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Abstract 
 
In this thesis, a Content-Based Image Retrieval (CBIR) system is 

presented that supports querying with respect to color and texture low-level 
features. The fundamental idea is to generate automatically image descriptors 
by analyzing the image content. The focus will be on computing global 
similarity between images. Query is made upon images of homogeneous 
color/texture that do not require segmentation. The selected images domain is 
fashion and interior design. 

The underlying techniques are based on the adoption of Gray Level Co-
occurrence Matrix (GLCM) and correlogram (correlation histogram) as 
statistical approaches to texture analysis. In addition, cumulative histogram 
and moments are utilized in color analysis. These techniques are applied in 
separated and combined manners.   

Each image is represented by features vector(s) in the features space. 
These vectors are indexed using an iterative clustering algorithm called 
Hierarchical Agglomerative Clustering (HAC) which provides easy-to-index 
data structures as well as faster query execution facilities. The degree of 
similarity between images is defined by the distance in the features space. 
Given a query image, the system first extracts its features vector, and then 
compares this vector with those of the images pointed along the index 
structure using wide or narrow search algorithms. In this way, the matched 
images could be ranked and put into group according to the distance of their 
features vectors to the query one. This ranked group is considered as the query 
result. 

During the evaluation process a comparison study is made between 
different applied retrieval schemes. Cumulative histogram proved to be the 
best according to the selected domain, both as a separated retrieval scheme or 
when it is combined with GLCM or correlogram, respectively.  The conducted 
experimental evaluation showed that the clustering based indexing algorithm 
offers high retrieval accuracy with a considerable reduction in the number of 
required similarity comparisons. Search efficiency is improved due to the fact 
that the query image is not compared exhaustively with all the images listed in 
the database. 

 ii



Acronyms 
  
Bmp  Bit-Map Image 
B-Tree   Balanced Tree 
CBIR Content-Based Image Retrieval  
CIE  Commission Internationale de l'Eclairage 
CMY  Cyan Magenta Yellow 
DBMS  Database Management System 
DNA Deoxyribo Nucleic Acid 
FE  Feature Extraction  
GLA Generalized Lloyd–Max Algorithm  
GLCM    Gray Level Co-occurrence Matrices  
GUI Graphical User Interface  
HAC  Hierarchical Agglomerative Clustering  
HCA Hierarchical Cluster Analysis  
HIS  Hue Intensity Saturation 
HLS  Hue Lightness Saturation 
HSB Hue Saturation Brightness 
HSV Hue Saturation Value 
HSx  refers to HSI, HSV, HSB, and HSL color spaces 
IDM  Inverse Difference Moment 
IR  Information Retrieval 
k-NN  k-Nearest Neighbor  
MAP  Mean Average Precision  
MIS Management Information System 
MSE Mean-Squared Error  
PCA   Principle Component Analysis 
PDF Probability Density Function  
PVQ Product Vector Quantization  
QBIC  Query by Image Content system by IBM 
RDBMS Relational Database Management System  
RGB  Red Green Blue  
SM    Similarity Measurement  
SVQ  Standard Vector Quantization  
VIR Visual Information Retrieval  
VQ  Vector Quantization 
YIQ  Y-axis In-phase Quadrature 

 

 iii



  

Abbreviations  
 
 
 
 

CH Cumulative Histogram  
CO Co-occurrence Matrix  
Comp. Component 
COR   Correlation  
Correlogram Correlation Histogram  
CR Correlogram  
Cum. Hist. Cumulative Histogram 
ENT  Entropy  
HOM  Homogeneity  
Mom  Moments  
N Narrow Search 
P  Precision  
PRM  Cluster Prominence  
Quan. Quantization 
R Recall  
Sec Seconds 
SHD  Cluster Shade  
W Wide Search 

 
 
 

 iv



    Contents  

Contents 
 
Acknowledgment..................................................................................................   i  Title                  page no.

 

Acknowledgement .................................................................................................  i 
Abstract ..............................................................................................................  ii 
Acronyms.............................................................................................................. iii  
Abbreviations ....................................................................................................... iv 
Contents ............................................................................................................... v 
 

CHAPTER ONE: General Introduction                                                              
1.1 Overview ......................................................................................................... 1 
1.2 Historical Perspective...................................................................................... 2 
1.3 Visual Information Retrieval .......................................................................... 2 
1.4 Image Databases  ............................................................................................ 3 
1.5 Principal Components of a CBIR System    ................................................... 3 
1.6 Emergence of the Image Retrieval Problem ................................................... 4 
1.7 Practical Applications of CBIR ...................................................................... 5 
1.8 Fashion and Interior Design ........................................................................... 6 
1.9 Functions of a Typical CBIR System ............................................................. 7 
1.10 Problem Definition ....................................................................................... 8 
1.11 Project Motivation ........................................................................................ 8 
1.12 Project Methodology ..................................................................................... 8 
1.13 Literature Review .......................................................................................... 9 
1.14 Project Objectives........................................................................................ 13 
1.15 Contributions of the Thesis ......................................................................... 13 
1.16 Thesis Outline.............................................................................................. 14 
 

CHAPTER TWO: Visual Features for CBIR 
2.1 Introduction ................................................................................................... 15 
2.2  Features Extraction ....................................................................................... 15 
 2.2.1  Features Selection ................................................................................ 16 
 2.2.2 Significance of Feature Space Selection............................................... 16 
 2.2.3 Features Categories:.............................................................................. 16 
 2.2.4 Features Representation ........................................................................ 17 

 v



    Contents  

 2.2.5 Image Signature .................................................................................... 17 
 2.2.6 CBIR Basic Tasks ................................................................................. 18 
2.3 Color-Based Retrieval ................................................................................... 19 
 2.3.1 Perceptual Color Components .............................................................. 19 
 2.3.2 Color Spaces (Models).......................................................................... 20 
 2.3.3 Color Space Properties.......................................................................... 28 
2.4 Color Quantization ........................................................................................ 28 
 2.4.1 Intensity Slicing .................................................................................... 29 
 2.4.2 Quantization Schemes in Different Color Spaces................................. 29 
2.5 Color-Based Features Extractors................................................................... 31 
 2.5.1 Color histogram .................................................................................... 31 
 2.5.2 Cumulative Histogram.......................................................................... 32 
 2.5.3 Color Moments ..................................................................................... 32 
 2.5.4 Color Correlogram................................................................................ 33 
2.6 Color Similarity Measures............................................................................. 34 
 2.6.1 Histogram Intersection.......................................................................... 34 
 2.6.2 Minkowski-Form Distance (Lp) ........................................................... 35 
2.7 Texture-Based Features ................................................................................. 35 
 2.7.1 Texture-Based Feature Extractors......................................................... 36 
 2.7.2 Gray Level Co-occurrence Matrix (GLCM)......................................... 37 
 2.7.3 The Formal Definition of A Co-occurrence Matrix.............................. 38 
 2.7.4 Texture Features Explanations.............................................................. 40 
 2.7.5 Texture Features Descriptors ................................................................ 42 
 

CHAPTER THREE: Hierarchical Indexing and Image Matching 
3.1 Introduction ................................................................................................... 44 
3.2 Indexing ......................................................................................................... 44 
 3.2.1 Indexing Structures ............................................................................... 45 
 3.2.2 Multi-dimensional Indexing.................................................................. 45 
 3.2.3 Dimension Reduction............................................................................ 46 
 3.2.4 Indexing and Queries ............................................................................ 47 
 3.2.5 Efficient Features Indexing................................................................... 48 
3.3 Clustering....................................................................................................... 49 
 3.3.1 Criteria for Choosing a Suitable Clustering Method ............................ 50 

 vi



    Contents  

 3.3.2 Clustering Techniques .......................................................................... 51 
3.4 Hierarchical Clustering.................................................................................. 52 
 3.4.1 Hierarchical Agglomerative Clustering (HAC).................................... 52 
 3.4.2 HAC Algorithm .................................................................................... 53 
3.5 Similarity Measurements and Image Searching............................................ 54 
 3.5.1 Clusters Distance Computation............................................................. 54 
 3.5.2 Exact Match versus Similarity Match................................................... 56 
 3.5.3 Heuristic Search versus Exhaustive Search .......................................... 56 
 3.5.4 Feature-based Similarity ....................................................................... 56 
3.6 Query by Example......................................................................................... 57 
 3.6.1 K-Nearest Neighbor Query:.................................................................. 58 
 3.6.2 Range Query ......................................................................................... 58 
3.7 Performance Evaluation of a Retrieval System............................................. 59 
 3.7.1 Mean Average Precision (MAP)........................................................... 61 
 3.7.2 F-Measure ............................................................................................ 62 
 

 

CHAPTER FOUR: The Content-Based Image Retrieval System 
4.1 Introduction ................................................................................................... 63 
4.2 The Retrieval System Broad Outline............................................................. 63 
4.3 Color Models Conversions ............................................................................ 65 
4.4 Features Extractions Methods ....................................................................... 67 
 4.4.1 Gray Level Co-occurrence Matrix ........................................................ 67 
 4.4.2 Correlation histogram (Correlogram) ................................................... 74 
 4.4.3 Color Histogram and Cumulative Histogram ....................................... 77 
 4.4.4 Moments................................................................................................ 79 
4.5 Features Vector Normalization...................................................................... 81 
4.6 Hierarchical Indexing .................................................................................... 83 
 4.6.1 Hierarchical Agglomerative Clustering ................................................ 83 
 4.6.2 Distance Matrix..................................................................................... 88 
 4.6.3 Clusters Lumping.................................................................................. 93 
4.7 Query Processing......................................................................................... 100 
 4.7.1 Query Image Search............................................................................ 100 
 4.7.2 Clusters Exploring ............................................................................. 105 
4.8 Features Combinations Based Retrieval...................................................... 106 

 vii



    Contents  

 

 CHAPTER FIVE:  Retrieval Performance Evaluation 
5.1 Introduction ................................................................................................. 108 
5.2 Automatic Evaluation Module .................................................................... 108 
5.3 Retrieval Efficiency and Effectiveness ....................................................... 110 
5.4 Single Value Measures ................................................................................ 112 
5.5 GLCM and Color Correlogram Features Selection..................................... 114 
5.6 Comparison of Image Retrieval with Different Schemes ........................... 117 
 5.6.1 Singular Retrieval Schemes ................................................................ 118 
 5.6.2 Combined Retrieval Schemes ............................................................. 121 
5.7 Overall Retrieval Assessment...................................................................... 126 
 5.7.1 Whole Schemes Evaluation ................................................................ 126 
 5.7.2 Clusters and Query Results Visualized............................................... 129 
 

 
 CHAPTER SIX: Conclusions and Suggestions for Future Work 
6.1 Conclusions ................................................................................................. 132 
6.2 Suggestions for Future Work....................................................................... 134 
 
References......................................................................................................... 135 

Appendix A: Computation of Precision and Recall ...................................... A1 

Appendix B: Clustering and Querying Output ..............................................B1 

 viii



Chapter One 

 

General Introduction 
 
1.1 Overview 

The steady growth of the Internet, the falling price of storage devices, and the 
increasing pool of available computing power make it necessary and possible to 
manipulate very large repository of digital information efficiently. Generally 
speaking, Content-Based Image Retrieval (CBIR) technique aims to develop 
techniques that support the effective searching and browsing tasks performed on 
large image digital libraries by using automatically derived image features [1].  

The rapid increase in the size of digital image collections has motivated the 
research on image retrieval. The early researches on image retrieval discipline 
proposed annotating the images manually to facilitate their retrieval. Obviously, 
annotating images manually is a cumbersome and expensive task for large image 
databases, and is often subjective, context-sensitive and incomplete [2]. 

 Sometimes, it is almost impossible to describe the content of an image by 
words, especially for the textures found in an image. As a result, it is difficult for 
the traditional text-based methods to support a variety of task-dependent queries 
[3]. To avoid manual annotation, an alternative technique was developed. It is 
called CBIR, by which images would be indexed according to their visual contents 
(such as color, texture, and shape). The basic task of a CBIR system is to find 
similar images (according to their visual features) within a large image database 
[4]. Typically, a CBIR system pre-processes an image database in order to extract 
information from all images in the database. This information is referred to as 
visual features of images. The visual features may be represented by different 
representations, which facilitate image’s searching and indexing [5]. 

Mostly, the two-step approach to search the image database is still adopted. In 
the first step, a feature vector is extracted from each image in the database. These 
features vectors which characterize some image properties are stored in a dedicated 
features database. In the second step, for a given query image, its features vector is 
computed, and then compared with the features vectors contained in the features 
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database. The most similar images to the query image are returned to the user. The  
similarity measure used to compare the features vectors should be effective enough 
to ensure correct matching between similar images, as well as being able to 
discriminate dissimilar ones [6]. In the next sections, the fundamental principles of 
CBIR are presented. 

1.2 Historical Perspective  
CBIR is a technique that uses the visual contents to search the images listed 

in large scale image databases according to users' interests. Since 1990s, this 
research area has been one of most active and rapid growing disciplines [3]. Early 
work on image retrieval can be traced back to the late 1970s. Since 1979, the 
application potential of image database management techniques has attracted the 
attention of researchers from multiple disciplines [7]. 

The early techniques were not generally based on visual features but on the 
textual annotation of images. In other words, images were first annotated with text 
and then searched using a text-based approach from traditional database 
management systems. In the early 1990s, it was widely recognized that a more 
efficient and intuitive way to represent and index visual information would be 
based on properties that are inherent in the images themselves [8]. 

Researchers from the communities of computer vision, database management, 
human-computer interface, and information retrieval were attracted to this field.  
Since 1997, the number of research publications on the techniques of visual 
information extraction, organization, indexing, query interaction, and database 
management has increased enormously. Similarly, large numbers of academic and 
commercial retrieval systems have been developed by universities, government 
organizations, companies, and hospitals [3]. 

1.3 Visual Information Retrieval 
The term “Information Retrieval” (IR) was coined in 1952, and since 1961 it 

has gained popularity in the research community. One may simply describe such a 
system as one that stores and retrieves information. In the past, information 
retrieval has meant textual information retrieval, but the above definition still holds 
when applied to Visual Information Retrieval (VIR). However, there is a 

 2
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distinction between the type of information and the nature of the retrieval of text 
and visual objects [9]. 

Textual information is linear while images are bi-dimensional. Generally, 
there are two approaches to solve the VIR problem. They are based on the form of 
the visual information: attribute-based and feature-based methods. Attribute-based 
methods rely on traditional textual information retrieval and Relational Database 
Management System (RDBMS) methods. While feature-based solutions 
concentrate on visual features such as color, texture, and shape of images that 
would be indexed according to these features [10]. 

1.4 Image Databases 
Interest in applications involving the search and management of digital 

images has increased tremendously over the last few years.  Image databases exist 
for storing art collections, satellite images, medical images and many other real-
time applications. Image databases can be huge, containing hundreds of thousands 
of images. However, it is not possible to access or make use of this information 
unless it is organized to allow for efficient browsing and retrieval. CBIR systems 
are required to effectively and efficiently access images using information 
contained in image databases. A CBIR system uses information from the content 
of images for retrieval and helps the user retrieve database images relevant to the 
contents of a query image [11, 12]. 

1.5 Principal Components of a CBIR System         
CBIR uses the visual contents of an image such as color, shape, texture, and 

spatial layout to represent and index the image. In a typical image retrieval system; 
its layout is shown in Figure (1.1), the visual contents of the images in the database 
are extracted and described by multi-dimensional features vectors. The features 
vectors of the images in the database form a features database. Then, the system 
changes these examples into its internal representation of features vectors.  To 
retrieve images, Graphical User Interface (GUI) is used to provide the retrieval 
engine with example images or sketched figures to search for [13]. 
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Figure (1.1) The principal components of a CBIR system. [10] 

 

Afterwards, the similarities /distances between the features vectors of the 
query example and those of the images in the database are calculated. Retrieval is 
performed as a last step with the aid of the built indexing structure [3].  

The indexing scheme provides an efficient way to search for the image 
database. The image with the smallest distance to the given image is retrieved as 
the result. In current CBIR systems, instead of only retrieving the best image, a 
number of similar images are retrieved and sorted according to their distance to the 
given image. [5] 

1.6 Emergence of the Image Retrieval Problem 
Researches in the analysis, classification, and retrieval of images from large 

visual repositories are of the most active topics in Visual Information Retrieval 
(VIR). There are a few reasons for this: First, the retrieval problem is of great 
practical interest. While digital cameras make picture taking inexpensive, and large 
amounts of new images become available on the web every day, there is still a 
shortage of effective tools for searching / manipulating visual content. Second, it 
touches a significant number of unsolved challenging questions in image 
understanding [14]. 
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The difficulties faced by text-based retrieval became more and more severe. 

The efficient management of the rapidly expanding visual information became an 
urgent problem. This need formed the driving force behind the emergence of CBIR 
techniques [3]. 

1.7 Practical Applications of CBIR  
The primary benefit of using content-based retrieval is the reduced time and 

effort required to obtain image-based information. With frequent adding and 
updating of images in massive databases, it is often not practical to require manual 
entry of all attributes that might be needed for queries, and content-based retrieval 
provides increased flexibility and practical value [15]. 

A wide range of possible applications for CBIR technology has been 
identified. The applications are sometimes divided into three categories depending 
on the goal of the query [11]: 
1. Target search: The target image is known (but the user’s memory of it might not 

be exactly correct, he will misplace some objects, or ask for a slightly different 
color distribution). 

2. Category search: Search images from a category (e.g. a person wants to buy a 
dress, but is not sure of exactly how it should look, she has only a notion of the 
general texture and tone of color). 

3. General browsing: The goal can be very vague or even unknown─ “I know it 
when I see it”. 

The first category is an objective search, while the other two are subjective. 
There are many applications that fall into one of the three categories mentioned 
above. Potentially the most fruitful areas include [1, 9, 16]: 

1. Trademark registration 
2. Architectural and engineering design   
3. Fashion and interior design  
4. Crime investigation (i.e, Face matching). 
5. Military uses like target identification. 
6. Journalism and advertising,  
7. Medical diagnosis,  
8. Geographical information and remote sensing systems,  

 5
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9. Weather forecasting, 
10. Education and training,  
11. Home entertainment,  
12. Web searching and picture archiving, and  
13. Digital libraries, galleries and museums. 

Closer examination of many of these areas reveals that, few examples of 
fully-operational CBIR systems can yet be found [16, 17]. Image samples used in 
this research fall mainly in the above third category (i.e, fashion and interior 
design) in which, the integration of color and texture features is of great value. 

1.8 Fashion and Interior Design  
Imagery is very important for graphic, fashion and industrial designers. 

Visualisation seems to be part of the creative process. Whilst there are individual 
differences in the way designers approach their task, many of them use images of 
previous designs in the form of pictures, photographs and graphics and other visual 
information from the real world, to provide inspiration and to visualise the end 
product. There is also a need to represent the way garments hang and flow [17]. 

The need for CBIR can be observed in the design process of many fields, 
including fashion and interior design. Here, the designer has to work within 
externally-imposed constraints. The ability to search a collection of fabrics to find 
a particular combination of color or texture is increasingly being recognized as a 
useful aid to the design process [18]. Interior designers follow general principles of 
form, space, color, and style. Similarly, fashion designers could use a database 
with images of fabric swatches, designs, concept sketches, and finished garments 
to facilitate their creative processes [15]. 

Generally, designers and their customers regularly face the tedious chore of 
manually searching for, and matching materials according to general design 
principles and taste. There is an opportunity for a high degree of computer 
assistance with these tasks [18].  Designers could compose queries using 
primitive and logical features and specify constraints according to design 
principles. They may want to inspect patterns from a large collection of images 
which look similar to a reference color and/or texture pattern [19]. 
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Results of a series of queries must be self-consistent according to designer 

specified rules. These requirements may lead an interest toward the following 
query classes [18]: 
1. Color: Fabrics and wallpapers are often selected according to their color 

content. This is a perfect application of color features.  
2. Texture: Floor coverings, wallpaper, and fabric all have important textural 

components ideal for queries based on textural features  
From a customer point of view, a web-based interface to a retail clothing 

catalog might allow users to search by traditional categories (such as style or price 
range) and also by image properties (such as color or texture). Thus, a user might 
ask for formal shirts in a particular price range that are off-white with pin stripes 
[15]. 

So far, little systematic development activity has been reported in this area. 
Attempts have been made to use general-purpose CBIR packages for specific tasks 
such as color matching of items from electronic versions of mail-order catalogues, 
and identifying textile samples bearing a desired pattern, but no commercial use 
appears to be made of this at present. Hence the ability to search design archives 
for previous examples which are in some way similar, or meet specified suitability 
criteria, can be valuable [17]. 

1.9 Functions of a Typical CBIR System 
A typical CBIR system─ shown in Figure (1.1) has major functions [6, 20]: 

1. Analyze the contents of the source information, and represent the contents of the 
analyzed sources in a way that will be suitable for matching user queries (space 
of source information is transformed into features space for the sake of fast 
matching in a later step). This step is normally very time consuming since it has 
to process sequentially all the source information (images) in the database. 
However, it has to be done only once and can be done off-line. 

2. Analyze user queries and represent them in a form that will be suitable for 
matching with the source database. Part of this step is similar to the previous 
step, but applied only to the query image. 

3. Define a strategy to match the search queries with the information in the stored 
database. Retrieve the relevant information in an efficient way. This step is done 
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online and is required to be very fast. Modern indexing techniques can be used 
to reorganize the features space to speed up the matching process. 

1.10 Problem Definition 
The image retrieval problem can be defined as: Let there be an image 

database, populated with images (I0, I1, I2, …, In-1). Let Q denote a query image, 
and let D denote the real inter-image distance function. The real inter-image 
distance between two images Ix and Iy is denoted by D (Ix, Iy). The goal is to 
efficiently and effectively retrieve a set R of the best (k <= n) images from the 
image database such that D (Q, Ii) < t, where Ii stands for any image in the set R, t 
is a certain threshold, and n is the number of images in the database. 

1.11 Project Motivation 
Image databases are becoming increasingly popular due to the large amount 

of images that are generated by various applications and the advances in 
computation power, storage devices, scanning, networking, image compression, 
and desktop publishing.  Many application areas need better techniques and 
mechanism to store and retrieve such huge amount of images [21]. 

The early implementation of image databases were based on simply giving 
descriptive keywords to each image, and allowing users to make query on these 
keywords for accessing the images. However, since text-based methods have real 
deficiencies, a CBIR approach is proposed based on image features extracted 
automatically from images [2].  Since color and texture are fundamental aspects of 
human visual perception, a set of techniques for search and manipulation of color 
and texture patterns is developed in an integrated manner [28]. 

Although great progress has been made in both theoretical research and 
system development of CBIR, none of the existing search engines offers a 
complete solution to the general image retrieval problem. In addition, many 
challenging research problems continue to attract researchers [3]. This study is a 
step forward in solving these open research issues. 

1.12 Project Methodology  
This project will focus on some specific features, particularly color/texture 

based features for general image searching applications. However, there is no 
single best feature that gives accurate results in any general setting. Usually a 
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costumed combination of color/texture features is needed to provide adequate 
retrieval results.  

Features of single-textured images are extracted to construct a features vector 
by applying Gray Level Co-occurrence Matrices (GLCM) for each textured image. 
In addition, GLCM is extended to colored textures by introducing a Correlation 
Histogram (Correlogram). A set of color features is extracted using different color 
features extraction methods such as color histogram, cumulative histogram, and 
color moments. Then, the extracted features vectors are clustered into groups by 
using hierarchical clustering techniques, and a representative (i.e., template vector) 
for each group is selected according to specific rules.  

These representatives (or template vectors) are then used in query matching 
process to narrow down the entire search space. In this way, a much smaller subset 
of the whole database is explored in order to reply for user query. Cluster based 
retrieval has some advantages over retrieval performance. In this thesis we are 
focusing on the integration of color and texture features, for pattern retrieval and 
matching.  

1.13 Literature Review 
Although CBIR is still immature, a lot of prior work is performed in this 

discipline. Several image retrieval systems are now available as commercial or 
experimental packages, with demonstration versions available on the Web. 

Among these CBIR systems are: 
1. CANDID, (1994): Comparison Algorithm for Navigating Digital Image 

Database operated by University of California for the US Department of 
Energy [7]. Some of local features are extracted (e.g. color and/or texture) at 
every pixel location. Instead of making a histogram with a discrete number of 
bins of the features vectors, the continuous probability density function (pdf) is 
calculated over the multidimensional features space. The k-means clustering 
algorithm followed by an optional cluster merging process is used. Several 
similarity measures between the probability density functions are proposed 
(e.g. the L2 distance measure). 

2. QBIC, (1995): IBM’s Query By Image Content [22]. 
It is probably the best-known of all image content retrieval systems. It is 

available either in standalone form, or as part of other IBM products (such as 
the DB2 Digital Library). It offers retrieval by any combination of color, 
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texture, or shape─ as well as by text keyword. The involved color features are: 
the 3D average color vector of an object or the whole image in RGB, YIQ, Lab, 
and Munsell color space. The utilized texture features are the modified versions 
of the coarseness, contrast, and directionality features which are proposed by 
Tamura. The multidimensional features vector is firstly reduced by using the KL 
transform, and then indexed by using R* trees to improve the search efficiency. 

3. Excalibur Visual RetrievalWare, (1996): by Excalibur Technologies [23]. 
It is one among the first systems, used by Yahoo Image Surfer, and Infoseek 

WWW search engines. The system creates a features vector for the image based 
on HSV color histograms, relative orientation, curvature and contrast of lines in 
the image, and texture attributes (that measure the flow and roughness in the 
image). There is also a text retrieval system that uses a semantic network to link 
words. The indexing technique is based on neural network methods. 

4. Netra, (1996): ‘netra’ means eye in Sanskrit─ an ancient Indian language. This 
system was developed by Manjunath et al, at the Department of Electrical and 
Computer Engineering, University of California [36]. In this system images are 
automatically segmented into about 6─12 non-overlapping homogeneous 
regions. The RGB color space is quantized, and represented by a color 
codebook of 256 colors.  Texture is represented by a features vector containing 
the normalized mean and standard deviation of a series of Gabor wavelet 
transforms of the image. Indexing is based on the SS-tree. Color, texture, and 
shape are indexed separately. 

5. VisualSEEK, (1997): by Columbia University, New York [26].  
It is the first of a whole family of experimental systems. Both global color 

histograms and regional color descriptions are analyzed (after transformation 
from RGB-space into HSV-space). Texture histograms are derived from spatial-
frequency channels (i.e., Wavelet transform sub-bands). Web images are 
identified and indexed by an autonomous agent which assigns them to an 
appropriate subject category according to their associated text. 

6. MARS, (1997): The Multimedia Analysis and Retrieval System project at the 
University of Illinois [33].  

Color is represented in the HSV color space, and then color histogram and 
color moments are calculated. It uses Tamura textures and co-occurrence 
matrices in different directions to extract coarseness, contrast, directionality and 
inverse difference moments. The features can be extracted globally or from 5 x 
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5 sub-images. The k-means clustering method, in the color-texture space, is 
applied. 

7. Surfimage, (1998): project at Institute National de Research en Informatique et 
en Automatique (INRIA), France [4]. This has a similar philosophy to the 
MARS system. The low level features are RGB color histogram, edge-
orientation histogram computed after applying a Canny edge detector. Texture 
signature is derived from the gray-level co-occurrence matrix, Fourier 
transform, and Wavelet transform. 

8. ASSERT, (1999): Automatic Search and Selection Engine with Retrieval Tools, 
developed at Indiana University / Medical Center, and Purdue University / 
School of Electrical and Computer Engineering [37]. 

A human (physician) marks interesting areas in the lung. The region is 
extracted using binary-image analysis routines. Using a statistical approach 
based on gray-level co-occurrence matrix, a set of texture features is extracted. 
Mean and standard deviations of the gray-levels with respect to the pixels in the 
rest of the lung and the histogram of the local gray-levels are measured.  The 
dimension of the set of features vectors is reduced into 12 attributes.  A multi-
dimensional hash table is used to index the features efficiently. 

