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Summary

Stochastic and random integral equations are of great importance that
may be used in modeling certain type of problems that contains random
process and noise. Therefore, the main objectives of this thesis may be
oriented as follows:

The first objective is to study the theoretical side of stochastic calculus
and stochastic processes, which include the basic definitions and
fundamental concepts related to this topic, such as stochastic processes,
stochastic differentiation and stochastic integration the existence and
uniqueness theorem.

The second objective is to compare between stochastic differential and
integral equations and then provides analytical methods to evaluate the
stochastic integrals.

The third objective, which is the main goal, that includes numerical
and approximate methods for solving stochastic integral equations in both

cases, linear and nonlinear, with some illustrative examples for each case.
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‘Basic Notations and Abbreviations

Q The sample space.
A o-Algebra of subsets of a sample space €.
Q, A1) Probability measurable space.
X(®) Random variables.
{Xn(®)} Sequence of random variables.
P Probability measure of A .
w.p.1, p-w.p.1 P converges with probability one.
A° The complement of a set A in A .
{Ap} Sequence of events such that {A,} < A .
® The element of the sample space Q.
E(X2) <o | Converge in the mean square.
X(t,w), X{(w)  Stochastic process.

(Q, A ,P) | The probability sample space.

t The parameter of time.
A ¢ Filtrartion, which is an increasing family of c-algebra fields.
W, Brownian motion or Weiner process on time t.

& The white noise process

E(|X{*) <eo | Strictly stationary.

Vii



Basic Notations and Abbreviations

SDE

SIE

L [0, B]
Ty
a.s.
SODE
CG,IR" Ly(Q, A P)]
B

(B,D)

Stochastic Differential Equation.
Stochastic Integral Equation.
The c-algebra of Borel subset of R™.

£, €M7,

1 0+l

The mid point of the interval |

t
All expectation functions, such that E [IX? ds] < 0.
0

The set of all square integrable non-anticipating
functions.

Sequence of partitions, n € N.

Almost sure convergence.

Stochastic Ordinary Differential Equation.
The subspace of all mappings X(t,w) o X(t,w).
Banach space.

Admissible with respect to the operator.
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Introduction

In recent years, stochastic process and stochastic calculus have been
applied to a wide range of scientific disciplines, such as physics,
engineering and finance. Stochastic calculus concerns with a specific class
of stochastic process that are stochastically integrable and are often

expressed as a solution to the stochastic differential equations, [Lin, 2006].

They are typically describing the time dynamics of the evolution of a
state vector, based on the (approximate) physics of the real system,
together with a driving noise process. It is often represents processes not
included in the model, but represented in the real system, the aim of these
notes is to introduce the theory of random or stochastic integral equations
of the Volterra Fredholm types and to apply the results to certain general
problems in system theory. We hope to convey the manner in which such
equations arise and to develop some general theory using tools of the
methods of probability theory, functional analysis and topology,
[Archambeau, 2007].

Due to the nondeterministic nature of phenomenon in the general
areas of the engineering, biological, oceanographic and physical sciences,
the mathematical descriptions of such phenomena frequently result in
random or stochastic equations. These equations arise in various ways and
in order to understand better the importance of developing the theory of
such equations and its application, it is of interest to consider how such
theory arise. Sometime, the mathematical models or equations that describe
physical phenomena of the parameters or coefficients, which are specific

physical interpretations, but those values are unknown, [Adomian, 1970].

As an example, we have the volume-scattering coefficient under

water acoustics, the coefficient of viscosity in fluid mechanics, the

Xi



Introduction

coefficient of diffusion in the theory of elasticity. Many times, this
unknown value is regarded as the true state of nature and is estimated by
using the mean value of a set of observations obtained experimentally. The
equation must be solved as a random equation, and its random solution
must be obtained. Once such a solution is obtained then its statistical
properties should be studied, [Ahmed, 1969].

There are many other ways in which random stochastic equations
arise, stochastic differential equations appear in the study of diffusion
process and Brownian motion which is studied by [Gikhman and
Skorokhod, 1969]. The classical 1td6 random integral equations [Itd, 1946]
which is a Stieltjes integral with respect to the Brownian motion process
that may be found in many texts, for example in [Doob, 1953].

Integral equations with random kernels arise in random eigenvalue
problems, [Bharucha-Reid, 1964]. Stochastic integral equations describe
the wave propagation in random media, [Bharncha-Ried , 1968] and the
total number of conversations held at a given time in telephone traffic
theory, [Fortet, 1956], [Padgett and Tsokos, 1971].

In the theory of stochastic calculus, stochastic integral equations arise
in describing the motion of a point in a continuous fluid in turbulent
motion, [Lumley, 1962], [Padgett and Tsokos, 1971]. Integral equations
were used by Bellman, Jacquez and Kalaba, in deterministic sense in the
development of mathematical models for chemotherapy. However, due to
the random nature of diffusion processes from the blood plasma in body
tissue, the stochastic versions of these equations are more realistic and
should be used, [Padgett and Toskos, 1970].

Stochastic and random equations also arise in systems theory, for so
many example, [Morozan, 1966], [Morozan 1967], [Morozan 1969],
[Tsokos, 1969], and [Tsokos, 1971].

xii
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Begun by Spacek A. in Czechosolvakia, there have been recent
attempts by many scientists and mathematicians develop to and unify the
concepts and methods of probability theory and functional analysis,
[Adomian, 1970], [Anderson, 1966], [Baharucha Ried, 1964], [Baharucha
Ried, 1968], [Bharucha-Reid and Arnold, 1968], and [Tsokos, 1969].

In this thesis, we study the numerical and approximate solutions of
stochastic integral equations, in which a combination of methods of the
numerical solution of an integral equation and stochastic integral inference
including examples and programs written in Mathcad 2014 computer
program are given.

This thesis includes three chapters:

In chapter one, the basic definitions belong to the concepts of
stochastic calculus, stochastic processes, stochastic different and
integration and the theory of existence and uniqueness of stochastic

solution of a stochastic integral equation are given.

Chapter two consists of the numerical and approximate methods of

providing the integral equations and stochastic integrals.

Chapter three which presents the numerical and approximate
methods, namely the collocation method and the method of approximating
the integrals for solving stochastic integral equations of both types, linear
and nonlinear. Then we have been discussed the numerical solution of the

generalized form of the stochastic integral equations.

Finally, some appendices are given in order to present the large scale
results and the computer programs which are coded in Mathcad 14

computer software.

Xiii






CHAPTER ONE
FUNDAMENTAL CONCEPTS

1.1 Introduction:

The basic primitive concepts and results of probability and stochastic
processes needed later in this work are presented here in this chapter.
Therefore this chapter consists of four sections. In section (1.2), some basic
concepts related to probability theory and then to stochastic process are
reviewed in several definitions. In section (1.3), and because of their basic
role in stochastic process, the theory of stochastic differentiation and
integration which are related to each other are given. Also, their
discretization is also given for the sake of numerical and approximate
solution of stochastic differential or stochastic integral equations. Finally, in
section (1.4), stochastic differential and integral equations and their

relationship are studied.

1.2 Basic Concepts of Stochastic Calculus:

Stochastic calculus is concerned with the study of stochastic process,
which involves randomness or noise. Therefore, in this section some
preliminary concepts related to such topic will be presented for

completeness purpose.

Definition (1.1), [Arnold, 1974]:
The c-algebra A of subsets of a sample space Q satisfies the
following:
1. Qe A.
2. IfAe A,thenA°={oeQ|oegAle A.

3. Forany sequence {A,} = A, then |J_ A e Aand()_ A, €A



Chapter One Fundamental Concepts

The elements of A are events and the pair (2, A) is called a

probability measurable space.

Sequences and their convergence plays an important role in the theory
of stochastic calculus, and it is remarkable that the convergence of such
sequences may be defined using different criterions and among them are

given in the next three definitions:

Definition (1.2), [Kloeden, 1995]:
A sequence of random variables {X,(®)}, n € N converges with

probability one (denoted by P-w.p.1 or w.p.1) to X(w) if :
P{o e Q: Iim X (0) =X(m)})=1

n—»oo

This is also called almost sure convergence, (a.s.).

Definition (1.3), [Burrage, 1999]:

A sequence of random variables {X,(®)}, ne N such that E( szl) < 00,

for all ne N is said to be converges in the mean square to X(w) if:

tim E (X, -X| | =0

n—oo

Definition (1.4), [Kloeden, 1995]:

A sequence of random variables {X,(®)}, neN converges in
probability to X(m), if:
Iim P({o € Q : | X (0) - X(0)|>€})=0,Ve>0

n—oo

1.2.1 Stochastic Process, [Kloeden, 1995]:
In many physical applications, there are many processes in which the
random variables depends on the space and/or time and this introductory

material will be the main subject of the present section.

2



Chapter One Fundamental Concepts

Definition (1.5), [Kloeden, 1995]:

A stochastic process X(t,0), t €[tg,0), @€ Q is a family of random
variables on a probability space (2, A, P), which is denoted by X(w) (or
briefly X;), and assumes real values and is p-measurable as a function of ®
for each fixed t.

