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List of Symbols 

E Euclidean space 

P
* 

Fixed point 

)( *pW u

l  Local unstable set of fixed point p
* 

)( *pW u  global unstable set of fixed point p
*
 

)( *pW s

l  Local stable set of fixed point p
*
 

)( *pW s  global stable set of fixed point p
*
 

Bp Basin of attraction 

A Closed set 

T Planar quadratic map 

LC-1or J(T) Critical set of T 

LCi Critical curve of rank-i of the map T  

iCL  Extra critical curve 

EC(T
M

) Critical curve of T
M

  

d' Absorbing area of non-mixed type 

'
~
d  Absorbing area of mixed type 

'd a Approximated absorbing area of non-mixed type 

'
~
d a 

Approximated absorbing area of mixed type 

d''a Approximated invariant area (mixed or non-mixed)  

d Chaotic area 

S Invariant area 

 Closed area 

s Absorbing area non invariant 

d" Connected non invariant absorbing area   

0 Closed subset of 2R  



Abstract 

Planar noninvertible maps have been studied recently by several authors 

such as Mira [32], Gardini [17], and Cathala [9], much of their work has been 

concentrated on analyzing some examples and making some conclusions on the 

properties of the maps. 

     The main purpose of this thesis can be divided into three objectives: 

First objective: introduce the mathematical background of the main notions and 

proposition on the theory of the dynamical system. Specifically we shall foucus 

our study on planar nonivertiable continuously differentiable maps T: 
2


2
. 

Definition of critical curves and some different types of noninvertible maps 

related to their critical curves and some properties of critical curves are 

presented. 

Second objective: we have studied some properties of such kind of maps in 

particular absorbing areas, invariant areas of such maps. Also, we give proposed 

algorithm to approximate the equations of the critical curves LCi which cause 

find an approximated absorbing and invariant areas such as least square method. 

Third objective: give some illustrative examples that use the proposed algorithm 

to find an approximated absorbing and invariant areas.  

     In our work, we have made use of the Matlab version 7.0 software to solve 

the discussed examples. 
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Introduction 

 

     What is a dynamical system? Dynamical systems are a branch of 

mathematics that attempts to understand processes in motion. Such processes 

occur in some branches of science. For example, the motion of planets is a 

dynamical system, one that has been studied for centuries. Some other systems 

are the stock market, the world's weather, and the rise and fall of populations 

[5]. 

 

     Dynamical systems are the study of the long-term behavior of evolving 

systems.  The modern theory of dynamical systems originated at the end of 19
th

 

century with fundamental questions concerning the stability and evolution of the 

solar system. Attempts to answer those questions led to the development of a 

rich and powerful field with applications to physics, and biology, meteorology, 

astronomy, economics, and other areas[5]. 

 

     The basic goal of dynamical systems is to understand the eventual or 

asymptotic behavior of an iterative process. If this process is differential 

equations whose independent variable is time, then the theory attempts to 

predict the uptime behavior of solutions of the equation in either the distant 

future (t) or the distant past (t-). If this process is a discrete process 

such as the iteration of a function, then the theory hopes to understand the 

eventual behavior of the points x , f(x) , f
2
(x) , …,f

n
(x) as n becames  large. That 

is, the dynamical systems asks the some what non mathematical sounding 

question: where do points go and what do get there? Functions which determine 

dynamical systems are also called mappings, or maps, for short [11]. 

 

 

 



     The complex dynamical behavior of solutions of various mathematical 

models has been an object of study for a number of years. Point-mappings or 

recurrence, are especially of interest became they appear as natural descriptions 

of evolutionary phenomena in physics ecology, biology and control systems 

[9,33&34]. 

 

     A complex dynamical behavior called ''chaos'' is obsorved in mathematical 

models expressed in the from of recurrences with non-unique inverses. The 

attractive limit sets of an endomorphism are located in phase plane domains 

bounded by segments of critical curve and absorbing area [14& 35]. 

 

     The theory of critical curves for maps of the plane provides powerful tools 

for locating the chief characteristic features of a discrete dynamical system in 

two dimensions: the location of its chaotic attractors, its basin boundaries, and 

the mechanisms of its bifurcations. Nowadays one begins to recognize the role 

played by critical curves of maps in the analysis, in the understanding and 

description of the bifurcations, and transition to chaotic behavior in coupled 

maps [4].  

 

     Critical curve permit to define the essential notions of absorbing area, and 

chaotic area [25], [26] [28]. Roughly speaking an absorbing area (d') is a region 

bounded by critical curves segments of finite rank, such that, the successive 

images of all points of a neighborhood U(d') enter into (d') and cannot get away 

after entering after a finite number of iterations. Except for some bifurcation 

cases, a chaotic area is an invariant absorbing area, the points of which give rise 

to iterated sequences ( or orbits ) having the property of sensitivity to initial 

conditions. 

 



     The term of critical curve was first introduced in 1964 by Mira who provides 

an entry into certain areas of current research on noninvertible maps and the 

role of such curve in bifurcations basin. It is a natural generalization in 
2
 of the 

notion of critical points of one dimensional endomorphisms. Several authors 

have investigated and have shown the importance of critical curves in the 

bifurcations specially Gumowski and Mira [25, 26] and Gardini [15,16] who 

have developed the role of critical curves in bifurcations.  

 

     Many researchers were interested in the field of noninvertible maps due to 

their importance. The following are some of them: 

 Gardini L. in [15] studied the global dynamics and bifurcations of a 

croeconomic model which showed the interactions between "good market 

"and" the money market" by using the role of critical curves. 

 Gardini L. et al., in [24] studied the dynamics occurring in Logistic map and 

by use of critical curves, absorbing and invariant areas were determined 

inside which global bifurcation of the attracting sets (fixed points, closed 

invariant curves, cycles or chaotic attractors) take place. The basin of 

attraction of the absorbing areas are determined together with their 

bifurcation. 

 Cathala J., in [10] examined chaotic areas and absorbing area without 

specifying the structures of the attractors that they contain for the  map 

( 9.1,,: 3  bxbxyyaxxT ) also he defined some bifurcations that 

modify the nature of the chaotic areas. 

 Mira C., et al., in [31] determined  dynamical properties and bifurcations for 

the map ( yxyyxyxxT 
2

5
2,: 22  ) by using critical curves. 

 Illhem D. , and boukemara I. , in [29] studied the behavior under iteration of 

a three parameters family of piecewise linear maps of the plane 



0',1'

0',1'
:





xifxycbyaxx

xifxybyaxx
T




 defined by linear functions, where a, 

b, c are real parameters, treateded by numerical methods and they showed 

that this family have several attractors . 

 Brahim K. et al. , in [4] studied properties of the noninvertible maps (T1: 

xn+1=1-axn
2
, yn+1=1-ayn

2
+bxn-yn +c), (T2: xn+1=1-axn

2
+b(yn

2
-xn

2
), yn+1=1-

ayn
2
+b(xn

2
-yn

2
), ( T3: xn+1=1-axn

2
+

2

'b
sin2 (yn

2
-xn

2
), yn+1=1-ayn

2
+

2

'b
sin2 

(xn
2
-yn

2
))  which posses a chaotic attractor played by such curves in 

bifurcation theory are give by [7], [8], [9], [17], [18], [19], [20], [21], [22] 

&[23]. 

 

     The aim of this thesis is to study the noninvertible planar maps T:
2


2
 in 

particular approximated absorbing areas of such maps, via use Least square 

method to approximate the equation of the critical curves LCi. 

     It is important to remark that much of the work done on planar maps 

concentrated on presented certain examples and pointing out certain 

phenomena. 

     The work is divided into three chapters; these chapters are organized as 

follows: 

     Chapter one introduced the mathematical background of the main notions 

and proposition on the theory of the dynamical system. Definition of critical 

curves and some different types of noninvertible maps related to their critical 

curves are presented, some properties relate to images & preimages are given. 

Also, we shall give the definition of planar quadratic maps. 

     Chapter two deals with a special type of planar maps, namely (z0-z2) maps. 

This chapter includes proving some properties of absorbing areas and invariant 

areas and some properties of a (z0-z2) maps and how to construct approximated 

absorbing areas, approximated invariant areas by using the critical curves. 



     In chapter three we shall illustrate the concepts of the two previous chapters 

by applications on some noninvertible maps. First we shall apply our proposed 

approach on example and compare geted area that with area that obtained by 

applying construction algorithm. In the other examples we shall use our 

proposed algorithm to determine some phenomena.                

     Our examples in this chapter illustrate certain phenomena that are different 

from the ones found in Literature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter one 

Preliminaries 

 

Introduction 

     It is always very useful to derive some consequences from a few bits of 

information. A dynamical system describe the stable of points of a given space 

 (where  may be a Euclidean space or open subset of a Eualidean space), as 

time passage [12],[26]. Then we can recognize two types of dynamical system: 

discrete dynamical system and continuous dynamical system [2]. 

     For discrete dynamical system we can define it to be a map g:, where  

is an open set in E which assigns each point x in  to g(x) after one unit of time. 

After two units of time x will be in state g
2
(x)=g(g(x)), after n units of time, x 

will in the state g
n
(x). Then we have discrete family  {g

n
(x) nN} where N is 

the natural set.  

     For continuous dynamical system is a mapping t: . Where takes x into 

xt, (i.e. t(x)=xt) which defines for each t. At time zero, x is at x0, and after one 

unit of time x will be at x1, two units of time later x at x2 and so on. 

     The goal of this chapter is to introduce several of the basic definitions from 

dynamical systems, it contain four sections: 

 In the first section, we shall introduce such concepts: preimages, periodic 

points, local & global unstable set, local & global stable set. In the second 

section, we recall definitions of the critical curves and give some types of 

noninvertible maps that related the critical curves. In the third one, we 

 

 

 

 

 

 



give some properties of the critical curves. In last one, we shall give the 

definition and some properties of planar quadratic maps. 

Throughout this work we shall focus our study on continuously differential 

maps and discrete systems, moreover, our maps are of form 
2


2
 i.e. (planar 

maps).   

1.1 Definitions and Notations 

Definition (1.1.1):[34,p.2] 

     Let T: XX, xr ,(r positive integer) is called the rank-r image of x, if xr=T
r
 x. 

Similarly, x is one of the rank-r preimage of xr.  

 

Definition (1.1.2):[34,p.2] 

     Let X=n
, then the map T: XX will be called diffeomorphism, if it is 

continuously differentiable function of x, and T
 -1

 exists, unique and 

continuously differentiable (in the case T is invertible) in the domain of 

definition of T. when T is such that T
 -1

 may be multi-valued, or may not exist, 

then T will be called a noninvertible map. 

 

Example (1.1.1): 

     Consider the one dimensional map T, i.e. T: which is given by:  

2' xx   

T
-1

is given by:  

x = 'x  

so the rank-one preimage of a point x' is double-real value for 'x 0, and is not 

real for 'x 0. 

 

 

Definition (1.1.3):[27,p.21] 



     A periodic point of period k is a point x in which the domain of T such that 

T
k
(x) = x and in addition   x, T(x), T

2
(x), …,T

k-1
(x) are distinct. 

 

Definition (1.1.4):[27,p.21] 

     The orbit of xX is the set {T
k
(x): k0}. If x is a periodic point of period k, 

then the orbit of x which is {x, T(x), T
2
(x), …, T

k-1
(x)} will be a periodic orbit 

and is called a k-cycle. 

Definition (1.1.5):[23,p.6] 

     A cycle of order k=1 is called a fixed point of T. Every point of          k-cycle 

is fixed point of T
k
. 

 

Definition (1.1.6):[27, p.158] 

     Let p be a fixed point of T. Then p is attracting if and only if there is a disk 

centered at p such that T
 n

(v)p, for every v in the disk. By contrast, p is 

repelling if and only if there is a disk centered at p such that )()( pTvT   pv   

for every v in the disk for which vp. 

 

Remark (1.1.1):[34, p.4] 

     A k-cycle is attracting, if all the eigenvalues of the jacobian matrix of T
k
 at 

the period point, have their modulus less than one. If at least one of the 

eigenvalues in modulus is larger then one the cycle is repulsive, these 

eigenvalues are called the multipliers of the cycle, and are denoted by Si. A k-

cycle is expanding if all the 
i

S 1, i=1,2,…,p. and there exists a neighborhood 

U of the cycle such that 
i

S 1, i=1,2,…,p, for any x belonging to U, this is in 

case all the eigenvalues are real.  