9. PicSOM, (1999), Pictures with Self Organizing Maps, performed at Laboratory 
of Computer and Information Science, Helsinki University of Technology [31].  
The Average values of color components (R, G, and B) are calculated in five 
separate regions of the image resulting in a 15-dimensional color features 
vector. The Y-values of the YIQ color representation of every pixel’s 8-
neighborhood are examined, and the estimated probabilities for each neighbor 
being brighter than the center pixel are used as features. The features vectors 
are then separately quantized with a Tree-Structured vector quantization 
algorithm that uses Self-Organizing Maps (TS-SOMs) at each of its 
hierarchical levels. 

10. MultiResolution Image Database Search, (2000), Jau-Yuen Chen et al, 
Purdue University, West Lafayette [16]. 

Histograms of color, texture, and edge features are calculated for a number 
of regions in the image (maximal 4 x 4 regions). The L*a*b* space is used. The 
texture feature is formed by histogramming the magnitude of the local image 
gradient for each color component. To speed up the search a Tree-Structured 
Vector Quantization (TSVQ) is calculated. 
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11. An Approach to Content-Based Image Retrieval using Clustering and Space 

Transformation, (2002), Shah, B.N. et al, Louisiana University [11]. 
It proposes a new approach to CBIR that uses space transformation methods 

to transform the original low-level image space into a reduced dimension vector 
space that enables efficient query processing.  This system uses the inexpensive 
“estimated” distance, as opposed to the computationally inefficient “real” 
distance, to retrieve the relevant results for a given query image. 

12. Efficient Image Retrieval with Statistical Color Descriptors, (2003), Tran, 
L.V., Linkoping University, Sweden [10]. 

Color is characterized by the probability distribution of the colors in the 
image. Distance measures between color distributions are then described in a 
differential geometry-based framework. In addition to normal distributions, 
linear representations of distributions are used to derive new compact 
descriptors for color-based image retrieval. 

13. Retrieval by Content of Medical Images Using Texture for Tissue 
Identification, (2003), Felipe, J.C., Institute of Superior Education, Sao Paulo, 
Brazil [48]. 

This system focuses on medical images representation and comparison, 
based on image texture features. Regions of images that represent different 
human body tissues are used. An image is characterized by numeric values 
(signature) acquired through calculations on the brightness (gray) levels of the 
image. The inter-relationship between these brightness levels defines the image 
texture. Besides this, rules to establish the similarity between images based on 
the respective signatures are proposed. In addition, definition of a new texture 
descriptor─ the Gradient descriptor is introduced. 

14. Texture Based Medical Image Indexing and Retrieval: Application to 
Cardiac Imaging, (2004), Glatard, T., et al, Villeurbanne-Cedex, France [50]. 

This system is dedicated to medical images.  It analyzes medical image 
properties and evaluates Gabor-filter based features for indexing and 
classification. The goal is to perform clinically relevant queries on large 
collection of cardiac images that do not require user supervision. This technique 
is used for indexing, retrieval, and extracting clinically relevant information out 
of the images. 
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15. Integrated Querying of Images by Color, Shape, and Texture Content of 

Salient Objects, (2004), Saykol, E., et al, Bilkent University, Turkey [52]. 
It provides an integrated mechanism to query images by color, shape, and 

texture content of the salient objects. Users focus on some specific parts of the 
images for querying purposes. Hence, multiple object regions can be queried on 
a single image. Video frames can also be processed after the salient objects in 
frames are extracted by an object extraction tool. The color vector is based on 
color histograms but the pixels are probabilistically distance-weighted during 
computations. 

16. Hierarchical Indexing for Region Based Image Retrieval, (2005), Aulia, E., 
Louisiana University [20]. 

An improved region-based image retrieval system is developed.  The 
system applies image segmentation to divide an image into discrete regions, 
which correspond to objects. During image segmentation, a modified k-means 
clustering algorithm is used to generate the initial number of clusters and the 
cluster centers. In addition, during distance computation, objects weights are 
introduced based on object’s uniqueness. 

1.14 Project Objectives 
   The basic task of this project is to find similar images (using their visual 

features) according to a query image within a large image database.  Content- 
Based Image Retrieval (CBIR) system aims to develop techniques that support 
effective searching and browsing tasks performed on a large image collection by 
using automatically derived image features. 

1.15 Contributions of the Thesis 
This research has been made to extract the low-level image features that will 

be mentioned in chapter two, evaluate distance metrics, and looking for efficient 
searching/indexing schemes that will be presented in chapter three. The techniques 
developed to reach the above objectives are: 
1. Developing an improved algorithm for statistical texture features extraction 

based on GLCM for gray textures. Correlation Histogram (Correlogram), i.e. the 
extended version of GLCM for colored textures, is adopted. Also, cumulative 
histogram and color moments are computed, and their performance is evaluated 
and compared.  
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2. Making similarity distance computation between the query image and the stored 

images in the database. This distance measure is based on color and textural 
features. 

3. Developing an improved object clustering algorithms with some selected 
similarity measures driven by an improved index tree. To get faster retrieval 
speeds, a hierarchical clustering method is implemented in the features database.  

4. Analyzing query performance for different color spaces in different quantization 
schemes. This is done for all the retrieval schemes adopted through out this 
project.   

1.16 Thesis Outline 
This thesis consists of six chapters. The contributions of this thesis are 

presented through chapters four, five, and six. The rest of the thesis is organized as 
follows: 
1. Chapter two introduces the relevant subjects surrounding early and 

contemporary VIR, and introduces how features are extracted from images to be 
used in CBIR. In addition, some basic facts about color and texture features are 
summarized in it.  

2. Chapter three reviews some background material on CBIR hierarchical indexing. 
It describes some useful properties that are convenient for indexed CBIR, and 
investigates the most commonly used similarity measures between images based 
on their pre-computed indexed features. 

3. Chapter four introduces the proposed indexed color/texture based retrieval 
system. Also, this chapter provides algorithms on how color/texture features are 
extracted, how these pre-computed features are indexed using hierarchical 
agglomerative clustering methods, and finally describes the similarity measures 
used in comparing the extracted features.  

4. Chapter five shows the experimental results with an evaluation of the proposed 
schemes.  

5. Chapter six gives a list of derived conclusions from the results of the presented 
work. Also in this chapter some proposals are expressed for the direction that the 
future work may take.  

6. Finally, the appendices contain extra information concerning the details on the 
implementations of this work.  
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Chapter Two 
Visual Features of CBIR 

 
2.1 Introduction 

This chapter is organized as follows: Features extraction issues are presented in 
section (2.2). Also, Image retrieval basic tasks are discussed in this section. Section 
(2.3) introduces color-based retrieval opportunities with the explanation of different 
color spaces, in addition to the extracted color features. Different quantization 
schemes in different color spaces are compared in section (2.4). Color-based features 
extractors are explained in section (2.5). Section (2.6) presents Color Similarity 
Measures. Finally; texture-based features, Gray Level Co-occurrence Matrix 
(GLCM), and texture features descriptors are explained in section (2.7). 

2.2 Features Extraction 
Image features extraction is the basis of CBIR. Within the visual features 

scope, the features include color, texture, and shape features. Since the visual 
features of an image are only based on the image itself, there is no problem of 
subjectivity [5]. In a CBIR system, different visual features of images are 
automatically extracted and stored for any future retrieval process. Searching the 
whole image database is based on searching these visual features [40]. 

Color is the first and most straightforward visual feature for indexing and 
retrieval of images. A typical color image taken from a digital camera, or 
downloaded from the Internet normally has three color channels, while gray images 
have only one [10]. Among various low-level features, the color information has 
been extensively studied because of its invariance with respect to image scaling and 
orientation. However, they do not support a detailed comparison of the color 
appearance among images [23]. 

Texture is another important feature of images. Texture perception plays an 
important role in the human visual system of recognition and interpretation due to 
the identifying and describing characteristics of texture feature [50]. Since the power 
of texture increases when combined with color, the proposed CBIR system provides 
techniques for querying with respect to texture and color in an integrated manner. 
The extraction of the texture and color content of the images takes place both during 
the database population phase and querying phase [5]. 
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2.2.1 Features Selection 

It could be useful to characterize image features into three levels of abstraction 
with increasing complexity [17, 37]:  
Level 1: comprises retrieval by primitive features such as color, texture, shape or the 
spatial location of image elements. Its use is largely limited to specialist applications 
such as trademark registration, fashion design. 
Level 2: comprises retrieval by derived (sometimes known as logical) features, 
involving some degree of logical inference about the identity of the objects depicted 
in the image. 
Level 3: comprises retrieval by abstract attributes, involving a significant amount of 
high-level reasoning about the meaning and purpose of the objects or scenes 
depicted. 

2.2.2 Significance of Features Space Selection 
In developing a complete CBIR system, the following four important issues 

must be addressed [12]: 
1. Features Space Selection: determines what image feature, or combination of 

image features, are to be used for image matching and retrieval purposes. 
2. Features Capturing: selects algorithms to capture the image features or the image 

features set identified by the features space selection. 
3. Indexing and Search Scheme: creates effective indices and data structures based 

on the selected features space to speed up image retrieval on the database. 
4. Database Query Scheme: provides methods that enable users to effectively form 

database queries, and to refine the queries based on the retrieved images. Among 
the above four issues, the features space selection constitutes the most critical 
strategic decision because it largely affects, or even determines, the remaining 
three issues of system design. 

2.2.3 Features Categories 
Although many image features have been explored for content-based image 

retrieval purposes, they could be classified into the following five categories [35]: 
1. Pixel-level features: they include color, location, and other derived features (e.g., 

the first and second order derivatives of gray scale value) at each pixel. 
2. Global features: they include histograms, means, variances, moments and other 

statistical features computed over the entire image or sub-areas of the image. 
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3. Textural features: they usually include a combination of parameters that 

collectively describe characteristics of texture patterns.  
4. Object features: they include object regions and edges that are generated as a 

result of image segmentation and edge ejection operations. 
5. Conceptual features: they include identifiers of objects, time, location, and type of 

event contained in the image. 

2.2.4 Features Representation 
Keeping track of all the features vectors extracted from each image would pose 

a major difficulty to any retrieval system. Hence, there is a need for a feature 
representation to summarize the distribution of features vectors. There are two 
attributes: feature expressiveness and computational tractability, which are in fact 
the two main requirements for an effective feature representation. Notice that there 
are two aspects to tractability: the complexity of density estimation and the 
complexity of evaluating similarity. While the former is an off-line process that 
typically does not have great impact on the performance of retrieval systems, the 
latter must be performed thousands, or millions, of times for every retrieval 
operation and should be fast [14, 61]. 

Image content can be represented globally or locally. The former includes 
feature average value, standard deviation, and histograms (probability density 
functions) calculated globally for the entire image. While the later can be used for 
template matching or each local feature accompanied with position. The features are 
typically calculated off-line and stored for each image, so efficient computation is 
not a critical criterion (as opposed to efficient image/feature matching in the query 
stage) [16]. 

2.2.5 Image Signature   
The term feature, as classified in subsection (2.2.2), denotes some elements of 

images such that it is useful for discriminating between them. For each application, 
where content based retrieval of images is required, features that provide a high 
discriminating power must be selected. A signature is a feature, or set of features, as 
generated for a particular media fragment. This signature is then stored in a features 
database, or index, with other signatures of the same type [44]. 

Image signature is a numeric value or a set of them, which can be used to 
represent an image regarding one or more characteristics of it. For example, one 
signature that can be assigned to an image is a vector of values obtained from the 
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application of the energy descriptor over its set of co-occurrence matrices. The 
image signature is generally used as parameter of comparison between two images 
[48]. 

A feature is an attribute that characterizes a specific property of an object. An 
n-dimensional features vector represents an object, where n is the selected numbers 
of attributes. An object may be image, video, sound and etc. More formally, an 
image I, can be represented as a features vector in the following form: 

 I: < e1, e2, e3, e4, e5, e6, e7, … ,en  >,  

where each entry ei of this vector represents a feature of image I [13].  

2.2.6 CBIR Basic Tasks  
A CBIR system have two major tasks; see Figure (2.1). The first one is 

Features Extraction (FE), where a set of features, called image signatures, are 
generated to accurately represent the content of each image in the database [61]. A 
signature is much smaller in size than the original image, typically in the order of 
hundreds of elements (rather than millions). The second task is Similarity 
Measurement (SM), where a distance between the query image and each image in 
the database using their signatures is computed so that the top n “closest” images 
can be retrieved. Typically, the features used in CBIR systems are low-level image 
features such as color, texture, shape, and layout [51]. 

 

 
Figure (2.1) CBIR basic tasks [61]. 
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2.3 Color-Based Retrieval 

Color feature is one of the most widely used visual features in image retrieval, 
since color is immediately perceived by human beings when looking at an image. 
Therefore, Color-based Image Retrieval is the most popular CBIR technique. Color 
is the most extensively used visual content for image retrieval. Its three- dimensional 
values make its discrimination potentiality superior to the single dimensional gray 
values of images [3]. 

Using color features in CBIR requires taking many factors into consideration: 
color model selection, color feature representation, and the metric to compute the 
distance between color features [5]. Color features are relatively easy to extract and 
match, and have been found to be effective for indexing and searching color images 
in image databases. Before selecting an appropriate color description, color space 
must be determined first. 

2.3.1 Perceptual Color Components 
These components are: H (Hue), S (Saturation), and I (Intensity). "Hue" is what 

an artist refers to as "pigment"; it is what we think of as "color"; yellow, orange, 
cyan and magenta are examples of different hues [7]; see figure (2.2). The H 
parameter is measured as an angle of rotation around the vertical axes. Hue is 
invariant to the changes in illumination and camera direction and hence more suited 
to object retrieval [39].  

 The S parameter (or chroma) refers to the amount of white in the color. It 
controls the purity or vividness of the color. Low saturation means more white in the 
color, resulting in a pastel color. Very low saturation results in a washed-out color. 
For a pure, vivid color, the saturation should be maximum. The achromatic colors 
black, white, and gray have zero saturation and differ in their values [3].  

Saturation represents the degree to which the color expresses its hue, and is 
calculated as the radial distance from the diagonal axis. All points on that axis have 
zero saturation, so they correspond to shades of gray. Points farther away from the 
axis have more saturation; they correspond to more vivid colors [27]. The vertical 
axis corresponds to the I parameter (or value). It starts at zero (black) at the bottom 
and ends at one (white) at the top. Intensity refers to the amount of light in the color. 
It controls the brightness of the color. Maximum lightness always creates white, 
regardless of the hue. Minimum lightness results in black [39]. 
 

 19



                                    Chapter Two: Visual Features of CBIR 

                                                                                             

 
 

Figure (2.2) Illustration of the three color components [64]. 
 

 An artist usually starts with a highly saturated (i.e., pure), and intense (i.e., 
bright) pigment, and then adds some white to reduce its saturation and some black to 
reduce its intensity. Red and Pink are two different "saturations" of the same hue, 
Red [7]. 

2.3.2 Color Spaces (Models) 
One of the main aspects of color features extraction is the choice of a color 

space. A color space is a multidimensional space in which the different dimensions 
represent the different components of color [20]. A color model is simply a standard 
way to represent color in mathematical terms. Most color models use a 3D-
coordinate system. Each point within the system's subspace represents a unique 
color [7]. 

Color models used today can be classified into two categories: hardware-
oriented and user-oriented. Hardware-oriented color models are used for most color 
devices. For instance, the RGB (Red-Green-Blue) color model is used for color 
monitors and cameras. The CMY (Cyan-Magenta-Yellow) model is a standard used 
to describe color in the color printing industry, while YIQ (Y-axis In-phase 
Quadrature) color model is used in broadcast television [59]. User-oriented color 
models include those based on the three human perceptions of color (Hue, 
Saturation, and Intensity) [5].  

 The selection of color models determines the way to represent color content of 
images as well as consecutive color features representations and the selection of 
image retrieval techniques. In order to understand many characteristics of color 
features that are used in CBIR systems, some of the commonly used color models 
are discussed next  

Alternative color spaces can be generated by transforming the RGB color 
space. The idea for color space transformation is to develop a model of color space 
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that perceptually similar with human color vision [20]. There are many color spaces 
in use today but there is no agreement on which one is the best.  

1. RGB Color Model 
The most popular color space is RGB (Red-Green-Blue). RGB space; as 

depicted in Figure (2.3) is device-dependent, perceptually non-uniform, and 
perceptually non-linear. Equal distances in the space do not in general correspond to 
perceptually equal sensations [27].  It is composed of three color components. These 
components are called "additive primaries" since a color in RGB space is produced 
by adding them together. The representation of the colors in the RGB space is 
difficult to understand intuitively [56].   

 

 
Figure (2.3) The RGB color model [66]. 

 

2. Gray Model  
The color model GRAY or INTENSITY is calculated from the original RGB 

tristimulus values. Gray is not perceptually uniform as the measured proximity 
between two gray-values does not necessarily correspond to the psychological 
similarity between them. It can be obtained by the following transformation [9]: 

 Gray = 0.299R + 0.587G + 0.114B   ,     .............................. (2.1)   

3. The HSx Color Spaces 
The HSI, HSV, HSB, and HLS color spaces (conventionally called ‘HSx’) are 

more closely related to human color perception than the RGB color space, but are 
still not perceptually uniform. The axes from the HSx color spaces represent Hue, 
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Saturation, and Lightness (also called as Value, Brightness, or Intensity) color 
characteristics [91]. 

 These models are based on the color circle mapped on the RGB cube; see 
Figures (2.4), and (2.5). They provide more intuitive way for perceiving color. The 
main difference between these models is the definition of the Intensity component. 
Still these models are perceptually non-linear. For color representation in user 
interfaces, this group is usually preferred [27]. 

 

   
Figure (2.4) Hue-Saturation-Intensity color model 

       within Red-Green-Blue color cube [75]. 
 

  
Figure (2.5) The circular color legend (color wheel) [27].  

 
a) HSI Color Model  

The HSI (Hue, Saturation, Intensity) color model describes a color in terms of 
how it is perceived by the human eye. It is an intuitive representation since it 
corresponds to how a painter mixes colors on a palette. HSI is derived by the 
following equations [9, 52]:  
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where r, g, and b are obtained by dividing  R, G, and B by the sum (R+G+B) 
respectively. While HIS color model is described in Figure (2.6), the HLS model is 
represented by a double cone similar to it. 
 

 
Figure (2.6)  The HSI color model [16]. 

 

b) The HSV Color Model 
In HSV (or HSL, or HSB) space is widely used in computer graphics, and it is 

a more intuitive way of describing color. V stands for Value (Luminance or 
Brightness) [3]. Its three components are derived from RGB values as follows [27, 
58]: 
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HSV model also uses hue, saturation, and value. It is summarized by the single 
cone shown in Figure (2.7). Its three components have the same meanings as 
described 

 
Figure (2.7) The HSV color model [66]. 

 
described in subsection (2.3.1). H has the range [0°, 360°). The hue angle in degrees 
is measured clockwise or counterclockwise. The red, yellow, green, cyan, blue and 
magenta colors are placed counter-clockwise 60° from each other, starting from red 
at 0° [39]. 

HSV color space is a nonlinear transformation of the RGB, but it is easily 
invertible. The HSV color space is approximately perceptually uniform [20]. The 
HSV model is very similar to the HIS color model. The main difference between the 
two is the calculation used to produce the brightness value [7]. Also, RGB 
coordinates can be easily translated to the HLS coordinates by simple formula 
similar to equations (2.2), (2.3), and (2.4) [3]. 

4. CIE L*a*b* and CIE L*u*v* 
  Also called as LAB (Lab), and LUV (Luv), the Commission Internationale de 

l'Eclairage (CIE) had recommended these two color spaces that are device 
independent and considered to be perceptually uniform. They consist of a luminance 
or lightness component (L) and two chromatic components (a* and b*) or (u* and 
v*) [3].  
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CIE LAB is used for surfaces while CIE LUV is for lighting, and video display 

applications. The perceptual linearity is particularly considered in these color spaces.  
In the CIE LAB color space, a* and b* are respectively red/green and yellow/blue 
axes [63]; see Figure (2.8).  

 
 

 
 

Figure (2.8) CIE LAB color space [10]. 
 

Although CIE L*a*b* provides a more uniform color space than previous 
models, it is still not perfect. CIE LAB values are calculated from CIE XYZ by [9, 
56]: 
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the constants Xn , Yn , and Zn are the XYZ values for the chosen reference white 
point. When working with color monitors good choices could be something close to 
D65’s XYZ coordinates [10]. Tristimulus values for the commonly used illuminant 
D65 are (95.05, 100.0, and 108.88) for (Xn , Yn , and Zn) respectively. XYZ color 
system values could be obtained by the following formula [53]: 
 

0.490 0.310 0.200
0.177 0.813 0.011
0.000 0.010 0.990

X R
Y          G
Z B

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

  , ..................................  (2.11) 

5. Munsell Color Space 
The Munsell color order system was developed to provide a notational system 

for colors. It organizes the colors according to natural attributes. Munsell’s book of 
colors contains 1200 samples of color chips, each assigned a value of H (Hue), V 
(Value, Intensity), and C (Chroma, Saturation). Each Munsell color chip 
corresponds to a color generated by some quantization of the RGB color space [29].  

The chips are arranged such that unit steps between them are intended to be 
perceptually equal. The advantage of the Munsell color order system is that it orders 
a finite set of colors by perceptual similarities over an intuitive three dimensional 
space. Munsell was designed to be compact (1200 perceptually distinct chips) and 
complete. There is no simple mapping from color points in RGB color space to 
Munsell color chips. Rather, Munsell HVC (modified Munsell) which is a good 
approximate of the original Munsell color space can be produced by the following 
equations [19, 75]: 

H = arctan(b* /a*)  ,  ........................................................ (2.12) 

V L *=     ,  ...................................................................... (2.13) 

22 ** baC +=    ,  ............................................................. (2.14)   

Munsell HVC color model system is shown in Figure (2.9). However, it does 
not satisfy the property of uniformity [53]. 
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Figure (2.9)  The Munsell HVC color model [39]. 

6. The 9-colors and 11-colors Categories 
The categories described in this section are not a color space; rather, they are a 

human-based segmentation of some standard color spaces. Gong (in 1998) has 
empirically partitioned the Modified Munsell color space (the same used by QBIC) 
into eleven color zones defined and validated experimentally by different groups of 
examiners [12, 25]. 

The 11-color category is used to segment the HVC color space; as described in 
Table (2.1), which results in an 11 colors quantization scheme. It is used for color-
based image retrieval and compared with other color quantization schemes [24].  

Table (2.1) Range of each color zone for 11-colors category [12].  

 Color name Hue Value Chroma

Red  0 ~ 36 
36 ~ 64 

4 ~ 9 
4 ~ 9 

1.5 ~ 30 
15 ~ 30 

Orange 64 ~ 112 4 ~ 8 9 ~ 30 
Yellow 80 ~ 112 9 ~ 10 1.5 ~ 30 

Skin color 36 ~ 64 
64 ~ 112 

4 ~ 9 
4 ~ 8 

1.5 ~ 15 
1.5 ~ 9 

Green 112 ~ 196 4 ~ 10 1.5 ~ 30 
Cyan 196 ~ 256 6 ~ 8 1.5 ~ 30 
Blue 256 ~312 4 ~ 8 1.5 ~ 30 

Purple 312 ~ 359 4 ~ 8 1.5 ~ 30 
Black — < 3 — 

Gray — 
— 

4 ~ 8 
3 ~ 4 

< 1.5 
— 

White — > 9 < 1.5 
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In a similar way the 9 colors category is a human-based segmentation of HSV 

color space, where certain ranges of the three color components are mapped into a 
single known color label. This category is expressed in reference [59]. 

2.3.3 Color Space Properties 
The desirable characteristics of an appropriate color space for image retrieval 

are the following [53]: 
1. Uniformity: The metric proximity between colors indicates the perceived 

similarity of colors. 
2. Completeness: The color space includes all perceptually distinct colors. 
3. Compactness: Each color in the color space is perceptually distinct from the other 

colors. 
4. Naturalness: The color space provides for a natural breakdown of colors into the 

three basic perceptual attributes of color: hue, brightness, and saturation. 

Probably, the most important color space property is its uniformity. Uniformity 
means that two color pairs that are equal in similarity distance in a color space are 
perceived as equal by viewers. In other words, the measured proximity among the 
colors must be directly related to the psychological similarity among them [3]. 

2.4 Color Quantization 
The human eye cannot detect small color differences and may perceive these 

very similar colors as the same color. This leads to the quantization of color, which 
means that each color is mapped to some of these pre-specified colors. One obvious 
consequence of this is that each color space may require different levels of quantized 
colors, which is nothing but a different quantization scheme [40]. 

Prior to any processing being performed on a color image, color quantization is 
a very important step, due to the large number of different colors in the image. 
Under the RGB color model, there are 256 different color-levels (0-255) for each 
primary color: red, green, and blue. That means, in a full-color image under the 
RGB color model, there are (256 × 256 × 256) possible colors, in total. Operating 
with this large color set, storage and processing will both be non trivial [42].  

Actually, according to human perception, the difference between two adjacent 
colors in that large color set is negligible. Therefore, keeping such a big color set is 
neither practical nor necessary. Color quantization is the procedure used to reduce 
possible colors to a small number. By using different quantization approaches, such 
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as combining adjacent colors within a predefined range into one single color, the 
large colors set can be reduced to a small number of possible colors [62]. For 
example, an image can be quantized from true color with 16777216 possible colors, 
to only 64 possible colors so that any needed processing on it would be easier [5]. 

2.4.1 Intensity Slicing 
Viewing an image as a 2-D intensity function facilitates the idea of “Slice”  the 

intensity (or density) function by one or two slicing planes parallel to the coordinate 
axes. A certain slicing colors (maximum and minimum) are chosen according to a 
selected formula [28]. Pixels with gray values above the upper plane are color coded 
with the maximum color and those below are coded with different colors, while gray 
values below the lower plane are color coded with the minimum color; as shown in 
Figure (2.10).  

 

 
Figure (2.10) Geometric interpretation of the intensity-slicing technique [28]. 

2.4.2 Quantization Schemes in Different Color Spaces 
It has been observed that the fixed color quantization scheme, which is 

commonly used in computing global and local histograms, has one major drawback. 
That is, similar colors might be quantized to different bins in the histogram. 
Therefore, different quatization schemes are proposed according to the selected 
color space [23]:  
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1. Uniform Quantization 

In uniform quantization, each axis of the color space is uniformly divided into a 
certain number of bins. It has been shown in the previous section that color 
distributions are often non uniform, and therefore, a simple uniform quantization 
scheme is inefficient for some color spaces. The advantage of uniform quantization 
is that it is a straightforward and natural choice in the absence of a priori information 
about the color distribution of the image database. Generally, the retrieval 
performance gets better as the number of quantization bins increases. 

2. Standard Vector Quantization (SVQ) 
The standard VQ is a method of partitioning the vector space by minimizing 

the Mean-Squared Error (MSE) with respect to a set of centroid points (i.e., 
codewords). This procedure can be achieved with a proper initialization and iteration 
by using the Generalized Lloyd–Max Algorithm (GLA). The retrieval performance 
of VQ is better than that of uniform quantization as the quantization level increases. 
It is interesting to point out that the retrieval performance cannot be further 
improved when the number of quantization bins is larger than a certain threshold. 

3. Product Vector Quantization (PVQ) 
Although SVQ results in an optimal partitioning of the color space, it is not 

suitable for large image databases due to its high computational complexity. A 
simpler but suboptimal quantization method can be adopted to reduce the 
complexity. That is, we can consider partitioning perpendicular to the axis of the 
color space. This method is known as Product Vector Quantization (PVQ). PVQ 
results in a better partitioning of the color space as compared to uniform 
quantization without a tremendous increase in computational complexity. 

The retrieval performance in the RGB space may not increase much by using 
PVQ due to its correlated color components. In contrast, for the HSV space, the 
distribution of its color component suggests a PVQ scheme, where H is quantized 
with a resolution finer than S and V because the human visual system is more 
sensitive to the hue than to the saturation and value components. 

In applying a quantization scheme on a color space, each axis is divided into a 
number of parts. When the axes are divided in k, ℓ, and m parts, the number of 
colors (n) used to represent an image will be n = k × ℓ × m.  
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2.5 Color-Based Features Extractors  

Features extraction is the basis of CBIR. Color feature is one of the most 
widely used visual features. Color is one of the most important low-level features 
used in VIR [7, 46]. Image abstraction based on color features has been studied 
extensively in Image Retrieval discipline, and there are multiple ways of 
representing an image using color features. A few of the most commonly used color 
measures are the global and local color histograms, dominant colors, and statistical 
color moments [93].  