The parameter t is interpreted as a time and X(.) represents a random
variable on the probability space €, while X (®) is called a sample path or
trajectory of the stochastic process.

Now, an important class of stochastic processes is that with
independent increments; that is, where the difference X, — X; are

independent for any finite strictly increasing sequence {ti} < [to,T], to,

Te R and T>t,.

Definition (1.6), [Burrage, 1999]:
The stochastic process X; be a non-anticipating, by which it is mean
that the information about X at time t does not depend on events occurring

after time t.

Definition (1.7), [Burrage, 1999]:

Let X, t € [a,b] <R be a stochastic process on probability space
(Q, A, P) and let {ﬂt}te[a,b] be a non-decreasing family of c-algebras of
A, such that for each t € [ab], X is .}z\t-measurable. Then X, is a
martingale with respect to A, , if:

E(Xt+s| .ﬂ.t) :Xta fOI‘ all s> O

Definition (1.8), [Burrage,1999]:
A stochastic process W,, t >0, is said to be a Brownian motion or

Wiener process, if:
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1. p({w e Q| Wyw)=0})=1,1e.,p(Wo=0)=1.

2. For 0 <ty <t <...<t, the increments th _Wto’

Wtz - th ey
Wi, — W, _, are independent.

3. For an arbitrary t and h > 0, is the discretization step size implies

W, ., — W, has a normal distribution with mean 0 and variance h.

Definition (1.9), [Arnold, 1974]:

A stochastic process X, such that E(|X{*) < o, t € [t,,T] is said to be
strictly stationary if its distribution is invariant under time displacements,
1.e.,

By ihty oty oh (KXo X)) = By ) (X15X 0,500 X))

In other words, the distribution of X; is the same for all t € [ty,T].

Remark (1.1), [Burrage, 1999]:
In general, a standard Wiener process has the properties that:
Wo=0w.p.1, E(W)=0, Var(W;—W,)=t—s
for all 0 <'s <t; and so the increments are stationary.
The property E(W;W,) = min{s,t} can be used to demonstrate the
independence of Wiener increments. Suppose that 0 <ty <... <t <t;<...
<t <t <...<ty; then:

E[( Wti - Wti—l )( WtJ - Wtj—l )] = E( Wti WtJ ) - E( Wti Wtj—l ) -
E(W,, Wi+ E(W, W, )

=ti—ti—t;+t,;=0

and hence the increments W, —W, = and Wtj —Vth_1 are

independent.
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Definition (1.10), [Burrage, 1999]:

The white noise process & is formally defined as the derivative of non
anticipating Wiener process, 1.e.,

& dt =dW,

This derivative does not exist as a function of t in the usual sense,
since a Wiener process is nowhere differentiable function.

Sometimes, this derivative is called Gaussian white noise, which is an

important example of stochastic process of a purely random process.

1.3 Stochastic Differentiation and Integration:[Karatzas,1999]

A stochastic differentiation and stochastic integral are related to each
other and each of them has certain advantages in the theory of stochastic
calculus, therefore it is preferable to discuss each of them and give their
connection in the next section with stochastic differential equations (SDE’s)
and stochastic integral equations (SIE’s).

A sequence of node points which discretized the time interval

I =[to,T] and given by:

o=ty <t <. <t®) =T

n

with the property that they are refinements for increasing n and with:

max {tfﬂ —ti(n)} — 30 as n—> o
0<i<N, -1

If we define T\ = 0t™) + (1 — 0)t™, for a fixed O [0, 1], then the

i i+1
following series of random variables is called an approximation of

stochastic integral:

T
N, -1
J. X (mdW = h X (W =Wam) (1.1)
to 1 i i+1 i

converges as n ——> o in probability if Wt(“) ,t™ > 0 be a Wiener process
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and W ) a real-valued stochastic process (sometimes, called a stochastic
T

function or briefly a function) with respect to the Wiener process W,. It is
necessary that X; and W, are both defined on the same probability space
(Q,A,p).

Now, let A; be an increasing family of c-algebra fields, which is
called also filtration, for all t > 0, i.e., ﬂTl c A, ) if t; < t,, such that
A, < A, where A(W,, 0<s<t) isin A; and A(W; . — W;,A>0)
is independent of A, for all t > 0. One can take, for instance,
A, = A(W,,0<s<t), [Friedman,1975]. If the filtration (A, )., satisfy
the usual conditions, i.e., (A ). is a right-continuous filtration (satisfies
A= ﬂ8>0 A, forall t>0)and A contains all p-negligible events in
A . Furthermore, let (A ). be such that W, is a martingale of (A )y,
[Robler, 2003].

Definition (1.11), [Krishnan,1984]:

Let X, t € I be a stochastic process defined on a probability space

(Q, A, p) and let (A;) be a filtration c-algebra. The process X, is

adapted to the family (A )1 if X, is A, -measurable for every t € I, or:
E(X,| A)=X, tel

where A, -adapted random processes and also A; -measurable.

Definition (1.12), [Burrage, 1999]:

Consider a probability space (Q, A ,P) with filtration (A, ) then a

nonnegative random variable t(®) on (Q, A, P) is called a Markov time (or

stopping time) if the event {® € Q : 1(w) <t} € A;, for each t> 0.
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Definition (1.13), [R6Bler, 2003]:
Let (2, A,P) be a probability space with filtration (A;).; for

[ = [0,0). The set L be the class of all ix A -measurable, A, -adapted

processes X, : [ x Q—— R ,where /5 is the Borel set on I, for which:

t o
E[IXS (©) ds}<oo, t>0 (12)

0

holds and the set P is the class of all x A -measurable A, -adapted

processes X, : [ x Q—— R, satisfying:
t o2
p| [ X (@) ds<oo|=1, Vt>0 .. (1.3)
0

Now, back to equation (1.1) which is converges as n ——> o in

probability if X ) €P and in the mean-square sense if X ., €L,
T T

vVi=0,1,...,N,—-1,ne N
However, the integral for dW; are unlike the Riemann-Stieltjes

integral, here is the selection of which makes a difference. For 6 = 0, which

)

means that Ti(n represent the left end point ti(n), we have the It6 calculus.

The limit of equation (1.1), denotes the first model given by:
t
[ X, dw,
to

and is called the It6 stochastic integral.
. 1 :
At Stratonovich calculus, we have to set 0 = 5 and ri(n) described the

£ ¢

,ti.1]. Now, the limit of equation (1.1) denotes the second

mid point of [
model, which is given by:

't[ X odW,
to
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and is called the Stratonovich stochastic integral.

To determine a value for the integral _[Wt dW,, approximate W, by

a

the function @ )(t) where:

PR (1) =OW o+ (1 - 0) W, tM<e< M)

1+1

(1.4)

for 0 € [0,1], and then the integration of (pfle)(t) over [a,b] equals to the

approximate stochastic integral given in equation (1.1):

Jcp<9><t> dWi= 3507 0 () (W) = W i)

1+1

The right hand side of equation (1.5) may be written as:

-1 -1
0> W) (W )= W(n>)+(1 0)Yn W(n>( (o~

1+1 1+1 1+1

and by rearranging the terms algebraically, when n —— oo:

. N, -1
lim 3767 W ) [W ) ~ W 1= lim Zl 0 [W(n>W<n)
n— i i+1 i

1+1

~Liim > 2w o Wi = —2W? +W?

20 @ e T

l .. -
=—lim YN W2 W2 (W, - W T

2no0 {0 ) g 4
such that:
lim ~W? lim[W? —-W?*
N—300 ZI 0 tf+1) tgn) ] n_)q)[ t(n) tgn) ]
=W?-W?
b a
where lim is taken as the limit in probability, then:
n—oo
lim YW (W, —W )—1W2—1W2—
i=0 (n) (n) (n) /™ b a
n-—»o0 t tiq t; 2 2

1 2
—lim 37 t(n) ~Wm]l

t.
1

2 n—o

(1.5

)
ti(n)

-W? ]
()
1

()

i+l
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In a similar manner with Zi

W (n) (W (n) W (n) ) such that:

1+1 1+1
> 0 W(n)(W<n) (n)):lw2_lw2+
= G G ti 2 b 2 a
1 a1 2
EI}I_IBOZk 0 (W(n) ti(n))

Thus:

Zl 0 (P(e) (H(W (m

1+1

l lim zl 0_1 (W ()~

(n)) 9( W —%W +

2 1
t.(“)) j+(1 9)( W ——W —

2n_’°° 1+1 2

1 _ 2

= lim Zl =0 1(W<n) (n))

2 1+1 t1

w2 w2 Lo ntim S tow . —w. ) 1.6
—5 b 5 . +§( )nggozizo ( () ti(n)) ..(1.6)

1.4 Stochastic Differential and Integral Equations [Karatzas, 1999]:
Stochastic differential equations (SDE’s) incorporate white noise and

however, it should be mentioned that other types of random fluctuation are
possible, [Arnold, 1974]. Solution of SDE’s from a very large class of
stochastic process, this class includes the Brownian motion and many other
stochastic processes used in stochastic modeling, [Lin, 2006].

