
 

Republic of Iraq 

Ministry of Higher Education 

and Scientific Research 

Al-Nahrain University 

College of Science 

Department of Mathematics 

and Computer Applications 

 

 

 

Analytical and Approximate Solutions 

for Volterra Integro-Differential 

Equations and It’s Applications 

 
A Thesis 

Submitted to the College of Science, Al-Nahrain University as a Partial  

Fulfillment of the Requirements for the Degree  

of Master of Science in Mathematics 

 

By 

Firas Shakir Ahmed 

(B.Sc., Al-Mustansirya university, 2000) 

 
                        Supervised by 

          Lect. Dr. Majeed A.Weli       Asst. Prof. Dr.Fadhel S. Fadhel  

 
      October 2014                                                   Thi-lhijja 1435 

 

 



i 

 

 
 

    بسم الله الرحمن الرحيمبسم الله الرحمن الرحيم
 
 
 
 

يَرْفعَِ الٌلّـَهُ الٌذِينَ آمَنُواْ مِنكُمْ يَرْفعَِ الٌلّـَهُ الٌذِينَ آمَنُواْ مِنكُمْ 
واَلٌَّذِينَ أوُتُواْ الٌعِلمَ دَرجََتٍ واَلٌَّذِينَ أوُتُواْ الٌعِلمَ دَرجََتٍ 

 والٌلـّهُ بمِاَ تَعْمَلُونَ خَبيِرٌوالٌلـّهُ بمِاَ تَعْمَلُونَ خَبيِرٌ
 
 
 
 
 

  صدق الله العظيمصدق الله العظيم
  

              
             سورة المجادلة                                      

 (11)                                                  ااية  

  اا



ii 
 

 

Deduction 

     To my parents who have 

been a constant source of 

inspiration, motivation and 

support. 
 



iii 

 

Acknowledgments    

 
         Thanks for Allah for his help and for giving me the ability to complete this 

thesis.  

         First and foremost, I wish to thank my supervisors Dr. Majeed Ahmed 

Weli and Asst. Prof. Dr. Fadhel Subhi Fadhel for all the time that devoted to 

give advice on numerous problems. Without them, this thesis would have never 

been possible. Furthermore, I am grateful for their patience, motivation, 

enthusiasm and immense knowledge, and therefore, I would like to express my 

sincere gratitude for their useful advice and encouragement, it has been a 

privilege to work with them. 

           I'm deeply indebted to the College of Science, Al-Nahrain University for 

giving me the chance to complete my study.  

I also thanks the staff of Department of Mathematics and  computer 

applications / college of science .  

           Special thanks and deepest gratitude goes also to Asst. Prof. Dr. Osama 

Hameed Mohammed for his encouragement, especially during my first year of 

the postgraduate study. 

          Finally, I would like to thank my family for the great support during my 

M.Sc. study. 

 

 

Firas Shakir Ahmed  

October 2014 

 



Supervisors Certification 

We,  certify  that  this thesis  entitled " Analytical  and Approximate  Solutions for 

Volterra   Intgro – Differential  Equations  and  It’s  Applications "  was  prepared  

by " Firas  Shakir  Ahmed "  under  our supervision  at  the  College of Science / Al-

Nahrain University as a partial fulfillment of the  requirements  for  the  degree  of  

Master  of  Science in Applied Mathematics. 

 

 
 

Signature:                                                 Signature: 

Name: Dr. Majeed A. Weli                     Name: Dr. Fadhel S. Fadhel 

Address: Lect.                                          Address: Assist. Prof. 

Date:    /      / 2014                                      Date:    /      / 2014 

 

 

In view of the available recommendations, I forward this thesis for 

debate by the examining committee.  

 
 

 

Signature: 

Name: Dr. Fadhel S. Fadhel 

Address: Assist. Prof. 

Head of the Department of Mathematics and Computer Applications  

Date:      /     / 2014 

 



Committee Certification 

 

We, the examining committee certify that we have read this thesis 

entitled "Analytical and Approximate Solutions for Volterra  Integro-

Differential Equations and It’s Applications" and examined the student 

''Firas Shakir Ahmed'' in its contents and that is in our opinion, it is 

accepted for the degree of Master of Science in Mathematics. 

  

                                        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I, hereby certify upon the decision of the examining committee. 

 

Signature:                                                                

Name: Dr. Hadi  M. A. Abood  

Scientific Degree: Assistant professor                     

Dean of the Collage of Science 

Date:     /     / 2015                                                                                                 

                                   Signature:                                                                                                     

                                   Name: Dr. Saheb K. Jassim                

                                   Scientific Degree: Professor                                                  

                                   Date:     /     / 2015                                   

                                       (Chairman)                                               

Signature:                                              Signature:                                                                

Name: Dr. Shathaa A. Salman              Name: Dr. Osama H. Mohammed 

Scientific Degree: Asst. Prof.               Scientific Degree: Asst.  Prof. 

Date:     /     / 2015                                 Date:     /     / 2015 

         (Member)                                                (Member) 

Signature:                                             Signature:                                                                

Name: Dr. Majeed A. Weli                  Name: Dr. Fadhel S. Fadhel 

Scientific Degree: Lecturer                 Scientific Degree: Asst. Prof. 

Date:     /     / 2015                               Date:     /     / 2015 

  (Member and Supervisor)                    (Member and Supervisor) 

 

 



iv 

 

Summary 
 

       The  main objective of this thesis is to study and solve the Volterra 

integral and integro-differential equation and some  scientific models for real 

life problems. 

This objective may be divided into three sub objectives, as follows: 

         The first one  is to classify and study the subject of the integral equations 

and to supply the basic definitions related to the Volterra integral and integro-

differential equations. 

          In the second  sub objective  we used the " dafterdar-jafari method " to 

solve Volterra integral and integro-differential equations. 

         The third  sub objective is to introduce another  iterative method which is  

called  the power series method  to provide a solution of the Volterra integral 

and integro-differential equations. 

          Finally,  the application of  the  dafterdar-jafari method and the power 

series method are presented for finding the analytic and approximate  solution 

for some real  life scientific problems, namely, Volterra’s population  model, the 

hybrid selection model,  Riccati equation and the logistic model. Also, it is 

important to remark that the computer programs are coded using the computer 

software Mathematica.8. 
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Introduction 

 

The study of integral equations might be regarded of more fundamental 

importance than the differential equations because an integral equation often 

provides less restriction and more useful model than differential equations. 

Moreover, in numerical analysis, differentiation increases error, but integration 

will tend to smooth errors out [14].  

The advantage of integral equations is witnessed by the increasing 

frequency of integral equations in the literature and in many fields of applied 

mathematics, since some problems have their mathematical representation 

appear directly, and in a very natural way, in terms of integral equations. Other 

problems, whose direct representation is in term of differential equations, have 

their auxiliary conditions replaced by integral equations more elegantly and 

compactly than the differential equations.   

Historically, Volterra started the working on integral equations in 1884, 

but his serious study began in 1896. The name integral equations was given by 

du Bois-Reymond in 1888. However, the name Volterra integral equation was 

first coined by Lalesco in 1908.  During the last years,  many researches  had 

been studies concerned with  the solution of integral equations and integro-

differential equations. Burner in 1974 [8], studied the approximate solution of 

first kind integral equations of Volterra type. In 1988 Burner [9], study the 

application of certain spline collection methods to Volterra integro-differential 

equations  of  a certain order,  and so on,  Hosseini in 2003 [22], extend the Tau 

method to integro-differential equations to produce a numerical solution. In 

2005 Al-Jawary [6], investigate the numerical solution of a system of linear 

second kind Volterra integral equations. In 2006 Hashim [21] used the  

Adomian Decomposition Method  (ADM) for solving boundary value problems 

for the fourth-order integro-differential equations. Abbasbandy  in 2008  [3] 
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used the Variational Iteration Method (VIM) to solve nonlinear Volterra  

integro-differential equations. Ali, in 2010 [4], introduce the  fractional   

integro-differential equations using a modified type of operators, which consists 

of the same order fractional differentiation and fractional integration which have 

been solved using the modified Adomian Decomposition Method.  Erfanian in 

2011 [18], introduce an approach by an optimization  method to find 

approximate solution for a class of  nonlinear Volterra integral equations of    

the first and second kinds. In 2012 Mirazaee [30],  had used the repeated 

Simpson’s quadrature rule to solve the linear Volterra integral equations of the 

first kind by approximating the integral. In 2012 Venkatesh [40], studied the 

Legendre wavelets for the solution of boundary value problems for a class of 

higher order Volterra integro-differential equations. Wadeá  in 2012 [41], 

studied the approximate solution of fractional integro-differential equations 

using Variational Iteration Method (VIM). Rashidinia  in 2013 [33],  developed  

and modified Taylor expansion method for approximating the solution of linear 

Fredholm and Volterra integro-differential equations. Alao et al. in 2014 [7], 

using both ADM and VIM on various types of integro-differential equations, 

which are the  Fredholm, Volterra and Fredholm- Volterra equations.   

 In this thesis, an analytic and approximation solutions for Volterra  

integral and integro-differential equations is presented.  

            The Dafterdar-Jafari method (DJM) and the power series method (PSM) 

are implemented independently to the integral equations. The DJM has been 

extensively used by many researchers for the treatment of linear and nonlinear 

ordinary and partial differential equations of integer and fractional order .  In 

[10] Bhalekar applied the DJM to solve partial differential equations.  In [11] 

Bahlekar solved the evolution equation using DJM. In [16] Dafterdar solved the 

fractional boundary value problems with dirichlet boundary conditions using the 

DJM. It is important to notice that the DJM will  converges to the exact solution, 

if it exists, through successive approximations. The PSM  and DJM results 
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demonstrate that the methods has many merits such as being derivative-free, 

overcome the difficulty arising  in calculating Adomian polynomials to handle 

the nonlinear terms in ADM,  it does not require to calculate Lagrange multiplier 

as in the VIM and no needs to construct a homotopy and solve the 

corresponding algebraic equations as in Homotopy Perturbation Method (HPM).  

Moreover,  in this thesis the proposed DJM and PSM will be used for the 

first time to solve real life applications, such as,Volterra’s population model, the 

Hybrid selection model, the Riccati equation and the Logistic differential 

equation.  

Recently many attempts have been made to develop analytic and 

approximate methods to solve the Volterra’s population model. Although,   such 

methods have been successfully applied, but some difficulties have appeared. 

Wazwaz [43] used ADM  to solve  the governing problem. Moreover, Mohyud-

Din et al.[29] employed the combining of  the HPM and  Pade technique to 

obtain the numerical solutions to Volterra’s population model. Parand et al. [31] 

established a method based on collocation approach using Sinc functions and 

Rational Legendre functions. Also, [28]  a numerical method based on hybrid 

function consist of block-pulse and Lagrange-interpolating polynomials 

approximations was proposed to solve Volterra’s population model and in [27] 

Khana used New Homotopy Perturbation Method (NHPM) which is an 

improvement of the classical HPM. Al-Khaled [5] implemented the ADM and 

Sinc-Galerkin method for the solution of some mathematical population growth 

models. In addition, Ramezani et al. [32]  applied the spectral method to solve 

Volterra’s population on a semi infinite interval. 

The work in this thesis is divided into five chapters; the first chapter  is  

an introductory chapter presents the basic and main aspects of the subject of 

integral equations in order to give a wide range of background to the readers 

concerned with the subject of integral equations. The second chapter consists the 

DJM for solving Volterra  integral and integro-differential equation. Chapter 
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three the PSM used and implemented to solve the Volterra  integral and integro-

differential equation. In Chapter four, some scientific models are presented to 

evaluate the analytic and approximate solutions of such models  using   DJM 

and  PSM. Finally, in chapter five, conclusion and recommendations are 

presented. 

The analytical and approximate results are presented for some selected 

illustrative examples which are programmed and coded using  the computer 

program  mathematica 8.  
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Chapter One 

Introductory Concepts of Integral Equations 

 

1.1  Introduction 

  Theory of integral equations has close contacts with many different areas 

of mathematics.  Foremost among these are differential equations and operator 

theory.  Any problems in the field of ordinary and partial differential equations 

can be recast as integral equations. Many existence and uniqueness results can 

then be derived from the corresponding results in integral equations. Also,  

many problems of mathematical physics can be stated in the form of integral 

equations,  and therefor it is suffice to say that there is almost no area of applied 

mathematics and mathematical physics where integral equations do not play a 

role. In another meaning, one can view the subject of integral equations as an 

extension of linear algebra. Especially in dealing with linear integral equations 

the fundamental concepts of linear vector spaces, eigen values and eigen 

functions will play a significant role, [20]. This chapter consist of six sections. 

