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r.v  random variable 

r.s  random sample  

s.s  sample space 

distn.  distribution 

p.d.f  probability density function 

c.d.f  cumulative distribution function 

m.g.f moment generating function 

e.w.  else were 

AR  acceptance-rejection 

Φ ( . )  cumulative standard normal distribution function 

M.M  moment method 

m. .e  Maximum Likelihood Estimate 

MVUE  Minimum Variance Unbiased Estimator 
2
( )nχ   Chi square Distribution with n degrees of freedom 

G(α,β)  Gamma Distribution with parameters α and  β 

Exp(λ)  Exponential Distribution With Parameters λ 

R(x)  Reliability function of x 

h(x)  hazard function of x 

MLM  maximum likelihood method 

N(0,1)  standard normal distribution 

MLE  Maximum Likelihood Estimator 

   
  

 



 
Abstract

 

 

 

 

In this work we consider the Inverse Gaussian 

distribution model of two parameters, because it have many 

applications in the fields of statistics and reliability. 

Mathematical and statistical properties of the distribution are 

given together with illustration. Moments and higher 

moments of the distribution properties and of the reliability 

and hazard functions are discussed theoretically. 

Two methods of estimation namely moments method 

and maximum likelihood method are used to estimate the 

distribution parameters. The obtained estimators are utilized 

together with Basu method to estimate the reliability and the 

hazard function. 

These methods are discussed theoretically and applied 

practically by using three procedures of generating random 

sample from the distribution. Bias measure is used to 

compare between these procedures. 

The computer programs are coding in appendices by 

the run is made by using “MathCAD 14”. 
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    Introduction

 

 

 

 

 

The inverse Gaussian distribution was originally discovered by 

Schrödinger in 1915 as the probability distribution of the first passage time in 

Brownian motion [38]. Because of the inverse relationship between the 

cumulant  generating function of the first passage time distribution and that of 

the normal distribution, Tweedie (1945) proposed the name inverse Gaussian 

for the first passage time distribution[41]. The distribution was next given by 

Wald (1947) who derived it as a limiting form for the distribution of sample 

size in a sequential probability ratio test [45]. Because of this derivation, the 

distribution is also known as Wald’s distribution, particularly in the Russian 

literature. However, from the viewpoint of statistics, it might more 

appropriately be called Tweedie’s distribution. It had remained virtually 

unnoticed until Tweedie (1957) investigated its basic characteristics, 

established some important statistical properties and depicted certain 

analogies between its statistical analysis and that of the normal distribution 

[42], [43].A characterization of the inverse Gaussian distribution by Khatri 

(1962) paralleled the usual characterization of the normal distribution by the 

independence of sample mean and variance, further reflecting this analogy 

[26]. Wasan and his associates (1968, 1969) investigated some analytical and 

characteristic properties of this class of distributions, particularly for the 

limiting forms [46], [47]. Chhikara (1975) and Chhikara and Folks (1974, 

1975, 1976, 1977,1978) have developed further its statistical theory, provided 

statistical methods based upon the inverse Gaussian, particularly in the field 

of reliability[7], [8], [9], [10], [11], [15]. The interpretation of the inverse 
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    Introduction

Gaussian random variable as a first passage time suggests its potential useful 

applications in studying life time or number of event occurrences for a wide 

range of fields, For example, Sheppard (1962) proposed it for the distribution 

of the time spent by an injected labelled substance, called tracer, in a 

biological system [39]. Hasofer (1964) considered the inverse Gaussian model 

for the emptiness of dam[18]. Lancaster (1972) used it as a model for duration 

of strikes [29]. Banerjee and Bhattacharyya (1976) applied it in a study of 

purchase incidence models [2]. Bardsley (1980) applied the inverse Gaussian 

distribution for wind energy [3]. Dennis etal (1991) used the inverse Gaussian 

distribution to describe the time to extinction of endangered species [12]. 

Barndorff-Neielsen (1994) used the inverse Gaussian distribution as a model 

for the electrical networks when it has the structures of a rooted tree [4]. 

Koichi etal (1997) proposed the application of inverse Gaussian distribution 

to occupational exposure data [27]. Durham and Padgett (1997) found that for 

certain materials, such as carbon fiber composites, the inverse Gaussian 

distribution provides a better fit as a material strength model [13]. Hamsa 

(1997) used the inverse Gaussian distribution to estimate the return periods of 

floods and droughts of the Blue-Nile river [17]. Huberman et al (1998) 

showed that the number of links an internet user follows before the page value 

first reaches the stopping threshold has an asymptotic inverse Gaussian 

distribution [20]. 

The aim of this work is to find the estimators of the reliability and the 

hazard functions of the inverse Gaussian distribution by different methods 

theoretically, and then applied them practically to find our best estimator by 

using Monte-Carlo simulation. 

This thesis includes three chapters. In chapter one, we present some 

important mathematical and statistical properties of inverse Gaussian  distn. 

Moment properties of the distribution are illustrated and unified. Two 
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VI

methods of estimation for the distribution parameters are discussed 

theoretically. 

In chapter two, we introduce some concepts of reliability and hazard 

functions, estimates the reliability function, illustration to the minimum 

variance unbiased estimator for the reliability function by three different 

cases. 

      In chapter three, we introduce the Monte Carlo simulation and its 

applications  for parameters estimation  given in chapter one and the 

reliability and the hazard functions given in chapter two practically by three 

procedures namely (IG-1), (IG-2) and (IG-3). 

 

 
  



 

 

 

 

 

 

   



 
Chapter  One                                                                                                                                 On The Inverse Gaussian Distribution 

 1

 

1.1 Introduction 

In this chapter, some mathematical and statistical properties of inverse 

Gaussian distn. have been presented. 

