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 Abstract 
 

     The main aim of this work is focused on studying the global asymptotic 

stability in the probability for some class of closed-loop control system of Ito-

type in the presence of system uncertainty. 

   Some nonlinear continuous-time Ito-dynamic stochastic system deriven by 

unbounded stochastic noise input have been considered, where the 

equilibrium point of the stochastic system is preserved even in the presence of 

noise . 

   The global asymptotic stability in probability has been developed by using 

stabilization controller and Lyapunov stochastic approach. 

   The stochastic Lyapunov function is computed to guarantee the global 

asymptotic stability in probability. Some resulte of estimation of exponential 

stability is also discussed. 

   The necessary theorem for finding the controller design and stability 

Lyapunov stochastic function have been stated and proved which are 

supported by some concluding remarks and illustrations.    
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 I 

The design of global stabilization controller for stochastic nonlinear 

systems has been an active area of research in recent years ([Deng, Krstic and 

Williams 2001]and [Liu, Zhang and Jiang 2007]) and the references therein). 

Since Deng and Krstic [Deng and Krstic 1999] firstly gave a result of output-

feedback stabilization, the output feedback controller design for stochastic 

nonlinear systems has received more intensive investigation [Liu and Zhang 

2006], [Deng and Krstic  2000] and [Liu,  Zhang and Pan 2003], which is 

because not only in general, the design of output-feedback control is more 

difficult and challenging than that of full state-feedback control, but also the 

output-feedback control is more practical in engineering. These known results 

are limited to the systems in output-feedback form, in which the nonlinear 

terms only depend on the measured output. For the deterministic systems, in 

[Mazence, Praly and Dayawansa 1994] counterexamples were given 

indicating global stabilization of the nonlinear systems in the general lower-

triangular form via output feedback is usually impossible without introducing 

extra growth conditions on the unmeasurable state of the system. Since then, 

much research work has been focused on the output-feedback global 

stabilization of nonlinear systems under various structure or growth 

conditions [Jiang 2000] and [Praly and Jiang 2004]. Recently, there are some 

results of output-feedback control for the stochastic nonlinear systems in 

which nonlinear terms are dependent on the output and unmeasurable inverse 

dynamics or unmodeled dynamics [Liu and Zhang 2005] and [Wu, Xie and 

Zhang 2007].  

In nonlinear systems, the stability theory is much richer than in linear systems 

and hence various notions of stability, such as exponential stability, global 

versus local stability, practical stability, and boundedness, have been   
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introduced [Sastry 1999], [Khalil 1996] and [Kristic, Kanellakopoulos and 

Kokotovic 1995]. 

Lyapunov theory is a well-known proper mean for linear and non-linear 

systems analysis. The major problem of that theory which can be pointed, 

especially for non-linear systems is to derive a function such that it shoud 

satisfy the Lyapunov conditions. If such a function is derived, system stability 

can be guaranteed, while in this regard the designer’s experiences are also 

desired. Although regarding this issue, there are several proposed method 

available while each individual may face with some particular constrains. 

Some general methods to determine the Lyapunov functions like,Method of 

linearization around the operating point; where the major issue for this 

technique is eliminating the non-linear dynamics of system as well as 

procuring local stability, Crossofskey method; where in the case of large 

number of system states, solving the related equations and determining of 

conditions can be a tough job, Generalized Crosophsky method; where in this 

method determining of conditions are easy job, while computational works 

are so high and Variable gradient method; while in this method solving the 

equations is not so easy; whereas the results are similar to the method of 

linearization [Ali Akbar, Rushidi-Njad and Sadrnia 2005]. 

Regarding to the above issue; our attempts is ended to a simple proposed 

technique the so-called back-stepping methodology. This technique is a 

backward technique that can help one to find the Lyapunov functions. One of 

the advantages of this method is to prevent eliminating nonlinear dynamics of 

the system. In fact, back-stepping method is a modification from state 

feedback of the linear systems to non-linear systems by using Lyapunov 

theories. It seems that the origin of back-stepping theory is not precisely 

recognized, while some concurrent analysis with regards to this method has 

been done. The most important study from the literature can be addressed to 

some research paper of the 1980 decade. It is important to mention that the 
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researches of Kokotowich and his colleagues have introduced this issue 

[Harkegard 2001]. In 1991 Kolotowich et.al. presented this idea through his 

published paper [Kokotovic 1992]. Kanlacupulos proposed a mathematical 

for designing a non-linear controller using back-stepping technique 

[Kanellakopoulos 1992]. Follow to these researches some years later, 

reasearchers such as Christic [Kristic, Kanellakopoulos and Kokotovic 1995], 

[Freeman and Peter 1996], and [Spultcher, Jankovic and Kokotovic 1997] 

published several research paper with regards to this subject. Also 

Kokotowich in 1990 at international IFAC symposium reviewed the 

progresses of back-stepping technique during 1990 decade [Kokotovic 1999].  

After considering the stabilization of a specific class of stochastic 

nonlinear systems, we address the classical equation of when is a stabilizating 

(in probability) controller optimal and show that for every system with a 

stochastic control Lyapunov function it is possible to construct a controller 

which is optimal with respect to a meaningful cost functional. 

After considering the stabilization of feedback stochastic systems, we present 

the following result: for general stochastic systems affine in the control and 

noise input, we design stabilizing robust for some class of a nonlinear 

stochastic dynamic system control [Hua Deng and Miroslav Krstic 1997]. 

 While the current robust nonlinear control toolbox includes a number of 

methods for systems affine in deterministic bounded disturbance, the problem 

when the disturbance is unbounded stochastic noise has hardly been 

considered. We present a control design which achieves global asymptotic 

(Lyapunov) stability in probability for a class of strict-feedback nonlinear 

continuous-time systems deriven by white noise [Miroslav 1997].  

Despite major advance in robust stabilization of deterministic nonlinear 

systems achieved over the last few years and reported in [Freeman and 

Kokotovic 1996], [Kristic, Kanellakopoulos and Kokotovic 1995] and 

reference therein, the stabilization problem for stochastic systems is yet to be 



                                                                                       Introduction  
 

 IV 

addressed. While not as refined as their deterministic counterparts in [Khalil 

1996], Lyapunov techniques for stability analysis of stochastic systems do 

exist, for example, the classical book of Khas’minskii [Khas 1980], [Kushner 

1967]. Efforts toward (global) stochastic nonlinear systems have been 

initiated in the work of Florchinger [Flochinger 1993], [Flochinger 1995] 

who, among other things, extended the concept of control Lyapunov functions 

and Sontag’s stabilization formula [Sontage 1989] to the stochastic setting. A 

breakthrough towards arriving at constructive method for stabilization of 

broader classes of stochastic nonlinear systems came with the result of Pan 

and Basar [Pan and Basar 1996], who derived a backstepping for design for 

strict-feedback systems motivated by a risk-senstive cost criterion [Nagai and 

Bellman 1996], [Runolfsson 1994], [Liu and Zhang 2005]. 

This thesis consists of three chapters. The first chapter deals with the basic 

concept of stochastic dynamic system. 

     In chapter two, the necessary mathematical principles concerning 

stochastic integration, Ito formula, existence and uniqueness of  Ito SDEs, as 

well as solvable examples have been presented.    

In chapter three, we design a backstepping control law which guarantees 

global asymptotic stability in probability.  

 Future work, concluding remarks and references are presented.   

 

 

 

                   



 
 
 
 
 
 
 
 
 
 

Chapter One                                    

Basic Concepts of 

Modern Control 

Theory   
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     This chapter presents the basic mathematical theory that will be needed 

later on, like, the concept of probability theory, stochastic process Brownian 

motion etc. 

    

1.1 BASIC CONCEPT OF PROBABILITY THEORY [47]:  
      Randomness and probability are not easy to define precisely, but we 

certainly recognize random events when we meet them. For example, 

randomness is in effect when we flip a coin, buy a lottery ticket, run a horse 

race. The following remarks and terminologies are needed in the following: 

 

Remarks (1.1) [47]:   

1. Probability theory is the mathematical study of phenomena                        

occurring due to chance mechanism. 

2. A mathematical experiment or a random experiment is that one in 

which the possible outcomes may be finite or infinite. 

3. The collection of all elementary outcomes of a random experiment is 

called sample space and is denoted by Ω .In set terminology the sample 

space is termed as the universal set, thus, the sample space Ω  is a set 

consisting of mutually exclusive, collectively exhaustive listing of all 

possible outcomes of a random experiment. That is, 

               1 2{ , ,..., }nω ω ωΩ = denotes the set of all finite outcomes. 

               1 2{ , ,...}ω ωΩ = denotes the set of all ccountably infinite outcomes. 

               Ω {0 }t T= ≤ ≤ denotes the set of unccountably outcomes. 

 

1.1.1 FIELDS, σ – FIELDS [47]: 
We define ℜ  as the nonempty class of subsets drawn from the sample 

space Ω. We say that the class ℜ  is a field or an algebra of sets in Ω if it 

satisfies the following definition: 
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Definition (1.1) (Field or Algebra) [47]: 

 A class of a collection of subsets jA Ω⊂ , 1,2,...,j n∀ =  denoted by ℜ  

is a field when the following conditions are satisfied: 

1. If iA ,∈ℜ  then c
iA ∈ℜ  

2. If { }iA  1,2,..., n  = ∈ ℜ , then  
n

i
i 1

A
=

∈ℜU  

 

Example (1.2) [47]: 

Let Ω = R and consider a class ℜ  of all interval of the form (a, b], that  

                                    

( ] ( ]

                   a<b<c<d
 (c,d]             a<c<b<d

a , b   c, d  = (a,d]              c<a<d<b                   
(c,d]              a<c<d<b
(a,b]              c<a<b<d

∅

∩ 




 

Clearly the class ℜ  is closed under intersections. However, 

                         
( , ] ( , ] ( , )
( , ] ( , ]

ca b a b
a b c d if a b c d

= −∞ ∪ ∞ ∉ℜ
∪ ∉ℜ < < <  

The class ℜ  is not a filed. 

 

Definition (1.2) (σ-Field or σ-Algebra) [47]:     

 A class of a countably infinite collection of subsets jA ⊂ Ω , 1,2,...j∀ =  

denoted by ℑ  is a σ − field when following conditions are satisfied: 

1- If ,iA ∈ ℑ  then .c
iA ∈ℑ  

2- If{ , 1,2, }iA i = ∈ℑL , then 
1

i
i

A
∞

=
∈ℑU . 
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Remarks (1.2) [47]: 
1. In general a σ - field  is a filed , but a filed may not be a σ - field  

2. The intersection of any nonempty but arbitrary collection of σ - fields                       

in Ω  is a σ - field inΩ . 

3. In general the arbitrary union of a collection of σ - field may not be a 

σ - field . 

 We can always construct the smallest fieldσ −  over ℜ  which will ℜ   

contain ℜ  and will be denoted by  ( ) .σ ℜ = ℑ  

This will always exist since ( )σ ℜ  can be defined as the intersection of all 

filedσ −  containingℜ .     