Remark (1.1.2):[34, p.4] 



     If some of the eigenvalues of the Jacobin matrix of T
k
 are complex at the 

periodic point then a periodic point will be stable (attracting) if all the 

eigenvales have negative real parts otherwise it is unstable (repeller).  

 

Definition (1.1.7):[34, p.109] 

     A fixed point p is called a snap-back repeller, or SBR if  

a) it is expanding; 

b) if in the neighborhood of p U(p) there exists a point q such that T
m
 (q) =p for 

some positive integer m. 

 

Definition (1.1.8):[27,p.16] 

     The basin of attraction Bp of p is the set consists of all x such that       T
n
 (x) 

p as n increases without bound. 

 

Definition (1.1.9):[4,p.247] 

     A non empty set A is said to be invariant by T if T (A) =A. The set A is a 

backward invariant by T if  )(1 AT  =A, where T 
-1

 represents all the rank-one 

preimage of T. 

Definition (1.1.10):[23,p.7] 

     A closed invariant set A is an attracting set if an arbitrary small 

neighborhood U of A exists such that T(U) U and T
 n

(x) A when n, for 

any xU.  

Definition (1.1.11):[23,p.7] 

     A closed invariant set A called is topologically transitive, if for any two open 

set U,VA a positive integer k exists such that T
k
(U)V, or equivalently a 

point pA exists the orbit of which is dense in A. 

 



Definition (1.1.12):[23,p.7] 

     An attractor is an attracting set which is topologically transitive. 

Definition (1.1.13):[34,p.15] 

     Let T be a p-dimensional noninvertiable map define in p and p
*
 a repulsive 

fixed point, and U be a neighborhood of p
*
. The local unstable set )( *pW u

  of p
*
 

in U, and the global unstable set of p
*
, W

u
 (p

*
) are given by:  

)( *pW u

 ={ nUxandpxTxUx n

n

n  



 ,)(: * }, 

W
u
 (p

*
) ={x p : x-n )(xT n p

*
}=W

u
(p

*
)=

0n

T
n
 (W u

 (p
*
)). 

Some properties of the unstable set are given in the following proposition that 

appeared in [34,p.15]: 

 

Proposition(1.1.1): 

(P1) )()(( ** pWpWT uu  , i.e. it is invariant set. 

(P2) For any map T , ).())(( **1 pWpWT uu   

Note that if T is noninvertible, then )( *pW u  may not be backward invariant. 

(P3) Let )( *pV be a neighborhood of *p . For any )( *pWx u a finite integer N 

exists (which depends on x ) such that a rank-N perimage Nx  of x  belongs to 

V and a sequence of preimages of Nx  exists which belongs to V and converges 

to *p . 

Proof: can be found in [34] 

 

 

 

Definition (1.1.14):[34, p.16] 



     Let p
*
 be fixed point of T which may be attracting or repulsive. The local 

stable set of p
*
 in a neighborhood U, and the global stable )( *pW s

 , )( *pW s
 are 

given by:  

)( *pW s

 ={ xU, x n=
*)( pxT n 

 
and x nU, n}, 

)( *pW s ={ x p , x n=
*)( pxT n  }= ))((

0

* 




n

sn pWT . 

Some properties of the stable set are given in the following proposition that 

appeared in [34,p.16] 

 

Proposition(1.1.2): 

(P1) )()(( **1 pWpWT ss  . 

(P2) ).())(( ** pWpWT ss   

 (P3) Let )( *pV be a neighborhood of *p . For any )( *pWx s an integer N exists 

(which depends on x ) such that a rank-N image 
N

x  of x  belongs to V  and 

converge to *p . 

Proof: can be found [34,p.16] 

 

Definition(1.1.15):[34,p.62] 

     The point q is said homoclinic to the non attracting fixed point p
*
 ( or 

homoclinic point of p
*
) if qW

 u 
(p

*
)W

 s 
(p

*
), p

*
≠q. 

 

Definition(1.1.16):[34,p.62] 

     A point q is said to be heteroclinic from the repulsive (or expanding) fixed 

point *p  to the repulsive fixed point *r , if )()( ** rWpWq su  .  

 

1.2 Two Dimensional Noninvertible Maps: Definition of 

Critical Curves, Types of Noninvertible Maps 



     The notion of critical curve LC (From Ligne Critique in French) was first 

introduced in 1964 by Mira [13] & Gardini [15,16]. It is the two-dimesional 

generalization of the notion of critical point of a one-dimensional noninvertiable 

maps. 

This section essentially concerns family of continuously differentiable, two-

dimensional noninvertible maps (endomorphisms), 22: T .  

      We shall start by giving the definition of the critical curve LC.  

 

Definition (1.2.1):[23, p.114] 

Let 22: T  be a noninvertible map defined by:  

   T:  
),('

),('

yxgy

yxfx




    

Where f and g are continuously differentiable functions. The critical curve of 

rank-1 of T, denoted as LC, is generally the image by T of LC-1 where LC-1 is 

the set of points in which the Jacobian determinant of T vanishes.   

    i.e. LC-1 ={X 2
 : 0)( XJ };  

Critical curves of rank (i+1) of T are the image of rank-i of the critical curve 

LC, i.e. LCi=T
 i
 (LC) =T

 i+1
(LC-1), i=0,1,2,…, LC0=LC.  

 

    The critical curve LC and the curve LC-1 may be made up of several branches 

with respect to the inverse map T
 -1

, we observed that 
2
 can be subdivided into 

open regions Zi ( 
i

i
z2 ), the points of which have i distinct preimages of 

rank one. The boundaries of these regions are the branches of rank one critical 

curve LC. Then the maximum value of index i of Zi (the maximum number of 

first rank preimages, generated by a given map) is called the map degree N. i.e 

the plane can be considered to be made up of N sheets joining at the branches of 

first rank critical curve LC.   



 

Remark (1.2.1)[1]: 

     If T is invertiable, then it is diffiemorphism which implies             det(J (T)) 

0, so T has no critical points. 

 

1.2.1 Types of Noninvertible Maps with Critical Curves, their 

Symbolic Representation [34,p.127] 

     Noninvertible maps, giving rise to regions Zi, i-e noninvertible maps for 

which a critical curve can be defined, will be classified into types related to the 

nature of the regions Zi characterizing the considered map. We shall try to 

mention some of these types:  

1) Type (Z0-Z2): LC is made up of only one branch separating 
2
 into two 

regions, one Z0 with no preimage the other Z2 with two first rank 

preimages. 

2) Type (Z1-Z3-Z1): LC is constituted by two branches separating 
2
 into 

three regions, one Z3 with three first rank preimages and two Z1 non 

connected regions on both sides of Z3 with only one first rank preimage. 

3) Maps of type (Z0-Z2-Z4),…, or more complex types generated by the 

presence of regions with higher number of rank-one preimages, the 

branches of LC separating these regions.  

 

Maps may exhibit another kind of complexity related to the presence of one 

or several cusp points on the critical curve LC. In the simplest case, a cusp 

point is such that three first rank preimages coincide, and the symbolic 

representation of maps may be refined by introducing the symbols "", and 

"" for the presence of such a point, some of these maps are:  

1) A map of type (Z1Z3): LC has a cusp corresponding to a "cape" of Z3 

"penetrating" into Z1. 



2) A map of type (Z1Z3): means that LC is a closed curve with two cusps 

forming a "lip" shape. 

3) A map of type (Z0-Z2 Z4) is such that LC presents two cusps each casp 

is a "cape" of Z4 "penetrating" into Z2 with a dovetail shape i.e. the two 

cusps have a common critical segment, and they are called a djacents. 

4) A map of type (Z1-Z3Z5-Z3Z1): LC presents two cusps not having a 

common segment. The minimal map degree for this type is five. 

Figure (1.2.1) illustrates the above types of maps. 

 

 

 



 

(f) 

Fig(1.2.1) 

(a) (Z0-Z2) map LCZZ 
20

  (b) (Z1-Z3-Z1)map, LC=LL', LZZ 
31

, 

'
13

LZZ  ; (c) (Z1<Z3) map; LC=LL' cusp point  c = L  L'; (d) (Z1<Z3>) 

map; LC= L  L',  LZZ 
31

, LL'=c,c';                 (e) (Z0-Z2<<Z4) map, 

LC=LL'L'', c=L  L' , c'=L  L''. (f) (Z1-Z3Z5-Z3Z1) map, c=L
1
 3L , 

c'= '32 LL  , with '333 LLL  . 

Note: In this work we have restricted the attention to the maps of type      (Z0-Z2) 

unless otherwise stated. 

1.2.2 Characterization of the Different Determinations of the 

Inverse Map [1]  

     We can define different inverses in each region Zi, with  i0 (for i=0, there is 

no inverse that exists ). Let R i,j be the range of one of the inverses of T defined 

in Zi, j=1,2,...,i , then the corresponding inverse is:  

             jiiji RZT ,

1

, : 
  

             11,1

1

1

1

1,1 , RRTT    

Where jii RZ ,,  are the closures of Zi, Ri,j respectively.  

The Ri,j 's are disjoint open regions bounded by arcs of LC-1 (the curve of rank-

one merging preimages), since T  possesses more than two first rank inverses, 

the rank-one preimages of LC consist of points at which the Jacobian of T  does 



not vanish, these points are called extra preimages, i.e.  

,)( 11

1



  CLLCLCT where 1CL   the extra set. 

     Now, Let us have a little closed look at the extra set 1CL  . Consider a branch 

LCL separating the two regions Zp, and Zp+2, p0. Then p+2 inverses, 

2,...,3,2,1,)(1

,2



pjLT

jp
  are defined in region Zp+2. Similarly p inverses, 

pjLT
jp

,...,2,1,)(1

,
   , are defined in Zp. If xL, let p+1, p+2 are two of a first 

rank preimages of x merge into LLTL  )(, 11   and )(1

1 LTL 

  . Thus
1

L  is given 

by: 

                   
1

1

2,2

1

1,2
)()(










 LLTLT

pppp
 

The other first rank preimages, those given by )(1

, LT jp

 , j=1,2,…,p, belong to the 

extra set 1CL , and are given by 

              .,...,2,1,)()( 1

,1 pjLTL jpj  

         

 

Remark(1.2.2):[1]:- 

     we have noticed that by the inverse function theorem the inverses of  T are 

continuously differentiable in the interior of their domains of definition, i.e. in 

each region Zi. Moreover, LC-1 separates the plane into regions, inside which the 

elements of Jacobian of T has a constant sign. 

 

Example (1.2.1):[34] 

Consider the map T defined by 

1'

'
:

2





axy

xyx
T    , with a0 

T is continuosly differentiable and noninvertible map and has type        (Z0-Z2). 

T has two inverses :  



a

y
xy

a

y
x

T
1'

'

1'

1







  

T has a fixed point (- 0,
1

a
). The curve LC-1 is given by y=0 which divides the 

plane  2
 into two regions R1 with y0, R2 with y0, the equation of the critical 

curve LC is y=ax+1. LC separates the plane 
2
 into two regions: Z0 with yax+1 

where each point has no preimages, Z2 with yax+1 where each point has two 

first rank preimages, the point of intersection of LC-1 and LC is a0=(- 0,
1

a
). We 

can define different  inverses in region Z2, so let 
1,22

1

1,2
: R  be defined by  

  

a

y
xy

a

y
x

1'
'

1'







 

and 
2,22

1

2,2
: R  be defined by 

  

a

y
xy

a

y
x

1'
'

1'







 

For particular case when a=1, T has fixed point p=(-1,0)LC, Then  

                 
1

1

2,2

1

1,2
)0,1()0,1()0,1(



  LCTT   

                 
2,2

1

2,21,2

1

1,2
)1,1()0,0(,)1,1()0,0( RTRT  

     

 

1.2.3 Critical Set of A power of the map T [1]. 

     The critical set EC(T 
m
) of T 

m
 [EC "ensemble critique" in French] can be 

defined by the following  proposition  

 

Proposition (1.2.1):[18] 

     Let T be a continuous maps  



(1) If T is a map without a Z0 region, the critical set EC(T 
m
) of T 

m
, m1, is 

given by: 

                    EC(T 
m
) =

1

0





m

i

iLC , LC0LC……………..(1.2.1) 

      A critical curve LCi (called critical curve of rank i) belonging to   EC(T
 m

), 

separates the (x,y)-plane locally into two regions, one with points having p 

preimage of rank m, the other with points having q preimages of rank m, p0, 

q0. In the general case, q=p+2h, h=1,2,…  

(2) When a Z0 region exists, the critical set EC(T
m
) of T

m
, m1, is given by        

EC(T
 m

)=LCm-1T 
m
(LC-2)…T 

m
(LC-m)…………(1.2.2) 

Where LC-2=
1T (LC-1),  LC-3=

1T (LC-2) etc. 

