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Abstract

The main aim of this work is focused on studying the global asymptotic
stability in the probability for some class of closed-loop control system of Ito-
type in the presence of system uncertainty.

Some nonlinear continuous-time Ito-dynamic stochastic sysiem deriven by
unbounded stochastic noise input have been considered, where the
equilibrium point of the stochastic system is preserved even in the presence of
noise.

The globa asymptotic stability in probability has been developed by using
stabilization controller and Lyapunov stochastic approach.

The stochastic Lyapunov function is computed to guarantee the global
asymptotic stability in probability. Some resulte of estimation of exponential
stability is also discussed.

The necessary theorem for finding the controller design and stability
Lyapunov stochastic function have been stated and proved which are

supported by some concluding remarks and illustrations.
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Introduction

The design of global sabilization controller for stochastic nonlinear
systems has been an active area of research in recent years ([Deng, Krstic and
Williams 2001]and [Liu, Zhang and Jiang 2007]) and the references therein).
Since Deng and Krstic [Deng and Krstic 1999] firstly gave a result of output-
feedback stabilization, the output feedback controller design for stochastic
nonlinear systems has received more intensive investigation [Liu and Zhang
2006], [Deng and Krgtic 2000] and [Liu, Zhang and Pan 2003], which is
because not only in general, the design of output-feedback control is more
difficult and challenging than that of full state-feedback control, but also the
output-feedback control is more practical in engineering. These known results
are limited to the systems in output-feedback form, in which the nonlinear
terms only depend on the measured output. For the deterministic systems, in
[Mazence, Praly and Dayawansa 1994] counterexamples were given
indicating global stabilization of the nonlinear systems in the general lower-
triangular form via output feedback is usually impossible without introducing
extra growth conditions on the unmeasurable state of the system. Since then,
much research work has been focused on the output-feedback global
stabilization of nonlinear systems under various structure or growth
conditions [Jiang 2000] and [Praly and Jiang 2004]. Recently, there are some
results of output-feedback control for the stochastic nonlinear systems in
which nonlinear terms are dependent on the output and unmeasurable inverse
dynamics or unmodeled dynamics [Liu and Zhang 2005] and [Wu, Xie and
Zhang 2007].

In nonlinear systems, the stability theory is much richer than in linear systems
and hence various notions of stability, such as exponential stability, global

versus local stability, practical stability, and boundedness, have been
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introduced [Sastry 1999], [Khalil 1996] and [Kristic, Kanellakopoulos and
Kokotovic 1995].

Lyapunov theory is a well-known proper mean for linear and non-linear
systems analysis. The major problem of that theory which can be pointed,
especialy for non-linear systems is to derive a function such that it shoud
satisfy the Lyapunov conditions. If such afunction is derived, system stability
can be guaranteed, while in this regard the designer’s experiences are also
desired. Although regarding this issue, there are several proposed method
available while each individual may face with some particular constrains.
Some general methods to determine the Lyapunov functions like,Method of
linearization around the operating point; where the major issue for this
technique is eliminating the non-linear dynamics of system as well as
procuring local stability, Crossofskey method; where in the case of large
number of system states, solving the related equations and determining of
conditions can be a tough job, Generalized Crosophsky method; where in this
method determining of conditions are easy job, while computational works
are so high and Variable gradient method; while in this method solving the
equations is not so easy; whereas the results are smilar to the method of
linearization [Ali Akbar, Rushidi-Njad and Sadrnia 2005].

Regarding to the above issue; our attempts is ended to a Smple proposed
technigue the so-called back-stepping methodology. This technique is a
backward technique that can help one to find the Lyapunov functions. One of
the advantages of this method is to prevent eliminating nonlinear dynamics of
the system. In fact, back-stepping method is a modification from state
feedback of the linear systems to non-linear systems by using Lyapunov
theories. It seems that the origin of back-stepping theory is not precisely
recognized, while some concurrent analysis with regards to this method has
been done. The most important study from the literature can be addressed to

some research paper of the 1980 decade. It is important to mention that the
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researches of Kokotowich and his colleagues have introduced this issue
[Harkegard 2001]. In 1991 Kolotowich et.al. presented this idea through his
published paper [Kokotovic 1992]. Kanlacupulos proposed a mathematical
for desgning a non-linear controller using back-stepping technique
[Kanellakopoulos 1992]. Follow to these researches some years later,
reasearchers such as Christic [Kristic, Kanellakopoulos and Kokotovic 1995],
[Freeman and Peter 1996], and [Spultcher, Jankovic and Kokotovic 1997]
published several research paper with regards to this subject. Also
Kokotowich in 1990 at international IFAC symposum reviewed the
progresses of back-stepping technique during 1990 decade [K okotovic 1999].
After considering the stabilization of a specific class of stochastic

nonlinear systems, we address the classical equation of when is a stabilizating
(in probability) controller optimal and show that for every system with a
stochastic control Lyapunov function it is possible to construct a controller
which is optimal with respect to a meaningful cost functional.
After considering the stabilization of feedback stochastic systems, we present
the following result: for general stochastic systems affine in the control and
noise input, we design stabilizing robust for some class of a nonlinear
stochastic dynamic system control [Hua Deng and Miroslav Krstic 1997].

While the current robust nonlinear control toolbox includes a number of
methods for systems affine in deterministic bounded disturbance, the problem
when the disturbance is unbounded stochastic noise has hardly been
considered. We present a control design which achieves globa asymptotic
(Lyapunov) stability in probability for a class of strict-feedback nonlinear
continuous-time systems deriven by white noise [Miroslav 1997].

Despite major advance in robust stabilization of deterministic nonlinear
systems achieved over the last few years and reported in [Freeman and
Kokotovic 1996], [Krigic, Kanellakopoulos and Kokotovic 1995] and

reference therein, the stabilization problem for stochastic systems is yet to be
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addressed. While not as refined as their deterministic counterparts in [Khalil
1996], Lyapunov techniques for stability analysis of stochastic systems do
exist, for example, the classical book of Khas’minskii [Khas 1980], [Kushner
1967]. Efforts toward (global) stochastic nonlinear systems have been
initiated in the work of Florchinger [Flochinger 1993], [Flochinger 1995]
who, among other things, extended the concept of control Lyapunov functions
and Sontag’s stabilization formula [Sontage 1989] to the stochastic setting. A
breakthrough towards arriving at constructive method for stabilization of
broader classes of stochastic nonlinear systems came with the result of Pan
and Basar [Pan and Basar 1996], who derived a backstepping for design for
strict-feedback systems motivated by a risk-senstive cost criterion [Naga and
Bellman 1996], [Runolfsson 1994], [Liu and Zhang 2005].

This thesis consists of three chapters. The first chapter deals with the basic
concept of stochastic dynamic system.

In chapter two, the necessary mathematical principles concerning
stochastic integration, I1to formula, existence and uniqueness of 1to SDEs, as
well as solvable examples have been presented.

In chapter three, we design a backstepping control law which guarantees
global asymptotic stability in probability.

Future work, concluding remarks and references are presented.
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Chapter One Basic Concepts of Modern Control Theory

This chapter presents the basc mathematical theory that will be needed
later on, like, the concept of probability theory, stochastic process Brownian

motion etc.

1.1 BASIC CONCEPT OF PROBABILITY THEORY [47]:
Randomness and probability are not easy to define precisely, but we

certainly recognize random events when we meet them. For example,
randomness is in effect when we flip a coin, buy a lottery ticket, run a horse

race. The following remarks and terminologies are needed in the following:

Remarks (1.1) [47]:
1. Probability theory is the mathematical study of phenomena

occurring due to chance mechanism.

2. A mathematical experiment or a random experiment is that one in
which the possible outcomes may be finite or infinite.

3. The collection of all elementary outcomes of a random experiment is
called sample space and is denoted by W.In set terminology the sample
space is termed as the universal set, thus, the sample space W is a set
consisting of mutually exclusive, collectively exhaustive listing of all
possible outcomes of arandom experiment. That is,

W={wy,w,,...,w,} denotes the set of all finite outcomes.
W={wy,w,,...} denotes the set of all ccountably infinite outcomes.

Q ={0£t £T} denotes the set of unccountably outcomes.