In section 1.2 some preliminaries related to the concept of integral equations are 

given. In section 1.3 the classification of integral equations is given for 

completeness purpose, wile in section 1.4 the relationship between IVP and 

volterra integral equation have been discussed. In section 1.5 the powerful of 

Padé approximate have been studied for function and polynomials, as well as 

some illustrative examples are given. Finely sections 1.6 and 1.7 present the 

basic ideas of the adomian decomposition method and varitional iteration 

method for solving approximatly nonlinear operator equations. 
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1.2  Preliminaries 

  An integral equation is an equation in which the unknown function u  

appears under an integral sign [42]. A standard integral equation in u  is of the 

form:  

 
( )

( )

( ) = ( , , ( )) , [0, ]
h x

g x

u x f x k x t u t dt x t                                (1.1) 

 where g  and h  are two functions represent the limits of integration,   is a 

constant parameter plays the role of an eigen value, and k  is a function of two 

variables x  and t  called the kernel or the nucleus of the integral equation. The 

function u  that will be determined appears under the integral sign, and it may be 

appears inside the integral sign and outside the integral  

sign as well. The functions f  and k  are given in advance. It is to be noted that 

the limits of integration g  and h  may be both variables, constants, or mixed. 

An integro-differential equation is an integral equation in which the unknown 

function u  appears under an integral sign and contains an ordinary derivative of  

u  up to certain order as well. A standard integro-differential equation is of the 

form:  

 
( )

( )

( )

( ) = ( , , ( )) ,
h x

n

g x

u x f x k x t u t dt n N                              (1.2) 

 where ( )( ) =
n

n

n

d u
u x

dx
 and 

( 1)(0), (0),..., (0)nu u u   are the initial conditions.  

The representation of some problems has its mathematical appearance, 

directly and in a very natural way, in term of integral equations. Other problems, 

whose direct representation is in terms of differential equations and their 

auxiliary conditions, may also be reduced to integral equation. Integral and 

integro-differential equations arise in many scientific and engineering 

applications (for more details see [25]). Volterra integral equations and Volterra 

integro-differential equations can be obtained from converting initial value 
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problems with prescribed initial values. However, Fredholm integral equations 

and Fredholm integro-differential equations can be derived from boundary value 

problems with given boundary conditions. 

One of the simplest integral equations arises from the shop stocking 

problem [14]. It is found that a proportion k t( )  remains unsold at time t after 

the shop has purcased the goods. It is required to find the rate at which the shop 

should purchase the goods, so that the stock of the goods in the shop remains 

constant. Suppose that the shop commences business in the goods by purchasing 

an amount A of the goods at zero time, and buys at a rate t( )  subsequently. 

Over the time interval t     ,  an amount t ( )  is bought by the shop, 

and at time t the portion of this remaining unsold is K t t  ( ) ( ) .  Thus the 

amount of goods remaining unsold at time t and which was bought to that  time, 

is given by

 

0

( ) ( ) ( )
t

AK t K t d                                        (1.3) 

 This is the total stock of the shop and is to remain constant at its initial value 

and so  

 
0

( ) ( ) ( )
t

A AK t K t d                           (1.4) 

The required restocking rate t( )  is the solution of this integral equation. 

Another problem is the smoke absorption or filtration a cigarette, [25] 

which can also be represented as an integral equation. The deposited weight per 

until length ( , )w x t  of certain tobacco component at distance x  (measured 

from the original = 0t  position of the burning tip) at time t  after lighting a 

cigarette is represented by the integral equation:  

1

0

( , ) = ( ,0) ( , ) , =bx bww x t w x a b v e w v e d x vt                          (1.5) 
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 where ( ,0)w x  is the initial value of ( , )w x t  at x  before burning, a the constant 

function of the weight that is drawn through the cigarette (1 a  in the air), b  the 

absorption coefficient of the cigarette acting as a filter, and v the assumed 

constant velocity of the moving burning tip where =x vt , [25]. 

 

1.3  Classification of the Integral Equations 

  Integral equations appears in many types. Such types depend mainly on 

the limits of integration and the kernel of the equation [42]. Two distinct ways 

that depend on the limits of integration are used to characterize integral 

equations, namely: 

1. If the limits of integration are fixed, the integral equation is called a 

Fredholm integral equation which given in the form [42]: 

( ) = ( ) ( , , ( ))
b

a

u x f x k x t u t dt                       (1.6) 

          where a  and b  are constants.  

2. If at least one limit is a variable, then the equation is called a Volterra 

integral equation given in the form [42]:  

( ) = ( ) ( , , ( ))
x

a

u x f x k x t u t dt                                 (1.7) 

Moreover, two other distinct kinds, that depend on the appearance of the   

unknown function u , are defined as follows: 

1) If the unknown function u  appears only under the integral sign of 

Fredholm or Volterra equation, the integral equation is called a first kind 

Fredholm or Volterra integral equation, respectively. 

2) If the unknown function u  appears both inside and outside the integral 

sign of Fredholm or Volterra equation, the integral equation is called a 

second kind Fredholm or Volterra integral equation respectively. In all 
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Fredholm or Volterra integral equations presented above, if the function 

f  is identically zero, the resulting equation:  

( ) = ( , , ( ))
b

a

u x k x t u t dt                                    (1.8) 

 or  

( ) = ( , , ( ))
x

a

u x k x t u t dt                                      (1.9) 

 is called homogeneous Fredholm or homogeneous Volterra integral equation 

respectively.  

 

Definition (1.1), [20] 

An integral equation is termed linear if the integral operator:  

( )

( )

= ( , )
b x

a x

L k x t dt   

which satisfies the linearity condition  

1 1 2 2 1 1 2 2[ ( ) ( )] = [ ( )] [ ( )]L c u x c u x c L u x c L u x   

where c1, c2 are two constants and u1, u2 are two continous functions.  

The most general linear integral equations is of the form [35]  

( ) = ( ) ( , ) ( )
x

a

u x f x k x t u t dt                                         (1.10) 

 where the general form of nonlinear integral equations may be written as 

follows [35]:  

( ) = ( ) ( , , ( ))
x

a

u x f x k x t u t dt                          (1.11) 

 where ( , , ( ))k x t u t  is nonlinear function in u .  
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Definition (1.2), [20]: 

If the kernel k  of the linear integral equation depends only on the 

difference x t , i.e., if the kernel is of the form ( , ) = ( )k x t k x t , then k  is 

called difference kernel, and the integral equation is called integral equation of 

convolution type.  

 

 Definition (1.3), [20]: 

The kernel k  is called symmetric, if it has the property ( , ) = ( , )k x t k t x , 

and kernel k  is called antisymmetric, if it has the property ( , ) = ( , )k x t k t x . 

 

Definition (1.4), [20]: 

The integral equation is said to be singular if either, the domain of 

definition tends to  , or if the kernel has a singularity within its region of 

definition.  

 

 1.4  Converting the Initial Value Problem  into Volterra Integral Equation 

  In this section, the technique that is followed to convert an IVP to an 

equivalent VIE will be studied [42]. For simplicity reasons, we will apply this 

process to a second order initial value problem given by  

( ) ( ) ( ) ( ) ( ) = ( ), 0y x p x y x q x y x g x x                       (1.12) 

 subject to the initial conditions (0) =y  , (0) =y  , where   and   are 

constants. The functions p , q  are analytic functions, and g is continuous through 

the interval of discussion. To achieve our goal, we first set:  

)(=)( xuxy                               (1.13) 

 where u  is a continuous function. Integrating both sides of Eq.(1.13) from 0  to 

x , yields to: 

0

( ) (0) = ( ) ,
x

y x y u t dt                               (1.14) 
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 or equivalently: 

0

( ) = ( ) .
x

y x u t dt                                              (1.15) 

 Againe, integrating both sides of Eq.(1.15) from 0  to x  give :  

0 0

( ) (0) = ( ) ,
x x

y x y x u t dtdx                                        (1.16) 

 It is normal to outline the formula that will reduce the multiple integrals to 

single integrals. We will first show that the double integrals can be reduce to a 

single integral by using the formula : 

1

1

0 0 0

( ) ( ) ( ) .   
xx x

F t dtdx x t F t dt           (1.17) 

This can be easily proved by two ways. The first way is to set 

0

( ) = ( ) ( ) ,
x

G x x t F t dt                       (1.18) 

Where G(0)=0. Differentianting both sides of Eq. (1.18) gives 

0

( ) = ( ) , 
x

G x F t dt                     (1.19) 

Obtained by using Leibnitz rule. Now by integrating both sides of the last 

equation from 0  to x  yeilds : 

1

0 0

( ) = ( ) 
xx

G x F t dtdx             (1.20) 

Consequently, the right side of the two equations (1.18) and (1.20) are 

equivelent. This complete the proof. 

For the second method, the concept of integration by part will be use. 

Recall that                     

1

0

= ,

( ) ( ) ,





 


x

u dv uv v du

u x F t dt
              (1.21) 
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Then we find  

1 1

1 1 1 1 1

0 0 0 00

1 1 1

0 0

0

( ) ( ) ( )

( ) ( )

( ) ( )

 

 

 

   

 



xx xx x

x x

x

F t dtdx x F t dt x F x dx

x F t dt x F x dx

x t F t dt

           (1.22) 

Obtained by setting 1 x t . 

The general formula that convert multiple integrals to a single integral is given 

by  

1 1
1

1 1

1
( ) = ( ) ( )

( 1)!

nx xx x
n

n

a a a a

u t dt dx dx x t u t dt
n




 


       (1.23) 

 where n  is positive integer, and a  is a constant, and hence Eq.(1.16) may be 

rewritten as:  

0

( ) = ( ) ( )
x

y x x x t u t dt                                                (1.24) 

Substituting Eq.(1.13), Eq.(1.15), and Eq.(1.24) back into the initial value 

problem Eq.(1.12) yields the following VIE:  

0

0

( ) ( ) [ ( ) ] ( ) [

( ) ( ) ] = ( )

x

x

u x p x u t dt q x x

x t u t dt g x

     

 





    (1.25) 

 The last equation can be written in the standard VIE form as:  

0

( ) = ( ) ( , ) ( ) ,
x

u x f x k x t u t dt                               (1.26) 

 Where ( , ) = ( ) ( )( )k x t p x q x x t    and 

( ) = ( ) [ ( ) ( ) ( )]f x g x p x q x xq x       
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The reader can see that Eq.(1.26) is a VIE of the second kind. The 

advantage here is that the auxiliary conditions are automatically satisfied in the 

process of formulating the resulting integral equation. The other advantage is in 

the case when both differential, as well as, integral forms do not have exact, 

closed-form solutions in term of elementary functions. In this case, we must 

detour the approach to numerical or approximate computations, where the 

integral representation is more suitable [25]. In other words, sometimes the 

problem can be expressed together by an integral equation and a differential 

equation. In some cases where numerical values are required it may be advisable 

to transform a problem from differential equation to integral equation because in 

the numerical analysis differentiation increases the error, but integration will 

tend out to smooth errors [14]. 

 

1.5  The Padé Approximants 

  In this section, the powerful Padé approximants [45] will be 

investigated. First of all, the construction of Padé approximants for functions 

and polynomials will be discussed. Then, some examples to see the 

implementation of Padé approximants will be given.  

Polynomials are frequently used to approximate power series. However, 

polynomials tend to exhibit oscillations that may produce an approximation 

error bounds. In addition, polynomials can never blow up in a finite plane; and 

this makes the singularities not apparent. To overcome these difficulties, the 

Taylor series is best manipulated by Padé Approximants for numerical 

approximations. Padé approximants represents a function by the ratio of two 

polynomials. The coefficients of the polynomials in the numerator and in the 

denominator are determined by using the coefficients in the Taylor expansion of 

the function. Padé rational approximations are widely used in numerical analysis 

and fluid mechanics, because they are more efficient than polynomials. In the 

following, we will introduce the simple and the straightforward method to 
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construct Padé Approximants. Suppose that f  is a function has the Taylor series 

expansion given by:  

=0

( ) = k
k

k

f x c x


  

The procedure is to seek a rational function for the series. We can use the 

coefficients of the series to represent the function by a ratio of two polynomials. 

Padé approximants, symbolized by ]/[ nm , is a rational function defined by:  

2
0 1 2

0 1 2

...
[ / ] =

...

m
m

n n
n

a a x a x a x
m n

b b x b x b x

   

   
 

The basic idea is to match the series coefficients as far as possible. Even though 

the series has a finite region of convergence, the limit of the function as x  

may be obtained, if nm = , then the approximants ]/[ nm  are called diagonal 

approximants. We note that there are 1m  independent coefficients in the 

numerator and 1n  coefficients in the denominator. To make the system 

determinable, let 0 = 1b . We then have n  independent coefficients in the 

denominator and 1 nm  independent coefficients in all. Now the ]/[ nm  

approximant can fit the power series through orders 1 , x , 2x ,..., m nx  . In 

addition, the Padé approximants will converge on the entire real axis if the 

function f  has no singularities. It was discussed by many authors that the 

diagonal Padé approximants, where nm = , are more accurate and efficient. 

Assuming that f  can be manipulated by the diagonal Padé approximants, where 

nm = . This admits the use of : 

2
2 20 1 2

0 1 2 2

1 2

...
= ...

