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Abstract

The tracking problem for differential stochastic equationsin the present
of stochastic uncertainty of white noise, and control input have been
considered.

In this work, our consideration have been focused on the case where
both original dynamic state stochastic system and the desired stochastic
dynamic system, are driven by white noise stochastic process.

The main aim of this work is to make the behavior of the original
dynamic system following the behavior of the desired one for arbitrary
controller, using tracking control system approach.

The tracking and stabilizing controller that guarantee the optimum
tracking error system between the original system and the desired one have
been derived and developed.

The necessary theorems for optimum tracking have been stated and
proved supported with some concluding remarks. The controller can also been
divided into robust one and optimal one.

The optimum controller can be obtained as a solution of some linear
deterministic differential Riccati equation, while the robust one can be
obtained so that some controllability properties are ensured.

The Riccati equation associated with linear stochastic optimal
controller and tracking one, have also been desired and discussed.

Finally some illustration ranking for time varying system and for law
order differential system to larger one, have been illustrated, with details and

corresponding Riccati equation for justification of the present work.
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Introduction

At the end of gixties, much attention had been devoted to the study
Linear Quadratic Gaussian of the optimal control problem of class of

(LQG), (that isthe optimal control problems of linear systems with quadratic

cost function in the presence of Gaussian noises) either for the mathematical
and algorithmic aspects or for the possible applicative capabilities. In witnhess
of this, it is noteworthy that the specia issue of the IEEE Transactions on
Automatic Control of December 1971, was totally devoted to the above class
of problems. Insde this issue, we want to mention in particular the interesting
work (Athans 1971) [4], as well as the careful bibliographical classification
work (Mendel and Gieseking 1971) [24], see (Kushner 1967, 1971) [18], [19],
(Astrom 1971) [2], (Kwakernaak and Sivan 1972) [20].

There has been considerable research in the past two decades on the
subject of optimal control for system regulation under various types of
uncertainty. The types of uncertainty include among many others additive
exogenous disturbances, lack of knowledge about the system model, and time
varying dynamics, see ( Basar 1995) [5].

More recently, further results have been published concerning optimal

control problems (LQG ), which constitute extensions of the previous general

theory, as far as different particular aspects are concerned. For instance, in
after (1990) a stationary regulation problem is studied in the presence of
stochastic and deterministic disturbances. In (Lim et a, Moore and
Faybusovich 1996) [21] a discrete time regulation problem is considered with

linear constraints on the state and control variables.
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In (Grimble and Hearns 1998) [15] an (LQG) stationary regulation problem

Is discussed, taking into account possible delays, and an application to hot
strip millsis presented.
The uncertainties in the dynamical system could also be modeled as

random noise. The well-known linear-quadratic-Gaussian (LQG) optimal

control problem is just one example, where the uncertainty is modeled as
exogenous (Gaussian) noise. The case of dynamic uncertainty (with the
possibility of non-Gaussian noise) can be formulated as a minimized type
optimization problem (Savkin and Petersen 1995) [32], (Uginovskii and
Petersen 1999) [35]. More generaly, arobust version of the (LQG) technique

was discussed in (Petersen and James 1996) [28], (Petersen, James and
Dupuis 2000) [29], (Uginovskii and Petersen 1999) [34], (Uginovskii and
Petersen  2001) [36], where the concept of an uncertain stochastic system
was introduced. A gain, the problem is of the minimized type and it involves
construction of a controller which minimizes the worst-case performance,
with the uncertainty system satisfying certain stochastic uncertainty
constraint. One advantage of such an uncertainty description is that it allows
for stochastic uncertainty inputs to depend dynamically on the uncertainty
outputs, ( Dia pra, Meneghini and Runnggaldier 1996) [13], ( Dupuis and
Ellis 1997) [14], (Ruunolfsson 1994) [31], (Uginovskii and Petersen 2001)
[36].

In tradition linear quadratic regulator (LQR) theory the standard
assumption that the control weighting matrix in the cost functional is strictly
positive definite; is considered for example, see (Anderson and Moore 1989)
[1]. In the determinigtic case, this is necessary for there to exist a finite
optimal cost that is achievable by a unique optimal control. This assumption
means that penalty cost is associated with the control that tries to drive the

system state as closely as possible to a desirable position, which is clearly a
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sensible assumption. Under this assumption, there is a tradeoff between the
closeness of the state from the target and the size of the control, and controller
has to carefully balance the two in order to achieve an overall minimum cost.
The extension of deterministic (LQR) control to the stochastic case, or
the so-called linear-quadratic-Gaussian problem, design and applications, see
(Athans 1971) [3], (Bensoussan 1992) [6], (Davis 1971) [12], (Wonham
1968) [37]. In the literature on the stochastic (LQR) problem, however,

positive definiteness of the control weight is generaly taken for granted. In
such a case, there appears to be little difference between the deterministic and
the stochastic (LQR) problems. Indeed, the optimal control for both of these

problemsis given by alinear state feedback, the feedback gain being identical
in both cases and determined by the solution of a backward Riccati equation.
However, recent results are given by (Chan € a and Zhou 1998) [10].

The optimal tracking problem is studied both for available and for
unavailable state and reference, assuming that the last variable is the addition
of a known deterministic component and of a random noise component. In
both cases the optimal solution is exist, unique, and the optimal control is a
suitable affine function of the current state and reference variable (when they
are available) or of the corresponding optimal estimates (when they are not
available). The minimum cost function is expressed in closed form. (Bruni
and lacoviello 2001) [7].

One of the main contributions of our work is to generalize
optimization problem to stochastic nonlinear system in strict feedback form.

In this work the (LQG) tracking stochastic problem is studied,
assuming that the state reference is generated by a linear model driven by a
Gaussian white noise, with known and possibly non-zero mean value. Of
course this formulation includes the particular cases of completely

deterministic or completely stochastic (with zero mean) reference variables.
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The optimal (LQG) tracking problem is considered either in the case of

completely available state and reference or in the case of noisy measurements
for the same variables. When state and reference are available, the optimal
control is an affine function of the current value of the above variables.

The tracking problem for some class of non-linear equations dependent
on both state and control variables is considered. The Riccati equation
associated with this problem is also derived. We establish that under
stabilizability and tracking conditions this Riccati equation which has a
unigue positive-definite solution. Using this result we find the optimal control
(and the optimal cost ) as well asrobust control law for our tracking problem.

This thesis consists of three chapters. The first chapter deals with some
basic concepts of stochastic dynamic system, the formulation of control
problem, mathematical requirements, dynamical control equations, quadratic
optimal regulator system, vector stochastic processes and white noise.

The second chapter is concerned with the linear tracking problem and
its mathematical requirements. A sufficient theorem for optimum tracking
have been stated and proved, and some smulation and conclude remarks,
comments, useful mathematical facts.

In chapter three, some illustrations using closed loop controller have
been presented and developed, future work, list of references, appendix have

also been presented.
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Chapter One Some Basic Concepts of Stochastic Dynamic System

Chapter one presents basic concepts of some stochastic dynamic system
which are needed later on. This chapter is divided into six sections, the first
section discusses the formulation of control problems, while the second
section is about the basic mathematical requirements for dynamic control.
The third one concerns the dynamical control system. The design of control
system by using linear state feedback control is the matter of section four. The
vector stochastic processes is started from section five, and the last one is
discussing the linear differential systems driven by white noise and the

corresponding stochastic optimal linear quadratic systems.

1.1 THE FORMULATION OF CONTROL PROBLEMS [20]

The following figure represent the general class of control problems
(tracking problem). Let a system, (usually called the plant) be given, with
the variables as shown in Figure (1.1).

disturbance variable v

p
\ 4
input variable u controlled variable z -
" e Sensors .
> observed varidbley
reference variable r T

observation noise v

Figure(1.1): ThePlant
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Where:
1) A plant isaphysical object to be controlled.
2) An input variable u(t) ( usually called control) which influences the
plant and can be manipulated.

3) A disturbance variable v, (t) which influences the plant cannot be

manipul ated.

Remark (1.1) [26]
A disturbance is signal that tends to a diversely affect the value of the

output of a system. If a disturbance is generated within the system, it is

called internal while an external disturbance is generated outside the

gystem and is an input.

4) An observed variable y(t) which is measured by means of sensors is
used to obtain information about the state of the plant; this observed
variable is usually contaminated with observation noise v, (t) .

5) A controlled variable z(t) which isthe variable we wish to control.

6) A reference variable r(t) which represents the prescribed value of

the controlled variable z(t).

The tracking problem roughly is the following. For a given reference
variables, find appropriate input so that the controlled variable tracks the
reference variable, that is,

@, tet (1.1)
Where t, isthe time at which control starts. Typically, the reference variable
Is not known in advance. A practical constraint is that the range of values over
which the input u(t) is allowed to vary is limited. Increasng this range
usually involves replacement of the plant by alarger and thus more expensive

one. This condraint is of major importance and prevents from obtaining
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systems that track perfectly. In designing tracking systems so as to satisfy
(1.1). The following aspects must be taken into account.

1) The disturbance influences the plant in an unpredictable way.

2) The plant parameters may not be known precisely and may vary.

3) Theinitial state of the plant may not be known.

4) The observed variable may not directly give an information about the
state of the plant and more may be contaminated with observation
noise.

The input to the plant is to be generated by a piece of equipment

that will be called the controller. We distinguish between two types
of controllers: open-loop and closed-loop. Open-loop controllers

generate u(t) on the basis of past and present values of the reference

variable only (asshownin Figure (1.2)), that is
ut)=f[r)], to £t £t 1.2)

disturbance variablevp

Input
) ntroll - .
reference variablg CO_ tfo & variable — controlled variable
| u=f(r) J| plant .
r u z

Figure(1.2): An Open-loop Control System

While the closed-loop controllers take advantage of the information about the

plant that comes with observed variable; (as shown in Figure (1.3) )
u(t) =golr); y)l, hEt £1 (1.3)
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disturbance variablevIO

controller
reference variable input variable plant controlled variable z
» u=g(r,y) > >
r u SENsors
observed
variabley t v

observation noise v,

Figure (1.3): A closed —loop Control System

Remark (1.2) [20]
Neither (1.2) nor (1.3) are future values of the reference variable or

the observed variable used in generating the input variable since they are
unknown. The plant and the controller will be referred to as the control
system. An important class of tracking problems consists of those problems
where the reference variable is constant over long periods of time. In such
cases it is customary to refer to the reference variable as the set point of the
system and to speak of regulator problems. Here the main problem usually is
to maintain the controlled variable at the set point in spite of disturbance that

act upon the system.

1.2 MATHEMATICAL REQUIREMENTS

The following mathematical definitions are needed for complete

understanding of the subject.
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Definition (1.1) (Asymptotically Stable Matrix) [20]
The n° n constant matrix A is called asymptotically stable if al its

eigenvalues have strictly negative real parts. The eigenvalues of A are the

roots of the characteristic polynomial det(l 1 - A).

Definition (1.2) (Controllable System) [30]

A system is said to be controllable at time t;, if it is possible to find an

unconstrained control vector to transfer any initial state to the originin afinite
timeinterval.

State mathematically, the system is controllable at ty if for any X(tp),
there exists u(t), to £t £t that gives x(t;) =0 (t; >tg).
If this statement is true for all initial time t, and initial states x(tg) , then the

system iscalled completely state controllable.

The following section discusses the mathematical description of a non-linear

deterministic dynamical control system.

1.3 DYNAMICAL CONTROL EQUATIONS[20]

Many systems can be described by a set of simultaneous differential
equations of the form

R(t) = f[x(t),u(t),t)] (1.4)

where tis the timevariable, x(t) is a real n-dimensona time-varying

column vector which denotes the state of the system, and u(t) is a red

m-dimensional column vector which indicates the input variable or
control variable. Thefunction f isarea and avector-valued function.

For many systems the choice of the state follows naturally from the physica
structure, and (1.4) which will be called the state differential equation,
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usually follows direct from the elementary physical laws that govern the
system.
Let y(t) bearea |-dimensional system variable that can be observed

or through which the system influencesits environment. Such avariable we
call an output variable of the system. It can often be expressed as

y(t) = glx(t),u(t).t] (1.5)
Equation (1.5) is caled the output equation of the system.

We cdl systems that are described by (1.4) and (1.5), the
finite dimensonal differential sysem or for short, adifferential system.
Equations (1.4) and (1.5) together are called the sysem equations. |If the
vector-valued function g contains u explicitly, we say that the system
hasa direct link.

We are mainly concerned with the case where f and g are linear
functions. We then speak of a ( finite-dimensional ) linear differential
system. Its state differential equation has the form

k(t) = A(t)x(t) + B(t)u(t) (1.6)
where A(t) and B(t) are time-varying matrices of appropriate dimensions.
We call the dimension n of x the dimenson of the system. The output
equation for such a system takes the form

y(t) = C(t)x(t) + D(t)u(t) (1.7)

If the matrices A, B, C, and D are congtants, the system is time-invariant.

The linearization about a critical points or on a nomina solution of a
deterministic nonlinear dynamic control system can be found in Appendix
[A.1].
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Theorem (1.1) [9], [16]

Consider the linear time invariant system of &=Ax+Bu

where xT R", ul R™, AT R"" and B R"™ are constant matrices.
The necessary and sufficient condition for the complete controllability of

the system % =Ax+Bu is that n" nm matrix

r(A,B):g.BM ABIl L M(A)”'lBg has rank n.

Example (1.1)

Consider the deterministic system given by

eﬁlu ea buexlu eeu

ngXzH 81u

since

ae+bhu ée fu
r (B,AB
(BAB)= 8” ce+dhfl & gl

Where ae+bh=f and ce+dh=g
Since | [A B] |=eg- th, if eg- fht 0, thenthe system is

completely state controllable.

Theorem (1.2) [9], [17]
Consider the linear state time invariant dynamical control state equation
k(t) = Ax(t) + Bu(t)

with linear state feedback control
u(t) = - Kx(t)
Then, the closed-loop characteristic values (regulators poles), that is, the

characteristic values of (A - BK), can be arbitrarily located in the complex

plane (with the restriction that complex characteristic values occur in complex
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conjugate pairs) by choosing K suitably if and only if the system above is
completely state controllable.

1.4 QUADRATIC OPTIMAL REGULATOR SYSTEM

Due to the important application of optimal control problems of

qguadratic form and in this study, the following section is then necessary to be
discussed.

Theorem (1.3) [25], [16]
Consider the system described by
k(t) = Ax(t)

Where X is a state vector (n-vector) and A isan n° n constant non-singular
matrix. A necessary and sufficient condition that the equilibrium state x=0
be asymptotically stable in the large, is that given any postive definite rea
symmetric matrix Q, there exist a positive definite real symmetric matrix R

such that:

ATR+RA=-Q

Remarks (1.3)

1) If the origin of a linear autonomous system Xx=Ax(t) Is

stable, then there exists a unique Lyapunov function for this

system, of the form:
V(x) =x'Rx where ATR+RA=-Q
And Q is any symmetric postive definite matrix, where R
isthe positive definite solution of ATR+RA =-Q. [16]
2) Equation k(t) = Ax(t) admits a unique real symmetric positive

definite solution R for any real, symmetric positive definite matrix Q



Chapter One Some Basic Concepts of Stochastic Dynamic System

if no two eigenvalues of A (distinct) sum to zero, i.e, |; +1; * O,

j
(i,j =12,...,n).
Note that, if Q is positive definite, then the condition that R is

positive is a sufficient condition for the stability of A, in as much as
V(x) = x"Rx isa Lyapunve function of the system. [16]

3) Instead of first specifying a positive-definite matrix R and examining
whether or not Q is positive definite, it is convenient to specify a
postive-definite matrix Q first and then examine whether or not R
determine from

ATR+RA=-Q.
IS positive definite. [26]

1.4.1 Quadratic Optimal Requlator Problems [27]

Consider the optimal control problem that, given the system equation
%(t) = Ax(t) + Bu(t) (1.8)
Let
u(t) = - Kx(t) (1.9

Where the cost function is defined as follows:
¥
J= " Qx(t) +u' (t)Ru(t)dt (1.10)
0

Where Q and R are positive definite.
Then one can show that (see Appendix [B.1]) the feedback control is selected
as.
u(t) =- Kx(t)
=-R 1B} Rx (t) (1.11)
Such that the matrix R is the solution of the following differential Riccati
equation:
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-R(t)=Rt)A +ATR(t) +Q - Rt)B,R B! Rt) (1.12)

The following are generalization of a random variable and stochastic dynamic

system which are needed later on:

1.5 VECTOR STOCHASTIC PROCESSE [20]

We use stochastic process as mathematical models for disturbances and

noise phenomena simultaneously influence a given system.

Definition (1.3) (Stochastic Process) [33]
A collection {x(t), tT T} of random variables is called a stochastic

process. That is, for each t in the index set T, X(t)is random variable. We

ofteninterpret t astimeand call x(t) the state of the process at time t.

Remarks (1.4) [33]
1) If the index of T is countable set, we call {x(t), tT T} a discrete-time

stochastic process.

2) If T isuncountable, we call it a continuous-time process.

Definition (1.4) ( Vector Stochastic Process) [20]

The n-scalar stochastic process that xq(t), Xo(t),..., X, (t) which are
possibly mutually dependent, X(t) =col[x(t),Xs(t),...,X,(t)] is called vector

stochastic process.

10
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1.5.1 Second-Moment Analysis|[8]

The first moments, or the mean of a random process are the expected

values of the random variables that form the process. The second moments, or
correlations, of the process are the expected values of these random variables
squared and the expected values of products of pairs of these random
variables. The correlation function is a function composed of the correlations
within a random process. The analysis of a random process, via the
specification of the mean and correlation function, is known as second-
moment analysis.

The mean of the stochastic process {x(t), tT T} isthe expected values of the

vector stochastic process:

¥
m(t) = E[x(t)] = oxf(xt)dx or
-¥
¥
_Qxlfxl(xlit)dxl (113)

M

(e eny ey ey en ) end

e
e

Xn P, (0, DX,

=
I
(P> (D> (D> (D> (D> (D> (D> (D

-H<O/'"<
oo C

Where E [x(t)] isthe expected value of x(t). f,(x;t) isthe density function
of the vector stochastic process {x(t), tT T}, the first integral in the equation
(1.13) represents an n - th order multiple integral, and fxi (%;t) isthe density
function for i - th element of this vector stochastic process. The expected
value of the product of pair of stochastic variablesis called the correlation (or
the cross-correlation) of the stochastic variables. The correlation provides

information on the relationship among the stochastic variables. The

correlation of the stochastic processis defined as:

11
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Ry (t1,t2) = E[X1(ty)X5 (t,)]

= O OX1X5 fxy x, (X1, X ity t)dx X 5 (1.14)
-¥-¥

The mean square value of the stochastic processis defined as:

¥
E[x Ox(M)] = Ox xfx(x t)dx (1.15)
-¥

The mean square value can be given in terms of the correlation function:

E[X" (t)x(t)] =tr [R(t,1)] (1.16)
The correlation matrix of the stochastic process is defined:
D
Re(t,1)° Sy(t) = E[x(t)x" (t)] (1.17)
¥
= @xxT fy (X;t)dx
-¥

The covariance function of the stochastic process is defined:

Xu(ty,t) =E{ [x(ty) - m(t)] [x(t) - me(t)1" }
¥ ¥
=0 of [Xt)- M IX(t) - M) } fiy 5, 0005t t)dydk
-¥ -¥

(1.18)
The covariance matrix, of the stochastic processis defined as:
D
Xy (t.1)° S, (®) =E{ [x(t)- m(®)] [x)- m(®)]" }
¥
= of [x®- m@Ix®)- m®I" } ft)ax (1.19)

-¥

12
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Remarks (1.5) [20]

1) Properties of expectation operator:

a) E[ax+by] =aE(x) +bE(y) for constant a and b.
b) E[K]=K if Kisconstant .

2) Covariance matrix and the correlation matrix are equal when the
stochastic process has zero mean. And the covariance function is
equal to the correlation function when the stochastic process has
Zero mean.

3) A pair of vectors stochastic process is said to be uncorrelated if
E [x(t)X" (t2)] = me(t)m (t2)

4) A par of stochastic process is sad to be orthogona if
E[x(t)x' (t2)] =0.

5) The correlation function R, (t;,t») isalso called (second-order joint

moment matrix ) of x(t), While the correlation matrix

D
R, (t,t)° S, (t) is also called (second-order moment matrix of the

process).

D_
6) The covariance matrix X, (t,t)°S, (t) is sometimes termed as the

variance matrix.