A system of SDE’s which arise when a random noise is introduced
into ordering differential equations, [Klebaner, 2005]:

Consider the SDE:

dX, = f(t, X,) dt + g(t, X,) dW,, X, (W)= X ..(1.7)

where f: IxXR—— R, g: IxR —— R be a Borel-measurable functions,
f is called the drift function and g the diffusion function.
A solution X, of the SDE (1.7) must also satisfy equation (1.7) when

it is written as a SIE of the form:
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t t
X=X, + [ f(s,X)ds + [ g(s,X,) dW, .(1.8)

to to

However, the second integral given in equation (1.8) cannot be
defined in the usual sense, where Wy is the Wiener process. The variance of
the Wiener process satisfies Var(W,) = t, and so this increases as time
increases even thought the mean stays at 0. Because of this, typical sample
paths of n Wiener process attain larger values in magnitude as time
progresses, and consequently the sample paths of the Wiener process are
not bounded, hence the second integral in equation (1.8) cannot be
considered as a Riemann-Stieltjes integral.

Note that, more general processes which has the martingale property
can be used in place of W, but in this thesis only Wiener process will be
used in the formulation given in equation (1.8) of SIE. Also, note that there
is only single given scalar Wiener process, so the SDE is then represented

by rewriting the SIE (1.8) as:

t t
X=X, + [f(5,X)ds + [ g(s,X,)*dW, .(1.9)
to to
or
t t
X, =X, | f(s,X,) ds+ [ g(s,X,) o dW, .(1.10)
to to

t
WhereI g(s,X,)*dW; refers to either It6 stochastic integral
to

t
I g(s, X,) odW_, such that the first integral in equation (1.9) is pathwise
to

Lebseque-integrable since the paths of the Wiener process are almost sure
of unbounded variation, we cannot interpret the second integral in equation

(1.9) in the sense of a pathwise Riemann-Stieltijes integral.

10
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1.5 The Existness and Unqinneces Theorem, [Fridman,1975]:

Consider the SDE:
dX, =f(X,, ) dt +g(X,, t) dW, ..(L.11)
with initial condition:

X, =Xo L (1.12)

where f(X,,t) and g(X,, t) are measurable functions satisfies :
IfX, 0 = (X, 0 | <KX - X

lgX, 1) —g(X, t) | <KX - X]|
! ..(1.13)
[£X, t) | < K(1 + [[X][)

1g(X, v [| < K(1 + [[X]])
Where K*, K are constants.

Hence, to find the equivalent SIE, integrate both sides of eq. (1.11)

and use the initial condition (1.12)

t t
X=X+ [ f(Xs9)ds+ [ g(Xq,5)dW, . (1.14)

0 0
and hence an iterated sequence of solutions of the resulting integral

equation may be evaluated as follows:

t t
Xiy = Xot | f(Xs0.8) dst [ g(Xso.8) AWy
0 0

t t
X=X+ | f(Xi(s).8) dst [ g(Xs1.8) dWq
0 0 :
...(1.15)

t t
Xty = Xo-l-_[ f(Xsm,s) ds+ _[ 2(Xspy,s) dWg3
0 0

11
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Theorem (1.1) (The Existence Theorem).

Suppose that f(X;, t), g(Xi, t) are measurable functions in (Q, A, P)
and f(X;, t), g(X; t) satisfies the equation(1.13). Let X, be any

n-dimensional random vector independent of Ay, 0 <t < T, such that
E|xo|” < oo. Then there exist a unique solution of equation (1.11), and

equation (1.12) in L2 [0, T].

Proof: See [Jassim, 2009].
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CHAPTER TWO

APPROXIMATE METHODS FOR SOLVING
INTEGRAL EQUATIONS AND APPROXIMATION
OF STOCHASTIC INTEGRALS

2.1 Introduction:

In general, for stochastic deterministic integral equations, the
approximation of the solution and/or integrals plays a fundamental role in
the numerical solution of such type of problems. Therefore, this chapter
consists of four sections. In section (2.2), two elementary methods used for
solving integral equations are discussed, namely the collocation method and
the method of approximation of the integral. In section (2.3), we use the
theory of stochastic integrals to approximate some easy stochastic integrals
analytically that will be included in some types of SIE’s in the next chapter.
While in section (2.4), more complicated stochastic integrals are

considered, which will set the basis for the general methods for solving

SIE’s.

2.2 Approximate Methods for Solving Integral Equations:
In this section, the concerne will be on the approximate and numerical
methods for solving Fredholm and Volterra integral equations, in which

two approaches will be considered.

2.2.1 The Collocation Method, [Chambers,1976]:

The collocation method is one of the approximate methods that may
be used to solve Fredholm integral equations of the first and second kinds,
and also can be used to find an approximate solution for nonlinear integral

equations.

13
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To illustrate this method, consider the first kind linear Fredholm

integral equation:

b
ft) = A [K(t,x)y(x)dx, te[0,T] ..(2.])
and let:
b
R(§,0) =2 [K(t,x)p(x)dx —f(1) ..(2.2)

so, if ¢(t) is the exact solution of equation (2.1), then R(¢,x) = 0.

Suppose, now for approximation that:
m

o) = Y a,By (1) (23)
k=1

where By(t), k = 1, 2, ..., m; m € Nare any linearly independent set of
known functions and a, k =1, 2, ..., m; are constants to be determined.
Substituting equation (2.3) in to equation (2.2), then the problem is
reduced to the problem of finding the values of a, k = 1, 2, ..., m; that
make R(¢,t) = 0 at a number of selected points within the domain of

definition of the integral equation. Thus:

m b
R(p,t) = D] {akkj K(t,x)B, (x) dx} —f(x) ...(2.4)
k=1 a
and hence:
m b
> {akkj K(t,,x)B, (x) dx}—f(tk) ~ () ...(2.5)
k=1 a

Where t, k = 1, 2, ..., m; are some selected grid points in the domain of
definition of the integral equation.

Now, by solving the above system of linear algebraic equations for ay,
k=12, ..., mj we will get an approximate solution for the integral
equation, and for the nonlinear integral equation one must solve the

resulting system of nonlinear algebraic equations.

14
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2.2.2 Approximation of the Integral, [Arfken, 1978]:

This method is also one of the approximate methods that may be used
to solve both Fredholm and Volterra integral equations and sometimes it
can be used to solve nonlinear integral equations. In this method, the
integral operator is approximated by a sum of N+1 terms where N € N . So,
as a result, the integral equation is reduced to a set of N+1 linear or
nonlinear algebraic equations.

The basis for this method is that it is possible to approximate the

following integral:
b N
Jp(x)dx = ¥ ¢ py(xy) ...(2.6)
a k=0

where ¢, V k=0,1,.....,m are the weighting coefficients associated with

the selected points xi, k=0, 1, ..., N; that are called the roots of the integral
approximation.
For simplicity, we will take the trapezoidal rule, and consider the

linear Volterra integral equation of the second kind:
t
y(t) = f(t) + [K(t,x)y(x)dx, x € [to,T]

and by dividing the interval of integration (a,t) into N-equal subintervals,

the following discretized equation is obtained:
t
h
IK(ta X)y(x)dx ~ 3 {K(t,to)y(to) + 2K(t,t)y(t) + ... +

2K (t,tn-)y(tn-1) + K(t i) y(tn) § - (2.7)

T-t
where h = To,tizaJrih,i:O, I, ..., N; so:

y(t) = (t) + % {K(t,to)y(to) + 2K (t,t)y(t) + ... + 2K(t,tn-1)y(tn-1) +

K(t,tn)y(tn) ..(2.8)

Now, consider N+1 samples of y(t), namely:

15



Chapter Two Approximate Methods for Solving Integral Equations and
Approximation of Stochastic Integrals

y(to) = f(to)
y(t) = f(t;) + % {K(ti,t0)y(to) + 2K(t;,t)y(t) + ... + 2K(ti,tn-1)y(tn-1) +

K(ti,tn)y(tn) ) ..(2.9)
which are N linear algebraic equations in y(t;), 1= 1, 2, ..., N; which have

to be solved to find the numerical solution of the integral equation.

2.2.3 Other Numerical and Approximate Methods:
There are so many other approximate and numerical methods that
may be used to solve integral equations. These methods may be classified
according to the type of the integral equation and the kernel of the equation.
The following is a list of some of these methods:

1. Least square method, [Al-Shather, 1999].

2. Iterated solution of Fredholm integral equations with symmetric kernel
by quasi-Newton method, [Sadhen, 1981].

3. The solution of the integral equations with symmetric kernel, [Jerri,
1985].

4. Iterative approximates the characteristic function, [Hildbrand, 1965].

5. Linear and nonlinear programming methods to solve integral equations,

[Delves, 1973].

2.3 Certain Types of Stochastic Integrals:
In this section, we shall consider the stochastic integral and its
properties from a more mathematical perspective at some time extending

the definition to wider class of integrals. For this, it is supposed that the
a probability space (2, A ,P), a Wiener process W = {W;: t > 0} and an
increasing family {A,: t > 0} of sub c-algebras of A, such that W, is
A, -measurable with E(W,| A;,) = 0 and E(W,— W A,) = 0 w.p.1, for all

0 <s <t, [Kloeden, 1995].
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Definition (2.1), [Friedman, 1975]:

A stochastic process X; defined on [a,b] is called a step function if

there exist a partition a =ty <t; <... <ty =b of [a,b], such that X, =X, if

ti<tgti+1,i20, 1, ...,N—l.