 If 1 2( ), ( ),...σ σℜ ℜ  are all fieldsσ − containing ℜ , then 

           1( ) ( )iiσ σ∞
=ℜ = ℜI  

Further the minimal filedσ −  thus generated is unique, we shall call ( )σ ℜ  

the filedσ −  generated byℜ .  

    

Definition (1.3) (Borel σ- Field) [47]: 
The minimum σ - field generated by the collection of open sets of a 

topological space Ω  is called the Borel filedσ −  or Borel field . 

 

Remarks (1.3) [47]: 

1. Members of filedσ −  of (definition (1.3)) are called Borel sets. 

2. The Borel fieldσ −  is a filedσ − , and hence each closed set is also a 

Borel set. 
3. The space ( , )Ω ℑ thus created is called a measurable space. 

4. Subsets of Ω  which are elements in the filedσ −  are called events. 

5. Elements of Ω  are points. 
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6. If { , 1,2,... }iA i n= is a class of disjoint sets of Ω  such that                                   

1
n

ii A= = ΩU  then the { }iA collectively exhaust Ω and the class { }iA is 

called a partition of Ω  . 

 

1.1.2 PROBABILITY SPACE [37], [41]: 
Definition (1.4) (Probability Measure) [41]: 

A probability measure is a set function P  defined on a σ - field ℑof 

subsets of a sample space Ω such that it satisfies the following axioms of 

kolmogorv for any A∈ℑ: 
 1- ( ) 0P A ≥   (non negativity) 

 2- ( ) 1P Ω =   (normalization) 

          3- 
11

( ) ( )n n
nn

P A P A
∞ ∞

==
= ∑U   (σ - additively) 

 

  With  ,nA ∈ℑ and iA and jA begging pairwise disjoint. 

 Any set function µ  defined on a measurable space ( , )Ω ℑ  satisfying axioms    

(1) and (3) is called a measure. 

 

Definition (1.5) (Probability Space) [7]: 
The measure space ( , , )PΩ ℑ is called a probability space, which serves 

to describe any random experiment where: 

1.  Ω  is a  nonempty set called the sample space, whose elements are 

the elementary outcomes of a random experiment. 

2. ℑ  is a σ - field of subsets of Ω . 

3. P is a probability measure defined on the measurable space ( , )Ω ℑ .  
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Remarks (1.4) [47]: 

1. Let{ }nA be a monotone decreasing sequence of events in ℑ  such that 

1n nA A+ ⊂ ,and   let lim .n
n

A
→∞

= ∅  Then lim ( ) 0n
n

P A
→∞

= .The probability 

measure is said to satisfy the sequential monotone continuity at∅ . 

2. Let{ }nA be a convergent sequence of events in ℑ , with  

limn nA A= .Then lim ( ) ( lim ) ( )n
n n

P A P A P A
→∞ →∞

= =  the probability   

measure is sequentially continuous. 

1.2 A RANDOM VARIABLES [7], [45], [47]: 

An important class of functions are the measurable functions which are 

different from the measure function µ . Whereas measure functions are set 

functions, measurable functions are invariably point function.  

   

Definition (1.6) (Measurable Function) [47]: 

 Let 1 1( , )Ω ℑ  and 2 2( , )Ω ℑ  be two measurable spaces. Let g be a 

function with domain 1 1E ⊂ Ω  and range 2 2E ⊂ Ω     

 1 2:g Ω → Ω  

Then g is called an 1ℑ -measurable function or an 1ℑ -measurable mapping, if 

for every 2 2E ∈ℑ . 

                           1
2 2 1( ) { : ( ) }g E g E Eω ω− = ∈ =  

Is in the fieldσ −  1ℑ . 
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Remarks (1.5) [47]: 

1. The set 1E  given by 1
2( )g E−  is called the inverse image or inverse 

mapping of 2E , and it is measurable set. 

2. Let g  be a measurable mapping from 1 1 2 2( , ) ( , )Ω ℑ → Ω ℑ . If ℜ  is a 

nonempty class of subsets of 2Ω , then 

                   ( ) ( )1 1( ) ( )g gσ σ− −ℜ = ℜ . 

 

Definition (1.7) (Random Variable) [7]: 

          Let ( , )Ω ℑ be a measurable space and ( , )R ℜ another measurable space 

consisting of the real line R  and the σ -field of Borel sets ℜ . Let the 

probability measure P be defined on ( , )Ω ℑ . The measurable mapping X from 

( , )Ω ℑ in to ( , )R ℜ is called a real-valued random variable. 

 

1.2.1 Properties of Real-Valued Random Variables [45]: 
1. Let { , 1,2, , }nX n N= K be a convergent sequence of real-valued 

random variables converging to a limit X .  

2. Let { , 1,2, , }nX n N= K be a convergent sequence of real-valued 

random variable. Then the set on which { }nX  convergence is 

measurable.   

Definition (1.8) (Absolute Continuity of Signed Measures) [47]: 

Let ( , )Ω ℑ  be a measurable space and let µ  and v  be signed measures 

on ℑ . We say that v is absolutely continuous with respect to µ  if for every 

measurable set A∈ℑ , ( ) 0v A = , for which  ( ) 0Aµ = . 
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1.2.2 CONVERGENCE OF RANDOM VARIABLES [47]: 

We discuss the convergence of sequences of random variables { }nX  

where the probability measure plays an important role. The pointwise 

convergence of any sequence{ }nX to a limit X is defined as follows. 

 

Definition (1.9) (Point wise Convergence)[47]: 
A sequence { }nX converges to a limit X if and only if for any 0ε > , 

however small , we can find an integer 0n  such that 

  | |nX X ε− <      for every 0.n n>  

 

Remark (1.6) [47]: 

 If we consider a sequence of random variables 1 2{ , , , , }nX X XK K and 

defined a pointwise convergence to another random variable X as in 

definition (1.9), then we must have for every ω − point in Ω  the sequence of 

numbers 1 2( ), ( ), , ( )nX X Xω ω ωK  converging to ( ).X ω  This type of 

convergence is called everywhere convergence. 

 

Definition (1.10) (Almost Sure Convergence) [32]: 

 A sequence of random variables { }nX converges almost surely (a.s), or 

almost certainty or strongly to X if for every ω -point not belonging to the 

null event A,  

      lim ( ) ( ) 0n
n

X Xω ω
→∞

− =  

This type of convergence is known as convergence with probability 1 and is 

denoted by  

                .( ) ( )a s
n n

X Xω ω
→∞

→  or   ( ) lim ( ) ( . .)n
n

X X a sω ω
→∞

=  
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Remark (1.7) [32]: 

 If the limit X is not known a priori, then we can define a mutual 

convergence almost surely. The sequence nX  converges mutually almost 

surly if  . .sup 0a s
m n nm n

X X
→∞≥

− →  

Both definitions are equivalent. 

 

Remark (1.8) [32]: 

 Let 1, , ,nA AK K  be events in a probability space. Then the event 

1
{ |m

n m n
A ω ω

∞ ∞

= =
= ∈ΩI U  belongs to infinitely many of the },nA  

is called “ nA  infinitely often” , . .nA i o ”.  

 

Definition (1.11) (Convergence in Probability) [7]: 

A sequence of random variables { }nX  converges in probability to X if 

for every 0ε > , however small, lim (| | ) 0n
n

P X X ε
→∞

− ≥ =  

Or, equivalently, 

                 lim (| | ) 1n
n

P X X ε
→∞

− < =  

It is denoted by 

. . .( ) ( ) ( ) . . . ( )l i p
n nn n

X X or X l i p Xω ω ω ω
→∞ →∞

→ =  

 

Remarks (1.9) [47]: 

1- We can define mutual convergence in probability as: 
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          lim sup (| | ) 0m nn m n
P X X ε

→∞ ≥
− ≥ →  

2- If a sequence of random variables { }nX converges almost surely 

to X , then it converges in probability to the same limit. The 

converse is not true. 

3- If { }nX converges in probability to X ,then there exists a 

subsequence { }nkX of { }nX  which converges almost surely to the 

same limit. 

4- { }nX  converges in probability if and only if it converges mutually 

in probability. 

 

1.3 INTRODUCTION TO STOCHASTIC PROCESSES [41],[45]: 
We have looked at single random variable, and finite collections of 

random variables 1 2( , ,..., ),nX X X which we termed random vectors. 

However, many practical applications of probability are concerned with 

random processes evolving in time, or space, or both, without any limit on the 

time (or space) for which this may continue. 

 

Definition (1.13) (Stochastic Process) [7]: 

A stochastic process is a collection of random variables { X( t ) : t T }∈  

where t is a parameter that runs over an index set T. 

In general we call t the time-parameter (or simple the time), and  T .⊆ ¡  

Each ( )X t  takes values in some set S ⊆ ¡ called the state space, then ( )X t  is 

the state of the process at time t. 
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Remarks (1.10) [7]: 

1. If the index set T is a countable set, we call X a discrete-time stochastic 

process, and if T is a continuum, we call it a continuous-time process. 

2. A continuous-time stochastic process { ( ), }X t t T∈ is said to have 

independent increments if for all 0 1 2 ,nt t t t< < < <K  the random 

variables 1 0 2 1 1( ) ( ), ( ) ( ), , ( ) ( )n nX t X t X t X t X t X t −− − −K are 

independent. It is said to possess stationary increments if 

( ) ( )X t s X t+ − has the same distribution for all t. That is, it possesses 

independent increments if the changes in the processes value over 

nonoverlapping time intervals are independent, and it possesses 

stationary increments if the distribution of the change in the value 

between any two points depends only the distance between those 

points.      

 

Definition (1.13) (Vector Stochastic Process) [45]: 
Suppose that 1 2( ), ( ),..., ( )nX t X t X t  are n  scalar stochastic processes 

which are possibly mutually dependent. Then we call 

        1 2 ( )( ) [ ( ), ( ),..., ]Tn tX t X t X t X=  

    A vector stochastic process. 

 We always assume that each, of the components of ( )X t takes real 

values, and that 0t t≥ , with 0t given. 

 

Remarks (1.11) [45]: 

1. A stochastic process can be through of as a family of time functions. 

Each time function we call a realization of the process. 
2. A stochastic process can be characterized by specifying the joint 

probability distributions. 
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                      1 1 2 2{ ( ) , ( ) , , ( ) }m mP X t X X t X X t X≤ ≤ ≤K  

     for all real 1 2,, , mX X XK .  For all 1 2 0, , , mt t t t≥K  and for every natural 

m . 
 

Definition (1.14) (Stationary) [45]: 

     A stochastic process X (t) is stationary if: 

       1 1 m m 1 1 m mP{ X( t ) X ,...,X( t ) X } P{ X( t θ ) X ,...,X( t θ ) X }≤ ≤ = + ≤ + ≤  

for all 1 2, , , mt t tK , and all real 1, , mX XK . For every natural number m  and 

for all θ . 

 

Definition (1.15) (Covariance Matrix) [45]: 

 Consider a vector-valued stochastic processes ( )X t . Then we call 

                     ( ) { ( )}m t E X t=  

 the mean of the processes, 

                     1 2 1 1 2 2( , ) {[ ( ) ( )][ ( ) ( )] }T
xR t t E X t m t X t m t= − −  

the covariance matrix, and 

                    1 2 1 2( , ) { ( ) ( )}T
xC t t E X t X t=  

The second- order joint moment matrix of ( )X t .  ( , ) ( )xR t t Q t= is termed as 

the variance matrix, while ( , ) ( )xC t t Q t′=  is the second-order moment matrix 

of the processes. 