1 ...

n
nn

nn n
n

a a x a x a x
c c x c x c x

b x b x b x

   
   

   
 

By using cross multiplication, we find that  

2 2
0 1 2 0 1 1 0 2 1 1 2 0

3
3 1 2 2 1 3 0

... = ( ) ( )

( ) ...

n
na a x a x a x c c b c x c b c b c x

c b c b c b c x

        

    
 

Equating the related powers of x  leads to :  
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           coefficient of 0x : 0 0=a c , 

coefficient of 1x : 1 1 1 0=a c b c , 

coefficient of 2x : 2 2 1 1 2 0=a c b c b c  , 

coefficient of 3x : 3 3 1 2 2 1 3 0= ,a c b c b c b c    

coefficient of nx : 
=1

=
n

n n k n k
k

a c b c   .  

This completes the determination of the constants of the polynomials in the 

numerator and in the denominator. Thus we have  

   

   

   

   

0 1 1

0 1 1

2
0 1 2 2

2
20 1 2

2 3
0 1 2 3 3

2 3
30 1 2 3

2 3
0 1 2 3

2 3
0 1 2 3

1/1 = , 1 /1 =lim

2 / 2 = , 2 / 2 =lim

3 / 3 = , 3 / 3 =lim

...
/ = , / =lim

...

x

x

x

m
m m

m
x mm

a a x a

b b x b

a a x a x a

bb b x b x

a a x a x a x a

bb b x b x b x

a a x a x a x a x a
m m m m

bb b x b x b x b x













 

 

  

  

    

    



 

Now, we give some examples as an allustration:  

 

 Example (1.1)[45] :  

 Consider the function 
1 3 1

( ) = , ( , 1) ( , )
1 3

x
f x x

x


     


  

The Taylor series for f  is given by : 

2 3 4 5 6 7 83 5 37 75 327 753
( ) =1 ( )

2 2 8 8 16 16
f x x x x x x x x O x         

Thus, [2/2]  approximants is defined by ; 

 
2

0 1 2
2

1 2

2 / 2 =
1

a a x a x

b x b x

 

 
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To determine the five coefficients of the two polynomials, the [2/2]  

approximants must fit the Taylor series of f  through the order of 1, x ,..., 4x , 

hence we set : 

2
2 3 40 1 2

2
0 1 2

3 5 37
=1

2 2 8

a a x a x
x x x x

b b x b x

 
   

 
 

Cross multiplying yields  

2 2 3
0 1 2 1 1 2 1 2

4
1 2

3 3 5
=1 ( 1) ( ) ( )

2 2 2

5 3 37
( )
2 2 8

a a x a x b x b b x b b x

b b x

          

  

 

Equating the powers of x  leads to:  

coefficient of 0x : 0 =1a , 

coefficient of 1x : 1 1= 1a b  , 

coefficient of 2x : 
2

3
= 212 bba , 

coefficient of 3x : 1 2

3 5
0 =

2 2
b b    

coefficient of 4x : 1 2

5 3 37
0 =

2 2 8
b b   

Hence,  the solution of this system of equations is;  

0 =1a , 1

9
=

2
a , 2

19
=

4
a , 

1

7
=

2
b , 2

11
=

4
b .  

Consequently, the [2/2]  Padé approximants is  

 

2

2

9 19
1

2 42 / 2 =
7 11

1
2 4

x x

x x

 

 

 

To determine the Padé approximants [3/3] , we first set : 
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2 3
2 3 4 5 60 1 2 3

2 3
0 1 2 3

3 5 37 75 327
=1

2 2 8 8 16

a a x a x a x
x x x x x x

b b x b x b x

  
     

  
 

Cross multiplying, and equating the coefficient of like powers of x  and solving 

the resulting system of equations leads to : 

 0 =1a , 1

13
=

2
a , 2

27
=

2
a , 3

71
=

8
a  

1

11
=

2
b , 2

19
=

2
b , 3

41
=

8
b .  

This gives :  

 

2 3

2 3

13 27 71
1

2 2 83 / 3 =
11 19 41

1
2 2 8

x x x

x x x

  

  

 

 

Example (1.2)[45]:  

Consider the function ( )f x = 
ln(1 )

, 1, 0
x

x x
x


     

The Taylor series for f  is given by  

2 3 4 5 6 7
8( ) =1 ( )

2 3 4 5 6 7 8

x x x x x x x
f x O x         

To establish [3/3]  Approximants, we set  

2 3
0 1 2 3

2 3
0 1 2 3

[3 / 3] =
a a x a x a x

b b x b x b x

  

  
 

To determine the unknowns, we proceed as before and therefore we set  

2 3 2 3 4 5 6
0 1 2 3

2 3
0 1 2 3

=1
2 3 4 5 6 7

a a x a x a x x x x x x x

b b x b x b x

  
     

  
 

Cross multiplying and proceeding as before we find  

0 =1a , 1

17
=

14
a , 2

1
=

3
a , 3

1
=

140
a  
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1

12
=

7
b , 2

6
=

7
b , 3

4
=

35
b .  

So that the Padé approximants is  

 

2 3

2 3

17 1 1
1

14 3 1403 / 3 =
12 6 4

1
7 7 35

x x x

x x x

  

  

 

To determine the Padé approximants [4/4] , we set: 
  

 

2 3 4
0 1 2 3 4

2 3 4
0 1 2 3 4

[4 / 4] =
a a x a x a x a x

b b x b x b x b x

    

    
 

Proceeding as before we obtain:  

 

2 3 4

2 3 4

17 11 1 13
1

8 3 140 1404 / 4 =
12 16 14 12

1
17 7 35 90

x x x x

x x x x

    

    

. 

 

1.6 Adomian Decomposition Method (ADM) 

 The basic idea of Adomian Decomposition Method (ADM) will be 

introduced and for more details see [2]. To introduce the basic idea of the ADM, 

consider the operator equation =Fu G , where F  represents a general nonlinear 

ordinary differential operator and G  is a given function. Suppose the nonlinear 

operator F  can be decomposed as:  

=Lu Ru Nu G                                                                          (1.27) 

 where, N  is a nonlinear operator, L  is the highest-order derivative which is 

assumed to be invertible, R  is a linear differential operator of order less than L  

and G  is the nonhomogeneous term. The method is based on applying the 

operator 1L  formally to the expression : 

=Lu G Ru Nu                        (1.28) 

 so by using the given conditions, we obtain:  

1 1 1=u h L G L Ru L Nu                                                 (1.29) 
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 where, h  is the solution of the homogeneous equation = 0Lu , with the initial 

boundary conditions. The problem now is the decomposition of the nonlinear 

term Nu . To do this, Adomian developed a very elegant technique as follows: 

The Adomian technique consists of approximating the solution of 

Eq.(1.27) as an infinite series:  

=0

= n
n

u u


     (1.30) 

and decomposing the nonlinear term Nu  as:  

=0

( ) = = n
n

f u Nu A


  

where nA  are the so-called Adomian polynomials of 0u , 1u ,..., nu  that are the 

terms of the analytical expansion of Nu , where  

=0

= i
i

i

u u


  

around = 0 . That is:  

=0 =0

1
=

!
i

n
i

n n
i

d
A f u

n d





  
  

  
  

The Adomian polynomials are not unique and can be generated from the Taylor 

expansion of f  about the first component 0u , i.e.,  

( )
( )0

0
=0

( ) = ( )
!

n
n

n

f u
f u u u

n



  

In [2], Adomians polynomials are arranged to have the form:  

0 0

1 1 0

2
1

2 2 0 0

3
1

3 3 0 1 2 0 0

= ( )

= ( )

= ( ) ( )
2!

= ( ) ( ) ( )
3!

A f u

A u f u

u
A u f u f u

u
A u f u u u f u f u



 

   

 

Now, we parameterize Eq.(1.29) in the form:  
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1 1 1=u h L G L Ru L Nu       

where,   is just an identifier for collecting terms in a suitable way such that nA  

depends on 0u , 1u ,..., nu  and we will later set =1 .  

1 1 1

=0 =0 =0

=n n n
n n n

n n n

u h L G L R u L A    
  

        

Equating the coefficients of equal powers of  , we obtain:  

1
0

1 1
1 0 0

1 1
2 1 1

=

= ( ) ( )

= ( ) ( )

u h L G

u L R u L A

u L R u L A



 

 



 

 



      (1.31) 

and in general  

1 1
1 1= ( ) ( )n n nu L R u L A 
    

Finally, an n -term that approximates the solution is given by:  

  

1

=0

( ) = ( ), =1,2,3,....
N

N n
n

x u x N


  

 

Example(1.3),[42]: 

Consider the linear VIDE : 

0

( ) 1 ( ) , (0) 0
x

u x u t dt u        (1.32) 

Apllying the integral operator 1L  defined by 

1

0

x

L dt  ( ) ( ) ,        

to both sides of Eq.(1.32),  and using the initial condition, yields to : 

1

0

( ) ( ) .
x

u x x L u t dt  
   

 
  
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Using the decomposition series Eq.(1.30) and recurence relation Eq.(1.31) will 

be give : 

0( ) ,u x x  

1 3
1 0

0

1
( ) ( ) ,

3!

x

u x L u t dt x   
   

 
  

1 5
2 1

0

1
( ) ( ) ,

5!

x

u x L u t dt x  
   

 
  

1 7
3 2

0

1
( ) ( ) ,

7

x

u x L u t dt x   
   

 
  

and so on. This gives the solution in a series form 

3 5 71 1 1
( )

3! 5! 7!
u x x x x x     

and hence the exact solution is given by  

( ) sin( ).u x x  

 

1.7  The Variational Iteration Method  

 The basic idea of The Variational Iteration Method (VIM) will be 

introduced and for more details see [23], [24]. Consider the differential 

equation:  

= ( )Lu Nu g x                                     (1.33) 

 where L  and N  are linear and nonlinear operators, respectively, and ( )g x  is 

the source in homogeneous term. The VIM introduces a correction functional for 

Eq.(1.33) fo the form : 

1

0

( ) = ( ) ( )( ( ) ( ) ( ))
x

n n n nu x u x t Lu t Nu t g t dt                        (1.34) 

 where   is a general Lagrange’s multiplier that can be identified optimally via 

the variational theory, and nu  as a restricted variation which means = 0nu  . It 

is to be noted that the Lagrange multiplier   may be a constant or a function. 
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First, it is required to determine the Lagrange multiplier ( )t that can be 

identified optimally via integration by parts and by using a restricted variation. It 

was found in [17], [37] that a general formula for ( )t for the n th  order 

differential equation  

( ) ( )( ( ), ( ), ( ),....., ( )) = 0n nu f u x u x u x u x                                   (1.35) 

 can be proved to be of the form : 

( 1)1
( ) = ( 1) ( )

( 1)!

n nt t x
n

  


                                  (1.36) 

 This means that for first-order ordinary differential equations (ODEs), 

= 1( )t  , and for the second-order ODEs, = ( )( )t t x  , and so on. Although 

the proof of formula given in  Eq.(1.36) is given in [24], [45] in details. Having 

determined ( )t , an iteration formula or a recurrence relation should be used for 

the determination of the successive approximations 1( )nu x , 0 1, ,...n   of the 

solution ( )u x . It is well known that in recursion, an initial value is needed to 

perform the iteration process. Based on this, we can use any selective function 

for the zeroth approximation 0u . However, using the initial values (0)u , (0)u  , 

and (0)u   are normally used for the zeroth approximation 0u  as will be seen 

later. Consequently, the solution is given by: 

( ) = ( ).lim n
n

u x xu


     (1.37) 

 

Example (1.4),[13]: 

Consider the nonlinear VIDE : 

2

0

( ) 1 ( ) , (0) 0
x

u x u t dt u                                       (1.38) 

Using VIM, the correction functional for Eq.(1.38) is : 

2
1

0 0

( ) = ( ) ( ) 1 ( )

 
   

 
 
x s

n n nu x u x u s u t dt ds            (1.39) 
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Now, take the initial approximation 0( ) .u x x   

The first three iterates are obtained from Eq.(1.39) and given by : 

4
1

1
( ) x ,

12
u x x    

4 7 10
2

1 1 1
( ) x x x ,

12 252 12960
u x x      

4 7 10 13
3

16 19 22

1 1 1 37
( ) x x x x

12 252 12960 7076160

109 1 1
x x x .

914457600 558472320 77598259200

u x x     

  
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Chapter Two 

Solution of Volterra Integral and Integro-differential Equations 

Using Dafterdar-Jafari Method  

2.1  Introduction 

Daftardar-Gejji and Jafari in 2006 [15] have proposed a new method for 

solving linear and nonlinear functional equations namely Dafterdar-Jafari 

Method (DJM). The method converges to the exact solution, if it exists, through 

successive approximations. For concrete problems, a few number of 

approximations can be used for numerical purposes with high degree of 

accuracy. The DJM is simple to understand and easy to implement using 

computer packages and yields better results and does not require any restrictive 

assumptions for nonlinear terms as required by some existing techniques [10]. 

This chapter consist three sections, in section 2.2 the analysis of  DJM  have 

been discused for general nonlinear operator equations. In section 2.3 the DJM 

have been applied for volterra integral and integro-differential equations using 

illustrative examples. 