Average and dominant colors can be used to filter out irrelevant images without 
too much computational cost. The global color histogram provides a good approach 
to the retrieval of images that are similar in overall color content. The following 
subsections discuss some of these color measures [23]. 

2.5.1 Color Histogram 
The most common form of the histogram is obtained by splitting the range of 

the data into equally sized bins. Then for each bin, the number colors (of the pixels) 
that fall into each bin are counted and normalized, which gives us the probability of 
a pixel falling into that bin [10]. The color histogram is easy to compute and 
effective in characterizing both the global and local distribution of colors in an 
image. In addition, it is robust to translation and rotation about the view axis and 
changes only slowly with the scale, occlusion and viewing angle [3, 93]. Given a 
color image I(x, y) of size X × Y pixels characterized by the color i at location (x,y), 
i.e. i=I(x, y). A single bin contains the number of pixels having the color i. It is 
defined by the following equation [19]: 

1 1

0 0

1( ) ( ( , ), )
X Y

x y
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In the equation above, λ  is the unitary impulse function. The h(i) values are 
normalized in order to sum to one. A histogram can be determined for each color 
component, resulting in three different color histograms for every single image. 
Another possible method is to have a single color histogram for all of the color 
channels. In the latter approach, the color histogram is simply a compact 
combination of three histograms [40]. 
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The more bins a color histogram contains the more discrimination power it has. 

However, a histogram with a large number of bins will not only increase the 
computational cost, but will also be inappropriate for building efficient indices for 
image databases [3]. The computational cost of the histogram-based image 
classification can be further decreased by decreasing the number of the image gray 
levels from 256 to 64 or 32 [43]. However, the main drawback of using the color 
histogram for CBIR is that it only uses color information. Textural and shape 
properties are not taken into account [91].  

2.5.2 Cumulative Histogram  
Considering that most Color Histograms are very sparse and thus sensitive to 

noise, Stricker and Orengo (in 1996) proposed the use of the cumulated Color 
Histogram [7]. This method is less sensitive to noise. It represents a new kind of 
histogram G = { g1, g2,....…, gn } that could be calculated from the normal color 
histogram H(I) by applying the following summation [30]: 

0

j

j
i

g
=

= ∑ ih    ,  .............................................................      (2.16) 

The result of the cumulative histogram feature extractor is a vector, just like the 
normal color histogram. In contrast with the normal histogram, this vector is always 
completely dense, even if only a few colors of the discrete color space appear in the 
image. A side effect of the robustness of the cumulative histogram technique is the 
increase of the index size and therefore a lower retrieval speed [25]. 

2.5.3 Color Moments  
A side effect of the technique behind the color histogram and the cumulative 

color histogram is the quantization of the bins. For storage and retrieval efficiency, 
colors are grouped together into bins. Similar colors are put together in the same bin. 
It is very hard to find an optimal quantization of the bins however; e.g., perceptually 
similar colors may be quantized into different bins, or vice versa. To overcome these 
effects, the color moments approach was suggested [34]. 

The mathematical foundation of this approach is that any probability 
distribution is uniquely characterized by its 12 moments.  Thus, if we interpret the 
color distribution of an image as a probability distribution, then the color 
distribution can be characterized by its moments [7]. Furthermore, because most of 
the information is concentrated on the low-order moments, only the first order 
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(mean), the second (variance) and the third order (skewness) color moments have 
been used. They proved to be efficient and effective in representing color 
distributions of images [3, 7]. 

Higher moments, involve more manipulations on the input data, are almost 
always less robust than lower moments. Therefore, higher moments such as fourth 
moment or above are rarely used to represent the content of an image [93]. If the 
value of the ith color channel at the jth image pixel is  Iij  and the number of image 
pixels is N, then the three moments related to this color channel are defined as [6]:  
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where Mi ( mean) is used to estimate the value around which central clustering occurs, 
σi (standard deviation) describes the “width”, “dispersion”, or “variability” around the 
mean value, and  Si (skew) characterizes the degree of asymmetry of a distribution 
around its mean. Skew is non-dimensional and characterizes only the shape of the 
distribution. With color moments, instead of the complete color distribution of an 
image, only the major features of the distribution are stored [34, 93].  

2.5.4 Color Correlogram   
The major drawback of the color histogram is the lack of spatial information in 

the extracted features [20]. For example, all the patterns shown in Figure (2.11) have 
the same color proportions, but different spatial distributions. 

 

                 
 

Figure (2.11) Patterns having the same gray proportions,  
              but different spatial distributions [25]. 
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 Correlation histogram (correlogram) tries to compensate for this weakness. It 

takes the spatial correlation aspect of the color distribution into account, and 
expresses how the spatial correlation of pairs of colors changes with distance. 
Hence, counting the occurrences of different geometric configurations of colored 
pixels [21, 24, 45]. 

A color correlogram is a table indexed by color pairs, where the kth entry for (i, 
j) specifies the probability of finding a pixel of color j at a distance k from a pixel of 

color i in the image. Let I represent the entire set of image pixels, and Ic(i) represents 
the set of pixels whose color is c(i). Then, the color correlogram is defined as [3, 
25]:  

( ) 2, , 2 ( ) 11 c i

k
i j p I p I c jC Probability p I    p p k∈ ∈ 2

⎡ ⎤= ∈ − =⎢ ⎥⎣ ⎦
   ,.....(2.20) 

where i, j ∈{1, 2, …, N}, k ∈{1, 2, …, d}, and | p1 – p2 | is the distance between 
pixels p1 and p2. 

2.6 Color Similarity Measures 
If the images to be compared are of different sizes, but have been quantized on 

a common palette, their histograms can be compared by measuring the similarity 
between the pre-extracted features. Many similarity (or distance) measures have 
been proposed. The most commonly used measures are listed: 

2.6.1 Histogram Intersection 
This is one of the first distance measures in color-based image retrieval. The 

distance defined is based on the size of the common part of two color histograms. 

Considering the two histograms A and B. The similarity between  A and B is given 

by their intersection, defined as [10, 37]: 
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In this case the distance between A and B is obtained by: 
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2.6.2 Minkowski-Form Distance (Lp)   

The Minkowski-form distance Lp between two histograms is defined as [10]: 
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Lp is called as L1 metric when p=1, and as L2 metric when p=2.  If the images are of 
the same size (or the histograms have been scaled to the same size), and quantized 
on a common palette, their similarity is commonly measured using the sum of the 
squared differences (L2 metric), or the sum of the absolute values of differences (L1 
metric). These metrics usually perform poorly, even for the simplest types of query 
[49]. A slight change in lighting conditions may result in a corresponding shift in the 
color histogram, causing these metrics to misjudge similarity [53]; as shown in 
Figure (2.12) between h and k color histograms. 
 

 
Figure (2.12) Misjudged similarity caused by color shift [25]. 

2.7 Texture-Based Features 
Texture is one of the crucial primitives in human vision and texture features 

have been used to identify contents of images. One crucial distinction between color 
and texture features is that color is a point, or pixel property, whereas texture is a 
local-neighborhood property [32]. As a result, it does not make sense to discuss the 
texture content at pixel level without considering the neighborhood [60]. 

It is not easy to give an exact definition of a texture. In literature, textures are 
defined as visual patterns that have properties of homogeneity that do not result from 
the presence of only a single color or intensity [21]. Texture is observed in the 
structural patterns of surfaces of objects such as wood, grain, sand, grass, and cloth. 
The term texture generally refers to repetition of basic texture elements called texels. 
A texel contains several pixels whose placement could be periodic, quasi-periodic or 
random [93]. 
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2.7.1 Texture-Based Features Extractors  

Texture-based features extractors focus mainly on the gray level of the pattern. 
They fall into two main categories; statistical-based and spectral-based. Statistical-
based texture extractors employ features extracted from the visual information, 
which measure coarseness, contrast, directionality and other textural characteristics. 
Of both categories, the statistical-based texture extractors are most commonly used 
[9, 21]. 

1. Statistical Approach     
Among the current approaches used in image processing to describe texture is 

the so called statistical approach. It is widely used because it produces good results 
with low computational costs. This method considers the distribution of gray levels 
and their interrelationship [48]. From the statistical point of view, an image is a 
complicated pattern on which statistics can be obtained to characterize these 
patterns. The techniques used within the family of statistical approaches make use of 
the intensity values of each pixel in an image, and apply various statistical formulae 
to the pixels in order to calculate features descriptors. Texture features descriptors, 
extracted through the use of statistical methods, can be classified into two categories 
according to the order of the statistical function that is utilized [40]:  

a) First-Order Texture Features:  
They are extracted exclusively from the information provided by the intensity 

histograms, thus yields no information about the locations of the pixels. 

b) Second-Order Texture Features:  
They take the specific position of a pixel relative to another into account. The 

most popularly used of second-order features is the Grey Level Co-occurrence 
Matrix (GLCM). This method roughly consists of constructing matrices by counting 
the number of occurrences of pixel pairs of given intensities at given displacements 
and directions.  In other words, it counts how often pairs of grey level of pixels, 
separated by a certain distance and lying along certain direction, occur in an image 
[20].  

2. Spectral Approach    
The spectral approach to texture analysis deals with images in the frequency 

(transform) domain. Spectral-based extractors try to model the pattern into 
mathematical functions [21]. This approach requires Fourier transform to be carried 
out on the original images to acquire their corresponding representations in the 
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frequency space [48]. There are several texture-based extractors using spectral 
domain features, such as discrete Fourier transform (DFT), and discrete wavelet 
transforms (DWT) [20].  

2.7.2 Gray Level Co-occurrence Matrix (GLCM) 
In the early 70’s, Haralick et al, proposed the Gray Level Co-occurrence Matrix 

(GLCM), also called Spatial Grey Level Dependency Matrix (SGLDM), as a 
representation of texture features. This approach explores the gray level spatial 
dependence of texture. It first constructs a co-occurrence matrix based on the 
orientation and distance between image pixels and then extracts meaningful statistics 
from the matrix as the texture representation [7]. 

Generally, the problem of texture discrimination based on statistical approach 
implies the analysis of a set of co-occurrence matrices. In each matrix, the indexes 
of rows and columns represent the given range of the image gray levels, and the 
value P(i,j) stored at the position (i,j) is the frequency that gray levels i and j occur 
with, at a given distance d and at a given direction θ [32]. 

 For example, suppose we have the image represented by its gray level matrix 
that shown left in Figure (2.13).  Regarding the 0 direction and the distance 1, the 
co-occurrence matrix will be like that shown right.  
 

 
Figure (2.13) Image quantized in 3 gray levels, sampled in 5x5 pixels, and 

                    its co-occurrence matrix for direction = 0o and distance = 1 [48]. 
 

For instance, the value of the co-occurrence P(0,1) = 8 was calculated by 
scanning the gray level matrix and, for each pixel with value 0, its left and right 
nearest neighbors were checked and P(0,1) was incremented whenever a value 1 was 
found. 

A co-occurrence matrix, Pd,θ(i, j), is a matrix in which the (i, j)th element 
describes the frequency of occurrence of two pixels that are separated by distance d 
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in the direction θ with grey levels i and j. Texture variations in a region can be 
captured through the co-occurrence matrix by various θ and d; see Figure (2.14). 
That is, the co-occurrence matrix characterizes the spatial interrelationships of the 
grey levels in a texture pattern and it is invariant under monotonic grey-level 
transformations [38]. 

  

 
Figure (2.14) Co-occurrence matrix creation using d and θ. [41] 

 
In general, the minimum amount required for the set of co-occurrence matrices 

is four (θ = 0°, 45°, 90° and 135°, respectively; d = 1) for the texture, about which 
we have no prior knowledge [38]. The co-occurrence matrix should be normalized 
before proceeding with statistical analysis by dividing each entry in the matrix by 
the summation of all entries of the matrix. Hence, treating the matrix as a probability 
density function (pdf) [40]. 

2.7.3 The Formal Definition of a Co-occurrence Matrix  
The gray level co-occurrence matrix is determined as follows [13]: 

Let  Dx = {0, 1, …, Nx-1} , and  Dy = {0, 1, …, Ny-1}  be the spatial domains of row 
and column dimensions respectively, where Nx and Ny are the number of pixels in 
axis X and Y respectively. And, G = {0, 1, …., Ng-1} be the domain of gray levels 
where Ng is the number of gray levels. The Image I can be represented as a 2D 
function:     

I: Dx ×  Dy  ∈ G 

For abbreviation, a new domain can be defined, as D⊂ N2 (where N is the set 

of Natural numbers) instead of Dx × Dy. Positions and orientations are shown in 
Figures (2.15) and (2.16). 
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Figure (2.15) Distances of pixel p for co-occurrence matrix 

 

 
Figure (2.16) Directions for co-occurrence matrix. 

 
In the following definition, the co-occurrence matrix is expressed as  Pd, θ (i, j), 

in distance d and direction θ. For brevity, it may be expressed as P(i,j) [60]. 
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where, Pd, θ (i, j) is the co-occurrence matrix, # stands for the function “number of”, 
(x,y) and (x*,y*) are valid image pixel coordinates, D is discrete gray scale image 
domain, d is the distance between two pixels, and ∠  is the direction of two pixels.  
In equation (2.24) some of the features of textured images could be obtained. 
However, two images with the same texture, but different in size may have different 
features vectors. To accomplish this computation, matrices need to be normalized by 
the size of images [13]. 

After these calculations are done, the matrix is reduced by dividing each value 
by normalization factors rendering a matrix whose sum is equal to 1. One co-
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occurrence matrix is created for each pair direction-distance considered by the 
texture analysis. The normalizing factors are given according to direction as [48]: 

 

2 ( 1)

2( 1)( 1) 45 &135

2 ( 1) 90

y x

x y

x y

N N if  0

N N N if  

N N if  

ο

 ο ο
θ

ο

θ

θ

θ

⎧ − =
⎪
⎪= − − =⎨
⎪

− =⎪⎩

 ,     ........................  (2.25) 

By knowing the normalizing factor Nθ, the co-occurrence matrix would be 
normalized as: 
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2.7.4 Texture Features Explanations 
 In this subsection, the intuitive descriptions of the features which describe 

textures are explored [24, 40]: 

1. Energy: It describes the uniformity of the texture. When all the matrix elements 
are almost equal, i.e., when gray level intensities are very close to each other, the 
value of the energy is small. Thus, the higher the value of the energy, the more 
irregular the GLCM; Figure (2.17). 

2. Entropy: It measures the randomness of the elements in the matrix. When all 
elements of the matrix are maximally random, entropy has its highest value. So, a 
homogeneous image has lower entropy than an inhomogeneous image. In fact, 
when energy gets higher, entropy should get lower. Entropy has its highest peak 
when the GLCM is uniform; Figure (2.17). 

3. Inverse Difference Moment: It has a relatively high value when the high values 
of the matrix are near the main diagonal. This is because the squared difference (i-
j)2  is smaller near the main diagonal, which increases the value of  1/( 1+(i - j) 2 ); 
Figure (2.18). 

4. Inertia (contrast): It gives the opposite effect of the previous feature. When the 
high values of the matrix are further away from the main diagonal, the value of 
inertia becomes higher. So inertia and the inverse difference moment are measures 
for the distribution of gray-scales in the image; Figure (2.18). 
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5. Cluster shade and cluster prominence: They measure the skewness of the matrix, 

in other words the lack of symmetry. When cluster shade and cluster prominence 
are high, the image is not symmetric. In addition, when cluster prominence is low, 
there is a peak in the co-occurrence matrix around the mean values. For the image, 
this means that there is little variation in gray-scales. 

 
 

 
 

         Figure (2.17) Energy and entropy functions; [40] (a) energy low and                  
                      entropy high, and (b) energy high and entropy low . 

 
 
 
 
 

 
 

Figure (2.18) Contrast and inverse difference moment functions; [40] 
              (a) contrast high and inverse difference moments low, and 

     (b) contrast low and inverse difference moment high. 
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6. Correlation: It measures the correlation between the elements of the matrix. 

When correlation is high the image will be more complex than when correlation is 
low. Haralick's correlation is a measure of gray level linear dependence between 
the pixels at the specified positions relative to each other. Compared to normal 
correlation, Haralick's correlation reacts stronger to the complexity of an image. A 
high or a low correlation value leads to no immediate conclusion about the image. 

2.7.5 Texture Features Descriptors 
 Having a co-occurrence matrix, different properties of the pixel distribution 

can be obtained by applying mathematical operations on the matrix values. These 
operations are called descriptors. Each descriptor is related to a particular visual 
feature about texture.  Haralick et al., proposed a set of 14 second-order statistical 
functions [48]. In many applications, an appropriate subset of these 14 descriptors 
might be enough for an adequate representation of the neighborhood information of 
the pixels [37]. 

The mathematical definitions of the mostly used features are as follows [40, 57, 
60, 91]: 
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Apart from the GLCM, texture contrast could be concluded by the following 

formula [3]: 

1/ 4
4

Con σ
α

=    , ........................................................................  (2.35) 

where the kurtosis  , 4
44 /σμα = 4μ  is the fourth moment about the mean, and is 

the variance. This formula can be used for both the entire image and a region of the 
image.  

2σ
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Chapter Three 
Hierarchical Indexing and 

Image Matching 

 

3.1 Introduction 
This chapter is organized as follows: Indexing and retrieval approaches based 

on different indexing structures are discussed in section (3.2). Different clustering 
methods are introduced in section (3.3). Hierarchical clustering algorithms are 
explored in detail in section (3.4). Section (3.5) presents similarity measurements 
and image searching schemes. Finally; sections (3.6) and (3.7) express Querying 
and performance evaluation of CBIR systems respectively. 

3.2 Indexing  
As a result of advances in the Internet and new digital image sensor 

technologies, the volume of digital images produced by scientific, educational, 
medical, industrial, and other applications available to users has increased 
dramatically [41]. However, we cannot access or make use of the information in 
these huge image collections unless they are organized so as to allow efficient 
browsing, searching, and retrieval over all textual and image data [10]. 

To make content-based image retrieval truly scalable to large image 
databases, efficient indexing techniques need to be explored. Many recent 
applications such as image databases, medical databases, GIS and CAD/CAM 
require enhanced indexing for content-based image retrieval [88]. A continuing 
challenge facing current CBIR technology is that of efficiently retrieving the set of 
stored images most similar to a given query. Finding index structures which allow 
efficient searching of an image database is still an unsolved problem [37]. 

The data domains stored in traditional databases, such as numbers and small 
character strings, have the total ordering property. This property has led to the 
development of the current Database Management Systems (DBMS). However, 
when the data do not have this property, the traditional access methods can not be 
used [68]. 
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3.2.1 Indexing Structures 

Data embedded in multi-dimensional domains are examples of information 
that can not be directly sorted [70]. Complex data, such as images, video, sound, 
time series, and DNA strings, among others do not have implicit order property. 
That is, these data can not be sorted using only their raw information, and there is 
no direct way to create an access method to improve their retrieval by sequentially 
scanning all of them [87]. In this thesis the focus will be on images, where a 
sequential scan of the entire collection in the querying process is going to be 
avoided in order to speed up the retrieval process. 

The goal of indexing is to create a compact summary of the database contents 
to provide an efficient mechanism for retrieval of the data. The summary data is 
based on features vectors. In content-based visual databases, all items (images or 
objects) are represented by pre-computed visual features. Hence, the key attribute 
for each image will be a features vector, which corresponds to a point in a multi-
dimensional features space. Search will be based on similarities between the 
features vectors. Therefore, to achieve a fast and effective retrieval, an efficient 
indexing scheme is required [18]. 

 Some CBIR systems provide a kind of an indexing scheme, which is a 
mechanism for efficiently accessing stored images. Indexing techniques used range 
from standard methods (such as signature-file access method and inverted-file 
access method), to multi-dimensional and high-dimensional indexes [92]. In 
addition to the above approaches, clustering and neural nets are also promising 
indexing techniques [7]. 

3.2.2 Multi-dimensional Indexing 
The history of multi-dimensional indexing techniques can be traced back to 

the mid 1970s; when cell methods, quad-tree, and k-d tree were first introduced. 
However, their performances were far from satisfactory [10]. The majority of the 
data structures designed to store multi-dimensional data use the approach of 
dividing space into sections, called buckets or cells. Each bucket may be 
subdivided when it has too many entries, or the entire space may be redivided. By 
searching through each cell first, it is possible to determine which cells do, or do 
not, contain useful data, so that others may be searched thoroughly [12].  
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Many of the structures employ a hierarchical, or a tree structure, so that many 

branches of cells may be eliminated from the search very rapidly. Many well-
known index mechanisms work well in low dimensionality (2-d, 3-d), but they 
cannot scale up to high dimensional space. In the context of high dimensional 
indexing, this phenomenon is called ‘the curse of dimensionality’ [83].    

The Balanced Tree (B-Tree) is such a structure, but is designed to only store 
one dimensional data. The multi-dimensional version of the B-Tree is R-tree and 
its variants R+ tree and R* tree [44]. Other multi-dimensional indexing methods 
include bucketing algorithm, priority k-d tree, K-D-B tree, linear quad tree, hB 
tree, and grid files [10]. 

Most of these methods have reasonable performance for a small number of 
dimensions (up to 20), but explore exponentially with the increasing of the 
dimensionality and eventually reduce to sequential searching [9, 10, 26]. On the 
other hand, several index structures exist for high dimensional data such as SS tree, 
TV tree, X tree, SR tree, and Pyramid-Technique. These methods also fall prey to 
what is called ‘curse of dimensionality’, although conceptually they can be 
extended to higher dimensionalities [88]. 

3.2.3 Dimensions Reduction 
It has been shown that the main factor affecting the efficiency of a multi-

dimensional access method is the intrinsic dimensionality of the dataset, that is, the 
number of uncorrelated dimensions. For instance, regarding histograms, indexing 
could be done more efficiently if the correlations between close bins were used. 
Many attempts have been made to find more concise representations of histograms 
using dimensionality reduction techniques. All these attempts lead to histogram 
representations with a reduced number of dimensions, but with a pre-defined 
number of dimensions [87]. 

Because the features vectors of images tend to have high dimensionality and 
therefore are not well suited to traditional indexing structures, dimensions 
reduction is usually used before setting up an efficient indexing scheme. This will 
provide some useful properties (such as the ability to locate the most important 
sub-space), but the features properties that are important for identifying the pattern 
similarity may be destroyed during the blind dimensionality reduction [74].  
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One attempt to solve the indexing problems is to use hierarchical indexing 

scheme (clustering). In addition to benefiting indexing, it provides users a useful 
tool to browse images of each cluster. Yet many features are of high 
dimensionality and structures like the R-Tree tend to break down very rapidly 
when the dimensionality of data becomes large [41].  

Principle Component Analysis (PCA) will reduce the number of dimensions 
that a feature has, with a little loss of information, and results in a low dimensional 
feature. PCA must be performed on all data and may not be useful when a database 
undergoes many creates, updates, or deletions. An alternative approach to indexing 
is to identify clusters in the features space, or to partition the features space and 
label the features [44]. 

3.2.4 Indexing and Queries 
CBIR queries are posed in a fuzzy fashion. The user is typically interested in 

results according to similarity rather than equality. This requirement influences the 
indexing scheme, the methods of features comparison, and the means by which 
queries are solicited from the user [18]. 

In a typical situation, see Figure (3.1), all the images in the database are 
processed to extract the selected features that represent the contents of the images. 
This is usually done automatically once when the images are entered into the 
database. This process assigns to each image a set of identifying descriptors which 
will be used by the system later in the matching phase to retrieve relevant images. 
The descriptors are stored and indexed in the database, ideally in a data structure 
that allows efficient retrieval in the later phase [7]. 

Next a query is posted in the matching phase. Using the same procedures that 
were applied to the image database the features for the query image are extracted. 
Image retrieval is then performed by a matching engine, which compares the 
features or the descriptors of the query image with those of the images in the 
database. The matching mechanism implements the retrieval model adopted 
according to the selected metric, or similarity measure. 
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Figure (3.1) General architecture of a CBIR system [50]. 

 
The images in the database are then ranked according to their similarity with 

the query and the highest ranking images are retrieved. Efficiently describing the 
visual information of images and measuring the similarity between images 
described by such pre-computed features are the two important steps in content-
based image retrieval [10]. 

3.2.5 Efficient Features Indexing 
Whilst individual features in a single media can be very small, and easy to 

compare, comparing across a whole database of images will take considerable 
time. Features indexing allows for rapid retrieval of similar features without 
having to look through all signatures. 

Features in a signature are normally of the same form; hence, a signature can 
simply be a composite representation of them. If this representation is a set of 
values, the signature can be represented as objects in Euclidean space such as 
points, vectors or volumes. Signature similarity may be calculated as the distance 
between two points, or the distance between a point and the center of a volume. 
Other tests may be required, such as whether a point is inside a volume, or whether 
a volume is inside a volume [44]. 

Finding index structures that allow efficient searching of an image database is 
still an unsolved problem. None of the index structures proposed for text retrieval 
has proved applicable to the image retrieval problem, since CBIR techniques are 
based on a fundamentally different model of data [72]. Stored images are typically 
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characterized by fixed-length real-valued multi-component features vectors. Each 
image has a value for every feature in the database. In this case, searching consists 
of calculating the similarity between features vectors from query and stored 
images, a process of numerical computation [30]. 

So far the most used image indexing approach is multidimensional indexing, 
but the overheads of using these complex index structures are considerable. An 
alternative approach, which seems to offer better prospects of success, is the use of 
similarity clustering of images, allowing hierarchical access for retrieval and 
providing a way of browsing [17]. 

3.3 Clustering  
Clustering can be defined as a process of grouping data into classes or 

clusters. The objects in a cluster have high similarity in comparison to each other, 
but they are dissimilar to the objects in other clusters [43]. In this work, the 
clustering procedure is developed for the images stored in the image database. The 
clustering is based on the image content that is described using features presented 
in chapter two. Hence, the clusters are formed in the features space.  The selection 
of the clustering method is an essential point in the clustering procedure. Several 
methods and algorithms for clustering have been developed. 

In general, there are two kinds of clustering methods. One is a hierarchical 
method, and the other is a non-hierarchical method. The hierarchical method 
(which is adopted in this study) is divided into two kinds of methods; 
agglomerative and divisive. In non-hierarchical clustering methods, the initial 
value and the number of clusters must be predefined. Non-hierarchical clustering 
method shows good performance for fixed number of clusters. Nevertheless, a 
flexible clustering method is needed for information retrieval [90]. 

 Perhaps the most common clustering methods are k-means and k-medoids. 
The clustering algorithms used for information retrieval can be classified into two 
categories; static clustering and dynamic clustering. In static clustering, all the 
objects are first clustered (indexed) before any search can be performed. Whenever 
a new object is presented, the indexing structure needs a total reorganization to 
support later searches [43]. 
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 In dynamic clustering, search can be interlaced with indexing. When a new 

object is presented, the indexing structure will grow dynamically, no periodic 
reorganization is needed. Due to the high frequency of data update in VIR systems, 
static clustering is unacceptable [46]. 

3.3.1 Criteria for Choosing a Suitable Clustering Method  
Image clustering groups a given set of unlabeled images into meaningful 

clusters according to the image content without a priori knowledge. Typical 
clustering techniques include hierarchical clustering algorithms, and partitional 
algorithms [92]. 

When choosing a suitable algorithm, the pros and cons of each method are 
weighted separately. A list of major factors describing a clustering algorithm was 
made. This is considered to be optimal for this research and can help us in 
choosing a suitable one. These factors are [69, 70, 84]: 
1. Scalability: The ability to deal with large data sets. Clustering algorithm should 

be highly scalable.  
2. Insensitivity to the order of input: Some algorithms are sensitive to the order of 

input data. For example when the same data set is presented in a different order, 
algorithms like these may generate dramatically different clusters. It is important 
for us to select an algorithm that is insensitive to the order of the input.  

3. High dimensionality: A database can contain several dimensions or attributes. It 
is a challenge to cluster data objects in high-dimensional space, because that 
kind of data can be very sparse and highly skewed.  

4. Reclustering ability: When new data is added to the data set, clustering 
algorithm should have the ability to recluster the clusters in a new version.  

5. Requirements for domain knowledge to determine input parameters: The use of 
parameters in cluster analysis is important, such as the number of desired 
clusters. Sometimes it is necessary to be able to decide the final number of our 
clusters.  