Lemma (2.1), [Friedman, 1975]:

Let f € sz[oc, B], where sz[oc,B] is the space of all functions f,

p
such that [|(t)]” dt <oo

1. There exist a sequence of continuous functions g, in Lzm[oc, B], such that:
f 2
lim [[f(t)—g,(t)[7dt=0 as. ...(2.10)
n—oo o
2. There exists a sequence of step functions f, in sz[oc, B], such that:

B
lim [|f(t)—f, (1) dt=0 a.s. (2.11)
n—»oo

Definition (2.2), [Friedman, 1975]:
Let X, be a step function in Lzm[oc, B], say:
Xt: Xti ,ifti<t<ti+1,0SiSN_ 1

where a=1t,<t; <... <ty =Db. The random variable:
N-1
2. th |:th+1 _th }
k=0
is denoted by:
b
[X, dW,

and is called the stochastic integral with respect to the Brownian motion Wi,

which is also called the It6 integral.
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Theorem (2.1), [Friedman, 1975]:

Let X,and X, bein Lzm[oc, B] and suppose that:

b 2
JIX,, -X,[ dt—50 as n—> .(2.12)
a

Then:
b b
X, dt—E—[X dt asn— w0 .(2.13)
a a

where —P— refers that the converge is in probability.

Lemma (2.2), [Friedman, 1975]:
If X; € sz[oc, B] and X, is continuous, then for any sequence =, of

partitions a =t <t,; <... <t,,=bof[a,b] with |t,| —> 0

tn,k
k=0

my, -1 b
> X, [th,kﬂ—w ]Lﬂxtdwt as n—s oo ..(2.14)

Theorem (2.2), [Friedman, 1975]:
If X, is a step function in sz[oc, B], where sz[a, B], and W, is the

Brownian motion, then:

b
E thth]=0 ...(2.15)

2 b
=E[]Xf dt] ...(2.16)

b
[ X, dW,

2.3.1 The Simples of Stochastic Integrals:

Let us start with the easiest possible stochastic integral of the form:

b
[ dwW, ..(2.17)
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This type of stochastic integral is with respect to Wy, which is more
exactly represents, the Wiener process. The Ito integral of the function
which is always equals 1, because this is a definite integral.

This work chose any set of time-points t;, 1 =0, 1,..., N — 1; we like,
and treat 1 as an elementary function with those descritized times as its
break-points. Then using our definition of the It6 integral for elementary
function:

b N-1

£ dw, = EO W, =W,

=W, - W, ..(2.18)

a
Following are some fundamental and necessary concepts in the theory

of stochastic integrals that will be used in the solution of SIE’s.

2.3.2 More Complicated Stochastic Integrals.

Another type of simple stochastic integrals which is more complicated
than the stochastic integral given subsection (2.3.1) which arises from the
following SODE:

dX; =W, dW, ...(2.19)
where the behavior of W, is governed by the rules of the Brownian motion.

Integrating both sides, one may get:
t
X, = [W, dW, ...(2.20)
0

where it is assumed for simplicity that X, = 0.
In the It6 integral, equation (2.20) is approximated with the following

stochastic sum:

N-1
i=0
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. b
where it is assumed that t = NAt, At =

and WN = W(tN), with W() =

W(0), which is just the discrete form of the variance of a random variable

with zero mean, i.e.,

E(AW)) = 0, Var(AW)) = WA W) ..(2.22)

Equation (2.21) may be rewritten as:

1 N-I

Xi= 5 Z(:) Wj2+l - sz - (Wj2+1 —2W, W, + sz)
J:

152 2 2
- Eg[wjﬂ — W, _(Wj+1 _Wj) ]

1
— ] [OW2 W)+ (W2 W ek (WE - WE) |-
N-1 )
> (W= W) }

1 2 N 2
= 5 (WN _Wo)_ Z (Wj+1 _Wj)

j=0
1 N-I

2
> AW,

1 2 2
FWR-W) -3 2

The sum can be written as:

N-1 ) 1 N-1 )
jgo AW} =N| > AW, ..(2.23)

j=0

Since it 1s known that AW; = W;,; — Wj is normally distributed with mean 0
and variance At, because it governs the jump for Brownian motion, then as

N —— o0 and by equation (2.22):

N-1
Var(AW) = E(AW?) = % > AW! = At ..(2.24)
i=0
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So that the approximation to the equation (2.20) becomes:

1 1
X, = — (W3 = W) — —NAt ...(2.25)
2 2
From the definition of the Brownian motion, W, = W(0) = 0 and after
substituting for Wy = W(ty) and NAt = t, we have:

1 1
X, = Ewﬁ - Et ...(2.26)

In the Stranovich integral, equation (2.20) is approximated with midpoint

rules as:

£+t

N-1
X, = zo W( ](Wj+1 -W)) ..(2.27)
P

t.
where the value of W[JTHJ is approximated by:

Lin 1 :
\\Y 5 = E(Wj+Wj+l)+Cj ,J:O,l,.....,N-l

where C;, j = 0,1,....,N-1 must be determined so that the above

approximation still satisfies the values of Brownian motion. Then:

X, = %Wf ...(2.28)

Theorem (2.3), [Friedman, 1975]:

Let X, be a Weiner process and 7, = {tfn),tgn),. . .,tg\?) } be a sequence

of partitions of the finite closed interval [a,b] with |, —— 0 as n —— .

Let:
S - I%(Xm) _x® )2

t tg—
k=1 k k-1

Then S,—— b — a in the mean.
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2.4 Other Types of Stochastic Integrals, [Al-Afif, 2012]

We shall give some remarks concerning the development the
discussed certain types of stochastic integrals, in which it is pointed out the
essential difference between them. Historically, in 1930 N. Weiner

introduced an integrals of the form:
b
J2(t) dW,
a

where g(t) is a deterministic real-valued function and {W,: t € [a,b]} is a
scalar Brownian motion process. Auther [1t6, 1944] generalized the integral
include those cases were the integrand is random. That is he obtained an

integrals of the form:
t
[2(s,W,) dW, , t € [0,1].
0

which is referred to as the It6 stochastic integral or simply the stochastic
integral.
Let {W,:t € [a,b]} be a scalar Brownian process. In this subsection,

we shall be concerned with the integral:
b
[g(s,W,) dW,,a<b ..(2.29)

For a fairly general class of functions g. As it is well known, almost all
the sample functions of Brownian motion process are of unbounded
variation and hence the integral (2.29) cannot be defined as an ordinary
Stieltjes integral.

First, equation (2.29) will be defined for the class of step functions,

that is, the function g is rewritten in the form:

0, t<a
g(t,Wy) = gi(wt)a t<t<t, ...(2.30)
0, t>Db
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where a =ty <t; <... <ty <ty =Db, g(W,) are measurable with respect to
the c-algebra A, , and:
E{|gi(W)’} <o

for such function, define the It6 integral by:

b N-1
.[g(t’Wt) dW, = > gi(W)(W, , — W) ..(2.31)
a i=0

where it is supposed that g(t,W,) is any function satisfying the following

conditions:
1. g(t,W,) is a P-measurable function from [a,b]xQ into R™, assuming

the usual Lebsegue measure on R™.
2. For each t € [a,b], g(t,W,) is measurable with respect to c-algebra

ﬂlt ,1s the smallest G-algebra on €2, such that W, s <t; is measurable.
3. [ Elg(t, W) [ dt <.

In view of equation (2.30) it is evident that the classes of step
functions satisfy the above conditions.

For the function g(t,W,) satisfying last conditions 1-3, their norm will

be defined as follows:

X 1/2
18t W)l = {IE( g(t, W) ) dt} ...(2.32)

For this case Doob has shown the following [Doob, 1953]:
1. g(t,W) can approximated in the mean-square sense by a sequence of
step functions {g,(t,W,)}, that is:
I8t Wy) = ga(t, W)[| —> 0 as n—— o

2. The sequence of integrals:
b
[ 2(t, W) dW,
a

possesses a mean square limit.
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CHAPTER THREE

APPROXIMATE AND NUMERICAL
SOLUTIONS OF STOCHASTIC INTEGRAL
EQUATIONS

3.1 Introduction:

To introduce the concepts and main issues concerning the time
discrete approximation of the solution of SIE’s, we shall concern in this
chapter with the collocation method and approximating the integrals for
solving SIE’s in linear and nonlinear cases and for all the cases of
stochastic integrals that are defined and discussed in chapter two.

This chapter consists of five sections. In section (3.2), either numerical
or approximate solutions of certain types of SIE’s are considered. In section
(3.3), the general form of SIE’s and its approximate and numerical
solutions, as well as a modified approach, using the same methods used in
section (3.2) will be considered. In section (3.4), nonlinear SIE’s are given
and discussing its approximate and numerical solutions. Finally, in section
(3.5), a special type of SIE’s is considered, which is called random integral

equations.