 

2.2  Analysis of the DJM 

Consider the general functional equation [15]:  

= ( )u N u f                                                    (2.1) 

 where N  is a nonlinear operator and f  is a known function. We are looking for 

a solution u  of Eq.(2.1) having the series form:  

=0

= i
i

u u


                                                            (2.2) 

 The nonlinear operator N  can be decomposed as  

1

0
=0 =1 =0 =0

( ) = ( ) [ ( ) ( )]
i i

i j j
i i j j

N u N u N u N u
  

                   (2.3) 

 From Eq.(2.2) and Eq.(2.3) which implies that  Eq.(2.1) is equivalent to  
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1

0
=0 =1 =0 =0

= ( ) [ ( ) ( )]
i i

i j j
i i j j

u f N u N u N u
  

                    (2.4) 

 We define the recurrence relation:  

0

1 0

1 0 0 1

= ,

= ( ),

= ( ..... ) ( ..... ), =1,2,...m m m

u f

u N u

u N u u N u u m 

 
 
 
      

         (2.5) 

 Then  

=1

= i
i

u u f


                                                                           (2.6) 

The m -term approximate solution of Eq.(2.1) is given by 

0 1 1= .mu u u u      

 

Now, the condition to ensure convergence of the DJM will be presented:  

  

Theorem(2.1),[12]: 

 If N   ( )C   in a neighborhood of 0u  and  

 ( ) ( )
0 0 1( ) = ( )( ,..., ) : 1,1n n

n iN u Sup N u h h h i n L        

for any n  and for some real > 0L  and <1/ , =1,2,...iu M e i  then the series 

=0 nn
G


  is absolutely convergent, and moreover, 

1( 1), =1,2,n n
nG LM e e n   

 

Theorem(2.2),[12]: 

If N   ( )C   and 
( ) 1

0( )nN u M e   , for all n , then the series 
=0 nn

G


  

is absolutely convergent.  
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2.3  Test Examples 

  In this section, the DJM will be implemented to some examples, linear 

and nonlinear Volterra integral and integro-differential equations. Moreover, we 

compare the results with ADM and VIM, [13], [42]. 

 

Example (2.1):  

           Consider the following linear VIE [42]:  

 0

( ) =1 ( ) ( )
x

u x t x u t dt                                                (2.7) 

 To solve Eq.(2.7) by DJM, we follow the recurence relation given in Eq.(2.5) , 

then we have:  

0 =1,u  

2
1 0 0

0

1
= ( ) = [( ) ( )] = ,

2!

x

u N u t x u t dt x


  

4
2 0 1 0 0 1 1

0

1
= ( ) ( ) = [( )( ( ) ( ))] = ,

4!

x

u N u u N u t x u t u t dt u x      

3 0 1 2 0 1

0 1 2 0 1

0 0

6

= ( ) ( )

= [( )( )] [( )( )]

1
= ,

6!

x x

u N u u u N u u

t x u u u dt t x u u dt

x

   

     



 
 

and so on. The solution in a series form is given by  

                 

2 4 61 1 1
( ) =1

2! 4! 6!
u x x x x                               (2.8) 

 which is the same results obtained by ADM in [42] that converges to the exact 

solution ( ) = cos( )u x x .  
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Example (2.2):  

Consider the following nonlinear VIE [42]:  

2

0

( ) = ( )
x

u x x u t dt                                                    (2.9) 

 To solve Eq.(2.9) by DJM, we follow the recurence relation given in Eq.(2.5) , 

then we have:  

0 = ,u x  

2 3
1 0 0

0

1
= ( ) = [ ( )] = ,

3

x

u N u u t dt x  

2 5 7
2 0 1 0 0 1 1

0

2 1
= ( ) ( ) = [( ) ] = ,

15 63

x

u N u u N u u u dt u x x      

2 2
3 0 1 2 0 1 0 1 2 0 1

0 0

7 9 15

= ( ) ( ) = [( ) ] [( ) ]

4 38
= ...

105 2835

x x

u N u u u N u u u u u dt u u dt

x x up to x

       

 

 
 

and so on. The solution in a series form is obtained to be:  

3 5 71 2 17
( ) =

3 15 315
u x x x x x                            (2.10) 

 which is the same results obtained by ADM in [42] that converges to the exact 

solution ( ) = tan( )u x x .  

 

 Example (2.3):   

Consider the linear VIDE [42]:  

0

( ) =1 ( ) , (0) = 0
x

u x u t dt u                                     (2.11) 

 To solve Eq.(2.11) we have to convert it to integral equation, therefore, 

integrate Eq.(2.11) from 0  to x  and applying the initial conditions, then yields 

to:  
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 0 0 0

( ) = ( ) ( ) ( )
x x x

u x x u t dtdx x x t u t dt                                (2.12) 

 Now, by applying  DJM to Eq.(2.12), we find:  

0 = ,u x  

3
1 0 0

0

1
= ( ) = [( ) ( )] = ,

3!

x

u N u x t u t dt x   

5
2 0 1 0 0 1 1

0

1
= ( ) ( ) = [( )( )] = ,

5!

x

u N u u N u x t u u dt u x      

3 0 1 2 0 1

7
0 1 2 0 1

0 0

= ( ) ( )

1
= [( )( )] [( )( )] ,

7!

x x

u N u u u N u u

x t u u u dt x t u u dt x

   

          

and so on. The solution in a series form is given by  

3 5 71 1 1
( ) =

3! 5! 7!
u x x x x x                            (2.13) 

 which is the same results obtained by ADM in [42] and hence the exact  

solution is given by ( ) = sin( )u x x . 

  

 Example (2.4):   

Consider the nonlinear VIDE [13]:  

2

0

( ) = 1 ( ) , (0) = 0
x

u x u t dt u                              (2.14) 

 To solve Eq.(2.14) we have to convert it to integral equation, therefore, 

integrate Eq.(2.14) from 0  to x  and applying the initial conditions, then yields 

to:  

2 2

0 0 0

( ) = ( ) ( ) ( )
x x x

u x x u t dtdx x x t u t dt                        (2.15) 

 Now, by apply the DJM to Eq.(2.15), we find:  
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0 = ,u x  

2 4
1 0 0

0

1
= ( ) = [( ) ( )] = ,

12

x

u N u x t u t dtdt x  

2
2 0 1 0 0 1 1

0

7 10

= ( ) ( ) = [( )( ) ]

1 1
= ,

252 12960

x

u N u u N u x t u u dt u

x x

    

 


 

3 0 1 2 0 1

2 2
0 1 2 0 1

0 0

10 13 16

19 22

= ( ) ( )

= ( )( ) ( )( )

1 37 109
=

11340 7076160 914457600

1 1

558472320 77598259200

x x

u N u u u N u u

x t u u u dt x t u u dt

x x x

x x

   

     

 

 

 

 

and so on. The solution in a series form is given by  

4 7 10 13

16 19 22

1 1 1 37
( ) =

12 252 6048 7076160

109 1 1

914457600 558472320 77598259200

u x x x x x x

x x x

    

  

              (2.16) 

 which is the same results obtained by VIM in [13]. 
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Chapter Three 

Solution of Volterra Integral and Integro-differential Equations 

Using Power Series Method 

 

3.1 Introduction 

Tahmasbi  A.  and  Fard  O. S. in 2008 [38], [39] proposed the  power 

series method (PSM) and then implemented to solve Volterra integral and 

integro-differential equations. The obtained analytic approximate solutions of 

applying the PSM is in perfect agreement with the results obtained with those 

methods available in the literature. This chapter consist three sections, in section 

3.2 the statement of PSM is illustrative. In section 3.3 the PSM have been 

applied for volterra integral and inegro-differential equations using illustrative 

examples. 

 

3.2 The Power Series Method  

 Consider the equation [38], [39]:  

0

( ) = ( ) ( , )[ ( )]
x

pu x f x k x t u t dt               (3.1) 

  In Eq.(3.1), the functions ( )f x  and ( , )k x t  are known, and ( )u x  is the 

unknown function to be determined, also 1p   is a positive integer. Suppose the 

solution of Eq.(3.1) with 0 = (0) = (0)e u f  as the initial condition to be as 

follows:  

0 1( ) = ,u x e e x                                            (3.2) 

  where, 1e  is a unknown parameter. 

If we substitute Eq.(3.2) into Eq.(3.1) the following linear algebraic 

equation will be obtained:  

2
1 1 1( ) ( ) = 0,a e b x Q x                                              (3.3) 
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  where, a  and b  are known constant and )( 2xQ  is a polynomial with the order 

greater than unity. 

 By neglecting 
2( )Q x  in Eq.(3.3) and solving the algebraic equation 

1 1 1=a e b  , the unknown parameter 1e  and therefore is the coefficient of x  in 

Eq.(3.2) are obtaind. 

 In the next step, we assume that the solution of Eq.(3.1) to be,  

2
0 1 2( ) = ,u x e e x e x                                             (3.4) 

  here, 0e  and 1e  both are known and 2e  is unknown parameter. 

By substituting Eq.(3.4) into Eq.(3.1), we have the following system,  

2 3
2 2 2( ) ( ) = 0.a e b x Q x                                   (3.5) 

By neglecting 
3( )Q x  in Eq.(3.5) and solving the algebraic equation 2 2 2=a e b  , 

the unknown parameter 2e  and therefore the coefficient of 2x  in Eq.(3.4) is 

obtains.  By repeating the above procedure for m  iteration, a power series of the 

following form will be derived:  

2
0 1 2( ) = ... ,m

mu x e e x e x e x                                     (3.6) 

  Eq.(3.6) is an approximation for the exact solution )(xu  of the integral equation 

Eq.(3.1). 

 

The following theorems shows the convrgence of PSM for nonlinear 

volterra integral equation and integro-differential equation. 

 

  Theorem (3.1),[39]: 

Let = ( )u u x  be the exact solution of the following VIE :  

0

( ) = ( ) ( , )[ ( )]
x

pu x f x k x t u t dt                                      (3.7) 

 Then, the power series method obtains the Taylor expansion of ( )u x . 
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Corollary(3.2)[39]: 

If the exact solution to Eq.(3.7) be a polynomial, then the power series 

method will obtain the real solution. 

 

  Theorem (3.3)[19]: 

Let = ( )u u x  be the exact solution of the following Volterra integro-

differential equation  

0

( ) = ( , ( )) ( , , ( ), ( )) , (0) =
x

u x g x u x k x t u t u t dt u a                  (3.8) 

Furthermore assume that )(xu  has a power series representation. Then, the 

power series method obtains it (the Taylor expansion of )(xu ). 

 

3.3  Test Examples 

In this section, the PSM will be implemented to some examples, linear 

and nonlinear VIE, linear and nonlinear VIDE. Moreover, we compare the 

results with the results obtained by ADM and VIM. 

 

Example (3.1):   

Consider the following linear VIE [42] 

0

( ) =1 ( ) ( )
x

u x t x u t dt        (3.9) 

Now, applying the PSM to Eq.(3.9), we suppose that  the solution of Eq.(3.9) 

with 

0 0( ) = (0) = 1u x u e   is  1 0 1( ) = ,u x e e x  and hence  

1 1( ) =1u x e x            (3.10) 

  Substitute Eq.(3.10) in Eq.(3.9), then,  

1 1

0

1 =1 ( )(1 ) ,
x

e x t x e t dt                                                          (3.11)  
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  After simplifying, we get, 1 =
2

x
e   and hence,  

2
1

1
( ) =1 ,

2
u x x                              (3.12) 

  which is the first approximation for the solution of Eq.(3.9). The solution of 

Eq.(3.9) can be supposed as:  

2 2
2

1
( ) =1 ,

2
u x x e x                                             (3.13) 

  Substitute Eq.(3.13) in Eq.(3.9), we have,  

2 2 2 2
2 2

0

1 1
1 =1 ( )1 ,

2 2

x

x e x t x t e t dt                      (3.14) 

  After simplifying, we get, 
2

2 =
24

x
e  and hence,  

2 4
2

1 1
( ) =1 ,

2 24
u x x x                                               (3.15) 

  Proceeding in this way, we get, the solution in a series form which is given by  

2 4 61 1 1
( ) =1 ...

2! 4! 6!
u x x x x                                                 (3.16) 

 which is the same results found by DJM and obtained by ADM in [42] that 

converges to the exact solution ( ) = cos( )u x x . 

 

Example (3.2):   

          Consider the following nonlinear VIE [42] 

2

0

( ) = ( )
x

u x x u t dt                                          (3.17) 

By applying the PSM to Eq.(3.17), we suppose the solution of Eq.(3.17) with 

0 0( ) = (0) = 0u x u e   is  1 0 1( ) = ,u x e e x  and hence  

1 1 1( ) = 0u x e x e x                                                 (3.18) 

  Substitute Eq.(3.18) in Eq.(3.17), we have,  
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2
1 1

0

= ( ) ,
x

e x x e t dt                                              (3.19) 

  After simplifying, we get, 1 =1e  and hence,  

1( ) = ,u x x                                          (3.20) 

  which is the first approximation for the solution of Eq.(3.17). The solution of 

Eq.(3.17) can be supposed as:  

2
2( ) = ,u x x e x                                               (3.21) 

  Substitute Eq.(3.21) in Eq.(3.17), we have,  

2 2 2
2 2

0

= ( ) ,
x

x e x x t e t dt                                                         (3.22) 

  After simplifying, we get, 2

1
=

3
e x  and hence,  

3
2

1
( ) = ,

3
u x x x                                              (3.23) 

  Proceeding in this way, we get that, the solution in a series form given by  

3 5 71 2 17
( ) = ...