 

Remark (1.12) [45]: 

 Here E  is the expectation operator. We shall often assume that the 

stochastic processes under consideration has zero mean, that is, ( ) 0m t =  for 

all t ; in this case the covariance matrix and the second-order joint moment 

matrix coincide. The joint moment matrix written out more explicitly is 
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1 1 21 1 1 2

2 1 22 1 1 2
1 2 1 2

1 1 2 1 2

{ ( ) ( )}{ ( ) ( )}
{ ( ) ( )}{ ( ) ( )}

( , ) { ( ) ( )}

{ ( ) ( )} { ( ) ( )}

m

mT
x

m m m

E X t X tE X t X t
E X t X tE X t X t

C t t E X t X t

E X t X t E X t X t

 
 
 = =
 
 
 

L
L

L L L
L

 

Each element of 1 2( , )xC t t is a scalar joint moment function. Similarly, each 

element of 1 2( , )xR t t  is a scalar covariance function.   

    

 Theorem (1.1) [45]: 

 Suppose that ( )X t  is a stationary stochastic process. Then its mean 

( )m t  is constant and its covariance matrix 1 2( , )xR t t  depends on 1 2t t−  only. 

 

Definition (1.16) (Wide Sense Stationary) [47]: 

 The stochastic processes ( )X t  is called wide-sense stationary if its 

second order moment matrix ( , )xC t t  is finite for all t ,its mean ( )m t is 

constant, and its covariance matrix 1 2( , )xR t t  depends on 1 2t t−  only. 

 

 Remark (1.13) [45]: 

     Any stationary process with finite second-order moment matrix is also 

wide-sense stationary.  

 

Example (1.4) [45]: 

Let us consider a stochastic process consisting of a sequence 1 2{ , , }X X K  

of independent identically distributed random variables with mean µ  and 

variance 2σ . 

The auto covariance 2
x hσ ( h ) σ δ= , where h is the lag and hδ  is the Kroneker 

delta. 

this process is wide sense stationary. 
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Example (1.5) [45]: 

     Let us consider another process given by 1 2Y Y Y= = =K  with mean mand 

variance 2σ . Here 2( )xC h σ=  for all h . This process is also wide sense 

stationary.  

 

Definition (1.18) (Brownian motion Process) [32]: 

One of the best-known processes with uncorrelated increment is that 

Brownian motion process, also known as the Wiener process or the Wiener-

Lery process. This is a process, with un correlated increments where each of 

the increments 2 1X( t ) X( t )−  is a Gaussian stochastic vector with zero mean 

and variance matrix 2 1( )t t I− , where I is the unit matrix.  

A random process ( ), 0W t t ≥ , is said to be a Wiener process if, 

(a) (0) 0W =  

(b) ( )W t  is continuous in 0t ≥  

(c) ( )W t  has independent increments such that ( ) ( )W t s W s+ −  has the normal 

distribution 2N( μ,σ t ), for all , 0s t ≥  and some 20 σ< < ∞ . 

 

Remark (1.14) [7]: 

1. If 2 1,σ = then ( )W t is said to be the standard Wiener process, we 

always make this assumption unless stated otherwise. 

2. In fact the assumption (b) is not strictly necessary, in that one can 

constract (by a limiting procedure) a random process ( )W t  that obeys 

(a) and (c) and is almost surely continuous. This is Wiener's theorem. 
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Theorem (1.2) [41]: 

Let ( )W t be a Brownian motion and let 0 10 nt t t= < < <L . Then, for any 

0,λ >  

                
[ ]

0

0

max ( ) 2 ( ) ,

max ( ) 2 ( ) .

j n
j n

j n
j n

P W t P W t

P W t P W t

λ λ

λ λ

≤ ≤

≤ ≤

 
> ≤ > 

 
 

 > ≤ >   
 

 

 

1.4 BROWNAIN MOTION IN N-DIMENTIONS: 

 Definition [41]: 

 An n-dimensional processes 1( ) ( ( ), , ( ))nW t W t W t= K is called an n-

dimensional Brownian motion (or Wiener processes) if each processes 

( )iW t is a Brownian motion and if the ( ( ), 0),1 ,ifields W t t i nσ − ℑ ≥ ≤ ≤  are 

independent. 

 

Lemma (1.1) [32]: 

Suppose that ( )W ⋅  is a one dimensional Brownian motion. Then 

( ( ) ( )) min{ , }E W t W s t s s t= ∧ =  for 0, 0t s≥ ≥  

Proof 

Assume 0.t s≥ ≥ Then 

( ( ) ( )) (( ( ) ( ) ( )) ( ))E W t W s E W s W t W s W s= + −  

                    2( ( ) (( ( ) ( )) ( ))E W s E W t W s W s= + −  

                    ( ( ) ( )) ( ( ))s E W t W s E W s= + −  

                    s t s= = ∧ . 

Since ( )W s  is (0, )N s  and ( ) ( )W t W s−  is independent of ( ).W s  
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1.5 THE RESPONSE OF LINEAR DIFFERENTIAL SYSTEM 

TO WHITE NOISE [45]: 
One frequently encounters in practice zero-mean scalar stochastic 

processes w with the property that 1( )w t  and 2( )w t  are uncorrelated even for 

values of 1 2t t− that are quite small, that is, 

( )w 2 1R t ,t 0;  for 1 2t t ε− > where ε  is a "small" number. 

The covariance function of such stochastic processes can be idealized 

as follows: 

( ) ( ) ( )w 2 1 1 2 1R t t X t δ t t ,− = − where ( )1X t 0≥  

Here ( )2 1δ t t−  is a delta function and 1( )X t  is referred to as the intensity of 

the process at time t. such process are called white noise process. 

 

Definition (1.20) (White Noise) [41]: 

 Let ( )X t  be a zero mean vector-valued stochastic process with 

covariance matrix 

        ( ) ( )w 2 1 1 2 1R t ,t X t δ( t t ),= −  where ( )1X t 0≥ . 

the process ( )w t  is then said to be a white noise stochastic process with 

intensity 1( )X t . 

 

Theorem (1.4) [45]: 

 Let ( )w t  be a vector-valued white noise process with intensity 1( )X t , 

also, let 1 2( ), ( )A t A t and ( )nA t  be a given time-varying matrices. Then 

(a) 
2

1

t

t
E A( t )w( t )dt 0

   = 
 
∫   
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(b) 

42

1 3

T tt

1 2
t t

T
1 2

I

E A ( t )w( t )dt S A ( t )w( t )dt

tr V( t )A ( t )SA ( t ) dt

       ′ ′ ′ 
      

 =  

∫ ∫

∫

 

Where I is the intersection of 1 2[ , ]t t  and 3 4[ , ]t t  and S  is any weighting 

matrix 

 (c)     

2 4

1 3t

1 2
I

E A (t)w(t)dt A (t )w(t )dt1 2

= A (t)V(t)A (t)dt

Tt t

t

T

    ′ ′ ′  ∫ ∫ 
       

∫

 

Where I is as defined before. 

 

Remark (1.15) [45]: 

 A special case that is of considerable interest occurs when the processes 

( )X t from which the white noise processes derives is the Brownian motion. 

The white noise processes then obtained is often referred to as Gaussian white 

noise.  

 

1.5.1 Linear Differential System Driven by White Noise [32 [45]: 
A linear differential system driven by white noise is a very convenient 

model for formulating and solving linear control problems that involve 

disturbances and noise. 

In this section we obtain some of the statistical properties of the state of 

a linear differential system with a white noise process as an input. 

In particular, we compute the mean, the covariance, Joint moment, 

variance and moment matrices of the state X . 
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Theorem (1.5) [45]: 

 Suppose that ( )x t  is the solution of 

                 
( ) ( ) ( ) ( )

( )0 0

x A t x t B t w t ,

x t x ,

= +

=

&
 

Where ( )w t  is white noise with intensity ( )V t  and 0x  is a stochastic variable 

independent of ( ),w t  with mean m0 and ( ) ( ){ }T
0 0 0 0 0Q E x m x m= − − as its 

variance matrix.Then ( )x t has mean ( ) ( )x 0 0m t Φ t ,t m=                                    

where ( )0Φ t ,t  is the transition matrix of the system . The covariance matrix 

of ( )x t  is 

 

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
1 2

0

min t ,t
T T T

x 1 2 1 0 0 2 1 1 2
t

R t ,t Φ t ,t Q Φ t ,t Φ t ,τ B τ V τ B τ Φ t ,τ dτ= + ∫

 

The variance matrix ( ) ( )xQ t R t ,t=  satisfies the matrix differential 

equation  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( )
( ) ( )

T T

0 0

T
1 2 1 2 1

x
1 2 2 1 2

Q t A t Q t Q t A t B t V t B t

Q t Q
Furthermore,

Q t Φ t ,t , t tR
Φ t ,t Q t t t

= + +

=

 ≥= 
≥

&

  

The second-order joint moment matrix of ( )x t is: 

               

( ) ( ) ( ){ }

1 2

0

T
x 1 2 1 2

T
1 0 x 0 0 2 0

min( t ,t )
T T

1 2
t

C t ,t E x t x t

Φ( t ,t )C ( t ,t )Φ ( t ,t )

Φ( t ,τ )B( τ )V( τ )B ( τ )Φ ( t ,τ )dτ

=

=

+ ∫
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The moment matrix ( , ) ( )xC t t Q t′= satisfies the matrix differential 

equation 

          
T T

T
0 0 0

Q ( t ) A( t )Q ( t ) Q ( t )A ( t ) B( t )V( t )B ( t )

Q ( t ) E{x x }

′ ′ ′= + +

′ =

&
 

Finally; 

           
T

1 2 1 2 1
x 1 2

1 2 2 1 2

Q ( t )Φ ( t ,t ), t tC ( t ,t )
Φ( t ,t )Q ( t ), t t

 ′ ≥= 
′ ≥

 

 

Example (1.6) [45]: 

 We consider the first-order stochastic differential equation 

                  1( ) ( ) ( ),t t tξ ζ ω
θ

= − +  

Where ( )tω  is scalar white noise with constant intensity µ . Let us suppose 

that 0(0) ,ζ ζ=  where 0ζ is scalar stochastic variable with mean zero and 

variance 2 2
0( )E ζ σ= . ( )tζ has the covariance function 

              
1 21 2( )

2
1 2 1 2( , ) , , 0.

2 2

t tt t
R t t e e t t

θθ

ζ
µθ µθ

σ
− −− − = − + ≥ 

 
 

The variance matrix of the processes is 

              
2

2( ) , 0.
2 2

t
Q t e t

θµθ µθ
σ

− = − + ≥ 
 

 

 

1.3.1 Modeling of Stochastic Processes [41]: 
 Suppose that ( )X t is given by  

                   ( ) ( ) ( )X t C t z t= , 

With  

                   ( ) ( ) ( ) ( ) ( ),z t A t z t B t w t= +&  
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Where ( )w t is white noise. Choosing such a representation for the stochastic 

processes ,X  we call the modeling of the stochastic processes X . The use of 

such models can be justified as follows. 