1.1.1FIELDS, 6 — FIELDS[47]:

We define A as the nonempty class of subsets drawn from the sample

space Q. We say that the class A is a field or an algebra of sets in Q if it
satisfies the following definition:
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Definition (1.1) (Field or Algebra) [47]:
A class of acollection of subsets Aj1 €, " j=12,..,n denoted by A

is afield when the following conditions are satisfied:

1.1f AT A, then A°T A

n
2. 1f{A=12..n1 A then U ATA

Example (1.2) [47]:
Let Q = R and consider aclass A of al interval of the form (a, b], that

i AE a<b<c<d
! a<c<b<d
(a,b] ¢ (c. d] :} (ad c<a<d<b
::: (c,d] a<c<d<b
T (ab] c<a<b<d

Clearly the class A is closed under intersections. However,

(a,b]® =(-¥,a]E (b,¥)T A
(a,b]E (c,d]T A  if a<b<c<d

The class A isnot afiled.

Definition (1.2) (o-Field or o-Algebra) [47]:

A class of a countably infinite collection of subsets A, W, "j=12,..

denoted by A isas - field when following conditions are satisfied:

1-If AT A, thenA°T A

¥
2-1f{A,i=123T A, then J AT A.
i=1
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Remarks (1.2) [47]:
1. Ingenera as - field isafiled, buta filed may notbeas - field

2. The intersection of any nonempty but arbitrary collection of s - fields
in Wisas - fieldinW.
3. In genera the arbitrary union of a collection of s - field may not be a
s - field .

We can always construct the smallests - field over A which will A
contain A and will be denbted by s (A) =A.
This will always exist since s (A) can be defined as the intersection of all
s - filed containingA .
If s1(A),s,(A),... areal s - fieldscontaining A , then

s(A)=17siA)

Further the minimal s - filed thus generated is unique, we shall call s (A)
the s - filed generated byA .

Definition (1.3) (Borel o- Field) [47]:

The minimum s - field generated by the collection of open sets of a

topological space W iscalled the Borels - filed orBord field .

Remarks (1.3) [47]:
1. Membersof s - filed of (definition (1.3)) are called Borel sets.

2. The Bord s - field isas - filed, and hence each closed set is aso a

Borel set.
3. The space (W,A) thus created is called a measurable space.
4. Subsets of W which are elementsin thes - filed are called events.

5. Elementsof W are points.
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6. If {A.i=12,..n}is a class of digoint sets of W such that

UinzlA =W then the { A} collectively exhaust W and the class { A}is

called a partition of W..

1.1.2 PROBABILITY SPACE [37], [41]:
Definition (1.4) (Probability Measure) [41]:

A probability measure is a set function P defined on a s - field Aof

subsets of a sample space W such that it satisfies the following axioms of
kolmogorv for any AT A:

1- P(A)3® 0 (non negativity)

2- P(W) =1 (normalization)

¥ ¥
3- P(UA)=4a P(A,) (s - additively)
n=1 n=1

With AT A,and Aand A begging pairwise digoint.
Any set function m defined on a measurable space (W,A) satisfying axioms
(1) and (3) is called ameasure.

Definition (1.5) (Probability Space) [7]:
The measure space (W,A, P)is called a probability space, which serves

to describe any random experiment where:
1. Wisa nonempty set called the sample space, whose elements are

the elementary outcomes of arandom experiment.
2. Aisas -field of subsets of W.

3. Pisaprobability measure defined on the measurable space (W,A) .
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Remarks (1.4) [47]:

1. Let{ A} be a monotone decreasing sequence of eventsin A such that

Al Ayand let lim A, =/ Then lim P(A,) =0.The probability
n® ¥ n® ¥

measure is said to satisfy the sequential monotone continuity at A.

2. Let{A}be a convergent sequence of events in A, with

lim, A,=A.Then |lim P(A)=P(lim A,)=P(A) the probability
n® ¥ n® ¥

measure is sequentially continuous.

1.2 A RANDOM VARIABLES][7], [45], [47]:

An important class of functions are the measurable functions which are
different from the measure functionm. Whereas measure functions are set

functions, measurable functions are invariably point function.

Definition (1.6) (Measurable Function) [47]:

Let (W,A;) and (W,,A,) be two measurable spaces. Let g be a
function with domain E; 1 W, and range E, 1 W,
g:We W,
Then g iscaled an A;-measurable function or an A;-measurable mapping, if
for every E,1 A,.
g H(Ep) ={w:gW)T Ex} =F,
Isinthe s - field A;.
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Remarks (1.5) [47]:

1. The set E; given by g'l(EZ) Is called the inverse image or inverse
mapping of E,, and it is measurable set.
2. Let g be a measurable mapping from (W, A)) ® (W,,A,). If A isa

nonempty class of subsets of W,, then

s (071 A)) =97 (s A)).

Definition (1.7) (Random Variable) [7]:

Let (W,A)be a measurable space and (R,A) another measurable space

consisting of the real line R and the s -field of Borel sets A. Let the
probability measure P be defined on (W,A). The measurable mapping X from

(W,A)into (R,A)iscalled a real-valued random variable.

1.2.1 Properties of Real-Valued Random Variables [45]:
1. Let {X,,n=12K,N}be a convergent sequence of real-valued

random variables converging to alimit X .

2. Let {X,,n=12K,N}be a convergent sequence of real-valued
random variable. Then the set on which {X,} convergence is

measurable.

Definition (1.8) (Absolute Continuity of Signed Measures) [47]:

Let (W,A) be ameasurable space and let m and v be signed measures

on A. We say that v is absolutely continuous with respect to m if for every

measurable set Al A,v(A) =0, for which m(A) =0.



Chapter One Basic Concepts of Modern Control Theory

1.2.2 CONVERGENCE OF RANDOM VARIABLES [47]:

We discuss the convergence of sequences of random variables { X}

where the probability measure plays an important role. The pointwise

convergence of any sequence{ X,,} to alimit X is defined asfollows.

Definition (1.9) (Point wise Convergence)[47]:

A sequence { X} converges to a limit X if and only if for anye >0,
however small , we can find an integer ny such that

| X,- X|<e forevery n>ng

Remark (1.6) [47]:

If we consider a sequence of random variables { X;, X,,K, X,,K} and

defined a pointwise convergence to another random variable X as in
definition (1.9), then we must have for every w - point in W the sequence of
numbers  X;(w), Xo(w),K, X,(w) converging to X(w). This type of

convergence is called everywhere convergence.

Definition (1.10) (Almost Sure Convergence) [32]:

A sequence of random variables { X} converges aimost surely (a.s), or

almost certainty or strongly to X if for every w-point not belonging to the
null event A,

lim |Xn(w)- X(w)| =0

n® ¥

This type of convergence is known as convergence with probability 1 and is
denoted by

3/, 3323 . F
X (W) /4n/%£® X(w) or X (w) nl|®rr; X,(w) (as)
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Remark (1.7) [32]:

If the limit Xis not known a priori, then we can define a mutual

convergence almost surely. The sequence X,, converges mutually amost
surly if ;ga|xm- Xn| ¥ 75Y® 0

Both definitions are equivalent.

Remark (1.8) [32]:
Let AK,A,,K be events in a probability space. Then the event

¥ ¥
1 UA, :{WT W|w belongsto infinitely many of the A},

n=lm=n

iscalled “ A, infinitely often” , A, i.0.”.

Definition (1.11) (Convergence in Probability) [7]:

A sequence of random variables { X} converges in probability to X if

for every e >0, however small, Ii®rr;é P(|X,- XFe)=0
n

Or, equivalently,
lim P(| X,,- X|<e)=1
n® ¥

It is denoted by

Xn(w)%%%@ X(w) or  Xw)=li.p.X,wW)
: n® ¥

Remarks (1.9) [47]:

1- We can define mutual convergence in probability as.
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lim supP(| X,,- X,Fe)® 0

2- If a sequence of random variables { X} converges aimost surely

toX, then it converges in probability to the same limit. The

converse isnot true.

3- If {X,}converges in probability toX ,then there exists a
subsequence { X} of {X,;} which converges ailmost surely to the

same limit.
4- {X,} convergesin probability if and only if it converges mutually

in probability.

1.3 INTRODUCTION TO STOCHASTIC PROCESSES [41],[45]:

We have looked at single random variable, and finite collections of

random variables (Xy,X,,...,X,,),which we termed random vectors.

However, many practical applications of probability are concerned with
random processes evolving in time, or space, or both, without any limit on the

time (or space) for which this may continue.

Definition (1.13) (Stochastic Process) [7]:

A stochastic process is a collection of random variables { X(t):tT T}

wheret is a parameter that runs over an index set T.
In general we call t the time-parameter (or smple thetime), and Ti j.