3 15 315
u x x x x x                                     (3.24) 

 which is the same results found by DJM and obtained by ADM in [42] that 

converges to the exact solution ( ) = tan( )u x x . 

 

 Example (3.3):   

Consider the linear VIDE [42]:  

0

( ) =1 ( ) , (0) = 0
x

u x u t dt u                                              (3.25) 

 To solve Eq.(3.25), integrate Eq.(3.25) from 0  to x  and applying the initial 

condition, then we have:  

0 0 0

( ) = ( ) ( ) ( )
x x x

u x x u t dtdx x x t u t dt        (3.26)                                           (3.25) 
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By using the PSM to solve Eq.(3.26), we suppose the solution of Eq.(3.26) with 

0 0( ) = (0) = 0u x u e   is  1 0 1( ) = ,u x e e x  and hence  

1 1 1( ) = 0u x e x e x                                              (3.27) 

  Substitute Eq.(3.27) in Eq.(3.26), we have,  

1 1

0

= ( ) ,
x

e x x t x e t dt                                            (3.28) 

  By integrating and solving, we get,  

3
1

1( 1)x 0,
6

e x
e     by neglecting (

3
1

6

e x
 ), therefore 1 1e   and hence,  

1( ) = ,u x x                           (3.29) 

  which is the first approximation for the solution of Eq.(3.26). The solution of 

Eq.(3.26) can be supposed as:  

2
2( ) = ,u x x e x                                                              (3.30) 

  Substitute Eq.(3.30) in Eq.(3.26), we have,  

2 2
2 2

0

= ( )( )
x

x e x x x t t e t dt                                (3.31) 

  By integrating and solving, we get,  

4
2 2

2( )x 0,
6 12

x e x
e     by neglecting (

4
2

12

e x
 ), therefore  2

1
=

6
e x  and 

hence,  

3
2

1
( ) = ,

6
u x x x                                               (3.32) 

  Proceeding in this way, we get, The solution in a series form is given by  

3 5 71 1 1
( ) =

3! 5! 7!
u x x x x x                                              (3.33) 

 which is the same results found by DJM and obtained by ADM in [42] and 

hence the exact solution is given by ( ) = sin( )u x x . 
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Example (3.4):  

Consider the nonlinear VIDE [13]:  

2

0

( ) = 1 ( ) , (0) = 0
x

u x u t dt u                                             (3.34) 

 To solve Eq.(3.34), integrate Eq.(3.34) from 0  to x  and apply the initial 

condition, then we have:  

2 2

0 0 0

( ) = ( ) ( ) ( )
x x x

u x x u t dtdx x x t u t dt                (3.35)                              (3.34) 

 Now, applying PSM to Eq.(3.35), we suppose the solution of Eq.(3.35)  with 

          0 0( ) = (0) = 0u x u e   is  1 0 1( ) = ,u x e e x  and hence  

1 1 1( ) = 0u x e x e x                                                 (3.36) 

  Substitute Eq.(3.36) in Eq.(3.35), we have,  

2
1 1

0

= ( )( ) ,
x

e x x x t e t dt                                       (3.37) 

    By integrating and solving, we get,  

2 4
1

1( 1)x 0,
12

e x
e     by neglecting (

4
1

12

e x
 ), therefore, 1 = 1e   and hence,  

1( ) = ,u x x                                                                                    (3.38) 

  which is the first approximation for the solution of Eq.(3.35). The solution of 

Eq.(3.35) can be supposed as:  

2
2( ) = ,u x x e x                                             (3.39) 

  Substitute (3.39) in (3.35), we have,  

2 2 2
2 2

0

= ( )( ) ,
x

x e x x x t t e t dt                                                  (3.39) 

    By integrating and solving, we get,  

2 5 2 6
2 2 2

2( )x ( ) 0,
12 10 30

x e x e x
e      by neglecting 

5 2 6
2 2( )
10 30

e x e x
 , therefore, 

2

2 =
12

x
e ,  and hence,  
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4
2

1
( ) = ,

12
u x x x                                                         (3.40) 

  Proceeding in this way, we get, the solution in a series form is given by  

4 7 10 13

16 19 22

1 1 1 37
( ) =

12 252 6048 7076160

109 1 1

914457600 558472320 77598259200

u x x x x x x

x x x

    

  

               (3.41) 

which is the same results found by DJM and obtained by VIM in [13]. 
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Chapter Four 

Analytic and Approximate Solutions of Some Real Life Models 

 

  4.1 Introduction 

The VIDE’s arises from the mathematical modeling of various physical, 

engineering and biological models, for example the population growth of a 

species in a closed system. These models help us to understand different  factors 

like the behavior of the population evolution over a period of time. 

 In this chapter, the applications of the DJM and PSM for Volterra’s 

population model will be presented to find the approximate solutions. The  main 

attractive features of the current methods are being derivative-free, overcome 

the difficulty in some existing techniques, simple to understand. It is economical 

in terms of computer power/memory and does not involve tedious calculations 

such as Adomian polynomials in ADM, construct a homotopy as in HPM and 

solve the corresponding  algebraic equations, and calculate Lagrange multiplier 

as in VIM. The numerical solution are obtained by combining the DJM and  

PSM with Padé technique.  Moreover, the comparison of the achieved  results 

are compared with existing results by ADM and HPM also presented [29], [43]. 

Also, the DJM and PSM will be implemented to evaluate a solution for some 

scientific models. We will focus our work on three well-known nonlinear 

equations, namely the Hybrid selection model, the Riccati equation, and the 

Logistic equation. 

 

4.2 Approximate Solutions for Volterra’s Population Model 

In this section, an  approximate methods have been implemented to obtain 

a solutions for Volterra’s population model of population growth of a species in 

a closed system, besides the DJM and the PSM, the ADM and the VIM are 

implemented independently to the model in the literature [42], [43]. The Padé 
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approximants, that often show superior performance over series approximations, 

are effectively used in the analysis to capture the essential behavior of the 

population ( )u t  of identical individuals. 

 

4.2.1  Volterra’s Population Model (VPM)[43] 

  In this section, the Volterra’s model for population growth of a species 

within a closed system will studied. The Volterras population model is 

characterized by the nonlinear Volterra integro-differential equation:  

2
0

0

= ( ) , (0) =
TdP

aP b P c P P x dx P P
dT

                                       (4.1) 

 where = ( )P P T  denotes the population size at time T ; a , b , and c  are 

constant and positive parameters, in which a  is the birth rate coefficient, b  is 

the crowding coefficient and c  is the toxicity coefficient. Also 0P  is the initial 

population size at time T. The coefficient c  indicates the essential behavior of 

the population evolution before its level falls to zero in the long run. When 

= 0b  and = 0c , Eq.(4.1) becomes the Malthus differential equation:  

0= , (0) =
dP

aP P P
dT

                                               (4.2)  

 The Malthus Eq.(4.2) assumes that the population growth is proportional to the 

current population. Eq.(4.2) is separable with a solution given by:  

0( ) = aTP T P e                                               (4.3) 

 It is obvious that Eq.(4.1) represents a population growth for > 0a , and a 

population decay for < 0a . When = 0c , Eq.(4.1) becomes the logistic growth 

model that reads:  

2
0= , (0) =

dP
aP b P P P

dT
                                             (4.4) 
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 Verhulst instituted the logistic growth model Eq.(4.4) that eliminates the 

undesirable effect of unlimited growth by introducing the growth-limiting term 

2bP . The solution to logistic growth model Eq.(4.4) is  

0

0

( ) = ,
( 1)

aT

aT

a P e
P T

a b P e 
                                                (4.5) 

 where  

( ) =lim
T

a
P T

b 

 

Volterra introduced an integral term 
0

( )
T

cP P x dx   to the logistic growth 

model Eq.(4.4) to get the Volterras population growth model Eq.(4.1). The 

additional integral term characterizes the accumulated toxicity produced since 

time zero. Many time scales and population scales may be applied. However, the 

scale time population by introducing the non-dimensional variables will be 

applied:  

= , =
cT b P

t u
b a

                                                                          (4.6) 

 to obtain the non-dimensional Volterra’s population growth model:  

2
0

0

= ( ) , (0) =
tdu

u u u u x dx u u
dt

                                    (4.7) 

 where = ( )u u t  is the scaled population of identical individuals at a time t , and 

the non-dimensional parameter = / ( )c ab  is a prescribed parameter. Volterra 

introduced this model for a population u of identical individuals which exhibits 

crowding and sensitivity to the amount of toxins produced. A considerable 

amount of research work has been investiged to determine numerical and 

analytic  solutions  of the population growth model  Eq.(4.4) [34], [35], [36]. 

The analytical solution: 



Chapter Four                                            Analytic and Approximate Solutions of Some Real Life Models    
 

 37 

1
( [1 ( ) ( ) ] )

0 0
0( ) =

t

u u x dx d

u t u e



 


  
                                             (4.8) 

which shows that ( ) > 0u t  for all t  if the initial population 0 > 0u . However, 

this closed form solution cannot lead to an insight into the behavior of the 

population evolution. As a result, researchs were directed towards the analysis 

of the population rapid rise along the logistic curve followed by its decay to zero 

in the long run. The non-dimensional parameter   plays a great role in the 

behavior of u concerning the rapid rise to a certain amplitude followed by an 

exponential decay to extinction. For   small, the population is not sensitive to 

toxins, whereas the population is strongly sensitive to toxins for large   [43]. 

 

4.2.2  Solution of Volterra’s Population Model by ADM  

 In this section,  the population growth model characterized by nonlinear 

VIDE:  

2
0

0

= ( ) , (0) =
tdu

u u u u x dx u u
dt

     

which have been considered, and is also studied in [29], [44]: 

2

0

=10 ( ) 10 ( ) 10 ( ) ( ) , (0) = 0.1
tdu

u t u t u t u x dx u
dt

                         (4.9) 

where the initial condition (0) = 0.1u  and the nondimensional parameter = 0.1  

were used by Wazwaz A. M. in [43] for simplicity reasons.  

To begin, it is convenient to rewrite Eq.(4.9) in an operator form as:  

2

0

( ) =10 ( ) 10 ( ) 10 ( ) ( ) , (0) = 0.1
t

Lu t u t u t u t u x dx u                  (4.10) 

 where the differential operator L  is defined by =
d

L
dt

   . 

It is clear that L  is invertible so that the integral operator is defined by: 
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1

0

(.) = (.)
t

L dt
  

 Applying 1L  to both sides of Eq.(4.10) and using the initial condition leads to:  

1 2

0

( ) = 0.1 (10 ( ) 10 ( ) 10 ( ) ( ) )
t

u t L u t u t u t u x dx                        (4.11) 

 With this method, we usually represent u  in Eq.(4.11) by the decomposition 

series:  

=0

( ) = ( )n
n

u t u t


                                                   (4.12) 

 Accordingly, the main concern here is to formally determine the components 

( )nu t , 0u . To do so, we substitute Eq.(4.12) into both sides of Eq.(4.11) to 

obtain  

1

=0 =0 =0 0

( ) = 0.1 10 ( ) 10 ( ) 10 ( , )
t

n n n n
n n n

u t L u t A t B x t dx
  

  
   

 
       

 where the nonlinear terms 
2( )u t  and ( ) ( )u x u t  are represented by the so-called 

Adomian polynomials ( )nA t   and  ( , )nB x t , respectively. In other words, we set 
 

2

=0

( ) = ( ),n
n

u t A t


  

=0

( ) ( ) = ( , )n
n

u x u t B x t


 .  

            The evaluation of the Adomian polynomials ( )nA t , ( , )nB x t  has been 

discussed for various classes of nonlinearities in [1]. For convenience, we list 

below, by using the algorithms introduced in [1], few of the Adomian 

polynomials for ( )nA t  and ( , )nB x t  that are used in the literature:  

For ( )nA t , we find:  
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2 2
0 0 1 0 1 2 1 0 2

3 1 2 0 3

2
4 2 1 3 0 4

( ) = ( ), ( ) = 2 ( ) ( ), ( ) = ( ) 2 ( ) ( ),

( ) = 2 ( ) ( ) 2 ( ) ( ),

( ) = ( ) 2 ( ) ( ) 2 ( ) ( ),...