Example (1.2) [8]

Consider the stochastic process given by

¥
X(t)= a ugpit- k)
k=-¥

Where p,(t) isthe unit function and

11 KEtEk+1

t- k)=
Pl ) }0 dse

13
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Then control samples {u, } can be approximated by independent stochastic
variable which is uniformly distributed from (- 0.3,0.3) with density function
11

f (Uk ) = % 0.6
10 else

-0.3<uy <03

And My, =0 and sukzz 0.36. A sample of the random signal x(t) is

¥

¥
m@)=E[x(®)] =E[ & ucpit-k)] = & Euglpst-k)=0
k=-¥ k=-¥

The correlation function is obtained by:

¥ ¥
Re(ttp) =E [X(t)X(t2)] =E[ & uepslti- k) & X pulta-1)]
k=-¥% | =-¥

¥
a  ElugxIplts- K)pylta- 1)
[=-¥

¥
= & 0.03py(t - K)py(ty - k)
k=-¥

The correlation matrix and the covariance matrix are then found:

¥
S, () =X, (L) =R (t,t)= & 0.03pZ(t- k)= 0.03 (since the mean is
k=-¥

zero see remark (1.5), point (2)).

Definition (1.5) (Stationary) [8]
A stochastic process {x(t), tT T} is said to be stationary processif for

al n, t,t,,...,t, the vector stochastic process x(t;),x(t5),...,x(t,) and

X(t; + 9), X(t, + 9),...,X(t,, + S) , have the same joint distribution.

14



Chapter One Some Basic Concepts of Stochastic Dynamic System

Remark (1.6) [33]

A process is a gationary such that, if choosing any fixed point as the

origin, then the ensuring process has the same probability law.

Definition (1.6) ( Wide-Sense Stationary) [20]
The dtochastic {x(t), tI T} is called wide-sense stationary if its

correlation matrix R, (t,t) isfinite for all t, its mean m(t) is constant, and its

covariance function X, (t;,t,) dependsont, - t; only.

Theorem (1.4) [20]
Suppose that {x(t), tT T} is a stationary stochastic process. Then its

meanm(t) is constant and its covariance function X, (t;,t,) dependsont, - t;

only.

Remark (1.7)

By theorem (1.4), we can get any stationary process is also wide-sense

stationary.

Example (1.3) [8]
Consider the stochastic process given by
x(t) =a cos(0.5t +q)

Where the random variable (a) have normal distribution, with

m, =063, s2 =011 and
g isuniformly distributed (continuous probability distribution) such that,
a and gq are uncorrelated random variables.

The mean of the stochastic process x(t) is computed as:

15
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E[x(t)] = E [a cos(0.5t +q)]
= E[a] E [cos(0.5t)cos(q) - sin(0.5t)sin(q)]

2p
—E (@) % Olcos(0.8)cos(q) - sin(0.5)sin(q)]dq
0

063 ® - 2

= E( cos(0.5t) cos(q)dq - sin(0.5t) Bsin(@)dg )
0 0

063

) cos(0.5)sin(@)lg” - sin(0.50)(- cos@))fg” )

°0
The covariance function (which is equal to correlation function of the
stochastic variable since the mean is zero, (see remark (1.5)) is then
computed as follows:
Xy (ty,tp) =E[X(t) X(tx)] =E( [a cos(0.5t; +)] [a cos(0.5t, +q)] ) (1.20)

Since

cos(q; +05) = cos(g;) cos(d,) - Sin(g,)SiN(y) (1.21)
And
cos(qy - dz) = cos(dy) cos(dy) +sin(dy)sin(dy) (1.22)
Now we added the equation (1.21) and equation (1.22) we obtain:
1
ECOS(Ch +0) +cos(ay - gp) = cos(ay) cos(dy) (1.23)
Let
=0.5t
=55t (1.24)
q2 = 05t1

Substitute (1.24) into (1.20), the following have been obtained:

16
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E[(x(t) x(t,)] = % Ela 2] [cos(0.5t, +q + 0.5, +q) + cos(0.5, +q - 0.5 - q)]

- %E[a 2] E[cos(0.5(t; +1,) + 2q) +Co(0.5(t, - )]

And from (1.20), we have:

mf+s2é
& Ocos(0.5(t; +t5)) +2q]dg +
p &

Elx()x(t2)] =

u
u

2 24 20
Elx t)x (t,)] =% ;O(O'”) § Olcos(0.5(t; +t,)) cos(2q) -
0

Sin(0.5(t, +1,))sin(2q)]dq +cos(0.5(t; - t,)) Q

. 2p - 2p
:O.Zg cos(0.5(t; +t5)) Scos(2)dq - sin(0.5(t; +t5)) Ssin(2g)dg +
e 2p 0 2p 0

u
cos(0.5(t1 - t2))
u

E[X (t)x (t)] = 0.20 [cos(0.5(t, - t;))] -
So
Xy (tg,t5) = Re(ty,t5) = 0.20(cos(0.5(t5 - t;)) .
And the correlation matrix:

R, (t,t) =0.20 isfinite

On using the above result of the mean and covariance function we
conclude that the mean is congtant, its covariance function depends only on

the time difference (t, - t;), and its correlation matrix Ry (t,t) isfinite so this

stochastic signal is wide-sense stationary.

17



Chapter One Some Basic Concepts of Stochastic Dynamic System

Definition (1.7) (Power Spectral Density Matrix) [8]

The power spectral density matrix S,(w) of a wide-sense stationary

vector stochastic process is defined as the Fourier transform, if it exists, of
both covariance matrix X, (t; - t,) of the process, that is,

¥ .
S(w)= e M X, (t)d where j?=1 (1.25)
-¥

1.5.2 Gaussian Stochastic Process[20]

A Gaussian stochastic processis a stochastic process where for each set
of ingtants of time ty,t,,...,t, 3 ty, the n-dimensional vector x(t),...,X(t,,) has
a Gaussian joint probability distribution. If compound covariance matrix:

eXy(tt)  Xy(pt)) L Xi(ty,tm) O

X:gxx(tz,tl) Xu(tot)) L Xy(tatm)
e L L L L ¢

: a
gxx(tm’tl) Xx(tm’tz) L Xx(tm’tm)ﬂ

Is nonsingular, and the corresponding density function can be written:

f () =P & & 0 - )X ;- mit ).
(2p)™ det(X) 2 -

(1.26)

where m(t) isstanding for the mean.

Note that this process is completely characterized by its mean and
covariance matrix, thus a Gaussian process is stationary if and only if it is

wide-sense stationary.

18
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1.5.3 Process with Uncorrelated | ncrements [20]

A process {x(t), tI T} with uncorrelated increments can have the

following important properties which are needing in stochastic dynamic
system.

1) For any sequence of instants ty,t,,t3, and with tog £t £t, Et3£1,, the
increments x(t,)- x(t;) and x(t)- X(t3) have zero means and are
uncorrelated, that is,

E{x(to) - x(t)} = E{x(t4) - x(t3)} =0
(1.27)
E{[X(t) - X(t)][X(ts) - X(t3)]'} =0
where theinitial valueis given by
X(tg) =0 (1.28)
The mean of such aprocessiseasily determined:
m(t) = E{x(t)}
=0, t3t (1.29)
2) Suppose for the moment that t, 2 t;. Then we have for the covariance

function
Xyt t2) = E{x(t)X" (t2)}
= E{[x(ty) - X(t)][X(t2) - X(ty) +X(t) - X(to)]"}
= E{[x(t) - X(t)][X(t) - X(to)]"}
Xyt t2) = E{X(t)x" (1)}
=S, (t) th3 43 t,

(2.30)
where

S, (1) = E{x(t)x" (t)} (1.31)

Is the variance matrix of the process. Similarly,
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X, (t1, 1) =Sy (ty) for t3t,3 tg (1.32)
3) Let us consder the variance matrix of the process. We can write for
ty 3ty 3 tg:
Sx(t2) = E{x(t)x (t)}
= B{[X(t) - X(ty) +x(ty) - X(to)][X(t) - X(ty) + X(ty) - X(to)]'}
=E{[x(t2) - X(W][X(tz) - X(t)]"} +Sy(ty)

(1.33)

S, (t) is monotonically nondecreasing matrix function of t in the sense that

S, (t5) 2 Sy () forall t,3 t; 3 tg

Hence, if A and B are two symmetric real matrices, the notation A3 B

implies that the matrix A - B is nonnegative-definite. Assuming that the

matrix function S, (t) isabsolutely continuous, that is we can write

t
Sx(t) = OS(t )t (1.34)
0

Where S(t) is a nonnegative-definite symmetric matrix function. It then
following from (1.33) that the variance matrix of the increment X(t,) - X(t;) is

given by
t
E{[X(to) - X@)I[X(t2) - X(0)]"} =Sx(to) - Sy(t)= ¢S(t )
0

Comparing (1.30) and (1.32), we see that if (1.34) holds the covariance matrix
of the process can be expressed as.

min(ty,to)
Xyti)= ¢ St)dt (1.35)
to
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Remarks (1.8) [20]
1) The process discussed in (1.5.3), is a process with uncorrelated

increments where each of the increments X(t,) - X(t;) is a Gaussian
stochastic vector with zero mean and variance matrix (t, - t;)I , where

| isthe unite matrix.
2) Such a process with uncorrelated increments is usually called the

Brownian motion process.

1.6 WHITE NOI SE [8], [20]

One frequently encounters in practice zero-mean scalar stochastic

process X with the property that x(t;) and x(t,) are uncorrelated even for
values of |t, - t;| that are quite small, that is, R (t;,t,) @0 for |t, - t;| >e,

Where e is “smal” number. The correlation function of such stochastic
process can be idealized asfollows R (4;,t,) =S (t)d(t, - t;), S (1) 2 O.

d(t, - t;) is delta function (see Appendix [A.3] ) and S (t) is referred to as

intensity of the process at timet. Such process are called white noise process.

Definition (1.8) (White Noise) [20]

The sochasgtic process x(t) is caled white noise with intensty

S (t)2 0, if its mean vector-valued stochastic process equal to zero and

correlation function R (t;,t,) =S (t)d (t, - ty).

Remark (1.9) [8]

In the case in which the intensity of the white noise processis constant,

the process is wide-sense stationary and its power spectral density matrix

formally, taking the Fourier transform of S d(t ), that wide-sense stationary

white noise has the power spectral density matrix S, (W) = SX :
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Theorem (1.5) [20]
Let {x(t), tT T} beavector-valued stochastic process. Then if W(t) is

a symmetric matrix, E{[xT (t) W(t) x(t)]} =tr[W(t) R (t,t)], where R, (t,t) is

the second-order joint moment matrix (correlation matrix ) of the process.

Theorem (1.6) [20]

Let x(t) be a vector-valued white noise process with intensity S (t).

Also, let Aq(t),A,(t) and A(t) be given time-varying matrices. Then

t
a) E[be\(t)x(t)dt] =0.
t
to tg
b) E{[QALL)XH)dt]] OALE Xt 9atq™ } = HA()S, (1A (t) dt .
where T is the intersection of [ty,t;]and [t3,t,] and W is any symmetric
matrix.
to tg
©) E{[ GALMX M)A W [ A, 9x(t9dt 4} = §r[S, (1)AT (W A,(t)] ct .
t t3 T

where T isas defined before.

The following remark state the relationship between white noise

stochastic process and uncorrelated increment process.

Remark (1.10) [20]

White noise can be expressed as the derivative of process with

uncorrelated increments. ( see Appendix [B.2] for details).
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1.6.1 Linear Differential Systems Driven by White Noise [8], [20]

We present here a linear differential system driven by white noise

which is a very convenient model for formulating and solving stochastic
linear control problems that involve disturbances and noise. In this work,
some of the statistical properties of the state of a linear differential system

with a white noise process as input have been discussed.

Theorem (1.7) [20], [22]
Consider the stochastic differential equation
X(t)=Ax(t)+Bx(t)
X (to) = Xo,

where A and B are constant and X (t) is white noise with constant intensity

S . Then if A is asymptotically stable matrix and t,;® -¥ or t® ¥, the

variance matrix of x(t) tendsto the nonnegative-definite constant matrix
¥ T
S, (¥)=¢gM'BS BT Udt,
0

which is the unique solution of the matrix equation
0=AS,(¥)+S,(¥)AT +BSBT.
The matrix equations of this form are sometimes known as Lyapunov

equations.

1.6.2 Linear System with White Noise | nputs [8], [23]

Consider a linear system with a random initial state and a stationary

white noise inputs x (t) :
k(1) = Ax(t) + Bx(t) (1.36 @)
y(t) = Cx(t). (1.36 b)

The white noise input has a known correlation function:
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Rt)=EXt)x' (t+t)]=Sd() (1.37)
The mean of the initial condition and the mean of white noise are assumed to
be zero.

m(0) =0 (1.38)

The correlation matrix of the initial condition is assumed to be known:
R((0) = E [x(0)X" (0)] (1.39)
The initial conditions are assumed to be uncorrelated with the input:
E[x(O)x " ()] =E [x(0)] E [x" (t)]=0 ,forall t3 0. (1.40)
The initial state should be uncorrelated with inputs occurring after the initial
time.

The solution of the non-homogeneous state equation (1.36) is given by (seein
Appendix [A.2.1] ):

t
x(t) = e x(0) + g VBx (t )t (1.412)
0

The mean of the state in (1.36) is found by taking the expected value of the
solution of the state equation.

t
m(t) =E [*'x(0) + ¢ " VBx (t )t |
0

t
= MEXO)] + ¢ T VBE[x(t )]dt =0 (1.42)
0

The mean of the output is aso zero:
my (t) = E[Cx(t)] = CE[x(t)] =Cm,(t) =0 (1.43)
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1.6.3 The Output Correlation Function [8]
The state correlation function in (1.36) is found by subgtituting the

solution of the state equation into the definition of the correlation function

equation (1.14) we obtain:

Re(ty, o) = E[X(t)X" (t,)]

PR 5} .
=Eg | (0 + @ UBx()d |
el 0 }3
. t T .
I, Atz 2\ A(tz-S) l;l u
i €20+ c¢ Bx(s)ds g a
| 0 u
(1.44)
s t .
€1 Ay ! Alty-t) U
=Ea | € Xx(0)+ ¢ Bx(t)dt vy>
el 0 }3
1 AT,T 2 T (ty-8)T T U u
e 2x (0O+ " 2B X (s)dsg((I
| 0 u

to
T T
Ry (titp) =eME[x (O)xT (0)]e™ '2 + cpE[x (0)x" (s)]B e 2"%)ds +

0
t
l\A(tl-t)BE OxT (0 ATtZdt_I_
& [x(t)x" (O)]e
0
t1t
12 At-OBEx (t T ()BT AT (t2- S)gedit
(0003 [xt)x (s)]B e
00
tt
_ A ATty | s Al-t) T AT (ty-5)
Ry (t1,to) =e™1S, (O)e + O BSd{ - s)B' e dsdt
00
(1.45)
min(ty,to) T
R(t,tp) =S, (0)e? 2+ e”lis)Bg BTe” (279)s (1.46)

0
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The transition from (1.44) to (1.45), using the properties of expectation
operator (see remark (1.5)), equation (1.17), (1.37), and the equation (1.46) is
then obtained. (for details, one can see in Appendix [A.3] ).

The output correlation function can be smply computed from the state

correlation function equation (1.46) as follows:
R (ty.t2) = E[s(ty)s’ (t2)] =C E[x(t)x " (t2)]CT =CRy (ty,tp)C’
(1.47)
Remarks (1.11) [8]

1) The state correlation matrix can be obtained from the state correlation

function:

T t T
S, (1) =Ry (t.,t) =e™'S, (0)e™ ' + ¢t B BTe” ¢~ Sgs,
0

Performing the change of variable S =t - S;, we obtain:

T, o T
S, (t)=e"'s, (0)e ' + ¢g"°BS,B'e” °ds (1.48)
0

2) The state correlation matrix can also be computed as the solution of a
differential equation. This differential equation is obtained by
differentiating equation (1.48) to get:

T T it T
&, (1) =Ae s, (0" ' +ei's, (0)ATe ! +§'_t_,l_ g t-iBs,BTe? (%)t
To
(1.49)
By using simple calculations, and from equation (1.48), one gets:
1 At T At T ATt . U
§,(t)=Aj 'S, (0 '+per'BS BTN g+
|
1 At AT, S At T ATt . U T
AT NS, (0t T+ et BSBTEN g+BS(B (1.50)
' 0

From equation (1.48) and (1.50), we have
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& ()= AS,(t) + ATS, (t)+BSB' (1.51)
3) The steady-state correlation matrix of (1.48) is given by:

T, U T
S, (¥)= Ii®rr;é{ e™'s, (0)e™ ' + p"°BS, BT e” Sds } (1.52)
t
0

For a stable system, equation (1.52) approaches

¥
.
¢"°BS,B'e” Sds (1.53)

t T D
S, (¥) = lim ¢p"°BS, BT e” %ds ©
t®¥0 0

The steady-state correlation matrix of the state can also be found from the
matrix differential equation (1.51) provided that the system is time-invariant
and stable. In steady-state, the derivative of the correlation matrix equal to
zero then:

AS,(¥)+S,(¥)AT +BS BT =0 (1.54)
It is quite helpful to realize that this algebraic matrix equation in S, (¥) hasa

unigque solution. Matrix equation in (1.54) is also known Lyapunov equation.

The following illustration for linear stochastic process driven by white noise

has been considered:

Example (1.4) [8]

Consider a linear system with a random initial state and a stationary

white noise inputs x (t) define by
K(t) =- 10x(t) +9x(t)
y(t) = x(t)
Where x(t) is the measurement noise is modeled as white noise with

correlation functions:
R (t)=0.01d( ), d() isdeltafunction.
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The initial condition on the state is uniformly distributed between (-p,p)

which yields the mean is assumed to be zero and correlation matrix
(variance):
pz
S, (0)==—=3.29
3
The state correlation function is given by equation (1.46):

min(ty,to)
Ry (titp) =320 0t+t2) 4+ 0.81e 1(1*12)g205gg
0

—3.99¢ 10(1+12) | § gge 10(t1+t2) 20min(ty 1)
The output correlation function equals the state correlation function because
C=1.
The state and the output correlation matrix can be computed using (1.48):
S, (t) =Ss(t) =R, (t,t) =0.04+3.29 2™
The steady-state correlation matrix of the state can be computed using (1.53):

¥
- 0.81 . ¥
S, (¥)= @ 0.8le”05gs = =g~ 20s

X( ) O 20 |0

0

=0.04

Or the steady-state correlation matrix of the state can also found the equation
(1.54):
-10S,(¥)- 10S,(¥)+0.81=0 P S, (¥)=0.04

1.6.4 Quadratic I ntegral Expressions [20]

Consider the linear stochastic differential system driven by white noise
k(t) = A(t)x(t) + B(t)x (1) (1.55)

where x (t) is n” 1 vector is said white noise stochastic process with intensity
S (1), x(t) isn” 1 vector xI R, A(t) isn" n matrix, A(t)T R" ", B(t) is

n" m matrix, Bt)7 R" ™ and where the initial state x(t,) is assumed to be
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a stochastic variable with E{x(to)xT(tO)} :SXO. We employ quadratic

expression of the form

t
E{ x" @)Rx(t)+ l@xT OR(E)x (t)dt } (1.56)
to

where R(t) is a symmetric nonnegative-definite weighting matrix for all

toEt£t and R is symmetric and nonnegative-definite. For the solution of

the linear stochastic differential equation (1.55), (see in Appendix [B.3.1] for

details):

t
X(t) = F (t,tp) X(tp) + OF (t,t)B( )x(t )at (1.57)
to

Now substituting equation (1.57) into (1.56), and using the theorem (1.6), one
have that:

t
E{ x" ()R x(t;) + l@xT ORE)x(t)dt } =
to

]
I N

tri [ OF Mto)RO)F (tto)dt +FT (t,to)RF (tyto) |Sx, +
| to

t t
&1 6508 OFT CLOROF OB ot +

to fo

t .
(13 S )BT €)FT (.t R F (ty.t)B(t )olt g

to

(1.58)

The second and third part of (1.58) can be obtained on using the fact that
tr(MN) =tr (NM) for compatible dimensions (see in Appendix [B.4]),
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1t

tr{ O[OS t)BT ¢ )F T (t,t)RE)F (t,t)B(t )dt ]t +
to 1o
ty
O Sk (t)B" ©)F T (tt )R F (ty.t)B(t )t }
to
t 3]
=tr{ Pt )S )BT ¢ )[QF T (tL.t)RE)F (L.t )t +
to t
FT(t,t)RF (t.t)]ot }
(1.59)
On substitution (1.59) into (1.58), we have that:
5} ¢
E{x" (t)R x(ty) + X" (OR()x(t)dt} =tr{R(t)Sy, + l@B(t)S( )BT ()R(t)dt}
to to
(1.60)
where the symmetric matrix R(t) isdefined:
ty
RE)=FT (ORF () + OF ' (¢ DRE)F ¢, t)dt (1.61)

t
By using theorem (B.1), seein Appendix [B].
One can show that R(t) isthe solution of the following differential equation:
- R(t) = AT ()R() + REA(L) + R(t) (1.62)
Setting t =t; in (1.61) we obtain:
R(t) =Ry
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Theorem (1.8) [20]
Consider the linear stochastic differential system driven by white noise:
X(t) = At)x(t) +B(t)x (t)

where X (t) is white noise with intensity S (t) and x(tgy) =X, is a stochastic

variable with E{XOXOT} =S,.. Let R(t) be symmetric and nonnegative-

Xo "

definite for to£t£t and R congtant, symmetric, and nonnegative-definite.