Each X(t) takesvaluesin someset Si j called the state space, then X(t) is

the state of the process at timett.
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Remarks (1.10) [71]:

1. If theindex set T isa countable set, we call X adiscrete-time stochastic
process, and if Tisacontinuum, we call it a continuous-time process.

2. A continuous-time stochastic process {X(t),tT T}is sad to have
independent increments if for al ty<t <t, <K<t,, the random
variables X (t;) - X(tg), X (t5) - X(t),K, X (t,) - X(t,.1) are
independent. It is said to possess dationary increments if
X(t +5s)- X(t)has the same distribution for al t. That is, it possesses
independent increments if the changes in the processes value over
nonoverlapping time intervals are independent, and it possesses
stationary increments if the distribution of the change in the value

between any two points depends only the distance between those
points.

Definition (1.13) (Vector Stochastic Process) [45]:
Suppose that X4(t), X5(t),..., X,(t) are n scalar stochastic processes

which are possibly mutually dependent. Then we call
X (1) =[Xq(t), Xp (), Xy 1T
A vector stochastic process.
We aways assume that each, of the components of X(t)takes red

values, and thatt 3 tg, with tygiven.

Remarks (1.11) [45]:

1. A stochastic process can be through of as a family of time functions.
Each time function we call arealization of the process.

2. A dochastic process can be characterized by specifying the joint
probability distributions.

10
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P{X(t) £ X1, X(t,) £ X5, K, X (1) £ X}
for all real X;, X5 K, Xp,. For all t3,t5,K,t, ® tg and for every natural

m.

Definition (1.14) (Stationary) [45]:
A stochastic process X (t) is stationary if:
P{X(t)) £ Xq,o s X(t) ) E Xy 3= P{X(t; +0) £ Xq,.... X(ty + 0) £ X1y}

for all t,t,,K,t,, and al real X;,K, X,,. For every natural number m and
forall 6.

Definition (1.15) (Covariance Matrix) [45]:

Consider a vector-valued stochastic processes X (t) . Then we call

m(t) = E{ X (1)}

the mean of the processes,
Ry(t1,t2) = E{[X (ty) - mtI[X (tz) - mitz)]"}
the covariance matrix, and
Cultyto) = E{X (t) X T (t2)}
The second- order joint moment matrix of X(t). R(t,t) =Q(t)is termed as
the variance matrix, while C,(t,t) = Q&t) is the second-order moment matrix

of the processes.

Remark (1.12) [45]:
Here E is the expectation operator. We shall often assume that the

stochastic processes under consideration has zero mean, that is, m(t) =0 for

alt; in this case the covariance matrix and the second-order joint moment

matrix coincide. The joint moment matrix written out more explicitly is

11
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gEE{ X)Xt} L E{Xi(t) X ()} 0
C, (t.ty) = E{X () X (t,)} = g E{ X2 (t) X1(t2)} :: E{ XZ(tll)_ X (to)} :

EXnWXa()}) L E X Xnm(©)} o
Each element of C,(t;,t,)is a scalar joint moment function. Similarly, each

element of R,(t;,t,) isascalar covariance function.

Theorem (1.1) [45]:
Suppose that X(t) is a stationary stochastic process. Then its mean

m(t) is constant and its covariance matrix R, (t;,t,) dependson t; - t, only.

Definition (1.16) (Wide Sense Stationary) [47]:

The stochastic processes X(t) is called wide-sense stationary if its

second order moment matrix C,(t,t) is finite for all t,its mean m(t)is

constant, and its covariance matrix Ry (t;,t,) dependson t; - t, only.

Remark (1.13) [45]:

Any stationary process with finite second-order moment matrix is also

wide-sense stationary.

Example (1.4) [45]:

Let us consider a stochastic process consisting of a sequence { X4, X,,K}

of independent identically distributed random variables with mean m and
variances 2.

The auto covarianceo,(h)= 025h, where histhe lag and g, is the Kroneker

delta.

this process is wide sense stationary.

12
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Example (1.5) [45]:

Let us consider another processgivenby Y; =Y, =K =Y with mean mand

variance s 2. Here Cy(h)=s 2 for al h. This process is aso wide sense

stationary.

Definition (1.18) (Brownian motion Process) [32]:

One of the best-known processes with uncorrelated increment is that
Brownian motion process, also known as the Wiener process or the Wiener-
Lery process. This is a process, with un correlated increments where each of

the increments X(t,)- X(t;) isaGaussian stochastic vector with zero mean
and variance matrix (t, - )l , where | is the unit matrix.
A random processW((t),t 3 0, issaid to be a Wiener process if,
(@ wW(@)=0
(b) W(t) iscontinuousint3 0
(c)W(t) hasindependent increments such thatW(t + s) - W(s) has the normal

distribution N( y,6%t), for al s,t3 0 and some 0< ¢° <¥ .

Remark (1.14) [71]:

1. If s?=1 then W(t)is said to be the standard Wiener process, we

always make this assumption unless stated otherwise.
2. In fact the assumption (b) is not drictly necessary, in that one can

constract (by a limiting procedure) a random process W(t) that obeys

(a) and (c) and is amogt surely continuous. Thisis Wiener's theorem.

13
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Theorem (1.2) [41]:
Let W(t)be a Brownian motion and let 0=ty <t; <L_<t,,. Then, for any
| >0,

PS maxW(t )>1 £2P[W(tn)>l]
e0£J£

P max ’W(t )\>| £2Pgwan)|>| i

e0£1£n

1.4 BROWNAIN MOTION IN N-DIMENTIONS:
Definition [41]:
An n-dimensional processes W(t) = (W (t),K,W,(t))is called an n-

dimensional Brownian motion (or Wiener processes) if each processes
W (t)is a Brownian motion and if the s - fields A (Wi (t),t2 0),1£i £n, are

Independent.

Lemma (1.1) [32]:

Suppose that W(¥ is a one dimensional Brownian motion. Then

EW(HW(s) =tUs=min{s,t} fort3 0,s3 0

Pr oof

Assume t3 s2 0.Then
EW(HW(s)) = E(W(s) +W(t) - W(s))W(s))
= EW?(s) + E(W(t) - W(S)W(9)
=s+EW(t) - W(s))EW(9))
=s=tUs.
Since W(s) is N(0O,s) and W(t) - W(s) isindependent of W(s).

14
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1.5 THE RESPONSE OF LINEAR DIFFERENTIAL SYSTEM
TOWHITE NOI SE [45]:

One frequently encounters in practice zero-mean scalar stochastic

processes w with the property that w(t;) and w(t,) are uncorrelated even for
values of |t; - t,|that are quite small, that is,
Ru(ta.ty) 5 O for [ty - t,| > ewhere ¢ isa"small" number.

The covariance function of such stochastic processes can be idealized

asfollows:
Ru(tz - t1) = X (t1)3(ty - ), where X(t;)2 0
Here §(t, - t;) isadeltafunction and X(t;) is referred to as the intensity of

the process at time t. such process are called white noise process.

Definition (1.20) (White Noise) [41]:

Let X(t) be azero mean vector-valued stochastic process with

covariance matrix
RN(tZ’tl) =X (tl) 5(t2 - tl)’ where X (tl) 3 0.
the process w(t) is then said to be a white noise stochastic process with

intensity X(t;).

Theorem (1.4) [45]:

Let w(t) be avector-valued white noise process with intensity X (t;),

also, let A (t), Ap(t)and A, (t) be agiven time-varying matrices. Then

1 to 1,_]
(@) Ef QACt)W(t)dty=0
Ttl b

15
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etz l]T €y
Ef GOAL(t)W(t)dtU seOAz(tq:)w(tq:)dtmdy
(b) & 0 &
= g1 V(DA (1)SAp(t) et
|
Where | is the intersection of [t;,t,] and [t3,t4] and S is any weighting
matrix
L&, uT-lu
El eoAl(t)w(t)dtueoAz(tcyw(tcydtdn y
(©) 1@1 0fs s b

= ALOVOA, (Ot
|

Where | is as defined before.

Remark (1.15) [45]:

A special case that is of considerable interest occurs when the processes

X (t) from which the white noise processes derives is the Brownian motion.

The white noise processes then obtained is often referred to as Gaussian white

noise.

1.5.1 Linear Differential System Driven by White Noise [32 [45]:

A linear differential system driven by white noise is a very convenient

model for formulating and solving linear control problems that involve
disturbances and noise.