A t u t A t u t u t A t u t u t u t

A t u t u t u t u t

A t u t u t u t u t u t





 

 

For ( , )nB x t , we find:  

0 0 0 1 0 1 1 0

2 0 2 1 1 2 0

3 0 3 1 2 2 1 3 0

4 0 4 1 3 2 2 3 1 4

( , ) = ( ) ( ), ( , ) = ( ) ( ) ( ) ( ),

( , ) = ( ) ( ) ( ) ( ) ( ) ( ),

( , ) = ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),

( , ) = ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

B x t u x u t B x t u x u t u x u t

B x t u x u t u x u t u x u t

B x t u x u t u x u t u x u t u x u t

B x t u x u t u x u t u x u t u x u t u x u



 

  

    0( ),...t

To determine the components 0u , 1u , 2u ,... of )(tu , the following recursive 

relationship will be applied:  

 0( ) = 0.1u t , 

 

1
1

0

( ) = (10 ( ) 10 ( ) 10 ( , ) ), 0
t

k k k ku t L u t A t B x t dx k
      

With 0( )u t  defined as shown above, this can be very valuable practically in 

evaluating the other components. It then follows  

0( ) = 0.1u t , 

 

1
1 0 0 0

0

( ) = (10 ( ) 10 ( ) 10 ( , ) )
t

u t L u t A t B x t dx    = 20.050.9 tt  , 

1
2 1 1 1

0

( ) = (10 ( ) 10 ( ) 10 ( , ) )
t

u t L u t A t B x t dx    = 2 3 47 1
3.6 ,

12 60
t t t   

1
3 2 2 2

0

( ) = (10 ( ) 10 ( ) 10 ( , ) )
t

u t L u t A t B x t dx    = 

3 4 5 66.9 3.1541667 0.2424 0.0047222 ,t t t t    

1
4 3 3 3

0

( ) = (10 ( ) 10 ( ) 10 ( , ) )
t

u t L u t A t B x t dx    = 

4 5 6 7

8

2.4 9.3516667 1.6631944 0.08273809

0.00123016 ,

t t t t

t

   


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The components 5u , 6u , 7u  and 8u  were also determined and will be used, but 

for brevity not listed. This completes the formal determination of the 

approximation of u  given by [43] 

 

2 3 4

5 6 7

8 9

( ) = 0.1 0.9 3.55 6.31666667 5.5375

63.70916667 156.0804167 18.47323411

1056.288569 ( ).

u t t t t t

t t t

t O t

    

  



  (4.13) 

 

4.2.3 Solution of Volterra’s population model by VIM  

In this subsection the Volterra’s population model is solved by using the 

VIM [42], which is characterized by the nonlinear VIDE  Eq.(4.9).  

To solve Eq.(4.9) by VIM, we procesed as following:  

The correction functional for Eq.(4.9) is:  

2
1

0 0

= ( )[ ( ) 10 ( ) 10 ( ) 10 ( ) ( ) ]     
t t

n n n n n n nu u t u t u t u t u t u x dx dt    (4.14) 

 where we used ( ) = 1t   for the first-order integro-differential equation 

Eq.(4.9). The zeroth approximation 0u  can be selected by using the initial value 

(0) = 0.1u . Selecting 0( ) = 0.1u t , and using Eq.(4.14) the following successive 

approximations have been obtained:  

0( ) = 0.1,u t  

2
1 0 0 0 0 0 0

0 0

( ) = [ ( ) 10 ( ) 10 ( ) 10 ( ) ( ) ]    
t t

u t u u t u t u t u t u x dx dt  

                   = ,0.050.90.1 2tt    

2
2 1 1 1 1 1 1

0 0

( ) = [ ( ) 10 ( ) 10 ( ) 10 ( ) ( ) ]    
t t

u t u u t u t u t u t u x dx dt  

                   = ,0.00138880.06999990.77083333.28333333.550.90.1 65432 tttttt    

2
3 2 2 2 2 2 2

0 0

( ) = [ ( ) 10 ( ) 10 ( ) 10 ( ) ( ) ]    
t t

u t u u t u t u t u t u x dx dt  
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2 3 4 50.1 0.9 3.55 6.31667 24.7375 19.1225t t t t t        

2
4 3 3 3 3 3 3

0 0

( ) = [ ( ) 10 ( ) 10 ( ) 10 ( ) ( ) ]    
t t

u t u u t u t u t u t u x dx dt  

                   =
2 3 4 50.1 0.9 3.55 6.31667 5.5375 94.4292t t t t t        

The components 5u , 6u , 7u  and 8u  were also evaluted and will be used, but for 

brevity not listed. This completes the formal determination of the approximation 

of ( )u t  given by :  

2 3 4

5 6 7

8 9

( ) = 0.1 0.9 3.55 6.31666667 5.5375

63.7091667 156.08041667 18.47323413

1056.288569 ( )

u t t t t t

t t t

t O t

   

  

 

          (4.15) 

 The approximation in Eq.(4.15) is in a very good agreement with the results 

obtained by using ADM . 

 

4.2.3.1 Analysis and Numerical Results 

The results obtained here can be discussed to get more details about the 

mathematical structure of ( )u t . In particular, we seek to study the rapid growth 

along the logistic curve that will reach a peak, then followed by the slow 

exponential decay where ( ) 0u t   as t  , [43]. In order to study the 

mathematical structure of )(tu  the Padé approximants is used. Using the 

approximation obtained for )(tu  in Eq.(4.15), we find  

2 3 4

2 3 4

0.1 0.4687931832 0.924957398 0.9231294892 0.4004234788
[4 / 4] =

1 4.312068168 12.5581875 13.88063927 10.8683047

t t t t

t t t t

   

   
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 = 0.1
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Figure (4.1):  Relation between Padé approximants [4/4]  of ( )u t  and t  for 

(0) = 0.1, = 0.1.u   

 

 

 

 

 

 

 

 

Figure( 4.2):  Relation between Padé approximants [4/4] of ( )u t  and t  for 

(0) = 0.1, = 0.04,0.1,0.2 0.5u and . 

which is the same obtained by ADM. From  Fig.(4.1), we can easily observe that 

for 0.1=(0)u  and 0.1= , we obtain 910.76511308=maxu  occurs  at 

090.46447674=criticalt . However, Fig.(4.2) shows the Padé approximants [4/4] of 

)(tu  for 0.1=(0)u  and for 0.5.20.04,0.1,0= and , which is the same obtained by 

ADM.  The key finding of this graph is that when   increases, the amplitude of 

)(tu  decreases, whereas the exponential decay increases. Table (4.1) below 

summarizes the relation between  , and criticalt . The exact values of maxu  were 

evaluated by using 
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0

=1 ln( )
1

maxu
u







 
                                                     (4.16) 

obtained by TeeBest [36].  

Table(4.1):Approximation of maxu  and exact value of maxu  for 

= 0.04,0.1,0.2 0.5and  

 

4.2.4  Solution of the Volterra’s Population Model by DJM 

 In this section the Volterra’s population model is solved by DJM. Recall 

the population growth model characterized by the nonlinear VIDE Eq.(4.9) and  

to solve this model by DJM, we integrate Eq.(4.9) with respect  to t  from 0  to 

t  and applying the initial condition, then we have:  

2

0 0

( ) = 0.1 [10 ( ) 10 ( ) 10 ( ) ( ) ]
t t

u t u t u t u t u x dx dt                  (4.17) 

 Now, by applying NIM to Eq.(4.17), we get:  

0 = 0.1,u  

2
1 0 0 0 0 0

0 0

= ( ) = [10 ( ) 10 ( ) 10 ( ) ( ) ]
t t

u N u u t u t u t u x dx dt    

         

2 2

0 0

[10(0.1) 10(0.1) 10(0.1) 0.1 ] 0.9 0.05 ,     
t t

dx dt t t

 

  Critical t  Approx. maxu  Exact maxu  

0.04 0.2102464442 0.8612401810 0.8737199832 

0.1 0.4644767409 0.7651130891 0.7697414491 

0.2 0.8168581213 0.6579123099 0.6590503816 

0.5 1.6266622270 0.4852823490 0.4851902914 
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2
2 0 1 0 0 1 0 1

0

0 1 0 1 1

0

= ( ) ( ) = [10( ( ) ( )) 10( ( ) ( ) )

10( ( ) ( )) ( ( ) ( )) ] ,

t

t

u N u u N u u t u t u t u t

u t u t u x u x dx dt u

     

  





 

2 2 2

0

2 2 2

0

2 3 4

= [10(0.1 (0.9 0.05 )) 10(0.1 (0.9 0.05 ))

10(0.1 (0.9 0.05 )) (0.1 (0.9 0.05 )) ] (0.9 0.05 )

3.6 t 3.28333 0.770833 ,

     

     

  





t

t

t t t t

t t x x dx dt t t

t t

2
3 0 1 2 0 1 0 1 2 0 1 2

0

0 1 2 0 1 2 0 1

0 0

2
0 1 0 1 0 1

0

3 4 5 6

= ( ) ( ) = [10( ) 10( )

10( ) ( ( ) ( ) ( )) ] [10( )

10( ) 10( ) ( ( ) ( )) ]

9.6 23.9667 19.1925 38.1065

        

      

    

   



 



t

t t

t

u N u u u N u u u u u u u u

u u u u x u x u x dx u u

u u u u u x u x dx

t t t t

 

4 0 1 2 3 0 1 2 0 1 2 3

0

2
0 1 2 3 0 1 2 3 0 1 2

0

2
3 0 1 2 0 1 2 0 1 2

0

0 1 2

0

4

= ( ) ( ) = [10( )

10( ) 10( ) ( ( ) ( ) ( )

( )) ] [10( ) 10( ) 10( )

( ( ) ( ) ( )) ],

  = 19.2 75.306

t

t

t

t

u N u u u u N u u u u u u u

u u u u u u u u u x u x u x

u x dx u u u u u u u u u

u x u x u x dx

t

         

         

        

 











5 6 7 87 73.2967 290.762 540.771t t t t  

 

The components 5u , 6u , 7u  and 8u  were also evaluted and will be used, but for 

brevity not listed. This completes the formal determination of the approximation 

of ( )u t  given by  
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2 3 4

5 6 7

8 9

( ) = 0.1 0.9 3.55 6.31666667 5.5375

63.7091667 156.08041667 18.47323413

1056.288569 ( )

u x t t t t

t t t

t O t

   

  

 

         (4.18) 

The approximation given in Eq.(4.18) is in a very good agreement with 

the results obtained by using ADM, HPM and VIM in [29], [43], [42]. It is 

worth to mention here the DJM is straightforward without required to 

calculating Adomian polynomials to handle the nonlinear terms as in ADM  and 

construct a homotopy as in HPM and calculate Lagrange multiplier as in VIM.                        

 

4.2.4.1  Analysis and Numerical Results 

              To examine more closely the mathematical structure of u  as shown 

above, we seek to study the rapid growth along the logistic curve that will reach 

a peak, then followed by the slow exponential decay where ( ) 0u t   as t  , 

[43]. Polynomials are frequently used to approximate power series.Which tends 

to exhibit oscillations that may produce an approximation error bounds. In 

addition, polynomials can never blow up in a finite plane; and this makes the 

singularities not apparent. To overcome these difficulties, the Taylor series is 

best manipulated by Padé approximants for numerical approximations. Padé 

Approximants [45] have the advantage of manipulating the polynomial 

approximation into a rational function to gain more information about ( )u t . The 

coefficients of the polynomials in the numerator and in the denominator are 

determined by using the coefficients in the Taylor expansion of the function. 

Using the approximation obtained for ( )u t  in Eq.(4.18), we find : 

2 3 4

2 3 4

0.1 0.4687931832 0.924957398 0.9231294892 0.4004234788
[4 / 4] =

1 4.312068168 12.5581875 13.88063927 10.8683047

t t t t

t t t t

   

   
              

which is in a very good agreement with results obtained by using ADM and 

VIM.  
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Figure ( 4.3):  Padé approximant [4 / 4] shows a rapid growth followed by a 

slow exponential decay. 

 

 

 

 

 

 

 

 

Figure(4.4): Relation between Padé approximants [4 / 4]  of ( )u t  and t  for 

(0) = 0.1, = 0.04,0.1,0.2 0.5u and . 

  Figure(4.3) shows the behavior of )(tu  and explores the rapid growth that will 

reach a peak followed by a slow exponential decay. Which is the same results 

obtained by ADM and VIM.  Also Figure(4.4), is the same results that is 

obtained by ADM and VIM. From Fig.(4.3), we can easily observe that for 

0.1=(0)u  and 0.1= , we obtain = 0.7651130891maxu  which occurs at 

= 0.4644767409criticalt . Table (4.2) summarizes the relation between   and 

criticalt . The exact values of maxu  were evaluated by using Eq.(4.16) obtained by 

[36].  
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Table( 4.2): Approximation of maxu  and exact value of maxu  for 

= 0.04,0.1,0.2 0.5and  

 

 

 

 

 

 

 

 

 

4.2.5 Solution of Volterra’s Population Model by PSM 

In this section, the Volterra’s population model is solved by using PSM.  

Recall that the population growth model is characterized by the nonlinear VIE 

Eq.(4.17) , and  by applying the PSM to Eq.(4.17). 