This chapter involves five sections. In section (1.2) we give some basic 

concepts of inverse Gaussian distn., while in section (1.3) we illustrate 

moments and higher moments properties of the distn. In section (1.4) we 

considere two methods of parameters estimation namely moments method 

and maximum likelihood method, these methods discussed theoretically. In 

section (1.5) we prove some related theorems concerning the disn.. 

 

1.2 Some Basic Concepts of Inverse Gaussian   Distribution 

In this section we shall give some mathematical and statistical 

properties of the inverse Gaussian distribution. 

Definition (1.1) [42] 

A continuous r.v. X is said to have inverse Gaussian distn., denoted by 

X~IG(μ, λ) if X has p.d.f 

2

23
2 , 0

( )
2

( ; , )
2

 0 0, 0

x
x

f x x

,e.w. ;   

e
λ μ

μλμ λ
π

μ λ

−

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦ <

− −

= <

= > >

x ∞                                      (1.1)   

Where μ and λ are respectively known as the scale and shape 

parameters. 
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To verify that ( ; , )f x μ λ  of eq. (1.1) is valid p.d.f., we have to show 

that 

 (i) ( ; , )f x μ λ >0, ∀ , , (0, )x μ λ ∈ ∞ , obvious. 

(ii) The integration of eq. (1.1) is unity. 

We forward a new approach for satisfying condition (ii). 

For the purpose of our approach, we need the following result: 

From advanced calculus [1] 

1

2 2

0

2
z

z dze π
−∞ −

=∫                                                                             (1.2) 

Let  I = 
0

( )f x dx
∞

∫ =

2

2

0

( )
3

22
2

x

xx dxe
λ μ

μλ
π

∞
− −

−
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦∫  

Set  w = x
μ

    or equivalently x=wμ   implies dx = μ dw, then 

I = 

2

0

( 1)3
22

2

w
ww de w

λ
μλ

πμ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

∞ − −−

∫  

For simplicity, we set λθ
μ

= , then I becomes 

I = 

2

0

( 1)3
22

2

w
ww de

θ
θ
π

∞ ⎡ ⎤− −− ⎢ ⎥
⎣ ⎦∫ w  

  = 

2 21

0 1

( 1) ( 1)3 3
2 22 2

2 2

w w
w ww dw w dwe e

θ θ
θ θ
π π

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

∞− − − −− −
+∫ ∫      

consider the transformation  1min( , )Y W
W

=  
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For   ,   0 1w< <
1min( , )y w w dy d

w
= = ⇒ w=  

for  1  ,  w< < ∞ 2

1 1 1min( , )y w dy dw
w w w

−
= = ⇒ =  

Therefore  

I = 
1 1

0 0

2 2( 1) ( 1)3 1
2 22 2

2 2

y y
y yy dy ye e dy

θ θ
θ θ
π π

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

− − − −− −
+∫ ∫  

 

   =
1

0

2( 1)3 1
22 2( )

2

y
yy y de y

θ
θ
π

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

− −− −
+∫  

consider the transformation  
2( 1)y

y
θ −

=z  

for  ,  0 1y< <
( 1yz
y

θ− −
=

)    with 
1 3

2 2( )dz y y d
zθ

y
− −

−
= +  

So   I = 
0

1
2 21

2

z
z de

π

∞ − −

∫ z   

Using eq.(1.2), we have 

 I = 1
2π

. 2π  = 1 

 

The inverse Gaussian distn. depends on two parameters μ and λ and a 

wide variety of distribution shapes can be generated by suitable choice of μ 

and λ. Figures (1) and (2) show respectively a graphically representation of 

some p.d.f.,s for fixed μ and λ varying and for fixed λ and μ varying. 
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                   Fig(1): Inverse Gaussian p.d.f.,s with μ =1 and λ = 0.5,1,2,4,8,16.  
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                Fig(2): Inverse Gaussian p.d.f.’s with μ = 0.5,1,2,4,8,16 and λ =1.  
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The graph of IG(μ,λ) as shown in figure (1) and figure (2): 

1- Have the x axis− as a horizontal asymptote. 

2- Increasing for 
2

2

9 30
4 2

x 1μ μμ
λ λ

⎡ ⎤
< < + −⎢ ⎥

⎢ ⎥⎣ ⎦
 and decreasing for 

2

2

9 31
4 2

xμ μμ
λ λ

⎡ ⎤
+ − < < ∞⎢ ⎥

⎢ ⎥⎣ ⎦
 

3- Has maximum point at 
2

2

9 31
4 2

x μ μμ
λ λ

⎡ ⎤
= + −⎢ ⎥

⎢ ⎥⎣ ⎦
 

4- The total area under the curve and above the +ive x-axis is unity. 

5- There is a single inflection point which can not be evaluated 

analytically from the solution by equating the 2nd derivative of eq. 

(1.1) to zero. An approximate solution can be made when some 

values of the parameters µ and λ are specified, for instant, when 

µ=λ=1 , we have x=0.678   

 

1.2.1 The Cumulative Distribution Function 

The c.d.f of inverse Gaussian distn. is known by the following integral: 
2

2

0

( )
3 22( ) ( )

2

x
w

w
F x Pr X x w dwe

λ μ
μλ

π

− −
−

⎡ ⎤
⎢ ⎥
⎣ ⎦= ≤ = ∫                           (1.3) 

It is possible to express the formulation of the c.d.f of inverse Gaussian distn. 

in terms of the c.d.f of standardized normal distn. as follows: 
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( ; , )
2

f x λμ λ
π

=    
3

2x
−

 

2( )
22

x
xe

λ μ

μ

⎡ ⎤− −
⎢ ⎥
⎢ ⎥⎣ ⎦ ,  0 x< < ∞  

        = 0, e.w. 