In this section we obtain some of the statistical properties of the state of
alinear differential system with awhite noise process as an input.

In particular, we compute the mean, the covariance, Joint moment,

variance and moment matrices of the state X .

16
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Theorem (1.5) [45]:
Suppose that x(t) isthe solution of

&= A(t)x(t) +B(t)w(t),
X(tg) =%,
Where w(t) is white noise with intensityV (t) and X, is a stochastic variable

independent of w(t), with mean mg and Q, = E{(xo - my) (% - rrb)T} asits

variance matrix.Thenx(t) has mean rrg((t)=€l')(t,to)rfb

where q')(t,to) is the transition matrix of the system . The covariance matrix

of x(t) is
min(tl,tz)
R(titp) =@(t.l) Q@' () + O @(ty,7)B(7)V(7)BT (1)@ (tp,7)dr
to

The variance matrix Q(t) =R (tt) satisfies the matrix differential

equation
(t) = A(t)Q(t) +Q(t) A" (t) +B(t)v () B (1)
Qo) =
Furthermore,
R _iQ(u)o (bty), L3t
x — |

f o(tt2)Q(tz) 43t

The second-order joint moment matrix of X(t)is:

Cultate) = E{x(t)x" (12)}

=d(ty,ty ) Cylto .t )P (Lo 1)
min(tq .ty )
0 O(ty,7)B(r)V(r)B (1)@ (tp,7)dr
to

17
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The moment matrix C,(t,t) =Q&t)satisfies the matrix differential
equation

O¢t) = A)QEt) +QEt)AT (1) +B(t)V(1)BT (1)

Q) =E{ xp%' }
Finaly;

1 QEt )0 (t,.t), t, 3t

Clltitp)=1
M2 (1 1 )Qk ), t 3t

Example (1.6) [45]:
We consider the first-order stochastic differential equation

X(0)=- =2 (t) +w(),
q
Where w(t) is scalar white noise with constant intensity m. Let us suppose
that z (0) =z, where zjis scalar stochagtic variable with mean zero and

variance E(z 5) =s2.7 (t) has the covariance function

- (t1-12)/9 -|u-tof/g
Rz(tl,tz):é%Z' %9 e +% e ) tl,t23 0.
(%]

The variance matrix of the processesis

2t/g
Q(t)gé ”7“2e+”2q £3 0.

1.3.1 Modeling of Stochastic Processes [41]:
Suppose that X (t) isgiven by
X(t) =C(t)z(t),

With
a(t) = At) z(t) + B()w(b),

18
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Where w(t)is white noise. Choosing such a representation for the stochastic
processes X, we call the modeling of the stochastic processes X . The use of
such models can be justified as follows.

1. Very often practical stochagtic phenomena are generated by very
fast fluctuations which act upon a much dower differential system.
In this case the model of white noise acting upon a differential
system is very appropriate. A typical example of this situation is
thermal noise in an electronic circuit.

2. As we shall see, in linear control theory almost always only the
mean and covariance of the stochastic processes matter. Through
the use of alinear moddl, it is always possible to approximate any
experimentally obtained mean and covariance matrix arbitrarily
closely.

3. Sometimes the stochastic processes to be modeled is a stationary
processes with known power spectral density matrix. Again, one
can always generate a stochastic processes by a linear differential
eguation driven by white noise so that it is power spectral density
matrix approximates arbitrarily closely the power spectral densty

matrix of the original stochastic processes.

Example (1.7) [41]:

Suppose that the covariance function of a stochastic scalar

processesv, which is known to be stationary, has been measured and

turns out to be the exponential function

R, (t,t,) =s % - tal/ 9 where a and q are constsnts
One can model this processes for t3 t; as the state of a first-

order differential system:

19
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X(t)=- q1><(t)+w<t),

With w(t) white noise with intengty 2s 2/q and where X(tp)is a

stochastic variable with zero mean and variance s 2.
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Chapter Two Stochastic Integral and Stochastic
differential Equations

2.1 BASIC CONCEPT AND DEFFINITIONS [41]:

The following definitions and concepts are needed to understand some

principle of thiswork:

Definition (2.1) (Increasing o-field) [41]:

Let (W,A) be a complete measurable space and let {A,t1 T,T =R"}
be a family of sub-s -fields of A such that for s£t, Agl A;. Then {A;} is
called an increasing family of sub-s -fields on (W,A) or the filtration s -
field of (W,A).

A, is called the s -field of events prior to t. If {X;,tT T} is a stochastic
process defined on (W, A, P) then A, given by
A =s{X,s£Et,tl T} (2.1)

Isincreasing.

Remark (2.1) [41]:
Since the probability space (W,A,P) is complete, the s -field A

contains all subsets of W having probability measure zero. We shall assume
here that the filtration s -field {A;,tT T} aso contains al the sets from A

having probability measure zero.

Definition (2.2) (continuity concepts for the filtration o -field) [41]:

Thefiltration s -field {A,,tT T,T =R'} isright continuousif

Ai=AL=1A foraltl T (2.2)
t >t

and left continuous if
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A=A :S}UA[y:maxA{ (2.3)
ftaa p

Definition (2.3) (Adaptation of {X:} [41] :

Let { X, tT T,T= R} be a stochastic process defined on a probability
space (W,A,P) and let {A,,tT T,T =R"} be afiltration s -field. The process
{X,} isadapted to the family {A;} if X, is A,-measurable for everytl T. Or

EA X, = X, T
A, -adapted random process are also A, -measurable and nonanticipative with

respect to the s -field A, .

Definition (2.4) (Increasing Process) [41]:
Let (W,A,P) be a probability space, and let {A;,tT T} be a right

continuous filtration s - field defined on it. A real right continuous
stochastic process {A,tl T} is an increasing process with respect to the
family {A,tT T} if:

1. Ag=0

2. A is A;-measurable

3. AEA forsft (as

4. EA<¥ foraltl T

Remark (2.2) [41]:

If T=R" and EA, <¥ , then the increasing process is integrable and
if T=[a,b] then the definition implies that the process is integrable. In order

work we assume that the process { A, tT T} isintegrable.
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Definition (2.5) (Predictable Process) [41]:
An integrable increasing process is predictable (also called natural) if

foraltl T,

t t

EQ)Y<dA = E¢)s. dA (2.4)
0 0

for any nonnegative bounded right continuous A, -martingale{¥;, t1 T} .

As a consequence of the definition we have the following proposition.

Proposition (1):

Let {A,tl T} be an integrable increasing process. Then A is

predictable if and only if
¥ ¥
E OYsdAs = EQYs. dA (2.5)
0 0

for any nonnegative bounded right continuous At -martingale;.

Proposition of Increasing Predictable Process (2):

If X, isany A,-sub martingale, the A, -increasing predictable process

{A,tT T} canbefound as aweak limit (Meyer’s weak limit) by

t A
E7S(Xgyn - XS)dS

=1
S —
That is,
t
A = E s Xds (2.6)
0
Or
da, = EMdX, 2.7)
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Remarks (2.3) [41]:

All predictable processes may not be increasing. In fact, from equation

(2.5) and (2.6) we can conclude that: all continuous A, -adapted processes
are predictable, not necessarily increasing. (A continuous A, -adapted

martingale X; may not be given by equation (2.5) and (2.6) since

EAS(Xg,p - Xo)=0,h? 0.)

Definition (2.6) (Continuous Martingale) [41]:
Let (W,A,P) be a probability space, and let {A,tT T} be a filtration

s -field defined on it and { X;,tT T} area-valued stochastic process adapted
to{A;,t1 T}. Then the process { X;,tT T} isamartingale with respect to the
family {A,tT T} if
1 E|X¢|<¥.
2. Foral stl T and s£t,
EAsX, =X, (a.s) (2.8)
Xt isasubmartingale if
EAsX, 3 X, (as)
and X, isasupermartingale if
EASX EX; (as)
Remarks (2.4) [41]:

1. Since EASXt = X, for amartingale, we have for s£t,
EEAsX, =EX b EX, =EXq
Asaconsequenceif X istheinitial valueand if X; isamartingale, then

EX; =EXg foral tT T,
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2. For s£t, EASXt Isincreasing for a submartingale and decreasing for a

supermartingale.

Definition (2.7) (Right Continuous Martingales) [41]:

The martingale (submartingale) { X;,A,t1 T} isright continuous if
1. The sample paths of X, are right continuous almost surely.