6. Computational complexity: The computational complexity is required to be as 
low as possible to save clustering time. 
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3.3.2 Clustering Techniques  

There are two promising techniques towards solving indexing problem; 
clustering and Neural Nets. These techniques have three advantages. They are: (1) 
dynamic structure, (2) capability of handling high dimensional data, and (3) the 
potential to deal with non-Euclidean similarity measures [7]. 

A dynamic hierarchical clustering technique was developed to be scalable to 
high dimensionality required by MIS systems. The problem of clustering consists 
of partitioning N points in a metric space M into k clusters based on some criterion 
[87]. By storing similar objects together, retrieval can be processed more 
efficiently by reducing the number of objects to be accessed to return the results 

[46]. Due to these reasons, hierarchical agglomerative clustering (HAC) are 
frequently used in information retrieval field [90]. 

Since clustering is adopted in this work, a brief description of the most 
common and well-known clustering algorithms is provided in this section. In all 
proposed methods each sample is described by features vector, in which each 
feature is represented by a real number. 

1. K-means 
Given a population of samples and a number K of the desired groups or 

classes, the final goal of this algorithm is the partitioning of the given population in 
K different classes. Each class has a center which is the mean position of all the 
samples in that class, and each sample is in the class whose center is closest to. 
The inputs of the algorithm are: the number of patterns, the needed number of 
classes K, and a vector of K random means. One of the main problems of this 
algorithm is that the classification result depends on the initialization of the 
algorithm. If the K initial random means are changed, it is possible also that the 
final result will be different [68]. 

2. Hierarchical Clustering  
Hierarchical clustering methods can be further classified into agglomerative 

(bottom-up) and divisive (top-down) hierarchical clustering. Agglomerative 
hierarchical methods start with each object in one cluster and in each step the 
closest pair of clusters are merged until there is only one cluster left or a certain 
termination condition is fulfilled [69].  
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Divisive hierarchical methods start with one big cluster containing all the 

objects. In each step, a cluster is subdivided until a certain termination condition is 
satisfied, or the final number of wanted clusters is reached [84].  In this thesis, the 
opposite, i.e. an agglomerative hierarchical method is proposed; therefore, 
hierarchical clustering will be explored in detail in a separate section.  

3.4 Hierarchical Clustering 
Given a similarity matrix, Hierarchical Cluster Analysis (HCA) organizes a 

set of elements into similar units. This method starts from the elements set to build 
a tree. Before the procedure begins, all elements are considered as separate 
clusters. The tree is formed by successively joining the most similar pairs of 
elements into a new cluster. The way clusters are merged and the similarity matrix 
is updated depends on the type of the algorithm [2]. 

Cluster analysis does not use category labels that tag objects with prior 
identifiers. In other words, we don’t have prior information about cluster seeds or 
representatives.  The objective of cluster analysis is simply to find a convenient 
and valid organization (i.e. grouping) of the data.  The main purpose of clustering 
is to reduce the size and complexity of the data set. Data reduction is accomplished 
by replacing the coordinates of each point in a cluster with the coordinates of that 
cluster’s reference point (cluster’s seed or representative). Clustered data require 
considerably less storage space and can be manipulated more quickly than the 
original data [13]. 

3.4.1 Hierarchical Agglomerative Clustering (HAC) 
Hierarchical clustering is a bottom-up clustering method where clusters have 

sub-clusters, which in turn have sub-clusters, and so on. The classic example of 
this kind of clustering is species taxonomy. Agglomerative hierarchical clustering 
starts with every single sample in a single cluster. Then, in each successive 
iteration, it merges the closest pair of clusters by satisfying some similarity criteria, 
until all of the data is in one single cluster [70]. 

The hierarchy within the final cluster has the following properties; clusters 
generated in early stages are nested in those generated in later stages, and clusters 
with different sizes in the tree can be valuable for discovery.  After the input 
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samples are provided, each pattern is assigned to a separate cluster. Firstly, all 
pair-wise distances between clusters are evaluated, and then a distance matrix is 
constructed using the distance values. After that, a loop starts until a termination 
condition is met. During each iteration of this loop, the pair of clusters with the 
shortest distance is looked for. The selected pair is removed from the matrix and 
the two clusters are merged producing one new cluster. The distance among the 
new cluster and all the others are computed and the matrix is updated [69]. 

3.4.2 HAC Algorithm 
The major steps in agglomerative clustering are contained in the following 

algorithm [69]: 

 

Algorithm: Basic Agglomerative Clustering 

1. Let k = n and Xi = { xi } , i = 1, . . . , n. 
Loop:    2.   If k <= c then stop. 

3. Find the nearest pair of distinct clusters, say Xi and Xj , 
4. Merge Xi and Xj into new cluster, say Xn+1, delete Xi and Xj , 

decrement k by one. 
5. Go to Loop. 

where Xi represents a cluster with a single element xi,  n is the number of items in 
the whole data set, c is the desired number of clusters. 

In the original version of the algorithm, the loops end when the distance 
matrix is composed of only one element. The most natural representation of 
hierarchical clustering is a corresponding tree, called dendrogram, which shows 
how the samples are grouped. Figure (3.2) shows a dendrogram for a simple 
problem involving six samples. Level 1 shows the six samples as singleton 
clusters. At level 2 samples x1 and x2 have been grouped to form a cluster, and 
they stay together at all subsequent levels.  
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Figure (3.2) A Dendrogram for a HAC of patterns (x1,…, x6). [89] 

 
At each step the two nearest patterns are merged and represented by their 

centroid. After i steps, a stop condition t is reached and the clustering algorithm 
terminates. Three clusters are produced: {x1, x2, x3}, {x4, x5}, {x6}. The 
dendrogram is usually drawn to scale to show the similarity among the grouped 
clusters. Another representation for hierarchical clustering is based on sets, in 
which each level is depicted by sets representing clusters that may contain other 
sub-clusters [89]. 

3.5 Similarity Measurements and Image Searching 
   There are different clustering methods, which can be defined according to 

measurement of distances between clusters. Based on the calculation of similarity 
between the non-singletons clusters, varieties of hierarchical agglomerative 
techniques have been proposed. Single-link, complete-link, group average-link, 
and mean (centroid) clustering are well known in measuring inter-cluster distances 
[69]. The use of different distance metrics for measuring distances between 
clusters may generate different results.  

3.5.1 Clusters Distance Computation 
The more common metrics used for the computation of clusters distance 

produces different variations. Some details about these algorithms are given below: 
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1. Single-link  

In the single-link (also called as nearest neighbor, or minimum algorithm), 
the similarity between two clusters is the minimum similarity of all pairs of 
elements which are in different clusters. Let Xi and Xj, respectively, be the ith and 

the jth clusters; the distance function used for measuring the distance between those 
two clusters is [69, 70]: 

min
, '

( , ) min '
i j

i j
x X x X

D X X x x
∈ ∈

= −     ,  ............................................. (3.1) 

 When Dmin(.,.) is used to measure the distance between subsets, the nearest-
neighbor nodes determine the nearest subsets. In other words, the merging of Xi 

and Xj corresponds to the fusion of two clusters having the two closest elements. 
This kind of metrics roughly tends to produce “elongate” clusters. 

2. Complete-link  
In the complete-link (also called as farthest neighbor, or maximum 

algorithm), the similarity between two clusters is the minimum similarity of all 
pairs of elements which are in different clusters. In this case the distance function 
used for measuring the distance between two clusters is [69, 70]: 
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∈ ∈
= −     ,  ................................................... (3.2) 

When Dmax(.,.) is used to measure the distance between subsets, the distance 
is determined by the most distant nodes in the two clusters. This kind of metrics 
tends to merge the clusters in order to minimize the increment of the diameter of 
the clusters themselves, thus producing compact and roughly equal in size clusters. 

Most of the algorithms discussed above work implicitly or explicitly with the 
n × n similarity matrix such that the (i, j) element of the matrix represents the 
similarity between ith and jth data items [26]. 

3. Other Metrics 
The minimum and maximum measures represent two extremes in measuring 

the distance between clusters, and in some situations can lead to minor results. The 
use of averaging is a possible way to improve the quality of clustering. The most 
commonly used distance functions are the following [89]: 
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In Group-Average-link clustering the similarity between two clusters is the 

mean similarity of all pairs of singletons which are in different cluster, while in 
centroid clustering, the similarity is obtained by measuring the centroid distance 
between any pair of clusters [82]. This last measure (i.e. mean or centroid) is 
intuitively the most common one; therefore, it is adopted in this thesis. 

3.5.2 Exact Match versus Similarity Match 
In traditional databases, user often queries on the exact item. However, in 

multimedia domain, queries for exact match item are rare and impractical. In 
multimedia applications, comparisons often are not based on exact match, but 
rather they are based on similarity comparison. In similarity searching, a vast 
amount of results will be obtained. In order to provide useful solution to users 
query, filtering and ranking mechanism are applied to the result [85]. 

There are many applications of nearest neighbor search where an approximate 
answer is good enough. It is not necessary to insist on the exact answer; instead, 
determining an approximate one may suffice [86]. 

3.5.3 Heuristic Search versus Exhaustive Search   
As multimedia data is large in size, exhaustive search in multimedia domain 

is very expensive. Experiments suggest that exhaustive search and systematic 
search still fail to give optimal performance in some cases. Sub-optimal searching 
algorithms will be a good alternative to the problem. These algorithms can find 
nearly optimal solution in a limited time [85, 67].  In this thesis, sub-optimal 
searching algorithms based on heuristic search in the image retrieval domain are 
adopted. 

3.5.4 Feature-based Similarity  
A similarity search problem involves a collection of objects (e.g., documents, 

images) that are characterized by a collection of relevant features and represented 
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as points in a high-dimensional attribute space. Given queries in the form of points 
in this space, we need to find the nearest (most similar) object to the query. The 
particularly interesting and well-studied case is the d-dimensional Euclidean space. 
The problem is of major importance to a variety of applications; some examples 
are: data compression, databases / data mining, information retrieval, image / video 
databases, machine learning, pattern recognition, and statistics / data analysis [54].  

Typically, the features of the objects of interest are represented as points in a 
certain space, and a distance metric is used to measure the similarity of objects. 
Then, the basic problem is to perform indexing or similarity searching for query 
objects. The number of features (i.e., the dimensionality) ranges anywhere from 
tens to thousands. For example, in multimedia applications such as IBM’s QBIC 
(Query by Image Content) the number of features could be several hundreds [86]. 

Image similarity is usually determined by computing a distance measure 
between the query and the appropriate features vectors in the index structure. 
Similar images are ranked according to distance. Thresholding may be used to 
reduce the number of similar images presented to the user [18]. 

Feature-based similarity queries employ the notion of distance between two 
points P and Q in the data space. Several metrics to define distance can be found. 
The most widely used metrics are the Manhattan metric (also known as L1 metric, 
rectilinear metric), the Euclidean metric (L2 metric). The mathematical definition 
of these two metrics is described as [7, 83]:  
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where p is a positive integer, P and Q are data points in high dimensional space 
(representing images), each with a features vector of n items. This distance metric 
represents the Manhattan metric (L1) when p = 1, and Euclidean metric (L2) when 
p = 2. 

3.6 Query by Example  
The most appealing paradigm in many ways is query-by-example. It allows 

the user to formulate a query by providing an example image. The system converts 
the example image into an internal representation of features. Images stored in the 
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database with similar features are then searched. Query by example can be further 
classified into query by external image example (if the query image is not in the 
database), and query by internal image example (if otherwise) [36, 52].  

The main advantage of query by example is that the user is not required to 
provide an explicit description of the target, which is instead computed by the 
system. It is suitable for applications where the target is an image of the same 
object or set of objects under different viewing conditions [41].  Virtually, all 
current CBIR systems offer query-by-example searching, where users submit a 
query image and the system retrieves and displays thumbnails of say the 20 
closest-matching images in the database. Several alternative query formulation 
methods have been proposed [37]. The two most frequently used similarity queries 
are k-Nearest Neighbor (or k-NN query), and range query [87]. 

3.6.1 K-Nearest Neighbor Query (k-NN)  
Searching the nearest neighbor is an important problem in high-dimensional 

indexing. Given a query point Q, a distance metric M, and a positive integer K; 
this method will find the K most similar objects in the database with respect to the 
given query point [92]. Usually a threshold T is also defined indicating the 
maximum distance error allowed in the final result. Therefore, the k-Nearest 
Neighbor query becomes: finding the k most similar objects within a given 
distance T to the query point [83]. 

3.6.2 Range Query  
This kind of a query searches for all the objects whose distance to the query 

object center is less or equal to the query radius [87]. A range query search in an 
image database is a traversal algorithm of an indexing structure to find the node 
which contains a set of features vectors that are within fixed similarity bound, say 
t, from the query image [53].  Since the features vectors form a sparse 
multidimensional features space, it is natural to assume that there exists an under-
lying distribution of these vectors. Usually, the distribution is not uniform. As a 
result, we may group features vectors together that are generally retrieved together 
in response to a request query. This leads to clustering of features vectors [45]. 
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3.7 Performance Evaluation of a Retrieval System 

Once a content-based image retrieval application has been developed, the 
next crucial problem is how to evaluate its performance, both retrieval 
performance and complexity. To evaluate the performance of a retrieval system, 
two measurements; namely, Precision (P) and Recall (R) are borrowed from 
traditional information retrieval [10]. Precision and recall metrics are used to 
evaluate the performance of a retrieval system. The first question is about the 
accuracy (precision) of the search, while the second is about the completeness 
(recall) of the search. The precision of the retrieval is defined as the fraction of the 
retrieved images that are indeed relevant for the query, while the recall is the 
fraction of relevant images that is returned by the query [94]: 

The number of relevant retrieved images Precision
The number of retrieved images

=     , …. (3.6) 

The number of relevant retrieved imagesRecall
The total number of relevant images

=      ,  …….. (3.7) 

Recall quantifies the ability of the system to retrieve useful images, while 
precision measures the ability to reject useless ones [25]. Usually, a tradeoff must 
be made between these two measures since improving one will sacrifice the other. 
In typical retrieval systems, recall tends to increase as the number of retrieved 
items increases; while at the same time the precision is likely to decrease [40]. 

After collecting images, the first step in evaluating performance of CBIR 
application is to define a set of queries and their ground truth based on the input 
image database. A very common way to generate ground truth from a query image 
is by adding noise, down-scaling, or up-scaling the query image. When the image 
database is collected and the queries and their ground truth are selected, the query 
images are presented one by one to the search engine of the CBIR application. The 
retrieved results are then compared to the ground truth of the corresponding query 
image [94]. 

In order to evaluate the retrieval performance of an image database, it is 
necessary to verify a test set and a ground truth, which means that it is known 
which images match with the image that is queried in the database. For quality 

 59



  Chapter Three: Hierarchical Indexing & Image matching 

                                                                                 
assurance, it is important to have a representative test database, which can be used 
to measure the performance.  This means that the test set will be compared with 
the complete database. The optimal situation for retrieval is that the relevant 
images are retrieved, and that there are no missed relevant images [35]. 

When the number of retrieved images is increased, precision is decreased, 
and recall is increased. Higher precision indicates less unwanted images; 
conversely, higher recall indicates less missing images. P & R contingency is 
shown in Figure (3.3). 

 

 
 Relevant Not Relevant 

Retrieved A B 
Not Retrieved C D 

Relevant = A + C 
Retrieved = A + B 
Collection size = A + B + C + D 
 
Precision = A/(A+B) 
Recall = A/(A+C) 
 
Fallout/false alarm = B/(B+D)  
Miss = C/(A+C) = 1 - Recall 

 
 

Figure (3.3) Precision and recall contingency table 

 

Theoretically, P and R do not depend on each other. Practically, high recall is 
achieved at the expense of precision. Also, high precision is achieved at the 
expense of recall. P is equal to 0 when none of the retrieved images is relevant, 
while P is equal to 1 only when every retrieved image is relevant. Because of this 
inverse relationship between precision and recall, improving recall almost certainly 
would lower precision.  Depending on the application, one may want a higher 
precision or a higher recall [10].  

Recall measures the ability of the search to find all of the relevant items in the 
database. Precision evaluates the correlation of the query to the database; it is an 
indirect measure of the completeness of indexing algorithm. Instead of using one 
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query to derive precision and recall, multiple queries are used to gain averaged 
values that give a better indication on every retrieval scheme performance [41]. 
This relation is depicted in Figure (3.4). 

 
 

Relevant RetrievedRelevant +
Retrieved 

Space of all Images High Recall 

High Precision 

 
       Figure (3.4) Retrieved versus relevant images 

Given the relevant images to the following two queries, precision and recall 
values are shown:  

Relevant: f3 f5 f9 f25 f39 f44 f56 f71 f123 f89

query1: f123√ f84 ×

× × ×

f56√
Precision: 66%  (2/3)
Recall: 20% (2/10)

query2: f123√ f84 f56√ f6 f8 f9√
Precision: 50%  (3/6)
Recall: 30% (3/10)

 

3.7.1 Mean Average Precision (MAP) 
Average precision at selected numbers of retrieved images (usually number of 

relevant images) can be calculated over many queries.  Subsequently the mean of 
these averages is taken as an excellent concise hint on retrieval performance. This 
metric is expressed by the following equation [73]:  

..

1 1

i i

j

i jQ j 1 n

rel
MAP

N n re
=

= ∑ ∑ t
 ,  …………………. (3.8) 
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    where:  

N = number of test queries, 
Qi = Query i  of the N queries, 
ni = number of total relevant images for Qi , 
relj=number of relevant images at step j, and 

retj=number of retrieved images at step j. 

3.7.2 F-Measure  
It is a harmonic weighted mean that combines precision and recall in a single 

number [74]: 

( )2

 2

1 PR
F

P Rβ

β

β

+
=

+
     ,  ……………………….. (3.9) 

 
where β  represents the relative importance of precision and recall: 

β = 1, precision & recall have the same importance, 

β > 1, precision is favored, or 

β < 1, recall is favored. 

By choosing β = 1, equation (3.9) would be: 

1
2PRF
P R

=
+

                  ,  ………………………… (3.10) 

This equation is used as an F-measure in the retrieval performance 
assessment for the developed system. An arithmetic mean of Precision (P) and 
Recall (R) does not capture the fact that a (50% P, 50% R) system is often 
considered better than an (80% P, 20% R) system: 

if P = 50%  and  R = 50%  then arithmetic mean= 50%, 
if P = 10% and  R= 100%  then arithmetic mean = 55% (not a good indicator). 

On the other hand, F-measure is high only when both P&R are high: 

if P = 50% and R = 50%   then F-measure = 50%, 
if P = 10% and R = 100%  then F-measure = 18.2%. 
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Chapter Four 

The Content-Based  
Image Retrieval System 

 

4.1 Introduction 
This chapter is organized as follows: the whole retrieval system is outlined in 

the next section. Color models conversions are explained in section (4.3). Section 
(4.4) discusses in detail some of the features extractions methods. The topic 
features vector normalization is submitted in section (4.5). Hierarchical indexing is 
described in section (4.6). Section (4.7) introduces query processing techniques. 
Finally, retrieval methodology based on combined features is summarized in 
section (4.8). 

4.2 The Retrieval System Broad Outline 
The fundamental idea of this work is to generate automatically image 

descriptions directly from the image content by analyzing the content of the image. 
Low-level features do play an important role, and in some sense are the bottleneck 
for the development and application of CBIR techniques. A very basic issue in 
designing a CBIR system is to select the most effective image features to represent 
image contents.  

In order to characterize the color content of an image different color spaces 
have been used with different quantization schemes. In addition, cumulative 
histogram and color moments are, also, utilized. Within the statistical approach to 
the problem of texture analysis the Gray Level Co-occurrence Matrix (GLCM) and 
correlation histogram (correlogram) were implemented. Different combinations of 
the above features extraction methods are experimented. 

This project focuses on a representation for computing global similarity. That 
is, the task is to find images that, as a whole, appear visually similar. Query is 
made upon images of homogeneous color/texture that do not require segmentation. 
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The similarity between two features vectors can be concluded through using some 
distance measurement.  

To achieve the scalability of search to large databases, it must be ensured that 
the search time does not increase linearly with the database size. An effective 
indexing method was designed to accelerate similarity search task. Images are 
grouped into clusters beforehand based on the content, so that at the time of the 
query, only the relevant set of clusters needs to be examined.  

An overview of the developed system architecture, in this research, is 
presented in Figure (4.1). The steps of the involved processes are discussed in the 
following sections. Given a set of images, as a first step, these image objects are 
represented by their corresponding features vectors through a set of 
transformations and normalizations. Features extraction is a crucial step in the 
whole retrieval process. Several extraction methods were adopted in this stage 
including Gray Level Co-occurrence Matrix (GLCM), correlation histogram 
(correlogram), cumulative histogram, and moments. In addition to applying each 
of these methods separately, different combinations of them were also 
experimented.  

       

Result images 

Visualization 

Query 
formulation 

Fetching 

Features 
extraction 

Index 
construct 

Index 
structure 

Query features 

Matching 

Features Images  

Image id’s 

Query image 

Features 
extraction 

Query by example 

Browsing 

User Interface

Done offline 

 
Figure (4.1) The Content-Based Image Retrieval System  
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In the next step, the features vectors are indexed through a process called 
index construction using a certain kind of hierarchical indexing methods. Some 
enhanced searching algorithms for specific query types were, also, designed to 
search through this index structure. When a query image (which is a user specified 
image) is used as an input, it is transformed to become a query point and passed to 
the index.  

The index is used to locate similar images to query image by comparing 
through a distance measurement. The final results of the stage of searching the 
index structure are visualized to user. Indexed groups of images (clusters) could be 
explored separately.  

4.3 Color Models Conversions 
Prior to any analyses to be performed upon image data, it should be known in 

which color domain (model) the analysis work will proceed. Image is read first 
from a Bitmap file as an RGB array of records. Each record consists of R, G, and 
B pixel components. When image is processed in a color model rather than RGB 
model, it should be converted first to the specified color model. General issues 
concerning different color models are given in subsection (2.3.2). Munsell HVC, 
HSV, HLS, L*a*b*, Gray, and RGB color models have been used and compared 
for different extracted features. In addition, 9-colors and 11-colors categories that 
are not a color models, rather, they are a human-based segmentation of some 
standard color spaces are also used. 9-colors is based on HSV model while 11-
colors is based on Munsell HVC model. They are described in article 6 under 
subsection (2.3.2). 

Each color model was implemented by coding the transformation equations 
listed in its relevant article under subsection (2.3.2). HSV and HLS were 
implemented by using the simplified formula where no trigonometric functions are 
used. This may improve performance [65]; as described in Pseudo code list (4.1). 
HLS model is computed in a similar way for Hue component, but Luminance 
(Value), and Saturation are computed with a little difference.  

 

 65



                                                                                  Chapter Four: The CBIR System 
 

 

Pseudo code list (4.1) HSV color model computation routine 
Input  

RGBarr: Image array in RGB data. 
W, H: Image Width and Height 

Output  
HSVarr: Image array in HSV data 

Variables 
R,G,B,H,S,V: pixel values 
i,j: image array indices 
min, max: minimum or maximum components values 

Procedure 
For all i, j do  {where i = 0..W-1,  j = 0..H-1} 

R←   RGBarr(i,j).R 
G←   RGBarr(i,j).G 
B←   RGBarr(i,j).B 
{ Hue computation} 
If min(R,G,B)=B then    

 
3( 2 )

G BH
R G B

−
←

+ −
 

ElseIf min(R,G,B)=R then   

 1
3( 2 ) 3

B RH
G B R

−
← +

+ −
 

ElseIf min(R,G,B)=G then   
2

3( 2 ) 3
R GH

R B G
−

← +
+ −

   

{ S and V computation } 
min←  min(R,G,B) 
max←  max(R,G,B) 
V←  max 
If max <>0 then   

m ax m in
m ax

S −
←

   
Else   
 S ←  0 

End For 
End  

 

 66



                                                                                  Chapter Four: The CBIR System 
 
4.4 Features Extraction Methods 

Features transformation is a mapping from the space of image observations 
(usually image pixels) to a features space that has better properties for the retrieval 
operation. The features are usually composed into a multidimensional features 
vector. If the features are properly chosen, each class of images forms a cluster in 
the features space. Several features extraction routines were built. They are 
described according to the utilized color model and the type of the extracted 
features. Table (4.1) outlines the features extraction routines corresponded to the 
color models that are applied in this research. 

 
Table (4.1) Color models features extraction routines 

COLOR MODEL FEATURES EXTRACTION ROUTINE 

HVC color model HVC features extraction routine 

HSV color model HSV features extraction routine 

HLS color model HLS features extraction routine 

LAB color model LAB features extraction routine 

11 colors category        11 colors features extraction routine 

9 colors category       9 colors features extraction routine 

RGB color model RGB features extraction routine 

Gray color model Gray features extraction routine 

 
A choice parameter (representing the selected color model which will be used 

to extract the selected features) is supplied by the user. Each features extraction 
routine would result in a features vector array containing the extracted features. 

4.4.1 Gray Level Co-occurrence Matrix 
 In the current subsection, a short description for Gray Level Co-occurrence 

Matrices (GLCM) is given. A set of well-known statistical textural features are 
based on GLCM. These matrices contain the information about gray levels 
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(intensities) of pixels and their neighbors at fixed distance and orientation. The 
idea is to scan the image and keep track of gray levels of each of two pixels 
separated within a fixed distance d and direction θ. The co-occurrence “matrices 
and features” routine is presented in Pseudo code list (4.2). 

 

 

Output  
FeatuVec: CLGM Features vector array 

Variables 
QuantizedLuminanceArr: Two dimensional array  
Ng: Integer number representing selected quantized levels 

Procedure 
OneChannelQuantize(LumArr, Ng, QuantizedLuminanceArr )  {send LumArr to 

the one channel quantization routine to be quantized to Ng levels } 
Co-occurrenceMatrix(QuantizedLuminanceArr, Ng, ar0, ar45,ar90,ar135) {send 

quantized Luminance array to the co-occurrence Matrices computation 
routine} 

Co-occurrenceFeaturesExtraction(ar0, ar45, ar90, ar135, FeatuVec) { send the four 
GLCM to the features extraction routine }  

End  

Pseudo code list (4.2) Co-occurrence “matrices and features” routine 
Input  

LumArr :  Luminance color  channel 

 

This approach explores the gray level spatial dependencies of the tested 
texture. As a first step, the co-occurrence matrix is counted for certain orientation 
and inter-distance between image pixels, and then some meaningful statistical 
features are extracted from the co-occurrence matrix as textural features. The 
features vector for a texture is constructed from many co-occurrence matrices 
corresponded to different orientations and distances. Using one distance or one 
direction is generally not enough to describe textural features. So, more than one 
direction and distance should be taken in the calculations. It is common to use four 
directions; two are oriented horizontally and vertically, and the other two are for 
diagonals. Most of the researchers use four directions and one of the four distances 
{1, 2, 3, or 4}.  
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In this study, four co-occurrence matrices have been used; one matrix for 
every direction. Only single value for distance (d) is chosen among the four 
distances. With this (d), the four matrices are computed, and each test image was 
represented by these four matrices.  

 In the above routine, there are three subroutine calls concerning the full 
implementation of the GLCM; one channel quantization, co-occurrence matrices, 
and co-occurrence features extraction. They are explained in the following three 
articles, respectively. 

1. Intensity Slicing  (One channel quantization) 
Each co-occurrence matrix is (256×256) elements in size; assuming that 

images are in 256 gray levels. Hence, each matrix requires a large memory to store 
and it is a time consuming task to produce this matrix. So, to handle this problem, 
the images are quantized to a lower gray-scale; say 18. The co-occurrence matrices 
are, then, determined for this new image instead of the original one. This gray-
scale reduction will reduce the computational complexity of the involved work 
with GLCM of (18×18) elements. The conducted experiments showed that the 
conversion of the image from 256 gray-scales to a lower rough scale, does not 
affect the texture query results (details are given in chapter five). The steps of this 
method are illustrated in Pseudo code list (4.3) which is based upon intensity 
slicing that is illustrated in Figure (2.10).  