(3) In both case (1) and (2), EC-1(T
 m

) is defined by  

              EC-1(T
 m

)= LC-1 LC-2… LC-m 

Proof: can be found in [18] 

1.3 Some Properties of Critical curves [34,p.138-141]. 

    In this section we shall give some properties of critical curves, before we do 

this the following notations are recalled: L is a segment of the critical curve LC, 

Lk is a segment of the critical curve LCk, L-h, h0, is a segment of the curve LC-h 

, hL  is a segment of the curve hCL   of rank h extra preimages. i.e. components 

of T
 -h 

(LC) not belonging to LC-h. 1kCL  is a non-critical (extra) curve of rank 

(k-1) belonging to T 
-1

(LCk)/LCk-1. Moreover an order one contact (tangential 

contact) between two curves is a point of quadratic tangency of these curves. 

     The following propositions give some properties of the critical curve, will be 

stated without proofs, and are justified from the situations illustrated by the 

figures related to them, for details about proofs see [34,p.138-141].   

Proposition:(1.3.1) Let 1=T() be the first rank image of a smooth segment  

(basin boundary, critical curve,…), crossing through (transverse to) LC-1 in a0. 



i.e. LC-1=a0. Assume that a1=T(a0) is not a singular point of LC. Then in a 

neighborhood of a1, the segment 1 is not transverse to LC, being located on the 

same side of LC, the one where the number of first rank preimages is the 

greatest. The segment 1 and LC are tangent (contact of order one) in a1. T
 k
(), 

k1, has the same property for the point ak=T
 k

(a0) and LCk-1. the points ak are 

non transverse contact points between T
 k

() and LCk-1, if ak is not a singular 

point. 

 

 

 

 

Prop.(1.3.1) will be illustrated in the following figure:  

 

Figure (1.3.1) illustration of prop(1.3.1), =''', LC-1=a0 , 1=1'1'' 

 

Remarks(1.3.1):[34,p.129](a):- if a1=T(a0) is a singular point of LC , in 

general this proposition does not hold, except in the particular case of   figure 

(1.3.2a), where 
1

,


LC , and the extra branch 
1

L  are tangent in a0. The general 

case when the proposition does not hold corresponds to             figure (1.3.2b). 



(b) consider a parametrized curve  intersecting LC-1 at a0. when T is a smooth 

map, by definition one of the two eigenvalues of the jacobian of  T is zero a 

long LC-1. As long as the angle  of the curve segment  with LC-1 at a0 is 

different from the angle made by LC-1 and the eigenvector V0 associated with 

the zero eigenvalue, 1 is quadratically tangent to LC-1 at the point a1. When  

is collinear with V0, then 1 forms a cusp at a1. Figure (1.3.3) shows the three 

possible basic configurations of 1.    

 

(a) 

 

(b) 

    



Figure (1.3.2) (a) =LC-1L-1 are tangent at a0, a1=T(a0) is singular point 

prop(1.3.1) hold.  

Figure (1.3.2) (b) LC-1=a0 and L =a0, a1=T(a0) is singular point, 

prop(1.3.1) not hold. 

 

Figure (1.3.3) the three basic configurations of 1=T() 

 

(c):- The folding of 1 on the same side of LC , when a1 is not singular is due to 

the fact that the two segments ', '' of , separated by 
1

LC , are mapped into 

two different sheets of the plane. This means that two different components of 

the inverse map 
1T  must be used, for obtaining the original segment  from 1: 

one associated with '1, the other with ''1, 1='1 ''1. So for a (Z0-Z2) map, 

using the two components   (figure 1.3.4): 

'')''(,')'(
1

1

21

1

1
   TT  

ee
TT ''')(,''')'(

1

1

21

1

1
    
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TTT ''',)(,')'(,'')''(

1

1

1

1

21

1

1
    

If [
e

  ]\ a0=q-1q'-1, then T(q-1)=T(q'-1)=q.  



 

Figure (1.3.4) folding of 1 on the same side of LC, a1 is not singular point, 

1=1'1'', 1=T() , 1=''' 

 

The following proposition is an extension of proposition(1.3.1) 

 

Proposition (1.3.2): Let  be a curve segment crossing through a curve LCi , i 

is a positive integer: 

(1) for 1mi , the segment m=T 
m
() is transverse to LCm-i ,  

(2) for mi , and in a neighborhood  of LCm-i m , the segment m does not 

cross through LCm-i , and is located on the LCm-i side where the number of 

rank m-i+1 preimages is the greatest.  

 

The following proposition is a consequence of the previous remarks 

Proposition (1.3.3):  let  be a curve segment crossing through LC-1 at a0, and 

1=T(). Then  

(1) either 1 is tangent to LC (contact of order one) in a1, 1='1''1,  

'1''1=a1LC,  



(2) or 1 is the result of the superposition of '1, ''1, the intersection of 

which have a common segment with a1 as one of its two extremities. 

(3) Or exceptionally presents a cusp point in a1.   

Proposition: (1.3.4) Let a0=L-1Lk, k0. Then T(a0)=a1=LLk+1 is a point of 

tangency (contact of order 1) between L and Lk+1, or exceptionally a cusp point 

of Lk+1. In the neighborhood of a1, Lk+1 is located on the L side where the 

number of first rank preimages is the greatest. 

 

proposition (1.3.4) is illustrated by figure (1.3.5) 

 

Figure (1.3.5) illustration of prop.(1.3.4) a0=L-1Lk  

Remark(1.3.2):  From prop.(1.3.4) the sequence of rank n images, n1, T
n
(L-

1Lk)=an, k0, constitutes a sequence of points of tangency (contact of order 1) 

between Ln-1, and Ln+k, or exceptionally cusp points. In the neighborhood of an, 

Ln+k is located on the Ln-1 side where the number of rank n preimages is the 

greatest.  

Proposition(1.3.5): Let a1-h=L-hLk, h1, k0, L-h transverse to Lk . If nh, then 

Lk+n is transverse to Ln-h at the point T
 n

 (a1-h)=an+1-h. If nh, then Lk+n has an 

order 1 contact with Ln-h. Exceptionally the contact may correspond to a cusp 

point. In a neighborhood of an+1-h, Lk+n is located on the L-h+n side where the 

number of rank (n-h+1) preimages is the greatest. 



 

Proposition(1.3.6): Let ah=LhLk , 1h, 1k, i.e. Lh transverse to Lk. Then T 

n
(ah)=Lh+nLk+n, and Lh+n is transverse to Lk+n at T 

n
(ah).      

Let L be a segment separating two regions where the number of first rank 

preimages is p, p+2, p0 respectively. Let (Lk-1)e be the are with the sense given 

to e in remark (1.3.1c). The preimages of contact point a1 between L and a 

segment Lk , k0 is given by the following proposition: 

 

Proposition(1.3.7): Let L be a segment of critical curve separating two regions 

Zp, Zp+2, where the number of first rank preimages is respectively p, p+2, p0, 

and a segment Lk, k0, transverse to L, LLk=a1. The point a1 has p+1 different 

first rank preimages:  

         
1
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
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     In each of these points one of the considered segment is trasverse to the 

other.  

 

     To illustrate proposition (1.3.7), let a segment L and a segment 
k

L , k0, 

transverse at a1 i.e. 
k

LL =a1 and L separating Zp & Zp+2 . ,,...,1,1

,
piT

ip
  the 

inverses of T  in Zp, and assume that the inverses of T  in Zp+2 are 

,1

,

1

,2






ipip
TT i=1,…, p,  plus two inverses merging for points belonging to L . 

Denote by 1

2

1

1
,  TT   these two inverses for simplifying the notation, 

)()( 1

2

1

1
LTLT   .  

     The first rank preimage of Lk generated from 1

2

1

1
,  TT  are only Those of the 

arc LkZp+2 , which gives a segment: 

        ),()()(
2

1

22

1

11 










pkpkk
ZLTZLTL   



    Transverse to L-1 at the point a0= ).()(
1

1

21

1

1
aTaT   Then the first rank 

preimage of Lk  giving an arc Lk-1 of the critical curve LCk-1 is one of the 

remaining p inverses, noted Tp,1
-1

(Lk) (i.e =1). As shown in              figure 

(1.3.7).          

 

 

Figure (1.3.7) illustration of prop.(1.3.7) 

 

 

 

1.4 Planar Quadratic maps  

     The main objective of this section is to give a brief description of the  

dynamics of planar quadratic maps that have a nonempty critical set bounded or 

not. 

Definition(1.4.1):[12]  

A planar quadratic map has the form  

T(x,y)=(t1(x,y),t2(x,y))……..(1.4.1) 



where  

t1(x,y)=a0x
2
+a1xy+a2y

2
+a3x+a4y+a , t2(x,y)=b0x

2
+b1xy+b2y

2
+b3x+b4y+b 

and where a,b,a's and b's are real constants. 

 

 The critical set or singular set (T)of planar quadratic map (1.4.1) is the set: 

 (T)={xR
2
:det(J(T(x))=0}. 

    Clearly the critical set (T) is a real planar algebraic curve of order not 

greater than two. This set may be bounded or not, it is bounded when the 

following conditions are satisfied [1] 

(1a) a0b1-a1b0=a1b2-a2b1 (we get circle) or  

(1b) a0b1-a1b0a1b2-a2b1 (we get ellipse) 

(2) a0b2-a2b0=0 

(3)A
2
+B

2
-C0, where A=

4

)(
3113

0440

baba
baba


 , B= a3b2- a2b3-

4

)(
4114

baba 
, 

C= a3b4- a4b3.  

When one of the above condition is not satisfied the critical set is unbounded. 

 

 

Remarks(1.4.1)[1]:  

1) The critical set (T) is empty when det(J(T)) is constant i.e. when 

condition (1) is satisfied and equal zero, condition (2) is satisfied and 

A=B=0 and C0. 

  

2) The standard form:  

     T(x,y)=(x
2
+a1xy-y

2
+a, b1xy+b)……(1.4.2a) whose critical set is      a point 

while the standard form  

       T(x,y)=(x
2
+a1xy-y

2
+a , b1xy+b3x+b4y+b)……..(1.4.2b) whose critical set 

as an ellipse. 

 



3) The standard from:  

 T(x,y)=(a0x
2
+a1xy+a4y+a, b1xy+b)………..(1.4.3a)  gives a critical set as a 

parabola, while the standard form:   

T(x,y)=(a0x
2
+a2y

2
+a1xy+a3x+a4y+a,b0x

2
+b2y

2
+b3x+b4y+b)…(1.4.3b) gives a 

critical set as a hyperbaric or a straight line (we get a line in case a0b2-

a2b0=0). 

4) Each planar map T whose nonempty critical set bounded or not can be 

brought into standard form via an affine coordinate change. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter Two 

Absorbing Areas and invariant Areas of Two 

Dimensional Noninvertible Maps 

 

     This chapter is devoted to study the structure of absorbing areas and chaotic 

areas generated by noninvertible maps the plane (two-dimensional 

endomorphism) to their bifurcations. Here the terminology "area" is not always 

related to some measure. "Area" only refers to a closed and bounded set.  

 

2.1 Definitions and General Properties 

     We start this section by giving definition of an absorbing area: 

 

Definition (2.1.1): [4, p.246] 

     An absorbing area d' is a closed and bounded subset of 
2
 satisfies: 

1) T (d')d'. 