2. Thefiltration s -field {A,tT T} isaright continuous, that s,

A=1A=A, tiT.

s>t

Example (2.1) [41]:

Let Z be any integrable random process defined on (W,A, P), and let
{A;,tT T} bethefiltration s -field. Then the stochastic process
X, =E~zZ
Isamartingale because for s£t we can write

Efsx, = EAsEMZ = X

Example (2.2) [41]:
Let {X;,t] T} be integrable stochastic process, adapted to {A,tT T},

with independent increments, that is, for s£t, X; - X isindependent of the
s -field A;. Then the process { X, - EX;,t1 T} isan A, -martingale, since
EAS(X, - EX) ZE"S(X, - EX; - X+ EXg+Xg- EX)
= EAs(Xq - EXQ)+EMs(X, - Xg- EX, +EXy)
= EAs (X4 - EX,)

Because of independent increaments.
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Definition (2.8) [41]:
Let {X;,tT T} be a sguare integrable martingale belonging to the

family of martingales{M;,A,t1 T}. The quadratic variance process of the

L%-martingale { X,,tT T} isdefined as:
N(n)-1

A
X, XA=1lim A& E V(X - Xm)2.
ey & 5T Ky)

2.2 Stochagtic | ntegral [47]:
We defined on a probability space (W, A, P) asimple stochastic integral

\

of the form Q¥¥ g(t)dZ; where g(t) is a function of t only and Z;was a

processes of orthogonal increments corresponding to a white noise

processes X, . A generalization of this smple stochastic integral is quantity of

the form
t ~
G )=¢ w,s)dw; tT R
0

(2.9
Where R" is the positive real line and W, is a Brownian motion processes
defined on a complete probability space (W,A,P) satisfying the following
usual conditionswiths3 O:
EW, =0
EAW,s =W (2.10)
EAN W - W2 =5 %
In equation (2.9) the integrand | depends uponw, and since W is neither
differentiable nor of bounded variation, the integral 1,(j ) has to be defined
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properly. The integral when | is independent of w has been defined that the
orthogonal increment property of W . For the stochastic integral 1;(j )to be
properly defined, the integrand j (w,t) hasto satisfy the following conditions:
1. If listhe s - field of Borel sets on the positive real line, then | is
jointly measurable in the product s - field AA I,
i T AAI (2.11a)
2. If{A,tT T,T =R"}is a right continuous filtration s -field of the
probability space, then for each tT T, j (w,t)is adapted to A,,
j (w,t)T A (2.11b)
As already seen, such functions are called nonanticipative with respect to the
family {A;,tT T}.
3. Foreach tl T, (w,t) satisfying
N 2

CEli (w,s)| ds<¥ (as) (2.11c)
0

This condition can be weakened into
¢ 2
d (w,s)| ds<¥ (as)
0

4. j (w,t) belongsto aclass of left continuous functions.

The processes | (w,t)under the four conditions given above is a
predictable processes with respect to the filtration s - field
{A t] T,T=R"}.
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Definition (2.9) (Simple Processes) [41]:

A function g(w,t)is caled smple if, for the partitions

Of£tg £ty EL £, =Dbof the interval T =[0,b], it can be represented in the

form
no'l
gtw)=a gv(W)I(tV,tV+l) (t) (2.12)
v=0
Where the g, are Atv - measurable.
Since the simple function g(w,t)is left continuous and adapted to the
filtration s - field{A;,tT T,T =[0,b]}. Therefore it is a predictable process
satisfying conditions (2.11). It is not essential that the function g(w,t)be

defined as left continuous. The left continuity and hence predictability plays a
crucial role in the definition of the stochastic integral.

Remark (2.5) [41]:
Let {j (w,t),tT T} be a random processes satisfying conditions (2.11).

Then there  exist a sequence  of simple  processes
{i ,(w,t),n=0,1,2,K,tT T} satisfying conditions (2.11) such that

N . 2
nI|®rr§14ToE[| W,t)-j y(w,t)[dt® 0

Definition (2.10) (Stochastic | ntegral) [32]:
Let {WAP} be a complete probability space, and let

{A.t1 T,T =[0,b]} be a filtration s - field. Let {W,tT T}be a Brownian
motion martingale adapted to A, .

1. If {j (w,t),tT T}isasimple processes of definition 2.1 given by
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N(n)-1

. t — o] . I
j w,t) a vl oy o

For partitions O£, <L <ty ™ =t, then the stochastic integral is

defined by
t N(Q)—l.
k(G )=0 WedWs= a j WV m-W nl (213
0 v=0 v+1 V

2. If {j (w,t),tT T}is a general processes satisfying conditions (2.11),
then there exists a sequences of smple functions
{i n(w,t),n=0,LK,tT T} approximating j (w,t) in the quadratic
mean. In this case the stochadtic integral is defined as:

t t
106 ) = & (W)W =1i.qm g (W, S)dW,
0 n®¥ g

=ligmli G ) (2.149)
n® ¥

t
Thus the sequences of random variables 1;(j ) = @ (W, s)dW; convergesin
0

t
the quadratic mean to the random variablel(j ) = (w,s)dWs, which is
0

called the stochastic integral of the function j (w,s) relative to the Brownian
motion martingale{W,,A,tT T}. The limiting value (to within stochastic
equivalence) of the integral I;(j ,,) is independent of the choice of the
approximating sequence {j .} .

3. Under the weakened condition we define the approximating
sequence {i (w,1),n=0,LK,tT T}as
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i t
, 7] (w,t) | ((W,Ddt<n (as)
J n(Wat) :_|,. 0d " |

}0 otherwise
So that {j ,(w,t)} convergesin probability toj (w,t) asn® ¥ .
In this case the stochastic integral is defined as

t
1t ) =@ (w,s)dWs
0

=1i.p.1yG ) (2.14b)
n® ¥

2.2.1 PROPERTIES OF STOCHASTIC INTEGRAL S[41]:
The stochastic integral 1,(j ) as defined above satisfies the following

basic properties.
t

1. EQ W,s)dwg=0 I T (2.15)
0
2. 1i(a 1+t o)=ali( 1) +bli( o) a,bareconstants (2.16)
t t t
3.0 (sw)dW; = g (sw)dWs + i (s,w)dWj (2.17)
0 0 t

4. 1,( )is progressively measurable for tT T and j (t,w) satisfying

conditions (2.11). In particular, for each t,1,(j ) is A;-measurable.

Example (2.3) [32]:
Let W(% be a 1-dimentional Wiener process, then W(X isa

Martingale.
To see this, we write W (t) =U (W(s)0£ s£t) and let t 2 s, then
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Lemma (2.1) [32]:

Suppose X(X is area-valued martingale and @: j ® j is convex,

then if E(‘@(X(t))‘)<¥ forallts 0,@(X () isasub-martingale.

2.2.2 STOCHASTIC INTEGRAL ASA MARTINGALE [7]:
Let (WA, P)be a complete probability space, and let {A,tT T} be a

right continuous filtration s - field. Let {W,tT T,T =[a,b]} be a Brownian
motion process. Let | be afunction satisfying conditions(2.11), namely,

1§ (w,t)T AAI

2.7 (w,t)T A, foreacht

b 2
3. CEli (w,t)| dt<¥

4. j (w,t) belongs to the class of left continuous functions then the

stochastic integral

t
XG)=g W9dWsw) 1T (2.18)

Isan At -martingal e satisfying the martingale property

EAX, =X, SEt tI T
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Example (2.4) [47]:

Let an integral 1,(W) be given by

t
1L (W) = N (W)W (w) (2.19)
0

Where W, (w) is a Brownian motion process. The integrand W, (w) can be
satisfy conditions (2.11), and 1, (W) is a stochastic integral. Therefore |,(W)
must be an A, -martingale by proporties of (2.1.2).

If 1,(W) istreated as an ordinary integral, then

t 2
(W) = g dwy =L (2.20)
0

\MZ

We now check whether B} Isamartingale.

; 2 ;
EAt W? :%EAt (VVSZ +\MZ - Wsz)

NYCI T
—2V\4 +2(t S)

Which is not a martingale. Therefore the conventional rule for integrations not

applicable here.