2

2

0

( )
3 22( ) Pr( )

2

x
t

t
F x X x t dte

λ μ

μλ
π

− −
−

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦= ≤ = ∫  

Set  ( )ty
t

λ μ
μ

−
=   

1( )
2

t t
tdy dt

t

μλ
μ

− −
⇒ =  

3
2

3
2

2

2

tdy dt t dt dy
t

t

λ μ μλ
μ μ

−
+

= ⇒ =
+

 

Since  2 ( ) (t t
t t t

)μ μ μ μ μ
μ μ μ

+ + − −
= =

+ + +
 

             

( )

( ) ( )

( )

2

2 2

2

2

2

1 1

( ) ( )1 1
4 4

( )

1
4

1
4

t t
t t

t t

t t t

t
t

t
t

y

y

t

μ μ
μ μ

μ λ μ

μ μ λ μ

λ μ
μ

λ μ λ
μ μ

λ
μ

− −
= − = −

+ +

− −
= − = −

− + − +

−
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+
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+
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3
2
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1

4
yt dt dy

y
λ

λ
μ

−
⎡ ⎤
⎢ ⎥
⎢ ⎥= −
⎢ ⎥
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2

( )

1
2

2

1( ) 1
2 4

x
x

yyF x dy
y

e

λ μ
μ

π λ
μ

−

−

−∞
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⎢ ⎥
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∫     

           
2 2

( ) ( )

1 1
2 2

2

1 1
2 2 4

x x
x x

y yydy dy
y

e e

λ μ λ μ
μ μ

π π λ
μ

− −

− −

−∞ −∞

= −
+

∫ ∫  

2

( )

1
2

2

( ) 1( )
2 4

x
x

yx yF x dy
x y

e

λ μ
μ

λ μ
μ π λ

μ

−

−

−∞

⎡ ⎤−
= Φ −⎢ ⎥

⎣ ⎦ +
∫    

Consider the integral  
2

( )

1
2

2

1
2 4

x
x

yyI dy
y

e

λ μ
μ

π λ
μ

−

−

−∞

−
=

+
∫   

set  2 24 4w y y wλ λ
μ μ

= − + ⇒ = −   

     2

2

4,
4

wdy dw ydy wdw w
w

λ
μλ

μ

= ⇒ =
−

≠    
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2

2

( )
1 4( )

2

( )
2 21

2

1
2

1 (
2

x
x

w

x
x

w

I dw

xdw
x

e

e e e

λ μ
μ λ

μ

λ μ
μλ λ

μ μ

π

)λ μ
π μ

− +

− −

−∞

− +

−

−∞

=

⎡ ⎤− +
= = Φ ⎢ ⎥

⎣ ⎦

∫

∫

 

                          
2

( ) 1 1x xF x
x x

e
λ

μλ λ
μ μ

⎡ ⎤ ⎡⎛ ⎞ ⎛
= Φ − + Φ − +⎢ ⎥ ⎢⎜ ⎟ ⎜

⎝ ⎠ ⎝⎣ ⎦ ⎣

⎤⎞
⎥⎟

⎠⎦
                                      (1.4) 

Thus when both parameters μ and λ are known, the inverse Gaussian 

distn. can be evaluated using the normal distn. table. 

There is another technique for finding ( ) ( )F x Pr X x= ≤  for some x 

by a statistical table suggested by Wasan and Roy [46], base on the following 

property: 

 

Property (1.2.1.1) [46] 

Let  ( , )X IG μ λ∼ , then the r.v  2
2 ( , )XY IGλ α α

μ
= ∼   where λα

μ
= . 

To find the c.d.f of Y we have 

( ) Pr( )F x X x= ≤     and  
2

XY λ
μ

=   

Then the c.d.f of Y, say G(y) is: 

2( ) Pr( ) Pr( )XG y Y y yλ
μ

= ≤ = ≤  

          
2 2

Pr( ) ( )y yX Fμ μ
λ λ

= ≤ =  
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2 (( ) Pr( ) yG y Y y
y y

e α )yα α⎛ ⎞ ⎛− −
= ≤ = Φ + Φ⎜ ⎟ ⎜⎜ ⎟ ⎜

⎝ ⎠ ⎝

⎞+
⎟⎟
⎠
                            (1.5) 

We note that the c.d.f of Y contain the parameter α only. 

  According to this property a table of the values of G(y) was 

accomplished by Wasan and Roy(1969) for some y and λα
μ

= . 

 

1.3 Moments and Higher Moments Properties of Inverse Gaussian  

Distribution [24] 

Moments are set of constants used for measuring distn. properties and 

under certain circumstances they specify the distn. The moments of r.v. X (or 

distn.) are defined in terms of the mathematical expectation of certain power 

of X when they exist. For instance,  

r
rμ = E(X )′

(r

 is called the rth moment of X about the origin and 

)rμ = E[ X - μ ]  is called the rth central moment of X. That is 

( ), isdiscrete r.v.

( )
( ) , iscontinuous r.v.

x

x

r

r
r r

x f x X

E X
x f x dx X

μ

⎧
⎪⎪′ = = ⎨
⎪
⎪⎩

∑
∫

 

and 

( ) ( ), isdiscrete r.v.