3.2 Solution of Special Types of Linear Stochastic Integral Equations:
This section concerns with the numerical and approximate solution of
linear SIE’s using two approaches, the first one is an approximation method
which is based on the collocation method and the second approach is based
on the numerical method by approximating the integrals using certain
numerical integration methods, which is for simplicity here is the

trapezoidal rule.
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3.2.1 The Collocation Method For Solving Linear Stochastic Integral
Equations:
As it is said previously, this method is one of the easiest and earliest
approximate methods to solve SIE’s. To illustrate this method, consider the

second kind linear SIE:

t t
X, =X, + [K(t,9)X ds+ [ dW, , tyeR ..(3.1)
to to
where W, is the Wiener process with mean zero and variance h, K is an

integrable function. Then applying equation (2.11), the second integral

equals to W, —WtO and therefore equation (3.1) will be reduced to the

following easiest form:

t
X, =X, + [ K(t,9)X, ds + W, =W,

to
= (X, + W, - W, )+ } K(t,s)X(s)ds ..(3.2)
to
and hence equation (3.2) may be written as:
X, =g(t,W,)+ j K(t,s)X, ds ...(3.3)
to
where:

g(t, W) = Xto + W, — Wto
Suppose for approximation that:

where By(t), k = 1,2,....m; m € N are any linearly independent set of

known functions satisfying B, (t,)= 0 and ¢, k = 1,2,...,m; are constants

to be determined. Substituting equation (3.4) in to equation (3.3), yields to:
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Xto + i c, By () =g(t, W) + f K(t,s) {Xto + i ¢, By (s)}ds
k=1 k=1

to

or equivalently:

kZ::lckBk (1) = X ¢, [ K(t,9)B(s)ds — jK(t,s)Xto ds = g(t,W) - X,

k=1 g to
and hence:
m t
Y ¢, [B (D-h (0] - [K(t9)X, ds =gt W) -X,,  ...3.5)
k=1 tO
where:

hi(t) = } K(t,s)B, (s)ds

to
and upon evaluating equation (3.5) at m-distinct discritzed points ty,t,,...,t,
in [a,b], we get a linear system of algebraic equations Ac = b in ¢y,cy,...,Cn

that can be solved to get the solution of the linear SIE given by equation

(3.1), where:

| Bl(tl)_hl(tl) Bz(tl)_hz(tl) Bm(tl)_hm(tl) |
A= Bl(tz)_hl(tz) Bz(tz)_hz(tz) Bm(tZ)_hm(tZ)

_Bl(tm)_hl(tm) B2(tm)_h2(tm) Bm(tm)_hm(tm)_
c=[c; ¢ ... cm]T,

b=[gt, W,) X, &t W,) =X, - &t W, ) =X 1"

As an illustration, consider the following example:

Example (3.1):
Consider the following linear SIE:

t t
X, =1+ [(t+8)X ds+ [dW,
0 0
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and in order to use the collocation method to approximate the solution we
start by letting Bi(t)=t', i = 1,2,...,m; and if m = 10 then the approximate
solution will be of the form:
10
i=1
and hence
10 ) t 10 )
1+ > it =1+ W — Wy) + I(t +s)[1+ D ¢;s']ds
1=0 0 =0
or equivalently:
0 .t . t
D gt - I (t+s)s'ds]— I (t+s)ds = W, — W,
i=l1 0 0
and hence the following linear system is obtained Ac = b, where:

[0.084 -5.06x10° -0.014  -0.015 -0.015 -0.015 -0.015 -0.015 -0.015 0.015 |

0.133 -0.021 -0.052 -0.058 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06
0.142 -0.05 -0.109 -0.127 -0.133 -0.134 -0.135 -0.135 -0.135 -0.135
0.107 -0.095 -0.181 -0.216 -0.23 -0.236 -0.238 -0.239 -0.24 -0.24
0.021 -0.161 -0.264 -0.318 -0.346 -0.36 -0.368 -0.371 -0.373 -0.374

-0.12 -0.256 -0.359 -0.428 -0.471 -0.498 -0.514 -0.524 -0.531 -0.534
-0.321 -0.385  -0.468 -0.538 -0.592 -0.633 -0.662 -0.683 -0.698 -0.709
-0.587 -0.559  -0.595 -0.647 -0.697 -0.743 -0.782 -0.815 -0.842 -0.865
-0.923 -0.788  -0.752 -0.754 -0.773 -0.799 -0.828 -0.858 -0.887 -0.916
-1.333 -1.083  -0.95 -0.867 -0.81 -0.768 -0.736 -0.711 -0.691 -0.674

b=[0.867 0.867 0.867 0.867 0.867 0.867 0.867 0.867 0.867 0.867]"

and upon solving this linear system, we get the solution:
c=[25.358 —303.58 2.00x10° —8.13x10° 2.15x10* —3.75x10" 4.31x10"
—3.13x10* 1.30x10* —2.37x10°]"
Hence the solution:
X, =1+[(25.352)t' (303.58)t* (2.00 103)t> (8.13 103)t* (2.15 104)t°
(3.75 104)t° (4.31 104)t” (3.13 104)t® (1.30 104)t” (2.37 103)t'°]

In applications, another type of linear SIE’s it’s be encountered, which

is more complicated to be evaluated where this complexity is due to the
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stochastic integral part. To illustrate such type of equations, consider the

linear SIE:

t t
X, =X, + [ K(t,s)X ds+ | W, dW, ...(3.6)

to to
where K is an integrable function, t, € R and W, is the Weiner process.
Then applying equation (2.28) on the second integral, which is equal to
1

—(W? —W? ) and therefore equation (3.6) is given by:
2 t to

t
1
X, =X, + [ K(t,s)X,ds +5(Wt2 - W )

to

t
to

and hence equation (3.7) may be written as:

X, =g(t, W)+ [ K(t,5)X, ds ...(3.8)

to
where:
g(t, W)= X4 +%(Wt2 _Wtzo )
By applying the collocation method for solving the linear SIE, we get
a linear system of algebraic equations in cy,c,,...,c,, that may solved to get
the solution of the linear SIE given by equation (3.3).

The resulting linear system may be derived as follows:

Xto + i ¢ By (t) = g(t, W) + j. K(t,s) |:Xt0 + i ¢ By (S)j|ds
k=1 k=1

to

Hence, the related linear system:

kﬁ_lck [Be()—h, (0] - [K(t,3)X, ds = g(t, W)~ X,

to
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where:

hi(t) = JE K(t,s)B, (s)ds

to

which may be written in matrix form as Ac = b, where:

| Bi(t)—h(t)  By(t)—hy(t) - By(t)—h,(t) |
Ao Bi(t,)—hy(t;)  By(ty)=hy(ty) -+ By(ty)—hy(t,)

_Bl(tm)_hl(tm) BZ(tm)_h2(tm) Bm(tm)_hm(tm)_
c=[c; ¢ ... cm]T,

b=[gt, W, )X, gt W, )-X; .. gltmW, )X, 1

As an illustration, consider the following example:

Example (3.2):
Consider the following linear SIE:

t t
X, =1+ [ (1> +25)X  ds+ [ W, dW,
0 0

Hence in order to use the collocation method to approximate the
solution, we let By(t) = tk, 1=1,2,...,m; and if m = 10 with approximate

solution:

Xi= 1+ Z CkBk(t)
k=1

and hance
10 k 1 2 2 F 2 10 k
1+ > ¢t :(1+§[W (WA DA +29)[1+ X ¢ps” 1ds
k=1 0 k=1

or equivalently:
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10 t t
> o [t = [ (t* +2s)s"ds] - [ (t* +2s)ds = %[W2 —W2 ]
k=1 0 0

and hence the following linear system of algebraic equation Ac = b is
obtained, where:

[1.077 0.988 0.979 0.978 0.978 0.978 0.978 0.978 0.978 0.978 ]
1.098 0.943 0.912 0.906 0.904 0.904 0.904 0.904 0.904 0.904
1.044 0.851 0.792 0.774 0.768 0.767 0.766 0.766 0.766 0.766
0.897 0.696 0.611 0.576 0.562 0.556 0.554 0.553 0.552 0.552
Ao 0.635 0.458 0.359 0.306 0.278 0.264 0.257 0.254 0.252 0.251

0.239 0.117 0.021 -0.044 -0.085 -0.111 -0.127 -0.137 -0.143 -0.146
-0.315 -0.352 -0.42 -0.482 -0.531 -0.569 -0.596 -0.616 -0.631 -0.641
-1.05 -0.978 -0.989 -1.024 -1.064 -1.103 -1.138 -1.167 -1.192 -1.213
-1.992 -1.793 -1.718 -1.695 -1.696 -1.71 -1.729 -1.752 -1.776 -1.8
| -3.167 -2.833 -2.65 -2.533 -2.452 -2.393 -2.347 -2.311 -2.282 -2.258 |

b=[1.001 1.002 1.001 1.005 1.014 1 1 1.002 1.024 1.003]"
and upon solving this linear system, we get the solution:

96.321 -1.23x10° 8.71x10° -3.81x10* 1.08x10°
2.03x10° 2.49x10° -1.92x10° 8.44x10* -1.61x10*

cC=

Hence the solution:

X, =1+[(96.32D)t" (-1.23x10°)t* (8.71x10*)t> (-3.81x10%)t*
(1.08x10°)t° (-2.03x10°)t® (2.49x10°)t” (-1.92x10%)t3
(8.44x10M)t” (-1.61x10M)t'°]

3.2.2 Approximation of Integrals Method for Solving Linear Stochastic

Integral Equations:

The two special types of linear SIE’s discussed in subsection (3.2.1)
may be solved using the method of approximating the integrals based on
the trapezoidal rule, i.e., solving the linear SIE’s (3.3) and (3.8) using
numerical integration methods, as follows:

For the first type of the integral equations given by equation (3.1),

which may be written equivalently as equation (3.3), namely:
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t
Xe=g(t, W,) + [ K(t,)X;ds , te[t,,T], TeN

to
where:
g(t,W,) = Xto + W, — Wto
and upon using the trapezoidal rule, we get:

h
Xe=g(t, W)+ E{K(t’ ‘[O)Xt0 +2K(t, tl)th + ...t
2K(t, tN_l)XtN_1 +K(t, ty )XtN }

where h = ~ O t,=ty+ih,i=0,1,....N;and N € N.

Now, consider N + 1 samples of X

h
Xti :g(ti s Wt)+5 {K(tiﬂtO)XtO +2K(ti’ tl)th Tt
K(t, )X, ) - (39)

and upon evaluating equation (3.9) at N equations in Xti i=1,2,....N; and

t,t,...tn 1In [t,T], a linear system of algebraic equations is obtained and
may be solved to find the approximate solution of the linear SIE (3.9).

The following linear system AX; =Db is obtained, where:

[1-hK(t,,t,) 0 0 |
PR, t) T-hK(t, 1) 0
A=| ?
h
TK(tNatl) _hK(tNatz) l_hK(tNatN)

X = [th th e XtN ]T and b = [g(tla th ) g(t23 Wt2 ) e g(tma th )]T

Also, for the second type of integral equation given in equation (3.6),

which is equivalent to equation (3.8), namely:
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t
Xo=g(t,W) + [K(t,)X, ds

to

where:

1
g(t,Wy) = Xto + 5 (Wtz - Wt20 )

and upon using the trapezoidal rule, the following discredited equation is

obtained:
h
X =g(t, Wy + ) {K(t,to) Xt0 + 2K(t,t1)Xtl + ...t 2K(t,tN_1)XtN_1 +
K(t,tx) XtN } ...(3.10)
and therefore similarly a linear system of algebraic equations in Xti,

1=1,2,...,N; is obtained that can be solved to find approximate solution of

the SIE (3.10).

Example (3.3):
Consider the following linear SIE:

t t
X, =1+[sX ds+[dW, ,te[1,T]
0 0

Solving the linear SIE’s using numerical integration methods. Thus we can

rewrite the integral equation as:
Xi=1+W,— W, + js.XS ds
0
and upon using the trapezoidal rule, we get:
Xi=1+W - W, + %{tOXtO + 2t1Xt1 + ...+ 2tN_1XtN—1 + tNXtN }

where h=0.1 ,t;=1h,1=1,2,...,.Nand N = 10.

Now, consider N samples of X, namely:
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h
Xti = 1+Wti - WtO + 5 {tOXtO + ZtIth + e + 2tN—1XtN_1 + tNXtN 5

i=1,2,...,10
and upon evaluating 10 equations in Xy s 1=1,2,.,10, we get a linear

system AX; = b of algebraic equations that may be solved to find the

approximate solution of the linear SIE, where:

[0.99 0 0 0 0 0 0 0 0 0 0
-0.01 0.98 0 0 0 0 0 0 0 0
-0.015 0.015 0.97 0 0 0 0 0 0 0
0.02 0.02 0.02 0.96 0 0 0 0 0 0
0.025 0.025 0025 0025 0.95 0 0 0 0 0
A= 0.03 0.03 .03 0.03 0.03 9.40x10" 0 0 0 0
0035 0035 0035 0035 -0.035 3.50x10% 0.93 0 0 0
0.04 0.04 0.04 0.04 0.04 4.00x10% -0.04 0.92 0 0
0045 0045 0045 0045 0.045 0.045 0.045 0.045 091 0
-0.05 0.05 -0.05 0.05 -0.05 -0.05 -0.05 -0.05 .05 09|

b:[1.056 1.086 1.007 0.936 0.976 1 0.784 1.01 0.924 1.102]T

which is based upon using 1000 trials for the Weiner process, we get the

following results:

X, :[ 1.0711.129 1.086 1.062 1.165 1.269 1.133 1.481 1.524 1.881]T

Example (3.4):
Consider the following linear SIE:

t t
X, =1+[(s+ DX, ds+ [ W, dW, , te[0,1]
0 0

Hence by the approximation method of integrals for solving linear SIE’s

based on the trapezoidal rule, Thus:
h
X =g(t,W) + 5 {(to+D) Xy, T2(, +D X + ..+ 2(ty +1)

XtN_1 +(ty +1D) XtN }

where h=0.1,t,=1h,1=1,2,...,Nand N = 10.
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Now, consider N samples of X, namely:
h
X, =g(t, W)+ 5{(% +1) X, 204 +D X + o+ 2(t o + 1)
XtN—l +(ty +1) XtN b, 1=1,2,...,10
and upon evaluating 10 equations in Xti ,1=1.2,.,10, we get a linear

system of algebraic equations AX; = b that may be solved to find the

approximate solution of the linear SIE, where:

[0.89 0 0 0 0 0 0 0 0 0
-0.06  0.88 0 0 0 0 0 0 0 0
-0.065 -0.065 0.87 0 0 0 0 0 0 0
-0.07  -007 -0.07 0.86 0 0 0 0 0 0
A -0.075 -0.075 -0.075 -0.075 0.85 0 0 0 0 0
-0.08  -0.08 -0.08 -0.08 -0.08 0.84 0 0 0 0
-0.085 -0.085 -0.085 -0.085 -0.085 -0.085 0.83 0 0 0
0.09 009 -0.09 -0.09 -0.09 -0.09 -0.09 0.82 0 0
-0.095  -0.095 -0.095 -0.095 -0.095 -0.095 -0.095 -0.095 0.81 0
|-0.1 0.1 0.1 0.1 0.1 0.1 0.1 -0.1 0.1 0.8

b:[l.OOI 1.002 1.001 1.005 1.0141 1 1.002 1.024 1.003]T

which is based upon using 1000 trials for the Weiner process, we get the

following results:

X :[1.193 1.296 1.42 1.577 1.775 1.988 2.266 2.607 3.051 3.54]T

3.3 The General Form of Stochastic Linear and Nonlinear Stochastic
Integral Equations:
The general form of a scalar linear SDE is given by:
dX; = (fi(H)X; + £5(1))dt + (g, ()X, + g(t))dW; ...(3.11)

and the equivalent linear SIE is given by:

X = XtO + J.(f1 (s)X, +1,(s))ds + j(gl(s)XS +g,(s))dW; ...(3.12)

to
where the coefficients f}, f,, g, and g, are specified functions of the time t or

constants, provided that they are Lebsegue measurable and bounded on an
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interval 0 <t <T, ensuring the existence of a unique solution X; on 0 < t; <

t < T and each A, -measurable initial value Xto corresponding to a given

Wiener process {W,, t >0} and associated family of c-algebras{ A, , t > 0}.

When the coefficients are all constants, then equation (3.11) is autonomous
and its solution, which exist for all t, t, > 0; are homogeneous Markov

process. In this case, it suffices to consider ty = 0 and when f,(t) = g,(t) =0

and, then the linear SIE (3.12) will be reduced to:
t t
X=X, + [fi(9)X,ds + [ g ()X, dW, ...(3.13)
to to
Equation (3.11) and hence equation (3.12) may be generalized, as it is

illustrated next.

Definition (3.1), [Arnold, 1974]:
The SDE:

dX, = f(t,X,) dt + g(t,X,) dW,, t € [to,T]
for the d-dimensional process X; is said to be linear, if the functions fand g
are linear functions of X, € RY on [t,, T]xR Y, in other words if:

f(t, X)) = A() X, + a(t)

g(t.Xy) = [B1()Xtby (1), Bo()Xtba(t), ..., Ba(t)Xitba(t)]
where A(t) and By(t), k = 1,2...,n; are dxd-real valued matrices, a(t) and

by(t) are RY vector valued functions, a linear SDE has the form:

dX, = (A()X, + a(t)) dt + i(Bi ()Xt +b;(t))dW, ...(3.14)

i=1
where W, = [th Wt2 th]T and is said to be homogeneous if a(t) =

bi(t) = ... =by(t) = 0. Also, it is said to be linear in the narrow sense if B;(t)
=B,(t) = ... =Bpu(t) = 0.