Then:
t i1
E{ X' (R X(t)+ z‘y(T(t) RE)x(t)ct } :tr{ Rto)Sy, + BOS (1B (t)R(t)dt}
to fo

where R(t) issymmetric nonnegative-definite matrix
b
RO =F" ()R F )+ F (¢ .HRE)F(E bt
t
F (t,tp) isthetrangtion matrix of the system %(t) = A(t) x(t).
R(t) satisfiesthe matrix differential equation
- Rt) = AT(OR®) +ROA) +R(t)
with terminal condition

R(t) =R, .
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Chapter Two The Non-Linear Stochastic Control Problem

The linear tracking problems is one of the main problem of the control
theory. The aim of its asymptotic solution is to find a regulator for a given
controlled system which will guarantee the asymptotical zero value of control
error for deterministic case and asymptotical zero accepted value of control
error with a limited variance in the stochastic case for system initial
conditions and all considered tracking signal and disturbance signals.

It is known that ( LQG) optimal regulator copies complexity (order of

system) of given controlled system. Therefore, the regulator is very complex
for a large-scale controlled system although the ssmpler regulator can be used
without substantial deterioration of control quality in many cases.

In this chapter, large scalar Linear Quadratic Gaussian (LQG) have

been developed and the tracking (stabilizing) controller that guarantee the
optimum tracking between the origin system and the desired one, have been
developed. The necessary theorems for optimum tracking have been stated
and proved. The robust controller as well as optimum one are designed. The

necessary concluding remarks are also presented.
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2.1 MATHEMATICAL CONTROL EQUATIONS
The following are some necessary mathematical principals that will be
needed later on this our work.

Definition (2.1) [20]
Consider the system described by
X(t)=Ax({t)+Byu(t) +x(t)

with initial state X(tg) =%y, 2z(t) = D(t)x(t).
X (t) iswhite noise with intensity S (t) >0. Theinitial state x; isastochastic

variable, independent of the white noise x (t) with E{ xoxoT} = SXO :

Consider the criterion

t
mind =E{x" (t; )Hx (t; ) + f@[xT QX () +u" (t)Ru(t)]dt}
u 0

where Q and R are positive-definite symmetric matricesfor O£t £t

and H is nonnegative-definite symmetric matrix. Then the problem of

determining for each t, O£t £t; , the input u(t) as a function of all

information from the past such that the criterion is minimized is called the

stochastic linear optimal regulator problem.

2.1.1 Optimization and Control [8]

A brief summary of the mathematics of optimization is given before
addressing the derivation of the linear quadratic regulator. Differentiation is
the primary tool for optimization in elementary calculus texts. Therefore, it is
reasonable to assume that optimal control can be found by taking the
derivative of the cost function with respect to the control input. This approach
IS reasonable, but requires the differentiation of a real scalar cost function

with respect to the control input, which is a function of time. Optimization in
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this case can be accomplished by using a generalization of differential called

the variation.

2.1.2 Variations[8]

The real scalar function of a scalar J(x) has alocal minimum at X if

and only if

ﬁb(x*,dx)EJ(x* +dx)2 J(x ) (2.1)

for all dx sufficiently small; that is, the magnitude of dx is less than some

positive number e . An equivalent statement that:

D:%(x*,dx)g)J(x* +dx)- J(X )30

for all dx sufficiently small. Theterm D f/v(x*,dx) Is called the increment of

J(x). Expanding J(x* +dx) in a Taylor series around the point X , the
optimality condition equation (2.1) can be written:
DI(x",dx) = J(X +dx)- I(X)

* 2 *
=) 4 99D g2 hoT.2 0 (2.2)
dx dx?

Note that the term in Df/v(x*,dx) is linear in dx which is the

differential of J(x), and the coefficient multiplying dx, in this term, is the
derivative of J(x). When dealing with a functional, dx is called the
variation of X, and the term in the increment dx is caled the variation of
J(x) and is denoted by dJ(x ,dX) (the linear part of J(x +dx). The
variation of J(X) isa generalization of the differential and can be applied to

the optimization of a functional. Equation (2.2) can be used to develop

necessary conditions for optimality. In the limit as dx approaches zero, the
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terms dx?, dx>, and so on become arbitrary small compared to dx. A
necessary condition for X to belocal minimum is that

The variation of J(X) iszero at X forall dx.

2.1.3 Lagrange Multipliers[8]

The optimal control problem is a constrained minimization problem; that
Is, the minimization of the cost function is subject to constraints on the state
and the control. Lagrange multipliers provide a method of converting a
constrained minimization problem into an unconstrained minimization
problem of higher order. Optimization can then be performed using the above

necessary condition. Consder the problem of minimizing J(x), where x is
avector, such that

c(x)=0 (2.3)
Equation (2.3) specifies a surface in the space of x. Necessary conditions for
optimality of Jat apoint X arethat X satisfies (2.3) and that the directional
derivativeof Jat X' equal zero in all directions along the surface. This second
condition is satisfied if the gradient of Jis norma to the surface at X . Note
that the gradient of ¢(x) is normal to the surface at all points, including X .
Therefore, the second condition is satisfied if the gradient of J is parallel to

the gradient of c(x) at X ,or equivalently,

dJ(xX)  _dc(x) _
dx TP dx =0 (24)

for some scalar p. equation (2.3) and (2.4) form a set of necessary conditions

for a solution of the consgtrained optimization problem. The necessary
condition for optimality, (2.3) and (2.4), can be generated as the solution to

an unconstrained optimization problem with the following cost function:
Ja (X, p) = J(X) + pc(x) (2.5)
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Taking the gradient of J, (X, p) with respect to x obtains (2.4), and taking the
derivative of J, with respect to p obtain (2.3), the parameter p is called
Lagrange multiplier. The procedure of solving the constrained optimization
problem for J by solving the unconstrained optimization problem for J, is
called the method of Lagrange multipliers. This method is also applicable to
the optimal control problem which involves the constrained minimization of a

functional.

2.2 THE LINEAR QUADRATIC REGULATOR [8]
The linear quadratic regulator (LQR) is an optima control problem

where the state equation of the plant is linear, the cost function is quadratic,
and the test conditions consist of initia conditions on the state and no
disturbance inputs. The plant state equation is:

k() = Ax(t) + B,u(t) (2.6)
where xT R", AT R” "constant matrix, BT R" Mconstant matrix, u(t)T R™
the control input.

The reference output is:
y(t) = Cyx(t) (2.7)
The cost function is:

t¢

min\](x(t),u(t)):%yT (ts Hyy )+% Ay OQyy )+ u' (t)Ru(t)]dt
0

(2.8)
Where H y» Qy: and R are positive definite. The cost is evaluated subject to

the initial condition x(0) = x5, and no disturbance input. The cost function

(2.8) isfrequently written directly in terms of the state and the control:
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tf
min J(x(t), u(t)) =%xT (tg )HX(t;) +% X" ®Qx() +u’ ORu®Idt  (2.9)
0

_~T _~T
Where H =Cy H,C, , Q=CyQ,C,
Note that H and Q are positive semidefinite. This optimal control

problem is a constrained optimization problem, with the cost being a

functiona of both u(t) and x(t) and the state equation providing a family of

constraint equations. It is assumed that there are no other constraints on the

state or control.

2.2.1 (Hamiltonian Equations) [8]

The optimal control problem, posed in (2.6) and (2.9), can be converted
to an unconstrained optimization problem of higher dimension by application
of Lagrange multipliers. An augmented cost function is constructed by adding
a congtant times each of the constraints to the cost function. The state
equation represents a family of constraint equations. These congraints can be

appended to the cost function by the addition of an integral:
5

Ja (X(1),u(t), p(t)) = I(x(t), u(t)) + OP" (DIAX(E) +Byu(t) - K(t)lot
0

where p(t) is the family of Lagrange multipliers (see remark (2.1)), one at
each point intimein the interval from 0O to t; . The augmented cost isthen:

tg

Ja (XU, PO) = X7 () FX(E ) + 35X (ORX()+ 0T ORI +
0

p' (DIAX() + Buu(t) - R(O)T}ckt
This augmented cost function is a function of the state x(t), the control u(t),
and the Lagrange multiplier p(t). The Lagrange multiplier is often referred to

as the “costate” in optimal control applications. The optimal control is found
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by forming the increment of J, with respect to the state, the control, and the

costate:

D
D 3, (x,u, p,dx,du,dp)° D J, (x,u, p)
=J, (x+dx,u+du, p+dp)- J, (XU, p)

:%[X(tf ) +dx(te)]" Hx(ty) +dx(ty )]+

ts

S 1 (x+d0TQ(x+dx) + 2 (u+du)T Ru +du)+
015 2

0

(p+dp) [A(x+dx)+By(u+du)- (X+d&)]}dt -

tg

Xt HXE) - X QXD +2uT (Ru() +
2 0 2 2

p' [AX +Byu - ®]}dt +HOT .
(2.10)
The time index has been deleted, except at the final time. Note that the
variation of %(t) results from taking the derivative of the variation of Xx(t).
Expanding this expression and grouping terms obtain:

tf
DJ, :%de(tf)de(tf)+ o {%dede+%duTRtlu+
0

dp’ (Adx+B,du- d&)}dt +
tf

X" (t¢ )Hdx(t) + X" Qdx+u"Rdu+dp' (Ax+Byu- %)} +
0

p' [Adx +B,du - d%]}dt +HOT. (2.11)
A necessary condition for the tragjectory x(t), p(t), and u(t) to be a minimum

isthat the variation of J, equals zero:
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ts
dJ, (x,u, p.dxdu,dp)=x" (t;)Hdx(t;) + G (X' Q+p' A)dx+
0

(UTR+ p'By)du+

dp’ (Ax+Byu- X)- p'dfdt=0 (2.12)
The last term in equation (2.12) involves d (t), which isafunction of dx(t)
and therefore not an independent variable. The term d X(t) can be eliminated

from (2.12) using integration by parts:

5 5
OP' (HdX(t)dt=p’ (t;)dx(t;)- p'(O)dx(0)- b M)dx(t)dt  (2.13)
0 0

The initial condition on the state is fixed, so dx (0) =0. Subgtituting (2.13)
into (2.12), and grouping terms obtains the necessary condition for optimality:
dJ, (x,u,p,dx,du,dp)=[x" (t{)H - p'(t;)ldx(ts)+

ts
HXTQ+p A+ pT)dx+ (U R+ p'By)du+
0

dp’ (Ax +Byu - %)dt =0
Since the variation dx(t;), dx, du, and d p are all arbitrary, the only way

thisexpression can equal zerois:

p' (tr)=x" (tf)H (2.14)
p' M) =-x" (OQ- p' (HA (2.15)
uT )R+ p' ()B, =0P (2.16a)
u(t) =- R 1B/ p(t) (2.16 b)

where the inverse is guaranteed to exist since R is positive definite.
k(t) = Ax(t) + B,u(t) (2.17)
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Eliminating u(t) from (2.15) and (2.17), and combining the resulting

equations into a single state equation obtains:

ekt)a €A Il -B,R'B] Uex)o e (®)a
L Y=gl »ooooooooooooouel_“ HeL ! (2.18)
B0 §Q 1 AT ﬂ@p(t)g B0
The equation (2.18) is referred to as the Hamiltonian system, and the
state matrix H is called the Hamiltonian. The Hamiltonian system ( along
with the initial and final values) represents a set of necessary conditions for
the control to minimize the cost function. These equations are also sufficient;
that is, the solution of the Hamiltonian system is the unique control that
minimizes the cost function.
The optimal control depends on the costate, which can be found by

solving the homogeneous state equation (2.18) subject to the initial and final

conditions.
X(0) = xo (2.193)
p(ts) = Hx(ts) (2.19 b)

The general solution of the state equation (2.18), at the final time, given

initial condition at timetis

éx(ts)u éx(t)a eF1(ts-t) N Footy - 1) Uex(t)u

gL a:eH(tf t)eLﬂ g L Wwﬁel_u

&p(ty)d BPOE &1t -1 N Foolty - t) HepME
(2.20)

Note that each submatrix in the state-transition matrix is computed
from the entire Hamiltonian matrix in general. Substituting equation (2.19b)
into equation (2.20), we obtain:
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X
~

—
—h
~

eF (s -t) N Foo(ty - 1) Gex(t)u

A

L g L »ooooooooooooogg L ﬂ (2.21)
EHx(te ) Sty -t) N Foo(ty - t) Hep(t)g

where the unknowns are x(t), p(t), and x(t;). Eliminating x(t;) from the

u
u—
Q=

» (D> (D> (D~
> (D> (D>

equation (2.21) by Substituting the first equation within (2.21) into the

second, we have:
H{F 12(ts - )X(t) + F1o(ts - P} =F x(ts - )X() +F 5(ts - ) p(t)
The costate can then be found from the state:
P(t) ={F (s -t)- HF 1t - )} {HFa(te - t)- Folty - OIx ()
=R({t)x ()
(2.22)
where R(t) is the matrix of proportionality between the costate and the state.

This the matrix is fully specified by the state-transition matrix of the
Hamiltonian system, since the inverse in (2.22) exists at all times between the
initial time and final time [11]. The optimal control is found from equation
(2.16):

u(t) =- R 1B Rt)x(t) =- K(t)x(t) (2.23)
where K (t) iscalled the optimal feedback gain matrix. The optimal control is
linear, time-varying state feedback, in general, where the optimal feedback

gain matrix can be found from the state-transition matrix of the Hamiltonian.

2.2.2 (The Optimal Feedback Solution in the Riccati Equation Form) [8]

The determination of the state-transition matrix for the Hamiltonian

system is often a very tedious process. An aternative method of finding the
optimal feedback gain matrix utilizes a nonlinear matrix differential equation,

known as the Riccati equation. The Riccati equation has only final conditions

41



Chapter Two The Non-Linear Stochastic Control Problem

and can, therefore, be solved backward in time using any numerical
integration method.
A linear relationship between the costate and the state is given by
(2.22):
p(t) = R(t)x(t)
The solution of the optimal control problem can be reduced to finding

the matrix R(t), since the optimal control is given by equation (2.23):
u(t) =- R B! Rit)x(t) =- K(t)x(t), and x(t) is assumed to be measured
perfectly.
A differential equation for R(t) can be generated by taking the
derivative of (2.22):
B(t) = REX(t) + ROA)
Substituting for f(t) and %(t) from (2.18) we obtain:
-Qx(®) - AT p(t) = RE)x(®) + RO{AX(t) - B,R 'B] p(t)}
Substituting for p(t) using (2.22) and rearranging, we have:
{R(t) +ROA +ATR(D) +Q- ROB,R BIRD} (1) =0
This equation is valid for an arbitrary state x(t) (resulting from an arbitrary
initial condition Xy), which impliesthat R(t) must satisfy
-R(t)=Rt)A +ATR(t) +Q - Rt)B,R B! Rt) (2.24)
This differential equation is known asthe Riccati equation. The value of R(t)
corresponding to the optimal trgjectory isfound by solving (2.24) backward in
time from the final condition, which is given by (2.19 b):
Rt;)=H (2.25)
WhereH is symmetric.
The optimal control is then found by using (2.23). the solution of the Riccati

equation yields a unique optimal control that minimizes the cost function.
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Remarks (2.1) [8]
1) The Riccati equation was generated by solving for the matrix of

proportionality between the state and costate in the Hamiltonian
equations. It turns out that the Riccati solution has significance other
than as tool for computing the optimal feedback gain matrix.
Congder the plant state equation from (2.6):
AX(t) + Byu(t) - %(t)=0
The optimal cost is, therefore, unaffected by the addition of any product
of terms, which includes the state constraint equation. Note that the optimal
cost depends only on the initial state, since the control and state trgectories

are specified as those obtaining the optimal cost.

i
J(x(O))——x (t )H X (t; ) + d;xTQx +%uTRu +
0

% p [Ax+Byu- ]}dt (2.26)
From (2.15) and (2.16 a):
p' A =-p" ()- X' (©)Q
p' ()By =-u' ()R

Substituting these equations into (2.26) we obtain:

tf

J<x<o»-—x (ts)HX(ts) - —o{& x+p' &t
0

%x (t; YHX (t; ) OMdt

1xT @ )Hx(tf)-—p (4 )x(tf)+ o (0)x (0)

From equation (2.22) and (2.25), we have:
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IO = 2X ()HXE) - X R (6)x(e) +5 X (OR Ox(O

3I(X(0)) :%XT (ORO)X(0) (2.26)

2) The Riccati solution can be used to generate the cost associated with
the optimal control.

3) Theresult (2.26) is derived by noting that for the optimal trgjectory, the
state equation is satisfied at each point in time.

2.3 SOME OPTIMAL TRACKING PROBLEMS

In the following section, some optimal tracking problems have been

considered. Some theorems have been developed for nonlinear stochastic

dynamic systems.

2.3.1 problem formulation1

Consider the non-linear dynamical control system:
k() = Ax(t) + B,u(t) (2.273)
Where xI R". x(0) is a random variable, AT R™"  constant matrix,
BT R™ ™ constant matrix, u(t)T R™ the control input.
The controlled variable is defined by:
2(t) = D(O)x(t) , zt)] RP, DT RP ", (2.27b)
Let the target dynamic space:
K () = A X (1) + erxr (1) (2.27¢)
Where x ()T R, x (0) is random variable, A T R" "constant matrix,

By | R" " x, ()T R" (white noise stochastic process with intensity

S, (t)>0).
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The output of target dynamic system:
7 (1) =D, ()% (1), z(®)T RP, DT RP " (2.27d)

The following performance index is defined such that:

t .
f(‘)XT (H)Qx () +u" (t)Ru(t)dt g (2.28)

mind =ZE | xT @ JHx(t ) +
u 2 1 0

The aim is to find an optimal control u(t) so that the controlled variable can

follow as closely as possible the output of the tracking model.

Remark (2.2)

To obtain an optimal tracking system, we consider:
tf

minJ =%E} X' (t JHx (t; ) + (‘)i [2(t)- 2, O] Qlz(t)- z, ()] +
u | ol

uT (©)Ru(t) gdt g
(2.29)
One can define the following:
3(t)=z@)- z,(t)
The (2.29), can be expressed in terms of the augmented state x (t)as

follows:

< tf
minJ :%E% X7 (t HX (¢ ) + 92T ©)Q 3(t) +
u 1 0

u' (t)Ru(t)dt g

Where  #(t) =[D(t),- D; (t)] (t) (2.30)
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The following theorem studies and proves the necessary and sufficient
condition for the existence of such controller that present of in problem

formulation 1.

Theorem (2.1)

Consider the non-linear stochastic dynamical optimal control defined in

problem formulation 1:
Assuming that:
I. The initia conditions are zero-mean random vectors with the following

correlation matrices ( The second-order moment matrix):
E[X(0)x" (0)] = S4(0), and E{x(0)} =0
E[% (0)% (0] =S, (0), and E{x (0)} =0
The pair (A,B,) of anon-linear dynamical control system is controllable [see

theorem (1.1)].
II. A, isstable matrix.

. E[x(0)x; (0)] =0
IV. E[x,(0)x" (0)]=0
V. E[x(0)x )] =0
VI E[% (0)x/ (t)]=0
VI E[x, t)x" (0)] =0
VL. E[x, (t)x] (0)]=0
IX. RQ, and H are positive-definite, symmetric, matrices.