2) Its fronties, d' is made up of finite number of segments of critical curves of 

LC, LC1, LC2,…, LCk.  

3) A neighborhood U(d') exists, such that T[U(d')]U(d'), and any point 

xU(d')/d' have a finite rank image in the interior of d'. 

This type of an absorbing area is called an absorbing area of non-mixed type. 

 

     From definition (2.1.1) we can conclude that an absorbing area d' is implicity 

associated with the existence of an attracting set belonging to d'. 

 

We can define another type of an absorbing area as: 

 

 

 

 



Definition (2.1.2):[34,p.187] 

     An area '
~
d 

2
 is said to be absorbing of mixed type if it satisfies:  

1) T( '
~
d ) '

~
d , 

2) '
~
d  is attracting, a neighborhood U( '

~
d ) exists such that T(U( '

~
d ))U( '

~
d ), 

and almost all the points xU( '
~
d )\ '

~
d  have a finite rank image in the 

interior of '
~
d , 

3)  The boundary  '
~
d  is made up of segments of critical curves and 

segments of the unstable set W
u
 of a saddle fixed point, or a saddle cycle 

(periodic point), or even segments of several an stable sets associated 

with different cycles.  

 

     In both definitions (2.1.1) & (2.1.2) an absorbing area may be not an 

invariant, i.e. T(s)s {where s may be d' or '
~
d } then an invariant set can be 

obtained as follows:  

(a) either a finite integer k exists such that S= 
kj

j

j sT


0
)(  is an invariant 

absorbing area. 

Or (b) S= 0
)(

 


j

j SST is a closed invariant absorbing set. 

 

Definition (2.1.3): [34, p.189] 

     A non mixed chaotic area (d) is an invariant non mixed absorbing area 

bounded by critical segments, with chaotic dynamics in the whole area (d). 

 

Definition (2.1.4): [34, p.189] 

     A mixed chaotic area ( d
~

) is an invariant mixed absorbing area, the points of 

which are chaotic. 

2.1.1 Two Basic Propositions 



     In this subsection we shall give two basic propositions which are preparatory 

for the properties of (Z0-Z2) map that will be gives in the next subsection.        

 

Proposition (2.1.1):[34, p.208] 

     Let A be a closed subset of the plane. Then the points internal to A which 

can be mapped on the boundary of T (A) belong to ALC-1. 

Proof: can be found [34] . 

 

Remark (2.1.2): 

     If ALC-1= then T(A)=T(A), i.e. only points of the boundary of A are 

mapped on the boundary of T(A). 

 

Proposition (2.1.2): [34, p.208] 

     Let A be closed subset of the plane. If A is made up of critical segments, 

then also T(A) is made up of points of critical segments. 

Proof: can be found [34] . 

 

Remark (2.1.3): 

     The segment of the unstable set of a cycle are mapped by T into segments of 

the same unstable set. 

 

The following proposition is a consequence of prop(2.1.2) with remark (2.1.3).  

 

 

 

Proposition (2.1.3):[34, p.208] 

     Let s be absorbing area, mixed or not. Then also )(sT  is an absorbing area of 

the same type as s. 

Proof: can be found [34] . 



 

2.1.2 Properties of (Z0-Z2) Maps [34, p.213] 

    Let T be a(Z0-Z2) map of the plane. For such continuously differentiable 

maps T it is recalled that the critical curve LC separates the plane in two regions 

Z0 and Z2 such that LCZZ  02 , 2

02 ZZ . Like LC the curve LC-1 separates 

the plane in two open regions R1, R2 such that  21 RR  , 121  LCRR , 

2

21
 RR . For every point XZ2, let T1

-1
(X)R1,T2

-1
(X)R2 be the two first 

rank preimages of X. 

 

The following propositions state some properties of the (Z0-Z2) map: 

 

Proposition (2.1.4):  Let T be a (Z0-Z2) map  

i) XZ2  T
-1

(X)={ T1
-1

(X) R 1, T2
-1

(X) R 2}. 

ii) XLC  T1
-1

(X)= T2
-1

(X)LC-1. 

iii) XZ0  T
n
(X)

2
Z , n1. 

iv) T(
2

Z )
2

Z . 

Proof: can be found [34] . 

 

Proposition (2.1.5):[34, p.212] 

     If 0 is a closed subset of 
2

R , bounded by critical curves segments of    LC-1, 

then:  

i) = )(
0

1





k

i

iT  is bounded by critical curves segments k1; 

ii) T
n
() is bounded by critical curves segments n1. 

Proof: can be found [34] . 

 

Corollary (2.1.1):[16] 



     Let 0 be a bounded area whose bounded consist of arcs of critical lines 

and 
k

i

i

k
T

0
0
)(



 . If there exists an integer m such that T(m) m, then m is 

an absorbing area. 

 

2.2 Construction of Absorbing Areas & Invariant Areas. 

    In this section we shall study the construction of absorbing and invariant 

areas for (Z0-Z2) maps.  

2.2.1 Construction Algorthirm of Absorbing Areas [24, 34; 

p.191& 36] 

     The structure of this algorithm depends on the use of the critical curves to 

obtain closed bounded regions (will be denoted by ) whose boundary consists 

of segments of critical curves LCi, i=0,1,2,…,N(N is finite integer), then such 

area is an absorbing. 

First we suppose that the first critical curve LC and the curve LC-1 of merging 

preimages are made up of only one branch, these two curves having only one 

point of intersection say a0. When these two curves intersection in more than 

one point, one of them plays the rule of a0.   

A segment of curve will be represented by ( ) where  ,  are the two 

endpoints, the point an represents the n
th

 iterate of a0 i.e. an=T
n
(a0). 

Now, we are ready to describe the algorithm of construction as: 

Let N be the first integer  0, such that the segment (aNaN+1) of LCN (LCN 

critical curve of rank-N) intersects LC-1 at a point say b0, i.e. b0(aNaN+1)LC-1. 

Then, define a simply connected area  bounded by  

             =(b1a1a2…aNaN+1b1) 

    where  

             (b1a1) is a segment of LC, i.e. (b1a1)LC ,        



             (a1a2) is a segment of LC1, i.e. (a1a2)LC1 , 

                 . 

                 . 

                 . 

                (aNaN+1) is a segment of LCN, i.e. (aNaN+1)LCN , 

                (aN+1b1) is a segment of LCN+1, i.e. (aN+1b1)LCN+1, 

                 b1=T(b0), ai=T(ai-1) 

So, we get  is an absorbing areas. 

 

Remark (2.2.1):  

     Algorithm (2.2.1) may not work for certain examples, and it does not include 

all possible cases of absorbing areas with a finite boundary (i.e. boundary made 

up of a finite number of critical segments). i.e. it may happen this is not 

absorbing area, that will be seen in the illustrative examples. 

 

Remark (2.2.2)[34] 

1- If there are more than one point of intersection between the segment (aNaN+1) 

and LC-1 we choose the point b0 that is farthest from a0. 

2- When the above algorithm work, then we distinguish two possible cases for 

b1: 

i) b1(a0a1)LC or equivalently b0(a-1a0)LC-1. 

ii) b1(a0a1)LC or equivalently b0(a-1a0)LC-1. 

 

2.2.2 Different Kinds of Absorbing Areas (Nonmixed Ones):  

     Let T be a map of type a (Z0-Z2), recall that LC-1 divides the plane 
2
 into 

two open regions 
1

R , 
2

R  such that 
1

R 
2

R =, 
121 

 LCRR , 2

21
 RR . 



Let  be a fixed point of T with R2, and LC made up of only one branch, 

a0LC-1LC. Then one of the following cases is possible: 

(1) None of the successive images of the segment (a0a1) intersect LC-1. 

In this case we can obtain an absorbing area as follows: 

In this situation one of the two inverse map T2
-1

 gives rise to a rank-m preimage 

(
1 mm

aa ) of (a0 a1) which intersects LC-1 a first time at the point  say h0 Fig. 

(2.2.1).  

Necessarily (a0h0)(a0a1), thus T
i
(a0h0)=(aihi) T

i
(a0a1) for i0, so hiLCi , hm-

1LC-1, fig(2.2.1b). Now applying construction algorithm (2.2.1) to obtain an 

absorbing area  bounded by the closed curve (hma1a2…amhm)R2 where (hma1) 

is a segment of critical curve LC, (amhm) LCm , (aiai+1) LCi , i=1,2,…,m-1. 

Figure (2.2.1) illustrates this situation. 

 

Fig.(2.2.1) Non of the successive image of the segment (a0a1) intersect LC-1.  

 

 

(2) One of the images of (a0a1) has a non transverse contact (order one, or order 

zero) with LC-1. 

In this case, let b0=(aNaN+1)LC-1 be the non transverse contact point. An 

absorbing area  is defined as in the construction algorithm and the 

boundary =(b1a1a2…aNaN+1b1) 2
R  with LC-1=b0. 



(3)  An image of (a0a1) has a transverse intersection with LC-1. Let N be the least 

integer such that (aNaN+1) intersects LC-1. Let b0(aNaN+1)LC-1 be the 

intersection point farthest from a0 . So we apply the construction algorithm 

to obtain absorbing area, the two possible situation appear in remark (2.2.2) 

may occur. 

 

     Now, consider that LC is made up of two segments joining at a0, 

LC=L
(1)
L

(2)
, a0= L

(1)
L

(2)
. Then LC1= L1

(1)
L1

(2)
 

2
Z  is folded in a1=T(a0)= 

L1
(1)
L1

(2)
LC. From property (iv) of prop. (2.1.4), it follows that there exists a 

region S0, bounded by a segment L
(1)

 of LC and by   LC-1 0
Z , such that 

T(S0)=S1 and any point of S1 has its two first rank preimges in Z0. 

S1= )(\
22

ZTZ , bounded by L
(1)

 and L1
(1)

 (L1
(1)

=T(L
(1)

)), is uninteresting for the 

analysis of the asymptotic behavior of sequences of images with increasing 

rank. Thus one has the following proposition : 

 

Proposition (2.2.1) [Elimination process]:[34] 

     Consider a(Z0-Z2) map then  

i) Either T
k+1

( 2 )T( 2 ) for any k0, which preimags to define 

V= )( 2

0


k

k ; 

ii) or there exists a finite j such that T
j+1

( 2 ) =T
j
 ( 2 ) which permits to 

define Vj= T
j
 ( 2 ). 

In both cases V and Vj are invariant absorbing regions. The boundary of V 

and Vj is made up of a finite number of critical curve segments.  

 

Prop.(2.2.1) it follows that it is possible to restrict the analysis of asymptotic 

behaviors of a sequence of images with increasing rank, to the points of an 

absorbing region.  



 

2.2.3 Determination of Invariant Areas [34, p.217] 

     Recall that when we apply the construction algorithm to construct an 

absorbing area  the two possible situations that appear in the remark (2.2.1) 

occur: 

       (i) b1(a0a1)LC or equivalently b0(a-1a0)LC-1. 

       (ii)b1(a0a1)LC or equivalently b0(a-1a0)LC-1. 

The two situation are different because in case (i) T() while in case (ii) 

T(), or T() is not comparable with . i.e. T() is neither included in  nor 

includes . In both cases (i) and (ii),  may be absorbing, or not.  

     In fact, in the case (i)  intersects LC in two points b0 and a0, i.e. (b0a0)=LC-

1 and (b0a0)(a-1a0). Then under application of T the whole boundary  is 

construct again and new parts may only come from T(
1

R )=T(0)= 1, thus if  

T(
1

R ) then the area  is invariant, T()= as in fig.(2.2.2a), while if  

T(
1

R ) is not include in , T() fig. (2.2.2b), in this case T
m+1

()T
m
(), 

 m 0. Thus, either a finite integer M exists such that T
M+1

()=T
M

(), so we 

get d''=T
M

() is invariant areas, or a finite M does not exist, in which case we 

define 

                                    d 





1
)('

j

jT           (2.2.1)  

     The area d' may be bounded or not. When it is bounded, it may be 

absorbing or not, and generally this situation denote a bifurcation resulting from 

the contact of the area boundary with its basin boundary [18]. 

 

     In case (ii)  intersects LC-1 in two points b0 and c0, where c0(b0a0) i.e. 