35



Chapter Three Approximate and Numerical Solutions of Stochastic
Integral Equations

Theorem (3.1), [Arnold, 1974]:
Equation (3.14) has the solution:

X, =CDt[c+ Jt' ;! (a(s) ZB (s)b; (s)jds+z I @ 'b, (s)dle
to =1t

where ¢ = X, and:

D, :expl:j [A(s) Z (s)]ds+§ f Bi(s)dwsi}

to i=1 to

is the solution of the homogeneous equation related to equation (3.14):

d0, = AD)D, dt + 3 B, (1), dW,
i=1

with initial value @, =1.

Remark (3.1):
1. In equation (3.14) if d = m = 1, then equation (3.14) will be reduced to:
dX; = (A(t)X; + a(t))dt + (B(t)X; + b(t))dW; ...(3.15)

2. When a(t) = 0 and b(t) = 0, then the SDE given in equation (3.15)

reduced to the following homogeneous linear SDE:

dX; = A(t)X; dt + B(t)X; dW, ...(3.16)
Integrating both sides of equation (3.16), the following LSIE is
obtained:
t t
X=X, + [A()Xds + [ B(s)X, dW, ..(3.17)

to to
by theorem (3.1) and equation (3.17), the solution is given by:
Xi=dc ...(3.18)

where ¢ = X, and

@, =expﬁ[A(s)— Bzz(s)}ds+ j B(s)dws} .(3.19)

to to
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with initial value X, =c.

Now to study the solution of nonlinear SIE’s of the form:
t t
X, =h(t,X)+[ K, (t,8, W) (s, X;) ds+ [ K, (t,8, W)E, (s, X, )dW,  ...(3.20)
0 0

in which sufficient conditions are given to ensure the existence and

uniqueness of a random solution, which are:

(i) The supporting set of a complete probability measure space
(Q,A.,P) with Abeing the o-algebra and P is the probability
measure.

(11) X, 1s the unknown random process.

(iii) h(t, X;) is amap from R™ xR into R.

(av) Ki(t,s,W,) and K,(t,s,W,) are the scalar stochastic kernels which are

random valued functions defined for 0 <s<t<oo.
(v)  fi(s,Xy) and f5(s,X;) are maps from R™ xR into R.

(vi) te R™ and W, is a stochastic process, [Dominik, 1984].

Also, as it is known there are two basic classes of SIE’s currently
under study, namely probabilistic and deterministic. Those integral
equations involving Itd type stochastic integrals and those which can
be considered as probabilistic analogue of classical deterministic integral
equations, whose formulation involves only the Lebsegue integral,
[Tsokos, 1973].

With respect to the process W,, it is assumed that for eacht € R™,

a minimal c-algebra A; < Ais defined such that W, is measurable with

respect to Ay .

Furthermore, we shall assume that [Doob, 1953]:

(i)  The process {W,, A;,te R} is areal martingale.
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(i1)) There is a continuous monotone non-decreasing function F(t),
t e R", such that for s <t.
E[W, — W’ = E{[W, = W’ | A} = F(t) - F(s)

Remark (3.2):

The same approaches followed previously in this chapter to find the
numerical and approximate solution for solving linear SIE’s may be used to
find the solution of nonlinear SIE’s, with the main difference that is the
obtained linear system of algebraic equations will be nonlinear and hence
may be solved using the standard methods for solving nonlinear algebraic
equations.

As an illustration, consider the following example:

Example (3.5):
Consider the following nonlinear SIE:
t L1-X;
X =X, + [(X{-Dds + [ m SdW, , te[0,1]
0 0

Then upon using the numerical integration method based on trapezoidal and

[td stochastic integral, we have the related form:

2
h
X, =X 3 (0, -DH2(X 7 Dk 203 -DHEE D+ o ‘o

2 1X2

1-X; - X
AW, + L AW, +...+ —FL AW,
0 10 ! 10

tN-1

where h is the discretization step size, t € [a,b], N=10. Therefore at the

discretized points to,t,...,ty, we have:

h
Xip = Xy 5 {0 -2 D420 DX =D -

1-X; 1-X? 1-X;
L AW, + LAW, +...+ —LAW, =0
10 10 ! 10 Nl
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and letting for eachi=1,2,...,N:
h
H( X, Xy, o X ) = X = X — E{(}(2tO SD)H2(X D)+t

2
(X2, -DHXE, 1)) — EERATIN
IN-1 - tN 10 to

1-X{ 1-X¢
AW, +..+ ——DLAW, =0
10 10

Then solution of the last system of nonlinear algebraic equations may

be obtained by minimizing the objective function:
N
2
H(Xto ,th ye .,XtN )= > H; (XtO ,th ,...,XtN ) ...(3.21)
i=0

The obtained results for minimizing equation (3.21) starting with the initial
solution:
X01=0.1,Xp,=0.2, X953 =0.3, Xo4=0.4, Xo5=0.5, Xo6=0.6,
X07=0.7, Xp5=0.8, Xp9=0.9, X; =1
with 1000 trail for the Wiener process, are given by:
X¢=[0.981 0972 097 0957 0951 0.939 092 0.901
0.881 0.853 0.837]"

3.4 Second Kind Volterra Stochastic Integral Equations
Random Volterra integral equations may be considered as a special
type of stochastic Volterra integral equations of the second kind, which has

the form:
t
Xe=h(t,W) + [K(t,s, W)f(s,X)ds, t>0. ...(3.22)
0

that is formulated in Hilbert space over the supporting set of a complete
probability measure space is (€2, A,P). A discrete version of the above

random integral equation is given by:
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X,, =h, (W)+X ¢, ;(W)f;(X,),n=1,2,.. ..(3.23)
=

In this section, we shall study the second kind random integral

equation of Volterra type in the discretized form given in equation (3.23),

where:

(1)
(i)

The supporting set of a complete probability measure space(Q2, A ,P).

X, 1s the unknown random variable for each t > 0.

(111)  h(t,W)) is the random free term defined for each t > 0.

(iv) K(t,s,W) is the random kernel defined for 0 <s <t <oo.

v)

f(t,X) 1s a scalar function for each t > 0 and scalar X.

Equation (3.23) is useful in obtaining an approximation to the random

solution of equation (3.22) by electronic digital computation. Also,

equation (3.23) provides a description of physical systems, which yield

observations or outputs only at discrete terms, [Padgett, 1973].

Remark (3.3), [Padgett, 1973]:

l.

We shall make the following assumptions in regarding the random
functions in (3.22). The random solution X, and the stochastic free term
h(t,W)) are functions of t € R" with values in L,(Q, A ,P). The function
f(t,X;) will also be a function of t € R™ with values in Ly(Q2, A,P)
under certain conditions. The stochastic kernel K(t,s,W,) for each
0 <'s <t< o is in the space L. (€2, A ,P); that is, K(t,s,W,) is an essentially
bounded function with respect to p. Hence, the product of K(t,s,W,) and
f(s,X;) will always be in L,(Q2, A ,P).

The following assumptions are made with respect to the random

functions in the stochastic discrete equation (3.23). The random solution

th and the stochastic free term h,(W,) are functions of n € N with

values in the space L,(€2, A ,P). For each value of n € N, fn(Xtn ) is in
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L,(Q2, A ,P), and for each value of th fn(th) is a scalar. For each

value of nand jin N, 1 <j<n, ¢,j(W) is in the space L(€2, A ,P); that
1s, ¢, j(W) 1s bounded in the ordinary sense except perhaps on a set
probability zero for eachnandj, 1 <j<n.

Now, two cases of random integral equations will be considered, as

follows:

Case I:

In order to solve equation (3.22) using the collocation method, we let:
N
i=1
Then substituting equation (3.24) in equation (3.22), yields to:
N t N
> ¢;B;(t,W,) =h(t, W) + [K(t,s, W)f (s, > ¢.Bi (s, Wt)) ds
i=1 0 i=1
and hence:
N
2.¢B;i (6, W) — g(t, W) = h(t,W)) ...(3.25)
i=1
where:

t N
g(t, W) = jK(t, S, Wt)f(s, > ¢.B. (s, Wt)) ds
0 i=1

Case II:
To illustrate this approach, consider the SIE:

t
X,=h(t,W)) + jK(t, s, WHI(s, X,)ds,t>0
0
and upon taking the trapezoidal rule, then:
h
Xt = h(t,Wt) + 5 {K(t,So,Wto)f(So,Xt ) + 2K(t,Sl,Wt1)f(Sl,Xt) + ...+

2K(t,SN_1,WtN_1)f(SN_1, Xt ) + K(t,SN,WtN)f(SN, Xt )}
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b-a

where h = ,Ne N,te[ab].
Now, consider N + 1 samples of X; namely

h
Xti = h(tbwti) + 5 {K(ti9809WtO)f(809 Xti )+2K(tiaistl)f(SlaXti )

+...+

2K(ti,SN—1,VVtN—l)f(SN—l,Xti )+ K(tiaSNaWtN)f(SNaXti )}
and hence:

Xti - h(ti,Wti) — % {K(ti,So,Wto)f(So,Xti )+2K(ti,SI,Wt1)f(Sl,Xti ) +...+

2K (ti,5n-1, Win-1) f(SN—laXti )+ K(ti,SN,WtN)f(SN,Xti ) =0

Also, if f is lines then the last system will be liner which may be

solved easily, but if f is nonlinear then by letting for each 1=0,1,...,N:
h
Hi (Xto 9Xt1 e -aXtN ) = Xti - h(thti) - 5 {K(tias()aWtO) f(s(),Xti ) +
2K(t,81, W) f(s1, X ) + ..o+ 2K (t$n-1, Winer) flsne, X ) +

K(ti,SNaWtN)f(SN’ Xti )}

Then the solution of the last system of nonlinear algebraic equations

may be obtained by minimizing the objective function:

N
H(X,» Xy, oo Xy ) = ZOH?(XtO,XtI,...,XtN) .(3.26)

Example (3.6) (Case I):

Consider the following linear random integral equation:
t

X, =tW-1W? + [ts X, ds, te[0,1]
0

and upon taking the collocation method and let:
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10 . .
X, = > Ci(tlwl)

i=0
Then
IZ(): c.(tWh)— [t.W —ltswz] —jt.s [% c, (siWi)} ds=0
-0 2 0 i

10 . . t 10 . .
> e (tW') —It.s(Z c. (s‘Wl)j ds—(tW-1W?) =0
i=0 0

i=0

which may be rewritten equivalent as

10 . . L
3¢, {t‘ Wt W s”lds} —(tW-1'W?*) =0
i=0 0

10 . . .
> e, W [tl —ﬁt”ﬂ — (LW -1EW?) =0
i=1
and letting
10 ..
Hi(cl,cz,...,cm)zgcivvl tl-L)-(tW-1W?),i=1,2,..,10

Then the solution of the last system of linear algabric equation may be

obtained by the minimizing objectine function:

10
2
H(c,,Cysee5C9) = 2L H (€, Cosne0Cp)
i=1

and the following result are obtained:
¢1=1.00038, ¢,=57.7402, c; = 1.34x10>, ¢, = 5.18x107*, ¢5 = 1.37x107°,
ce = 0.6, c; = 1.48x107, cg = 156.807, co = 0.9, ¢10 = 1
hence the solution
X = (1.00038)tW +(57,7402)(tW)* + (1,34 x107°)(tW)’ +
(5.18 x107H)(tW)* + (1.37 x10)(tW)’ + (0.6)(tW)° +
(1.48x107)(tW)’ + (156.807)(tW)® + (0.9)(tW)’ + (tW)'°
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Example (3.7) (Case II):

Consider the following linear Volterra random integral equation:
t
X, =tW-1W? +[2ts WX, ds, te[0,]]
0

and upon using the trapezoidal rule, then:
h
X, =tW-1t'W? +2 2t08)Wo X, )+ 4t 5T WX+t
2(2t.55. Wy X, ) +2t,0.870. Wi X, }

Whereh:bl:la, t =ih, i=0,1,2,...N, N=10, a=0 and b=1

1

Now, consider N+1 samples of X, . namely:

and letting for each i=0,1,2,...,10
h
. 5 vxr2 2
Hl(XtO ,th ""’tho )= Xti —(t,.W, —%ti W5) —5 {Zti,sO.VVO.XtO +
4,57 W X+ 28875 Wio X 1 =0

Then the solution of the last system of linear algabric equation may be

obtained by minimizing the objective function:
10
H(X, . X, .. X, )= DH (X, . X, 0 X )
i=0

and the following result are obtained:

Xio =0, Xt =-4.3896797625x107, Xi, =-0.0135873391,

X3 =-0.0141961494, X, =-0.0390535228, X5 =-0.0843213914,

Xite = 3.018436367x107, Xt; =-8.0425849784x107, Xis =0.0446755358,
Xio=0.1898116651, Xi;o=0.0850251144.
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Chapter Three Approximate and Numerical Solutions of Stochastic
Integral Equations

Example (3.8) (Case II):

Consider the following nonlinear Volterra random integral equation:
X, =tW-1W? + jt.s.wz.xztds, t[0,1]
0
and upon using the trapezoidal rule, then:
X, =tW-1W? 4+ % {(tg$0-W?5 - X )+ 2t,.87. W2 X +.+

2(2t.55.Wo. X, )+ t19.579.W? 0. X, }

where h:b_a

, t.=1h, 1=0,1,2,..,N, N=10, a=0 and b=1
Now, consider N+1 samples of X, . namely:
h
5 w2 2 72 2 w2
Xti _(tl’Wl _%tl .\Rf1 )_E{tl's()'W O'Xto +2t1.Sl .W 1’Xt1 +....+

4t;.55.Wo X +1;570.W? . X, 1 =0

t10

and letting for each 1=0,1,2,...,10
: h
Hi(X, , X, 50 Xy ) = X, — (6. W, -6 W2) - > {2t,.80. W% X,

+ 24,87 W2 X+ 1870, WP X 1 =0

1o
Then the solution of the last system of linear algabric equation may be

obtained by minimizing the objective function:

10
H(Xt()’th""’tho):ZHiZO(t()’ths"' X )
i=0

> ho
and the following result are obtained:
Xto=0, X4=-4.39x107, X=-0.013589462, X;=-0.014199166,
X1,=0.038083829, X1s=-0.08450377, X1:=2.61x107,  Xt;=-8.45x107,
Xitg=0.044263214 , X1t9=0.190298792, Xt10=0.079495249
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Conclusions and Future Work

From the present work of this thesis, we may conclude that the
obtained results for solving SIE’s by using the trapezoidal rule is more

accurate than those results obtained by using the collocation method.

In addition, the nonlinear programming method is the more
simplest approach than the numerical or approximate method that may be

used to solve SIE’s.

Also from the present study, some recommendations for future

work may be drawn:

1. Using the present approaches of this thesis to solve SIE’s with multi-

Weiner process, for linear and nonlinear cases.

2. Using other numerical and approximate methods to solve SIE’s, such as
the least square method, iterative methods, spline methods, variational

1iteration method, etc.

3. Studying and solving stochastic integro-differential equations.
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Appendex Computer Programs

The method for solving example (3.1) using collocation method
of linear stochastic integral equation, block for evaluating
the result 1000 times

sol:= for ke 1..NN
w2 <« morm(1,0,h)
Q«w2-0
g yt0+Q
for ie 1..N
for je1.N
Ai,j < a(i-0.1,j)

bj (_gl,l

sol— A b

soll<k> <« sol

avarege of the results

NN

Z SOlkk, i

=1

kk NN

1
-1.055
29.807

-340.151
2.10E+03
-7.80E+03
1.83E+04
-2.73E+04
2.51E+04
-1.30E+04
2.88E+03

av=

O |R(QA | N | N BR[NNI |-

ey
=}

A-1



Appendex Computer Programs

The method for solving example (3.2) using collocation method
of linear stochastic integral equation , block for evaluating the
result 1000 times

sso := for ke 1..NN

w2 < morm(1,0,h)
1

Qe 1w -0)
2

g« yt0+Q

for ie 1..10

for je1..10
Ai,j <« a(i-0.1,))

bj <—gl’1

sol — A b

(K
$s00 <« sol

avarege of the results

1
-1.159
32.259

-365.705
2.24E+03
-8.32E+03
1.95E+04
-2.90E+04
2.66E+04
-1.37E+04

3.04E+03

av =

O |0 Q[N || [N =

ey
=}

A-2



Appendex

The method for solving example (3.3) using approximation
method for solving stochastic integral equation ,block for

evaluating the result 1000 times

sool :=

for ke 1..NN

w2 < morm(1,0,h)

w0 <« 0
Q«— w2 —w0
g« x0+ Q
for je 1..N
for ie 1..N
A —h £ i
i < pi,j < 7 (ti) 1t 1> ]
P 1 h-f(ti) if i=]j
Py ¢ 0 ifi<]
Py 1 ifi=laj=1
pl,j
bj <« g1
sol « A~ b
sool<k> <« sol
sool
avarege of the results
NN
Z sool. ..
1,
=1
av. ;=
1 NN
1 1.004
2 1.034
3 1.066
4 1.11
av = 5 1.167
6 1.24
7 1.329
8 1.437
9 1.567
10 1.724

A-3

Computer Programs



Appendex

Computer Programs

The method for solving example (3.4) using approximation method for
solving stochastic integral equation ,block for evaluating the result 1000

times .

sool :=

for ke 1..NN

g<«<—x0+Q

for jel.N

A. .«
1,]

bj <—g1,1

sol«— A 1-b

sool<k> <« sol

snol

w2 <« morm(1,0,h)

Q « %-(sz — O)

for iel..N

Py« _—zh-f(ti) if i>]

P 1—h~f(ti) if i=j

p. .<«< 0 if i<j

1,]

p. .« 1 ifi=1Aj=1

1,]

pl,_]

avarege of the results

1

av. :

NN

Z sool. ..
1,]]

=t

NN

1.005

1.21

1.321

av =

1.456

1.623

1.826

2.075

2.38

O[R[N [N [N |-

2.753

o
(—]

3.212

A-4
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