Then:

a. Theoptimal control law is obtained as:
u(t) = - Kk(t)
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Furthermore, it can be found by partitioning the Riccati equationRy;(t),
Ry»(t), and Ry, (t) are the solution of the matrix differential equations if
possible:
-Ry () =Ry A +AT Ry (1) +D' QD (1)-
Ru(H)B,R B Ru(®);
Rty ) =Hyg
-Rip(t) =Rpp(t)Ar +AT R (t)- DT (1)Q D, (1) - Riy(t)ByR 'B] Rz (t)

Rio(ts ) =Hjo
- Rop(t) =Ry (t)A, +Af Ryp(t) + D (1)Q D, (t) - Rip(t)B,R™'BY R (t);
Roo(ts ) =Hopp
And
K =[Ky,- Ko =[RB] Ry (t),- R™'B] Rip(t)]
b. The optimal cost value is obtained to be:

N y
IR 1y [ R0)S4(0) + OR( B, @@Tdt y
2 5 b

Where
éR11(0) R12(0)u S (0) = eE[X(O)x O] E[xO0)x (0)]

RO =6
KO ROF * g X" O] ElxOX O

é0 U, . €& 0O 0 éR;1t) Rpp(t)o
BB = D B} §=e r 0 Rt)=e G
e 0 @ By Bx g o) Rao(t)g
16 0 U, { € 0 0
& =Eia 0 x (s9W=¢ v
re e 323 &0 Elx )%/ (9]
_ &0 0 u
- u
D S, -9
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c. The correlation function, the correlation matrix as well as the

mean, vector of x(t), are found to be:

Ryx (t1,t2) =F 11(ti; K)Sy(OF {1(toi K) + F 1o(ty; K)Sy, (O)F 15(tpiK) +

min(ty,to)
O FitSK)B, S B Fio(tp,sK)ds
0

Rex, (titz) = F11(tiK)Sy (O)F 2q(tp:K) + F 1oty K)Sy (OF ptpiK) +

min(ty,to)
O Fuiot1,5:K)By Sy BY Fho(tz,s:K)ds
0

Ry, x, (t1:t2) =F 21(t1; K)Sx(O)F 21(t2;K) + F po(t; K)Sy (O)F S (t;K) +

min(ty,to)
O FaltSK)B, S By F2o(tz, s K)ds
0

Sex (t) = F11(t;K)Sc (O)F 14(t;K ) + F15(6; K)Sy, (OF f(t:K) +

t

R . TeT 4 o
J 12(t:s K)By S By F12(t,s;K)ds
0

Sk, = F1a(tiiK)Sy (OF 3t K) + F 1p(t;;K)Sy (OF p(t2iK) +

t

g 12t1.s:K)By, Sy, Blr Fho(ts,s:K )ds
0

Sy x, 1) =F 21(t;K)Sx (OF 2q(t;K ) +F 5p(t; K )Sy (O)F ho(t;K) +

t

F 2(t.sK)By S By F(t,sK)ds
0

And
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5] t u
sEx(®)]u 8F 116 K)EIXO] + F 1o(6 K)ED O+ F 12(0 s K)By, Bl ()l

e
é _g ¢ d
< U
e 0 3F21“ KOBIX(OT + F 2(t K)E[Xr(o)]+d:22(tt K)B, Elx, (¢ )]t
© U
eOu
= u
eu
&0y
Where e()f\-@K)t eFll(t K) Folt; K)u

~FK)= 8':21(t K) Fa(t;K)g
Proof

Define the augmented state between state space x(t) and target state

space X, (t):
ef((t)u éA Ouex(t)u eBu 0 0
& 0l 80 A, U nutgo g ®* eB (x4 (2.31)

Let %(t) = col[x(t),x. (t)], %(t)T R®"?
similarly #(t) =col[z(t), z (t)], #(t)T R?" 1 And from (2.27b), (2.27d), and
(2.30), we have:

#(t) =[D(t),- D, (t)] %(t)
Let

u(t) = - Kk(t) (2.32)
From (2.31), we have:

k(1) = (A - BUK)X(D) +BX(t) (2.33)
Let F(t;K)=(A- B,K), where F(t;K) is n" n nonsingular (transition or
fundamental matrix satisfying the following matrix differential equation

B(t;K)=(A- B K) F(t;K),and F(0,0)=1.
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To solve the system (t) = (A - B K)%(t) + B, X(t) (see Appendix [B.3.1]),

we obtain:
t
%(t) =F (t; K)%(0) + ¢F (6.t ; K)B,X(t ot (2.34)
0

Set z(t) @z (t), in optimal manner, and define:
B(t)=2(t)- z(t),
And substituting (2.27b), (2.27d), into (2.29), one gets:

i ngl U H12
man(K)—EE})%T(tf)eL L |_u>%(tf)+

i
) gHZl I szu
tf eDT (t) qu N Q 3
(t)e ue|— L Lu’
D t)Hé .
0 & Dr ()Y U o g

[D(t), - D, ()] %)+ t" (t)Ru(t)dt
Where H;,Q"T RP P
From (2.32), one get:

i eH;; N Hp,U
LT o 18 a
man(K)—EEn% ti)el L Lu>%(tf)+

|
) gHZl U szu
N:ol *U
tf\ T ?DT (t) ggg I Q i
O¥ t) @ UsL L Lg[D@), -Dr®)]+
o I &D/ M, <0
' Q I Qy
gKT RK I KTRKU
e K L L 0y%e)
e . Tou 9
&KTRK Il K RKHID

(2.35)
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Let us define asuitable 2n” 2n matrices as follows:

éH11 U H12 u

HOSL L |_UI (2.36)
é"zl I szu
T ' Qg
Qt)=¢ Ugl. L LgD(), -D ()]
& D/ (e, g
Q1 Qg
€D MR DM 1 -DTER'D ()
Q(t)og L L L 3 (2.37)
&D; tR'DE) I Df QD ()Y

And from (2.35), (2.37), we let:

epT t)}Q'D@E) W -D' (t)Q*Dr(t)U éKTRK I KTRKS

L L L u+e K L L
T 0" T 0" ué s T ok o
DI 1)QD() ¥ Df R D) KTRK I KTRKY

Qrt;K) =

P> D> (> D

(2.38)
On substituting equations (2.36), (2.37) and (2.38) into equation (2.35) we
obtain:

tg

% Tt )H( 1) + O% (DQR(E; K)%(t)dt?;
0

minJgx(K) =

|\>I|—\

(2.39)
Using the result of theorem (1.5) in the section (1.6), then (2.39) becomes:

tg
min Jg(K) :%trHE[%(tf)%T(tf)] , % O Qr(t; K)ELX(®) KT ()]ct
0

(2.40)
Where;
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. T T .
[ %" (t )] :gE[X(tf )X T(tf N Elx(ty )XrT(tf )] B‘I’DS)%(tf )
BEIx, (e )x' (t¢ )] EDX(ts)x, (t5)]8
(2.41)

And similarly
N o

EptORT O1=a X O EDXOx Ol gg (2.42)
Elx O O] Elx Ox] Q18

By assumptionsV , and VI:

E[X(t)x (1)] =0, similarly E[x(t¢)x’ (t;)]=0

E[x ®)x" ()] =0, similarly E[x, (t¢)x' (t;)]=0

And from (2.39), we have:

R 5 .
minJSR(K):%tri HS,(t ¢ ;K)+ QOtrQr(t; K)S(t; K)dt g
' 0

(2.43)
Expanding that state correlation matrix, using the methods in subsection

(1.6.3) of remarks (1.11) in chapter one, we have, for arbitrary K , that:
Su(t,K) =F (K)Sy(Q)F ' (1K) +

t
OF (Lt KB, SBIFT (.t K)dt (2.44)
0

On using (2.44) into (2.43), one can get:
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minJe(K) = 2tr | HE (t; :K)Sy(0) + F T (t;:K) +
SR 2 : f X f
ty i
OHF (tr .t KB &BIF T (¢4t ;K)o g+
0

.t
%tri O Qr(tK)F (t;K)S(OF T (t;K)dt +
I 0

Ut )
ORREK)F (Lt K)BE B F T (1t K)dtot g
00

(2.45)
Rearranging terms and interchanging the order of integration in the fourth

termin (2.45), we have:

minJSR(K):%tri HF (t;:K)Sg(0) +F T (t;;K) +
|

¥ .
OQR(L K)F (1 K)Sg(O)F T (t;K)dt §+

; b

¥ 1]

%tri HF (ty .t KB & BIFT (ty .t K)+
0

t X
FRREGK)F (L K)@X@@IFT (LK)t gdt
t

(2.46)
The cost function of the linear quadratic regulator with an initial condition at

time t, can be expanded using the solution of (2.33) and the fact that the trace

(see Appendix [B .4]).
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1 i
Ir(o oK) =2t i HF (.t K)%(to) % (to)F T (ty,tg; K) +
|

tf .
ORR (L K)F (t,t0; K) K(tg) X' (to)F T (t,to; K)dt 9+
» b
ts 1]
Oitri HF (ty .t K)B, & BYF (t; .t K) +
to

t X
PR (L K)B, S BTFT (1K)t gdt
t

(2.47)
The stochastic regulator cost can be formalized by expanding Sy (0) and @

in equation (2.47), using their singular value decompositions, (see Appendix
[B.9)]):
" 1.1 T T
Jr(K)=a S,—(S%(O))Etrj HEF @ KU (S (O (Sx (O)F (¢ ;K) +
j =1 |

tf .
SRR K )F (KU | (S (O)UT (S (O)FT (t;K )t §+

s S)501 HE @ LKOBU, (S0UT SOBLFT (i 1K)+

K=1

—

OQREEKIF (L KIBLU, (8 U (SOBLF T (tt:K)ek gdt
t

(2.48)
Set:

S: (0= 4 s (SO (Sx (YU T (S4(0), and
j=1

=4 s;& U, SuTE)
1

j:
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singular vectors decomposition (see Appendix [B.5]).
Note that the right and left singular vectors are equal for symmetric matrices.

The stochastic regulator cost is then aweighted of LQR cost functions, while

on using trace operator see Appendix [B.4]:

U n,
I (K) -—l &S Sy O)ILorU; (Sx(O).0.K)+ Of 5, (8)ILor(BU; (Bt K)ck

21 2 0j=l
(2.49)
On using (2.26), to obtain:
Jn=51 (SO (S{OROU, (S50) ¥
j=1
tf m
0a s (ST (SOBROBLU (8 )dt
0j=1
using trace operator :
< t ..
Jr :%tri R(0)S,, (0) + fC)R(t )@Xﬁx@zdt g (2.50)
' 0

_1 tr| €R11(0) RlZ(O)UeSxx 0 Sk, (0) U
| &0 Rzz(O)Q@Sx x(0) Sy x, (0)g

f eRll(t) Rlz(t)ueo 0 0
udt Y
O ,0) RuO)E® B,ScBLg b

where al the weights are non-negative. From R is postive-definite and
(ﬁ‘\,@u) are controllable, the Hamiltonian approach (see subsection (2.2.1))
can be applied to computeK :(R'lBE Ry1(t).- R'lBE Ry»(t)) Furthermore,
we partition the solution R(t) of the Riccati equation (2.24), Ry1(t), Ry (t),
and Ry, (t) according to partitioning »(t) =[x (t),x, (t)], we get:
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éﬁzn(t) #zlz(t)u eR11<t) Rlz(t)ueA ou+
@#le(t) 22(t)[;1 éqlz(t) Rzz(t)geo Al
éAT 0 UeRll(t) R12<t)u
80 ATEIQQ 12(t) Rzz(t)g

¢DTER'D(E) ¥ -D' QD MY
é L L L U-
e 1 * T * 4
§D] QDM ¥ D HRD ) §
gRls RB/R; I RB,R 1BER123
é K L L v
e u
Al -1nT 1) -1nT -
gROBUR BiRi I RipByR ByRioH

é%(t) %(t)u FuOA RzOAD
@hu(t) 22(t)[;1 ﬁz(t)A Rzz(t)ArQ
T T )
éATRil(t) AT Rlz(t)3+
gAr Rlz(t) Ar R22(t)H
¢pT QD) I -DT QD MY
L L L U-
* * u
&Df QD) I Df QD ()

P D O D

gR 1BuR BiR I RiuByR 'B(Rp 3
{a K L L G

T Py
SRIBUR 'BiRi1 | RLByR BuRi2H

C&CD

Here the matrices Ry(t), Rpp(t) and Ry (t) are obtained by
partitioning the matrix R(t) according to the portioning %(t) = col[x(t), X, (t)];

they satisfy the matrix differential equations:
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- Ry (t) =Ry )A+AT Ry (1) +D' (1)QD(t)-
RI1(1)ByR B{ R (t);
Rty ) =Hgpy
(2.51)
- Rip(t) =Rpp(t)A, +ATRip(t)- DT (1)Q D, (t) - Ris(t)B,R B} Ria(t)
Rio(t; ) =Hio
(2.52)
- Ry (t) =Rop(t)A; +AT Ryp(t) + D] (1)Q Dy (1) - Ri2(t)ByR ‘B Ria(t);
Roo(ts ) =Hoo

(2.53)
And
K =[K4,- K5], where
Ky =R™B] Ry(t) (2.54)
K, =-R B[ Ry(t) (2.55)
Since assumptions (I ,II Il ,IV V, VI, VIl, VIl ) are satisfy then

the mean, the correlation function and the covariance matrix can be found:
(1) From (2.34), we have:
& (M) & 1K) FoaltK)gax (0)g
L6 11(tt;K) Fpp(tt:;K)oé 0 u
Gt K% OF
0€ 2n(tt;K) Foo(tt;K)gg err( )0

t
X(t) = F 11 (6 K)X(0) + F 1o(tK) % (0) + §F 12(tt ; K)B, X, ()it (2.56)
0
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t
X (1) =F 21 (tK)X(0) +F 55(t; K)x (0) + F 2o(tit s K)By X (t)dt  (2.57)
0

Using (2.56), (2.57), to find the mean, one get:

e t
EE[x(t)] U SF 11 (G K)YEIX(O)] + F 12 (8 K)E[X (O] + §F 12(t,t 5 K)B, ElX, (t )]dt
e 1 6 ;
e ¢ t
eE[x (1)1 EF 21(t; K)EIX(O)] + F o (t; K)ELX, (0)] + ¢F 22(t.t ; K)By ElX, ()]t
é 0
e0u
=eu
eu
&g

eF11(t;K) Fpo(t;K)u
& n(t:K) Fot;K)Y

Since the mean of the initial condition and the mean of the white noise is

Where F (t;K) isthe partitioninto F (t;K) =

zero.
(2) Using (2.56) and (2.57) to find the correlation function:

Ry (ty,tz) = EDEE)RT (t2)]
EEi g(r(ztll))éng (t2) xf (tz)gg
_EX X )] ElXExT )Y
EEIX] )Xt ElX, Ct)x{ )18
D éRy (tal2) Ry, (tat2) G
ngrx (t1.t2) Ry x, (tlltZ)E

where,
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sz t1 N
| é ! U
Rux tut2) =E | g Faa(ty; K)X(0) + Fo(ty; K )X (0) + §F 12t K )By X ()t 2
I e 0 u
é kK o
g F11(t2; K)X(0) + F 15 (t2; K) % (0) + OF 12(t2, 5, K)By X, (S)ds { %
0

Ryx (t1.t) =E g F 12t KX (OXT (OF 13(to; K ) +F 11t K )X (0] (O)F Lo(to;K ) +

to
OF 11t K)X (0){ ($)BY F1o(t2,S:K s +
0
F12(t; K)X (0)XT (O)F {1(tp: K) + F 1(t3: K)X, (00X (OF {5 (tp; K) +
2
OF 12(t1: K )X, (O] (5)BY, Flo(to,s:K Xs +
0
ty
OF 12(t1.t i K)By X, ()X (O)F 13(t2 K )t +
0
ty
OF 12(t1.t i K)By X, ()X{ (O)F 12(to: K )t +
0
tito N
OOF 12(ta.t sK)By X, (t )x{ (5)By, Flaltp,s:K)dtds ¥
00

59



Chapter Two The Non-Linear Stochastic Control Problem

Ryx (t1,t2) = F 11(ty; K)E[X (O)X T (O)]F 1a(t2; K ) + F 13(t; K )E[X (0)X; (O)]F Io(t; K ) +
to
OF 12(t; K)EIX(O)x{ (9]BY, F [p(tz, s K)ds +
0

F 12(t; K)E[% (0)X (O)]F 13(to; K) + F 12 (ta; K) E[X, (0)X, (O)]F 1o(t; K) +

2
OF 12(t2; K)EL X (00 (8)]BY, F1a(tz,5:K)ds +
0

ty
OF 12(t1.t K)EX, ¢ )x" (O)]1By F1y(to:K )t +
0

1
OF 12(tt K)EX, ()X} (O)]By Fio(ty; K )t +
0

hto
OOF 12(tu.t :K)By EIX, (t )X/ (S)]By, F1a(t2, S K)dt ds
00

R (t1,t2) = F 13t K )Sy (O)F 14(tai K ) + F 1ty K)Sy, (O)F o(tp:K) +

4o
OOF 12(tut :K)By S, d(t - 9By F1a(tp, s K)dlt ds
00

= F 14(t; K)Sx(O)F 11 (ta; K) + F 15(t1:K)S, (OF 15 (tp; K) +

min(ty,to)
O Fit,sK)By S By Flo(t,sK)ds (2.58)
0

The last equation can be found (see Appendix [A.3]).
From (2.56), (2.57), we get:

sz t1 N
| é \ 0
Ryx, tnt2) =E | & Fuilty; K)X(0) + F 1oty KX (0) + O 12(t,t ;K)By X € )t
I e 0 u
é ‘2 d g
6 F21t2;K)x(0) +F 2(t2; K )X, (0) + OF 22(t2,8;K)By X (s)ds %
e 0 u
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Re, (titz) =E g F 11ty K )X (0T (OF y(to;K) +F 15t K)x Q%[ (OF otpiK) +

t2
OF 12t K )X (O] (8)B), F 5y (t2,5:K s +
0

F 120t KX, (O)x T (OF Dy(to; K ) +F1o(t2; K )X, (00X (O)F ot K ) +

to
OF 12(ti: K )X, (O] (5)By, Foolt2,S:iK s +
0
ty
OF 12(t1.t i K)By X, (€)XT (O)F hy(t;K )t +
0
ty
OF 12(t1.t ;K)By %, (£)X] (O)F hy(to: K )t +
0
t1to N
éd: 12(t1,t K )erxr (t )X;’r (S)Blr F-Iéz(tz,s; K )dt ds 8
00
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Ryx, (t1,t2) = F1a(ty; K)E[X (0)x" (O)IF ha(t2;K ) + F11(ts; K )E[X (00X (O)]F holto;K ) +
to
OF 11(t; K)E[X (0)x] (s)]BT Flo(t,,s;K ) ds +
0
F 12(t; K)E[X, (O)x" (O)]F %1 (t2;K ) +F1o(t1; K)E[X, (0%] (O)F ho(to;K ) +

to

OF 12(t2:K)E[X, (O] (S)IBY, F ha(to,5:K )ds +

0

ty

OF 12(tt s K)EX, (€ )x" (0)]By, F Dalty; K )dt +

0

1

OF 22(tt K)EDX, )X/ (O)]By, F ho(tp;K )t +

0

t1to

OOF 12(ta.t s K)By EIX, (0)X; (S)By, F holt2.s;K )dtds

00

Ryx, (t1,t2) =F13(t;K)Sy (O)F By(to; K ) + F 1o (ty; K )Sy (O)F 22(to; K) +

tito
OOF 12(t1.t ;K)By S, d(t - S)By Fholts,s:K )dtds
00

=F 11 (t;; K )Sy (O)F ba(to; K ) + F15(t1; K )Sy (O)F 2ty K)+

min(ty,to)
O Fuiat,5:K)By Sy By Fhnlts,s:K)ds
0

(2.59)
And similarly to Ry, x (t1,t),

Ry (tit2) = E &% (t)%' (tz)Y . by using (2557), we obtain:

Ry, x, (t1.t2) =F 21(t1; K)Sx(O)F 21(t2; K) + F (s K)Sy (O)F 5o (t;K) +
min(ty,to)

O FaosK)B, S By Fh(trsK)ds (2.60)
0
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The correlation matrix can be obtain from correlation function (see
remark (1.11):
S (t,t) =Ry (t,t) =ER()% (t)]
OE% SX(())UQXT(t) xT (t)lJ%
:gE[x(t)x ©)] E[xt)x] )] UDeSxx(t) Syx, (t) u
EExT Ox@) E[x, (t)x] (t)g @Sx x @) Sy x, (t)g

Sy (1) =F 14t K)Sy (OF L1(t;K ) + F15(t:K)S, (OF T,(6K) +

t
F 12t S K)By, S, By, F12(t,s:K)ds (2.61)
0

Sex, (1) = F11(t3:K)Sx (OF byt K) + F 5t K)Sy . (OF byt K) +

min(ty,to)
O Fiat,5:K)By Sy By Fhnlta,s:K)ds (2.62)
0

And smilarly
S, x, (1) =F 21(t;K)Sy (OF 2q(t;K) +F pp(t;K)Sy (O)F Hpt;K) +

t
F 22(t,SK)B, S By F o(t,sK)ds (2.63)
0

Concluding remarks and that completes the proof

1) In passing, we note that this system, (2.29) is not completely

controllable from u.

2) We observed that Ry, of (2.51), and therefore alsoK; = R 1B R4 (1), is

completely independent of the properties of the disturbances, and isin

fact obtained by solving the deterministic regulator problem with the
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disturbances omitted. Once Rj; and K; have been found, (2.52) can be

solved to determine R, and from this K, =- R~ 1BE Rio(t) .