2.31TO PROCESS (GENERALIZED STOCHASTIC INTEGRAL) [7]:
In the stochastic integral given by equation (2.9) the integration was

carried out with respect to the Brownian motion\W;. The stochastic integral
with respect to W, was carefully defined in equations (2.13),(2.14a) and

(2.14b). However, in many nonlinear filtering problems the integration may

have to be carried out not with respect to the Brownian motion process but
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with respect to an Ito process. We now define the Ito process under the
¢ 2

weakened condition (j (w,s)| ds<¥ (as).
0

Definition (2.11) (Ito Process) [32]:
Let (W,A,P) be acomplete probability space, with {A,tT T} being a

right continuous filtration s - field defined on it. Let {W,A,tl T} be a
Brownian motion process. The continuous random process {Xt,At,tT T} is
caled an Ito process (relative to Brownian motion process {W,A;,tT T} if
there exist two nonanticipative A,-measurable random processes a;(w)

andby (w) , satisfying foreach t1 T

t

dasW)ds<¥ (as) (2.21)
0

t 2

Qps(w)| ds<¥ (as) (2.22)
0

With Iy (w) being left continuous, and if, with probability 1, X;(w) satisfies

the equation

t t
X, (W) = Xo(W) + (s (W)ds+ s(W) dW, (2.23)
0 0

The process is a basic stochastic differential equation which isdiscussed in its

t
generdity later. The existence of the stochastic integral jps(w)dW; has been
0

established under the weakened condition in definition (2.10). The existence

of theintegral cps(w)ds isguaranteed by condition (2.21). The left continuity

condition for & (w) is not necessary for the definition of this integral. Thus
the integral equation (2.23) iswell defined.
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Equation (2.23) can also be given in a stochastic differential equation
representation as
dX; (W) = a (w)dt + by (w)dW, tT T, Xow) (2.24)

However, equation (2.24), in general, is not equivaent to
d t =a,(w )+q(w)— tT T (2.25)

Where dW, /dt isawhite noise process.

2.3.1 A stochastic I ntegral over an 1to Process [47]:

Let {X;,tT T,T=[a,b]} be an Ito processes as given in definition
(2.11) .Let j ;(w) be a nonanticipative process satisfying condition (2.11).

The stochastic integral over the Ito process X;is given by
t
1:(G ) =0 ¢ W)dX; (W) ti T (2.26)
Or
t t
1tG ) =0 Wa (w)dt +3 (Wi (W)dW (2.27)

and for both integralsto exist it is sufficient that

O (w)a (w)ldt < ¥ (@s)
¢

d t(W)b[(W)|2dt <¥ (as)

T
The stochastic integral I;(j ) over the Ito processes X; can also be well
defined analogous to definition (2.10). By remark (2.5) an approximating

sequence of smple functions {j (w),tT T} can befound such that
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Li.p. ¢ W (@) - § e )|+l (W) -] )" J@ 0 (228)

n® ¥ T
Then the stochastic integral of equation (2.26) is the limit in probability of the
integral sums 1;(j ,) given by

N(n)-1

LG )= & | X + X 2.29
t( n) véo I v, () W)( (1 t(n)v) (2.29)

For the partitions

a=to"W <t <t,(W < <t(”)N(n) =t
Or

11G ) =101 )

n® ¥

Remarks (2.6) [47]:

1. The stochastic integral over a Wiener processes is a martingale whereas
the stochastic integral over the Ito process is not a martingale but a

continuous semi martingale.

t
2. If the sufficiency condition j S(w)bs(w)|2ds<¥ is replaced by the
0

strong condition
t

OFll sw)by(w)|“ds<¥

0

Then we have quadratic mean convergence of the integral sums 1;(j )

.G )=ligml.j )
n® ¥

3. Under suitable assumptions the stochastic differential equation given
by equations (2.23), (2.24) may be generalized by replacing the

Brownian motion process W, by a general martingale M, .
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2.3.21TOFORMULA [32]:
We discuss the Ito rule applied to stochastic integral. First we discuss the

rule for the scalar case and extended it to vector situations.
Let { X;,A;,tT T} bean Ito process as defined by equation (2.24). Let

y (t,% be a measurable function with continuous first and second partial

derivatives. Then sentation, popularly known as the Ito formulaor Ito rule.

Theorem (2.1) [47]:

Let the function y (t,x) be continuous and have bounded continuous

partial derivativesfy /Tt,fy /Tx, and % /Tx?. Let {X,,A,t1 T} be an Ito
process having the stochastic differential equation representation

dX; (w) =& (w)dt + b, (w)dW tT T, Xgw) (2.30)
Then the process Y;(w)=y (t, X;(w)) aso admits stochastic differential
equation representation given by

dY; (w) = Ty (‘ItTt X g 4 1Y %’(Xt) dX,
1219 (LX), 2
+ 23 02 by “dt

ti T, Y, (2.31)

Where s 2 isthe variance parameter associated with W.
By substituting equation (2.30) into equation (2.31), the Ito rule can be

given in an aternate form as

N 2ﬂ2}’(tX)
2

w)dt
0 ——=h (W)
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Remarks (2.7) [47]:
1. 1f Y, =y (t, X;) and X; isadeterministic process, then the differential

for dY; will be

ay, =g+ IV g, (2.33)
qt x

Since the higher order terms containing dt? and dXt2 and above are
negligible.
2. Since W, is a Brownian motion process, the quadratic term dV\42 is

not negligible and it is of order dt.

3. The term %s 2(112y /ﬂxz)bt2 in equation (2.31) is the additional term

because dV\42 can not be neglected.

4. If W, is a deterministic process, s2=0 and equation (2.31)
degenerates to equation (2.33).

5. The presence of the extra term %s 2(112y / ﬂxz)qzdt prevents us from

using ordinary calculus, as given by equation (2.33) for stochastic
differentials.

Example (2.5) [47]:
We back to example (2.4) and use the Ito formula to show that the

t
stochastic integral 1;(W) = M (w)dW (w) isindeed a martingale. Let us now
0

assume

2
Y=y )=t (2:34)
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And fined the differential representation of Y; using Ito’srule. The Ito process
X associated with the Brownian motion process W, is W itself,
Or
dX; = dw,
So that & =0 and by =1 in equation (2.30).
Applying Ito’srule toY;, we have from equation (2.24)

_ Ty Y 1 9%
dY, = 0t + 2 >0 xdt + 2 xdW, +=s 2L it
! Tw dw 2 W
Or
1 2
dY, =\W,dw +7s dt

Integrating,
! 1
Y= QM AW + s 4
0

Hence

t
M dW =, - %s Zt:%(\MZ-szt) (2.35)
0

It is very clear that%(\/\(z- s2t) is indeed a martingale since s 2 is the

adapted continuous predictable increasing process <W,W >; associated with

the martingaleW\; .

Where <W,W >, is the quadratic variance process of L2-martingale

(W, tT T}.
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2.3.3VECTOR FORMULATION OF ITO’SRULE [47]:

We can enunciate the vector form of Ito’srule. Let { X;,A;,tT T} bean

n-vector Ito process, having the stochastic differential equation

dX; (w) = a (w)dt + B, (W)dW, (w) (2.36)
Where atT ={ay(w) ayW)K ayWw)} and B/(w) isan n° m matrix of
functions given by

{oye W) i =1.2K,n, j =12, m}
W (w) is an m-dimensional independent vector Brownian motion process
with variance parameter s 2. The function ar(w) and hj(w) satisfy

conditions smilar to definition (2.11) with

t
JasW)ds<¥  i=12K,n (as)
0

t 2 | |

(W S | = 4N, =LK, M as.
sl ds<¥  i=12K,n, j=12Km (as)
0

Let another scalar process Y, (w) be defined by y (t, X;(w)) wherey (t,¥ isa

measurable function.