1. Very often practical stochastic phenomena are generated by very 

fast fluctuations which act upon a much slower differential system. 

In this case the model of white noise acting upon a differential 

system is very appropriate. A typical example of this situation is 

thermal noise in an electronic circuit. 

2. As we shall see, in linear control theory almost always only the 

mean and covariance of the stochastic processes matter. Through 

the use of a linear model, it is always possible to approximate any 

experimentally obtained mean and covariance matrix arbitrarily 

closely. 

3. Sometimes the stochastic processes to be modeled is a stationary 

processes with known power spectral density matrix. Again, one 

can always generate a stochastic processes by a linear differential 

equation driven by white noise so that it is power spectral density 

matrix approximates arbitrarily closely the power spectral density 

matrix of the original stochastic processes. 

 

Example (1.7) [41]: 

 Suppose that the covariance function of a stochastic scalar 

processes v , which is known to be stationary, has been measured and 

turns out to be the exponential function 

                 1 22
1 2( , ) ,t t

xR t t e θσ − −=  where a  and θ  are constsnts 

One can model this processes for 0t t≥  as the state of a first-

order differential system: 
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           1( ) ( ) ( ),X t X t tω
θ

= − +&  

With ( )tω  white noise with intensity 22σ θ  and where 0( )X t is a 

stochastic variable with zero mean and variance 2.σ     
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2.1 BASIC CONCEPT AND DEFFINITIONS [41]: 
 The following definitions and concepts are needed to understand some 

principle of this work:  

 

Definition (2.1) (Increasing σ-field) [41]: 

 Let ( , )Ω ℑ  be a complete measurable space and let { , , }t t T T R+ℑ ∈ =  

be a family of sub-σ -fields of ℑ  such that for ,s t≤  s tℑ ⊂ ℑ . Then { }tℑ  is 

called an increasing family of sub-σ -fields on ( , )Ω ℑ  or the filtration σ -

field of ( , )Ω ℑ . 

tℑ  is called the σ -field of events prior to t. If { , }tX t T∈  is a stochastic 

process defined on ( , , )PΩ ℑ  then tℑ  given by  

            { , , }t sX s t t Tσℑ = ≤ ∈                                                                      (2.1) 

Is increasing. 

 

Remark (2.1) [41]: 

Since the probability space ( , , )PΩ ℑ  is complete, the σ -field ℑ  

contains all subsets of Ω  having probability measure zero. We shall assume 

here that the filtration σ -field { , }t t Tℑ ∈  also contains all the sets from ℑ  

having probability measure zero. 

  

Definition (2.2) (continuity concepts for the filtration σ -field) [41]: 

 The filtration σ -field { , , }t t T T R+ℑ ∈ =  is right continuous if  

                     t t
t

τ
τ

+
>

ℑ = ℑ = ℑI  , for all t T∈                                      (2.2) 

and left continuous if  
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                     maxt t
tt

τ τ
ττ

σ−
<<

  ℑ = ℑ = ℑ = ℑ 
  
U                                              (2.3) 

 

Definition (2.3) (Adaptation of {Xt} [41] : 

Let { , , }tX t T T R+∈ =  be a stochastic process defined on a probability 

space ( , , )PΩ ℑ  and let { , , }t t T T R+ℑ ∈ =  be a filtration σ -field. The process 

{ }tX  is adapted to the family { }tℑ  if tX  is tℑ -measurable for every t T∈ . Or  

               t
t tE X Xℑ =            t T∈  

tℑ -adapted random process are also tℑ -measurable and nonanticipative with 

respect to the σ -field tℑ . 

 

Definition (2.4) (Increasing Process) [41]: 

 Let ( , , )PΩ ℑ  be a probability space, and let { , }t t Tℑ ∈  be a right 

continuous filtration fieldσ −  defined on it. A real right continuous 

stochastic process { , }tA t T∈  is an increasing process with respect to the 

family { , }t t Tℑ ∈  if: 

1. 0 0A =  

2. tA  is tℑ -measurable  

3. s tA A≤       for s t≤     (a.s) 

4. tEA < ∞      for all t T∈  

 

Remark (2.2) [41]: 

 If T R+=  and EA∞ < ∞ , then the increasing process is integrable  and 

if [ , ]T a b=  then the definition implies that the process is integrable. In order 

work we assume that the process { , }tA t T∈  is integrable. 
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Definition (2.5) (Predictable Process) [41]: 

 An integrable increasing process is predictable (also called natural) if 

for all t T∈ , 

              
0 0

t t

s s s sE Y dA E Y dA−=∫ ∫                                                                      (2.4) 

for any nonnegative bounded right continuous tℑ -martingale{ , }tY t T∈ . 

As a consequence of the definition we have the following proposition.  

 

Proposition (1): 

 Let { , }tA t T∈  be an integrable increasing process. Then tA  is 

predictable if and only if  

                 
0 0

s s s sE Y dA E Y dA
∞ ∞

−=∫ ∫                                                                  (2.5) 

for any nonnegative bounded right continuous tℑ -martingale tY . 

 

Proposition of Increasing Predictable Process (2): 

 If tX  is any tℑ -sub martingale, the tℑ -increasing predictable process 

{ , }tA t T∈  can be found as a weak limit (Meyer’s weak limit) by  

                
0 0

( )lim
st

s h s
t

h

E X XA ds
h

ℑ
+

↓

−
= ∫  

That is, 

                
0

s
t

t sA E X dsℑ= ∫                                                                            (2.6)  

Or  

                

              t
t tdA E dXℑ=                                                                                  (2.7) 
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Remarks (2.3) [41]: 

All predictable processes may not be increasing. In fact, from equation 

(2.5) and (2.6) we can conclude that: all continuous tℑ -adapted processes 

are predictable, not necessarily increasing. (A continuous tℑ -adapted 

martingale tX  may not be given by equation (2.5) and (2.6) since 

( ) 0, 0.s
s h sE X X hℑ
+ − = ≥ ) 

 

Definition (2.6) (Continuous Martingale) [41]: 

Let ( , , )PΩ ℑ  be a probability space, and let { , }t t Tℑ ∈  be a filtration 

σ -field defined on it and { , }tX t T∈  a real-valued stochastic process adapted 

to{ , }t t Tℑ ∈ . Then the process { , }tX t T∈  is a martingale with respect to the 

family { , }t t Tℑ ∈  if 

1. tE X < ∞ . 

2. For all ,s t T∈  and s t≤ , 

             s
t sE X Xℑ =      (a .s.)                                                      (2.8) 

tX  is a submartingale if  

                             s
t sE X Xℑ ≥      (a.s.) 

and tX  is a supermartingale if  

                            s
t sE X Xℑ ≤       (a.s.) 

Remarks (2.4) [41]: 

1. Since s
t sE X Xℑ =  for a martingale, we have for ,s t≤   

                s
t s t sEE X EX EX EXℑ = ⇒ =  

As a consequence if 0X  is the initial value and if tX  is a martingale, then  

                 0tEX EX=  for all t T∈ . 
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2. For , s
ts t E Xℑ≤  is increasing for a submartingale and decreasing for a 

supermartingale. 

 

Definition (2.7) (Right Continuous Martingales) [41]: 

The martingale (submartingale) { , , }t tX t Tℑ ∈  is right continuous if  

1. The sample paths of tX  are right continuous almost surely. 

2. The filtration σ -field { , }t t Tℑ ∈  is a right continuous, that is, 

           t s t
s t

+
>

ℑ = ℑ = ℑI      t T∈ . 

 

Example (2.1) [41]: 

 Let Z  be any integrable random process defined on ( , , )PΩ ℑ , and let 

{ , }t t Tℑ ∈  be the filtration σ -field. Then the stochastic process 

               t
tX E Zℑ=  

is a martingale because for s t≤  we can write      

          s s t
t sE X E E Z Xℑ ℑ ℑ= =  

 

Example (2.2) [41]: 

 Let { , }tX t T∈  be integrable stochastic process, adapted to { , }t t Tℑ ∈ , 

with independent increments, that is, for s t≤ , t sX X−  is independent of the 

σ -field tℑ . Then the process { , }t tX EX t T− ∈  is an tℑ -martingale, since  

         ( ) ( )s s
t t t t s s s sE X EX E X EX X EX X EXℑ ℑ− = − − + + −  

                                   ( ) ( )s s
s s t s t sE X EX E X X EX EXℑ ℑ= − + − − +  

                                    ( )s
s sE X EXℑ= −  

Because of independent increaments. 
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Definition (2.8) [41]: 

 Let { , }tX t T∈  be a square integrable martingale belonging to the 

family of martingales{ , , }t tM t Tℑ ∈ . The quadratic variance process of the 

2L -martingale { , }tX t T∈  is defined as: 

              ( ) ( )
1

( ) 1
2

0
, lim ( )tv

n n
vv

N n

t t tn v
X X E X X

+

− ℑ

→∞ =
〈 〉 = −∑ .  

 

2.2 Stochastic Integral [47]: 

We defined on a probability space ( , , )PΩ ℑ a simple stochastic integral 

of the form ( ) tg t dZ
∞

−∞∫  where ( )g t  is a function of  t  only and tZ was a 

processes of orthogonal increments corresponding to a white noise 

processes tX . A generalization of this simple stochastic integral is quantity of 

the form  

               
0

( ) ( , )
t

t sI s dW t Rϕ ϕ ω += ∈∫                                                       

(2.9) 

Where R+  is the positive real line and tW is a Brownian motion processes 

defined on a complete probability space ( , , )PΩ ℑ  satisfying the following 

usual conditions with 0s ≥ : 

               0tEW =  

              t
t s tE W Wℑ
+ =                                                                                (2.10) 

              2 2( )t
t s tE W W sσℑ
+ − =  

In equation (2.9) the integrand ϕ  depends uponω , and since tW is neither 

differentiable nor of bounded variation, the integral ( )tI ϕ has to be defined 
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properly. The integral when ϕ is independent of ω  has been defined that the 

orthogonal increment property of tW . For the stochastic integral ( )tI ϕ to be 

properly defined, the integrand ( , )tϕ ω  has to satisfy the following conditions: 

1. If l is the σ − field of Borel sets on the positive real line, then ϕ is 

jointly measurable in the product σ − field ,ℑ ⊗ l  

           ϕ ∈ℑ ⊗ l                                                                              (2.11a) 

2. If{ , , }t t T T R+ℑ ∈ = is a right continuous filtration σ -field of the 

probability space, then for each ,t T∈  ( , )tϕ ω is adapted to ,tℑ  

              ( , ) ttϕ ω ∈ℑ                                                                        (2.11b)  

As already seen, such functions are called nonanticipative with respect to the 

family { , }.t t Tℑ ∈  

3. For each , ( , )t T tϕ ω∈  satisfying 

               
2

0
( , )

t
E w s dsϕ < ∞∫    (a.s.)                                               (2.11c) 

This condition can be weakened into 

                
2

0
( , )

t
s dsϕ ω < ∞∫      (a.s.) 

4. ( , )tϕ ω  belongs to a class of left continuous functions. 