3) The date correlation matrix can also be computed as the solution of a
differential equation. This differential equation is obtained by
differentiating equation (2.61) to get:

Since F (t;K ) =e(A-BK )

Expanding from (2.61), and using the remarks (1.11) point (2) to
obtain:

6, (1) =(A- BUK)Sy (1) +Se (A - BK)T +B,3, 8]
(2.64)
4) The steady-state correlation matrix of the state can also be found from
the matrix differential equation (2.64) provided that the system is time-

invariant and stable. In steady-state, the derivative of the correlation
matrix equal to zero then:

0=(A- B,K)Sy(¥)+Sy(¥)(A- B,K) +B, S B (2.65)
It is quite helpful to realize that this algebraic matrix equation in S, (¥)

has a unique solution ( see remark (1.3) ). Matrix equation in (1.54) isalso

known Lyapunov equation (see theorem (1.7)).
The above result is very interesting in computing Sg(t) directly by

solving some ordinary differential equation, similar to differential Riccati
eguation .

The following problem formulation 2 and its corresponding lemma (1.1), are
some generalized result of theorem (2.1), where the stochastic process

disturbance are defined to be lied in both the dynamical system and its target
dynamical one.
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2.3.2 Problem Formulation 2:

Consider the non-linear dynamical control system:
k(t) = Ax(t) + Byu(t) + Byx(t)

X (C)=A %, (t)+ er X (t) (The target dynamic space)

(2.66)

Where xT R",x,TR". x(0),x,(0) ae random variables

AT R"™ A, TR"" congtant matrices, B,T R" ™ constant matrix,

ut)l R™ the control input, B, 1 R" " B, R"" constant matrices
x, )T R" x(t)T R" (white noises stochastic process with intensity

S, (t) >0,SXr (t) >0). The controlled variable, the output of target dynamic

system, and the performance index are defined in the problem formulation 1.

Lemma (2.1)

Consider the non-linear stochastic dynamical optimal control defined in
problem formulation 2:
Assuming that:

l. The initial conditions are zero-mean random vectors with the
following correlation matrices (The second-order moment
matrix):

E[x(0)x' (0)] = S(0), and E{x(0)} =0
El% (0)x' (0)] =Sy, (0), and E{x, (0)} =0
Thepair (A,B;) of anon-linear dynamical control system is controllable

Il. A, isstable matrix.
I, E[x(0)x] (0)] =0

IV. E[x,(0)x" (0)]=0
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V. E[x(0x' )]=0

VI.  E[x(0)x (t)]=0

VI E[x, (0)x" (t)]=0

VI E[x, (0)x] ()]=0

IX. E[x(t)x' (0)]=0

X.  E[x()x] (0)]=0

XI.  E[x (t)x" (0)]=0

XIl. E[x, t)x] (0)]=0

XI. E[x, ¢ )X" (s)]=0

XIV. E[x(t)x (s)]=0

XV. R, Q, and H are positive-definite, symmetric, matrices.

Then:
a) The optimal control law isobtained as:
u(t) =- Kk(t)

Furthermore, it can be found by partitioning the Riccati equationRy4(t),
Ri»(t), and Ry, (t) are the solution of the matrix differential equations if
possible. (see the equations (2.51), (2.52), (2.53) in theorem (2.1)).

b) The optimal cost value is obtained to be:

i tf il
I = Str FRO)S,(0) + ORE)B, &, BTdt |
2 1 0 b

. . . T o
Where R(o):gRll(o) Ri2(0)u S.(0 :gE[X(O)X 0] Ex(0)x (0)]3

L0 RoOF g% OX O] Elx O O
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@X@I _eB ﬂeBT BI Q—eB BT B, BT S’
@5er Y &, B B, By Y
éR;1t) Rppt)u
Rt) =6 j
gRIz(t) Rzz(t)a
IeX(t)u T eE[X(t X ()] Elx )% (9]
— %( r
% e © ()Hﬁ BETx, ()" (9] ElX, (t )%, <s)]u

c) The correlation function, correlation matrix as well as the mean,

vector of x(t), are found to be:

Ry (tto) =F 11(ti; K)Sy(O)F {1(tai K) + F 1o(ty; K)Sy, (O)F fo(tpiK) +
min(ty,to)

O FultSK)BySBIF ity s K)ds+

0
min(ty,to)

O FitsK)B S B Fio(tp,sK)ds

0

Ry, (t1,t2) =F 11(ty;K)Sy (OF 2y(tp;K ) + F 1ot K)Sy, (OF Htp;K) +

min(ty,to)
O Fialty,5;K)BySBY F b (t,,s:K )ds +
0

min(ty,to)
O FrluSiK)B, S By FhltasiK)ds
0

Ry, x, (tutz) =F 21(t; K)SK(O)F 21(toiK) + F 5 (11 K)Sy, (OF 2(tp:K) +

min(ty,to)
O Fault,SK)B,SBLF ity s K)ds+
0

min(ty,to)
O FaltsK)By S By Fiu(t,sK)ds
0
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Sy (t) = F 11(t;K)Sy (O)F 11t K ) + F 15(t:K)S, (O)F 1o(6;K) +

t t
F 12(t,5 K)By S By F 11(t, S, K)ds+ (F 1(t, 5 K)By S By F1o(t,s K)ds
0 0

Sex, (tt2) =F 11t K)Sy (OF 1(t2iK) + F 15t K)Sy, (OF 2(tp:K) +

t
F 11(t1,5 K )B Sy BY F p1(to,8:K )ds +
0

t
OF 12(t1,8:K)By, Sy, B F bolt2,5:K )ds
0

Sy, x, ©) =F21(t;K)S, (OF by(t;K) +F p(t:K )Sy, (OF hy(t;K) +

t
F 21(t, S K)By S(BgF 5(t,s;K)ds+
0

t
F 2(t.sK)By S By F2(t,sK)ds
0

And

E[x(t)] = F 11(t; K)E[X(0)] + F 15(t; K)E[ X, (0)] +
ts ..
g FulttiK)BEXE )] +F ot ;K)By Elx, ()] lgdt

ol
=0

ELX (0] = F 21(t; K)EIX(0)] + F 2 (t; K)E[x, (0)] +
t
F 21(tt s K)BLEIX @ )] +F (2.t KBy ElX, (€ )}t
0

=0
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Proof

Define the augmented state between state space x(t) and target state

space X () :
By
e)&(t)u 9A Ouex(t)u eBu () e (t)X(t)u 2.67)
MO0 &0 A tex O @BX (t)x (t)g

To complete this lemma using the equations (2.31) to (2.48), from theorem
(2.1), then we obtain:

tf ..
U

JSR——tr| R(0)S, (0) + oR(t)@ 88 d E;

1 eRll(O) RlZ(O)Ue Sy (0) Sy, (O)U
2' | 0 Ru0fES© S, Of
T ) .
fOeRil(t) Rlz(t)UeBxS(B 0 adt i (2.68)
2t) Rzz(t)ge 0  BS B b

where al the weights are non-negative. From R is positive-definite and

(A,B,) are controllable, the Hamiltonian approach (see subsection (2.2.1))

can be applied to computeK = (R~ 1BE R1(t).- R 1BE Ryo(t)) Furthermore, it
can be found by partitioning the Riccati equationRy4(t), Ry»(t), and Ry,(t)
are the solution of the matrix differential equations. See the details in theorem
(2.2).

Since
assumptions (1,11 ,111,1V V VI, VII VT IX X, XX X XV XV ),
are satisfy then the mean, the correlation function and the covariance matrix
can be found:

From (2.34), we have:
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ex(t) u_éF1(tK) Fp(tK)uéex(0)u
1) e qt
& (t)0 8':21(t K) Foo(t;K)HEx (0l

teFll(tt K) Fooltt; K)ueBXX(t) Hdt
F (LK) Foo(tt; K)u@BxX t)g

x(t) =F 12t K)x(0) +F o (t;K)x, (0) +

t
A FutK)Byx(t) +Fpt,t;K)By X, () }dt (2.69)

0

X (t)=F o (t;K)X(0)+F »(t;K)x, (0)+
t
dF 21(t,t K)Byx(t) +F oot t ;K )By X, (t )}dt (2.70)
0

From (2.69), (2.70), we compute the mean:

E[x(1)] = F 11 (t K)E[X(O)] + F 1o(t; K)E[x, (0)] +

—

g Frlt KB EKXO]+F it KBy Elx, () o
ol
0

E[x (0] = F 21 (G K)E[X(Q)] + F 2 (t; K)E[x, (0)] +

t
F 21(tt s K)BLEIX @ )] +F (2.t KBy ElX, (€ )}t
0

=0
Since the mean of the initial condition and the mean of the white noise is

Zex0.
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2) The correlation function can be found from (2.69), (2.70), we obtain:

Ry (t1,t2) = E[¥(t)%" (t2)]
Dol oéx(ty) ug 7 T gy U
o S g
_EXOXT (] EXx; €218 where,
B[] t)x ()] Elx, t)x] )18
éRxx (tlitz) Rxxr (tlitz) U
e

D
© a
BRx, x tut2) Ry x, (tut2)g

i
Ryx t1t2) =E | & Fa(t; K)X(0) +F 5(t;K )X, (0) +
|

D> D

t

d Faaltt;K)Bex () +F ooyt ;K)By x, () }t
0

e ey enid

g F11(t; K)X(0) + F 15(t2; K) % (0) +

to T

. 0
A Fultz s K)BxX(9) +F1a(ta, S K)By X (9) }ds
0 u
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Ryx (t1.,t) =E g F 12t KX (X (OF 13(t2; K ) +F 11t K )X (0] (O)F Lo(to;K ) +

to

o FulsK)x (O (5)B) Fli(ta.siK)+
0

Fua(ti:K)x (O] (5)BY, Flo(t2,8:K) }ds+
F1a(ty; K )X, (0T (OF 13(t2iK) +

F 12t KX, (%] (O)F Io(to;K )+
2

A FialtiK)x, (OxT (8)BE Fla(tp,s:K )+
0

F 1ot K)X, (0 (S)BY, Fip(t2,5:K) }ds+

ty

d Futut:K)BXOXT OF LtaiK)+
0

Fia(tyt s K)BX)X] (OF o(tziK) Jdt +

t1to

OOF 12(tet :K)Byx ()X (8)By, Fla(ty,s:K )dtds +
00

t1to

OOF 12(tet :K)ByX ()X (S)By, Fla(ty,s:K )dtds +
00

ty

\

O { Fotyt K )erxr (t )XT (O)F-Il-l(tzi K)+
0

F1a(tyt ;K)By X, (€)X (OF 1p(tziK) }dt +

t1to

OOF 12(t1.t ;K)By X, ()X (5)By F11(t2,5;K )dtds+
00

tito

OOF 12(tt 1K )By X, (£ )%/ (8)BY Fla(tn,S:K )dtds
00
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Ry (t1,t2) = F 11t K)E[X (O (OIF 11t K ) +

F11(ts; K)E[X (0)x] (O)]F Lot K) +

to

o FratiK)EXOXT (8)]B,FIa(to,siK) +
0

F1a(ty K)E[X ()X (S)]BY FLo(t2,8:K) }ds+

F 1o(t; K)ELX, (0XT (0)]F 11(to; K) + F 15(ty; K)ELX, (0)X (O)]F 15(tp; K) +

to

3 FiolsiK)EX, O (S)IBLFL(t,siK) +
0

F 12t K)E[X, (0)X! (S)BY Flo(tz,S;K) }ds+

ty

d Fuatt K)BEXE)XT OIF 1(tiK) +
0

F 14t K)BEX )X (0)]F 1o(toiK) bt +

tito

OOF 11(tt ;K )BLEX @ )" (S)]BL F11(t5,5;K )dtds +
00

t1to
OOF 1a(tet s K)BLEIX (X! (S)IBY, Fia(tz,s:K )dtds +
00

ty

O{ Fraltit;K)By ElX t)x" (OIF 1(t2iK )+
0

Faa(tyt;K)By Elx, (€)x] (O)F Ia(t2;K) }dt +

t1to

OOF 12(t1.t ;K )By E[x, (£ )T (8)]By F11(tp,5:K )dtds +
00

t1to

OOF 12(t1.t ;K)By E[x, (X! (S)]By, F1a(t2,S:K)dtds
00

(2.71)
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The 10th and 15-th terms of equation (2.71) can be found (see in Appendix
[A.3]).

R (t1,t2) = F 13t K )Sy (O)F 14(toi K ) + F 1ty K)Sy, (O)F o(tp;K) +

min(ty,to)
0 Fulys K)By SBxF11(tp, S K)ds+
0

min(ty,to)
O FitSK)B, S B Fin(tp,sK)ds (2.72)
0

And similarly, by using (2.69), (2.70), to get:
Rex, (tiitz) = F 11t K)Sy (O)F 21(toiK) + F1p(ty; K)Sy (OF po(tpiK) +

min(ty,to)
0 Fults,s:K)BS, By F by(t2,5;K )ds +
0

min(ty,to)
O Fuolty,SiK)By S By Fhalto,s:K)ds (2.73)
0

Using (2.70), to obtain Ry, (ty,t5)= ngr t)x (tz)g

Ry, x, (tutz) =F 21(t; K)SK(O)F 21(t2K) + F 5 (11 K)Sy, (OF 2(tp:K) +

min(ty,to)
0 Falys K)By S¢Bx F 21(tp, S K)ds +
0

min(ty,to)
O FaltSK)B, S By F oty s K)ds (2.74)
0

The correlation matrix can be obtain from correlation function (2.72),

(seeremark (1.11):
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Sy (t,t) =Ry (t,t) =E[X(t)%" (t)]
D | éx(t) Uy,

[ & ()i exT t) x; (t)u%

_EXOT O] EXOX] O190€Sx®  So, O
ExT OxO] Elx, Ox! O1F 65xx®) Sex, Of

Syx (1) = F11(t;K)Sy (OF [(t: K ) + F (6 K)S, (O)F fo(6K) +

t
F 11(t,5: K)By SByF {1 (t,s K)ds +
0

t
F 12(t. S K)By S By Fip(t,s K)ds (2.75)
0

And similarly use (2.73), we gets:
Syx, (1) =F11(t;;K)Sy (OF byt K) + F1o(ty;K)S, (O)F 2t K)+

t

OF 12(t2, 5K )By S B F by (to,5:K )ds +
0

t
OF 12(t1,5:K)By S, By F holts,s:K )ds (2.76)
0

And from (2.74), we have:
Sy, x, (1) =F 21(t;K)S, (O)F 2y(t;K) +F p(t:K)S, (O)F 2(t;K) +

t
OF 2(t,S K)B, SBF 24(t,s K)ds+
0

t
F 22(t.5K)By, S, By F 2o(t,sK)ds (2.77)
0
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Chapter Two The Non-Linear Stochastic Control Problem

To extend result and the develop are making step-by—step, the following

problem formulation is reached in process.

2.3.3 Problem Formulation 3:

Consider the non-linear dynamical control system:
k(t) = Ax(t) + Byu(t) + Byx(t)

K (1) =A% (1) + Bur u, (t) + erxr () (The target dynamic space)

(2.78)
Where  xT R",x, T R". x(0),x,(0) are random variables
AT R"M A, TR"" constant matrices, By, 1 R"™ B, T R™™ constant
matrix, u, ()T R™u@) R™ the control input, By | R""B,TR"'
constant matrices, X, (t)T R x(t)T R" (white noises stochastic process
with intensity S, (t) >0,S,, (t) >0). The controlled variable, the output of

target dynamic system, and the performance index are defined by as the

problem formulation 1.

Lemma (2.2)

Consider the non-linear stochastic dynamical optimal control defined in
problem formulation 3.
Assuming that:

l. The pair (A,B,), (A, ,Bur) of anon-linear dynamical control

system are controllable . And define
ur =K;x, such that K, selected to make (A, - By K,) is a

asymptotically stable matrix.
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Chapter Two The Non-Linear Stochastic Control Problem

. The initial conditions are zero-mean random vectors with the
following correlation matrices ( The second-order moment

matrix):
E[X(0)X" (0)] = S4(0) , and E{x(0)} =0
E[% (0)x (0)] =Sy, (0), and E{x, (0)} =0
Assuming that the conditions of lemma (2.1) are satisfied:
3 E[x(0)x{ (0)]=0
b) E[x, (0)x" (0)]=0
0) E[x(0)x' (t)]=0
d) E[x(O)x/ ¢)]=0
e E[x,(Ox' (t)]=0
f) E[x, (0 (t)]=0
9) E[x(t)x' (0)]=0
h) E[x)x; (0)]=0
) Elx (t)x' (0)]=0
D) Elx ()x; (0]=0
K) E[x (¢ )x" (s)]=0
) Elx@)x (s)]=0
m) R, Q, and H are positive-definite, symmetric, matrices.
Then:
1) Theoptimal control law isobtained as:
u,t)=-K,;x, (), and
u(t) = - Kk(t) , where
K =[K4,- K5], and can be definein (2.54), (2.55), where
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Chapter Two The Non-Linear Stochastic Control Problem

R1(t), Rpx(t), and Ry (t) are the solution of the matrix differential
eguations:

-R;(t) =Ry t)A+ATR,(t)+D' (1)QD (t)-
Ri1(0)ByR B R (t);
Ryt ) =Hpq
- R, (t) =R (t)(A, - B/K,)+ATR,(t)- DT ¢)Q D, (t)-
Ri1(t)B R 1B} Rz (t)
Rpo(ts ) =Hpo
- Ryy (1) =Ry (t)(A; - B, K, )+ (A, - B,K, )" Ry(t)+D/ (t)Q D, (t)-
Rl (t)B, R B} Ry (t);
Roo(t; ) =Hop
And
K =[K1,K o] =[RB] Ry (t),- R™Bf Rz (t)]
2) Theoptimal cost valueis obtained to be:
\ ’
IR —Etn R(0)S«(0) + OR( )B, é‘wTdt y
f 0 b

4 T
Where R(0) = SR_lrl() 12(0)“ 'S (O)ZSE[X(O)X )] E[XO0)x (0)]

K0 RpOF * g% O (O] ExOX O

éB, B} BBTU

887 =6 " ] o] y=o g
x 6° "t &, B B BIrH
éR1t) Rpot)u
Rt)=a i
gRIz(t) Rzz(t)a
€y U_CEXOC (9] EXEOK (9]
g =g &BlsTiy W1y Al
18 () b= g, (X (9] Elx, ¢ X (91
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Chapter Two The Non-Linear Stochastic Control Problem

3) The correlation function, correlation matrix as well as the mean,

vector of x(t), are found to be:

Ry (tyto) = E[¥(t)%" (t,)]
ol €x(t) g T Ty U
"1 Sl 1P iy
_Ex@x @] Exxr (1Y
EX] (t)x ()] Elx, X! C2)lf
(')3 éRxx (tlitz) Rxxr (tlitz) U

e u
BRx, x tut2) Ry x, tut2)g
Ryx (t1.t2) =F 13(t; K)Sy(OF 13(t; K) + F 15ty K)Sy, (O)F o(tp;K) +

min(ty,to)
O Fiu(t, S K)BySBYF 11ty S K)ds +
0

min(ty,to)
O FitsK)B, S B Fio(tp,sK)ds
0

Rex, (tiitz) = F 11t K)Sy (OF 21(toiK) + F 1oty K)Sy (OF p(tpiK) +
min(ty,to)
O Fii(ts,SiK)B, S B} Fhy(ty,s:K )ds +
0
min(ty,to)

O FrluSiK)B, S By FhltasiK)ds
0

Ry, x, t1t2) =F 21t K)S)(O)F 21(t2i K) + F 5(t4; K)Sy (O)F 2p(t;K) +

min(ty,to)
O Fault,SK)B,SBLF ity s K)ds+
0

min(ty,to)
O Folt,SK)By S B Fo(trsK)ds
0
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S%a,t)-R)%(t D) =EDbE)%" ()]
b i eX()u
E| Y (t)ﬂe Tty x/ (t)ug
:gE[x(t)x ©)] E[xt)x] )] ﬂDeSxx(t) Sux, (t)u
EEIxT )x ) E[x, ®)x! t)1§ @Sxx(t) Sy xr(t)g
Sex (1) =F 14(t:K)Sy (OF 11(t;K) + F1o(tK)S, (0)F [p(t;K) +

t
F 11(t: 5 K)B, SBYF1a(t, s K)ds +
0

t
\ . TeT

J 12(t,sK)By, S, By, F12(t,s K)ds
0

Syx, (t1.t2) =F11(t1; K)S, (O)F ha(tK) + F ooty K )S, (O)F (s K)+

t
dzll(tl S; K)BxSxBT F 1(t2 S, K)dS+
0

t
F 12(t1,5:K)By Sy BT FLo(t,,s;K )ds
0

Sy, x, (1) =F 21(t;K)S, (O)F bu(t;K) +F 5p(t;K)S, (O)F 2t K)+

t
OF 21(t, S K)B, SByF 24(t, s K)ds+
0

t
\ . TeT 4

g 2(t:sK)By, S, By, F 22(t,sK)ds
0

And
E[x(t)] = F 11 (t; K)E[X(0)] + F 15 (t; K)E[ % (0)] +

t
0 (G KB EX ()] + F 1o(6. 5 K)By ElXp (t)]dt
0

=0
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EDX ()] = F 216 K)E[X(0)] + F 5 (t; K)E[x, (0)] +
t
JF 20(tt s K)BYEIX ()] + F 22(t.t s K)By, Elx, ()]}t
0

=0

Proof

Since (A, ,Bur) Is controllable matrix , so it is aways possible to find
K, such that (A, - B, K) is asymptotically stable matrix using pole

placement method.