Theorem (2.2) [47]:

Let the function y (t, %, %,,K,X,) be continuous and have bounded

continuous partial derivatives

AT
it x X &ETX 3

Then the process Yi(w)=y (t,X;(w)) has a stochastic differential

representation given by
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Ty (LX), al6 1 7ot Tals
dy; (w) = U gt + o= Y (E, X)dX +=s B —a—= Y (t,X;)Bs dt
t (W) T éﬂX{zjy( £)dX; > B ‘ng‘ﬂx;ay( ) B

th T, Yy(w) (2.37)

Or substituting for dX;(w) from equation (2.36), we obtain

dY, (w) :Mdt+aeléTy (t, X,)a (W)t +3819Ty (t, X,) By (W)W (w)
t Tt &xg” T &xg > ‘
1 o teel ('jT
+§S B Cix s y (X;,t)Bs dt
(T, Y,w) (2.38)
Remarks (2.8 [41]):

Special Cases. Let us now consider some special cases where the Ito

rule given by (2.38) can be smplified.
1. The Brownian motion process W, (w) is a scalar process\W;(w). In

this case the matrix of functions B;(w) becomes an n-dimensional
vectorb, (w), and the variance parameter s 2ecomess 2. We usi ng

these ssimplifications, equation (2.38) becomes

T T
v, w) :%dt +§12g Y (t X)a (w)dt +§%§ y (t, X)by (W)W (w)

ix

o2y w1218y xon wa T, Yaw)
2 W&Xg~ -

2. Let Y; = Xy X5, Where Xy and Xy are Ito process satisfying the

stochastic differential equations
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dX]I = a]Idt + b_ud\M

(2.39)
dXZt = atht + bthW
then, we using Ito rule,
dY; = X dXqs + Xy X +%s 2 x0by by it (2.40)

We use equation (2.39) in equation (2.40), we obtain
dY; = X (ay it + by dW) + Xy (B dlt + by W) +s Zybydt  (241)
3. Let Y :ext, and X; is the Ito process satisfying the stochastic

differential equation

dX, =- %s 2g2dt + g,dW (2.42)
Here
22
s
& =- th b =g

We applying the Ito’s formula, equation (2.24), toY; = et yields

dy; =0xdt + ﬂ;;(t x> 22gt2 dt + ﬂ;;(t g dV\ + %s 2 ﬂ:;;(t gialt
Since
Xt q2aXt
ﬂ;x i ﬂﬂiz ~
We have
dY; = Y g,dwy (2.43)

4. Let {W,A.,tT T} be a Brownian motion process. Let j ((} be a

function satisfying conditions (2.11). Then according to proposition

t
of stochastic integral as a martingale, X; = (W)dW isan A,-
0
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martingale. LetY; = th. Then the Ito process X; which is a
martingale is given by the stochastic differential
dX =] ¢ (W)dW
Where a =0 andb, =j {, By Ito formula, equation (2.24),

dY; = 0t + 2X, >0t + 2X, % t>dVVt+%32>Q>j 20t

=2X,j (dW +s 5 (2dt (2.44)
Or in the integral form,

t
Y, = XE =Y +2¢) ¢ (W) X, dW
0

Since theinitial condition Yy =0,

1é 2 2t. 2 l;' t.
E@Xt -S Ot (W)dtgzdt(W)Xt (w)dw (2.45)
0 B o

t
Is a martingale because the stochastic integral ¢ (W)X; (W)dW is a
0

t
martingale assuming @Eh t X |2 dt <¥ , hence invoking the uniqueness of the
0

Doob-Meyer decomposition theorem, we have

t
aX, X1 =s 2 Aw)dt (2.46)
0

As an A, -adapted increasing predictable process associated with the

martingale X;.

2.3.4 APPLICATIONSOF ITO’S FORMULA [41]:

Ito’s formula will become a standard tool in the sequel.
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Lemma (2.2) [41]:

If f1 LY[a,b] for somep? 1, then there exists a sequence of step

functions f,, in LP[a,b] such that

b
lim & f(t)- f.(t) dt as.
"®¥9() n()|

Corollary (2.1 [41]):

If £T M2™0,T] where m isa positive integer, then

2mgj T
i’/£ CT™ XE G F ()] et

b 0

i
Et sup
} OEtET

t

of (s)dw(s)
0

m

Where Cr, = §4m’/(2m- 1)1

2.4 Stochastic | ntegrals and Differentialsin N Dimensions [32]:

Let w(t) = (wy(t),K,w,(t)) be an n-dimensional Brownian motion. Let

A, (t3 0) be an increasing family of s - fields such that w(t) is A;
measurable and A(w(l +t)- w(t),I 3 0) isindependent of A, for anyt 3 0.

We shall say that a matrix of functions belongs to LP[a,b] (or

toMP[a,b]) if each of its elements belongsto LP[a,b] (or toMP[a,b]).
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Let b=(ly;) beam" n matrix that belongs to L\%,[a,b]. The stochastic

b
integral Cp(t)dw(t) isa m" n matrix that belongs to L\%,[a ,b]. The stochastic

a

b
integral ((t)dw(t) isan m-vector defined by

a

. -
QpMdw(t) =ia g jtdw; (t)g
a Ti=la bi =LK,m

to to
If substitutea = §fdw; , b = gdw; in the identity 4ab =(a +b)? - (a - b)?,

i1 i1
We find that:

t t t
E Zéf (t)dw: (t) 2bg(t)dwi t=E Zéf (Dg(t)at (2.47)
i1 i1 i1

Provided f and g belong to MV%,[tl,tZ].

We aso have

to to
Eof (Ddw; (t) gg(t)dw;(t) =0 Ifit j, (2.48)
ty ty
Because the integral s are independent and with zero expectation.

We are using (2.47), (2.48) we see that if b:(qj) iIsa m n matrix

inM2[t;,t,], then
2

[
= E gb(t)[ct (2.49)
il

2
op(tydw

t

E

Where
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2_<r>n<!v1 12
b =aa ;.
i=1li=1

Definition (2.12) [41]:
Let x(t) be an m-dimensional process forO£t) £T, and suppose that,

foranyOEH £, £T,
to to
X(t2) - X(t) = AWt + hH)dw(t)
i1 i1

Where a=(g,K,ay) and the m" n matrix b=(hy;) belong to L\l,\,[O,T] and

L\%,[O,T] respectively. Then we say that x(t) has a stochastic differential
dx (t) given by
dx (t) = a(t)dt + b(t)dw(t)

2.5 A GENERAL EXISTENCE AND UNIQUENESS THEOREM
[47]:

We start with a useful calculuslemma:

GRONWALL ’S lemma (2.3) [32]:
Let f and f be nonnegative, continuous functions defined for

OE£t£T,andlet Cy2 O denote aconstant. If

t
f(t)ECy+ffds, foral OELET,
0

Then

t
ofds

f (t) £ Coyel , foral OEtET.
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2.5.1 Existence and Uniqueness Theorem [32]:

Suppose that b:i" [0,T]® i" and B:i" [0T]® M™" are

continuous and satisfy the following conditions:

a) |b(x,t)- b(X,t)| £ L|x- X
Jforal O£tE£T, x,x1 j"
IB(x,t) - B(Xt)| £ L|x- X

b) |b(x,t)|£ L(L+|x])
foral O£tET, xI ",

IB(x,t)| £ L(L+|X)

for some constant L.
Let X, beany j"-valued random variable such that

0 E(Xq[) <¥
and
d) Xgisindependent of W™ (0),
Where W(Jisagiven m-dimentionsinal Brownian motion.

Then there exists a unique solution X1 L,21(0,T) of the stochastic

differential equation:

1dX =b(X,t)dt +B(X,t)dW  (0£t£T)

SDE
(508 %X(O): Xo
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Remarks (2.9) [32]:

1. “Unique” means that if X, XT L2(0,T) with continuous sample paths
almost surly, and both solve (SDE), then
P(X(t)= X(t), forall 0Et£T) =1.

2. Hypotheses (a) says that b and B are uniformly Lipchitz conditions in

the variable x. We notice also that hypothess (b) actually follows (a).

Proof [32]:
1. Uniqueness. Suppose X and X are solutions. Thenfor all 0Et£T,

t t
X(t)- X(t) = F(X,9)- b(X,s)ds+ FP(X,s) - B(X,s)dW
0 0

Since(a+ b)2 £ 2a% + 2b?, we can estimate

20
E(X()- >2(t)\2)£2E‘?(‘jJ(X,s)- b()z,s)ds{ T+
° 5
20
2ES3B(X,9)- B(X,9)dw| ©
° b

The Cauchy Schwarz inequality implies that

t 2 t
@fd% £t)f[°ds
0 0

Forany t>0 and f :[0,t]® j". we usethisestimate

e 260 2 0
ESES P(X,9) - b()?,s)d% :£TE9 P(X,9)- b(X,s)| ds

égo - 0

20

[4]

t A2
£ LZT@E(‘X - x\ )ds
0
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Furthermore

26

- é ~ 2 O
T=EGQB(X,9)- B(X,9) dst
5 éo :

EYB(X,9) - B(X,s)dW
0

[4]

t
£ L°E(X - X)ds
0
Therefore for some appropriate constant C we have

t
E(X (- )Z(t)‘z) £CEE(X - X)ds,
0

A2
Provided O£t £T. If we now setf (t) = E(‘X(t) - X(t)‘ ), then the foregoing

reads

t
fA)ECH (9ds Foral OLLET.
0

Therefore Gromwell’s Lemma, withCqy =0, impliesf © 0. Thus X(t) = )Z(t)
as for dlOEtE£T, and so X(r) = X(r)for al rationa OE£r £T, except for

some set of probability zero. As X and X have continuous sample paths
almost surely,
P&iax |X (t) - X(t)>0[2=1.
OEtET a

2. Existence. We will utilize the iterative scheme introduced. We defined

1X0(t) = Xg

t t
P X" = Xo + @p(X"(9), 9)ds+ B(X"(S), 5 dW
f 0 0

For n=0,1LK andO£t£T. Wedefined aso
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1 2
d”(t):E(X”Jr (t) - X”(t) ).
We clam that

(MT)"M

Foraln=01K,0£t£T
(n+1)

d"(t) £
For some constantM , depending on L, T and X,. We indeed n=0, we have
0% = E(x'0 - x°0))
2

t
= ES|cp(Xq,9)ds + (B(Xq,5)dW
0 0 -
2

29 a ) , O
£ 2ES - (1+|Xo)d ;+2E§d_ (1+]Xo| dst

2
£tM

For some large enough constant M . This confirmsthe clam for n° 0.