The processes ( , )tϕ ω under the four conditions given above is a 

predictable processes with respect to the filtration σ − field 

{ , , }.t t T T R+ℑ ∈ =  
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Definition (2.9) (Simple Processes) [41]: 

 A function ( , )g tω is called simple if, for the partitions 

0 10 nt t t b≤ ≤ ≤ ≤ =L of the interval [0, ],T b=  it can be represented in the 

form 

            
1)

1

( ,
0

( , ) ( ) ( )v v

n

v t t
v

g t g I tω ω
+

−

=
= ∑                                                         (2.12) 

Where the vg are vtℑ −measurable. 

Since the simple function ( , )g tω is left continuous and adapted to the 

filtration σ − field{ , , [0, ]}t t T T bℑ ∈ = . Therefore it is a predictable process 

satisfying conditions (2.11). It is not essential that the function ( , )g tω be 

defined as left continuous. The left continuity and hence predictability plays a 

crucial role in the definition of the stochastic integral. 

 

Remark (2.5) [41]: 

Let { ( , ), }t t Tϕ ω ∈  be a random processes satisfying conditions (2.11). 

Then there exist a sequence of simple processes 

{ ( , ), 0,1,2, , }n t n t Tϕ ω = ∈K  satisfying conditions (2.11) such that  

                    
2

lim ( , ) ( , ) 0n
n T

E t t dtϕ ω ϕ ω
→∞

− →∫  

 

Definition (2.10) (Stochastic Integral) [32]: 

 Let { , , }PΩ ℑ  be a complete probability space, and let 

{ , , [0, ]}t t T T bℑ ∈ = be a filtration σ − field. Let { , }tW t T∈ be a Brownian 

motion martingale adapted to tℑ . 

1. If { ( , ), }t t Tϕ ω ∈ is a simple processes of definition 2.1 given by  
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          ( ) ( )
1

( ) 1

( , )
0

( , ) ( ) n n
v v

N n

v t t
v

t Iϕ ω ϕ ω
+

−

=
= ∑   

For partitions ( ) ( )
0 ( )0 ,n n

N nt t t≤ < < =L  then the stochastic integral is 

defined by  

                  ( ) ( )
1

( ) 1

00
( ) ( , ) ( )[ ]n n

v v

t N n

t s v t t
v

I s dW W Wϕ ϕ ω ϕ ω
+

−

=
= = −∑∫    (2.13) 

2. If { ( , ), }t t Tϕ ω ∈ is a general processes satisfying conditions (2.11), 

then there exists a sequences of simple functions 

{ ( , ), 0,1, , }n t n t Tϕ ω = ∈K  approximating ( , )tϕ ω  in the quadratic 

mean. In this case the stochastic integral is defined as: 

        
0 0

( ) ( , ) . . . . ( , )
t t

t s n s
n

I s dW l i q m s dWϕ ϕ ω ϕ ω
→∞

= =∫ ∫  

                                      . . . . ( )t n
n

l i q m I ϕ
→∞

=                                                    (2.14a) 

Thus the sequences of random variables 
0

( ) ( , )
t

t n n sI s dWϕ ϕ ω= ∫  converges in 

the quadratic mean to the random variable
0

( ) ( , )
t

t sI s dWϕ ϕ ω= ∫ , which is 

called the stochastic integral of the function ( , )sϕ ω  relative to the Brownian 

motion martingale{ , , }t tW t Tℑ ∈ . The limiting value (to within stochastic 

equivalence) of the integral ( )t nI ϕ  is independent of the choice of the 

approximating sequence { }.nϕ  

3. Under the weakened condition we define the approximating 

sequence         { ( , ), 0,1, , }n t n t Tϕ ω = ∈K as  
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                0
( , ) ( , ) ( . .)

( , )

0

t

n
n

t t dt n a s
t

otherwise

ϕ ω ϕ ω
ϕ ω


<

= 



∫  

So that { ( , )}n tϕ ω  converges in probability to ( , )tϕ ω  as n → ∞ . 

In this case the stochastic integral is defined as 

              
0

( ) ( , )
t

t sI s dWϕ ϕ ω= ∫  

                       . . . ( )t n
n
l i p I ϕ

→∞
=                                                            (2.14b) 

 

2.2.1 PROPERTIES OF STOCHASTIC INTEGRALS [41]:  

The stochastic integral ( )tI ϕ  as defined above satisfies the following 

basic properties: 

1. 
0

( , ) 0
t

sE s dWϕ ω =∫        t T∈                                                         (2.15) 

2.  1 2 1 2( ) ( ) ( )t t tI a b aI bIϕ ϕ ϕ ϕ+ = +     ,a bare constants                 (2.16) 

3.
0 0

( , ) ( , ) ( , )
t t

s s ss dW s dW s dW
τ

τ

ϕ ω ϕ ω ϕ ω= +∫ ∫ ∫                                   (2.17) 

4. ( )tI ϕ is progressively measurable for t T∈  and ( , )tϕ ω  satisfying 

conditions (2.11). In particular, for each , ( )tt I ϕ  is tℑ -measurable. 

 

Example (2.3) [32]: 

 Let W( )⋅  be a 1-dimentional Wiener process, then W( )⋅  is a 

Martingale. 

To see this, we write ( ) ( )( )W t U W s 0 s t= ≤ ≤  and let t s≥ , then 
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( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )( )E W t W s E W t W s W s E W s W s= − +   

                         ( ) ( )( ) ( ) ( )E W t W s W s W s= − + =      (a.s.) 

 

Lemma (2.1) [32]: 

Suppose X( )⋅  is a real-valued martingale and Φ : →¡ ¡  is convex, 

then if ( )( )( )E Φ X t < ∞  for all 0t ≥ , ( )( )Φ X ⋅  is a sub-martingale. 

 

2.2.2 STOCHASTIC INTEGRAL AS A MARTINGALE [7]: 

 Let ( , , )PΩ ℑ be a complete probability space, and let { , }t t Tℑ ∈  be a 

right continuous filtration σ − field. Let { , , [ , ]}tW t T T a b∈ =  be a Brownian 

motion process. Let ϕ  be a function satisfying conditions(2.11), namely, 

1. ( , )tϕ ω ∈ℑ ⊗ l  

2. ( , ) ttϕ ω ∈ℑ  for each t  

3. 
2

( , )
b

a
E t dtϕ ω < ∞∫  

4. ( , )tϕ ω  belongs to the class of left continuous functions then the 

stochastic integral 

             ( ) ( , ) ( )
t

t s
a

X s dWϕ ϕ ω ω= ∫       t T∈                                       (2.18) 

is an tℑ -martingale satisfying the martingale property  

             t
t sE X Xℑ =       ,s t≤   t T∈  
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Example (2.4) [47]: 

 Let an integral ( )tI W  be given by  

                    
0

( ) ( ) ( )
t

tI W W dWτ τω ω= ∫                                                         (2.19) 

Where ( )tW ω  is a Brownian motion process. The integrand ( )tW ω  can be 

satisfy conditions (2.11), and ( )tI W  is a stochastic integral. Therefore ( )tI W  

must be an tℑ -martingale by proporties of (2.1.2). 

 If ( )tI W  is treated as an ordinary integral, then  

                     
2

0
( )

2

t
t

t
WI W W dWτ τ= =∫                                                         (2.20)  

We now check whether 
2

2
tW  is a martingale.  

        
2

2 2 21 ( )
2 2

t tt
s t s

WE E W W Wℑ ℑ= + −  

                        21 1 ( )
2 2tW t s= + −  

Which is not a martingale. Therefore the conventional rule for integrations not 

applicable here.   

 

2.3 ITO PROCESS (GENERALIZED STOCHASTIC INTEGRAL) [7]: 

 In the stochastic integral given by equation (2.9) the integration was 

carried out with respect to the Brownian motion tW . The stochastic integral 

with respect to tW  was carefully defined in equations (2.13),(2.14a) and 

(2.14b). However, in many nonlinear filtering problems the integration may 

have to be carried out not with respect to the Brownian motion process but 
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with respect to an Ito process. We now define the Ito process under the 

weakened condition 
2

0
( , )

t
s dsϕ ω < ∞∫     (a.s.). 

Definition (2.11) (Ito Process) [32]: 

 Let ( , , )PΩ ℑ  be a complete probability space, with { , }t t Tℑ ∈  being a 

right continuous filtration σ − field defined on it. Let { , , }t tW t Tℑ ∈  be a 

Brownian motion process. The continuous random process { , , }t tX t Tℑ ∈  is 

called an Ito process (relative to Brownian motion process { , , }t tW t Tℑ ∈  if 

there exist two nonanticipative tℑ -measurable random processes ( )ta ω  

and ( )tb ω , satisfying for each t T∈  

               
0

( )
t

sa dsω < ∞∫    (a.s.)                                                                  (2.21) 

               
2

0
( )

t

sb dsω < ∞∫    (a.s)                                                                 (2.22) 

With ( )tb ω  being left continuous, and if, with probability 1, ( )tX ω  satisfies 

the equation  

              0
0 0

( ) ( ) ( ) ( )
t t

t s s sX X a ds b dWω ω ω ω= + +∫ ∫                                    (2.23)  

The process is a basic stochastic differential equation which is discussed in its 

generality later. The existence of the stochastic integral 
0

( )
t

s sb dWω∫  has been 

established under the weakened condition in definition (2.10). The existence 

of the integral ( )sa dsω∫  is guaranteed by condition (2.21). The left continuity 

condition for ( )ta ω  is not necessary for the definition of this integral. Thus 

the integral equation (2.23) is well defined. 
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Equation (2.23) can also be given in a stochastic differential equation 

representation as 

            ( ) ( ) ( )t t t tdX a dt b dWω ω ω= +          ,t T∈    0( )X ω                        (2.24)  

However, equation (2.24), in general, is not equivalent to 

            ( ) ( )t t
t t

dX dWa b
dt dt

ω ω= +                  t T∈                                      (2.25) 

Where tdW dt  is a white noise process.  

 

2.3.1 A stochastic Integral over an Ito Process [47]: 

 Let { , , [ , ]}tX t T T a b∈ =  be an Ito processes as given in definition 

(2.11) .Let ( )tϕ ω  be a nonanticipative process satisfying condition (2.11). 

The stochastic integral over the Ito process tX is given by 

                ( ) ( ) ( )
t

t
a

I dXτ τϕ ϕ ω ω= ∫          t T∈                                             (2.26) 

Or  

                 ( ) ( ) ( ) ( ) ( )
t t

t
a a

I a d b dWτ τ τ τ τϕ ϕ ω ω τ ϕ ω ω= +∫ ∫                             (2.27) 

and for both integrals to exist it is sufficient that  

                  ( ) ( )t t
T

a dtϕ ω ω < ∞∫            (a.s.) 

                     

                 
2

( ) ( )t t
T

b dtϕ ω ω < ∞∫            (a.s.) 