(b0c0)(b0a0) so that boundary of  include the segment (b1a1), while 

T()LC=(b1c1)(b1a1), from which it appears that T()   is not possible. It 



follows that either T()   fig.(2.2.2c) or T() is not comparable with  

fig.(2.2.2d). 

     When T()   then T
m+1

()  T
m
(), m  0, so that either a finite integer M 

exists such that d''=T
M

() is invariant or a finite M does not exists, in which 

case we define              

                               d )('
1




  j

jT                          (2.2.2) 

Since each area T
k
(), k  0 is absorbing, then d' is bounded and absorbing. 

Case (ii) is more complex when T() is not comparable with . In the simplest 

case a finite M such that d''=T
M

() is invariant. However it may occur that a 

finite M does not exist, this situation is more complex, it is possible to define 

                                   A= 





1
)(

j

jT        (2.2.3) 

     This area may be bounded or not. If it is bounded, it may be invariant or not. 

When it is not invariant, if there exist k such that  )()(
1 




 ATAT k

j

j , then 

this intersection is an invariant area. If there is no such k then  )(
1 




AT

j

j  is an 

invariant.  

 

 



 

 

 

 

 



Fig (2.2.2) An absorbing area constructed by algorithm (2.2.1) (a): b1(a0a1), 

T()=, (b) b1(a0a1), T(), (c) b1(a0a1), T(),          (d) b1(a0 a1), 

T() is not comparable with .   

 

2.3 Properties of Absorbing Areas & of Invariant Areas. 

     The absorbing areas (s) considered here are of either nonmixed types or 

mixed types invariant, or non invariant. The following propositions give some 

properties of the absorbing and invariant areas for a(Z0-Z2) maps. 

 

Proposition (2.3.1):[34, p.220] 

      If a map generates a region Z0, then absorbing area (s) is such that     (s) 

Z0=. 

Proof: can be found [34] . 

 

Proposition (2.3.2):[34, p.221] 

Let T(S) =S, then any point pS has at least one infinite sequence of preimages 

in S. 

 

Remark (2.3.1): 

If S is a set invariant under backward iteration of T that is T
 -1

(S) =S, then any 

point p in S has its image in S, i.e. if a set, backward invariant for T, is also 

forward invariant. The converse is not true.  

 

Proposition (2.3.3):[34, p.221] 

Let T(S) = S then any point pS has all its preimages of rank 1, 2, 3,…, out of 

S. 

Proof:- The proof is immediate. 



 

Definition (2.3.1):[3] 

     The largest subset of ALC-1, mapped by T on the boundary of T(A), is 

denoted g-1, i.e. g-1A is such that g=T(g-1)T(A)LC. 

 

 

 

Remarks (2.3.1): 

1. Any other point of ALC-1 not belong to g -1, when it exist, is not mapped on 

the boundary of T(A). This occurs when LCA has isolated points limiting 

segments internal to A. 

2.  The definition (2.3.1) is constructive, because from the set ALC-1 the 

points not mapped on the boundary of T(A) are eliminated, i.e. the points 

mapped in the interior of T(A). We shall refer to g as '' arc g'' whichever is its 

structure.  

3. In the case of an invariant area S, closed and bounded by a finite number 

critical segments, it will be seen that the boundary S is made up of 

segments belonging to the images of the set g -1, which will be called, as g, 

''generating arc of S''. 

 

It is worth noting that for a generic map T one may g -1T(A)LC, or 

g=T(A)LC, this property holds for (Z0-Z2) maps which given by the 

following proposition: 

 

Proposition (2.3.4):[34, p.222] 

Let T be a (Z0-Z2) map, and A be a closed subset of the plane. Then           T 

(ALC-1) =T (A) LC. 

Proof: can be found [34] . 



 

Prop.(2.3.4) holds for an absorbing area. For a closed invariant set, it turns into 

the following proposition. 

 

Proposition (2.3.5): Let T be a (Z0-Z2) map, and S be a closed invariant subset 

of the plane. Then T(SLC-1)=SLC  SLC. 

Proof: the proof is similar to the proof of prop.(2.3.4) 

 

Proposition (2.3.6):[34, p.223] 

     Let A be closed and pT (A)\g, then all the rank-one preimages of p   in A 

must belong to A. 

Proof: can be found [34] . 

 

Prop.(2.3.6) holds in particular for an absorbing area, for a closed invariant area 

it becomes: 

 

Proposition (2.3.7):[34, p.223] 

Let S be closed, T(S) =S, and pS\g, then all the rank-one preimages of p in S 

must belong to S. 

Proof: 

     Follows by use prop.(2.3.7). 

 

The next proposition may be used to characterize more explicitly the boundary 

point of an invariant area S.   

Proposition (2.3.8):[1] 

Let S be closed, T(S) =S, and pS, then  

i) either finite k, k0 exist such that pT
k
 (g) LCk. 

ii) or T
-n

 (p) S  S, n0. 



Proof: can be found [1] . 

 

Proposition (2.3.9):[34, p.224] 

     Let S be a closed area with finite boundary. T(S) =S, and LkS a segment 

of critical curve LCk, k0. Then its critical preimages               Lk-1,…, L1, 

L0=Lg also belong to the boundary S. 

Proof: can be found [34] . 

 

Prop.(2.3.9) justifies the fact that g (or equivalently g -1) is called ''generating 

arc'', because all critical segments on the boundary of S belong to the images of 

this basic set. 

 

Remarks (2.3.2): 

(i)  When prop.(2.3.9) is applied to a nonmixed invariant area S with finite 

boundary a finite integer M exists such that )(,)()(
1

1 10
gTgTgTS iM

i

iM

i

i 


 
  

being a critical segment belonging to LCi. when we applying this proposition to 

a mixed invariant area (i.e. its boundary is made up of a finite number of critical 

segments and segments of saddle unstable set) a finite integer M exists such that 

all the critical segments on S belong to ,)()(
0

1

1

0


M

i

i
M

i

i gTgT








 while a segment 

of S belonging to some saddle unstable set W 
u
 has at least infinite sequence of 

its preimages on W
 u

 belonging to the boundary of S which converge toward a 

saddle cycle.        

 

(ii) The extra preimages of the critical segments Lk,…, L1,L0 (i.e. non critical 

preimages of critical segments) on the boundary of S cannot belong to the 

interior of S. Moreover when S is a non-mixed area, the extra preimages cannot 



belong to the boundary of S, thus the extra preimages of such segment must be 

out of S, except at most isolated points on S which may be critical points.  

Proposition (2.3.10):[34,p.226] 

     Let S be an invariant area with a finite boundary. Then S is not be an 

invariant. 

Proof: can be found [34] . 

 

2.4 Bifurcation  

The term bifurcation generally refers to something " splitting a point " 

with general a system involving a parameter, it refers to change in the character 

of the solution as the parameter is changed continuously. 

At the beginning of this section we shall give the definition of bifurcation 

followed by some types of bifurcation that be interest in our work, illustrative 

example will be given in the chapter three. 

 

Definition (2.4.1):[27]  

  Consider the system xn+1=(xn); x
n
, 

k
     (2.4.1) 

One is especially concerned how the phase portrait of (2.4.1) changes as  

varies. A vale 0 where there is basic structural change in this phase portrait is 

called a bifurcation point. 

 

2.4.1 Some Types of Bifurcations 

 

)1) Contact bifurcations:[18,19&31]  

     This basic bifurcations results from the contact of a basin boundary with a 

critical curve segment not belonging to a chaotic area boundary, also it occurs 

when a critical curve belonging to a chaotic area boundary. Such a bifurcation 

leads either to the chaotic area destruction, or to sudden and important 



modification of this area. Even if S is an absorbing area, the contact bifurcation 

may occur. 

)2) Bifurcation of non smoothness points on boundaries of invariant areas: 

[34, p.234] 

Consider a smooth map T, area called  constructed by the algorithm (2.2.1), 

and there is an integer m such that S=T
m
 () is an invariant area with SLC-

1, being finite i.e. S may correspond to one of the following cases: 

Case1: Before and after the bifurcation the contact between S and T(S) on 

LC at an endpoint of the generating segment g is smooth. At the bifurcation the 

contact on LC in not smooth, due to cusp point of LC1.  

 

Case 2: A point of non smoothness of the S boundary may also born when a 

self intersection of a critical arc Lk. 

 Case 3: A point of non smoothness of the S boundary may also created at p 

when two critical segments of different ranks are intersect i.e. pLCkLCj, kj, 

p is called an angular point. 

When the boundary of S is smooth at p, p is said to be to be an ordinary point of 

S. 

 

 

 

 

 

 

 

2.5 The Proposed Algorithm 



     For a generic map, we have not a general procedure to construct the starting 

set. The general criterion consists in selecting suitable segment on LC-1, and 

with few of their images to get a closed area  bounded by a finite number of 

critical segments belonging to LCk, 0  k  N. Generally the so obtained area  

is not absorbing, and an invariant absorbing area is obtained after a finite 

number of iterations, (d'')=T
M

(), M  0 is the first integer such that 

T
M+1

()=T
M

().The same criteria done for the (Z0-Z2) maps. Some maps, if we 

compute the equation of the critical curve LCi directly from applying T on LCi-1, 

required many computations. Therefore we shall use some approximation 

methods like the least square method to approximate the equation of the critical 

curve LCi . To do this, choose suitable number of points (xi-1, j , yi-1, j), j=1,…,m , 

for some m N  which belongs to LCi-1 and then find the images of these points, 

i.e. for T(
jiji

yx
,1,1

,


) = (
jiji

yx
,,

, ) , j=1,…,m we get points (
jiji

yx
,,

, ) which 

belong to LCi. 

     Next, we approximate the equation of the critical curve LCi that passes 

through the points (
jiji

yx
,,

, ) via the least square method and draw up it by 

continuing in this manner until we get closed bounded area which may be 

absorbing or not.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter Three 

Illustrative Examples 

     In this chapter we will illustrate the concepts defined in the first two chapters 

by several considered examples and some observation will be made on the 

dynamics of the maps, particularly on the absorbing areas. 

We will use the proposed algorithm (2.5) to construct a closed bounded area , 

since this area may be not absorbing so we shall verify that           a closed  is 

an absorbing numerically.   

     It is worth nothing that results presented here were essentially obtained via a 

numerical method, but guided by fundamental considerations stated in chapter 

two and using the critical curve tools. 

     In all examples we shall use approximated method (least square method) to 

approximate the equation of the critical curves LCi , i=1,…,n with aid of Matlab 

version 7.0 Software for numerical computations and for plotting figures. 

In the first example we shall make a compression between the results that 

obtained by applying the construction algorithm (2.2.1) and the result that will 

be obtained by applying the proposed algorithm (2.5). 

In the other examples we shall use the proposed algorithm (2.5) to determine a 

closed & bounded area  which may be absorbing or not, invariant or not for 

some specific values of the parameters.    

3.1 Examples of Absorbing Area  

     In this section, w shall give some examples that illustrate some phenomena 

on absorbing areas. 

   

Example (3.1.1): Consider the map T defined by 

               :  
bxy

yaxx




2

  ,               (3.1) 

 



T is continuously differentiable and noninvertible map whose inverses are        

        
byaxy

byx




 :1  

T has two fixed points ( ]
2

4)1(1
)[1(,

2

4)1(1 22 baa
a

baa 



) if    

012  bandba . 

     The curve LC-1 is given by x=0, the equation of the critical curve LC, is 

given by y=b. Recall that LC divides the plane into two regions: Z0 satisfies yb 

where each point has no preimages and Z2 with yb where each point has two 

first rank preimages. LC-1 divides the plane into two regions R1,R2. R1 is the 

region x 0, R2 with x 0. 

ALwa'li Z., in [1], studied some properties of the map (3.1) for specific values 

of the parameters a& b by use the constructing algorithm (2.2.1) and show 

numerically this area is an invariant absorbing area for some values of a& b. 

Here, we shall use approximated method (least square method) to approximate 

the equations of the critical curves LCi and plotting these equations until we get 

closed bounded area whose boundaries are segment of the critical curves LCi, 

and then we compare the results with results that will be get by applying 

construction algorithm (2.2.1) with values of a,b different from one that appear 

in [1].    