The feedback gain K, is obtained asfollows:
Consider the single variable time invariant equation:
X (1) =Arx, (1) +B, u, (t)
where AT R"" and BT R"! and linear state feedback u(t)=-K,x, (t)

where K, 1 R "

Step (1)
Check the controllability condition for the system. If the system is

completely state controllable, i.e., (A, ,Bur ) is controllable, and then use the

following steps.

Step (2)

From the characteristic polynomial for matrix A,
- Al=1"+al "t +K+a, 4 +a,

and then determine the values of a,a,,K,a,
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Step (3)
Determine the transformation matrix T that transforms the system state

equation into the controllable canonical form (If the given system equation is
already in the controllable canonical form, thenT =1). It is not necessary to
write the state equation in the controllable canonical form. All we need hereis
to find the transformation matrix T which is given by

T=MW (2.79)
where M isthe controllability matrix

M =[B NA, B, IAZB, I K IAM 1B, ] (2.80)
where W isdefined by

FBn.1 an.p K g 10

-2 an.3 K 1 0+
W :g I I T (2.81)
C & 1 K 0 0-

1 0 K 0 04

where the g, 's are coefficients of the characteristic polynomial of step (2).

Step (4)
Using the desired eigenvalues (desired closed-loop poles), write the

desired characteristic polynomial as:
(-m)( - m)K( -m)e 1" +a,l " +K+a, )l +a,

where the values of a;,a,,K,a, can be determined.

Step (5)

The required state feedback gain matrix K, can be determined from
thisequation

K, =[an - aplan.1- ap.ql K llay- agllag - a]T* (1.82)
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Set (A, - Bur K,;) =Ag the system (2.78), is then become as:

k(t) = Ax(t) + Byu(t) + Byx(t)

X () =AgX, () + By X, (t)
Then we define the augmented state between state space x(t) and target
State space X, (t) :

ex(t)u_eA 0 uéx(t)u, &yu +ng(t)X(t)3
08 &0 A Ol g0l B, O O}

Since
(Ar - By Ky) =Aq is found to be a stabile matrix and the vector

(2.83)

éB, u éB,u . : :
éB 4 becomes & “(; and from comparison point of view between the
e ur €00

augmented system (2.78), and the augmented system (2.83), of the lemma
(2.2), we have that both are identical and the same proof and results may be

adapted. And it can be found by partitioning the Riccati equationRy4(t),
Ry»(t), and Ry, (t) are the solution of the matrix differential equations:
-Ru) =Ra)A+ATRy ) +D' ()Q'D (t)-
Ria(DByR "B} Ru(t);
Ria(ts ) =Hn
- Rip(t) = Ria(t)(A, - By K )+ (A - By K )" Ript)- DT (1)Q'D, (1) -
Rua(t)ByR "By Rix(t)
Rip(tf ) =Hyo
-Rop(t) =Rpa(t)(A - By K )+ (A, - By K;)T Ryp(t) +Dy ()Q Dy (1)-
R2()BR 1By Rip ()

Roo(ts ) =Hop
And
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Chapter Two The Non-Linear Stochastic Control Problem

K =[K1, Kol =[R™'B] Ryy(t),- R™B{ R (t)]
Can be obtained easly from the lemma (2.1), by using that
Ar =Ag=(A; - By K;), and that completes the proof.
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Chapter Three Some Mathematical illustrations

The mathematical applications using result of chapter two have been
adapted in this chapter. Some numerical examples ranking from simple to
harder, have been presented and discussed. The solvability of the presented
examples are based on the theoretical result of theorems (2.1), and lemmas
(2.2), (2.3), of chapter two. Step-by-step computational have been used to

make our illustrations easily and understandable.

lHlugtration (3.1)  (Angular Velocity Tracking System)[20]

Suppose we wish that the angular velocity, which is controlled variable

z(t), follows as accurately as possible areference variable z, (t), which may

be described as exponentially correlated noise with time constant q and
values .
The system state differential equation is:
X(t)=-ax(t)+bu() (3.2)

where a,b are congtants, and
Suppose that the controlled variable:

z(t)=x(t) (3.2)
follows as accurately as possible areference variable:

z, (t)=x,(t) (3.3)

where z, (t) isthe solution of
1
)&r(t):'axr(t)"'xr(t) (34)

The white noise X, (t) hasintensity Sy, =2s 2/q , Where q isatime constant,

and s isrmsvalue.

The augmented state differential equation is given by:

ex(t) u_ g2 X(t)u ébu
S&r(t)H ,20 —USx )4 ouuu(t) gq r(t) (3.5)
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With %(t) =col [x (t), X, (t)]. For the optimization cost function:

11T T 4
J=—Ejg® t)Q 23t)+u (t)rut)dty
2 fo b

Where #(t) =[z(t),- z, (t)], (3.6) become:

_1 i¥\ T ~* 2 A
J=-Eigz)-z; )] Q [z(t)- z, ()] +ru“(t)dty
2 fo b

where r isasuitable weighting factor.

Remarks (3.1)

The following assumptions are assumed for thisillustration:

(3.6)

(3.7)

I. The initial conditions are zero-mean random vectors with the following

correlation matrices (The second-order moment matrix):
E[X(0)X" (0)] = S,(0) , and E{x(0)} =0

El% (0)x' (0)] =Sy, (0), and E{x(0)} =0

The pair (A,B,,) of anon-linear dynamical control system is controllable.

Il. A, isastable matrix.
. E[x(0)x; (0)] =0
IV. E[x,(0)x" (0)]=0
V. E[x(0), ()] =0
VI E[% (0)x/ (t)]=0
VII. E[x, )x" (0)]=0

VL. E[x, (t)x] (0)]=0
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To follow our suggested procedure, see the steps of the main theorem (2.1),

one can do as follows:

Step (1
Substituting (3.2), (3.3) into (3.7), one can get:

_1.1% To* 2\t
J=JEIdxO)- x OF Q x@) - x, O +ru“)dty

To b
Iyé i1 . uti
1 e ely _« éx(t) u I
:EE%OS &7 (1) x Ol R [L -g& " g+rud)at l,J
10" € éxr(t)g
8 Hb
(3.8)
Let
Q =1,
éluél Ou
QW) =g e, ,dt -1
€ 19% 14
(3.9
él -11,1
&1 4
From (3.9), the cost function (3.8), can be written as:
iy, ]
J:EEl 5 A (t)e )%(t)+r u2(t )t “5
2 To| e- g
It follows from theorem (2.1), that the optimal tracking law is given by:
Step (2)
Set u(t)=-K¥(t)
X (t
éx(t)u (3.10)

g o0
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u(t) =- Kx(t)+Kox, (t)

Step (3)
Find the solution of the following algebraic Riccati equation:

To find the steady-state value of the feedback gain, we must find the steady-
state value of Ry, that we use (2.51), one can get:

0=Ry(t)A+ATRy(t)+D' ()Q D(t)-
R1(t)ByR Bl Rua(t)

b2
- R- 2R +1=0

r 2 p?
Rllzﬁ(-aﬂ/a +r_) (3.11)

By using (2.52), to solve Ry5:
0=Ry,(t)A; +ATR,(t)- DT (1)Q Dy (t) - Ris(t)B,R B Ris(t)

-1 b2 r 2 p?
—Ry,- -—(—=(-a+,la +— -1=0
. Riz-aRp - — (bz( @/ r )R
2
-1- \/aZJ’br—Rlz'qulz:O

Rip=— (3.12)

f 2
£+ az+b7
g r

Finally, solution of (2.53), for Ry, gives:

0=Ry(t)A; +A] Ry(t) +D; (t)Q D, (t)- R, (t)B,R B Ry (t)
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-1, 1 b?
—Ryp- —Rpp+1- —R; =0
q q r

&
¢

26
-ER22+1- b_(} -1
q r ¢

SR
& ;

Y T TR T TR ON
I
(@)

O
N
Q-

)
N
+
N
N
+
QN
)
+

(3.13)

N
N LT
N

30
N

[l
N |2

BOO
O |
+
<)
N
+
‘ o
N
Q- O;

Step (4)
To find the dseady-state value of the feedback gain [Kq,K5],

substituting (3.11) into (2.54), we obtained:

/ 2
Kf%(-a+ a2+b ) (3.14)

And substituting (3.12) into (2.55), we obtained:
b

= |

K oo (3.15)
2
+

r
2
1 /a Lb°
q r
Step (5)

Design the feedback system asfollows:
Substituting (3.10), into (3.5), one can get:

. . éa 0Ou, N . S e
ex(t)u_g Gexm o ébu éx(t) &0y

1oe OO0 k)XY o)
SO g0 -0 Ol BT 6 of &
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b
ext)u g7 7 P2l ou 3.16)
& e o Lok mf” Gl |
é qu
Step (6)

Let the following numerical values have been adapted and as given in,

(see [20]):

a=05s"

b =150rad /(/s?)

q=1s

s =30rad/s

r =1000(rad)?/ (v %s?)
Substituting these values into (3.11), (3.12), (3.13), (3.14), and (3.15), we
have:
¢0.1897 -0.1733u

R:é

(- Where R;, i,j =1,2, denoted the elements of R.
& 01733 0.1621

K, =0.02846
K » =0.02600

Then (3.16), can be determined asfollows:

éX(t) 0 & 4769 3.90éx(t) u €Oy

e

S} 8 S, O &t 3.17
&0OI7E 0 -108 ¥ are® (3.17)

Step (7)

In order to find the analytical solution to following system, we have
done asfollows:

The solution of (3.17), can be found:
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e—4769 39u

The eigenvalues of matrix, A = gar
e 0 -1g

o al| +4TE9) -39
- A= 0 ( +1)|

D 2
°| 245769 +4.769=0

l,=-1
| , =-4.769
The eigenvectors of matrix A are:
V =[u u, L ug]
Au; =lu;,i =12,...,n
€& 4.769 3.908u110 _ e-4769ullu

g 0o -1ff,H & 47600,
Auy =1 5u;
é 4.769 39ueuglu e-u21u
g 0 -1l Euyl
b
e
And
a_é -10348u (3.19)
& 14390 Y
Since the eigenvalues | 4,1 ,,...,I , of the matrix A are distinct, then , we
have:
At 2yl AV iy -1 oyeZly -1 (3.20)
where
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Z =v "1av

_ 6l -1.03480¢ 4769 3901 0.71910
0 14300HE 0  -1H%0 0.6949Y

£ 4769 00
Z=¢8 G (3.21)
6 0 -1

From (3.21), equation (3.20), become:
et z=ve?v 1@
6l 0719106 47 0 Ugl -1.0348)
—é uc . Ua ¥
0 06%49%g o elgd 143904

4. - 4.769t

At -1.0348e™+7%% +1.0847e7' U

o u (3.22)
0 e 3|

@D
I
(g2} (D)(BD

Then (3.17), become:

t
%(t) =e” % (0) +e™ g~ AL Bt dt
0

Substituting (3.22), into (3.23), we have:

(3.23)

%470 _1.0348e 47X +1.0347¢ U

(%(0) +

0 e H

t G 4769 t) 1 (0348e 4769-1) 11 03470 -1 U

o) ) (B, X(t )dt
0 0 e b

%(t) =

[q ] (D>(BD

[q ] (D>(BD
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ex(t) o_% " -1.0348e "% +1.0347¢" tuex(0) o,

& 08 & o ot i, Of"
\% 4.769(t-t) -1.0348e" 4.769(t - t)+10347e (t- t)ue 0 U
& o et a8 O

x(t) =e”*™%x (0)- 1.0348 e *"x (0) +
t

1.0347 e 'x, (0) + 0(- 1.0348 e 4709ty (1) +1.0347” ¢ tx (i ))dt
0

(3.24)

t

X, (t) =€ "%, (0)+ e Ex, ¢t )dt (3.25)
0

Step (8)

Find the statistical properties of this solution and as follows:
From (3.24), (3.25), the mean can be compute::

Step (8.1)

On using the assumption (I, Il ) of remarks (3.1), we have:

E[x ()] =e *"*E[x(0)]- 1.0348 e *"*E[x, (0)] +1.0347e 'E[X, (0)]
t

0
=0

d- 1.0348 e 478D ()] +1.0347e” CDE[x, (t )])dt

t
E[x, )] =€ "E[x, 0)]+ e “VE[x, ¢ )]dt

0
=0

Step (8.2)

To compute the correlation function as discussed in subsection (1.6.3)
using the assumptions of remark (3.1), we have then:
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Ry (ty.tp) = E[¥ ()% (t2)]
_E WX )] ElXExT )Y
EEDT tx)] ElX, t)x )8
D ngx (t1t2) Ry, (tut2) ﬂ
BRx, x tut2) Ry x, (tt2)g
Use (3.24), we get:
Ry (t1.t2) =E[X (t)x " (t2)]
—e 4.769t18X (0)9_ 4.769t» +
1.0708 e *"%s, (0) e *"2-10707 e *"M1s, (0) e7'2-
1.0707 1S, (0) e *"**2+1.0706 e S, (0) €2+

mi n(tl,tz)i
0 I

1.0707 ™ *7%%M gt2(1800) €576% -
1.0707 e '1(1800) g™ 76%2 >79%6s 4

1.0706 e (1*2)(1800) &2 gds
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Chapter Three

Ryx (t1,t2) =S, (0) e 4.769(t +tp) 4
1.0708S, (0) o 4769(t1+t2) _

1.0707 e *"%1s, (0) e 2-
1.0707 e’4S, (0) e 47%%2 4

r
1.0706 e *™M ¢S, (0) e 2+

202.09 er (0) e 4.769(t1+to) e9.538min(tl,t2) _
334.07 e 4.769t1 e-t2 e5.769min(t1,t2) _
334.07 e t1 er (0) e 4.76922 e5.769min(tl,t2) +

063 e (1t12) g2min(tyt2)

For arbitrary given S, (0), Sy (0).
From (3.24), and (3.25), we have:

Ryx, (t1:t2) = E[X ()X (t2)] =Ry (trt2) =E[X, ()X (t2)]
=-1.0348e *"*s, (0)e '2+1.0347e7 1S, (0)e 2 +

mil’l(t]_,tz)i
O [ -1.0348(1800) e+ g (t29) 4
0 |

1.0347 " 1179 (1800) e~ t2°5) gds

Ry, (t1.t2) =EX A)XT )] =Ry () =EX, )X (t2)]
=-1.0348e *"Mg, (0)e "2 +1.0347¢ (172, -

32287¢e" 4.76921e- to e5.769min(tl,t2) +931.23¢e" (ty+to) e2min(tl,t2)

For arbitrary given er ).

And similarly from (3.25), to find
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Ry, x, (t1.t2) =[x, (t)X{ (t2)]
min(ty,to)
=e’1s, (0)e2+ @ 1800 e (1% (2-ys
0
—e (tl+t2)5xr (0) +900 e (t1+2) g2min(tyto)

For arbitrary given Sx, ©).

Step (8.3)

The correlation matrix can be obtain from correlation function (see
remark (1.11):

Ryx (t,t) =Sy (t)
=S, (0)e"¥>* +1.0708S, (0)e ¥>* - 1.0707e >"™'s, (0)-

1.0707e”>"*s, (0) +1.0706e™?S, (0)+202.09- 334.07- 334.07 +963

For arbitrary given S, (0), S, (0).

Rxxr (t1.t2) = erx (t1.t2) = Sxxr (t)= erx (t)
=-1.0348 e >"™'s, (0)+1.0347 e'?S, - 322.87+931.23

For arbitrary given er (0).
Sy, x, t)=e *S, (0)+900e™? ”
=900+e"?S, (0)

For arbitrary given er (0).

Step (8.4)
The correlation matrix are depending on time-varying and the steady-
state can be obtained by let t® ¥,
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Sec(¥) = lim[ S, (0) " * +1.0708S, (0) "% - 10707 &>, (0)-
t

1.0707 e >3 (0) +1.0706 e %S, (0)+202.09-
r r
334.07 - 334.07 +963 |

=202.09 - 334.07 - 334.07 + 963
=496.95

Sxxr (¥) :Sx x (¥)

= I|®rr;é[ -1.0348 e >"*'s, (0)+1.0347 e'?'S, - 322.87+931.23 |
t

=608.36

 liman2t
Sxox, (¥) = lime™ s, (0)+900
=900
Hence

éSXX(¥) Sxx, (¥)u _ 6496.95 608.361)

ng x(¥) Sy x, (¥)g ~80836 900 U (3.26a)

For comparison point of view we have, consider the steady-state correlation
matrix of the state % (t) of the closed-loop augmented system (3.17), can be

found by using Lyapunov equation, from (2.61), we obtain:
& 4.769 3. 9uelel (¥) Sk, (¥)u+
§ 0 -5, S,,My
eSXll(¥) SX12(¥)ue4769 Ou € 0 u_
QSX21(¥) SX22(¥)ge 3.9 -1L<I & 1800d"

On using smple calculating, one can found:

elel(¥) Sx12(¥)u ¢497.5 608.40

3.26b
55, (%) S, (¥)5 084 900! (3.26b)
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As one can see from both results of steady-state (3.36a), and (3.36b), they are
identical and this will give a good justification for our work, even our results

are more general since it represents the transient and steady-state behavior.

Step (9)

Computing the performance index of the problem and using concluding
remarks (2.4) points (4) and (5), it follows that:

Jer :tr{R(¥)@X§X@§} (3.27)
With intensity S, —éo 0 u R(¥) isfound in (see step 3 to step 6) , we
r & 1800}’ ’
get:
0.1897 -0.1733 Ve
I =t 2 uco U0_ 201 8rad ?/s? (3.28)

=tr
€ 01733 01621 14% 18001

llustration (3.2) (Optimal Stochastic Control)

Consider the system differential equationis:

&4y (t)u_ eO 1ueX1(t)u e0u 9(1(t)u

SO §10 - 1u8x2(t)H iy O g0 4 (529
The white noise >%(t) and itsintensity matrix, hasthe following:
ByxS«Bx = :0 %25 gg (3.30)
Suppose that the controlled variable:
B(t)=D )% ()
éz4(t) u ] exl(t) u (3.31)

&,0i

And let the system:

&, )H
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e>&rl(t)u é3 1ue)&rl(t)u é20 9(rl(t)

@&rz(t)g %L 3 @&rz(t)g gouur b 0

The white noise >%(t) and itsintensity matrix, hasthe following:

(3.32)

€0.005 Ou

S 3.33
&0 of (3:33)

BXr er BXr

follows as accurately as possible areference variable:
3 (t) =0, )%, ()
éz, ()u eX (e u (3.34)
é a= 2(é
ézl’z(t)g @(rz()g
The aim is to make system (3.29) follows the system (3.32), by using a
suitable controller, and one can do thisaim as follows:

The augmented state differential equation is given by
R(t) =col [x (1), X2(t). Xy, (1), X, ()]
For the optimization cost function:
10%«) Q #(t)+u’ (t)ru(t)dty (3.35)
fo b
Where ﬁ@(t):[ﬁb(t),ﬁbr (t)] , r isasuitable weighting factor.
Substituting (3.31), (3.34), into (3.35), we get:

J_1E1¥‘ﬁb 4 T *ﬁb % 2 dH
=2 }gj (t)- 2, (O Q [2(t)- 2, ()] +ru”(t) t}l;
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Ly
117 x f
J :EE} () - % O QIX() - %, ()] +r u(t)dty
To b
. é1 U €x, (t)U
i ' 4 e
el s Te) xLo) xT@) x\@0)ue° lIJQ*[l 0 4 2]§X2(t)3+
—Ej Xy xT X é -
2y 9Eu ) Xl RO, ¢ &, (1)
i é 0 e u
"
i
ru?)d vy
>
b
(3.36)
Remarks (3.2)

The following assumptions are assumed for thisillustration:
1) Theinitial conditions are zero-mean random vectors with the following

correlation matrices (The second-order moment matrix):
E[X(0)x" (0)] = S(0), and E{x(0)} =0
E[% (0)x (0)] =Sy, (0), and E{x, (0)} =0
The pair (A,B,) of anon-linear dynamical control system is controllable [see

theorem (1.1)].
2) A, isstable matrix.

