stochastic differential equation والمع��ادلات التكا

(Stochastic integral  وم��ن ث��م إعط��اء بع��ض

ي یعتب���ر ھ���دفنا الرئیس���ي، یتض���من د ل���ذا: الھ���دف الثال���ث 

التص���ادفیة الخطی���ة والغی���ر خطی���ة  لح���ل المع���ادلات التكاملی���ة 

 .التوضیحیة لكل حالة

Stochastic Calculus 

 

ك المع�����ادلات التص�����ادفیة التكاملی�����ةتمتل����             

والمع��ادلات التكاملی��ة العش��وائیة 

ان تس��تخدم ف��ي نمذج��ة    یمك��ن

(random process)

  :كما یلي 

الھ�����دف الاول  

والتكام�ل التص�ادفي   

الأساس�����یة ف�����ي ھ�����ذا الموض�����وع    

he existence and uniqueness theorem)

الھ���������دف الث���������اني             

(equations التص��ادفیة

tochastic integral equations)

  .التكامل التصادفي

الھ���دف الثال���ث 

لح���ل المع���ادلات التكاملی���ة  والتقریبی���ة

التوضیحیة لكل حالة

 



 

راقــة العــوریـجمھ  

لميـث العـوزارة التعلیم العالي والبح  

  نـریـھـالن ةـــعـامـج

ـومـــلـعــة الــیـلـــكـ  

م الریاضیات وتطبیقات الحاسـوبقس  

 
 

 
و تقریبی���������������ة لح���������������ل                     طرائ���������������ق عددی���������������ة 

 التص��������������������ادفیةالتكاملی��������������������ة المع��������������������ادلات 
 

 
  ةــالـرس                             

  النھ�����رین  جامع�����ة  / لی�����ة العل�����وم كل�����ى إمقدم�����ة 

  نی�����ل درج�����ة الماجس�����تیر  ج�����زء م�����ن متطلب�����ات ك

 وتطبیقات الحاسوب الریاضیات ومـي علـف          
  
  
  

 

 لــبــق من

  ـمــدـرؤى قـحـطـان مـح

  ) ٢٠٠٦ ،جامع���������������ة النھ���������������رین بك���������������الوریوس ( 
 

  
  

  

  رافـشإ

 فاضل صبحي فاضل .د. م .أ

 

 
 

 
  أیــلـــول                                                                                                ذي القعـدة

  م ٢٠١٤                                                                                                 ھـ ١٤٣٥
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