      Now we shall take some values of the parameters a and b and we use the 

proposed algorithm (2.5) to study the dynamical behavior of the map (3.1). 

For a=-1.5, b=-1.5, the fixed points of T are: 

P1=(-0.5,-1.25) with eigenvalues 1 =-0.75+0.6614i and 2=-0.75-0.6614i        

therefore P1 is a stable  fixed point . 

P2= (3,-7.5) with eigenvalues 1 = 1.8117 and 2=1.8117 therefore P2 is an 

unstable fixed point. 



      To calculate the equation of LC1 we choose the points [(-0.1,-1.5),(0.02,-

1.5),(0.1,-1.5),(0.2,-1.5),(0.3,-1.5)] which belong to LC and by substituting 

these points in equation (3.1),  we have T(x,y)LC1. By using least square 

method, the equation of LC1 is approximated by y=0.4444x
2
+1.3333x-0.5. In the 

same manner we approximate the equation of the critical curve LC2, by 

choosing the points [ (-1.5,-1.5),      (-1, -1.3889), (0,-0.5), (  0.9 ,-0.2156)] that 

belong to LC1, we get y=0.2884x
2
+1.7143x-0.6971 which is the approximated 

equation of LC2. When we draw up the critical curves LC, LC1 & LC2 we get the 

closed area () whose boundary =(b1a1a2b1 ). This area =d'a is an 

approximated absorbing area since it satisfies the conditions of the definition of 

an absorbing area, as is shown in the figure (3.1.1a).   

 
Figure (3.1.1a): Map (3.1) with 

a=-1.5, b=-1.5, the approximated absorbing area d'a by using the proposed 

algorithm (2.5) 

a0=(0,-1.5)LC-1LC, b0=(0,-0.5)LC-1LC1,                                     b1=(-

0.518,-1.5) LCLC2, a1=(-1.4989,-1.5) LCLC1 and  a2=(0.7465,0.7441) 

LC1LC2 

In fact, by construction  consists of critical curves of finite rank, i.e.  

consists of the segment L, L1& L2 which are the segments of the critical curves 

LC, LC1& LC2 respectively. Numerical computations show that the successive 

iterates of any points which either belong to  or to U()/, enter  after a finite 



number of iteration and can not get away after entering. Since T(), 

therefore T
m+1

()T
m
(),  m0 and we have found M=4 which satisfies 

T
M

()=T
M+1

(), So d"a=T
M

() is an approximated invariant absorbing area as 

shown in figure (3.2.1b). 

 

Figure (3.1.1b): Map (3.1) with 

a=-1.5, b=-1.5, the approximated invariant area d''a by using the proposed 

algorithm (2.5) 

 

 

     Now if we apply construction algorithm (2.2.1) with                   a'0=(0,-

1.5)LC-1LC. We look for integer N such that LCN intersects  LC-1, so we 

shall find that b'0LC-1LC1 i.e. N=1, b'0=(0,-0.5), and    b'1=(-0.5,-

1.5)LCLC2 and a'1=(-1.5,-1.5)LCLC1 and a'2=(0.75,0.75) LC1LC2 . 

We construct the closed area  whose boundary =(b'1a'1a'2b'1). Before we 

represent  in a figure let us compute the equations of LC1 and LC2. The 

equation of LC is y=b, by substituting this in map (3.1) we get:  



b
a

bx
y 







 


2

,  

which is the equation of LC1 so it must put a0 while when we use our 

proposed algorithm we did not need this condition. Compute the equation of 

LC2 by substituting equation of LC1 in map (3.1) we get: 

b
a

bby
byax 













 


2

. 

We notice that in fig (3.1.1c) b'1(a'0 a'1), therefore )()(1  mm TT ,  m0 

and have found M=4 which satisfies )()( 1  MM TT . So d''= )(MT  is the 

invariant absorbing area. 

      Figure(3.1.1c):   

Map (3.1) with 

a=-1.5, b=-1.5, the absorbing area d
 
'  

by using construction algorithm (2.2.1), a'0=(0,-1.5), b'0=(0,-0.5), 

  b'1=(-0.5,-1.5), a'1=(-1.5,-1.5),  a'2=(0.75,0.75)  

From figure (3.1.1a)& figure (3.1.1c) we notice that the boundary points of d'a ; 

b1,a1,a2 is closed to the boundary points of d',  b'1,a'1,a'2  respectively. We 

conclude that d'a coincide with d' and two figures are conformable.  

 



Now, we shall take other values of the parameter a and b, to see the dynamics of 

the map (3.1), we shall take a=-1.5, b=-1.75. 

P1=(-0.57,-1.4251), and P2=(3.07,7.675) are two fixed point of T. Numerical 

computations show that P1 is a stable fixed while P2 an expanding fixed point. 

As act erstwhile, we choose some suitable points   (x0,j ,y0,j ), j=1,…,5 that 

belong to the curve LC, we choose[(-0.5,-1.75),   (-0.2,-1.75), (-0.1,-1.75), (-

0.01,-1.75), (0.02,-1.75)] to get y=0.4444x
2
+1.5556x-0.3889 which is the 

approximated equation of LC1, and by choosing another points (x'1,j,y'1,j)LC1 

i.e. we choose [(-2.5,-1.5004), (-1.75,1.7502),  (-0.05,-0.4656), (0,-0.3889), 

(0.2,-0.06)] to get y=0.0415x
2
+2.5492x-0.7993 which is the approximated 

equation of LC2. Drawing up the curves LC-1, LC, LC1&LC2  produces a closed 

area as shown in figure (3.1.2) and a numerical computation shows that this area 

is absorbing =d'a . We found that M=3 which satisfies T
M

() = T
M+1

(), so 

d''a=T
m
() is the approximated invariant absorbing area. 

 

Figure (3.1.2): Map (3.1) with 

a=-1.5, b=-1.75, the approximate absorbing area d'a 



a'0=(0,-1.75), a'1=(-1.749,-1.75), a'2=(0.6521,0.8535),b'0=(0,-0.3889), b'1=(-

0.3908,-1.75)       

 

     Now, if we apply algorithm (2.2.1) with a0=(0,-1.75)LC-1LC. We find 

that N=1, construct closed area 
a

d '  whose boundary =(b1a1a2b1) and is an 

absorbing area as shown in figure (3.1.2'). We have found M=3 whish satisfies 

T
M

()=T
M+1

(), So d"=T
M

() is the invariant absorbing area. 

 
Figure (3.1.2'): Map (3.1) with 

a=-1.5, b=-1.75, the absorbing area d'  

by using construction algorithm (2.2.1) 

a1=(-1.75,-1.75), a2=(0.875,1.3125), b0=(0,-0.3889), b1=(-0.3889,-1.75)   

 

 

From figure (3.1.2)& figure (3.1.2') we notice that there is a simple difference 

between the boundary points b1, a1 and b'1, a'1 respectively and the boundary 

point a2 is far away from the boundary point a'2. We conclude that d 'a is of 

smaller shape then d '.  



Again we shall take another values of a and b and apply the proposed algorithm 

(2.5). For the particular case a=1.5, b=0, the approximated equations of LC1, 

LC2 and LC3 respectively are:  

y=0.4444x
2
 

y=0.6119x
2
-0.66461x 

y=-0.2159x
2
+2.8293x+2.025 

Drawing up the critical curves LCi , i=0,…,3, we get a closed area .  This area 

=
a

d ' is an absorbing area as is shown in the figure (3.1.3).  
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 Figure (3.1.3): Map (3.1) with 

a=1.5, b=0, 
a

d '  by using proposed algorithm (2.5) 

a=(0,0)LC-1LCLC1LC2, b=(-0.6243,0.174)LC1LC3               and c=(-

0.51830.5002)LC2LC3. 

 

 



This area =d'a is an absorbing area since it satisfies the conditions of the 

definition of an absorbing area. We have found M=3 whish satisfies 

T
M

()=T
M+1

(), So da"=T
M

() is the approximated invariant absorbing area.  

Also, we have notice that one of the eigenvalues of the jacobian of T at the 

fixed point P1=(0,0) has zero eigenvalue along LC-1. 1=1.5 & 2=0,     (P1 is a 

saddle fixed point) therefore according to remark (1.3.1b) LC1 and LC-1 are 

quadraticlly tangent at point a1=(0,0).  

When use the constructing algorithm (2.2.1) we shall get a point a0=(0,0). i.e. an 

absorbing area is just the point a0=(0,0). 

 

Example (3.1.2):  

     Consider the map T defined by 

               :  
abxy

xbyax



 22

  , with b0,             (3.2) 

T is continuously differentiable and noninvertible map whose inverses are  

               
babayxay

bayx

/)]/)'[('(

/)'(
:

2

1




  

T has two fixed points ( abx
b

babaabab





,

)1(2

)1)(1(4)21()21(
3

3222

) 

The equation of LC-1 is y=0, the equation of LC is y= axab  , xa. LC has 

two branches LC ' & LC'', i.e. we write LC' as y= axab   , and the equation 

of ''LC  as y= axab  , LC-1 divides the plane into two regions R1,R2, R1 is 

the region y0, R2 with y0. 

We notice that LC consists of two branches 'LC & ''LC  as shown in     figure 

(3.2.1) and the region Z0 penetrating by Z2, so we conclude that this map of type 

(Z0Z2), as shown in figure (3.2.1). 



 

Figure (3.2.1) ) (Z0<Z2) map; LC=LL' , c = L'  L''; 

 

 

Now, compute the equation of the critical curve LC1, by substituting the 

equation of LC in map (3.2) we get: 

)(])([ 2

b

ay
a

b

ay
abax





 , which is the equation of LC1. 

We write 
1
'LC  as )(])([ 2

b

ay
a

b

ay
abay





  and 

1
''LC  

as )(])([ 2

b

ay
a

b

ay
abay





 . As mentioned before, we shall use 

least square method to approximate the equations of the critical 

curves
1
'LC ,

1
''LC , 

2
'LC &

2
''LC . 

      Now we shall take some values of the parameters a and b to study the 

dynamical behavior of the map (3.2). 

For a=1, b=0.5, the fixed points of T are: 

P1=(0.2716,1.1381) with eigenvalues 1 = -0.2761-0.702i and             2=-

0.2761+0.702i therefore P1 is an stable fixed point. 

P2= (-1.6095, 0.1953) with eigenvalues 1 = 0.0306 and 2= 3.4365 therefore P2 

is a repulsive fixed point. As example act erstwhile choose the points [(-0.25, 



1.5590), (-0.19, 1.5454), (-0.1, 1.5244), (0.11, 1.4717),   (-0.19, 1.5454)] that 

belong to LC' by using least square method we get 

y=1.3032x
2
+1.2935x+1.1338, which is the approximated equation of LC1'. 

Choose the points [(-0.5,0.3876), (0.5,0.6464), ( 0.55,  0.6646), (0.9,0.8419), 

(0.99,0.95)] that belong LC'', we approximate the equation of LC''1 by y=-

1.2618x
2
-0.1783x+1.583, and by choosing another points (x'1,j , y'1,j ), (x''1,j , y''1,j 

), j=1,…,5, that belong to 
1
'LC , 

2
''LC respectively we get y=-

0.0338x
2
+0.3371x+0.55594, and y=0.5496x

2
-1.3816x+1.6999 which are the 

approximated equation of  
2
'LC

2
''LC  respectively.  

So in figure(3.2.2) the closed area 
a

d '  is shown. This area =
a

d '  is an 

approximated absorbing area since it satisfies the conditions of the definition of 

an absorbing area, since T(), T
m+1

()T
m
(),  m0, we notice that a,b,c 

& g are non-smooth boundary points. The approximated invariant area is 

obtained after two iterations   )(''  M

a
Td  as shown in figure (3.2.3) which 

gives rise to four of non-smooth boundary points a', b', c'and g'. 

 

 

 
Figure (3.2.2): Map (3.2) with 



a=1, b=0.5, the approximated absorbing area d'a by using the proposed 

algorithm (2.5), 

a=(-0.7938,0.9285),b=(-1.3503,1.7665),c=(-1.09,0.2772),  

e=(-0.4676,0.395), g=(1.0106,0.8655), h=(0.1982,1.4477)  

 

 

Figure (3.2.3): Map (3.2) with 

a=1, b=0.5, the approximated invariant area d''a by using the proposed algorithm 

(2.5). 