The stochastic integral ( )tI ϕ  over the Ito processes tX  can also be well 

defined analogous to definition (2.10). By remark (2.5) an approximating 

sequence of simple functions { ( ), }nt t Tϕ ω ∈  can be found such that  
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   2 2. . . ( ) ( ) ( ) ( ) ( ) ( ) 0t t nt t t nt
n T
l i p a b dtω ϕ ω ϕ ω ω ϕ ω ϕ ω

→∞

 − + − →  ∫          (2.28) 

Then the stochastic integral of equation (2.26) is the limit in probability of the 

integral sums ( )t nI ϕ  given by  

        ( ) ( )
( 1)

( ) 1

( )
0

( ) ( )( )n nv v v

N n

t n vt n t t
v

I X Xϕ ϕ ω
+

−

=
= +∑                                    (2.29) 

For the partitions  

         ( ) ( ) ( ) ( )
0 1 2 ( )

n n n n
N na t t t t t= < < < < =L      

Or  

         ( ) . . . ( )t t n
n

I l i p Iϕ ϕ
→∞

=  

 

Remarks (2.6) [47]: 

1. The stochastic integral over a Wiener processes is a martingale whereas 

the stochastic integral over the Ito process is not a martingale but a 

continuous semi martingale.  

2. If the sufficiency condition 2

0
( ) ( )

t

s sb dsϕ ω ω < ∞∫  is replaced by the 

strong condition 

                 2

0
( ) ( )

t

s sE b dsϕ ω ω < ∞∫  

Then we have quadratic mean convergence of the integral sums ( )t nI ϕ  

              ( ) . . . . ( )t t n
n

I l i q m Iϕ ϕ
→∞

=  

3. Under suitable assumptions the stochastic differential equation given 

by equations (2.23), (2.24) may be generalized by replacing the 

Brownian motion process tW  by a general martingale tM .  
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2.3.2 ITO FORMULA [32]: 

We discuss the Ito rule applied to stochastic integral. First we discuss the 

rule for the scalar case and extended it to vector situations. 

Let { , , }t tX t Tℑ ∈  be an Ito process as defined by equation (2.24). Let 

( , )tψ ⋅  be a measurable function with continuous first and second partial 

derivatives. Then sentation, popularly known as the Ito formula or Ito rule.  

 

Theorem (2.1) [47]: 

Let the function ( , )t xψ  be continuous and have bounded continuous 

partial derivatives ,t xψ ψ∂ ∂ ∂ ∂ , and 2 2xψ∂ ∂ . Let { , , }t tX t Tℑ ∈  be an Ito 

process having the stochastic differential equation representation  

          ( ) ( ) ( )t t t tdX a dt b dWω ω ω= +           ,t T∈    0( )X ω                   (2.30)   

Then the process ( ) ( , ( ))t tY t Xω ψ ω=  also admits stochastic differential 

equation representation given by 

   2
2 2

2

( , ) ( , )( )

( , )1
2

t t
t t

t
t

t X t XdY dt dX
t x

t X b dt
x

ψ ψ
ω

ψ
σ

∂ ∂
= +

∂ ∂

∂
+

∂

     , at T Y∈                              (2.31)  

Where 2σ  is the variance parameter associated with .tW  

 By substituting equation (2.30) into equation (2.31), the Ito rule can be 

given in an alternate form as 

2
2 2

2

( , ) ( , ) ( , )( ) ( ) ( )

( , )1 ( )
2

t t t
t t t t

t
t

t X t X t XdY dt a dt b dW
t x x

t X b dt
x

ψ ψ ψ
ω ω ω

ψ
σ ω

∂ ∂ ∂
= + +

∂ ∂ ∂

∂
+

∂

, at T Y∈                        

                                                                                                               (2.24)  

                                                                                          



Chapter Two                                                          Stochastic Integral and Stochastic 
                                                                                       differential Equations  

 37 

Remarks (2.7) [47]: 

1. If ( , )t tY t Xψ=  and tX  is a deterministic process, then the differential 

for tdY  will be  

                        t tdY dt dX
t x

ψ ψ∂ ∂
= +

∂ ∂
                                                       (2.33) 

Since the higher order terms containing 2dt  and 2
tdX  and above are 

negligible.      

2. Since tW  is a Brownian motion process, the quadratic term 2
tdW  is 

not negligible and it is of order dt . 

3. The term 2 2 2 21 ( )
2 tx bσ ψ∂ ∂  in equation (2.31) is the additional term 

because 2
tdW  can not be neglected. 

4. If tW  is a deterministic process, 2 0σ =  and equation (2.31) 

degenerates to equation (2.33). 

5. The presence of the extra term 2 2 2 21 ( )
2 tx b dtσ ψ∂ ∂  prevents us from 

using ordinary calculus, as given by equation (2.33) for stochastic 

differentials. 

 

Example (2.5) [47]: 

We back to example (2.4) and use the Ito formula to show that the 

stochastic integral 
0

( ) ( ) ( )
t

tI W W dWτ τω ω= ∫  is indeed a martingale. Let us now 

assume  

                    
2

( )
2
t

t t
WY Wψ= =                                                                 (2.34)   
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And fined the differential representation of tY  using Ito’s rule. The Ito process 

tX  associated with the Brownian motion process tW  is tW  itself, 

Or  

                  t tdX dW=  

So that 0ta =  and 1tb =  in equation (2.30). 

Applying Ito’s rule to tY , we have from equation (2.24)  

           
2

2
2

10 0 1 1
2t tdY dt dt dW dt

w dw w
ψ ψ ψ

σ
∂ ∂ ∂

= ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅
∂ ∂

 

Or  

           21
2t t tdY W dW dtσ= +  

Integrating, 

            2

0

1
2

t

tY W dW tτ τ σ= +∫  

Hence  

                    2 2 2

0

1 1 ( )
2 2

t

t tW dW Y t W tτ τ σ σ= − = −∫                                      (2.35) 

It is very clear that 2 21 ( )
2 tW tσ−  is indeed a martingale since 2tσ  is the 

adapted continuous predictable increasing process , tW W< >  associated with 

the martingale tW .  

Where , tW W< >  is the quadratic variance process of 2L -martingale 

{ , }tW t T∈ .  
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2.3.3 VECTOR FORMULATION OF ITO’S RULE [47]: 

 We can enunciate the vector form of Ito’s rule. Let { , , }t tX t Tℑ ∈  be an 

n-vector Ito process, having the stochastic differential equation 

                     ( ) ( ) ( ) ( )t t t tdX a dt B dWω ω ω ω= +                                         (2.36) 

Where 1 2{ ( ) ( ) ( )}T
t t t nta a a aω ω ω= K  and ( )tB ω  is an n m×  matrix of 

functions given by  

                       { ( ) , 1,2, , , 1,2, , }ijtb i n j mω = =K K  

( )tW ω  is an m-dimensional independent vector Brownian motion process 

with variance parameter 2σ . The function ( )ita ω  and ( )ijtb ω  satisfy 

conditions similar to definition (2.11) with 

                         
0

( )
t

isa dsω < ∞∫         1,2, ,i n= K   ( . .)a s   

                          
2

0
( )

t

ijsb dsω < ∞∫       1,2, , ,i n= K   1,2, ,j m= K     ( . .)a s  

Let another scalar process ( )tY ω  be defined by ( , ( ))tt Xψ ω  where ( , )tψ ⋅  is a 

measurable function. 

 

Theorem (2.2) [47]: 

 Let the function 1 2( , , , , )nt x x xψ K  be continuous and have bounded 

continuous partial derivatives 

                
t

ψ∂
∂

 ,     
x
ψ∂

∂
    and 

T

x x
ψ

∂ ∂ 
 ∂ ∂ 

 

Then the process ( ) ( , ( ))t tY t Xω ψ ω=  has a stochastic differential 

representation given by 
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( , ) 1( ) ( , ) ( , )
2

T T
T Tt

t t t t t t
t XdY dt t X dX B t X B dt
t x x x

ψ
ω ψ σ ψ σ

∂ ∂ ∂ ∂   = + +   ∂ ∂ ∂ ∂   
    

t T∈ , ( )aY ω                                                                                                (2.37) 

Or substituting for ( )tdX ω  from equation (2.36), we obtain 

            

2

( , )( ) ( , ) ( ) ( , ) ( ) ( )

1 ( , )
2

T T
t

t t t t t t

T
T
t t t

t XdY dt t X a dt t X B dW
t x x

B X t B dt
x

ψ
ω ψ ω ψ ω ω

σ ψ σ

∂ ∂ ∂   = + +   ∂ ∂ ∂   

∂ +  ∂ 

  

                                                                          ,t T∈  ( )aY ω                   (2.38)                                                    

 

Remarks (2.8 [41]): 

Special Cases. Let us now consider some special cases where the Ito 

rule given by (2.38) can be simplified. 

1. The Brownian motion process ( )tW ω  is a scalar process ( )tW ω . In 

this case the matrix of functions ( )tB ω  becomes an n-dimensional 

vector ( )tb ω , and the variance parameter 2σ becomes 2σ . We using 

these simplifications, equation (2.38) becomes  

( , )( ) ( , ) ( ) ( , ) ( ) ( )
T T

t
t t t t t t

t XdY dt t X a dt t X b dW
t x x

ψ
ω ψ ω ψ ω ω

∂ ∂ ∂   = + +   ∂ ∂ ∂   
   

                 21 ( ) ( , ) ( )
2

T
T
t t tb t X b dt

x x
σ ω ψ ω

∂ ∂ +  ∂ ∂ 
                      ,t T∈  ( )aY ω  

2. Let 1 2 ,t t tY X X=  where 1tX  and 2tX  are Ito process satisfying the 

stochastic differential equations 



Chapter Two                                                          Stochastic Integral and Stochastic 
                                                                                       differential Equations  

 41 

         1 1 1

2 2 2

t t t t

t t t t

dX a dt b dW
dX a dt b dW

= +
= +

            (2.39) 

   then, we using Ito rule, 

2
2 1 1 2 1 2

1 2
2t t t t t t tdY X dX X dX b b dtσ= + + ⋅                                        (2.40) 

    We use equation (2.39) in equation (2.40), we obtain 
2

2 1 1 1 2 2 1 2( ) ( )t t t t t t t t t t tdY X a dt b dW X a dt b dW b b dtσ= + + + + ⋅          (2.41) 

3. Let ,tX
tY e=  and tX  is the Ito process satisfying the stochastic 

differential equation  

       2 21
2t t t tdX g dt g dWσ= − +                                                           (2.42) 

Here  

       
2 2

2
t

t
ga σ

= −        t tb g=  

We applying the Ito’s formula, equation (2.24), to tX
tY e= ,yields 

2 2 2
2 2

2
10

2 2

t t tX X X
t

t t t t
ge e edY dt dt g dW g dt

x x x
σ

σ
∂ ∂ ∂

= ⋅ + ⋅ − + +
∂ ∂ ∂

 

Since  

      
2

2

t tX X

t
e e Y

x x
∂ ∂

= =
∂ ∂

 

We have 

       t t t tdY Yg dW=                                                                              (2.43)  

4. Let { , , }t tW t Tℑ ∈  be a Brownian motion process. Let ( )tϕ ⋅  be a 

function satisfying conditions (2.11). Then according to proposition 

of stochastic integral as a martingale, 
0

( )
t

tX dWτ τϕ ω= ∫  is an tℑ -



Chapter Two                                                          Stochastic Integral and Stochastic 
                                                                                       differential Equations  

 42 

martingale. Let 2
t tY X= . Then the Ito process tX  which is a 

martingale is given by the stochastic differential  

           ( )t t tdX dWϕ ω=  

Where 0ta =  and t tb ϕ= , By Ito formula, equation (2.24), 

2 210 2 0 2 2
2t t t t t tdY dt X dt X dW dtϕ σ ϕ= ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅  

        2 22 t t t tX dW dtϕ σ ϕ= +                                                               (2.44) 

Or in the integral form, 

2
0

0
2 ( )

t

t tY X Y X dWτ τ τϕ ω= = + ∫  

Since the initial condition 0 0,Y =  

       2 2 2

0 0

1 ( ) ( ) ( )
2

t t

tX d X dWτ τ τ τσ ϕ ω τ ϕ ω ω
 

− = 
  

∫ ∫                                      (2.45) 

Is a martingale because the stochastic integral 
0

( ) ( )
t

X dWτ τ τϕ ω ω∫  is a 

martingale assuming 2

0

t
E X dτ τϕ τ < ∞∫ , hence invoking the uniqueness of the 

Doob-Meyer decomposition theorem, we have 

        2 2

0
, ( )

t

tX X dτσ ϕ ω τ〈 〉 = ∫                                                                      (2.46)    

As an tℑ -adapted increasing predictable process associated with the 

martingale tX . 