 

 

 Pseudo code list (4.3) One channel quantization routine 
Input 

Arr: Image Array to be quantized 
Ng: number of quantization levels 

Output 
QuanArr: Quantized Image Array  
Variables 

i, j: Image array indices 
sum: summation 
mean: mean pixel value 
std: pixel value standard deviation 
stp: step level  
lmin: quantized minimum pixel value 
lmax: quantized maximum pixel value 
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 QuanArr(i, j) ←  Ng - 1 
Else 

QuanArr(i, j) ←  (Arr(i, j) - lmin) / (lmax - lmin)) * (Ng-1) 
End If  

End For  
End  

 contiued 
Procedure 

sum ←  0 
For all i,j do  {where i = 0..W-1,  j = 0..H-1} 

sum ←  sum+Arr(i, j) 
End For 
mean ←  sum / (W * H) 
sum ←  0 
For all i,j do  {where i = 0..W-1,  j = 0..H-1} 

sum ←  sum+(Arr(i, j) - mean)  2

End For 
std ←  Sqr(sum / (W * H) - 1) 
lmin ←  mean - 1.5 * std 
lmax ←  mean+1.5 * std 
stp ←  (lmax - lmin) / Ng      
For all i,j do  {where i = 0..W-1,  j = 0..H-1} 

If Arr(i, j) < lmin Then 
QuanArr(i, j) ←  0 

ElseIf Arr(i, j) > lmax Then 

2. Co-occurrence Matrix Computation 
The proposed method for the determination of image co-occurrence matrix is 

accomplished in four steps as follows: 
 

Step 1: Determine the normalized co-occurrence matrices of each image. The 
number of gray levels of the tested image is reduced to less levels (say Ng). For all 
0o, 45o, 90o and 135o directions, and one of the distances 1, 2, 3, and 4, calculate 
the corresponding co-occurrence matrix. This produces four matrices of (Ng×Ng) 
integer elements per matrix. 
Step 2: Determine the values of the adopted descriptors. For each co-occurrence 
matrix, the value of each descriptor is calculated. For each image, the resulting 
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descriptors values are stored in a features vector (single dimensional array) where 
each element is a real valued number. 

 Step 3: Generate image signatures. The image signatures are calculated from the 
descriptors (features vector matrix) by normalizing the features vector values that 
correspond to different directions for the chosen inter-distance for each image.  
Step 4: Compare the images through their signatures. The extracted signatures of 
the images are compared by using certain similarity measure. Euclidean distance 
function was adopted for this purpose.  

Step 1 is illustrated in Pseudo code list (4.4), while step 2 is shown in Pseudo 
code list (4.5). Steps 3 and 4 are explained in Pseudo code lists (4.13) and (4.17) 
respectively. 

 

 

increment  ar135(A(i+d, j-d), A(i, j)) by one   and  j= d..H-1.} 
End For 

Pseudo code list (4.4) Co-occurrence matrix computation routine   
Input 

A: Quantized two dimensional array 
d: selected distance. 

Output 
ar0, ar45, ar90, ar135: normalized two dimensional arrays  {four GLCM } 

Variables 
i, j: Image array indices  
W, H: image array Width and Height 
Nth: Normalizing factor for each GLCM 
Ng: number of quantization levels 

Procedure     
For each i, j do    

increment   ar0(A(i, j), A(i, j+d)) by one  { ar0 takes    i= 0..W-1, and   
increment   ar0(A(i, j+d), A(i, j)) by one    j=0..H-1-d.   } 

increment   ar45(A(i, j), A(i+d, j+d)) by one {ar45 takes i= 0..W-1- d, 
increment   ar45(A(i+d, j+d), A(i, j)) by one    and j=0..H-1-d.}  

increment  ar90(A(i, j), A(i+d, j)) by one   {ar90 takes i= 0..W-1-d, and 
increment  ar90(A(i+d, j), A(i, j)) by one   j=0..H-1.} 

increment  ar135(A(i, j), A(i+d, j-d)) by one  {ar135 takes i= 0..W-1-d,  
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contiued 
Nth ←   2*W*(H - d) 
NormalizeGLCM(ar0, Nth, Ng) { send GLCM  to GLCM Normalization routine to 

be normalized according to its normalizing factor Nth and 
number of quantization levels Ng} 

Nth ←   2*(W - d)*(H - d) 
NormalizeGLCM(ar45, Nth, Ng) 
Nth ←   2*(W - d)*H  
NormalizeGLCM(ar90, Nth, Ng)    
Nth ←   2*(W - d)*(H - d) 
NormalizeGLCM(ar135, Nth, Ng) 

End 

 
Each of the computed GLCM (i.e., ar0, ar45, ar90, and ar135) is normalized 

by division by the factor Nth which is a total number of occurrences over each 
matrix. Normalization insures that GLCM is invariant against image size changes.  

3. Co-occurrence Features Extraction 
The previous subsection shows the involved generation steps of the four 

normalized GLCM; ar0, ar45, ar90, and ar135.  However, these matrices are still 
containing much data. Suppose that (Ng=18), then each matrix will consist of 
(18×18=324) elements, and they need to be further reduced. What is usually done 
is analyzing these matrices and computing a few simple numerical values that 
encapsulate the information held in matrices. Some statistical parameters that are 
computed from GLCM can be used instead of the whole matrix. The textural 
features (or descriptors) that are extracted from the co-occurrence matrix are 
presented in subsection (2.7.5), and are determined by implementing the steps 
listed in Pseudo code list (4.5). 

Usually a subset of these descriptors is adequate for efficient retrieval. The 
detailed implementation of each descriptor function is straightforward and could 
be directly concluded from the equations listed in subsection (2.7.5), and they 
weren’t mentioned here. 
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    FeatuVec(13) ← SHDfeature(Ng, ar45) 
    FeatuVec(14) ← SHDfeature(Ng, ar90) 
    FeatuVec(15) ← SHDfeature(Ng, ar135) 

 FeatuVec(16) ← PRMfeature(Ng, ar0)   {Cluster Prominence Feature } 
    FeatuVec(17) ← PRMfeature(Ng, ar45) 
    FeatuVec(18) ← PRMfeature(Ng, ar90) 
    FeatuVec(19) ← PRMfeature(Ng, ar135) 
  FeatuVec(20) ← ENTfeature(Ng, ar0)   { Entropy } 
    FeatuVec(21) ← ENTfeature(Ng, ar45) 
    FeatuVec(22) ← ENTfeature(Ng, ar90) 
    FeatuVec(23) ← ENTfeature(Ng, ar135)  
    FeatuVec(24) ← HOMfeature(Ng, ar0)   {Homogenity } 
    FeatuVec(25) ← HOMfeature(Ng, ar45) 
    FeatuVec(26) ← HOMfeature(Ng, ar90) 
    FeatuVec(27) ← HOMfeature(Ng, ar135)  
    FeatuVec(28) ← CONfeature(Ng, ar0)    {Contrast } 
    FeatuVec(29) ← CONfeature(Ng, ar45) 
    FeatuVec(30) ← CONfeature(Ng, ar90) 
    FeatuVec(31) ← CONfeature(Ng, ar135) 
End 

  Pseudo code list (4.5) Co-occurrence features extraction routine 
Input 

ar0, ar45, ar90, ar135:  GLCM  { the four co-occurrence Matrices } 
Output 

FeatuVec(0..31): GLCM Features Vector array  
Variables 

Ng: number of quantization levels 
Procedure 
    FeatuVec(0)   ← ASMfeature(Ng, ar0)    { Angular second moment feature}  
    FeatuVec(1)   ← ASMfeature(Ng, ar45) 
    FeatuVec(2)   ← ASMfeature(Ng, ar90) 
    FeatuVec(3)   ← ASMfeature(Ng, ar135) 
    FeatuVec(4)   ← IDMfeature(Ng, ar0)        { Inverse Difference Moment } 
    FeatuVec(5)   ← IDMfeature(Ng, ar45) 
    FeatuVec(6)   ← IDMfeature(Ng, ar90) 
    FeatuVec(7)   ← IDMfeature(Ng, ar135) 
    FeatuVec(8)   ← CORHarFeature(Ng, ar0)  { Haralick Correlation } 
    FeatuVec(9)   ← CORHarFeature(Ng, ar45) 
    FeatuVec(10) ← CORHarFeature(Ng, ar90) 
    FeatuVec(11) ← CORHarFeature(Ng, ar135) 
    FeatuVec(12) ← SHDfeature(Ng, ar0)   {Cluster Shade Feature } 
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4.4.2 Correlation histogram (Correlogram) 

Correlogram is the extended color version of the co-occurrence matrix. 
Correlogram determination process is presented in Pseudo code list (4.6). A color 
correlogram is a table indexed by color pairs, where each entry (i, j) of the table 
specifies the probability of finding a pixel of color j at d distance from a pixel of 
color i in the image. Correlogram computation begins by separating the three 
components of the color array. Each color component is quantized in order to 
minimize the size of the correlogram array. 

 

 

OneChannelQuantize(SatArr , NSat, SatQuanArr )   
SingleQuanMatrix (SatQuanArr, LumQuanArr, HueQuanArr, NSat, NLum, 

NHue, SingleQuanArr) 
Co-occurrenceMatrix(SingleQuanArr, Ng, ar0, ar45, ar90, ar135 ) {send 

quantized array to co-occurrence matrices computation routine} 
Co-occurrenceFeaturesExtraction(ar0, ar45, ar90, ar135, FeatuVec) {send the 
four GLCM to the features extraction routine }  

End 

Pseudo code list (4.6) Correlogram “matrices and features” routine 
Input  

RGBarr: Image array  
Output  

FeatuVec: CLGM features vector array 
Variables 

HueArr, LumArr, SatArr : Two dimensional arrays representing the three color 
components  

HueQuanArr, LumQuanArr, SatQuanArr: Two dimensional quantized arrays 
Ng: Integer no. representing selected quantized levels 
NHue, NLum, NSat: quantization levels for the three color components 
SingleQuanArr: Two dimensional quantized array 

Procedure
{Convert RGB model to the selected color model } 
{Branch color model into its three primary components} 
LumArr ←  Luminance color  channel 
SatArr  ←  Saturation color  channel 
HueArr ←  Hue color  channel 
QuantizeHue (HueArr, NHue, HueQuanArr) 
OneChannelQuantize(LumArr, NLum, LumQuanArr )   
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The quantization of Hue component is done in special way; it is explained in 
Pseudo code list (4.7). The other two components; Saturation and Luminance have 
flat (or linear) nature, so the one channel quantization process shown in Pseudo 
code list (4.3) suffices in handling both components. Single quantized matrix 
process which maps the three color components into single component array is 
detailed in Pseudo code list (4.8). 

Co-occurrence matrix determination and co-occurrence features 
extraction process follow the same implementation illustrated in Pseudo code 
lists (4.4) and (4.5) respectively.  

1. Hue Quantization 
Hue component is quantized in a specific way because of its circular nature. 

The Hue parameter is measured as the angle around the axes (Luminance), and has 
the range [0°, 360°) distributed over a color wheel; see Figures (2.2), and (2.4) 
through (2.9) for Hue representations in different colors models.  

 

 
End 

Pseudo code list (4.7) Quantization of Hue component 
Input  

HueArr: Hue component Array 
NHue: Hue quantization levels 

Output  
HueQuanArr: Hue Quantized Array 

Variables 
i,j: array indices 
Intensity: three levels intensity values to be substituted for the undefined Hue 

values 
Procedure 

Intensity ← 2          {maximum quantized intensity value } 
For all i,j do   {where i = 0..W-1,  j = 0..H-1} 

HueQuanArr(i, j) ← HueArr(i, j) * (NHue / 359) {normal Hue value} 
If HueQuanArr(i, j) = NHue Then  { emulate circular Hue nature } 

HueQuanArr(i, j) ← 0 
ElseIf HueQuanArr(i, j) > NHue Then      { Hue undefined } 

HueQuanArr(i, j) ← NHue+(HueArr(i, j)-500) * (Intensity / 255) 
End If           

End For 

 75



                                                                                  Chapter Four: The CBIR System 
 

In the Hue circle, the primary colors (red, green, and blue) are separated by 
120°. The secondary colors (yellow, magenta, and cyan) are also separated by 120° 
and are 60° away from the two nearest primary colors.  For example, when Hue is 
divided in 18 bins, each primary (or secondary) color is represented by three 
subdivisions. Hence, the quantization process should preserve this Hue circular 
order. In addition, Hue is undefined when Saturation is zero. To cope with this 
situation, the quantized intensity value is used instead. A value of 500 is added 
beforehand to the intensity pixel value (for which Hue is undefined) in order to 
differentiate it from other normal Hue values. This added value is removed before 
quantization. Intensity component is quantized into 0, 1, or 2 and added to the 
upper quantized Hue value to give final quantized value for the undefined Hue 
value. 

2. Single Quantized Matrix Computation 
In order to improve the performance of correlogram computation process, a 

proper color quantization scheme should be applied to reduce the color resolution. 
The process of color quantization requires that each axis is divided into a number 
of parts. Then, the three quantized color components are sent to the single 
quantized matrix determination stage, whose implementation steps are listed in 
Pseudo code list (4.8), in order to be mapped into a single component. When each 
axis is divided into a number of quantization levels, the total number of quantized 
levels Ng used to represent an image would be: 

   ,  ………………………………………  (4.1) 1 2 3Ng = N  N  N

where N1, N2, N3  are the numbers of quantization levels for the three color 
components. For the undefined Hue value the quantized intensity value stored in 
Hue array is added to the total Ng. The actual three color components values for 
each pixel are mapped into a single color value according to the following 
equation: 

1 1Color = Saturation + N  Luminance + N  N  Hue2  , ……. (4.2) 

where N1 and N2 are the numbers of quantization levels for Saturation and 
Luminance respectively. N3 is not included in the equation. 
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SingleQuanArr: Two dimensional Quantized Array 
Variables 

i,j: arrays indices 
Procedure 

For all i, j do   {where i= 0..W-1, j=0..H-1} 
If HueQuanArr(i, j) >= NHue Then    { Hue is undefined } 

SingleQuanArr(i, j) ← NSat * NLum * NHue + HueQuanArr(i, j) - 
(NHue-1 ) 

Else 
SingleQuanArr(i, j) ←SatQuanArr(i, j)+NSat * LumQuanArr(i,j) +   

(NSat * NLum) * HueQuanArr(i, j) 
End If   

End for 
End  

Pseudo code list (4.8) Single quantized matrix computation routine 
Input  

HueQuanArr, LumQuanArr, SatQuanArr: Two dimensional Quantized Arrays 
representing the three color components  

NHue, NLum, NSat: quantization levels for the three color components 
Output  

4.4.3 Color Histogram and Cumulative Histogram 
As described in subsection (2.5.1), color histogram is easy to compute and 

effective in characterizing the distribution of colors in an image. The single 
quantized matrix resulted from the process described in Pseudo code list (4.8) is 
fed to the histogram computation and normalization routine explained in Pseudo 
code list (4.9), (i.e., the three color components are represented by a condensed 
single component histogram).  

Color histogram is firstly computed and normalized by using this single 
quantized matrix. To achieve high storage and retrieval efficiency, the number of 
histogram bins used is normally much smaller than the total number of colors used 
to represent images. Therefore, a number of adjacent colors have to be grouped 
into one bin. 
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Procedure 
For all i,j do  {where i = 0..W-1,  j = 0..H-1} 

increment HistArr(SingleQuanArr(i, j)) by one 
End For 
For all i do   {where i = 0..Ng - 1} 

HistArr(i) ←  HistArr(i) / (W * H)   
End For 

End 

Pseudo code list (4.9) Histogram computation and normalization 
Input 

SingleQuanArr: Quantized Array 
Ng: number of histogram bins 

Output 
HistArr: normalized histogram Array 

Variables 
i,j: array indices 

 

Color histogram is totally sparse. Hence, any change in lighting conditions 
may cause a shift in the color histogram. This produces misjudged similarity which 
is caused by color shift; as illustrated in Figure (2.12). In contrary, cumulative 
histogram vector is always completely dense and hence less sensitive to noise; see 
subsection (2.5.2). Pseudo code list (4.10) shows the cumulative histogram 
determination steps, where the input is a normalized histogram array resulted from 
the histogram normalization process. 

 

HistArr: normalized Histogram Array 
Ng: number of histogram bins 

Output 
CumulHistArr: Cumulative Histogram Array 

Variables 
i: histogram array index 

Procedure 
 CumulHistArr(0) ←  HistArr(0) 

For all i do   {where i= 1..Ng-1} 
CumulHistArr(i) ←  CumulHistArr(i-1)+HistArr(i) 

End For 
End 

Pseudo code list (4.10) Cumulative histogram routine 
Input 
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4.4.4 Moments  

Only 9 moments (three moments for each of the three color components) 
have been used to represent the color content of each image. Color moments are 
very compact representation compared to other color features. Due to this 
compactness, the discrimination power may be degraded. Usually, color moments 
can be used as the first pass to narrow down the search space before other 
sophisticated color features are used for retrieval. The established moments routine 
is given in Pseudo code list (4.11).  

As discussed in subsection (2.5.3), most of the information is concentrated on 
the low-order moments. Therefore, only the first order (mean), the second 
(variance) and the third order (skewness) color moments were utilized. They 
proved to be efficient and effective in representing color distributions of images [3, 
7]. 

 

  

HueArr, LumArr, SatArr : Arrays representing the three color components  
Procedure 

{Convert RGB model to the selected color model } 
{Branch color model into its three primary components } 

LumArr ←  Luminance color  channel 
SatArr  ←  Saturation color  channel 
HueArr ←  Hue color  channel 

Moments( HueArr, 0, MomArr) {0..3 MomArr values are concluded from 
HueArr} 

Moments (LumArr, 4, MomArr) {4..7 MomArr values are concluded from 
LumArr} 

Moments (SatArr  , 8, MomArr ) {8..11 MomArr values are concluded from 
SatArr} 

End 

Pseudo code list (4.11) Moments determination routine 
Input  
 RGBarr: RGB Image array 
Output  
 MomArr: Moments features Array 
Variables 

 The essence of this routine is the moments computation routine presented in 
Pseudo code list (4.12). 
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sum ←   sum+(ChannelArr(i, j) - MomArr(k)) 2 

End For 
MomArr(k+1) ←   Sqr(sum / (W * H)) 
sum ←   0 
For all i,j do {where i = 0..W-1,  j = 0..H-1} 

sum ←   sum+(ChannelArr(i, j) - MomArr(k)) 3

End For 
MomArr(k+2) ←   (sum / (W * H)) 1/3

sum ←   0 
For all i,j do {where i = 0..W-1,  j = 0..H-1} 

sum ←   sum+(ChannelArr(i, j) - MomArr(k)) 4

End For 
Mom4 ←   (sum / (W * H)) 1/4

kur ←   Mom4 / (MomArr(k+1) 4) 
MomArr(k+3) ←   MomArr(k+1) / (kur 1/4)  { Contrast Feature } 

End  

Pseudo code list (4.12) Moments computation routine 
Input  

ChannelArr: One channel Array 
k: Moment array current index 

Output  
 MomArr: Moments features Array  
Variables 

sum: summation 
i,j: array indices 
Mom4: fourth moment 
kur: kurtosis 

Procedure 
sum ←   0 
For all i,j do  {where i = 0..W-1,  j = 0..H-1} 

sum ←   sum+ChannelArr(i, j) 
End For 
MomArr(k) ←   sum / (W * H) 
sum ←   0 
For all i,j do {where i = 0..W-1,  j = 0..H-1} 

In addition to the first three moments, the contrast feature (which is 
determined from moments features) is added to the moments features vector 
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resulting in 12 features covering the three color channels. Contrast computation is 
formulated in equation (2.35). 

 Each call to the moments routine results in computing four features (the first 
three moments orders and the contrast) for each color component array. So this 
routine is invoked three times for every color model (one time for each color 
component) to set up the moments features vector which consists of 12 features 
elements. 

4.5 Features Vector Normalization 
After the extraction of all features vectors that were mentioned in the 

previous sections, features vectors need to be normalized to specific scale. 
Normalization prepares features vectors for comparison by using a selected 
measure. Normalization process is made by finding the minimum and maximum 
values for each feature. Minimum feature value will be mapped to Zero, while the 
maximum one will be mapped to 100. Other feature values are scaled between 
these two extremes. Knowing ‘min’ and ‘max’ feature values, the ‘Normalized’ 
feature value will be computed as: 

 100Normalized = (ActualValue - min)
max - min

, …………… (4.3) 

The implemented steps of the normalization process are shown in Pseudo code list 
(4.13). 

For the same purpose and within the same stage, the features variance routine 
is called, where the mean and variance of each feature is computed and stored in 
‘MeanArr’ and  ‘VrnceArr’  respectively. Feature variance is used when 
computing distance between any corresponding features vectors, such that the 
individual feature distance is weighted according to the variance of that feature. By 
this improvement Euclidean distance would be computed as follows:  

 

1/ 21 2

0

( )( , )
( )

n
i i

i

P QD P Q
VrnceArr i

−

=

⎛ ⎞−
= ⎜⎜
⎝ ⎠
∑ ⎟⎟ , ...................................... (4.4) 

 81



                                                                                  Chapter Four: The CBIR System 
 

 
P and Q are two features vectors (representing images), each is of n features. 
‘VrnceArr(i)’ is the variance of the ith feature.  
 
 

 

End For 
For all i do  {where i = 0 .. NoClu - 1 } 
  CluArr(i).FeatuVec(k)←(100/(max-min))* 
 (CluArr(i).FeatuVec(k)- min) 
End For 
MinFeatuArr(k) ←  min 
MaxFeatuArr(k) ←  max 

End For 
End 
 

Pseudo code list (4.13) Features vector normalization routine 
Input  

 CluArr: all clusters features Array    {unnormalized } 
Output  

MinFeatuArr, MaxFeatuArr: Arrays of the minimum and maximum features 
value 

CluArr: all clusters features Array      { normalized } 
Variables 

min, max: minimum and maximum feature value 
FeatuNo:  Total Features number 
NoClu: Total Clusters number 

Procedure 
For all k do  { where k = 0 .. FeatuNo - 1} 

min ←  CluArr(0).FeatuVec(k) 
max ←  CluArr(0).FeatuVec(k) 
For all i do  {where i = 1 .. NoClu - 1 } 

If min > CluArr(i).FeatuVec(k) Then  
 min ←  CluArr(i).FeatuVec(k) 
If max < CluArr(i).FeatuVec(k) Then  
 max ←  CluArr(i).FeatuVec(k) 
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4.6 Hierarchical Indexing 
Image retrieval systems that compare the query image exhaustively with each 

individual image in the database are not scalable to large databases. A scalable 
system should ensure that the search time does not increase linearly with the 
number of images in the database. In this research project a clustering based 
indexing technique is introduced, where the images in the database are grouped 
into clusters of images with similar color/texture content using a hierarchical 
clustering algorithm. 

 At search time the query image is not compared with all the images in the 
database, but only with a small subset. The conducted experiments show that this 
clustering based approach offers a superior response time with high retrieval 
accuracy. The clustering must be performed in such a way that the retrieval 
accuracy is not sacrificed in this process. The clustering technique does not 
directly depend on the nature of the applied similarity measure used to compare the 
images, so this technique can be used with most general similarity measures. 

4.6.1 Hierarchical Agglomerative Clustering    
The Hierarchical Agglomerative Clustering (HAC) algorithm is a commonly 

employed classical hierarchal clustering algorithm. The result of HAC is a 
dendrogram representing the nested groups of images. In this work, an improved 
version of HAC algorithm is developed. 

Let n be the number of images in the database, the similarity between all pairs 
of images is precomputed according to selected features. The hierarchical 
clustering is performed as follows: 
1. The n images in the database are placed within n distinct clusters. These 

clusters are indexed by {C0, C1, C2,..., CNoClu -1} where NoClu=n. They are 
stored in CluArr which is an array of records. Each record represents a cluster 
with the following fields: 

id: cluster number. 
NoOfImg: number of images in a cluster. 
ImgArr: one dimensional array holding images pathes. 
FeatuVec: one dimensional array holding image features vector.  
Right: holds the right hand cluster number. 
Left:  holds the left hand cluster number.  
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After this step each image is assigned to single cluster. Each cluster has 
the following information: NoOfImg=1, ImgArr=images identifiers, 
FeatuVec=extracted features, Left= -1, Right= -1.   

2. Any two clusters (k and l) whose distance measure value Dk,l is the minimum 
are picked and lumped (merged) into a new cluster CNoClu+1. This reduces the 
total number of unmerged clusters by one. The new cluster will contain all the 
images that belong to kth and lth clusters. One of the two childs of CNoClu+1 is 
referred to as the right child; Right=k, and the other as the left child; Left=l. 
The similarity measures between the new cluster CNoClu+1 and all the remaining 
clusters are computed. 

3. Step 2 is repeated until the number of clusters is reduced to a certain predefined 
number, or when the largest similarity measure between the tested clusters is 
dropped to some lower threshold.  

General HAC algorithms produce a nested sequence of clusters, with a single 
all-inclusive cluster at the top and single point clusters at the bottom. The 
algorithm is modified to stop when the desired number of clusters is obtained or 
the distance between two closest clusters is above a certain threshold distance. 
After each merge step, the total number of clusters decreases by one. The above 
mentioned step (1) is the basis of the whole clustering process. It is illustrated in 
the Pseudo code list (4.14).  

Figure (4.2) shows a sample of hierarchical clustering with 8 images. Step 1 
produces eight clusters; each cluster has a single image with its extracted features. 
Left and right childs indices are assigned the value (-1). This assignment (i.e., -1) 
will guide the search engine to stop searching down this node when a query image 
is compared along this indexed structure. 
 

  
Figure (4.2) Initial clustering 
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NoClu ← 0   {image counter } 
   For Each ImageFile in FSO do 

NoClu ←  NoClu+1  
read ImageFile data into RGBarr {read image data into an array} 
CluArr(NoClu ).id ←  NoClu  
CluArr(NoClu ).NoOfImg ←  1 
CluArr(NoClu ).ImgArr(0) ←  ImageFile name 
Call features extraction routine  { according to selected color model and 

features type } 
CluArr(NoClu ).FeatuVec ← Extracted features  
CluArr(NoClu ).Right ← -1         
CluArr(NoClu ).Left ←  -1    

        End If 
  End For  
  End 

Pseudo code list (4.14) Initial clustering routine {without merging} 
Input   

 n image files. 
Output 

n clusters ; each of exactly one element (image). 
Variables 

NoClu: no of clusters. 
RGBarr: two dimensional array holding the RGB components of each image 

file. 
CluArr: Clusters Array; one dimensional array of records. Each record 

represents a cluster. Each cluster record has the following fields: 
id: cluster number. 
NoOfImg: number of elements in a cluster. 
ImgArr: one dimensional array which holds the file names of the images 

belong to that cluster 
FeatuVec: one dimensional array holding the image features vector.  
Right: holds the right hand cluster number. 
Left:  holds the left hand cluster number. 

Procedure 
 {Convert images folder to File System Object} 

Set FSO ← File System Object  
   Set Count ←  number of image files in FSO  
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1. Index Construction 

Given the huge number of the registered images in the database and the high 
dimensionality of classical features spaces, it is important to avoid exhaustive, 
linear-time, and direct comparisons. In other words, it is necessary to automatically 
map features vectors into indices which can provide more rapid access to the 
relevant images in the database. In this research work, an approach for computing 
multidimensional indices for an image database was investigated. In addition, the 
process of organizing such indices in a hierarchical tree structure to allow 
logarithmic-time binary search was analyzed.     

In order to perform efficient content-based retrieval from the image database, 
it is necessary to construct a hierarchical index representation. Given a query 
image described by a vector, its index structure should directly point to the classes 
of images similar to this query image. 

2. Hierarchical Index Representation  
Clustering algorithm may represent, simply, a convenient method for 

organizing a large set of data so that the retrieval of information may be made 
more efficiently. Cluster representatives should provide a very convenient 
summary of the database. In another say, it forms a narrowing down phase of the 
whole search space. In this work, cluster representative is its centroid. Index 
structure is an improved indexing scheme where the calculated centroid of each 
cluster is the index.  