Next we assume the claim isvalid for somen- 1. Then

1 2
d"(t) =E(X" (1) - X "))

t 26
:Egrc‘p(x”,s)- b(X™*,s)ds+ B(X",s)- B(XX"*,9)dw| *
0 0 2

a 2 O a 2 O
£2TL2E§dx”- X" ds =+ 2L2E§dx”- X" ds+
0 o 0
tMNg"
£ 2L2(1+T)(‘)T (By the induction hypothesis)
0
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M n+ltn+1

(n+1)

We chooseM 3 2L2(1+ T). This provesthe claim.

3. Now we note

2
max‘X”ﬂ(t)- X”(t)‘ £2TL2dX”- X" ds+2 max |B(X",s)- B(X™L,5)dw
OEtET 0 OEtET 0

Consequently the martingale inequality implies

E Fmax ‘X”ﬂ(t) X (t)‘ £2TL2

2
n_ yn 1‘ ds
OLtET

2 T
n_ Xn-l‘ dS+8L2 N

c(MT)"
n

4. The Borel-Cantelli Lemmathus implies, since

Paemax‘xnﬂ(t) X () >—_£ 22NE max‘X”ﬂ(t) X" (t) Op pon (MT)"
OEtET OEtET n
And

¥ n

n=1
Thus

Paemax‘xnﬂ(t) X(t) >—|09_o
OLtET 2" g

In light of this, for almost every w

n-1 .
Xn:X0+é(XJ+1_ Xj)
j=0
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Converges uniformly on [0,T] to aprocess X (3. We passto limitsin the

definition of X "*1(3, to prove

t t
X(t) =Xg+ P(X,s)ds+P(X,s)dW for OLLET.
0 0

That

1 dX =b(X,t)dt + B(X,t)dW

(SDE) |
7 X(0) = Xq
FortimesO£t£T.

5. We must still show X (3T L2(0,T). We have

24 2
E(‘X”ﬂ(t)‘ ) £ CE(|X| )+CE§@(X” s)ds‘ +CE8TOB(X” s)dW

b 0

QI - O

2 t n 2
£C@+E(X| ))+C@E(‘X ds
0

Where, as usual, “C” denotes various constants. By induction, therefore,

t"

E(‘Xn+1(t)‘ )£&+CZ+L+Cn+2
(n+1)g

<1+ E(Xo[)-

Consequently
E(X" (0] ) £ C E(Xo[)e”
Let n® ¥
E(X()) £CA+E(Xo[))e™ foral O£LET;

andso X1 L2(0,T).
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Definition (2.13) [32]:
A linear SDE is called homogeneous if ¢c©® E° O, forOE£tE£T. It is

caled linear in the narrow senseif F © 0.

Remark (2.10):
If

sup [jc(t)]+[D()] +|E@) +|F@)1 <¥,
OEtET

Then b and B satisfy the hypotheses the Existence and Unigueness Theorem.
Thusthe linear SDE

§ dX = (c(t) + D() X)dt + (E(t) + F () X)dW
1 X(0)= X,

Has a unique solution, provided E(|X0|2) <¥, and Xq is independent of

W (0).

Example (2.6) [32]:
Consider first the linear stochastic differential equation
j dX =d(t)Xdt + f (t)dw

1 X(0)=Xg (25D
For m=n=1. We will try to fined a solution having the product form
X (t) = X4(6) X5 (1),
Where
}Xm = f (t) X,dW (2.52)
1 X1(0) = X
and
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1dX, = At)dt + B(t)dw
i X2(0) =1,
Where the functions A and B are be selected. Then
dX =d(X;X5)
= X10X, + X,dXy + f(t) X, B(t)dt
= f (t)XdW + (X,dX, + f (t) X, B(t)dt),

(2.53)

According to (2.52). Now we try to choose A, B s0 that
dX, + f(t)B(t)dt = d(t) X,at.
For this, B® 0 and A(t) =d(t) X,(t) will work. Thus (2.53) reads

} Xy = d(t) X
|
i X2(0) =1.

t
od(s)ds
Thisis non-random: X,(t) = e® . Since the solution of (2.52) is

t t
of (8)dW- L5 2(s)ds

We conclude that

t@,f (s)dW+tc‘)d(s)- % f2(s)ds
X(t) = X (t) X (1) = Xe? 0 )

A formula noted earlier.

Example (2.7) [32]:
Consider next the general equation

1 dX = (c(t) +d(t)X)dt + (e(t) +  (t)X)dW
1 X(0) = Xo,

(2.54)

again for m=n=1. Asabove, wetry for asolution of the form
X (t) = Xy () X (1),
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Where now
i dX; =d(t) X dt + f (1) X,dW
:, 1=d(t) Xy (t) Xy (2.55)
$ X1(0) =1
And
1 dX, = At)d(t) + B(t)dwW
| dX, = A)d(t) + B() 256

P %2(0)= Xo,
The functions A, B to be chosen. Then
dX = XodXq + X;dX, + f (t) X B(t)dt
= d(t) Xdt + f (t) XdW + X1 (A(t)dt + B(t)dW) + f (t) X,B(t)dt
We now require
X1 (A(t)dt + B(t)dw) + f (t) X,B(t)dt = c(t)dt + e(t)dW
And thisidentity will hold if we take
; At) =[c(t) - fB)et)](Xq() "
fB(t) = e®)(Xy(®)

t t
ofdW+¢d- % f 2ds
Observe that since X4(t) =€° 0 , we have X;(t) >0 amost surely.

Consequently
t t
X5 (t) = Xo + GJc(9) - f(9e(S)](X1(9)) s+ ¢p(9)(Xy(s)) taw
0 0

Employing this and the expressio above for X;, we arrive at the formula, a

special case:
X(t) = Xq(t) X2 (t)

é\ 1.5 t\ 0
= expéoﬂ(s) - 5 F()ds+ of ()W
0 0 a2



Chapter Two Stochastic Integral and Stochastic
differential Equations

e el 1., s o
¢ Xo+09><p§- () - Ef (r)dr - &f (r)dw Hc(s) - &(s) f(s))ds
0 0 0 /)]
t e S S O
+(‘?Xp§- () - % f2(r)dr - of (r)dw -e(s)dW.
0 0 0 ] 4]

8
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Concluding remarks

1. The reader should be familiar with stochastic process, Ito-stochastic

differential equation, control system in presence of stochastic
uncertainty, as well as, Lyapunov stochastic function approach.

. The stochastic Lyapunov function approach for guarantee the global
asymptotically stability in the probability can be considered as a very
good and direct approach to overcome the difficulties of unstability of
some lto-stochastic differential equations. The necessary background
for this approach, the reader should be familiar with Y ong’s inequality,
Ito-chain rule, as well as some restrictions on the stochastic dynamic
system.

. The difficulties of this approach are coming by availability of
stochastic integration in the presence of Brownian motion and
undifferentibility of stochastic noise. So due to this difficulties, the Ito-
stochastic differential equation is proved in order to study this subject.
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Future Work

1. Numerical solution of Ito-stochastic control system in the presence of
stochastic uncertainty may be considered, supported by some red life
applications.

2. The connection between the optimal stochastic control and the robust
one with the present work may be discussed, whether the state space is

a available for measurement or not.
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