  

2.3.4 APPLICATIONS OF ITO’S FORMULA [41]: 

 Ito’s formula will become a standard tool in the sequel.  
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Lemma (2.2) [41]: 

 If [ , ]pf Lω α β∈  for some 1p ≥ , then there exists a sequence of step 

functions nf  in [ , ]pLω α β  such that  

                 lim ( ) ( ) p
n

n
f t f t dt

β

α→∞
−∫         . .a s  

 

Corollary (2.1 [41]): 

 If 2 [0, ]mf M Tω∈  where m  is a positive integer, then 

                     
2

21

0 0 0
sup ( ) ( ) ( )

mt T
mm

m
t T

E f s d s C T E f t dtω −

≤ ≤

 
  ≤ 
  

∫ ∫  

Where ( )34 2 1 .
m

mC m m = −   

 

2.4 Stochastic Integrals and Differentials in N Dimensions [32]: 
 Let 1( ) ( ( ), , ( ))nt t tω ω ω= K  be an n-dimensional Brownian motion. Let 

tℑ  ( 0)t ≥  be an increasing family of σ − fields such that ( )tω  is tℑ  

measurable and ( ( ) ( ), 0)t tω λ ω λℑ + − ≥  is independent of tℑ , for any 0t ≥ . 

 We shall say that a matrix of functions belongs to [ , ]pLω α β  (or 

to [ , ]pMω α β ) if each of its elements belongs to [ , ]pLω α β  (or to [ , ]pMω α β ). 
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 Let ( )i jb b=  be a m n×  matrix that belongs to 2 [ , ]Lω α β . The stochastic 

integral ( ) ( )b t d t
β

α

ω∫  is a m n×  matrix that belongs to 2 [ , ]Lω α β . The stochastic 

integral ( ) ( )b t d t
β

α

ω∫  is an m-vector defined by  

             
1 1, ,

( ) ( ) ( ) ( )
n

i j j
i i m

b t d t b t d t
β β

α α

ω ω
= =

  =  
  
∑∫ ∫

K

 

If substitute
2

1

t

i
t

fdα ω= ∫ ,
2

1

t

i
t

gdβ ω= ∫ in the identity 2 24 ( ) ( )αβ α β α β= + − − ,  

We find that:  

 
2 2 2

1 1 1

( ) ( ) ( ) ( ) ( ) ( )
t t t

i i
t t t

E f t d t g t d t E f t g t dtω ω =∫ ∫ ∫                                             (2.47) 

Provided f  and g  belong to 2
1 2[ , ]M t tω . 

 We also have  

   
2 2

1 1

( ) ( ) ( ) ( ) 0
t t

i i
t t

E f t d t g t d tω ω =∫ ∫    If i j≠ ,                                               (2.48) 

Because the integrals are independent and with zero expectation. 

 We are using (2.47), (2.48) we see that if ( )i jb b=  is a m n×  matrix 

in 2
1 2[ , ]M t tω , then 

             
2 2

1 1

2
2( ) ( )

t t

t t
E b t d E b t dtω =∫ ∫                                                            (2.49) 

Where  
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            2 2

1 1
( )

m n

i j
i i

b b
= =

= ∑∑ . 

 

Definition (2.12) [41]: 

 Let ( )tξ  be an m-dimensional process for 10 t T≤ ≤ , and suppose that, 

for any 1 20 t t T≤ ≤ ≤ , 

              
2 2

1 1

2 1( ) ( ) ( ) ( ) ( )
t t

t t
t t a t dt b t d tξ ξ ω− = +∫ ∫  

Where 1( , , )ma a a= K  and the m n×  matrix ( )i jb b=  belong to 1 [0, ]L Tω  and 

2 [0, ]L Tω  respectively. Then we say that ( )tξ  has a stochastic differential 

( )d tξ  given by  

                 ( ) ( ) ( ) ( )d t a t dt b t d tξ ω= +  

 

2.5 A GENERAL EXISTENCE AND UNIQUENESS THEOREM 

[47]: 
 We start with a useful calculus lemma: 

 

GRONWALL’S lemma (2.3) [32]: 

 Let φ  and f  be nonnegative, continuous functions defined for 

0 t T≤ ≤ , and let 0 0C ≥  denote a constant. If  

             0
0

( )
t

t C f dsφ φ≤ + ∫  ,   for all 0 ,t T≤ ≤  

Then  

              0
0( )

t
fds

t C eφ
∫

≤      ,    for all 0 .t T≤ ≤  
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2.5.1 Existence and Uniqueness Theorem [32]: 

 Suppose that : [0, ]n nb T× →¡ ¡  and : [0, ]n m nB T ×× → Μ¡  are 

continuous and satisfy the following conditions: 

 

a) ˆ ˆ( , ) ( , )b x t b x t L x x− ≤ −  

                                                , for all ˆ0 , , nt T x x≤ ≤ ∈¡  

     ˆ ˆ( , ) ( , )B x t B x t L x x− ≤ −  

 

 

b) ( , ) (1 )b x t L x≤ +                           

                                                 , for all 0 , ,nt T x≤ ≤ ∈¡  

    ( , ) (1 )B x t L x≤ +  

for some constant L . 

       Let 0X  be any n¡ -valued random variable such that  

c) 2
0( )E X < ∞  

and 

d) 0X is independent of (0),W+  

Where ( )W ⋅ is a given m-dimentionsinal Brownian motion. 

    Then there exists a unique solution 2 (0, )nX L T∈  of the stochastic 

differential equation: 

(SDE)              
0

( , ) ( , ) (0 )
(0)

dX b X t dt B X t dW t T
X X

= + ≤ ≤
 =
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Remarks (2.9) [32]: 

1. “Unique” means that if 2ˆ, (0, )nX X L T∈  with continuous sample paths 

almost surly, and both solve (SDE), then  

           ˆ( ( ) ( )P X t X t= , for all 0 ) 1.t T≤ ≤ =  

2. Hypotheses (a) says that b and B are uniformly Lipchitz conditions in 

the variable .x  We notice also that hypothesis (b) actually follows (a). 

Proof [32]: 

1. Uniqueness. Suppose X  and X̂  are solutions. Then for all 0 ,t T≤ ≤  

      
0 0

ˆ ˆ ˆ( ) ( ) ( , ) ( , ) ( , ) ( , )
t t

X t X t b X s b X s ds B X s B X s dW− = − + −∫ ∫  

Since 2 2 2( ) 2 2a b a b+ ≤ + , we can estimate  

   

2
2

0

2

0

ˆ ˆ( ( ) ( ) ) 2 ( , ) ( , )

ˆ2 ( , ) ( , )

t

t

E X t X t E b X s b X s ds

E B X s B X s dW

 
 − ≤ − +  
 

 
 −  
 

∫

∫

 

The Cauchy Schwarz inequality implies that  

        
2

2

0 0

t t
fds t f ds≤∫ ∫  

For any 0t >  and :[0, ] .nf t → ¡  we use this estimate  

2 2

0 0

ˆ ˆ( , ) ( , ) ( , ) ( , )
t t

E E b X s b X s ds TE b X s b X s ds
    
    − ≤ −            

∫ ∫   

                                              
22

0

ˆ( ) .
t

L T E X X ds≤ −∫  
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Furthermore  

  
2

2

0 0

ˆ ˆ( , ) ( , ) ( , ) ( , )
t t

E B X s B X s dW E B X s B X s ds
    − = −        
∫ ∫  

                                                   2

0

ˆ( ) .
t

L E X X ds≤ −∫  

Therefore for some appropriate constant C  we have  

      
2

0

ˆ ˆ( ( ) ( ) ) ( ) ,
t

E X t X t C E X X ds− ≤ −∫  

Provided 0 t T≤ ≤ . If we now set
2ˆ( ) ( ( ) ( ) )t E X t X tφ = − , then the foregoing 

reads 

          
0

( ) ( )
t

t C s dsφ φ≤ ∫     For all 0 .t T≤ ≤  

Therefore Gromwell’s Lemma, with 0 0C = , implies 0φ ≡ . Thus ˆ( ) ( )X t X t=  

a.s. for all0 t T≤ ≤ , and so ˆ( ) ( )X r X r= for all rational 0 r T≤ ≤ , except for 

some set of probability zero. As X  and X̂  have continuous sample paths 

almost surely, 

                  
0

ˆmax ( ) ( ) 0 1.
t T

P X t X t
≤ ≤

 − > = 
 

 

2. Existence. We will utilize the iterative scheme introduced. We defined 

                   

              

0
0

1
0

0 0

( )

( ) ( ( ), ) ( ( ), )
t t

n n n

X t X

X t X b X s s ds B X s s dW+

 =



= + +


∫ ∫
 

For 0,1,n = K  and 0 t T≤ ≤ . We defined also 
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21( ) ( ( ) ( ) )n n nd t E X t X t+= − . 

We claim that  

                  
1( )( )

( 1)

n
n MTd t

n

+
≤

+
 For all 0,1,n = K , 0 t T≤ ≤    

For some constant M , depending on ,L T  and 0X . We indeed 0n = , we have 

20 1 0( ) ( ( ) ( ) )d t E X t X t= −  

           
2

0 0
0 0

( , ) ( , )
t t

E b X s ds B X s dW
 
 = +  
 
∫ ∫  

            

2
22

0 0
0 0

2 (1 ) 2 (1
t t

E L X ds E L X ds

tM

    ≤ + + +        
≤

∫ ∫  

For some large enough constant M .  This confirms the claim for 0.n ≡   

 Next we assume the claim is valid for some 1n − . Then 

                   
21( ) ( ( ) ( ) )n n nd t E X t X t+= −  

                              

2
1 1

0 0
( , ) ( , ) ( , ) ( , )

t t
n n n nE b X s b X s ds B X s B X s dW− −

 
 = − + −  
 
∫ ∫   

 
2 22 1 2 1

0 0
2 2

t t
n n n nTL E X X ds L E X X ds− −   

≤ − + −   
   
   
∫ ∫  

 2

0
2 (1 )

t n nM sL T
n

≤ + ∫       (By the induction hypothesis)  
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1 1

,
( 1)

n nM t
n

+ +
≤

+
 

We choose 22 (1 )M L T≥ + . This proves the claim. 