Under the root level there is an index array. Each entry of the index array 
holds the unique identification number of each cluster followed by the centroid. 
Centroid may consist of one or more features vectors according to the number of 
used features classes. In the same level, images count and identifiers of all images 
contained in that cluster are defined. Left and right child pointers are also labeled 
according to merging process. Figure (4.3) illustrates the main index structure. 
Index structure contains mother clusters only. Clusters array ‘CluArr’ which was 
previously mentioned has the same structure, but it contains all clusters introduced 
along the clustering process including single image clusters. ‘CluArr’ is the 
reference for the index array. 
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Figure (4.3) Main index structure 

Underneath any cluster entry in the main index array, there is an associated 
binary tree along which an indexed search may be driven; as depicted in Figure 
(4.4). The same structure holds for all parts of the clusters array ‘CluArr’. 
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Figure (4.4) Binary tree structure associated with each mother cluster 
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4.6.2 Distance Matrix 

Hierarchical agglomerative algorithm starts with all the data points as 
separate clusters. A matrix of inter-cluster distance for all singleton clusters is 
computed. The obtained similarity value between cluster i and cluster j is denoted 
by δij. By using certain similarity measure the image similarity between each pair 
of images could be calculated. Then, the Hierarchical Agglomerative Clustering 
algorithm (HAC) is applied to construct a hierarchy.  

Similarity values are normalized usually by mapping and then taking the 
average of the values of all δij, that are obtained from all measurements. 
Normalization is done in a similar way to that applied on the features, which is 
shown in Pseudo code list (4.13). Distance matrix is symmetric; therefore, only the 
upper diagonal part is used to store inter-cluster distances. A clusters pointers array 
is associated with the distance matrix. Each entry in the clusters pointers is pointed 
to the cluster number represented by the corresponding row in the distance matrix. 
Usually the two matrices are updated after each merge process; see Figure (4.6).  

The steps of determination of the clusters distance matrix are listed in Pseudo 
code list (4.15), in which Euclidean distance is used as a distance measure between 
clusters. Other measures may be used instead, as explored in the following articles, 
where the Euclidean distance between different features entities is given. 

  

 

Output 
 DistArr: the resulting Distance matrix 
Variables 
 i,j: array indices 
Procedure
 For each i,j do  {where i = 0.. NoClu - 2 ,  j = 0.. NoClu - 1} 
          DistArr(i, j) = EuclideanDist(i, j) 
 End For 
End  

Pseudo code list (4.15) Clusters distance matrix computation 
Input  

CluArr: Clusters Array; one dimensional array of records. Each record 
represents a cluster 

NoClu: number of clusters 
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1. Euclidean Clusters Distance 

The implementation of the modified Euclidean distance formula (see equation 
(4.4)) is illustrated in Pseudo code list (4.16). Cluster features are always read from 
the clusters array ‘CluArr’, and indexed by the pointers list ‘CluPntr’.  

 

 

End 
 

Return EuclideanDist 
EuclideanDist ←    Sqrt(sum)  
End For 

Sum ← Sum+((CluArr(ClurPntr (id1)).FeaturesVec(k) -  
CluArr(ClurPntr (id2)). FeaturesVec(k)) 2)/VrnceArr(k)) 

For all k features do { where k= 0 .. FeatuNo - 1 } 
Sum ←   0 

Function  
Sum: squared features difference  
k: Feature array index 
VrnceArr: Features Variance Array  
ClurPntr: Cluster Pointer array 
CluArr: Clusters Array; one dimensional array of records (clusters) 

Variables 
EuclideanDist: Euclidean Distance between clusters id1 and id2 

id1, id2: clusters identifier  
Output  

Input 
Pseudo code list (4.16) Euclidean clusters distance function 

 

2. Euclidean Co-occurrence Clusters Distance 
Euclidean distance between the co-occurrence features is computed by using 

a modified way. In order to minimize the variation that may occur in the computed 
distance between the features vectors (due to different image variations), an 
improved method based on choosing a minimum feature group distance is 
introduced. Given four GLCM; ar0, ar45, ar90, and ar135, each co-occurrence 
matrix feature has four feature descriptors participated in the computed features 
vector. Each four elements are representing a single feature, and they are called a 
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feature group; therefore, the total number of elements contained in a features 
vector is a multiple of four. 

 The distance between any two feature groups is measured separately four 
times with different shifts (g) as indicated in Figure (4.5). In each step, the feature 
corresponding index is given by ‘modulo’ variable, while the group indicator is 
given by ‘IntegerPart’ variable; see Pseudo code list (4.17). Out of these four 
determined distances the minimum one is chosen as the actual distance between 
the two tested features groups. The feature corresponding shift pointer is assigned 
to FeturPntr(k), where k is the feature group starting index.   

 
 

 
Figure (4.5) Feature group distance computation 

 

This process is repeated for all feature groups. The determined distances 
‘GroupDist’ for all groups are summed to give the final features vectors distance.  
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For g = 0 To 3  do      { feature shift } 
Dist ←   0 
For i = k To k+3 do { group feature index } 

Modulo ←   (i+g) mod (k+4)     
IntegerPart ←   (i+g) div (k+4)       { integer division }  
SinDist ←   CluArr(ClurPntr(id1)).FeatuVec(i) - 

CluArr(ClurPntr(id2)).FeatuVec(Modulo+IntegerPart*k) 
Dist ←   Dist+(SinDist 2 / VrnceArr(i)) 

 End For 
If Dist < GroupDist Then 

GroupDist ←   Dist 
FeturPntr(k) ←   g 

End If 
 End For 

OccDist ←   OccDist+GroupDist 
End For 
OccDist←   OccDist  1/2 

Return OccDist       { function output } 

End 

i, k: features array index 
g: features group circular index 
SinDist: single feature distance 
Dist, GroupDist: feature group distance 
Modulo: feature corresponded shift  
IntegerPart: feature group indicator 
FeturPntr: feature corresponding shift pointer array 
CluArr: Clusters Array  {one dimensional array of records (clusters)} 
VrnceArr: Features Variance Array  

Function
OccDist ←   0 { total distance } 
For k = 0 .. FeatuNo - 4  step 4 do {each feature group has 4 features } 
 GroupDist ←   100         { initial large value } 

Pseudo code list (4.17) Euclidean co-occurrence clusters distance function 
Input  

id1, id2: clusters identifier  
Output  

OccDist: all features distance 
Variables 
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3. Histogram Intersection Distance 

This distance measure indicates the intersection magnitude between any two 
histograms. The equivalence is designated with similarity value 1, and the 
similarity between the two histograms decreases when its value approaches 0. Both 
of the histograms must be of the same size to have a valid similarity value.  

Let H1[1..n] and H2[1..n] denote two histograms of size n, and δH1 ,H2  denote 
the similarity value between H1 and H2. Then, this similarity can be expressed by 
the following formula [30, 93]:  
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Hence, the distance between histograms H1 and H2 could be expressed as: 

1 2 1 2, 1H H H HD ,δ= −    ,    ……………………… (4.6) 

A special case of the histogram intersection method is the L1 distance 
measure introduced in equation (2.23). Its performance is compared to the previous 
one in chapter five. The implementation of histogram intersection distance method 
is described in Pseudo code list (4.18).  

 

 

Variables 
CluArr: Clusters Array; one dimensional Array of records (clusters) 
ClurPntr: Distance Matrix Cluster Pointer 
HistVec: Histogram Vector sub array 
i: Histogram bin index 
IntersecSum: Histograms Intersection 
sum1, sum2: Histogram summation 

Procedure 
IntersecSum ←   0 

Pseudo code list (4.18) Histograms intersection distance function 
Input  

id1, id2: clusters identifier 
Ng: number of histogram bins  

Output  
HistDist: Histograms Distance final output 
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For all i  ‘histogram bins’ do { where i = 0 .. Ng - 1 } 
sum2 ←   sum2+CluArr(ClurPntr(id2)).HistVec(i) 

End For 
FinalIntersec ←   IntersecSum / min(sum1, sum2) 
HistDist ←   1 - FinalIntersec 
Return HistDist 

End 

continued 
For all i  ‘histogram bins’ do { where i = 0 .. Ng - 1 } 

IntersecSum ←IntersecSum+min(CluArr(ClurPntr(id1)).HistVec(i), 
CluArr(ClurPntr(id2)).HistVec(i)) 

End For 
sum1 ←   0 
For all i  ‘histogram bins’ do { where i = 0 .. Ng - 1 } 

sum1 ←   sum1+CluArr(ClurPntr(id1)).HistVec(i) 
End For 
sum2 ←   0 

4.6.3 Clusters Lumping 
Clusters merge is the core step in the whole clustering process. It involves 

merging of the two clusters which are the most similar pair in the distance matrix. 
This process is visualized in Figures (4.6) and (4.7). The algorithm starts with 
searching the proximity matrix to find the smallest element. Smallest element 
means the most similar images that can be lumped in one cluster. Once they are 
found, they will be merged and considered as a single object in the next step.  

By searching ‘DistArr’, it is found, for example, that clusters 5 and 9 are the 
closest. Then, a merging process is performed by merging C5 and C9 into a new 
cluster C12. Afterwards, both C5 and C9 are deleted from ‘DistArr’ and ‘ClurPntr’, 
but they aren’t removed from the clusters array ‘CluArr’. This is done by vertical 
and horizontal crawling processes, which simply involve moving of the next 
clusters in places of the deleted clusters in both ‘ClurPntr’ and ‘DistArr’. C12 is 
pointed-to by ClurPntr(10)( i.e., it is now represented by row 10 in ‘DistArr’).  

 93



                                                                                  Chapter Four: The CBIR System 
 

Distance Matrix  ( DistArr)Cluster Pointer (ClurPntr)

0

1

2

3

4

5

6
7

8

9

10

0 1 2 3 4 5 6 7 8 9 10 11

11

VC: Vertical Crawl

HC

VC

HC: Horizontal Crawl

VC

 

Figure (4.6) Distance matrix update 

 
 

 
(a) 

 

 
(b) 

Figure (4.7) Clusters merging process with HAC;  
(a) Initial images (clusters), (b) Final clusters. 
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Clustering process is continued in this way, as depicted in Figure (4.7), 
merging the next nearest clusters according to their inter-clusters distance in the 
‘DistArr’. Merging stage is stopped when reaching one of those stopping 
conditions explained earlier. For this example, each merged cluster has an 
identification number, and contains a set of images as summarized in Table (4.2). 
Each mother cluster has an associated binary tree in which left and right childs 
refer to other trees in the hierarchy. The clustering process results in the mother 
clusters: C18,C19,C20. These three clusters are listed in the index array, so that query 
search will be driven by their associated binary trees. 

 

 
Table (4.2) A sample of clusters data 

 

 

 

Merged No. of images Images in Left Right 
cluster no. in cluster cluster child child 

12 2 {5,9} 5 9 

13 2 {0,4} 0 4 

14 2 {8,11} 8 11 

15 2 {6,7} 6 7 

16 3 {1,5,9} 1 12 

17 5 {1,5,6,7,9} 16 15 

18 3 {2,8,11} 2 14 

19 2 {3,10} 3 10 

20 7 {0,1,4,5,6,7,9} 13 17 

The implementation steps of the clusters merging process are demonstrated in 
Pseudo code list (4.19). It comprises a number of subroutine calls.  
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 CluArr(ClurPntr (id2)).NoOfImg 
ComputeClusterCentroid (id1, id2) 
MergeClustersFiles (id1, CluArr(ClurPntr (id1)).NoOfImg, id2,  
  CluArr(ClurPntr (id2)).NoOfImg) 
CluArr(NxtClu).id ←  NxtClu     
CluArr(NxtClu).Left ←  ClurPntr (id1) 
CluArr(NxtClu).Right ←  ClurPntr (id2) 
HorizontaCrawl (DistArr, id1)  
VerticalCrawl (DistArr, id1) 
HorizontaCrawl (DistArr, id2 - 1)  
VerticalCrawl (DistArr, id2 - 1) 
NoClu ←  NoClu - 1                      { clusters number reduced } 
ClurPntr (NoClu - 1) ←  NxtClu 
For each i  do { where i= 0 .. NoClu - 2 } 

DistArr(i, NoClu - 1) ←  100 / (MaxDistArr - MinDistArr) *  
 (EuclideanDist (i, NoClu - 1)-MinDistArr)) 

End For 
NxtClu ←  NxtClu+1 {next new cluster that will result from  

End While     the next merge iteration } 
End 

CluArr: Clusters Array {dynamic array is expanded} 
Variables 

id1, id2: the currently merged clusters identifiers  
ClurPntr: Distance Matrix Cluster Pointer 
MinDist: Minimum Distance 
NoClu: current number of clusters 
NxtClu: number of the next cluster to be merged  
NoMothClus: number of desired mother clusters 

Procedure 
MinDist ←  0 
While (NoClu > NoMothClus) Or (MinDist < Threshold) do 

FindMinimumDist (DistArr, MinDist, id1, id2) 
Expand  CluArr(NxtClu+1)    {expand dynamic array by one} 
CluArr(NxtClu).NoOfImg ←  CluArr(ClurPntr (id1)).NoOfImg+ 

Pseudo code list (4.19) Clusters merge routine 
Input  
 CluArr: Clusters Array; one dimensional array of records (clusters) 
Output  
 DistArr: Distance Matrix 
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First step in merging process is finding out the minimum value in the 
‘DistArr’. The involved steps of finding minimum distance routine are listed in 
Pseudo code list (4.20). The two clusters with the minimum distance are lumped in 
a new cluster each time; hence, the clusters dynamic array ‘CluArr’, is expanded in 
every iteration. The number of mages in new cluster is the total images in its left 
and right childs clusters.  

 

i,j: Distance Matrix indices 
Procedure 

MinDist ←  DistArr(0, 1)  { initial value } 
id1 ←  0 

 id2 ←  1   
 For each i, j do  {where i = 0.. NoClu-2 , j = 0.. NoClu-1} 

If DistArr(i, j) < MinDist Then 
MinDist ←  DistArr(i, j) 
id1 ←  i 
id2 ←  j 

End If 
End For 

End  

Variables 
MinDist: Minimum Distance 
id1, id2: identifiers of the two clusters with MinDist  

Output  
DistArr: Distance Matrix 

Input  
Pseudo code list (4.20) Find minimum distance procedure    

The subroutines compute cluster centroid and merge clusters files are listed 
in the following article. The left and right childs of the new cluster point to the two 
clusters that produced it. Finally, the new cluster distances to all remaining clusters 
are computed and appended to the distance matrix. 

1. Merged Cluster Data Computation 
The centroid-based method calculates the distance by using only the centroid 

of a cluster (the mean of all the points in the cluster). The new cluster centroid is 
computed by averaging its two childs centroids. This what is exactly performed in 
Pseudo code list (4.21). 
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FeatuVec: one dimensional array holding centroid features vector  
Variables 

k: features vector index 
Procedure

For all k do   { where k= 0.. FeatuNo-1 } 

CluArr(NxtClu).FeatuVec(k) ← CluArr(ClurPntr(id1)).FeatuVec(k)+   
CluArr(ClurPntr(id2)).FeatuVec(k)) / 2 

End For 
End 

Pseudo code list (4.21) Compute cluster centroid routine 
Input  

id1, id2: identifiers of the two clusters to be merged 
NxtClu: identifier of the new cluster 

Output  

 

Images contained in the two childs clusters are collected into their parent new 
merged cluster as implemented in Pseudo code list (4.22). 

 

 

Pseudo code list (4.22) Merge clusters files routine 
Input  

id1, id2: the currently merged clusters identifiers  
n1, n2: nos. of image files to be merged in id1, id2 clusters respectively 

 NxtClu: the new cluster number  
Output  
 ImgArr: image files Array of the new cluster 
Variables 
 i: image files counter 
Procedure 

For all i do  {where i= 0..n1-1 }  
 CluArr(NxtClu).ImgArr(i) ←  CluArr(ClurPntr(id1)).ImgArr(i) 
End For 
For all i do  {where i= n1..n1+n2-1 }  
 CluArr(NxtClu).ImgArr(i) ←  CluArr(ClurPntr(id2)).ImgArr(i-n1) 
End For 

End  
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2. Vertical and Horizontal Crawl Implementation 

As depicted in Figure (4.6), the vertical and horizontal crawl is a process of 
removing childs of each newly merged cluster from the distance matrix ‘CluArr’, 
and the clusters pointers array ‘ClurPntr’. The new cluster pointer is added to 
‘ClurPntr’. Crawling is a shifting of the remaining clusters over the deleted ones in 
both vertical and horizontal directions; see Pseudo code lists (4.23) and (4.24).  
 

 
 

 

Pseudo code list (4.24) Horizontal crawl routine 
Input  

id: id. of cluster to be deleted 
DistArr: Distance matrix 

Output  
DistArr: Distance matrix   {reduced} 

Variables 
i,j: Distance matrix indices 

Procedure 
 For each i,j do  {where i = 0.. NoClu-2 , j = id.. NoClu-2} 

 DistArr(i, j) ←  DistArr(i, j+1) 
End For 

End  

Pseudo code list (4.23) Vertical crawl routine 
Input  

id: id. of cluster to be deleted 
DistArr: Distance matrix 

Output  
DistArr: Distance matrix   {reduced} 
ClurPntr: Clusters Pointers array 

Variables 
i,j: Distance matrix indices 

Procedure 
 For each i,j do  {where i = id.. NoClu-2 , j = id+1.. NoClu-1} 

 DistArr(i, j) ←  DistArr(i+1, j) 
End For 
ClurPntr(i) ←  ClurPntr(i+1)    { because here row(cluster) is deleted } 

End  
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4.7 Query Processing 
The query search algorithms in this project use the indexing structure that was 

built during HAC process. The index array which contains the mother clusters and 
the binary tree associated with each one is the basis for query processing. Index 
array and binary trees both reference all clusters array ‘CluArr’. Once the index 
and trees are constructed for the whole database, they can be used to rapidly 
extract the images that are most similar to the query image. This is done by passing 
through the clusters and their sub-clusters that are closest to the query image. Each 
image is displayed through its image file name (accompanied with the full path) 
that refers to this individual image in the matched cluster. 

4.7.1 Query Image Search  
There are two ways; rather different, to search for query image using the 

binary trees resulting from the hierarchical index construct. These two ways are the 
Wide Search algorithm and the Narrow Search algorithm. The reason behind using 
these two different search algorithms is explained in the sample clusters shown in 
Figure (4.8). 

In this example, a query corresponding image is located in mother cluster C3. 
The Narrow Search algorithm will reach this particular cluster containing that 
image, the query result will be determined by cluster 3 only. So the retrieval result 
will be a subset or all of C3 elements according to the cluster size and the desired 
number of retrieved images from any query instance. Sometimes, some of images 
that are closer to the query image are out of C3; eventually, they are located in C1, 
C2, and C4. Wide Search algorithm is adopted to handle this image retrieval 
problem, where more than one mother cluster is chosen according to its distance 
from query image. 

Here, the distance is computed between the query image and the centroids of 
all mother clusters. A subset of clusters with minimum distance to image query is 
chosen, and all images in these clusters are compared exhaustively with the query 
image. Images in these clusters are ranked according to their distance from query. 
Then, a subset of these images (that are most similar to the query image) is 
displayed as the query result. 
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Figure (4.8) A sample of Hierarchical Agglomerative Clustering 

1. Narrow Search scheme  
 The retrieval procedure used in this method is as follows. First, a features 

vector of the query image is computed. Then, the search starts by comparing the 
features vector of query image with all mother clusters centroids. The cluster with 
the closest centroid is selected, and the search continues down to its binary tree 
childs; as depicted in Figure (4.9).  

Beginning with the root node of the selected mother cluster, the algorithm 
computes the distances between the query image and the centroids of the two 
clusters represented by the childs nodes; left and right. The closest child is chosen 
and the search continues recursively underneath its node. The search stops when 
the calculated distance reaches a predefined threshold or when number of images 
in the current tested cluster is equal to the predefined number of images that could 
be retrieved by query. The pointers to the individual images stored in the selected 
node are then used to access and display the retrieved images to the user. 

Find closest mother cluster to query is a simple sequential search over mother 
clusters centroids. This routine results in finding the mother cluster closest to the 
query image. 
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Figure (4.9) Narrow search scheme 

 
The mother cluster number is then sent to the recursive search within cluster 

function that is presented in Pseudo code list (4.25), for retrieving the most similar 
images to query as explained in the previous paragraph.  

 

Match: index of mother cluster closest to query 
NoElmInMatchClu: number of element wanted in small cluster 

Output 
Match: index of a cluster (underneath the mother cluster) closest to query 

Variables 
LefDist: Distance of query image from the Left child 
RigDist: Distance of query image from the Right child 

Function 
If CluArr(Match).NoOfEle > NoElmInMatchClu Then 

 { it is a large merged cluster; it should be fragmented} 

Pseudo code list (4.25) Recursive search within cluster function 
Input  
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       continued 
LefDist ← EucleadianDist(Query,CluArr(Match).Left) 
RigDist ← EucleadianDist (Query,CluArr(Match).Right) 
If LefDist < RigDist Then   { Left child is closer } 

SearchWithinCluster ← SearchWithinCluster(CluArr(Match).Left) 
Else               { Right child is closer } 

 SearchWithinCluster ← SearchWithinCluster(CluArr(Match).Right) 
End If 

Else 
Return Match 

End If 
End

2. Wide Search scheme 
 All mother cluster centroids within the index array are compared and 

prioritized according to their distance from the query image descriptors. The 
cluster containing the centroid with the shortest distance to the query descriptor is 
the first one to be examined. All images in this cluster are compared with query 
image. Then the cluster with the second shortest distance to image query is taken 
next and so on; as depicted in Figure (4.10).  

 
 

 
Figure (4.10) Wide search scheme 
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During the process of comparison between nearest neighbor clusters and 

query image, an array of size n (where n is the number of required images from 
query) is built and ranked according to distance from query. This list is displayed, 
in the final stage, to the user as the query result. 

A part of the algorithm concerning finding the subset of closest mother 

clusters to query image is shown in Pseudo code list (4.26). 
 

Pseudo code list (4.26) Find closest mother clusters subset to query 
Input  

ClurPntr: Distance Matrix Cluster Pointer 
NoClu: number of clusters yielded from merge 

Output 
 CluList: Clusters List sorted according to distance from Query 

Variables 
i: clusters index 

Procedure 
For all i  do  { where i= 0 .. NoClu - 1 } 

CluList(i).Dist ←  EuclideanDist(Query, ClurPntr (i)) 
 CluList(i).Match ←  ClurPntr (i) 
End For 
InSort (CluList, NoClu)   {sort clusters according to distance from Query} 

End  

 
According to their distance from query, clusters and images sorting is always 

done by the insertion sort. It is the fastest sorting method for number of 
elements<=25 [80]. The second part of the algorithm that is concerned with the 
searching within closest clusters subset is described in Pseudo code list (4.27). 

 
 

 

 104



                                                                                  Chapter Four: The CBIR System 
 

 

Pseudo code list (4.27) Search within closest clusters subset  
Input 

CluList: Clusters List sorted according to distance from Query:  
 s) CluArr: Clusters Array; one dimensional array of records (cluster
Output  

ImgList: Images List sorted according to distance from Query 
Variables 

i: Clusters index 
s in on cluster 

g given image 

Pro

j: index for image
Match: Cluster identifier matchin
ImgCount: Count of images closest to Query. 
cedure 

ImgCount ←  0 
{where i= 0 .. DesNoClu   (desired number of clusters) and j= 0 .. 

 
Match ← F

End Fo
gList, ImgCount){sort images according to distance from Query} 

End

For all i, j do   
CluArr(CluList(i).Match).NoOfImg - 1 ;   
j  is number of images within cluster } 
indMatch(CluArr(CluList(i).Match).ImgArr(j)) 

ImgList(ImgCount).Dist ← EuclideanDist(Query, Match) 
ImgList(ImgCount).Match ← Match 
ImgCount ← ImgCount + 1 
r 

InSort (Im
  

 
Find Match function finds every image indicator in the clusters array ‘CluArr’, in 
order to reach the image data; especially its features vector. This is done by 
searching through singleton clusters only. Features vectors are used in comparison 
between query image and other images.   

4.7.2 Clusters Exploring 
Clusters built during HAC process can be explored and the images contained 

within each cluster are visualized. This is done by the recursive show clusters 
routine illustrated in Pseudo code list (4.28). A call to this routine will cause an 
increment in the counter of images displayed yet in a window and a decrement in 
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the number of remaining images in that cluster. Increment and decrement steps are 
made by one in each call.  

 

 “stop recursive call”} 
End If 

End

Pseudo code list (4.28) Recursive show clusters routine 
Input  

i: number of cluster to be shown 
Counter: counter of images displayed  
No: number of images in cluster 

Output  
Cluster images are displayed 

Variables 
 No variables used 
Procedure 

If (No >= 0) and (Counter <= 18) Then {18 images in window } 
DisplayImage(CluArr(i).ImgArr(No)) 
DisplayName(CluArr(i).ImgArr(No)) 
ShowCluster (i, Counter + 1, No - 1) { recursive call } 

ElseIf (No >= 0) and (Counter > 18) Then  
Prompt ‘This cluster has more than one window’ 
Clear Images in this window  
ShowCluster (i, 1, No)  { recursive call } 
ElseIf (No < 0) then  { do nothing, i.e,  

4.8 Features Combinations Based Retrieval 
Several retrieval methods have been adopted and applied separately. These 

methods imply the use of Co-occurrence Matrix ‘CO’, Correlogram ‘CR’, 
Cumulative Histogram ‘CH’, and Moments ‘Mom’. Also, different combinations 
of them were experimented with. The studied features combinations schemes are 
listed in Table (4.3). The determination of these combined schemes imposes some 
modifications upon the different routines and functions mentioned above, where 
these codes assume single features type for simplicity. 
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Table (4.3) Features combinations schemes 

No. of 
Methods 

CO CR CH Mom
Retrieval 
Method 

1 √    CO 

1  √   CR 

1   √  CH 

1    √ Mom 

2 √  √  CO + CH 

2  √ √  CR + CH 

2 √   √ CO + Mom 

2  √  √ CR + Mom 

2   √ √ CH + Mom 
 

The modifications needed to implement the combined retrieval schemes 
could be summarized in the following points: 

1. Another features extraction routine should be implemented for the added 
features type. These added features are stored in another features vector which 
belongs to the same cluster. 

2. Two distance matrices were used; one for each features vector. They will be 
unified into one matrix by computing the average of the corresponding entries 
in the two matrices.   

3. When a pair of clusters is merged, two centroids should be computed for the 
new cluster; one for each of the two features vector. 

4. The measurement of the new cluster distance, relative to all remaining clusters, 
should be done by using the corresponding two features vectors. 

5. In the query processing stage, the two features vectors should be extracted from 
the query image and take place in comparison and distance computation along 
the index structure. 

 107



 

Chapter Five 

Retrieval Performance Evaluation 
 

5.1 Introduction 
This chapter describes two lines of experiments. First, a test is done on gray 

images to determine the optimal configuration for the co-occurrence matrix 
features in a texture analysis task; similar analysis is done to evaluate the 
correlogram performance on colored textures. Second, an automatic evaluation 
module is built to assess image retrieval task using different color models with 
different quantization schemes applied with the features extraction methods.  

As a whole, a total of 164 different configurations were evaluated to assess 
their suitability for color/texture based retrieval tasks using Hierarchical 
Agglomerative Clustering.  

5.2 Automatic Evaluation Module 
Once a content-based image retrieval application has been developed, the 

next crucial step is how to evaluate its performance, in terms of both retrieval 
effectiveness and complexity. In order to measure the effectiveness of the 
algorithms, precision and recall metrics have been used which provide a clear, 
overall indicator to their performance. 

Several features extraction schemes were investigated separately. In 
addition, different combinations of them could also be experimented. More than 
single distance metrics was applied according to selected features, while the index 
construction task by using HAC algorithm is the same for all retrieval schemes.  

Two searching algorithms for specific query type were compared to search 
through this index structure. They are the Wide search and Narrow search 
algorithms. In conclusion, multiple retrieval schemes were experimented and 
compared along the evaluation process. 

Taking the retrieved images resulting from each retrieval scheme; an 
automatic evaluation module was built to assess its retrieval performance. In this 
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module (see Figure 5.1) a set of 12 images are used as queries in each test. The 
Precision (P) and Recall (R) metrics from each query result have been averaged 
across the whole test. Samples of P&R values resulting from a single query are 
given in Appendix A (Table A.1). A user enters a query image describing the 
desired information. The system returns a list of images– begins with exact 
match, followed by a ranked list according to relevance. Ranking is based on the 
similarity of the query to the images set. 