3) E[x(0)x (0]=
4) E[x, (0)x' (0)]=
5) E[x(0)x, (t)]=

6) E[x (O)x/ (t)]=
7) Elx t)x" (0] =

8) E[x, (t)x; (0)]=
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Step (1
X (Hu & 1084, O ey &, (t)u
é U=a € U+ta o, )+ & 1 g (3.37)
gt, Mg & 3gk,t)g &6 & 0 g

The feedback gain K, is obtained by using pole placement method

(see lemma (2.2)), such that (3.37), is stable.
as follows:

Step (1.1)
Check the controllability condition for the system (2.37). If the system
is completely state controllable, i.e.,(A,,B, )is controllable :
M=[B, I AB]
£ 5w
Hence rank (M =2). Therefore (A,,B,)

IS completely state
controllable.

Step (1.2)

From the characteristic polynomial (eigenvalues), for matrix

U
A=x s
& 34
|||-A|:("3) 1
1 (-3
0] 2_6| +8,

then a1:'6,a2:8
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Step (2)
Step (2.1)

Determine the transformation matrix T, for details one can see
[26] , for transformation

T=MW

where M isthe controllability matrix of substep (1.1), and using the result of
substep (1.2),

W is defined by
_& 1
&1 of
&6 1u
81 of
And hence
T=MW
_ & bueb lu
& 281 0f
&6 20
82 of
And
T'lzéo 0.50
&5 154
Step (2.2)
Let the desired eigenvalues (desired closed-loop poles), are
selected as:
$1=-2,5,=-5

(I -m)(I - m)=12+5 +2 +10

012471 +10
Then
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a1:7, ao =10

Step (2.3)
The state feedback gain matrix

K, can be determined using the result of substeps (2.1), (2.2), and (2.3) as
follows:

K, =[a,- aliay- a7t

_ é0 05y
=[10 8M7+6]§05 158

=[65 20.5]

Step (3)

Define the robust controller u, =- K x, (t)

Using the results of step 2, we have that:

S0 @ SO @y 8,00
&, 0g & g, 0 087 0§

The feedback of the following system, where u(t) =-K,x, (), (K,is
calculating in step 2), isgiven by

e>& (t)u 10 - 400, ®)U &, (t)u
rn e' U rn G+ er()u (3.38)

@&rz(t) g1 u@&rz(t)g g 0 Q

b
. é10 -40u
Eigenvalues of matr|xg ﬂ ael,=-2, | ,=-5
g1 30
Step (4)

Define the augmented matrix for system (3.29), and (2.38), to have:
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et)u 60 12 0 0 o0 uéxl(t)U eOu exy(t) u
S0F €10 -1 0 0 0Bo0y i §o
e L U—él_ L L L |_ue L U+eLuu(t)+§ L 4
2 (S} u
>&rl(t)u €0 o0 1 -10 -20%% Xy g S04 & 1)
S, g0 0 1 1 3 ngrza)“ g0 g0 Y
(3.39)
From the equation (3.36):
1_1% T ~* 2\ B
I=JE @0 % OF Q1) - % O] +r uPt)ety
fo b
i é1 U . ()Y
X é €
_1g! ¥ch 0 IO xTo) xT O’ ﬂQ*[l 0 4 2]ex2(t)ﬂ+
-~k 2 e -
2 ; r ro Us 4 | exrl(t)u
§ é_u <
;
I
ru?)d vy
>
b
Let
Q =1,
éluél 0 0 Oy
€ Ué 0
o' 1 o oY
t)=€"0é U1 0 4 -2
QW) e4ué0 0 1 o@[ ]
e Lue u
200 0 0 1g
& 2060 u (3.40)
61 0 4 -2y
é (
_g0 0 0 o0y
é4 0 16 -8u
8 (

Since the eigenvalues of Q(t) are positive, so its clear that Q(t) is positive-

semidefinite
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Step (5)

The general performance index is defined as:

From (3.40), the cost function (3.36), can be written:

] ¢1 0 4 _ZUle(t)u
I ¥ o Uéx t)u
11 7, 6T A 0O 0 O 2
J==Ej txtxtxtl,<Ie ug U+
> : g) 1() 2 (t) rl() r2() : 0 16 8UeXr1(t)u
2 0 -8 4
u
r}'
ru(t)de v
?
b
(3.41)
Step (6)

Find the optimal control u =- Kx (t), for all system asfollows:
Find the solution of Riccati equation:
It follows from theorem (2.1), that the optimal tracking law is given (3.10):
ut) =-Kx(t)
= - (Kg,- K)%(t)
To find the steady-state value of the feedback gain, we must find the
steady-state value of Ry1,Rip Ry Ry, are obtained by partition the matrix R

according to the partitioning >%(t):col[xl(t),xz(t),xrl(t),xrz(t)]; from

Riccati equation (2.24):
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é M u
€0 -10 I 0O ogégﬂ 212 M 213 214u
& .1y o ouéfa Re 23 R
€ ue L L L L Lu
e b b e Ry 1 Rg R
0 0 N -10 1587 7 38 T84l
~ S € u
€0 0 W -40 3HéRy Ry I Rz Ryl
é 0
é M u
¢ Ri R Riz R s0 1 1 0 04
Rt Reo I Rs Rage .0 1 o ot
é L L L L Lu¢ u
€Ry Rp Il Rg Ryle- - - b b
e e 3 TS40%0 0 4 -10 -40f
e U 2
gR41 Rip W Ry R443§ O 0 W 1 3§
él 0 4 -2
é 0
éO 0O O 00_
64 0 16 -8
&2 0 -8 4§
éRy Ro I Rz Ry, Ry Rip I Rz Ryl
eR ueO 0 0 OUeR U
gt Rz I Ros Roagey 1500 o ol Rz I Ru Ry
éL L L L Lue UBL. L L L Lu=0
; G0 0 0 00a i
sRap R Il Reg Rey & o o ol Ryo I Rez Reyy
BRa R I Rz Ryf R R I Ry Ryl
(3.42)

On using the definition of Riccati equation and its partions (see theorem

(2.1)), and the symmetry of RJ i,j =1,2, can be exploited by reducing

(3.42), to set of n(n_2+1) =10 equations, we obtain:

b

- 10R,; - 10R;, +1- 1000R%; =0
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- 10Ry; +Ry; - Ryp - 1000R5Ry, =0
- 10Rx3 - 10R 3 + R4 +4 - 1000R,Ry3 =0
- 10Ry4 - 40Ry3 +3Ry4 - 2- 1000R;,Ry4 =0

Ri2 - Rop +Roq - Rpp - 1000R5, =0

Ri3 - Rog - 10Ry3 + Ryy - 1000R;R53 =0

Ri - Ros - 40Ry5 + 3R, - 1000RyRs4 =0
- 10Rg3 + Ry3 - 10Rg3 + Ry, +16- 1000R, =0
- 10R34 + Ry4 - 40Rz3 + 3R34 - 8- 1000R3,R4 =0
- 40Rg, +3Ryy - 40Ry3 +3Ry, +4- 1000RE, =0

(3.43)

Then solving the system (3.43), on using A MATLAB program, to have that:

605392 00499 I 03167 -25700
€0.0499 00487 N -0.1729 -2.22693
R=& L L L L L d
0.3167 -0.1729 I 25199 17.2137 4
25700 -2.2269 |l 17.2137 229.6763f

€0.5392 0.0499u

= , 3.44
1780499 0.0487Y (3.44)

And
_ §0.3167 - 0.1729@

- 3.45
27801729 -2.22694 (345)

€0.3167 -0.1729u €25199 17.2137 u
21~ @ o P2=e a
& 25700 -2.2269( &7.2137 229.6/63(

One can noted that the eigenvalues of R are (0.0243, 0.02489, 1.4880, 231.0229)

positive then R which are unique positive definite solution.
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Step (7)
To find the steady-state value of the feedback gain [K,K ], substituting

(3.44) into (2.54), (see the result of theorem (2.1)) we obtained:

Ky =R B[Ry
o 49552 00,
Ky=[49.9 48.7] (3.46)
And substituting (3.45) into (2.55), we obtain:
K2=RB[Rp

o 4507 0
K,=[-0.1729 -2.2269] (3.47)
Step (8)

substituting (3.10), into (3.39), then substituting (3.46), (3.47), into
(3.39), one can get, the following feedback dynamic system:

eXt)u ¢ 0 1 0 0 0 uéXat) u éxy(t)u

)Y € x, t)Y € o U

eX2) g £599 -497 1 01729 22269;¢%2() g ¢ 0

eL Uu=ep L L L L oL u+eL 0

é U a 1€ u é u

da®g g 0 0 W -10  -40 @EXn®g &)y

S,0F 80 0 ¥ 1 3 Hx,0F §o 4

(3.48)
Step (9
On solving analytically the system (3.48), one can do as follows:

Step (9.1)

The eigenvalues of matrix:
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é 0 1 M 0 0 0
g- 59.9 -49.7 N 0.1729 2.22693
A=¢é L L L L L 4
é
& 0 0 W -10 - 40 G
g 0 0 M 1 3 f
Il -Al=0
p
| 1 =-1.2360
| , =-48.4640
| 3=-5
| 4 =-2
Step (9.2)
The eigenvectors of matrix A are:
v :[ul Uz L un]
Aui =| i Uj ,i =12,...,n
p
€0.6290 -0.0206 -0.0006 0.0075u
é u
~-0.7774 0.9998 0.0032 -0.0151;
vV =€ u (3.49)
e 0 0 -0.9923 0.9804 U
& 0 0 01240 -0.1961§
And
€1.6315 0.0337 0.0175 01475 u
21.2686 1.0264 -0.0034 -0.0470 Y
v 1i= gl u (3.50)

& 0 0  -26874 -1343720
€ 0 0  -16999 -135993;
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Step (9.3)
Since the eigenvalues | 4,1 5,...,I ,, of the matrix A are distinct, we
have:
-1
el zvelV AV -1oyeZly -1 (3.51)
where
Z =V lav
. €0 1 M 0 0 u
é.6315 0.0337 00175 0.1475 (g g
A ga 99.9 -49.7 I 0.1/29 2.2269;
gl.2686 1.0264 -0.0034 -0.0470 ;€ u
Z=F¢ Ug L L L L L U>
& 0 0  -26874 -13.43720¢ a
g 0 0 -1.6999 -13.5993(% ;
g 0 o W 1 3 H
€0.6290 -0.0206 -0.0006 0.0075y
g— 0.0206 0.9998 0.0032 -0.01513
& 0 0 -09923 098040
& 0 0 01240 -0.1961§
é 1236 0 0 00
e u
,_e 0 -48464 0 0y (3.52)
é 0 0 -5 040
& 0 o 0 -2§

From (3.51), and (3.52),we obtain:
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oAl Zy/eZly -1
€0.6290 -0.0206 -0.0006 0.0075q
€ 07774 09998 00032 - 0.01513)

&
& 0 0  -09923 098041
& 0 0 01240 -0.1961§
G, 1.2361 0 0 o
é u
e 0 e®P o o4
& N
é 0 0 e 0
€ 2
§ 0 0 0 e?2y
@..6315 0.0337 0.0175 0.14/5 u
gl.2686 10264 -0.0034 -0.04/0 H
é 0 0  -26874 -1343720
€ o 0  -16999 -135993%
(3.53)
b
€g11(t) 912(t) 913t) gult)u
e
Let oAt =a921(1)  922(1)  Gas(t) g24(t)y where

€031(t) Os(t) ga3t) gxu(t)u
3941@) Ja2(t) gys(t) 944(t)H

gqq(t) =1.0262 e 123% _ 0026148404

go(t) =0.0211e 129 - 0.0211 48464

gy5(t) =0.011e” 1% +0.00007 e #8454 1+ 0.0016e™ % - 0.0127e 2
gy4(t) =0.0027 e 2% +0.0009e” %44 +0,0008e ™ - 0.1019¢™2
0o (t) =1.2683e 154 +1.2683¢ 48464

Ux(t) =-0.0261e” 120 +0,0261e 48404

gas(t) =0.0136e 1230 - 000336 #9454 _ 0,0085e ™ +0.0256 ™2
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Uoglt) =-0.1142e 1230 _ 00469 %454 . 0.0429¢ % +0.2053e™2
g31(t) =0

gs2(t) =0

Uas(t) =2.6667e > - 1.6665e 2

gay(t) =13.3337e ™ - 133327 2

g41(t) =0

J42(t)=0

ga3(t) =- 0.33325e > +0.3333e 2

gast) =-1.6662e > +2.6668e 2

g21(t) =1.2683e™ 12 +1.2683¢ 144

g2 (t) =-0.0261e” % +0.0261e 044

gxs(t) =0.0136e 123 - 0,0033e 48484 _ 000856 > +0.0256 e 2
gog(t) =-0.1142e 1230 . 00469 e 444 _ 0.0429€ > +0.2053e™2
gs1(t) =0

gs2(t) =0

gas(t) =2.6667 e > - 1.6665e 2

gas(t) =13.3337e % - 13.3327¢™2

g41(t) =0

g42(t)=0

g43(t) =-0.33325e > +0.3333e 2

gast) =-1.6662e > +2.6668e 2

(3.55)
And hence

t
%(t) =e” % (0) +e™ gp~ AL Bt )dt (3.56)
0
Substituting (3.55), into (3.56), we get:
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x,(t) =1.0262 e™ 1230y (0) - 0.0261 e #8454 ¥, (0) +0.0211 e 1% x,(0) -
0.0211e” *%*x,(0) +0.011e”+***x . (0) +0.00007e” *****x . (0) +

0.0016 e *x, (0)- 0.0127e *x,, (0) +0.0927e"+***x_(0) +
0.0009e 4% x_(0)+0.0008 e *x,,(0) - 0.1019e *x,, (0) +

—

O 10262 e 120y (1)- 0.0261 e 844 Uyt ) +
0 |
0.011e ¥y (t) +0.00007 e 44 (1) +

0.0016 %"y, (t)- 0.0127e 2y, t) gdt

(3.57)

X, (t) =1.2683e” 1230 (0) +1.2683e 4844y (0) - 0.0261e™ %% x,(0) +
0.0261e”*%4**x,(0) +0.0136e”***x,, (0) - 0.0033e” *****x, (0)-
0.0085e” % x, (0) +0.0256e” ' x,, (0) - 0.1142e™ +**x, (0)-
0.0469e” **4%*x,_(0) - 0.0429e™¥x,(0) +0.2053¢" *x, (0) +

—

O 12683 12001y, 1) +1.2683e 4344 Uy ) +
o |
0.0085¢ % "x, (t)+0.0256e %"y, t) gdt

(3.58)

X, (t) = 2.6667e ¥ x, (0) - 1.6665e *x,, (0) +13.3337e ¥, (0) -

—

13,3327e-2txr2(o)+@i 26667 x, (t)- 1.6665¢" % Vx, (t) gdt
0

(3.59)
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Xy, (t) =-0.3332e"*x, (0) +0.3333¢ % x,, (0)
- 1.6662e” > x, (0) +2.6668e” %X, (0) +

—

O - 03332 % Ux, (t)+0.3333e Ay, t) gdt (3.60)
o |

Step (10)

Find the statistical properties of this solution and as follows:
From (3.57), (3.58), (3.59), and (3.60), we get:

Step (10.1)

On using the assumption (1, 2) of remarks (3.2), we have:

E[x,(t)] =1.0262 e  1%¥ E[x,(0)] - 0.0261e *B4* E[x,(0)] +
0.0211e” 120 E[x,(0)] - 0.0211e” B4 E[x,(0)] +
0.011e ¥ E[x, (0)] +0.00007e” ***E[x, (0)] +
0.0016e *E[x,, (0)] - 0.0127e” *E[x,, (0)] +
0.0927 "+ E[x, (0)] +0.0009 e ¥ E[x,, (0)] +
0.0008 e *E[x,, (0)] - 0.1019 e *E[x,, (0)] +

—

o l 1.0262e 120-DE[x, (t )] - 0.0261e” 444 -DE[x, (t )] +
L
0.011e” M?*OE[x, (t)]+0.00007e” 44 DEX (t)]+

0.0016e" 5" VE[x, (¢ )] - 0.0127e" 2 DE[x, (¢ )] gdt =0
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E[X,(t)] =1.2683 e 1% E[x,(0)] +1.2683 e 44 E[x,(0)] -
0.0261 e 2% E[x,(0)] + 0.0261 e 4% E[x,(0)] +
0.0136e” ****E[x,, (0)] - 0.0033 e”“****E[x, (0)] -
0.0085 e” ¥ E[x,,(0)] + 0.0256 e *E[x, (0)]-

0.1142 e **¥E[x, (0)] - 0.0469 e” 4 E[x, (0)] -
0.0429 e” ¥ E[x,, (0)] +0.2053e” *E[x,, (0)] +

—

o l 1.2683 g™ 1236(t-DE[x, (t )] +1.2683 ™ B44-DE[x, (¢ )] +
L
0.0136 e M**DEx, (t)]- 0.0083 e B DE, (t)]-

0.0085 e %"VE[x, (t )] +0.0256 &2 VE[x, (t)] gdt =0

E[x,, (t)] =2.6667 e Y E[x, (0)] - 1.6665e  * E[x,, (0)] +13.3337e ¥ E[x,, (0)]

—

- 13.3327e % E[x,, (0] + 0 l 26667 e "VE[x, (t)]-
o |

16665 e" 2 VE[x, (¢)] gdt =0

E[x,, (t)] =-0.3332e" ¥ E[x, (0)] +0.3333 e *E[x,, (0)] - 1.6662e ~E[x, (0)] +

ts
|

26668 Y E[x,,(0)] + ¢y - 0.3332e " "VE[x, (t)]+
OI

0.3333 e"2"VE[x, (¢ )] idt =0

Step (10.2)

The correlation function can be found see subsection (1.6.3), and using

the assumption of remark (3.2). From (3.56), we get:
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Rxlxl(tlltz)] = E[Xl(tl)XI (t]

0.0267 e-48.464tlSXl (0) e~ 122 10,0006 e-48.464tlSXl (0) e 484642 4
0.0004 e 1.236tlSX2 (0) e 2282 _ 00004 ¢ 1.23&15)(2 (0) e 484645 _
0.0004 e-48.464tlSX2(0) e~ 123612 . 6 9004 e-48.464tlSX2(0) o~ 48464ty |
0.0001e" 1-23’6‘15Xrl (0) e 1%3%%2 _ 0.0001€" 1-23’6‘15Xrl (0)e %2 -
0.0001e'2‘1sXrl (0) e +23%2 . 000016 e'Z‘lsXrl (0) e 22 +

0.0085 e” 1-230g , (O 1236t2 . 0.0074 e 15%g, L€ 22 .
0.0074 € 2t1SXr2 (0)e 1292 +0.103€" 2t1SXr2 (0) e %2 +

min(ty to) -
O i 1.053(0.025) e 1230ti-s) o 1-236(t2-5)

|

0 0.0267(0.025) e 1-236(11-5)  o-48464(t2-5) .
0.0267(0.025) g 48:464(-s) o~ 1.236(t2-5)
0.0006(0.025) e 48:464(t1-5) g-48.464(t2-5)
0.0001(0.005) g™ 1236(t1-8) g~ 1.236(t2-s) _
0.0001(0.005) g™ 1-236(t1-8)  g-2(t2-s) .
0.0001(0.005) e"21-s) g 1.236(t2-s) |

0.0001(0.005) g™ 2(175) g~ 2t2-5) gds
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Rygxq (t1:42)] = E[Xatp)x] ()]
=1.053 e’ 1-236(tl+t2)SXl (0)- 0.0267 ¢ 1.236t18Xl (0)e 48.464t5 _

0.0267 ¢ %S, (0) e +**%2 +0,0006 e ¥ *H1*2)s, (0) +
0.0004 e 1.236tlSX2 (O)e- 1.236t, _ 0.0004 e 1.236tlSX2 (O)e- 48.464t5 _
0.0001e” 1-236(‘1”2)5Xrl (0) - 0.0001 " 1-23’6‘15Xrl (0) e"22 -
00001 e™?1S, (0) e -2 - 0.00016 & #1712, (0)+
0.0085e 1-26(1*2) g , (0)-00074€ 12365 L€ 27
00074e°21S, (0)e t¥02 +0.103e 21")s, (0) +

And from (3.59), we get:
_ -5t -5t -5t -2t
erlxrl (ty.to)=71112 e 1SXrl (0) e 72-4444 e lSXrl 0) e “2-

4.444 e'2‘15Xrl 0) e 2427772 e'2‘15Xrl (0) e 22 +
177.7875 e 21 Sy, (€ N2 177.7742 e 1 Sy, (0) & 22 .
1777742 21 Sy, (0) & %2 4177.7608 e 21 Sy, (0) & 22 4

min(tl,tz)i
O i 7.1112(0.005) e’ 5(t1-5) g~ 5(t2-S)
0 |

4.444(0.005) e (1 3) g~ 2(t2-9) .
4.444(0.005) e 2(1-9) g-5(t2-9) 4

2.7772(0.005) e 215) g~ At2-5) ids
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Chapter Three
erlx (tyty)=71112 € S(tlJ’tZ)SXrl (0) +0.0035 e” B(t1+t2) GlOmin(ty tp) _
n
4.444 &3S (0) e 22 - 0.003L e %1 g 22 7MiN112)
n
4444 215, (0)e 2 - 0.0031e Mg H2g/MNlt1l2) 4
rn
217772 e 2(tlJ’tZ)SX (0)+0.0034 e 2(t+tp) gAmin(tyto)
rn

And similarly one can compute (RX1X2’RX1Xr1'RX1Xr2 ' Ryoxq 1 Rxoxo

1 2 1 1 1712 2 2 271 2712

using the same procedure.