3. Now we note  

   

2
2 21 2 1 1

0 00 0
max ( ) ( ) 2 2 max ( , ) ( , )

T t
n n n n n n

t T t T
X t X t TL X X ds B X s B X s dW+ − −

≤ ≤ ≤ ≤
− ≤ − + −∫ ∫

 

Consequently the martingale inequality implies  

2 2 21 2 1 2 1
0 0 0
max ( ) ( ) 2 8

T T
n n n n n n

t T
E X t X t TL E X X ds L E X X ds+ − −

≤ ≤

 − ≤ − + − 
  ∫ ∫

 

                                              ( )nMTC
n

≤  

4. The Borel-Cantelli Lemma thus implies, since 

      

21 2 1 2
0 0

1 ( )max ( ) ( ) 2 max ( ) ( ) 2
2

n
n n n n n n

nt T t T

MTP X t X t E X t X t
n

+ +

≤ ≤ ≤ ≤

  − > ≤ − ≤      
And 

     2

1

( )2 .
n

n

n

MT
n

∞

=
< ∞∑  

        Thus  

                   1
0

1max ( ) ( ) . . 0
2

n n
nt T

P X t X t i o+

≤ ≤

 − > = 
 

 

In light of this, for almost every ω  

                  
1

0 1

0
( )

n
n j j

j
X X X X

−
+

=
= + −∑  
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Converges uniformly on [0, ]T  to a process ( )X ⋅ . We pass to limits in the 

definition of 1( )nX + ⋅ , to prove  

    0
0 0

( ) ( , ) ( , )
t t

X t X b X s ds B X s dW= + +∫ ∫     for 0 t T≤ ≤ . 

That  

(SDE)          
0

( , ) ( , )
(0)

dX b X t dt B X t dW
X X

= +
 =

 

For times 0 t T≤ ≤ . 

5. We must still show 2( ) (0, )nX L T⋅ ∈ . We have 

       

2 2
2 21

0
0 0

( ( ) ) ( ) ( , ) ( , )
t t

n n nE X t CE X CE b X s ds CE B X s dW+
   
   ≤ + +      
   
∫ ∫  

                       
22

0
0

(1 ( )) (
t

nC E X C E X ds≤ + + ∫ , 

Where, as usual, “C ” denotes various constants. By induction, therefore, 

       
12 21 2 2

0( ( ) ) (1 ( ))
( 1)

n
n n tE X t C C C E X

n

+
+ + 

≤ + + + + 
+  

L . 

Consequently  

       
2 21

0( ( ) ) (1 ( ))n CtE X t C E X e+ ≤ +       

Let n → ∞  

        22
0( ( ) ) (1 ( )) CtE X t C E X e≤ +    for all 0 t T≤ ≤ ; 

and so 2 (0, )nX L T∈ .  
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Definition (2.13) [32]: 

 A linear SDE is called homogeneous if 0c E≡ ≡ , for0 t T≤ ≤ . It is 

called linear in the narrow sense if 0F ≡ . 

 

 

Remark (2.10): 

 If  

              
0
sup [ ( ) ( ) ( ) ( ) ]

t T
c t D t E t F t

≤ ≤
+ + + < ∞ , 

Then b  and B  satisfy the hypotheses the Existence and Uniqueness Theorem. 

Thus the linear SDE 

              
0

( ( ) ( ) ) ( ( ) ( ) )
(0)

dX c t D t X dt E t F t X dW
X X

= + + +
 =

 

Has a unique solution, provided 2
0( )E X < ∞ , and 0X  is independent of 

(0)W+ .  

 

Example (2.6) [32]: 

 Consider first the linear stochastic differential equation 

                    
0

( ) ( )
(0)

dX d t Xdt f t dW
X X

= +
 =

                                                      (2.51) 

For 1.m n= =  We will try to fined a solution having the product form  

                     1 2( ) ( ) ( ),X t X t X t=  

Where  

                     1 1

1 0

( )
(0)

dX f t X dW
X X

=
 =

                                                                (2.52) 

and  
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                     2

2

( ) ( )
(0) 1,

dX A t dt B t dW
X

= +
 =

                                                      (2.53) 

Where the functions A and B  are be selected. Then 

                      1 2( )dX d X X=  

                             1 2 2 1 1

1 2 1

( ) ( )
( ) ( ( ) ( ) ),

X dX X dX f t X B t dt
f t XdW X dX f t X B t dt

= + +
= + +

 

According to (2.52). Now we try to choose ,A B  so that  

                        2 2( ) ( ) ( ) .dX f t B t dt d t X dt+ =  

For this, 0B ≡  and 2( ) ( ) ( )A t d t X t=  will work. Thus (2.53) reads 

                          2 2

2

( )
(0) 1.

dX d t X dt
X

=
 =

 

This is non-random: 0
( )

2( )

t
d s ds

X t e
∫

= . Since the solution of (2.52) is 

                            
2

0 0

1( ) ( )
2

1 0( ) ,

t t
f s dW f s ds

X t X e
−∫ ∫

=  

We conclude that  

                             
2

0 0

1( ) ( ) ( )
2

1 2 0( ) ( ) ( ) ,

t t
f s dW d s f s ds

X t X t X t X e
+ −∫ ∫

= =  

A formula noted earlier.  

 

Example (2.7) [32]: 

 Consider next the general equation 

                                  
0

( ( ) ( ) ) ( ( ) ( ) )
(0) ,

dX c t d t X dt e t f t X dW
X X

= + + +
 =

           (2.54) 

again for 1m n= = . As above, we try for a solution of the form  

                                  1 2( ) ( ) ( ),X t X t X t=  
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Where now 

                                   1 1 1

1

( ) ( )
(0) 1

dX d t X dt f t X dW
X

= +
 =

                                (2.55) 

And 

                                  2

2 0

( ) ( ) ( )
(0) ,

dX A t d t B t dW
X X

= +
 =

                                      (2.56) 

The functions ,A B  to be chosen. Then  

                   2 1 1 2 1( ) ( )dX X dX X dX f t X B t dt= + +  

                         1 1( ) ( ) ( ( ) ( ) ) ( ) ( )d t Xdt f t XdW X A t dt B t dW f t X B t dt= + + + +  

We now require 

            1 1( ( ) ( ) ) ( ) ( ) ( ) ( )X A t dt B t dW f t X B t dt c t dt e t dW+ + = +  

And this identity will hold if we take  

                      
1

1
1

1

( ) [ ( ) ( ) ( )]( ( ))

( ) ( )( ( ))

A t c t f t e t X t

B t e t X t

−

−

 = −


=
  

Observe that since
2

0 0

1
2

1( )

t t
fdW d f ds

X t e
+ −∫ ∫

= , we have 1( ) 0X t >  almost surely. 

Consequently 

                  1 1
2 0 1 1

0 0
( ) [ ( ) ( ) ( )]( ( )) ( )( ( ))

t t
X t X c s f s e s X s ds e s X s dW− −= + − +∫ ∫  

Employing this and the expressio above for 1X , we arrive at the formula, a 

special case : 

         1 2( ) ( ) ( )X t X t X t=  

                  2

0 0

1exp ( ) ( ) ( )
2

t t
d s f s ds f s dW

 
= − + 

 
 
∫ ∫  
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2
0

0 0 0

2

0 0 0

1exp ( ) ( ) ( ) ( ( ) ( ) ( ))
2

1exp ( ) ( ) ( ) ( ) .
2

t r s

t s s

X d r f r dr f r dW c s e s f s ds

d r f r dr f r dW e s dW

 
× + − − − −     

  
+ − − −     

∫ ∫ ∫

∫ ∫ ∫
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        Concluding remarks 
 

1. The reader should be familiar with stochastic process, Ito-stochastic 

differential equation, control system in presence of stochastic 

uncertainty, as well as, Lyapunov stochastic function approach. 

2. The stochastic Lyapunov function approach for guarantee the global 

asymptotically stability in the probability can be considered as a very 

good and direct approach to overcome the difficulties of unstability of 

some Ito-stochastic differential equations. The necessary background 

for this approach, the reader should be familiar with Yong’s inequality, 

Ito-chain rule, as well as some restrictions on the stochastic dynamic 

system. 

3. The difficulties of this approach are coming by availability of 

stochastic integration in the presence of Brownian motion and 

undifferentibility of stochastic noise. So due to this difficulties, the Ito-

stochastic differential equation is proved in order to study this subject.           



 

 88 

 

Future Work 
  

1. Numerical solution of Ito-stochastic control system in the presence of 

stochastic uncertainty may be considered, supported by some real life 

applications. 

2. The connection between the optimal stochastic control and the robust 

one with the present work may be discussed, whether the state space is 

a available for measurement or not.    
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  صـالمستخل
  

يركز الهدف الاساس لهذا العمل على دراسة الاستقراريه العظمى المحاذيه 

 مغلقة المسار -Itoفي الاحتماليه لبعض اصناف الانظمه الديناميكيه نوع

 (System uncertainty).بوجود خاصية كون النظام متغير ضمن قيود 

ر الخطيه والمؤثره المستمره غي Itoلقد نوقش بعض الانظمه الديناميكيه نوع 

  .بضوضاء عشوائيه متغيره مع الزمن غير متقيده

لقد تم تطوير الاستقراريه العظمى المحاذيه في الاحتماليه باستخدام مسيطر 

  .مستقر وداله ليابانوف العشوائيه

ام المقترح لضمان الاستقراريه لقد تم حساب دالة ليابونوف العشوائيه للنظ

  .المحاذيه العظمى في الاحتماليه للنظام

تم عرض وبرهان بعض النظريات الاساسيه الخاصه بايجاد المسيطر العشوائي 

ودالة ليابونوف العشوائيه الضامنه للاستقراريه مدعمه ببعض الاستنتاجات 

  .والتطبيقات

  



 
 

  جمھوریة العراق
  ارة التعلیم العالي والبحث العلميوز

  نــریــــــة النھـامعــــج
  كلیة العلوم

  قسم الریاضیات وتطبیقات الحاسوب
  

 
قابلیة الاستقراریة في نظام سیطرة 

غیر خطي متغیر العشوائیة باستعمال 
 الامثلیة المعكوسة

 
  رسالة

م، العلوةكلی،وتطبیق  ات الحاس  وب قس  م الریاض  یاتى مقدم  ة إل  
      النھ                                                           رینجامع                                                           ة 

  وھ     ي ج     زء م     ن متطلب     ات نی     ل درج     ة ماجس     تیر عل     وم
  في الریاضیات                          

  لمن قب
  عزیز نورا علي

  )٢٠٠٥بكالوریوس علوم، جامعة النھرین،( 
  

  شرافا
 راضي علي زبون .د.م.أ

  
تش         رین الأول                                          وال                          ش          
 ٢٠٠٨                                                                                        ١٤٢٩                     
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