( )
( ) ( ) , iscontinuous r.v.

r

r
r r

x

x

x f x X

E X
x f x dx X

μ

μ μ
μ

⎧ −
⎪⎪= − =⎡ ⎤ ⎨⎣ ⎦

−⎪
⎪⎩

∑
∫

   

Provided the sum or integral converges absolutely. 
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The generating functions reflect certain properties of the distn., they 

could be used to generate moments. Sometimes they are defining some 

specific distn.,s, and also have a particular usefulness in connection with sums 

of independent, r.v.,s. 

            First, we shall consider a function of a real t called the moment 

generating function, denoted by M(t), which can be used to generate moments 

of r.v X. 

           For continuous r.v X, the m.g.f is defined by 

M(t) ( ) ( ) ,tX txE f x dxe e
∞

−∞

= = ∫  provided the integral converge absolutely. 

To find the m.g.f of inverse Gaussian distn.: 

Set λμ
α

=  in eq. (1.1) then we have ( , )X IG λ
α

λ∼ , with p.d.f  

2

3
2 22( )

2

x
xf x x e

α λα
λλ

π

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢⎣

− −−
= ⎥⎦                                                            (1.6) 

So, 

M(t)

2

0

3
2 22

2

x
xtx x dxe e

α λα
λλ

π

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∞ − −−
= ∫  

          

2

0

23
2 22

2

t x xx dxe e
α λ λ

λα λ
π

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

∞ −− − −
= ∫  

           

1 22 21
2 2

0

2( 2 )3 2 2( 2 ) 2
2

tt x xt x dxe e
α λ λα λ λα α λ λ

π

⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

∞ −− − −−
− −= ∫          (1.7) 
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Since the integrand of eq.(1.7)is the p.d.f of r.v ( )2 1/2( 2 ) ,X IG tα λ λ−∼ .  

It follows, the integral side of eq.(1.7) is unity 

Hence, 

M(t)
1

2 2( 2 )teα α− −=  

Substitutes λα
μ

= , then we have 

M(t)

1
2 2

2

21 1

,
2

t

te
μλ

μ λ λ
μ

⎡ ⎤
⎢ ⎥⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠
⎢ ⎥⎣ ⎦

− −

= <                                                          (1.8) 

 

          The theory of mathematical analysis show that the existence of  M(t) for 

22
t λ

μ
<  implies that the derivatives of M(t) of all orders exist at t = 0. 

        Thus the rth moment of X about the origin is 

 μ′r = E (Xr) = 
r

r
d M(t)

dt
|t=0 , r = 1,2,3,….. 

       The following mathematical representation of the rth moments about 

origin is given by Tweedie (1957) [43]. 

   ( )

( )

1

0

1 !
2! 1 !

i
r

r

r

i

r i

i r i
μ μ

λ
μ

−

=

− +
′ =

⎛ ⎞
− − ⎜ ⎟

⎝ ⎠

∑                                                             (1.9) 

Now, to find the rth moments about the mean we have 

( )r
r E xμ μ⎡ ⎤= −⎣ ⎦  

By the binomial theorem [1] we have: 
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0
( ) ( 1)r i i

r

i

r r ix x
i

μ μ −

=

⎛ ⎞
− = − ⎜ ⎟

⎝ ⎠∑  

So,  

0
( 1)i i r

r

r

i

r
E x

i
μ μ −

=

⎡ ⎤⎛ ⎞
= −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑ i i    

0
( 1) ( )i i r

r

i

r
E x

i
μ −

=

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠∑

0
( 1)i i

r r i

r

i

r
i

μ μ μ −
=

⎛ ⎞ ′= − ⎜ ⎟
⎝ ⎠∑                                                                      (1.10) 

(i) Mean 

E(X) = μ = μ′1 is called the mean of r.v X. It is a measure of central 

tendency. Use of eq. (1.9) with r = 1, we have 

             ( )E X μ=                                                                         (1.11) 

(ii) Variance 

Var(X) =  is called the variance of r.v X. It is a 

measure of dispersion. Use of eq.,s (1.9) and (1.10) with r = 2, we have 

( )22σ = E[ X - μ ]

3
2 μσ

λ
=                                                                                     (1.12) 

(iii) Coefficient of Variation 

             .c v σ
μ

=    is called the variational coefficient of r.v X. It is a measure 

of dispersion. For inverse Gaussian case, we have 

                 .c v σ μ
μ λ

= =                                                                          (1.13) 
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(iv) Coefficient of Skewness 

            1
3

3 2
2

μ
γ =

μ
  is called the coefficient of Skewness. It is a measure of the 

departure of the frequency curve from symmetry. If  the curve is not 

skewed,  > 0, the curve is positively skewed, and < 0, the curve is 

negatively skewed [24]. Use of eq.,s (1.9) and (1.10) with r = 3, we have                

1 0,γ =

1γ1γ

( )
5

3

23
3μμ = E[ X - μ ] =
λ

       

Thus, 

               

5

2

31
3 2

3

3

μ
μλγ
λμ

λ

⎛ ⎞
⎜ ⎟
⎝ ⎠= =
⎛ ⎞
⎜ ⎟
⎝ ⎠

                                                                  (1.14) 

 

(v) Coefficient of Kurtosis 

         4
2 2

2
3μ

γ = −
μ

 is called the coefficient of kurtosis. It is a measure of the 

degree of flattening of the frequency curve. If the curve is called 

mesokurtic, if  > 0, the curve is called leptokurtic, and if  < 0, the curve 

is called platykurtic [24]. 