Now, we shall take other values of the parameter a and b, we take a=0.5, b=0.5. 

P1= ( 0.2457, 0.6228), and P2= (-1.3568,    -0.1784)  are two fixed point of T. 

Numerical computation show that P1 is a stable fixed while P2 an expanding 

fixed point. As act erstwhile we choose some suitable points (x'0,j ,y'0,j) 'LC , 

j=1,…,5, that belongs to the curve 'LC , we get 

y=1.5164x
2
+0.8503x+0.3757which is the approximated equation of 

1
'LC , and 

by choosing another points (x''0,j ,y''0,j) ''LC , j=1,…,5, we get                                 

y=-0.7704x
2
-0.0328x+0.7703 which is the approximated equation of ''LC 1, and 

by choosing another points (x'0,j ,y'0,j), (x''0,j ,y''0,j), j=1,…,5 that belong to 
1
'LC ,  

1
''LC respectively we get y=-0.0662x

2
-0.8382x+0.0802, and y=-0.2695x

2
-

0.5565x+0.9146 which are the approximated equations of LC '2, LC ''2 



respectively. Drawing up the curves LC-1, LC ', LC '', 
1
'LC , 

1
''LC , 

2
'LC & 

2
''LC produces a closed area as shown in figure (3.2.4) and a numerical 

computations shows that this area is absorbing =d'a which have to four of non-

smooth boundary points a, b, c and g. The approximated invariant area is 

obtained after two iterations   )(''  M

a Td .  

Figur

e (3.2.4): Map (3.2) with 

a=0.5, b=0.5, the approximated absorbing area d'a by using the proposed 

algorithm (2.5), 

a= (-0.648, 0.466), b= (-1.032, 1.119), c= (-1.104,-0.1335),  

e= (0.1518, 0.2055), g= (0.5533, 0.5234), h= (0.2989, 0.72424)  

 

 

For a=0, b=1, the fixed points of T are: P1= (0,0) with eigenvalues 1 = 0       

and 2= 0 therefore P1 is an stable fixed point.P2= (-0.5,-0.5) with eigenvalues 

1 = -0.618 and 2= 1.618 therefore P1 is an repulsive fixed point. a0= LC-

1LC=( 0, 0 ) when we choose the points [(-4.5,-0.618), (0.09,0.1798), 

(0.15,0.2042), (0.45,0.3882), (0.5,0.5)] that belong to LC ', we get  



y=0.0307x
2
+0.4204x+0.0774 , which is the approximated equation of LC'1, and 

choosing the points [(-6.6,-1.569),(-5.056,-1.2486), (-3.4,-0.8439), (-2.09,-

0.4457), (-0.195,0.5584)] that belong to LC'', we get 

y=0.0032x
2
+0.0826x+0.9528 which is the approximated equation of 

1
''LC ,  as 

is shown in figure (3.2.5). 

 

Figure (3.2.5): map (3.2) with 

a=0, b=1, the closed area  is not absorbing  

 

 

So in figure (3.2.5) the closed area  is shown. This area  is not absorbing 

area, since it is not satisfy the conditions of the definition of an absorbing area. 

For a=1, b=0.1, T has two fixed points: P1=(0.5669,1.0567), and           P2= (-

1.5859,0.8414). Numerical computations show that P1 is an repulsive fixed 

while P2 is an repulsive fixed point. Figure (3.2.6) represents the approximated 

absorbing area constructed by          algorithm (2.5) and the approximated 

equations of 
1
'LC ,

1
''LC ,

2
'LC &

2
''LC  are: 

y=0.1525x
2
+0.0253x+0.8807, 

y=-0.123x
2
+0.026x+1.0885, 

y=-0.0201x
2
-0.1354x+1.1196, 



y=0.4677x
2
-0.6607x+1.1603 respectively. 

figure (3.2.5) represents the approximated absorbing area constructed by 

algorithm (2.5), which have to five of non-smooth boundary points a, b, c, e & 

g. 

The invariant area is obtained after two iteration d''a=T
M

(). 

 

Figure (3.2.6): Map (3.2) with 

a=1, b=0.1, the approximated absorbing area d'a by using the proposed 

algorithm (2.5), 

a= (-0.866,0.9735), b=(-1.428,1.159), c=(-1.295,0.8485),  

e=(0.5797,0.9352), g=(1.0892,0.996), h=(0.2574,1.0861). 

 

 

For a=0.8, b=0.3, P1=(0.3929,0.9179), and P2= (-1.5068, 0.3480) are two fixed 

point of  T.  Also, numerical computation show that P1 is a stable fixed while P2 

an repulsive fixed point, the approximated equations of
1
'LC ,

1
''LC ,

2
'LC  and 

2
''LC  respectively are :  

y= -0.4842x
2
-0.1288x+1.0213, 

y=0.5868x
2
+0.185x+0.4324, 



y=-1.7262x
2
-2.8886x+1.9643, 

y=0.2539x
2
+0.0936x+0.5007, respectively. 

Drawing up critical curves LC0, i
LC'  , 

i
LC ''  ,i=1,2, we get a closed area 

a
d '  

which have to four of non-smooth boundary points a, b, c, d & g as is shown in 

the figure (3.2.7).  

  Figure 

(3.2.7): Map (3.2) with 

a=0.8, b=0.3, the approximated absorbing area d'a by using the proposed 

algorithm (2.5), 

a=(-0.9022,0.7433), b)=(-1.3048,0.365), c=(-1.339, 1.239  

d=(0.7673,0.7226), g=(0.6111,0.9844), h=(-0.244,0.4935). 

 

 

 

 

 

 



 

Example (3.1.3): Consider the map T defined by 

               :  
bxy

yaxx



 22

  ,   b0         (3.3) 

T is continuously differentiable and noninvertible map whose inverses are  

               2

2

1

''

/'

:
y

b

a
xy

byx





  

T has two fixed point (0,0), ( bx
ba

,
1

2
). 

     The equation LC-1 is given by y=0, the equation LC is given by x=(a/b
2
)y

2
. 

LC-1 divides the plane into two regions R1,R2. R1 is the region y0 , R2 with y0. 

To compute the equation of LC1, substitute equation of LC in the map (3.3) we 

get 

          y
a

b
y

b

a
x  2      Which is the equation of LC1.(we need to put a0) 

to compute the equation of the critical curve LC2, substitute equation of LC1 in 

map (3.3) we get: 

)
2

4)(
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2

4)(
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2

4)(
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2
22

2

2
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2
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ay
a

b
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b
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ay
a

b

a

b

a

b

a

ay
a

b

a

b

b

a
ax











 , which is 

the equation of LC2. we note that the difficulty of drawing up the equation of 

LC2 , So we shall use least square method to approximating the equation of the 

critical curve LC2. 

Now we shall take some values of the parameters a and b to study the 

dynamical behavior of the map (3.3). 

For a=1, b=1, the fixed point of T are: 

P1= (0,0) with eigenvalues 1 = 0 and 2= 0 therefore P1 is an attracting fixed 

point. 



P2=(0.5,0.5) with eigenvalues 1 = 1.61805 and 2= -0.61805 therefore P2 is a 

saddle  fixed point . 

We choose the points [(-6.25,32.8125), (0.3584,0.28), ( 31.11,-6.1), (31.6725, -

6.15), (32.24,-6.2)] which belong to LC1 then T(x,y)LC2, by using least square 

method we can approximate the equation of LC2 as  y=0.0443x+0.3493. When 

the proposed algorithm(2.5) we get closed area whose boundaries are segments 

of the critical curves  LC, LC1 & LC2 i.e. d=(a0 a1 a2). Numerical computation 

shows this region divided into two  regions d1, d2 as is shown in figure (3.3.1), 

the first region d1 whose boundaries d1=(a0 a b a1) where a=1, b=1 in this 

region the iterates of each point enter d1 and never it get a way after entering 

and the second region is d2 whose boundary d2=(a b a2), moreover we note that 

T
2
(d2), enter the region d3={0.1984x0.3846,0.355y 0.512}and T(d3) 

entered region d1 and never get away after entering. 

      Another phenomena that be mentioned when we try to find M that satisfy 

T
M

(d1)=T
M+1

(d1) we find that  T
M

(d1) approach to the fixed point P1 of when 

M=23 i.e. T
 23

(d1)(0,0) i.e. the invariant area is just a point. 

 

Figure (3.3.1): Map (3.3) with a=1, b=1, 
a

d ' constructed by the proposed 

algorithm (2.5),  

a0=(0,0)LC-1LCLC1, a1=(0.128,0.355)LCLC2,                          

a2=(0.512,0.372)LC1LC2, a=(0.355,0.366), b=(0.355,0.2755)  



 

For a=1, b=2, the fixed points of T are: 

P1= (0,0) with eigenvalues 1 = 0 and 2= 0 therefore P1 is an attracting fixed 

point. 

P2=(0.2,0.4) with eigenvalues 1 = 1.4806 and 2= -1.0806 therefore P2 is an 

expanding  fixed point . 

Now to compute the equation of LC2 again we subsitute the points          [(-

0.4688,-0.25), (-0.38,-0.2), (0.0201,0.01), (0.205,0.1), (0.3112,0.15)] that 

belong to LC1,  we use least squares method we get the equation           y=-

25.9616x
2
+2.6883x+0.2099 , which is the equation of LC2. As is shown in 

figure (3.3.2) 

 
Figure (3.3.2): Map (3.3) with a=1, b=2, d’a constructed by the proposed 

algorithm (2.5), 

a0=(0,0)LC-1LCLC1, a1=(0.1305,0.0636)LCLC2,                          

a2=(0.0114,0.2109)LC1LC2.  

 

 



So in figure (3.3.2) the closed area 
a

d '  is shown. This =d'a is an approximated 

absorbing area since it satisfies the conditions of the definition of an absorbing 

area. 

We have found M=5 whish satisfies T
M

()=T
M+1

(), So d"a=T
M

() is an 

approximated invariant absorbing area.  

Again we shall take another values of a and b and apply the proposed algorithm 

(2.5). For the particular case a=2, b=1, the approximated equation of LC2 is:  

y=0.0102x+0.2786. 

 

Drawing up critical curves LCi , i=0,1,2, we get a closed area 
a

d '  as is shown in 

the figure (3.3.3). 
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Figure (3.3.3): Map (3.3) with a=2, b=1, d 'a constructed by the proposed 

algorithm (2.5), 

a0=(0,0)LC-1LCLC1, a1=(0.16,0.2802)LCLC2,                          

a2=(0.3025,0.2816)LC1LC2.  

 

 

So in figure (3.3.3) the closed area 
a

d '  is shown. This =d'a is an absorbing area 

since it satisfies the conditions of the definition of an absorbing area. 



We have found M=5 whish satisfies T
M

()=T
M+1

(), So d"a=T
M

() is the 

invariant absorbing area. 

 

 

For a=1, b=-1, the fixed points of T are: 

P1= (0,0) with eigenvalues 1 = 0 and 2= 0 therefore P1 is an attracting fixed 

point. 

P2=(0.5,-0.5) with eigenvalues 1 = 1.61805 and 2= -0.61805 therefore P2 is an 

repulsive  fixed point . 

 The curve LC-1 is given by y=0, the equation of the critical curve LC is given 

by x=y
2
.The equation of critical curve LC1 is given by x=-y(y+1) as is shown in 

figure (3.3.4). 

-0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

LC-1

LC

LC1

a0

a1

d'

R2

R1

Z0

Z2

 
Figure (3.3.4): Map(3.3) with a=1, b=-1, d'a is approximated absorbing area, 

a0=(0,0)LC-1LCLC1, a1= (0.25,-0.5)LCLC1. 

 

So in figure (3.3.4). the closed area 
a

d '  is shown. This =
a

d '  is an absorbing 

area since it satisfies the conditions of the definition of an absorbing area. 

We have found M=5 whish satisfies T
M

(
a

d ' )=T
M+1

(
a

d ' ), So d"=T
M

(
a

d ' ) is the 

invariant absorbing area. 