Step (10.3)

The correlation matrix can be obtain from correlation function (see

remark (1.11):

Rxlxl tt)= lexl (t)
=1.053e">%"%'s, (0)- 0.0534S,,(0) & ™ +

0.0008S,,(0) e™**™ +0.0004 e” ®#9&s, _(0)+
0.0001e *4%'s, (0)- 0.0002 e **¥'s, (0)-

-4t -2.472t
0.00016 e™*S,  (0)+0.0085e Sy, (0)-
0.0014 e 320 g , (0)+0.103€’ As, ., (0) +0.0106

(.8 =S, ©)

RX
=7.1112 e 5(‘1+‘2)S,Xrl (0) +0.0035- 0.0062- 8.888e "' +

rlX n

2.7772 e 2att2)g, , (0+0.0034
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Step (10.4)

The correlation matrix are depending on time-varying and the steady-
state can be obtained by let t ® ¥ , (see remarks (1.11)):

S, (¥) :tl |® m [1.053e >4"'s, (0)- 0.0534S, (0) e ¥ +
0.0006 " *%%s, (0) +0.0004e **"'s, (0)-
0.0008S,,(0) e **" +0.0004 & **%*s, _(0)+
0.0001 e 2423, . (0)- 0.0002 &’ 3B8g . (0)-
-4t -2472t
0.00016e™ S, (0)+0.0085e Sy, (0)-
0.0014e 32%tg , (0 +0.103€’ As, ., (0) +0.0106
Sy x, (¥)=0.0106
Sypyxr, ¥)= {@ m [7.1112 e'5(‘1+‘2)sxrl (0) +0.0035- 0.0062- 8.888e "t +
t

2.7772 e 2utt2)g , (0+0.0034]
=0.0007

Step (11)

For comparison point of view we have, consider the steady-state

correlation matrix of the state %(t) of the closed-loop augmented system

(3.48), can be found by using Lyapunov equation, from (2.61), we obtain:
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Sss®) Scaa(¥)1

é 0 1 M 0 0 u

g— 599 -49.7 W 0.1729 2.22693

@ L L L L L U

e u

é 0 0 M -10 -40 U

Bo 0o 1 1 3§

é lel (¥ ) SXlZ (¥ ) M SX13 (¥ ) SX14 (¥ ) l;'
e u
e u
& L L L L L O+
é [

é

é

e
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a
SX41(¥) SX42(¥) M SX43(¥) SX44(¥)L:|
u

SX13 (¥) SX14 (¥) l;'
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§8X21(¥) SX22(¥) M SX23(¥) SX24(¥)l;|
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e

g L L L L

é
¢00106 00002 O  0.0002(
go.oooz 0 0 0 ﬂ
e 0 0  0.0007 0.00430
§0.0002 0 00043 0.0571]

SX14(¥)l:J
u
SX24 (¥)l;|
u

L -
Sx34(¥)U
u

u
u

(3.61)

As one can see the identical agreements between the two result

Step (12)

Computing the performance index of the problem and using concluding
remarks (2.4) points (4) and (5), it follows that:

see concluding remarks points (4), (5), we get:

Jsr :tr{R(¥)@x§x@x} ,

P
05392 00499 |
820.0499 0.0487 |
Jep =tr¢é L L L
¢a03167 -0.1729 |
S& 25700 -2.2269 |
600135 0 00016
_ €0.0012 0 -0.0009
€00079 0 00126
§ 00643 0 0.0861
Jag =0.0261

03167 -2.5700
(€0.025 0 O
01729 -2.2269 Y3
o o0 o0
L L €
¢ 0 0 0005
25199 17213758 o
17.2137 229.6763f°
0y
(
%
0d
0g
(3.62)
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Conclusions

1) The tracking approach between the some stochastic dynamic system

and desired one, seems a good task to find a suitable controller that
guarantee the asymptotic stability of the error dynamic between the
state-space and desired state-space.

2) As one can see from the illugtration, if one can follow the theoretical
result of the presented work, the illustration and then the solution of
tracking problem may be obtained relatively easly The present
approach as one can see from the illustration, and for us, it seems a
practical one and good enough.

3) The complexity of finding the solution of tracking problem is ranking
from easier to harder depending on the nature of dynamic system (time-
variant system, time-invariant system etc., and its order (first order,
second order, etc.).

4) The solution of differential Riccati equation that corresponding its
optimal tracking problem becomes very complicated when final time of
performance index is varying, and on easier solution may be found for
steady-state case where the differential Riccati equation converting into
algebraic Riccati one.

5) Some numerical solution may be needed for illustration of some
tracking problem when the transent behavior is required but not in the
steady-state one.
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Future Work

In the future work, one can precede and developed hiswork based

on the present study to include a large class,
1) The studying the state variables are not directly available (measurable),
but only measurable in a noisy environment, the relevant

methodological result, on which the optimal control (LQG ) theory is

based, may be considered. Since the most interesting version it states
that, assuming for the control a quite general dependence on the past
output and an equally general structure for the cost function, in case of
linear systems and white Gaussian noises, an optimal solution will be
existed for which the control may be a function of the optimal state
estimate; and dynamic estimator.

2) Studying the tracking problem with additional equality and inequality
constraints and some kind of nonlinearity as well as some kind of
uncertainty may be considered in future.

3) Studying the case when the problem of tracking using Ito-stochastic

dynamic system derived by Brownian motion may also be developed.
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APPNDIX [A]

A.1 NON-LINEAR MODEL AND LINEARIZATION [20]

It would seem apparent that the linear model is more amenable to

analytic consideration than the corresponding non-linear system model.

A linear model can of course arise in two different ways (1) when the
system it self islinear, and (2) as an gpproximation to non-linear system. The
procedure for carrying out the second arrangement is referred to as
linearization.

The basic idea of linearization is to expand the variables in a Taylor
series expansion about an equilibrium point x, and then truncate this series to
retain only the corresponding linear terms.

Consider the system:

X()=f[x(t)ut)t] (A1)
if ug(t) is a given input to a system described by the state differential
equation (A.1), and xo(t) is a known solution of (A.1), we can find
approximation to neighboring solutions, for small deviations in the initial
state and the input, from a linear state differential equation. Suppose that x,(t)
satisfies

Yo (t) = fxo(t),up(t),1] toEtEY
we refer to up asanominal input to x; asanominal trajectory. Often we
can assume that the system is operated close to nominal conditions, which
meansthat u and x deviate only slightly from ug and x;.

Let u(t) = ug(t) + () thEtEY
(A.2)
X(to) = Xo(to) + X(to)

A-1



Appendix

where ti(t) and ¥(ty) are small perturbations.
Correspondingly , let usintroduce %(t) by:
X(t) = Xo(t) + %(t) toEtE£Y
Now, substitute x and u into the state differentia equation and make a

Taylor expansion. It follows that:
%o (1) + () = f[x0(1), Up (1), ] + I [ (1), Ug (1), t]%(t)
+3,[%0(1),Up (), 1]e(t) + h(t) hEtEY (A3
Jy and J, are the Jacobian matrices of f with respect to x and u,
respectively, that is, J, ismatrix the (i, j) -th element of which is

i
Ty j

where f; isthei-th component of fandy ; thej-th component of x. J, is

(I)ij =

similarly defined. The term h(t) is an expression that is supposed to be
“amall” with respect to % and U. Neglecting h, we see that %and U
approximately satisfy the linear equation

k(1) = A(t)%(t) + B(t)d(t) toEtEY (A.4)
where A(t) = J,[xg(t),up(t),t] and B(t) = J,[x (t),uqg(t),t]. (A.4) iscalled the
linearized state differential equation for time-invariant the linearization

leads to the equation:
X(t) = A(t)X(t) + B(t)di(t)

A.2 Homogeneous State Equations and it Solution [27]

Consider
k(t) = Ax(t) , x(tg) =Xo (A.5)

Where x(t) is n-vector, A is n" n constant matrix, and x(tp)T R". The

solution of equation (A.5) can be written as

x(t) = et (A.6)
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We can expand e*intoa power seriesin t ,we have

(A)? | (AD)°®

®
X(t) = |+ﬂ+ + +|_+(At)
1 2 3

nl

+|_—x0

in order to write explicit analytical solution we may use the following:

If the eigenvalues | 1,1 5, K| |, of the matrix A aredistinct, then
At _yeV AV iy -1 oy /o2ty -1
Where V is n" n nonsingular matrix, whose columns are the eigenvectors
corresponding to the eigenvalues | 1,1 ,,K,I ,, and Z =V 1AV . Once A is

given, the eigenvalues are determined, then a necessary transformation matrix
V can be obtained by this method and

eAl —y/aZhy -1

' 09
g e'? s 1
=\/ ¢ AV (A.7)
¢ o g
g0 ety

Remark

Consider X%(t) = Ax(t), where A is n n constant matrix, if
V =[u; u, K u,], where Au; =1;u; ,i =12,K,n, on setting w =Vx,
then

W =Vb wi=VAxbP w=VAV W, and hence v =V AV "W,

where V AV "1 is a diagona (block) similar matrix to A and its
diagonalization architecture depends on the nature of eigenvalues whether
they are real and distinct, real and have multiplicity of some order, complex
and distinct, complex and have some multiplicity or even mixed of real and
complex, distinct or not. In most cases the solution can be found explicitly
and hence its diagonalization can be formed easlly. Thisis sometime called a

Jordan canonical forms or a general diagonalization. The selection of
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transformation matrix V can be easlly obtained depending on the
eigenvectors corresponding to distinct eigenvalues or generalized
eigenvectors when some multiplicity of eigenvalues are available, to ensure

the nonsingularty of amatrix V .

A.2.1 Non —homogeneous State Equation [27]

Consider the non-homogeneous state equation:

() =Ax(t) +By (), X(to) =% (A.8)
Where x(t) =n- vector ,x(t)=r - vector, A isn" n constant matrix and B
IS n” r constant matrix isgiven by (A.8) as

X(t)- Ax(t) =By (t)

t

and pre-multiplying both sides of this equation by e At e obtain:

e MR (t) - Ax(t)]° j—t[e' Aty 1)) =e" A'By ()

Integrating the preceding equation between t, and t gives,

t
e Aoy (1) = x (to) + g™ A 0By (t )dt
to

t
x (t) =e*t o) o) + e UBy (t)dt (A.9)

to
And
If tyg =0, then (A.9) become

t
x (t) =e*x (0) + ¢ "VBy (t )dt (A.10)
0

A-4



Appendix

A.3IMPULES AND CORRELATION FUNCTION [29]

The impulse function whose area is equal to unity is called the unit-

impulse function or the Dirac delta function.

1) The unit-impulse function occurring at t =ty is usually denoted by
d(t- ty).

2) The Dirac deltafunction d(t - ty) satisfiesthe following properties:

i0 for t=tg
3) dt-to) =t
ly for ttt,
¥
b) dt- to)dt=1
-y

A.3.1The Output Correlation Function [8]

Assuming t, >1;,

tito

T T
R, (tlltZ) :eAt]_SX (O)eA to 4 é\ A(tl't)BSXd(t _ S)BTeA (t2-s)dsdt
00
(A.11)
T f T
R(t,tp) =e*1s, (0)e” 2 + gt iBg BT (27t (A.12)
0

For t; >t,, by integrating with respect to t we obtain:

2

T T

Ry (t1tp) =e™1s, (0)e” '2 + p”t)Bg BTe? (27%)gs (A.13)
0

From (A.12) and (A.13) we obtain:

min(ty,to) -
R, (titp) =eMs, (0)e” 2+ o Al BTe? (2-9s
0

(A.14)
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APPNDIX [B]

B.1 QUADRATIC OPTIMAL REGULATOR PROBLEMS[27]

Consider the optimal control problem that, given the system equation
%(t) = Ax(t) + Bu(t) (B.1)
where
u(t) = - Kx(t) (B.2)

And the cost function is defined as follows:
¥
J= " (©Qx(t) +uT (t)Ru(t)dt (B.3)
0

Where Q and R are positive definite, where the second term on the right-hand
side of cost function (B.3) accounts for the expenditure of the energy of the
control signals, and assume that the control vector u(t) is unconstrained.
The linear control law given by equation (B.2) is the feedback control law.
Therefore, if the unknown elements of the matrix K are determined so as to
minimize the cost function, then u(t) =- Kx(t) isoptimal for any initial x(0).
Substituting equation (B.2) into (B.1), we obtain

X(t)=Ax(t)- KBx(t)=(A- BK)x(t)
We assume that the matrix (A - BK) is stable on using controllability
assumption, or that the eigenvalues of (A - BK) have negative real parts.

Substituting (B.2) into (B.3), yields

¥
J= " @Qx(t) + X" (1)K T RKx(t)dt
0

¥
= ¢ OIQ+KTRK]x(t)dt
0

Let
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xT (1)Q +KTRK)x(t) =- j—t<xT ORK())

Where R isapositive-definite matrix. Then we obtain

xT (£)Q +KTRK)x(t) =- (& ()R (t) +x' (t)R¥)

=-x" (O)[(A- BK)T R+R(A - BK)]x (t)
Comparing both sides of this last equation and noting that this equation must
hold true for any x, we require that

(A- BK) R+RA- BK)=-(Q +KTRK) (B.4)
If (A- BK) is stable matrix, there exist a positive —definite matrix P that
satisfies (B.4).

Hence to determine the elements of P from equation (B.4)and if is

positive definite.

The cost function J can be evaluated as

¥ ¥
J=9¢" OQ+KTRKIx(t)dt =-x"Rx |
0 0

=-xT (¥)RX (¥)+x' (0)Rx (0)
Since eigenvalues of (A - BK) are assumed to have negative real part, we

have x(¥)® 0. Therefore, we obtain :

J =x" (0)Rx (0) (B.5)
Thus, the cost function J can be obtained in terms of the initial condition x(0)

and R.
To obtain the solution to the quadratic optimal control problem, we proceed
as since R has been assumed to be positive-definite matrix or real symmetric
matrix, we can write

R=HTH
Where H isnonsingular matrix. Then (B.4), can be written as
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(AT - BTKT)R+RA- BK)+Q +KTHTHK =0

Which can be rewritten as

ATR+RA+[HK - HT)YB"RI[HK - (HT ) BTR- RBRIB"R+Q =0
The minimization of Jwith respect to K requires the minimization of
X' [HK - (HT ) BT"RI[HK - (HT ) 1B" R with respect to K.
Since the last expression is non negative, the minimum occurs when it is zero,
or when
HK =(HT)1B"R
Hence
K=H YHT)B"R=R B'R (B.6)
The optimal control law to the quadratic optimal control problem when the
performance index is given by (B.2), islinear and is given by
ult)=-Kx(t)=-R BT Rx(t)
The matrix R in (B.6), must satisfy (B.4) or the following reduced equation:
ATR+RA- RBR'IBBTR+Q =0 (B.7)
Equation (B.7), iscalled the reduced —matrix algebraic Riccati equation.

Finally, note that if the cost function is given in terms of the outputs vector

rather than the state vector, that is

¥
J= YT ®QY(t) +u' ())Ru(t)dt then the index can be modified by using
0

the output equation
Y =Cx(t), to

¥
J= " ()CTQCx(®) +u' (t)Ru(t)dt (B.8)
0
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B.2 White noise can be expressed as the derivative of process with

uncorreated increments [20]

1S,(t) for t,343t,
Xultnto) =i s+ 3
iSx(tz) for  §31,%1

(B.9)

Proceeding completely formally, let us show that the covariance matrix of
the derivative process
_ax(t) : :
(1) —T,H ty consists of a delta function. For the mean of the

derivative process, we have
_d _
E[%(t)] = o E[x(t)]=0 t3t, (B.10)

For the covariance function of the derivative process we write, completely

formally,
Xy (ty,t2) = E[R(t) &(to)]
- P e )
Tty Tt
- Xx(ty,t2) b,12° 1o (B.11)
1t
Now , successively carrying out the partial differentiations, we obtain
Xu(t:1) = 8, (t)d (- 1) b33 (B.12)
Where
t
OE %

This shows that the derivative of a process with uncorrelated increments is a

white noise. When each increment x(t,) - x(t;) of the process has a variance

i}
matrix that may be written in the form S(t) = OS(t )dt the intensity of the

o
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white noise process that derives from the process with uncorrelated

incrementsis S(t).

Theorem (B.1) [20]

The transition matrix F (t,ty) of a linear differential system has the
following properties:
1- F(ty,t)F (t1,tg) =F (t2,tg), for al tg,t;, and t,1 R

2- F(t,tg) isnonsingular, for al t and tyl R.

3- F L(t,tg) =F (to.t), forall t and to1 R.

d

4- —
dt

FT(to,t) =-AT(t)F T(t,ty), foral t and tyl R.
(Where T denotes the transpose operator).
B.3 HOMOGENEOUSLINEAR TIME VARYING SYSTEM [26]

Consider the homogeneous linear vector matrix differential equation
k(t) = A(t)x(t), X(tg) =Xg (B.13)

Where x(t) is state vector (n-vector), A(t) is n° n matrix whose
elements are at least piecewise continuous functions of t in the interval
tog £t £14, (or integrable). The solution of equation (B.13), isgiven by:

X(t) = F (t,to)x(tp) (B.14)

Where F (t,tg) is n° n non singular (transition or fundamental) matrix
satisfying the following matrix differential equation

B (t,tg) = A()F (t,tp), and F (tg,to) = | (B.15)
The fact, F(t,tg) is the unique solution of equation (B.15), we can easily
verify this, where the state transition matrix F (t,ty) have the following

properties, see theorem (B.1)
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B.3.1 Non-homogeneous Linear Time-Varying Sysem and it Solution

Consider the following state equation which is defined as:
k() = A(t)x(t) +B(tu(t), x(tg) =xo (B.16)
Where x(t) is state vector (n-vector), u(t) iscontrol vector (m-vector),
A(t) isn” n matrix and B(t) is n" r matrix. We assume that the elements
of A(t) and those of B(t) are absolutely integrable as functions of t in the
interval to £t £1,. Let F (t,tg) be the unique matrix which satisfies equation

(B.15), rewritten as follows:

%F (ttg) =AMF (t,ty), F(to.tp) =1

Assume that
x(t)=F(.toy ()
Then

2(t) =L [F oy ©)]
dt

=R (t,to) (t)+F (Lto)k(t), (using (B.15))
=AQR)F (t.toly ) +F(t,toye(t)
® A[F (t.to)y () +B(t)u(t)
Thus
F (t.toh) =BOU(t) P ye(t) =F (. to)Bt)u(t)
Integrating both sides of the last equation from tg to t, we have

t
y (€)=Y (to) + OF 1t .tg)B(t u(t )dt (B.17)
to

Since

y (to) =F o to)xto) P Y (to) =X(to) P ¥ (to) ® Xo
The solution of equation (B.16), then can be given by
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X@t)=F(.toy ), (using (B.17))

t
=F(t,tg)Xo + F (t,tg) F “1t, to)B(t )ut )dt
to

From the properties of F (t,tg), we have

t
x(t) =F (t,t0)%o + (F (t.t B Ju(t )ct (B.18)

to

B.4 RELATION INVOLVING THE TRACE [8]
Theorem (B.2)
The traceisinvariant under cyclic perturbations:
tr (AB) =tr (BA)

Where AB issquare, and therefore the trace is defined.

Proof

Let AT C™ and BT C™ :then AB 1 C™ and BA 1 C™ .

Expanding the matrix multiplication and noting that the trace is the sum of the

diagonal elements of the matrix, we have:

n | | n
tr(AB)= 4 & agby =& a byag =tr(BA)
K =1i =1 i =1k =1

Successive applications of the theorem (B.1), we have:

Lemma (B.1)
tr (ABC) =tr (CAB) =tr(BCA)

Provided ABC issguare.
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B.5 SINGULAR VALUE DECOMPOSITION [8]

The singular value decomposition (SVD) is a matrix factorization that

has found a number of applications to engineering problems. The (SVD) of
matrix M T A" ™ is
ey T 8 T
M =UsvT =8 s;UV, (B.19)
=1
Where
V1AV ™ andUT A" ™ gre unitary matrices(U'U =1,V TV =1);

ST A™ ™ s diagonal (but not necessaily square); and p equas the
minimum of n, and n,. The singular values {s;, s,, L, s} of

M are defined as the positive square roots of the diagonal elements of S's,

and are ordered from largest to smallest.
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