2 0,γ =

2γ 2γ

Use of eq.,s (1.10) and (1.9) with r= 4, we have 

( )
7 6

4
4 3 2

μ μμ = E[ X - μ ] = 15 + 3
λ λ

     

Thus, 

 14
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7 6

3 2

22 3

15 3
3 15

μ μ
μλ λγ
λμ

λ

⎡ ⎤+⎢ ⎥⎣ ⎦= =
⎛ ⎞
⎜ ⎟
⎝ ⎠

+                                                                  (1.15) 

 (vi) Mode 

A mode of a disn. is the value x of r.v X that maximize the p.d.f  

( )f x . For continuous distn.,s, the mode x is a solution of  

2

2

( ) ( )0 0df x d f xand
dx dx

= < . 

          A mode is a measure of location. Also we note that the mode may not 

exist or we may have more than one mode.  

           For inverse Gaussian case with p.d.f of (1.1), the natural logarithm of 

( )f x  is 

( )2

2

1 3ln ( ) ln ln( )
2 2 2 2

x
f x x

x
λ μλ

π μ
−⎛ ⎞= − −⎜ ⎟

⎝ ⎠
 

2 2

ln ( ) 3
2 2 2

d f x
dx x x

λ λ
μ

= − −  

For maximum 

Set ln ( ) 0d f x
dx

=   implies  2 2 23 0x xλ μ λμ+ − =  

Implies 
2

2

3 9 1
2 4

x μ μμ
λ λ

⎡ ⎤
= − ± +⎢ ⎥

⎢ ⎥⎣ ⎦
 

 We know that 0x >  then a mode of inverse Gaussian distn. is: 

2

2

9 3
4 2

1x μ μμ
λ λ

⎡ ⎤
−⎢ ⎥

⎢ ⎥⎣ ⎦
= +                                                                       (1.16) 
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(vii) Median 

disn. is defined to be the value           A median of a x of r.v X such 

that 1( ) Pr( )
2

F x X x= ≤ = . The median is measure of location. 

 .............. For inverse Gaussian case, the c.d.f given by equation (1.4), we have 

21 1
2

1x x
x x

e
λ

μλ λ
μ μ

⎡ ⎤⎛ ⎞
= Φ − +⎢ ⎥⎜ ⎟  

⎡ ⎤⎛ ⎞
Φ − +⎢ ⎥⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

1.4 Point Estimation[31] 

point estimation concerned with inference about the unknown 

arameters of a distn. from a sample. It provides a single value for each 

             A statistic is a function of one or more r.v.,s which does not depends 

or) [31] 

) is called point estimator. 

tistic is called point 

 

           The 

p

unknown parameter. 

The following definitions are needed for the interest of this work. 

Definition (1.2) (statistic) [31] 

on any unknown parameters. 

Definition (1.3) (Point Estimat

             Any statistic whose value  used to estimate the unknown parameter θ 

for some function of θ say τ(θ

Point estimation admits two problems: 

First, developing methods of obtaining a statistic, to represent or 

estimate the unknown parameters in the p.d.f such sta

estimator. 



 
Chapter  One                                                                                                                                 On The Inverse Gaussian Distribution 

 17

Second, selecting criteria and technique to define and find best 

estimator among many possible estimators. 

1.4.1 Methods of Finding Estimators [31] 

Assume that  be a r.s. of size n from a distn. whose 1 2 n, ,...,X X X

, ,..., )1 2 k. . ( , ) , (p d f f x θ θ θ= θ θ

1 2, ,...,basis of the observed values 

 is a vector of unknown parameters. On the 

nx x x  of r.v.,s the object is   1 2, ,..., nX X X

to find statistics, say ),nU X 1,2,..., ,i k1 2( , ,...,i iu X X= = whose values to be 

,... .kused as estimators for , 1,2i iθ =  

Several methods ca

square method, Minim  method, Minim

n be found in the literature such as: 

Moments method, Maximum likelihood method, Bayesian method, Least 

um chi-square um distance method and 

Modifi

 be a r.s of size n from a distn. whose 

ed 

Let 

moment method. 

For inverse Gaussian case we shall discuss two methods theoretically 

namely the method of moments and the maximum likelihood method. 

 

1.4.1.1 Estimation of parameters by Moments Method [35] 

1 2, ,..., nX X X

), ( , ,..1 2 k. . ( , ., )p d f f x θ θ θ θ=

( )

θ

r
r

 is a vector of k unknown parameters, let 

μ = E X′  distn. m be the rth oment about origin and 
n

r
r i

i =1

1M = X∑  be 

the rth sample moment about ori

ce

to 

n

gin. The M.M can be described as follows: 

, we have k unknown parameters, equate 

r r

Sin

′μ M  at  .That is  ˆθ = θ r rμ = M′   at θ r = 1, 2, …, k ˆ= θ , 
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For thes  and we say that 

 esti obtained by 

For inve  c

=

e k eq.,s, we find a unique solution for ˆ ˆ
1 2θ ,θ , k̂...,θ

M.Mr̂θ (r = 1,2, k)  ..., is an mate of θ  and the corresponding r

statistic ˆ
rΘ  is the M.M estimator of rθ .  

rse Gaussian distn. ase, we have two unknown parameters μ 

and λ and if a r.s of size n is taken, then we set  

ˆˆ , ,r M at rμ μ μ λ λ′ = = =  1,2r

r=1, we have ( )E X1μ μ′ = =   and   1

1

1 n

i

i

M X X
n =

= = , then ∑
ˆ Xμ =                                                                                                 (1.17) 

where  μ̂  is th r for μ. e M.M estima

r=2,we

to

 have 
3

2 2( )E X2

μμ μ
λ

′ = = +  and  2 2 21 1n n
2

1

i

i

M X S X−
= = +∑  

n n=

Implies  
3

2 21
ˆ

X nX S
n

2X
λ

−
+ = +  

3

2
ˆ

(n −1)
nX

S
λ =                                                                                     (1.18) 

where  ( )22

0
1

i =
−
1 n

iS X X
n

= −∑ and  λ̂  is the M.M estimator for λ. 