Suppose the solution of Eq.(4.17) with 0 0( ) = (0) =u t u e = 0.1 

 is 1 0 1( ) =u t e e t  and hence  

1 1( ) = 0.1u t e t                                                       (4.19) 

Substituting Eq.(4.19) into  Eq.(4.17), yields to:  

2
1 1 1

0

1 1

0

0.1 = 0.1 [10(0.1 ) 10(0.1 )

10(0.1 ) (0.1 ) ]

t

t

e t e t e t

e t e x dx dt

    

  





        (4.20) 

After simplifying, we get 1 = 0.9e  and hence,  

1( ) = 0.1 0.9u t t                                                                             (4.21) 

Which is the first approximtion for the solution of Eq.(4.17). 

The second approximate solution of Eq.(4.17) can be supposed as:  

2
2( ) = 0.1 0.9u t t e t                                                                      (4.22) 

  Critical t  Approx. maxu  Exact maxu  

0.04 0.2102464442 0.8612401810 0.8737199832 

0.1 0.4644767409 0.7651130891 0.7697414491 

0.2 0.8168581213 0.6579123099 0.6590503816 

0.5 1.6266622270 0.4852823490 0.4851902914 
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 = 0.1

0 1 2 3 4 5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t

  and substitute Eq.(4.22) in Eq.(4.17), will give:  

2 2 2 2
1 2 1 2 1 2

0

2 2
1 2 1 2

0

0.1 = 0.1 [10(0.1 ) 10(0.1 )

10(0.1 ) (0.1 ) ]

t

t

e t e t e t e t e t e t

e t e t e x e x dx dt

       

    





  (4.23) 

  After simplifying, the second constant e2 is found to be 2 = 3.55e  and hence,  

2
2( ) = 0.1 0.9 3.55u t t t                                                              (4.24) 

  Similarly, proceeding in this way, the following approximate solution have 

been obtained,  

2 3 4

5 6 7

8 9

( ) = 0.1 0.9 3.55 6.316667 5.5375

63.7091667 156.0804167 18.4732341

1056.288569 ( ).

u t t t t t

t t t

t O t

    

 

 

           (4.25) 

4.2.5.1  Analysis and Numerical Results 

  In order to study the mathematical structure of )(tu ,  the Padé pproximants that 

presented and implemented in chapter one is used. Using the approximation 

obtained for )(tu  in Eq.(4.25), we find  

2 3 4

2 3 4

0.1 0.4687931832 0.924957398 0.9231294892 0.4004234788
[4 / 4] =

1 4.312068168 12.5581875 13.88063927 10.8683047

t t t t

t t t t

   

   
 

 

 

 

 

 

 

 

 

Figure (4.5):  Relation between Padé approximants [4 / 4]  of ( )u t  and t  for 

(0) = 0.1, = 0.1.u   
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  = 0.04

  = 0.1

 = 0.2

 = 0.5
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0.0
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0.4

0.6

0.8

t

 

 

 

 

 

 

 

Figure(4.6):  Relation between Padé approximants [4 / 4]  of ( )u t  and t  for 

(0) = 0.1, = 0.04,0.1,0.2 0.5u and . 

Figure(4.5) shows the relation between the Padé approximants [4/4]  of )(tu  and 

t . Which is the same results obtained by ADM, VIM and DJM. Also 

Figure(4.6), is the same results is that obtained by ADM, VIM and NIM. From 

Fig.4.5, we can easily observe that for 0.1=(0)u  and 0.1= , we obtain 

= 0.7651130891maxu  which occurs at = 0.4644767409criticalt . Table (4.3) 

summarizes the relation between  , maxu  and criticalt . Moreover, the results of 

the corresponding absolute errors =| |exact solution approximate solution   are 

also presented for the Padé approximants and [4/4] . The exact values of maxu  

were evaluated by using Eq.(4.16) obtained by TeeBest in [36].  It can seen 

clearly from Table (4.3) that the results obtained by PSM is in a very good 

agreement with the exact solution and the absolute errors are decreases when the 

values of   are increases as ( )u t  becomes smooth.  
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Table (4.3): Approximation of maxu  and exact value of maxu  and absolute 

errors for = 0.04,0.1,0.2 0.5and  with the Padé approximants [4 / 4]  

 

4.3  Convergence of PSM for Volterra’s population model  

  Volterra’s population model given by Eq.(4.9) may be generalized to the 

following inetgro-differential equation : 

0

( ) = ( , ( )) ( ) ( , , ( ), ( )) , (0) =
x

u x g x u x u x k x t u t u t dt u a                (4.26) 

In the following theorem we prove convergence of the PSM for Volterra’s 

population model. The proof of the convergence theorem is a modification to the 

proof of theorem (3.3). 

 

  Theorem (4.1): 

Let u  be the exact solution of the generalized Volterra’s population model 

(4.26) and assume that u  has a power series representation. Then, the 

approximate solution  obtaind by PSM converge to exact solution. 

 

  Proof :   Assume the approximation solution to Eq.(4.26) be as follows 

 2
0 1 2= ...u e e x e x    

 Hence, it suffices to prove that 
(0)

= , =1,2,3,...
!

m

m

u
e m

m
 

  Critical t  Approx. maxu  Exact maxu    for [4/4]  

0.04 0.2102464442 0.8612401810 0.8737199832 4.62836x10
-3

 

0.1 0.4644767409 0.7651130891 0.7697414491 1.13807x10
-3

 

0.2 0.8168581213 0.657912310 0.6590503816 9.20576x10
-5

 

0.5 1.6266622270 0.4852823490 0.4851902914 1.24798x10
-2
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 If = 0m  and with the cooperation of the initial condition, we get 

0 1 2 0 0= (0) = 0 0 ... = =a u e e e e e a     

 If =1m , and since ( )u x  is the exact solution of Eq.(4.26),  then it satisfies this 

integro-differential equation. i.e.  

0

( ) = ( , ( )) ( ) ( , , ( ), ( ))
x

u x g x u x u x k x t u t u t dt                     (4.27) 

  and hence, substituting 0=x  in Eq.(4.27) gives 

0

0

(0) = (0, (0)) (0) ( , , ( ), ( )) = (0, (0))u g u u k x t u t u t dt g u            (4.28) 

  and since 
2

1 2 3( ) = ( ) = 2 3 ...u x u x e e x e x      

 and therefore, (0) = (0)u u  ,  then (0, (0)) = (0)g u u   

 If 2=m , then differentiate Eq.(4.26) with respect to x  and substitute = ( )u u x ,  

we get  

0

0

( ) = ( , ( )) ( , ( )) ( )

( ) ( , , , ) ( )[ ( , , , )

( , , , )]

x

x

u x g x u x g x u x u x
x u

u x k x t u u dt u x k x t u u

k x t u u dt
x

 
 

 

   










  (4.29) 

  Evaluate Eq.(4.29) at = 0x , gives  

0

0

0

0

(0) = (0, (0)) (0, (0)) (0)

(0) ( , , , ) (0)[ ( , , , )

( , , , )]

u g u g u u
x u

u k x t u u dt u k x t u u

k x t u u dt
x

 
 

 

   










                     (4.30) 

= (0, (0)) (0, (0)) (0) (0) (0, (0), (0))g u g u u u k u u
x u

 
  

 
   (4.31) 
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  and since  

( ) = ( ), (0) = (0)u x u x then u u      

 Therefore,  

22 = (0, (0)) (0, (0)) (0) (0) (0, (0), (0))e g u g u u u k u u
x u

 
  

 
 

 and hence  

2 0 0 1 0 0 12 = (0, ) (0, ) (0, , )e g e g e e e k e e
x u

 
 

 
                       (4.32)  

Comparing Eq.(4.31) and Eq.(4.32), we get 2 2

(0)
2 = (0) =

2!

u
e u e


  .                     

So by inducting, one can show that
  

3

(0)
=

3!

u
e


,  4

(0)
=

4!

u
e


                                                

By mathematical induction and so in general :                                                              
  

(0)
= , =1,2,3,...

!

m

m

u
e m

m
 

This completes the proof of Theorem 4.1.         

 

4.4 The Hybrid Selection Model, [46] 

 The Hybrid selection model with constant coefficients has the following 

model:  

= (1 )(2 ), (0) = 0.5.u ku u u u                                 (4.18) 

where k  is a positive constant that depends on the genetic characteristic. In the 

hybrid model, u  is the portion of population of a certain characteristic and t  is 

the time measured in generations. 

 

4.4.1  Solving the Hybrid Selection Model by DJM 

To solve Eq.(4.18), we integrate the differential equation from 0  to t  and 

applying the initial condition, then the following nonlinear VIE is obtained:  
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0

( ) = 0.5 [ (1 )(2 )]
t

u t ku u u dt                                                  (4.19) 

 Now, applying the DJM to Eq.(4.19) it is found that:  

0

1
= ,

2
u  

1 0 0 0 0

0

3
= ( ) = [ (1 )(2 )] ,

8

t

u N u ku u u dt kt    

2 0 1 0

0 1 0 1 0 1 1

0

= ( ) ( )

= [ ( )(1 ( ))(2 ( ))]
t

u N u u N u

k u u u u u u dt u

 

     
 

               = 2 3 43 9 27
( ) ( ) ( ) ,

64 128 2048
kt kt kt   

3 0 1 2 0 1 0 1 2

0

0 1 2 0 1 2

0 1 0 1 0 1

0

= ( ) ( ) = [ ( )

(1 ( ))(2 ( ))]

[ ( )(1 ( ))(2 ( ))]

t

t

u N u u u N u u k u u u

u u u u u u dt

k u u u u u u dt

     

      

    





 

                = 3 4 517 63 27
( ) ( ) ( ) .

256 2048 2560
kt kt kt   

 

and so on. This gives  

2 3

4 5

3 3 17
( ) = 0.5 ( ) ( )

8 64 256

125 721
( ) ( ) ...

4096 81920

u t kt kt kt

kt kt

  

  

   (4.20) 
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Figure( 4.7):  The solution ( )u t  for = 0.25k , and  0 20t  

    

This in turn gives  

                              

3

3

1 3 1
( ) =

1 3

kt

kt

e
u t

e

 


 

 which is the exact solution of the problem and it is the same results obtained  by 

VIM [46]. Figure(4.7) shows the solution u  which is an increasing function 

bounded by 1=u . 

 

4.4.2  Solving the Hybrid Selection Model by PSM 

Now, applying  PSM to solve Eq.(4.19), we suppose the solution of 

Eq.(4.19) with 0 0( ) = (0) =u t u e = 0.5  is, 1 0 1( ) =u t e e t , which implies    

1 1( ) = 0.5 ,u t e t                                                 (4.21) 

Substitute Eq.(4.21) into Eq.(4.19), yields to:  

1 1 1 1

0

0.5 = 0.5 [ (0.5 )(1 (0.5 ))(2 (0.5 ))] ,
t

e t k e t e t e t dt          (4.22) 

 After simplifying, we get, 1

3
=

8
e k  and hence:  

1

3
( ) = 0.5 ,

8
u t kt                                                                           (4.23) 
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 which is the first approximation for the solution of Eq.(4.19).  

Similarly, the solution of Eq.(4.19) can be supposed as:  

2
2

3
( ) = 0.5 ,

8
u t kt e t                                                                (4.24) 

  and substitute Eq.(4.24) into Eq.(4.19), give:  

2 2
2 2

0

2
2

2
2

3 3
0.5 = 0.5 [ (0.5 )

8 8

3
(1 (0.5 ))

8

3
(2 (0.5 ))] .

8

t

kt e t k kt e t

kt e t

kt e t dt

    

  

  



          (4.25) 

  After simplifying, we get, 2
2

3
=

64
e k  and hence,  

2
2

3 3
( ) = 0.5 ( ) ,

8 64
u t kt kt                                              (4.26) 

  Proceeding in this way, we get:  

 

      

2 3

4 5

3 3 17
( ) = 0.5 ( ) ( )

8 64 256

125 721
( ) ( ) ...

4096 81920

u t kt kt kt

kt kt

  

  

         (4.27) 

 

 

 

 

 

 

 

 

Figure ( 4.8):  The solution ( )u t  for = 0.25k , and  0 20t  
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This in turn gives  

 
3

3

1 3 1
( ) = .

1 3

kt

kt

e
u t

e

 


 

 which is the exact solution of the problem and it is the same results obtained by 

DJM and VIM in [46]. 

 

4.5  The Riccati Equation  

  The Riccati equation is one of the most interesting nonlinear differential 

equations of the first order. It is written in the form:  

 
2= ( ) ( ) ( ), 0u a x u b x u c x x     

 where a , b , c  are continuous functions of x and ( ), ( ) 0, [0, )c x b x x     

By integrating the equation from 0 to x, we get : 

  
2

0

0

( ) = [ ( ) ( ) ( ) ( ) ( )]
x

u x u a t u t b t u t c t dt    

4.5.1  Solving the Riccati Equation by DJM 

Consider the Riccati equation of the form [46]:  

2 2( ) = ( ) 2 ( ) 1, (0) = 0.5.   u t u t xu t x u                              (4.28) 

 To solve Eq.(4.28), integrate from 0  to x , and apply the initial condition, we 

get:  

2 2

0

( ) = 0.5 [ 2 1] .
x

u t u tu x dt                                               (4.29) 

 Now, apply DJM to Eq.(4.29) we find:  

0

1
= ,

2
u  

2 2
1 0 0 0

0

= ( ) = [ 2 1]
x

u N u u tu x dt    

              = 2 3
1

5 1 1
= ,

4 2 3
u x x x    
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2 2
2 0 1 0 0 1 0 1 1

0

= ( ) ( ) = [( ) 2 ( ) 1]
x

u N u u N u u u t u u x dt u         

               = 2 3 41 7 1
,

8 48 28
x x x   

2
3 0 1 2 0 1 0 1 2

0

2 2 2
0 1 2 0 1 0 1

0

= ( ) ( ) = [( )

2 ( ) 1] [( ) 2 ( ) 1]

x

x

u N u u u N u u u u u

t u u u x dt u u t u u x dt

     

          





 

               = 3 4 51 1 7
.