By using binary relevance judgments, any image is either relevant or 
irrelevant to the query image (i.e., relevant=1, irrelevant=0). In order to improve 
the evaluation, the retrieval process is performed several times for different 
randomly picked query images, since different queries may lead to different 
precision and recall values. 

 

Image Retrieval 
Black Box 

Query

Ranked List

Images

Evaluation 
Module 

Measure of Effectiveness

Relevance Judgments 

  
Figure (5.1) Automatic evaluation module 

 
In the evaluation experiments, a set of 26 different images was selected. 

From each image in this set, a new set of 6 images was generated by adding 
noise, up-scaling, down-scaling, rotation, and exposure variation.  This process 
establishes a set of 156 tested images. Each original image will have six 
variations (versions) considered as a single cluster. The parameters that control 
the generated images are repeated for the whole set. These parameters include the 
percentage of up/down scaling, the range of the uniform noise, the rotation angle, 
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and the changes in exposure components (Hue, Saturation, and Value). One of the 
base images and its variations are shown in Table (5.1). 

All sample images have been clustered by the system. Single cluster and one 
query result are shown in Figure (5.2). More results are listed in Appendix B. 

5.3 Retrieval Efficiency and Effectiveness 
The two major aspects of retrieval evaluation are efficiency and 

effectiveness. Efficiency is expressed in terms of system speed. Speed is rather 
technical and relatively easier to evaluate. Effectiveness is much more difficult to 
judge. It evaluates “how good is the result”. It is related to the relevancy of 
retrieved items to the query image. Focus will be on effectiveness evaluation. 

Table (5.1) Generated images for a single cluster 

Image Image id. Description 

 

0_aaaq original image 

 
d_aaaq down-scaled 

u_aaaq up-scaled 

 

n_aaaq noise-added 

 

r_aaaq rotated 

 

e_aaaq exposure-varied
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An important notion in CBIR task is the complexity of the retrieval process. 
This can be interpreted by time, computational, and storage complexity. Time 
complexity denotes the time needed to conduct the required calculations. 
Computational complexity is defined as the number of steps or arithmetic 
operations in which the process is done. Storage complexity refers to the memory 
space required during the execution of the process. 

 

 
 (a) 

 
 (b) 

Figure (5.2) Sample retrieval output; 
(a)  A cluster resulted by applying GLCM− 8 bins scheme based on LAB. 
(b) A query result by applying correlogram− 6×3×3 bins & cumulative 

histogram− 18×3×3 bins scheme based on HVC. 
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Time complexity depends on both software (i.e., computational complexity) 
and hardware constraints (e.g., speed and access-time of hard-disks). Concerning 
the hardware, it is fully dependent on the industrial developments. 

For CBIR purposes, the computational complexity mainly depends on the 
size of the feature representation and on the matching algorithm for these 
features. In realistic applications, the features for each image listed in the database 
are calculated offline. Next, only query image retrieval based on these features is 
performed at operating. As a method of comparison, time complexity may suffice 
as an indicator for algorithm efficiency.  

5.4 Single Value Measures 
Sometimes it is convenient to encapsulate precision and recall values into a 

single value that gives a compact and easy to understand clue about any retrieval 
scheme performance. 

In addition to the Mean Average Precision (MAP) and F-measure that were 
presented in section (3.7), R-precision is another metric which refers to the Rth 
position in the ranking of results for a query that has R relevant images. This is 
indicated in the sample query result shown in Table (5.2). 

Table (5.2) Precision at R relevant images 
n image # relevant 
1 58 √ 
2 89 √ 
3 76   
4 90 √ 
5 86   
6 92 √ 
7 84   
8 88   
9 57   
10 98   
11 10   
12 91   
13 77 √ 
14 99   

  
 

One can fix the number of images retrieved at several levels (for example: 
top 5 and top 10). Afterward, precision is measured at each of these levels. R-
Precision is computed over multiple queries at 5 and 10 retrieved images in Table 
(5.3). More details about precision and recall computation are found in Appendix 
A. 
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Table (5.3) Precision at different relevant images 
 Query 1 Query 2 Query 3 

f1 √  f10 ×  f6 ×  

f2 √  f9 × √ f1  

f3 √  f8 × √ f2  

f4 √  f7 ×  f10 ×  

f5 √  f6 ×  f9 ×  

f6  f1 × √  f3 √  

f7  f2 × √  f5 √  

f8  f3× √  f4 √  

f9  f4 × √  f7 ×  

f10  f5 × √  f8 ×  
1.0 0.0 0.4 
0.5 0.5 0.5 

√ 
× 

 
 

The MAP and F-measure is adopted in the evaluation phase of this research. 
The average precision of a single query at 6 retrieved images is presented in 
Table (5.4). 

Table (5.4) Performance measures computed for a single query. 
n Relevant Recall Precision F-Measure image id.
1 Y 0.17 1.00 0.29 0_aaai.BMP
2 Y 0.33 1.00 0.50 d_aaai.BMP
3 Y 0.50 1.00 0.67 r_aaai.BMP
4 Y 0.67 1.00 0.80 n_aaai.BMP
5 Y 0.83 1.00 0.91 e_aaai.BMP
6 N 0.83 0.83 0.83 u_aaav.BMP
7 N 0.83 0.71 0.77 r_aaat.BMP
8 N 0.83 0.63 0.71 0_aaat.BMP
9 N 0.83 0.56 0.67 n_aaat.BMP
10 N 0.83 0.50 0.63 d_aaat.BMP

 

Twelve queries were used in each test. The MAP over these queries is 
computed as a final mark of each scheme performance. This is explained in Table 
(5.5). 
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Table (5.5) MAP over multiple queries for different retrieval schemes 

Q1 Q2 Q12

Scheme 1 0.91 0.97 0.84 0.94

Scheme 2 0.82 0.94 0.97 0.90

Scheme 9 0.88 0.92 0.94 0.92

MAPRetrieval 
Shceme

Average Precision at 6 retrieved images

 

5.5 GLCM and Color Correlogram Features Selection 
There are four Gray Level Co-occurrence Matrices (GLCM); ar0, ar45, 

ar90, and ar135, for angles 0, 45, 90, and 135 respectively. Therefore, each co-
occurrence matrix feature has four feature descriptors in the computed features 
vector. This is called a feature group. Sometimes, in texture analysis, it is 
convenient to use the distances between features groups midpoints (groups’ 
averages or centroids) instead of the distances of the features individually. 

Co-occurrence matrix features distance can be computed in rather two 
different ways; feature average distance and feature group distance as introduced 
in articles 1 and 2 in subsection (4.6.2) respectively. Feature average scheme 
gives a compact features vector where each four feature descriptors are 
encapsulated into a single one (average). The two distance computation schemes 
were compared along each retrieval test when it was found applicable.  The same 
route was followed for the color correlogram. 

In this assessment, a combination of best texture features which have 
performed best for gray texture analysis is determined. Concerning the GLCM, 
the intensity values are quantized into 4, 8, 16, 32, or 64 bins using five color 
spaces. No instance has indicated that the use of a large number of bins gave a 
better result. This is consistent with the notion of the existence of a limited 
number of color categories in which humans represent colors. The co-occurrence 
matrix is calculated with distances 1, 2, 3, and 4. The most suitable distance is 2 
according to the selected texture domain.  
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The intensity-based co-occurrence matrix features were tested over different 
color spaces with different quantization schemes. The Gray color model 
quantized into 8 bins performed best with a classification performance of 92% 
using feature group distance (as shown in Table 5.6), and 88% by using feature 
average distance (as shown in Table 5.7). The chosen quantization scheme is 
important; that is, a lower number of bins leads to better performance. 
 

Table (5.6) Classification performance for the GLCM  
(with Gray− 8 bins)  by using feature group distance 

 

correct classification percentage according to features range (r) 
f. f. 

no. one 
f. 

two  
fs. 

three 
fs. 

four  
fs. 

five  
fs. 

six  
fs. 

seven 
fs. 

eight 
fs. 

ASM 1 0.69 
r=[1] 

0.77 
r=[1,2] 

0.80 
r=[1,3] 

0.80 
r=[1,4] 

0.80 
r=[1,5] 

0.84 
r=[1,6] 

0.92 
r=[1,7] 

IDM 2 0.65 
r=[2] 

0.73 
r=[2,3] 

0.80 
r=[2,4] 

0.84 
r=[2,5] 

0.88 
r=[2,6] 

0.92 
r=[2,7] 

COR 3 0.65 
r=[3] 

0.77 
r=[3,4] 

0.77 
r=[3,5] 

0.84 
r=[3,6] 

0.88 
r=[3,7] 

SHD 4 0.73 
r=[4] 

0.77 
r=[4,5] 

0.80 
r=[4,6] 

0.84 
r=[4,7] 

PRM 5 0.61 
r=[5] 

0.73 
r=[5,6] 

0.77 
r=[5,7] 

ENT 6 0.73 
r=[6] 

0.69 
r=[6,7] 

HOM 7 0.65 
r=[7] 

CON 8 0.61 
r=[8] 

0.73 
r=[7,8] 

0.77 
r=[6,8] 

0.84 
r=[5,8] 

0.84 
r=[4,8] 

0.88 
r=[3,8] 

0.92 
r=[2,8] 

0.88 
r=[1,8] 

  f=feature      fs=features          r=features range 
 

 
Table (5.7) Classification performance for the GLCM  
(with Gray− 8 bins) by using feature average distance 

 

correct classification percentage  
according to features range (r) f. f. 

no. four  
fs. 

five  
fs. 

six  
fs. 

seven 
fs. 

eight  
fs. 

ASM 1 0.73 
r=[1,4] 

0.77 
r=[1,5] 

0.80 
r=[1,6] 

0.88 
r=[1,7] 

IDM 2 0.77 
r=[2,5] 

0.84 
r=[2,6] 

0.88 
r=[2,7] 

COR 3 0.73 
r=[3,6] 

0.80 
r=[3,7] 

SHD 4 0.73 
r=[4,7] 

PRM 5 
ENT 6 
HOM 7 
CON 8 

0.69 
r=[5,8] 

0.77 
r=[4,8] 

0.84 
r=[3,8] 

0.84 
r=[2,8] 

0.84 
r=[1,8] 

 115



            Chapter Five: Retrieval Performance Evaluation  
 

Regarding the color correlogram, several quantization schemes were applied 
to the five color spaces, and the efficient human-based 9 colors and 11 colors 
categories. The HVC color model quantized into 18×3×3 bins  and 6×3×3 bins 
gave best classification result: 92% when using feature group distance (as shown 
in Table 5.8), and 88% when using feature average distance (as shown in Table 
5.9).  

Table (5.8) Classification performance for the color correlogram 
with (HVC− 18×3×3  bins) using feature group distance  

correct classification percentage according to features range (r) 
f. f. 

no. one 
f. 

two  
fs. 

three 
fs. 

four  
fs. 

five  
fs. 

six  
fs. 

seven 
fs. 

eight 
fs. 

ASM 1 0.38 
r=[1] 

0.69 
r=[1,2] 

0.77 
r=[1,3] 

0.80 
r=[1,4] 

0.84 
r=[1,5] 

0.92 
r=[1,6] 

0.88 
r=[1,7] 

IDM 2 0.54 
r=[2] 

0.77 
r=[2,3] 

0.84 
r=[2,4] 

0.84 
r=[2,5] 

0.88 
r=[2,6] 

0.92 
r=[2,7] 

COR 3 0.38 
r=[3] 

0.69 
r=[3,4] 

0.77 
r=[3,5] 

0.84 
r=[3,6] 

0.88 
r=[3,7] 

SHD 4 0.54 
r=[4] 

0.69 
r=[4,5] 

0.80 
r=[4,6] 

0.84 
r=[4,7] 

PRM 5 0.54 
r=[5] 

0.73 
r=[5,6] 

0.77 
r=[5,7] 

ENT 6 0.58 
r=[6] 

0.73 
r=[6,7] 

HOM 7 0.38 
r=[7] 

CON 8 0.54 
r=[8] 

0.54 
r=[7,8] 

0.73 
r=[6,8] 

0.77 
r=[5,8] 

0.84 
r=[4,8] 

0.88 
r=[3,8] 

0.92 
r=[2,8] 

0.88 
r=[1,8] 

 
 

Table (5.9) Classification performance for the color correlogram 
with (HVC− 6×3×3  bins) by using feature average distance 

correct classification percentage  
according to features range (r) f. f. 

no. four  
fs. 

five  
fs. 

six  
fs. 

seven 
fs. 

eight  
fs. 

ASM 1 0.73 
r=[1,4] 

0.77 
r=[1,5] 

0.88 
r=[1,6] 

0.88 
r=[1,7] 

IDM 2 0.77 
r=[2,5] 

0.80 
r=[2,6] 

0.88 
r=[2,7] 

COR 3 0.77 
r=[3,6] 

0.84 
r=[3,7] 

SHD 4 0.73 
r=[4,7] 

PRM 5 
ENT 6 
HOM 7 
CON 8 

0.69 
r=[5,8] 

0.80 
r=[4,8] 

0.84 
r=[3,8] 

0.88 
r=[2,8] 

0.84 
r=[1,8] 
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The classification task was performed by using different possible 
combinations of GLCM features. Six of the eight used features are found to be the 
strongest descriptors of texture. They are the Inverse Difference Moment (IDM), 
Haralick’s Correlation (COR), Cluster Shade (SHD), Cluster Prominence (PRM), 
Entropy (ENT), and Homogeneity (HOM). Using all these features in one time 
may result in a lower classification percentage.  

5.6 Comparison of Image Retrieval with Different Schemes 
Several configurations have been investigated; some of the image retrieval 

experiments are listed in the following subsections. The key factors of each 
configuration can be described by the color/texture analysis algorithm, the color 
space, and the used quantization scheme. For all features extraction methods, the 
color spaces HVC, HSV, HLS, LAB, RGB, and Gray were considered. In 
addition, both the cumulative histogram and the color correlogram are 
experimented with the human-based 9 colors and 11 colors categories. It is 
investigated that the former proved to have a good performance. 

The GLCM, color correlogram, cumulative histogram, and color moments as 
features extraction methods were applied. In addition, different combinations of 
these methods were experimented with.  Since GLCM and color correlogram are 
computed in two different ways as explained in section (5.5), these two ways 
(feature group and feature average) are experimented in and compared along the 
test process. Also, the results of wide and narrow search algorithms were 
compared for the case of feature group distance.  

107 different configurations were tested using singular schemes:  
25 for the GLCM, 
39 for the color histogram,  
38 for the color correlogram, and  
  5 for the color moments, 

while 57 configurations were tested using combined schemes:  
12 for GLCM with cumulative histogram scheme, 
10 for GLCM with moments scheme, 
19 for color correlogram with cumulative histogram scheme, 
10 for color correlogram with moments scheme, and 
 6 for cumulative histogram with moments scheme. 
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In total, 164 configurations were experimented with along the evaluation 
process. MAP is used as a performance measure for each configuration. It is 
shown later that this measure is very close to F-measure as depicted in Figure 
(5.3). Also, the computation time of every scheme and its query response time are 

measured as an efficiency grade.   

5.6.1 Singular Retrieval Schemes 
When the co-occurrence matrix is used, only the intensity of the color is 

taken into account. Intensity is quantized into 4, 8, 16, 32, or 64 bins. One 
interesting result confirms the fact that using more bins did not improve 
performance for a given color model. In this case, coarse color quantization is 
preferable because it is computationally cheap. 

For the cumulative histogram and color correlogram, hue is the most 
significant characteristic so this component gets the finest quantization (from 2 to 
32 bins). While saturation and intensity get coarse quantization (up to 3 bins) to 
match human color perception, more tolerance to these components deviations is 
possible. Also, this coarse quantization helps to keep a reasonable computing 
time. As presented in the tables shown below, the total number of bins augments 
the multiplication of the three color components by three. This three is added for 
the undefined hue value where quantized intensity value is used instead and 
added to the total number of bins (see subsection 4.4.2 and equation 4.2). 

No quantization is used when computing the moment’s features. As a 
comprehensive view the wide search algorithm performs better than the narrow 
search algorithm for a given scheme. Narrow search performs well in few and 
exceptional cases only.  

1. GLCM Scheme 
By inspecting Table (5.10), it is clear that Gray color space quantized into 4 

bins leads to the best performance with MAP = 92% when using feature group 
distance and wide search. While when GLCM was used with feature average 
distance, it gives a poor performance (with MAP = 82%, for Gray− 8 bins), as 
shown in Table (5.11). 
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Table (5.10) Retrieval performance for the GLCM using feature group distance 
 

Wide Search Narrow Search Color 
Space 

Quan. 
Levels 

Comp. 
Time(Sec) MAP Query 

Time(Sec) 
MAP 

% 
Query 

Time(Sec) 
4 19.7 0.87 0.2188 0.79 0.1875 
8 16.1 0.87 0.2188 0.72 0.1875 

16 16.6 0.87 0.2031 0.67 0.2188 
24 20.8 0.87 0.2188 0.67 0.2188 
32 18.6 0.87 0.2188 0.87 0.2188 

HVC 
 

64 28.9 0.87 0.2813 0.67 0.2813 
4 11.5 0.89 0.1250 0.78 0.125 
8 13.9 0.89 0.1250 0.81 0.1094 HSV 

 
16 12.1 0.89 0.1250 0.82 0.125 
4 11.8 0.91 0.1250 0.9 0.125 

HLS 32 14.3 0.91 0.1250 0.8 0.2094 
4 13.9 0.87 0.1406 0.79 0.125 
8 14 0.87 0.1406 0.72 0.125 

16 14.3 0.87 0.1406 0.67 0.1406 
32 16.3 0.87 0.1563 0.87 0.1406 

LAB 
 

64 26.7 0.87 0.2188 0.67 0.2188 
4 8.22 0.92 0.0781 0.84 0.0781 
8 8.3 0.92 0.0781 0.82 0.8215 

16 8.73 0.92 0.0781 0.86 0.0781 
Gray 

 
32 10.7 0.91 0.1094 0.86 0.0938 

 
 

Table (5.11) Retrieval performance for the GLCM 
 using feature average distance 

 

Wide Search Color 
Space 

Quan. 
Levels 

Comp. 
Time(Sec) MAP

% 
Query 

Time(Sec) 
HVC 8 18.98 0.74 0.2031 
HSV 8 11.61 0.79 0.1094 
HLS 8 11.70 0.78 0.1094 
LAB 8 13.64 0.74 0.1250 
Gray 8 8.19 0.82 0.0781 

 

2. Color Correlogram Scheme 
HVC quantized into 6×3×3 bins gives the best result (MAP=0.91%) when 

using wide search with feature average distance, or narrow search with feature 
group distance, as indicated in Tables (5.12) and (5.13) respectively. While when 
HVC is quantized into 32×2×2 bins, it gives the same percent by using wide 
search for feature group distance. An interesting point is that 9 colors category 
has the efficient execution time with a tiny MAP difference. This makes it as a 
good choice for real applications. 
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Table (5.12) Retrieval performance for the color correlogram 
 using feature group distance 

 

Quan. Levels Wide Search Narrow Search Color 
Space 1st 

comp.
2nd 

comp.
3rd 

comp.

# of 
bins 

Comp. 
Time(Sec) MAP 

% 
Query 

Time(Sec)

MAP 
% 

Query 
Time(Sec) 

2 2 2 11 22.63 0.88 0.2500 0.78 0.2344 
3 2 2 15 20.48 0.89 0.2500 0.89 0.2500 
3 3 3 30 22.16 0.90 0.2656 0.82 0.2500 
6 2 2 27 21.70 0.90 0.2500 0.83 0.2656 
6 3 3 57 29.67 0.90 0.2969 0.91 0.3125 

12 2 2 51 27.44 0.90 0.2969 0.90 0.2969 
12 3 3 111 71.64 0.90 0.5625 0.91 0.5781 
18 2 2 75 39.19 0.90 0.3750 0.90 0.3594 
18 3 3 165 164.77 0.91 1.2031 0.90 1.1719 
24 2 2 99 58.44 0.90 0.4844 0.89 0.5000 
24 3 3 219 332.28 0.91 2.2500 0.78 2.2500 
32 2 2 131 99.14 0.91 0.7656 0.90 0.7344 

HVC 
 

32 3 3 291 705.83 0.91 4.6406 0.90 4.6406 
3 2 2 15 15.86 0.85 0.1563 0.84 0.1563 
6 3 3 57 24.94 0.86 0.2188 0.75 0.2031 

12 2 2 51 22.83 0.87 0.2031 0.87 0.2188 
18 3 3 165 159.86 0.89 1.0938 0.75 1.1094 

HSV 
 

32 2 2 131 97.11 0.87 0.6719 0.78 0.6563 
6 2 2 27 17.08 0.86 0.1563 0.77 0.1563 

12 3 3 111 66.92 0.89 0.4844 0.74 0.4844 HLS 
 

18 2 2 75 34.83 0.88 0.2813 0.78 0.2656 
2 2 2 8 15.05 0.88 0.1563 0.89 0.1406 
3 3 3 27 16.53 0.79 0.1563 0.57 0.1406 
4 4 4 64 27.64 0.82 0.2344 0.67 0.2344 

LAB 
 

5 5 5 125 83.61 0.84 0.5938 0.65 0.5625 
2 2 2 8 13.97 0.90 0.1406 0.69 0.1406 
3 3 3 27 15.52 0.89 0.1563 0.84 0.1406 
4 4 4 64 26.50 0.89 0.2344 0.88 0.2188 

RGB 
 

5 5 5 125 89.53 0.89 0.5781 0.88 0.5625 
11Col  11 22.31 0.88 0.2813 0.80 0.2500 
9Col  9 9.63 0.89 0.0938 0.82 0.0938 

3. Cumulative Histogram Scheme 
Firstly, the similarity between histograms is measured by using L1, L2 

metrics, and the histogram intersection method. They yield 92%, 90%, and 82% 
correct classification, respectively. L1 is found to be the best, so it is used in all 
the following histogram comparison calculations. The results of the performed 
tests to investigate the image retrieval task on global color histograms with 
different quantization resolutions in the selected color spaces are listed in Table 
(5.14).  
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Table (5.13) Retrieval performance for the color correlogram 
 using feature average distance 

 

Quan. Levels Wide Search Color 
Space 1st 

comp.
2nd 

comp.
3rd 

comp.

# of 
bins 

Comp. 
Time(Sec) MAP

% 
Query 

Time(Sec) 
HVC 6 3 3 57 30.16 0.91 0.2969 

12 2 2 51 29.34 0.89 0.1885 HSV 
18 3 3 165 158.9 0.86 1.0781 

HLS 6 3 3 57 24.95 0.84 0.2031 
LAB 2 2 2 8 15.17 0.90 0.1406 
RGB 2 2 2 8 14.17 0.80 0.1250 
11Col  11 22.42 0.84 0.2656 
9Col  9 9.672 0.88 0.0938 

 

The best retrieval results are obtained when using HSV color space 

quantized into 18×2×2 bins, for such case the determined MAP=0.94 for both 

wide and narrow search. Here, again 9 colors category gives an excellent 

execution time with a small MAP difference. 

4. Moments Scheme 
This scheme gives poor performance, where the best obtained retrieval result 

is with MAP=0.83% for RGB color space by using wide  search, as shown in 
Table (5.15). 

5.6.2 Combined Retrieval Schemes 
In this evaluation stage, the best retrieval schemes obtained from the 

previous stage are combined in an integrated manner. A similarity weight is 
assigned for each features type. It is possible that one type of features is more 
important than another, in such case, it should get a higher weight. In this 
research work, it is assumed that all features types are equally important (weight 
= 0.5 for all types). This weight could be changed according to the application 
field.  

1. GLCM with Cumulative Histogram Scheme 
HVC and LAB color spaces perform better than the others, they lead to 

MAP=0.94% when wide search and feature group distance are used, as presented 
in Tables (5.16) and (5.17). Processing in LAB space is faster than with HVC 
space. 
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Table (5.14) Retrieval performance for the cumulative histogram 

 

Quan. Levels Wide Search Narrow Search Color 
Space 1st 

comp.
2nd 

comp.
3rd 

comp.

# of 
bins 

Comp. 
Time(Sec) MAP 

% 
Query 

Time(Sec) 
MAP 

% 
Query 

Time(Sec) 
2 2 2 11 16.53 0.90 0.2188 0.83 0.2031 
3 3 3 30 16.48 0.92 0.2031 0.76 0.2031 
4 4 4 67 16.45 0.91 0.2188 0.83 0.2188 
5 5 5 128 16.52 0.92 0.2188 0.77 0.2031 
6 3 3 57 16.47 0.92 0.2031 0.91 0.2031 

12 3 3 111 18.66 0.92 0.2031 0.92 0.2031 
18 3 3 165 16.53 0.92 0.2031 0.92 0.2031 
24 3 3 219 16.50 0.92 0.2188 0.92 0.2031 
24 4 4 387 16.70 0.92 0.2188 0.92 0.2188 

HVC 
 

32 3 3 291 16.53 0.92 0.2031 0.92 0.2031 
2 2 2 11 11.70 0.92 0.1094 0.74 0.1094 
3 3 3 30 11.78 0.91 0.125 0.83 0.1094 
4 4 4 67 11.89 0.91 0.125 0.76 0.1094 
5 5 5 128 11.81 0.91 0.1094 0.91 0.1094 
6 3 3 57 15.53 0.92 0.125 0.92 0.1094 
6 6 6 219 11.83 0.92 0.1094 0.92 0.125 

12 2 2 51 11.88 0.92 0.1094 0.69 0.1094 
12 3 3 111 11.77 0.92 0.125 0.69 0.1094 
18 2 2 75 11.64 0.94 0.1094 0.94 0.125 
18 3 3 165 13.41 0.94 0.1094 0.93 0.1094 
32 2 2 131 11.73 0.94 0.1094 0.78 0.125 

HSV 
 

32 3 3 291 11.70 0.94 0.125 0.78 0.1094 
18 2 2 75 11.61 0.93 0.1094 0.93 0.1094 
18 3 3 165 11.67 0.93 0.1406 0.86 0.1094 
32 2 2 131 11.69 0.94 0.125 0.71 0.1094 

HLS 
 

32 3 3 291 11.70 0.94 0.1406 0.62 0.1094 
2 2 2 8 13.69 0.86 0.1094 0.86 0.1094 
3 3 3 27 11.19 0.84 0.1094 0.77 0.1094 
4 4 4 64 11.16 0.84 0.1094 0.76 0.1094 
5 5 5 125 11.23 0.84 0.1094 0.74 0.1094 

LAB 
 

6 6 6 216 11.19 0.85 0.125 0.85 0.1094 
2 2 2 8 10.36 0.90 0.094 0.87 0.094 
3 3 3 27 10.31 0.90 0.093 0.86 0.094 
4 4 4 64 10.33 0.90 0.094 0.91 0.11 
5 5 5 125 10.27 0.90 0.109 0.91 0.109 

RGB 
 

6 6 6 216 10.33 0.90 0.11 0.85 0.093 
11Col  11 18.50 0.75 0.1719 0.75 0.1719 
9Col  9 5.73 0.93 0.0469 0.92 0.0469 
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Table (5.15) Retrieval performance for the moments 
 

Wide Search Narrow Search Color 
Space 

Comp. 
Time(Sec) MAP

% 
Query 

Time(Sec) 
MAP 

% 
Query 

Time(Sec) 
HVC 19.42 0.83 0.1719 0.73 0.1563 
HSV 11.72 0.81 0.1094 0.59 0.1094 
HLS 14.33 0.83 0.1250 0.50 0.1094 
LAB 13.88 0.76 0.1406 0.56 0.1250 
RGB 10.30 0.83 0.0353 0.73 0.0313 

 
 

Table (5.16) Retrieval performance for the GLCM using feature  
group distance with cumulative histogram 

 

CH Quan. Levels Wide Search Narrow Search Color 
Space 

CO 
# of 
bins 

1st 

comp.
2nd 

comp.
3rd 

comp.