Definition (1.4) (Likelihood function) [35] 

The likelihood function of a r.s X1,X2,…,Xn of size n from a distn. 

having p.d.f  ( , )f x θ  (where θ  = (θ1, θ2, …, θk) is a vector of unknown 

parameters) defined to be the joint p.d.f of the n r.v,s X1, X2,…, Xn which is 

considered as a function of θ  and denoted by ( , )L xθ , that is 
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1

n

i( , ) ( , ) ( , )
i

L x f x f xθ θ θ
=

= =∏  

1.4.1.2 Estimation of Parameters by  Maximum Likelihood  

Method  

  

[35] 

 Let ( , )L xθ

 a distn. whose p.d.f 

 be the likelihood function of a r.s X1, X2,..., Xn of size n 

from ( , )f x θ 1 2 k

parameters.  

Let 

, θ= (θ , θ , …, θ ) is a vector of unknown 

ˆ uθ = ( )x ( )1 2 ku ( ), ( ),..., ( )x u x u x=  

be a vector function of the observations 1 2( , ,..., )nx x x x=

If  have the value of  which maximizes 

 

θ̂ θ ˆ( , )L xθ  then θ̂  is the 

 of m. .e θ  and the corresponding statistic Θ̂  is the 

 We note that  

(i) Many likelihood functions satisfy the condition that the  is a solution 

of th ik

M.L.E of θ .  

m. .e

e l elihood eq.,s 

( , )x 0,L

r

θ
θ∂

∂ ˆ=  at r=1,2,…,k. θ= θ  

(ii) Since ( , )L xθ and ln ( , )L xθ  have their maximum at the e value of  sam θ  

so sometimes it is easier to find the maximum of the logarithm of the 

likelihood. 

In such case, the m. .e  θ̂  of θ  which maximizes ( , )L xθ may be 

given the solution of the likelihood eq.,s  
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ln ( , ) 0
r

L xθ
θ

∂
=

∂
ˆ  ,r=1,2,…,k   at  

           For inverse Gaussian distn. case 

Let X1, 

 

              

θ= θ

X2, …, Xn be a r.s. of size n from IG(μ, λ) where the distn. p.d.f is 

given by (1.1). The likelihood function is

( , , ) ( , , )L x f xμ λ μ=  λ

                               
1

i
i

( , , )
n

f x μ λ=∏  
=

                               

2( )
3

2

i
n

x

x e
λ μ

λ
− −

− 2

1

2

2
i

i
i

xμ

π=

⎡ ⎤
⎢ ⎥
⎣ ⎦  

                               

=∏
2

2 12

1

( )
3 22

2

n
i

n
i

i
i

n

i

x
x

x e
μλ

μλ
π

=

=

−
− ∑−

⎡ ⎤
⎢ ⎥

⎛ ⎞ ⎣ ⎦= ⎜ ⎟
⎝ ⎠ ∏  

    
2

2
1 1

( )3ln ( , ; )
2 2

L x ln( ) ln(2 ) ln( )
2 2

i
i

i

n n

i i

xn n x
x

μλλ π
μ

μ λ
= =

−
− − −∑ ∑  =

 
2

1 1

3 1ln ( , ; ) ln( ) ln(2 ) ln( )
2 2 2 2 2i

i

n n

i
i i

n n nL x x x
1

n

i x
λ λ λμ λ λ π
μ μ= = =

= − − − + −∑ ∑ ∑                     

(1.19) 

3 2
1

ln ( , ; )
i

n

i

L x nxμ λ λ λ
μ μ μ=

∂
= −

∂ ∑                                                              (1.20) 

2
1 1

ln ( , ; ) 1 1 1
2 2 2 i

n n

i
i i

L x n nx
x

μ λ
λ λ μ μ= =

∂
= − + −

∂ ∑ ∑                                    (1.21) 
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Set  ln ( , ; ) ln ( , ; ) ˆˆ0 ,atL x L xμ λ μ λ μ μ λ λ= = =     then 
μ λ

∂ ∂
=

∂ ∂

From eq. (1.20) we have  

3 2
1

ˆ ˆ
0

ˆ ˆi

n

i

nxλ λ
μ μ=

− =∑    implies     
1

ˆ i

n

i
n xμ

=

= ∑ ,   then 

1i

1ˆ i

n
x xμ = =∑                                                                              (1.22) 

From eq. (1.21) we have 

n =

 2
1 1

1 1 0ˆ ˆ ˆ2 22 i
i

n n

i i

n nx
xμ μλ = =

− + −∑ ∑ 1
=    

implies   

2
1

1

ˆ

2 1
ˆ ˆ

i

n
x

n
i

n
i

i

n

x

λ

μ μ
=

=

=
⎤
⎥

− +⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∑

       but      
⎡
⎢∑

ˆ xμ =  

Hence  

1

ˆ
1 1

i

n

i

n

X X

λ

=

=
⎛ ⎞

−⎜ ⎟
⎝ ⎠

∑
                                                                            (1.23) 

X  and 

1

1 1
i

n

i

n

X X=

⎛ ⎞
−⎜ ⎟

⎝ ⎠
∑

 are the M.L.E for µ and λ respectively. 
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1.5 Quality of Estimatio

In this section, we shall introduce some definitions and theorems 

reach to the best estimators for the 

nknown parameters. 

n 

ators which concern the quality of estim

u

Definition (1.5) [35] 

Let the statistic 1 2ˆ ( , , , )nuθ = Χ Χ Χ…  be an estimator of the 

unknown parameter ,θ  then θ̂  is said to be  

(i) Unbiased estimator if and only if ˆ( )θ θΕ = , otherwise  is called biased θ̂

estimator for θ . The term ˆ( )θ θΕ −  is called the bias ter

(ii) Consistent estimator if 

m. 