16 48 960
x x x    

and so on, this gives  

2 3 4 51 1 1 1 1 1
( ) = (1 ...)

2 2 4 8 16 32
u x x x x x x x              (4.30) 

  That converges to  

1
( ) = , < 2.

2
u x x x

x



 

 which is the exact solution of the problem and it is the same results obtained by 

VIM [46]. 

 

4.5.2  Solving the Riccati Equation by PSM 

Now, applying the PSM to Eq.(4.29), and suppose the first approximate 

solution of Eq.(4.29) with 0 0( ) = (0) = 0.5u x u e  is 1 0 1( ) = u x e e x , and hence  

1 1( ) = 0.5 ,u x e x                                                    (4.31) 

Substitute Eq.(4.31) in Eq.(4.29), to get,  

2 2
1 1 1

0

0.5 = 0.5 [(0.5 ) 2 (0.5 ) 1] .      
x

e x e t t e t x dt           (4.32) 

  After simplifying, we get, 1

5
=

4
e  and hence,  

1

5
( ) = 0.5 ,

4
u x x                                                       (4.33) 
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which is the first approximation for the solution of Eq.(4.29). The solution of 

Eq.(4.29) can be supposed as:  

2
2

5
( ) = 0.5 ,

4
 u x x e x                                                             (4.34) 

  Substitute Eq.(4.34) in Eq.(4.29), we have,  

2 2 2
2 2

0

2 2
2

5 5
0.5 = 0.5 [(0.5 )

4 4

5
2 (0.5 ) 1] .

4

     

   


x

x e x t e t

t t e t x dt

       (4.35) 

  After simplifying, we get, 2

1
=

8
e  and hence,  

2
2

5 1
( ) = 0.5 ,

4 8
 u x x x                                                (4.36) 

  Proceeding in this way, we get,  

2 3 4 51 1 1 1 1 1
( ) = (1 ...)

2 2 4 8 16 32
u x x x x x x x                    (4.37) 

  That converges to  

       

1
( ) = , < 2.

2
u x x x

x



 

 which is the exact solution of the problem and it is the same results obtained by 

DJM and find VIM in [46]. 

 

4.6 The Logistic Differential Equation  

  The logistic function is the solution of the simple first-order nonlinear 

differential equation [47].  

1
= (1 ), (0) = , > 0, 0

2
u u u u x     (4.38) 

The logistic function finds many applications in a range of fields, including 

artificial neural networks, biology, biomathematics, demography, economics, 
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chemistry, mathematical psychology, probability, sociology, political science, 

and statistics.  

 

4.6.1  Solving the Logistic Differential Equation by DJM 

To solve Eq.(4.38) using the DJM, integrate from 0  to x , and apply the 

initial condition, we get  

0

( ) = 0.5 [ ( )(1 ( )] 
x

u x u t u t dt                                   (4.39) 

 Now applying the DJM to Eq.(4.39), one may find:  

0

1
= ,

2
u  

1 0 0

0

= [ ( )(1 ( )]
x

u u t u t dt   = ,
4

x


 

          2 0 1 0 1 1

0

= [ ( )( )(1 ( )( )]
x

u u u t u u t dt u      = 
3

3

48
x


 , 

          

3 0 1 2 0 1 2

0

0 1 0 1

0

= [ ( )( )(1 ( )( )]

[ ( )( )(1 ( )( )]

x

x

u u u u t u u u t dt

u u t u u t dt





    

   





 

                = 
5 7

5 7.
480 16128

x x
 

  

and so on, which gives  

3 5 7 9
3 5 7 91 17 31

( ) = ...
2 4 48 480 80640 1451520

u x x x x x x
    

       (4.40) 

  While the exact solutionis given by [40].  

( ) = .
1

x

x

e
u x

e




 

 which is the same results obtained by VIM [47]. 
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4.6.2  Solving the Logistic Differential Equation by PSM 

Now, using the PSM to solve Eq.(4.39), we suppose the solution of 

Eq.(4.39) with 0 0( ) = (0) =u x u e = 0.5  is, 1 0 1( ) = u x e e x , and hence: 

1 1( ) = 0.5 ,u x e x                                                                     (4.41) 

  Substitute Eq.(4.41) into  Eq.(4.39), then:  

1 1 1

0

0.5 = 0.5 [ (0.5 )(1 (0.5 ))] .    
x

e x e t e t dt                       (4.42) 

  After simplifying, we get, 1 =
4

e


 and hence:  

1( ) = 0.5 ,
4

u x x


                                                                            (4.43) 

which is the first approximation for the solution of Eq.(4.39). The solution of 

Eq.(4.39) can be supposed as:  

2
2( ) = 0.5 ,

4
 u x x e x


                                                                (4.44) 

  Substitute Eq.(4.44) into  Eq.(4.39), we have,  

2 2
2 2

0

2
2

0.5 = 0.5 [ (0.5 )
4 4

(1 (0.5 ))] .
4

    

  


x

x e x t e t

t e t dt

 



     (4.45) 

  After simplifying, weget,
 

3

2 =
48

e


 
and hence, 

 

    

3
2( ) = 0.5 ,

4 48
 u x x x
 

       
                                          (4.46)                    

Proceeding in this way, we get, 

3 5
3 5

7 9
7 9

1
( ) =

2 4 48 480

17 31
...

80640 1451520

u x x x x

x x

  

 

  

  

          (4.47) 
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While the exact solution is given by [47]. 
 

( ) = .
1

x

x

e
u x

e




 

which is the exact solution of the problem and it is the same results 

obtained by DJM  and VIM in [47]. 
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Chapter Five 

Conclusions and Recommendations 

 

 The fundamental goals of this thesis are to construct an analytic and 

approximate solutions  to VIDE  and its applications to certain scientific models. 

The goals have been achieved by implementing the DJM [15] and the PSM [38], 

[39] in a straightforward manner to the nonlinear VIDE.  

In this chapter we shall review the main results presented in the thesis and 

make some suggestions for future work. 

5.1  Conclusions 

 There are three important points to be noted in this work. First, unlike the 

traditional grid points techniques used by TeeBest in [36], the solution  is 

defined at grid points only, the solution here is given in a series form. Second, in 

[36], the scheme used 20 iteration steps, whereas less than 10 iteration steps 

were used in this thesis. Third, the high agreement of the approximations of the 

solution  between the methods used at this work is clear and remarkable. This 

advantage over existing techniques demonstrates the reliability and the 

efficiency of these methods. Furthermore, the efficiency of these approaches can 

be dramatically enhanced by computing further terms or further components of 

the solution  when the DJM or the PSM are used, respectively. In this thesis, a 

solution that is valid in the domain of definition is obtained and the 

mathematical structure of the solution was successfully enhanced by employing 

Padé approximants. The Padé approximants, that is often show superior 

performance over series approximations, provide a successful tool and 

promising scheme for identical applications. Among the obtained conclusions 

obtained from this thesis are as follows:   
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1. The DJM and the PSM have been successfully applied to Volterra’s 

population model. The numerical results reveal that the proposed 

methods is very simple, straightforward and provided the same results 

obtained by ADM, HPM and VIM in [43], [29], [42].  

2. The DJM and PSM unlike the mesh points schemes does not provide 

any linear or nonlinear system of equations.  

3. The DJM and PSM does not require any discretization, linearization or 

small perturbations and therefore is capable of greatly reducing the size 

of calculations while still maintaining high accuracy of the numerical 

solution.  

4. It is worth pointing out that the ADM requires to evaluate of the 

Adomian polynomials that mostly require tedious algebraic 

calculations. Also, HPM requires to construct a homotopy and solve the 

corresponding algebric equation and the VIM requires to calculate the 

Lagrange multiplier. It is interesting to point out that the DJM and the 

PSM reduces the volume of calculations in comparative with existing 

techniques, since the iteration is direct and straightforward.  

5. Moreover, for nonlinear equations that arise frequently to express 

nonlinear phenomenon, the DJM and PSM are powerful and efficient, 

facilitate the computational work and give the solution rapidly in 

comparative with other numerical techniques. 

6. Furthermore, the methods are used to solve some scientific models, 

namely, the hybrid selection model, the Riccati model and the logistic 

model to provide the analytic solution and the results showed the DJM 

and PSM provided the same results obtained by VIM, [46], [47].  

7. The simple, easy-to-apply, economical in terms of computer 

power/memory and fast algorithm of the proposed methods is the main 

advantages over other existing methods. 
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Table (5.1): Comparison between the absolute errors of ADM, HPM, VIM, 

PSM and DJM 

  ADM HPM VIM PSM DJM 

0.1 4.62836x10
-3 

4.62836x10
-3

 4.62836x10
-3

 4.62836x10
-3

 4.62836x10
-3

 

0.2 1.13807x10
-3

 1.13807x10
-3

 1.13807x10
-3

 1.13807x10
-3

 1.13807x10
-3

 

0.5 9.20568x10
-5

 9.20568x10
-5

 9.20576x10
-5

 9.20576x10
-5

 9.20568x10
-5

 

0.04 1.24798x10
-2

 1.24798x10
-2

 1.24798x10
-2

 1.24798x10
-2

 1.24798x10
-2

 

 

           It can be seen from the Table (5.1)  that, the absolute errors of  DJM and 

PSM are completely the same as the absolute errors of ADM, HPM and VIM as 

expected because the approximation in Eq.(4.18) and Eq.(4.25) is the same for 

all methods. 

5.2 Recommendations                                                                               

Our recommendations for future work are:   

1. Solve the mixed Volterra-Fredholm integral equation by DJM or PSM.      

2. Solving Burger’s, coupled Burger’s equation and system of two-                            

dimensional Burger’s equations by DJM or PSM.  

3. Solving the Bratu-type equations by PSM.   

4. Solving the Fokker-Planck equation by DJM or PSM.  

5. Solving two forms of Blasiu’s equation on a half-infinite domain by  

           DJM or PSM.            

6. Solving nonlinear systems of PDEs by DJM or PSM.  

7. Solving  the evolution equations by PSM.  

8. Solving  nonlinear Klein-Gordon Equations and nonlinear Schrodinger    

equations by PSM.       
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  (Volterra Integral Equations) انهذف انشئيسي نهزه انشسانت هى نذساست وحم يعادنت فىنتيشا انتكايهيت

 إضافت إنً دساست (Volterra Integro-Differential Equations)وانًعادلاث انتفاضهيت انتكايهيت 

  :حيج يًكن تًثيم هذف انشسانت بثلاث أهذاف فشعيت، وهي . بعض الأنظًت انحياتيت انىاقعيت

 

. انهذف الأول تقذيى بعض انتعاسيف وانًفاهيى الأساسيت في يىضىع انًعادلاث انتكايهيت 

 

 لاستخلاص (Dafterdar-Jafari Method)انهذف انثاني يتناول تنفيز طشيقت تكشاسيت جذيذة وهي 

.  حم نًعادلاث فىنتيشا انتكايهيت وانتفاضهيت انتكايهيت انخطيت وغيش انخطيت

 

 (Power Series Method) انقىي ةانهذف انثانج، استخذاو انطشيقت انتكشاسيت انًسًاة طشيقت يتسهسم

 .وتنفيزها لإيجاد انحم نًعادلاث فىنتيشا انتكايهيت وانتفاضهيت انتكايهيت انخطيت وغيش انخطيت

 

 لإيجاد انحم Power Series Method و Dafterdar-Jafari Methodأخيشا، تى تطبيق 

. انتقشيبي انتحهيهي نبعض اننًارج انحياتيت انعهًيت

 المستخلص 



 

 

 

 

 

 

 

 

 لوعادلاث فىلتيرا التفاضليتتقريبيت  وحلىل تحليليت

 وتطبيقاتها التكاهليت -
 

رسالة 

 النهرينجامعة / العلوممقدمة إلى كلية 

الرياضيات في مماجستير علوجزء من متطلبات نيل درجة ك

 

 من قبل

 فراس شاكر احود
 (2000بكالىريىس علىم، الجاهعت الوستنصريت، )

 
 

إشراف 

 فاضل صبحي فاضل . د.م.مجيد احمد ولي            أ. د.م
 

  تشرين الأول                                                ذي الحجت 

  م2014 هـ                                                     1435

 

جوهىريت العراق 

وزارة التعلين العالي والبحث العلوي 

جاهعت النهرين 

كليت العلىم 

قسن الرياضياث وتطبيقاث الحاسىب 
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