CH 
# of 
bins 

Comp. 
Time 
(Sec) 

MAP 
% 

Query 
Time(Sec) 

MAP 
% 

Query 
Time(Sec)

4 6 3 3 57 26.69 0.94 0.2813 0.71 0.2656 HVC 
8 12 3 3 111 22.89 0.93 0.2969 0.80 0.2656 
8 18 3 3 165 18.48 0.93 0.1875 0.67 0.1719 HSV 
8 6 3 3 57 18.44 0.91 0.2031 0.69 0.1719 

HLS 8 18 3 3 165 18.55 0.92 0.2031 0.73 0.1875 
LAB 8 2 2 2 8 17.88 0.94 0.1875 0.83 0.1719 
RGB 8 2 2 2 8 17.45 0.93 0.1875 0.89 0.1875 

 
 

Table (5.17) Retrieval performance for the GLCM using feature  
average distance with cumulative histogram 

 

CR Quan. Levels Wide Search Color 
Space 

CO # 
of 

bins 
1st 

comp.
2nd 

comp.
3rd 

comp.

CH # 
of 

bins 

Comp. 
Time(Sec) MAP 

% 
Query 

Time(Sec) 
HVC 8 12 3 3 111 23.38 0.93 0.2822 
HSV 8 18 3 3 165 18.53 0.91 0.1865 
HLS 8 18 3 3 165 18.44 0.91 0.1865 
LAB 8 2 2 2 8 18.00 0.93 0.1719 
RGB 8 2 2 2 8 17.52 0.91 0.1885 

 

2. GLCM with Moments Scheme 
HVC− 8 bins, HLS− 8 bins, and RGB− 8 bins have the highest MAP values, 

when using feature group distance and wide search. Among them, processing 
under RGB color space is the faster with MAP=0.91%; as indicated in Tables 
(5.18) and (5.19). 
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Table (5.18) Retrieval performance for the GLCM using feature  
group distance with moments 

 

Wide Search Color 
Space 

Quan. 
Levels 

Comp. 
Time(Sec) MAP

% 
Query 

Time(Sec) 
HVC 8 26.09 0.91 0.2344 
HSV 8 18.25 0.90 0.1719 
HLS 8 18.33 0.91 0.1875 
LAB 8 20.45 0.89 0.2031 
RGB 8 15.33 0.91 0.1563 

 
 

 
Table (5.19) Retrieval performance for the GLCM using feature  

average distance with moments 
 

Wide Search Color 
Space 

Quan. 
Levels 

Comp. 
Time(Sec) MAP

% 
Query 

Time(Sec) 
HVC 8 23.34 0.88 0.2197 
HSV 8 18.41 0.90 0.1719 
HLS 8 18.42 0.89 0.1729 
LAB 8 20.39 0.87 0.1885 
RGB 8 15.39 0.89 0.1406 

 

3. Color Correlogram with Cumulative Histogram Scheme 
As indicated in Tables (5.20) and (5.21), the configuration of  the HVC  

color space quantized into 18×3×3 bins has the best performance (with 

MAP=0.93%) when using the feature group or the feature average distances, and 

wide  search. The 9 colors category performs well with very less computation and 

query response times. 

4. Color Correlogram with Moments Scheme 
HVC with 6×3×3 bins and RGB with 2×2×2 bins have better performance 

(with MAP=0.88%) when using the feature group or the feature average distances 
and wide search, as indicated in Tables (5.22) and (5.23). Processing under RGB 
color space needs less computation time. 
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Table (5.20) Retrieval performance for the color correlogram 
 using feature group distance with the cumulative histogram 

 

CR Quan. Levels CH Quan. Levels Wide Search 
Color 
Space 1st 

comp.
2nd 

comp.
3rd 

comp.

CR # 
of 

bins 
1st 

comp.
2nd 

comp.
3rd 

comp.

CH # 
of 

bins 

Comp. 
Time 
(Sec) MAP 

% 
Query 

TimeSec 
6 3 3 57 12 3 3 111 36.86 0.92 0.3750 HVC 
6 3 3 57 6 3 3 57 39.36 0.92 0.3750 

18 3 3 165 12 2 2 51 169 0.92 1.1563 HSV 
18 3 3 165 18 3 3 165 172 0.93 1.1875 
6 3 3 57 18 2 2 75 33.25 0.92 0.2969 HLS 
6 2 2 27 18 3 3 165 26.52 0.92 0.2500 

LAB 2 2 2 8 2 2 2 8 21.66 0.90 0.1875 
RGB 4 4 4 64 4 4 4 64 36.63 0.89 0.3125 
11Col  11  11 25.53 0.87 0.2344 
9Col  9  9 9.78 0.91 0.1094 

 
 

Table (5.21) Retrieval performance for the color correlogram 
 using feature average distance with the cumulative histogram 

 

CR Levels CH Levels Wide Search Color 
Space 1st 

comp.
2nd 

comp.
3rd 

comp.

CR 
# of 
bins 

1st 

comp.
2nd 

comp.
3rd 

comp.

CH # 
of 

bins 

Comp. 
Time(Sec) MAP 

% 
Query 

Time(Sec) 
HVC 6 3 3 57 6 3 3 57 37.08 0.92 0.3750 
HSV 18 3 3 165 18 3 3 165 170.30 0.93 1.1729 

6 2 2 27 18 3 3 165 23.89 0.92 0.2354 HLS 
6 3 3 57 18 2 2 75 31.98 0.92 0.2959 

LAB 2 2 2 8 2 2 2 8 19.16 0.91 0.1885 
2 2 2 8 2 2 2 8 22.94 0.91 0.2354 RGB 
2 2 2 8 4 4 4 64 22.75 0.89 0.2354 

11Col  11  11 24.45 0.85 0.2188 
9Col  9  9 9.83 0.91 0.0947 

 
 
 

Table (5.22) Retrieval performance for the color correlogram 
 using feature group distance with moments 

 

CR Quan. Levels Wide Search Color 
Space 1st 

comp.
2nd 

comp.
3rd 

comp.

CR # of 
bins 

Comp. 
Time(Sec) MAP 

% 
Query 

Time(Sec) 
HVC 6 3 3 57 37.77 0.88 0.3125 
HSV 18 3 3 165 166.69 0.84 1.1563 
HLS 6 3 3 57 31.67 0.84 0.2813 
LAB 2 2 2 8 21.45 0.84 0.2188 
RGB 2 2 2 8 20.41 0.88 0.2031 
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Table (5.23) Retrieval performance for the color correlogram 
 using feature average distance with moments 

 

CR Quan. Levels Wide Search Color 
Space 1st 

comp.
2nd 

comp.
3rd 

comp.

CR # 
of bins 

Comp. 
Time(Sec) MAP 

% 
Query 

Time(Sec) 
HVC 6 3 3 57 36.97 0.88 0.3281 
HSV 18 3 3 165 174.45 0.85 1.1572 
HLS 6 3 3 57 32.34 0.84 0.2813 
LAB 2 2 2 8 21.69 0.86 0.2031 
RGB 2 2 2 8 20.61 0.88 0.1865 

5. Cumulative Histogram with Moments Scheme 
LAB color space quantized into 2×2×2 bins shows the best retrieval 

performance (with MAP=0.88%) when using wide  search, as indicated in Table 
(5.24). 

Table (5.24) Retrieval performance for the cumulative histogram with moments 
 

CH Quan. Levels Wide Search Color 
Space 1st 

comp.
2nd 

comp.
3rd 

comp.

CH # of 
bins 

Comp. 
Time(Sec) MAP 

% 
Query 

Time(Sec) 
12 3 3 111 22.70 0.86 0.2188 HVC 
6 3 3 57 23.31 0.87 0.2344 

HSV 18 3 3 165 18.16 0.86 0.1875 
HLS 18 3 3 165 18.25 0.86 0.1875 
LAB 2 2 2 8 17.63 0.88 0.1719 
RGB 2 2 2 8 16.52 0.87 0.1563 

5.7 Overall Retrieval Assessment 
During the implementation and testing, a platform of Pentium 4 with a 

mobile Intel processor of 1.86 GHz, 512 M RAM, and 2 M Cache Memory was 
used. The software components and tools utilized along the developing and 
evaluation processes were: Visual Basic, Excel, and ACD systems.  

5.7.1 Whole Schemes Evaluation  
In the previous section, the used quantization schemes, and the color and 

texture analysis techniques (i.e., the co-occurrence matrix− ‘CO’, the color 
histogram− ‘CH’, the correlogram− ‘CR’, and color moments− ‘Mom’) were 
already applied in separated and combined manners. 
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The best retrieval result was obtained when the cumulative histogram was 
determined alone for HSV− 18×2×2 bins with Wide− ‘W’ or Narrow− ‘N’ search 
are used, where MAP=94% and the computation time=11.64 sec. The retrieval 
results for colorful textures prove that the use of color can improve retrieval 
performance significantly. The subsequent results are attained by using the 
following retrieval schemes: 

GLCM & Cumulative histogram, with MAP=94%, 
Color correlogram & Cumulative histogram, with MAP=93%, 
GLCM alone, with MAP=92%, 
GLCM & color moments, with MAP=91%, and 
Color correlogram alone, with MAP=91%. 

  

The worst retrieval result was obtained when GLCM was used alone with 
feature average distance scheme, where MAP was 82% for Gray− 8 bins. In 
addition to the best and worst results, the mid results are tabulated in Table (5.25).  

Table (5.25) Overall performance results 

Scheme 
Description 

Color 
Space 

Feature 
Distance 

Quantization 
Details 

Total 
# of 
bins 

Comp. 
Time 
(Sec) 

MAP 
% 

Query 
Time 
(Sec) 

Search 

Cum. Hist. HSV  --- 18×2×2  75 11.64 0.94 0.1094 W&N
GLCM &  
Cum. Hist. LAB group 8 for CO  

2×2×2 for CH 
8 
 8 

17.88 0.94 0.1875 W 

GLCM &  
Cum. Hist. HVC group 4 for CO  

6×3×3 for CH 
4  

57 
26.69 0.94 0.2813 W 

GLCM &  
Cum. Hist. LAB average 8 for CO  

2×2×2 for CH 
8  
8 

18.00 0.93 0.1719 W 

GLCM &  
Cum. Hist. HVC average 8 for CO 

 12×3×3 for CH 
8  

111 
23.38 0.93 0.2822 W 

Correlogram&  
Cum. Hist. HSV group& 

average 
18×3×3 for CR 
18×3×3 for CH 

165  
165 

170.3 0.93 1.1729 W 

GLCM Gray group 4 for CO  4 8.22 0.92 0.0781 W 
GLCM&  
Moments RGB group 8 for CO 8 15.33 0.91 0.1563 W 

Correlogram HVC group 6×3×3  57 29.69 0.91 0.3125 N 
Correlogram HVC average 6×3×3  57 30.16 0.91 0.2969 W 
Correlogram HVC group 32×2×2  131 99.14 0.91 0.7656 W 

GLCM&  
Moments HSV average 8 for CO 8 18.41 0.90 0.1719 W 

Cum. Hist.& 
Moments LAB  --- 2×2×2 for CH 8 17.63 0.88 0.1719 W 

Correlogram& 
Moments RGB group& 

average 
2×2×2 for CR 8 20.41 0.88 0.2031 W 

Moments RGB  --- ---   --- 10.30 0.83 0.0353 W 
 GLCM Gray average 8 for CO 8 8.19 0.82 0.0781 W 
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Very similar results could be obtained by inspecting the F-measure chart, for 
the best six retrieval schemes depicted in Figure (5.3). However, as mentioned in 
section (5.3), the computational complexity is an important issue in CBIR. As 
indicated in Tables (5.12) and (5.14), cumulative histogram is much more 
efficient than color correlogram. When the number of correlogram bins increases 
the computation time increases significantly. This behavior wasn’t noticed with 
the cumulative histogram, where the computation time approximately stays 
stable.   
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Figure (5.3) F-measure graph of best retrieval schemes 

The human-based 9 colors category is computationally much cheaper than 
(HSV− 18×2×2 bins), also it shows high performance (MAP=93%) as introduced 
in Table (5.14). 9 colors category method has efficient computation time with 
good MAP as indicated in Tables (5.12), (5.20), and (5.21).  

Wide search performs better than narrow search because it inspects more 
than one mother cluster. This will increase the probability of finding relevant 
images for the target query image. In contrary, narrow search is constrained to a 
single cluster. This cluster may miss the relevant images because of cluster 
centroid divergence; this problem could be solved by clusters centers 
optimization. Where, some enhancement to hierarchical clustering can be made 
by a relocation of images which may have been incorrectly clustered at an early 
stage. It is necessary to move all such images to their closest clusters. 

Feature group proved to be more effective than feature average distances. As 
depicted in Figure (4.5), all four feature descriptors are utilized by using feature 
group distance. Also, all descriptors correspondence probabilities over the 

 128



            Chapter Five: Retrieval Performance Evaluation  
 

compared features vectors are taken into account. While by using feature average 
distance, these four feature descriptors are encapsulated (averaged) into a single 
number which may blur the single descriptors significance. 

 

5.7.2 Clusters and Query Results Visualized 
It is important to mention that these retrieval results reflect the good 

performance of the Hierarchical Agglomerative Clustering applied to all schemes. 
However, more convenient results could be attained by broadening the number of 
images used in the images database. Clustering based on a lower threshold (i.e. 
<=7%) gives, somehow, clusters with homogenous images as demonstrated in 
Figure (5.4).  As the threshold increases (i.e. >7% and <=15%), clusters will 
contain more and more inhomogeneous images as illustrated in Figure (5.5). On 
the other hand, a brief demonstration of queries output is displayed in Figures 
(5.6) and (5.7). A wider exhibition of different schemes clusters and queries 
results could be found in Appendix B. These examples are directed by using the 
cases of wide  search and feature group distance. 

An overview on the results of separate queries or clustered images reveals 
that more success could be attained to each scheme performance (see for example 
Figures 5.4). This can be accomplished by assuming continuous rather than 
binary relevance judgments. In other words, instead of assigning binary 
(relevant=1, and irrelevant=0) values to each retrieved image, in-between values 
along the period [0, 1] could be used according to the degree of similarity 
between the query and retrieved images.  

 
 
Figure (5.4) A cluster based on a lower threshold resulted from GLCM− 8 

bins method applied on HLS color space. 
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Figure (5.5) A cluster based on a higher threshold resulted from GLCM− 8 
bins&CH− 2×2×2 bins method applied on RGB color space. 

 

Concerning the cumulative histogram, retrieval depends on the whole color 
content of the image with no respect to texture, as indicated in Figure (5.6). On 
the opposite side, GLCM concentrates on gray-based textures with no attention to 
color content, as illustrated in Figure (5.7). Color correlogram is a good descriptor 
for colorful textures, while color moments describe the color contents of the 
image. In between these extremes, some combined approaches stand midway in 
sight to color and texture content of the image. An impression about the 
importance of the studied schemes to discriminate color/texture contents could be 
perceived by exploring Appendix B. 

The configurations based on using coarse quantization (low number of bins) 
applied to the GLCM outperformed the more precise quantization (high number 
of bins) for all color spaces, as expressed in Table (5.10). For the color 
correlogram, the computation time increases significantly when the number of 
quantization bins increases, accompanied with a small improvement in retrieval 
accuracy (see Table 5.12). While for the color histogram, the computation time 
isn’t influenced much by increasing the number of quantization bins. 
Nevertheless, fine color quantization performs a little better than coarse color 
quantization for a given color space, as presented in Table (5.14). Hence, the use 
of a coarse quantization for the color correlogram can substantially improve 
retrieval in terms of speed. In conclusion, for texture analysis, the chosen 
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quantization scheme is the most important key factor; usually a lower number of 
bins performs better. 

In color quantization, hue gets the finest quantization, while saturation and 
intensity get the coarse one. This matches human color perception which has 
more tolerance to these two components variations. Also, this quantization helps 
to keep the computation time at a reasonable level. For the undefined hue value, 
its corresponding quantized intensity value is used instead. 

 

 
Figure (5.6) Query output resulted from CH− 2×2×2 bins method applied on 

HSV color space. 
 
 

 
Figure (5.7) Query output resulted from GLCM− 8 bins method applied on 

HLS color space. 
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Chapter Six 

 

Conclusions and Suggestions for  
Future Work 

 

6.1 Conclusions 
 The results attained by test and evaluation processes have revealed the 
following articles: 

1. Six of the eight used GLCM and correlogram features are found to be strong 
descriptors of texture. They are the Inverse Difference Moment, Haralick’s 
Correlation, Cluster Shade, Cluster Prominence, Entropy, and Homogeneity. 
Using all the eight features may lead to low correct retrieval percentage.  

2. Feature group distance has proved to be more effective than feature average 
distance. The four feature descriptors are utilized when using the feature group 
distance. While by using feature average distance, the four feature descriptors 
are averaged into a single number which is caused in blurring the single 
descriptors significance. 

3. The co-occurrence matrices and the color correlogram are calculated for the 
distances 1, 2, 3, and 4. The most suitable distance found is 2.  

4. Since RGB space is not quite perceptually uniform, it is transformed to the 
more perceptual uniform space (such as HVC, HSV, HLS, or LAB) in an early 
stage of any image retrieval scheme. Eligible color quantization should be 
applied to the selected color space.  

5. The modified combined quantization presented in equation (4.2) has proved to 
be an accurate compaction of color space data, where the three color 
components are mapped into a single valued color. This compact value is used 
as an entry to the correlogram and cumulative histogram for further 
manipulating.  

6. In both the co-occurrence matrix and the color correlogram, the most precise 
quantization schemes does not give a big improvement on the more coarse 



                                           Chapter Six: Conclusions and Suggestions for Future Work  

 
quantization schemes, for a given color space. In this case, coarse quantization 
is preferred because it has low computational cost.  

7. For the cumulative histogram and the color correlogram, hue is the most 
significant characteristic, so this component is given the finest quantization. 6, 
12, and 18 bins are the best quantization for hue component, while saturation 
and intensity get coarse quantization (3 bins).  

8. Among L1, L2, and (histogram intersection) distance measures, L1 is the best 
for cumulative histogram, while L2 is the best for GLCM, color correlogram, 
and color moments.   

9. Taking in consideration that most of color histograms are very sparse and thus 
more sensitive to noise, their cumulative color histograms are used instead. 
The results demonstrate the advantages of this second approach over the 
conventional color histogram approach.  

10. The human-based 9 colors category is computationally inexpensive than other 
color spaces, also it has a high performance with a tiny MAP difference. This 
makes it a good choice for realistic applications. 

11. Color moments scheme shows poor performance, where the best reached 
retrieval result is with MAP=0.83%. Nevertheless, the features vector of the 
color moments extractor is among the smallest. 

12. Hierarchical Agglomerative Clustering is a scalable search method; since at 
the time of query, only the relevant set of clusters needs to be examined. Also, 
it is a base to establish efficient and effective searching algorithms that 
facilitate searching through the constructed index structure.  

13. Wide search scheme performs better than narrow search scheme because it 
inspects more than one mother cluster. This will increase the probability of 
finding more relevant images for the target query image. In contrary, narrow 
search is constrained to a single cluster. This cluster may miss the relevant 
images because of the clusters divergence.  

14. More convenient results could be attained by increasing the number of images 
used in the images database. As the number of images increases, the clustering 
algorithm can utilize more similar images in the clustering process within a 
lower threshold. 
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6.2 Suggestions for Future Work 
The work performed along the period of this research could be improved in 

many directions. Among the important directions are: 

1. Greater success in retrieval results could be gained by assuming continuous 
rather than binary relevance judgments, where a degree of similarity is 
assigned to each retrieved image according to its resemblance to the query 
image.  

2. When considering all the possible combinations of color pairs, the size of the 
color correlogram could be very large. Due to the high complexity of the color 
correlogram scheme, a simplified version of it (which is called the color 
autocorrelogram) can be used instead. The color autocorrelogram may capture 
the spatial correlation between identical colors only and thus reduces the 
dimension of the resulted matrix significantly.  

3. In order to make a query upon heterogeneous images (i.e., images that require 
segmentation), the test image could be divided into a number of regions. The 
features extracted from each of these regions are compared correspondingly. 
This approach could be extended to make query at a region level, where only 
part(s) of the query image may be of interest to the user.     

4. Concerning the cluster centroid divergence problem, an improvement on the 
HAC algorithm could be accomplished by optimizing the clustering process. 
The centroid updating could be done after each instance of new image 
addition to the cluster. As a result; after a number of centroids alterations, 
some images may have a larger similarity measure with other cluster centers 
than that with their own clusters centers. These images should be reallocated 
to their new closest clusters.  

5. Incorporating users' interactions tools such as relevance feedback in the 
retrieval process may improve the performance of CBIR systems significantly. 
By using relevance feedback to the query results, the retrieval operation 
becomes an iterative process, where the system makes suggestions and the 
user provides feedback. There is a need for the system to learn from the user 
feedback. Learning should take place both within a single retrieval session 
(short-term), and across many retrieval sessions (long-term). This could aid in 
generating more perceptual and meaningful retrieval results.  
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Appendix A 
 

Computation of Precision and Recall 
 

 
Table (A.1) presents a sample of query result, the precision and recall 

values are computed for each retrieved image. 

 

Table (A.1) Single query result 

R=2/5=0.4; P=2/3=0.67

n img # relevant RecallPrecision
1 58 0.2 1.00
2 89 0.4 1.00
3 76 0.4 0.67
4 90 0.6 0.76
5 86 0.6 0.60
6 59 0.8 0.67
7 98 0.8 0.57
8 88 0.8 0.50
9 78 0.8 0.44
10 95 0.8 0.40
11 10 0.8 0.36
12 51 0.8 0.33
13 72 1.0 0.38
14 90 1.0 0.36

Total no. of relevant images = 5

R=1/5=0.2; P=1/1=1

R=2/5=0.4; P=2/2=1

R=5/5=1; P=5/13=0.38 

√
√

√

√

√

 
 
 

Precision and recall values listed in Table (A.1) are graphed against 

the number of retrieved images, and shown in Figure (A.1). 

 

 
 

Figure (A.1) Precision & Recall for a single query, 
14 images retrieved:  1,2,4,6 and 13 are relevant 
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Precision and recall values listed in Table (A.1) are graphed against 

each other in Figure (A.2). 
 

n Recall Precision
1 0.2 1.00
2 0.4 1.00
3 0.4 0.67
4 0.6 0.76
5 0.6 0.60
6 0.8 0.67
7 0.8 0.57
8 0.8 0.50
9 0.8 0.44

10 0.8 0.40
11 0.8 0.36
12 0.8 0.33
13 1.0 0.38
14 1.0 0.36 0.4 0.8
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Figure (A.2) Precision & recall relationship 
 

The individual precision values are interpolated to a set of 11 standard 

recall levels (0, 0.1, 0.2, ..., 1) to ease the computation of average precision 

and recall values using the following equation:  
 

1

( ) max ( )
j j

j r r r
P r

+≤ ≤
= P r     ,   ………………………… (A.1) 

The interpolated precision values are shown in Table (A.2)   

 
Table (A.2) Interpolated precision values 

Recall Precision
0.0 1.0
0.1 1.0
0.2 1.0
0.3 1.0
0.4 1.0
0.5 0.75
0.6 0.75
0.7 0.67
0.8 0.67
0.9 0.38
1.0 0.38

actual Precision value 

interpolated Precision value 
(:by convention equals to the 

next actual data value). 
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Recall cutoff graph resulted from choosing the interpolation points is 

depicted in Figure (A.3). 
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The connected line is 
the recall cutoff graph. 

 
 

Figure (A.3) Recall cutoff graph 
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Appendix B 

 

 
 

Clustering and Querying Output 
 

 

 
Figure (B.1) The user interface for choosing one of the applied retrieval schemes with the 

selected color model. 

 

 
Figure (B.2) A cluster resulted by applying GLCM− 16 bins scheme based on HSV. 

 

Figure (B.3) A query result by applying GLCM− 16 bins scheme based on HLS. 
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Figure (B.4) A cluster resulted by applying correlogram− 2×2×2 bins scheme based on 

HVC. 

 
 

 
Figure (B.5) A query result by applying correlogram− 2×2×2 bins scheme based on RGB. 

 
 
 

 
Figure (B.6) A cluster resulted by applying cumulative histogram− 9 bins scheme based 

on 9 colors category. 
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Figure (B.7) A query result by applying cumulative histogram− 6×3×3 bins scheme based 
on HVC 

 
 

 

Figure (B.8) A query result by applying cumulative histogram− 18×3×3 bins scheme 
based on HSV. 

 

 

Figure (B.9) A query result by applying the moments scheme based on HVC. 
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Figure (B.10) A cluster resulted by applying GLCM− 8 bins & cumulative histogram− 

6×3×3 bins based on HLS. 

 

 
Figure (B.11) A cluster resulted by applying GLCM− 8 bins & cumulative histogram− 

2×2×2 bins scheme based on RGB. 

 

 

Figure (B.12) A query result by applying GLCM− 8 bins & cumulative histogram− 2×2×2 
bins scheme based on LAB. 
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Figure (B.13) A cluster resulted by applying correlogram− 2×2×2 bins & cumulative 

histogram− 2×2×2 bins scheme based on LAB. 

 

 

Figure (B.14) A query result by applying correlogram− 9 bins & cumulative histogram− 9 
bins scheme based on 9 colors category. 

 

 

Figure (B.15) A query result by applying correlogram− 6×3×3 bins & cumulative 
histogram− 6×3×3 bins scheme based on HVC. 
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خلاصةلا  
 

 
  يدعم ياتعرض نظام إسترجاع صورة معتمد على المحتو  يتم، في هذه الرسالة

 .سترجاع بالنسبة إلى صفات منخفضة المستوى وهي اللون والترآيب النسيجي للصورةالإ

تيكيا وذلك عن طريق تومافي إستخلاص ميزات الصورة اؤللعمل ة  الأساسيةالفكرص ّــتتلخ

يجري . ساب التشابه الإجمالي بين الصوراحت الترآيز على سيكون.  الصورةياتتحليل محتو

مجال نّ إ.  والتي لاتستدعي التقطيعمتجانسة اللون والترآيب النسيجي الإستعلام عن صور

   .لداخلي للمبانيالتصميم الأزياء والمختار هو تصميم الصور ا

لرمادية ازم للألوان لمتلاالظهورا مصفوفة خاذـّـإتنة على ّــلمضمالتقنيات  اتعتمد

بالإضافة إلى . لنسيجي للصورالترآيب التلازم للألوان آوسائل إحصائية لتحليل اومعيار

لأساليب ا هذه تقـوقد طبّ. للوناللون في تحليل التراآمي و عزوم المعيار اغلال ت إس تمّ،ذلك

   .بحالات منفردة و إندماجية

 تّــتموقد . لصفاتا في فضاء )جهاتـّـمجموعة مت أو( جهـّـصورة آمتآل ل ـّـتمث

لتجميع التي تدعى التكراري والتجميع الصفات بإستخدام خوارزمية ا جهاتـّـفهرسة مت

. لفهرسة مع إمكانية تنفيذ إسترجاع سريعانات سهلة ار هياآل بيـّـلهرمي وهي توفالي ّــلتكتا

لإستعلام عن اعند . لصفاتالبعد في فضاء الصور من التشابه بين ايتم تعريف مقياس 

ة يلبقاجهات ـّـ مقارنته مع متلصورة ومن ثمّالصفات لهذه اجه ـّـمتإستخلاص  يتم ،صورة

وبذلك يمكن . الواسع أو المحدودبحث اللفهرسي وبإستخدام خوارزميات الترآيب احسب 

مستعلم لالصورة اجه ـّـن متعهاتها جـّـلبيانات حسب بعد متاترتيب مجموعة صور من قاعدة 

  . لإستعلامابة هي ناتج ّــلمرتالمجموعة اهذه إنّ . عنها

وآان . قةّــلمطبالإسترجاع التقييم إجراء دراسة مقارنة لمختلف أساليب اخلال عملية  تمّ

 تطبيقه  منفردا أوعند لمختار سواء تمّالصور الأفضل بالنسبة  لحقل التراآمي هو المعيار ا

.  بالتتابع،لتلازم للألوان امعيار وألرمادية ازم للألوان لمتلاالظهور ادمجه مع مصفوفة 

ة إسترجاع ـّـلتجميع تعطي دقالمبنية على الفهرسة ا خوارزمية لتجريبي إنّالتقييم اأوضح 

ن لبحث سوف تتحسّاسرعة  إنّ .لمطلوبةالتشابه اعالية مع إختزال آبير في عدد مقارنات 

  .  لبياناتاارنتها مع آل صور قاعدة  يتم مقلمستعلم عنها سوف لنالصورة ا نّأبسبب 
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