( )ˆ 0
n→∞
Lim pr θ θ ε− < = . 

(iii) Asymptotically unbiased if 
n
Lim ˆ( )θ θ
→∞

Ε = . 

 

De

Let the statistic )

finition (1.6) [35] 

1 2ˆ ( , , , nuθ = Χ Χ Χ…  be an estimator of the 

unknown parameter θ , then θ̂  is said to be a minimum variance unbiased 

stimator (MVUE) fore θ  if:  

1. θ̂  is an unbiased estimator for θ . 

     2. The variance of θ̂  is less than or equal to the variance of every other 

unbiased estima ors of t θ . 
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Definition nt statistic) [35] 

Let  be a r.s. of size n from a distn. whose p.d.f. 

(1.7) (Sufficie

1 2, , , nΧ Χ Χ…

( ; )f x θ , where 1 2( , , , )mθ θ θ=

, , )Χ Χ… , 

θ…

1,2,

 is a vector of unknown parameters and 

1 2i i n( ,ΧuΥ = ,i m= …  be  statistics whose joint p.d.f. m

( , )g y θ . Then the m  statistics are called jointly sufficient statistics for θ  iff:  

( ; ) ( )
( ; )

f x x
g y

θ
θ

= Η  

where ( )xΗ  does not depend on θ  for a fixed values of ( )i iy u x= , 

, .m  

ll 

 

Theorem (1.2) [34] 

If 

1,2,i = …

1 2i i nY ( , , , )u= Χ Χ Χ… , 1,2, ,i m= … is a set of jointly sufficient 

statistics, then any set of one to 

mY  is also jointly sufficient statistics.  

one functions or transformation of 

Theorem .3) (Neymann Facto ation Theo

1 2, ,...,YY

 

 (1 riz rem) [35] 

 Let 1 2, , , nΧ Χ Χ…  be a r.s. of size n from a distn. whose p.d.f. 

( ; )f x θ , where )1 2( , , , mθ θ θ= …

( )i iy u x= , 1=

θ

,2,…

 is a vector of unknown parameters. A set 

s  are jointly sufficient statistics for of statistic ,i m θ  iff, 

we can find two non-negative functions 1k  and 2k  such that  

 1 2 1 2( ; ) , , , ;n m( , , , )f x f x x xθ θ… θ θ= …  

1 1[ ( ); , , , ] ( )k u x k x    2 1 2 2), ( ), , (m mu x u x θ θ θ= ⋅…   

where 2(k x

…

)  is free of θ  for every values of 1 2, , , my y y…  of  

1 2, , , mΥ Υ Υ… . 
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Theorem (1.4) [ 19] 

 If a sufficient statistic 1 2( , , , )nY u= Χ Χ Χ…  for θ  exist and if the 

M.L.E θ̂  of θ  also exist unique y then ˆl θ  is a function of  Y .   

 

For ( , )IG μ λ  case, we have two unknown parameters μ  and λ, 

where w n is a available, h

e

e assume a r.s. 1 2Χ ,Χ ,… then t e joint p.d.f. can 

be writt n as 

,Χ  

1
( , , ) ( , , )

n

i
f x f xμ λ μ

=

=∏  λ

                

2( )ix μ−
2

1

3 22
2

i
i

n

i

x
x e

λ

μλ
π=

−
−

⎡ ⎤
⎢ ⎥
⎣ ⎦=∏   

                

2

2 12

1

( )
3 22

2

n
i

n
i

i
i

n

i

x
x

x e
μλ

μλ
π

=

=

−
− ∑−

⎡ ⎤
⎢ ⎥

⎛ ⎞ ⎣ ⎦= ⎜ ⎟
⎝ ⎠ ∏  

            ( )
32

12 2
2

1 1 1
exp . 2

22

n nn n
ni i i

i i i

n x x xλ λ λλ π
μ μ

−

= = =

⎡ ⎤
= − −⎢ ⎥

⎣ ⎦
∑ ∑ ∏           (1.24) 

                        ( )x  1
1 2

1 1
, , ,

n n
i i

i i
k x x kμ λ−

= =

⎡ ⎤
= ⋅⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑

where   ( )
32
22

1
( ) 2

n
n i

i
k x xπ

=
= ∏         

 factorization theorem (1.3), the statistics  and 

 are jointly sufficient statistics for 

Thus according to 1
1

n
i

i =
Υ = Χ∑

1

1

n
i

i

−

=
Χ2Υ = ∑ μ  and λ . 
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Definition (1.8) (Complete family) [35] 

family of p.d.f,s  1 2 3{ ( ; ), ( , , ,.. mf x θ θ θ θ θ=

Let  be a r.s of size n from a distn. whose p.d.f 

belong to th , 

1 2 3, , ,..., nX X X X

e ., ), }mθ θ ∈Ω mΩ is 

a parameter space, and let (u x

n

1 2 3

, , ,...,

, , ,..., )nx x x  be a continuous function of 

1 2 3x x x x . If [ ( )] 0u xΕ = ,  implies ( ) 0u x =

,s

 

, then the fam

plete family of p.d.f . 

ily 

Theorem (1.5) (Lehman-scheffe’-1st Theorem) [35] 

Let n  be a r.s. of size n from a distn. whose p.d.f. 