 

Example (3.1.4): Consider the map T defined by 

               :  
abxy

yaxx



 22

  ,     b0       (3.4) 

T is continuously differentiable and noninvertible map whose inverses are  

               2

2

1

)'('

/)'(

:
ay

b

a
xy

bayx





  

T has two fixed points ( ],
)(2

)(4)12()12(
2

22

abx
ba

abaabab





). 

     The equation of LC-1, LC given by y=0, 0,  aa
a

x
by , respectively.  

      Now we shall take some values of the parameters a and b to study the 

dynamical behavior of the map (3.4). 

For a=0.1, b=0.5, the fixed points of T are: 

P1= (0.3136, 0.2568) with eigenvalues 1 = 0.5391 and 2= -0.4764 therefore P1 

is an attracting fixed point. 

P2= (0.0112, 0.1056) with eigenvalues 1 = 0.6349 and 2= -0.6343 therefore P2 

is an attracting fixed point. 

Now, if we apply the algorithm (2.2.1) we get a closed bounded area which is 

not absorbing, while applying algorithm (2.5) gives an approximated absorbing 

area d
'
a that shown in figure (3.4.1) and the approximated equations of LC, LC1 

are: 

y=-2.9294x
2
+2.9559x+0.3345, 

y=-0.0548x
2
+0.2235x+0.0763, respectively. 

We have founded M=2 which satisfies T
M

()=T
M+1

(), so d''a= T
M

() is the 

invariant absorbing area as shown in figure (3.4.2). 
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a=0.1,b=0.5 

Figure (3.4.1) 
a

d ' constructed by the proposed algorithm(2.5). 

a= (-0.0855,0.057) LCLC1, b =(1.035,0.25) LCLC1,                          c=(-

0.103,0)LC-1LC, d=(1.111,0)LC-1LC. 

 

a=0.1,b=0.5 

Figure (3.4.2) 
a

d '' constructed by the proposed algorithm(2.5). 

 



 

Again we take other values of the parameter a and b, i.e. a=0.3, b=0.3. 

P1= (0.3021,0.3906), and P2=(0.1162, 0.3349) are two fixed points of  T. 

Numerical computation show that P1 is an attracting fixed while P2 an attracting 

fixed point, the approximated equations of  LC and LC1, are :  

y=0.6581x
2
-1.3226x+0.417, 

y=-2.0373x
2
+1.3947x+0.3306, respectively 

by proposed algorithm (2.5) we get a closed area  as is shown in the figure 

(3.4.3) which is an absorbing area, i.e. d'a =.  
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a=0.3,b=0.3 

Figure (3.4.3) 
a

d ' constructed by the proposed algorithm (2.5). 

a=(0.035,0.37) LCLC1, b=(0.973,-0.245) LCLC1,                          

c=(0.392,0)LC-1LC, d=(0.87,0)LC-1LC.  

 

 

We note that 
1

R  is the region whose boundary is b c d and T( 
1

R ) 

then T()==
a

d ' is invariant. 

 

 



 

Again we take other values of the parameter a and b, i.e. a=0.-0.5, b=0.5. 

P1= (-0.3851,-0.6926), and P2=(0.1623,-0.4189)  are two fixed points of  T. 

Numerical computation show that P1 is an attracting fixed while P2 an attracting 

fixed point, the approximated equations of  LC and LC1, are :  

y=1.0743x
2
-0.3621x-0.7226,  

y=-0.8313x
2
+0.3655x+0.5567, respectively 

by proposed algorithm (2.5) we get a closed area  as is shown in the figure 

(3.4.4) which is an absorbing area, i.e. 
a

d '  =.  

 

 
 

a=-0.5,b=0.5 

Figure (3.4.4) 
a

d ' constructed by the proposed algorithm(2.5). 

a=(0.65,-0.034) LCLC1, b=(1.031,0.048) LCLC1,                          c=(-

0.625,0)LC-1LC, d=(1.005,0)LC-1LC. 

 

 

We note that 
1

R  is the region whose boundary is b c d and T( 
1

R ) 

then T()==
a

d ' is invariant.  

 



 

 

 

 

 

3.2 Conclusions & for future work 

 

      From the present study, we can conclude the following: 

  

(1) In example (3.1.1) when we make a comparison between the construction 

algorithm (2.2.1) and the proposed algorithm (2.5) we see that for some 

values of the parameter a and b, in both algorithm we get the same 

invariant absorbing area but for the specific case when a=1.5, b=0 if we 

apply the proposed we get area which is absorbing as is shown in figure 

(3.1.3) while when we apply the construction algorithm we get just a 

point. 

Also, for such case we notice that the Jacobian of T has zero eigenvalue 

at the fixed point P1=(0,0).   

(2) In example (3.1.2) we notice that this map of type (Z0Z2) and there are 

points of non-smoothness in the boundary of the approximated absorbing 

area as shown in figure (3.2.2) and when we take another value of the 

parameter b, i.e. b=0.1, a new point of non-smoothness on the boundary 

of the absorbing area d'a is born which is e as shown in figure (3.2.6).  

(3) In example (3.1.3) for a=1,b=1 the Jacobian of T has two zero 

eigenvalues at the fixed point P1=(0,0) and when we apply algorithm 

(2.5) gives a closed area as is shown in figure (3.2.1) and this closed area 

can be divided into two regions d1, d2 one of them is absorbing which is 

d1 while d2 is not, but T
3
(d2) enter into d1. 



 

 

 

(4) We notice that if we apply the constraction algorithm (2.2.1) we get area 

that will be not absorbing while when we use the proposed algorithm 

(2.5) we get absorbing area. 

  

Also, for future work, our recommendations are:  

 

(1) Use another method to approximate the equation of the critical curve LCi 

. 

(2) Studying noninvertible maps with degree greater than two and make 

general observations.   
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Appendix (A) 

 

Definition (A1):[27, p.84] 

     Let T be an interval, and suppose thatT :. Then T  has sensitive 

dependence on initial conditions at x. or just sensitive dependence at x if there is 

an 0 such that for each 0, there is a y in T  and a positive integer n such that  

   x-y  and T
 [n]

(x)- T
 [n]

(y) 

If T  has sensitive dependence on initial conditions at each x in, we say that T  

has sensitive dependence on initial conditions on, or that f has sensitive 

dependence on, or that f has sensitive dependence. 

 

Definition(A2):[27,p.96] 

     A subset A of the interval J is dense in J if A intersects every nonempty open 

subinterval of J.    

 

Definition (A3):[27, p.41] 

     Let A and B be closed sets in 
2
 and let f: AA and g: BB be two maps, f 

and g are said to be topological conjugate if there exists a homeomorphism h: 

AB such that hf=gh. The homeomorphism h is called a topological 

conjagacy. In this case, we write fhg. 

 



Theorm (A1):[27,p.40] 

     Suppose that J is a closed interval and f:JJ. Then f is transitive if and only 

if there is x in J whose orbit is dense in J. 

Theorm (A2):[27, p.41] 

Let fhg then  

1) hf
n
=g

n
h    for n=1, 2,3,… 

2) if x is a periodic point for of an period n, then h(x) is a periodic point of g of 

period n. 

3) If f has a dense set of periodic points, so does g. 

 

Theorm (A3):[27, p.42] 

Let fhg, if f is transitive then g is transitive, too 

 

Definition (A4):[27, p.54] 

     Let  be a bounded interval, and T : continuously differentiable on. 

Fixed x in, and let (x) be defined by  

   (x)= In
n

Lim
n

1


(T

 [n]
)`(x)  

Provided that the limit exists, (x) is called the Lyaunor exponent of T  at x. If 

(x) is defined, then the common value of (x) is denoted by, and is the 

Lyapunor exponent of T .  

Definition (A5):[27, p.55] 

     A function T is chaotic if it satisfies at least one of the: 

i) T  has a positive Lyapunov exponent at each point in its domain that is not 

eventually periodic. 

ii) T  has sensitive dependence on initial conditions on its domain. 

 

Definition (A5):[27 ,p,77] 



     A function f on an internal  is strongly chaotic if: 

i) f is chaotic. 

ii) f has a dense set of periodic points. 

iii) f is transitive. 

 

The Inverse Function Theorom:[11, p.172] 

     The T:
 2
 

2
. suppose T(0)=0 and J(T(0)) is an invertible matrix. Then 

there exists a neighborhood U of 0 and a C

 map G:U2

 such that TG(X)=X 

for all XU. 

 

Definition (A6)
1
 

     Let (X,d) be a metric space and let S  X and   0. Then the neighborhood 

of S of radius  is the set:  

N ),(:{)( sxdXxS    for some s S} 

 

Definition(A7):[27,p.159] 

     Let T: 
2
 

2
 be a map and let p be a fixed point of T with eigenvalues  

and  such that 1 and 1, then p is called a saddle point.  
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Approximation of the  Equation of the  Critical 

Curve  LCi   By Using Least Square Method 
 

Enter your value n, m where n is the nuber of iterations and  m is the number of 

points that belong to LCi-1 

Choose suitable points (x,i-1,j, y i-1,j) LCi-1    , j=1,2,…,m 

Define the map T(x,y)=(f(x,y) ; g(x,y)) 

Evaluate T(x,i-1,j, y i-1,j)= (x,i,j, y i,j) LCi  

for i=1:m 

    x=xi ; y=yi ; 

    g1(i)=eval(g); 

    f1(i)=eval(f); 

end 

Using  the Least Square Method to Approximate the  Equation of the  Critical 

Curve LCi 
for j=1:n+1 

   for k=1:n+1 

   A(j,k)=0; D(j)=0; 

      for i=1:m 

      A(j,k)=A(j,k)+(f1(i))^(j+k-2); 

      D(j)=D(j)+g1(i)*(f1(i))^(j-1); 

      end;  

   end; 

end; 

b=((inv(A))*D')' 

LCi=(b(3))*power(x,2)+(b(2))*x+(b(1)); 

plot(x,LCi) 

 

 

 



 

 الخلاصة

 

حطبْماث انًسخٌُ انغْش لابهت نلانؼكاس دسسج فِ الاًنو الأخْشة ين لبم انؼذّذ ين انباحثْن      

Cathala[9], Gardini[17], Mira[25] ط الأيثهت ًإػطاء اسخنخاجاحيى انزّن حعًن ػًهيى بناء بؼ

 ػهْيا يغ بؼط انصفاث.

 ىذاف:أانغشض انشئْسِ نيزه انشسانو ًّكن حمسًْو انَ ثلاثو 

انذساسو انخؼاسّف الاساسْو   حيث تتضمن تهنظى انذّنايْانخهفْت انشّاظْت ندساست  ّخعًن انيذف الأًل

لأنٌاع ًبؼط ا LCiنحنْاث انحشجو ًانًفاىْى الاساسْو انًخؼهمو بيزا انًٌظٌع ًكزنك حؼشّف انً

انيذف يغ ركشبؼط انخٌاص نيزه انًنحنْاث.  انحشجت ًنحنْاحيىانًخخهفت نهذًال انغْش لابم نلانؼكاس ب

نلانؼكاس بشكم خاص انًناغك  يزا اننٌع ين انذًال انغْش لابهوانثانِ ىٌ دساسو بؼط انخٌاص ن

ًػشض غشّمو يمخشحو لاّجاد ىكزا يناغك بٌاسطو اسخخذاو بؼط  انًاصت ًانًناغك انغْش يخغْشه

انثانث انيذف . LCiنخمشّب يؼادنو انًنحنْاث انحشجو   انطشق انخمشّبو يثم غشّمو انًشبؼاث انصغشٍ

 ىٌ اػطاء بؼط الأيثهت انخطبْمْو نهطشّمت انًمخشحو لإّجاد حمشّب نهًساحاث انًاصت ًالانؼكاسْت.

 فِ حم الأيثهت انًؼطاة .  Matlab v.7.0شنايج فِ ػًهنا اسخخذينا ب
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طريقة التربيعات الصغرى لإيجاد المساحات الماصة لذوال 

   المستوي التربيعية

 

 سسانت

          ًىِ جزء ين يخطهباث نْم دسجت نيشّنيمذيت انَ كهْت انؼهٌو فِ جايؼت ان

 ياجسخْش ػهٌو فِ انشّاظْاث ًحطبْماث انحاسب
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