{ ( ; ),f x θ θ }m∈Ω  is called a com

1 2Χ ,Χ ,…,Χ

( ; ),f x θ θ ∈Ω . Let ( )u xΥ =  be a sufficient statistic for θ  whose p.d.f. 

belong to the complete family { ( ; ), }g y θ θ ∈Ω . 

If Φ(Υ )  is a function of Υ  which is an unbiased estimator for θ , then

is VUE for 

 Φ(Υ )  

 a unique M θ . 
 

ential Family f p.d.f.’s)[35] 

Consider the family  of p.d.f.’  which can be 

Definition (1.9) (The Expon  o

{ ( ; ), }f x θ θ ∈Ωm s

expressed as: 

1
( ; ) ( ). ( ).exp ( ) ( )j j

j

m
f x q s x p k xθ θ θ

=
⎢ ⎥=
⎢ ⎥
∑ , a x b

⎡ ⎤

⎣ ⎦
< <  

    

 said to be a member of exponential class of p.d.f.’s and 

satisfying the following conditions: 

 

 

=0, e.w. 

Such p.d.f. is
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(i) Neither a  nor b  depends on 1 2( , , , )mθ θ θ θ= … . 

(ii) ( )jp θ

of j

 is nontrivial, functionally independent, continuous functions 

θ , 1,2, ,j m= … . 

 (iii) ( ) 0jk x′ ≠  and ( ) s x  is continuous function of x  for a x b< < . 

Now, if a r.s. 1 2, , , nΧ Χ Χ…  is taken from a distn. whose p.d.f. 

)( ;f x θ . T en .f.h  the j ple set {oint p.d  of the sam }iΧ  is  

11 1 ji i
( , , ) ( ) . ( ).exp ( (

m
i i j j) ( ) )

n n
if x q s x p k xθ θf xθ θ

== =

⎧ ⎫⎡ ⎤⎪ ⎪⎢ ⎥= = ⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦

[ ]( ) ( ) ( ) . )
m nn

⎩ ⎭
∏ ∏  ∑

        
1 1 1

(
n

j j i iq Exp p k xθ θ
⎡ ⎤
⎢ ⎥= ∑ ∑ ∏                     

j i i
s x

= = =⎢ ⎥⎣ ⎦

                 

Then according to the Factorization theorem (1.3), 

The statistics 1 1
1

( )
n

i
i

k X
=

Υ = ∑ , 2 2
1

( )
n

i
i

k X
=

Υ = ∑

for the m  parame

,…, )  are 

ly s ters 

1
m m

i =
Υ

1 2, , , m

(
n

ik X= ∑

joint ufficient statistics θ θ θ… . 

 

(Lehman-sche e’-2nd Theorem) [35] 

 a distn. wh se p.d.f. 

Theorem (1.6) ff

Let 1 2, , , nΧ Χ Χ…  be a r.s. of size n from o

( ; )f x θ , 1 2( , , , m )θ θ θ θ= …

Υ,

 belong to the exponential family and let 

 be jointly sufficient statistics for 1 2 m 1 2, ,Υ Υ … , , , mθ θ θ… , then the family 

of p.d.f. 's { ( ; ), mg y θ θ ∈Ω } is complete and the statistics 1 2, , , mΥ Υ Υ…  are 

atistics for m1 2
θ ,θ , … ,θ . jointly complete sufficient st
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For X~IG(μ, λ) with p.d.f. 

( ; , )
2

f x λμ λ
π

=    
3

2x
−

 

2

2
( )xλ μ− −

⎢ ⎥
2 xe μ

⎡ ⎤

⎢ ⎥⎣ ⎦ ,  0 x< < ∞  

which can be written as a member of the exponential family as 
1 3

2 22 22( ; , )
2

x
xf x xe e

λ λλ
μ μλμ λ

π

− +⎡ ⎤
⎛ ⎞⎢ ⎥= ⎜ ⎟⎢ ⎥⎝ ⎠

⎢ ⎥⎣ ⎦

  

where 1 2( , )p
2

λμ λ
μ

= , 2( , )p
2
λμ λ = , 1( )k x x= , 2

1( )k x
x

= , 

1
2( , ) .

2
q e

λ
μλμ λ

π
⎛ ⎞= ⎜ ⎟
⎝ ⎠

, 
3

2( )s x x
−

=  

Now, e if a sampl set { }iΧ  lais avai ble, then the statistic 

 and 1 1
1 1

( )
n n

i i
i i

k x
= =

Υ = = Χ∑ ∑ 1
2 2

1 1
( )

n n
i i

i i
k x −

= =
Υ = =∑ ∑ Χ  are jointly complete 

sufficient statistics for ( μ ,λ ). 

 

The statistics 

We note that according to the theorems (1.2) and (1.4)  

X and 
1

1 1n

i
−⎜ ⎟

⎝ ⎠
∑
i

X X
=

⎛ ⎞
 are also jointly sufficient statistics for µ 

nd λ. a

Now  

    
n

1
1 1 1

( ) ( )
n n

i i
i i i

E Y E X E X nμ μ
= = =

⎞
⎜ ⎟= = =
⎜ ⎟
⎝ ⎠
∑ ∑ ∑  

⎛
=

Therefore 1Y X
n

=  is the MVUE for µ. 
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To find an unbiased estimator for 

42]  

1 2, ,..., nX X X

λ, we need the following theorem: 

Theorem (1.7) [

Let  be a r.s of size n from IG(µ,λ), then the statistics 

 

X and 
1 ii =

1 1V
X X

λ
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

∑
n

 are stochastically independent, and  

) . 

Now according to theorem (1.7) the statistic V has p.d.f  

V ~ 2( 1nχ −

1 1
2 2

1

Γ2

( ) , 0
12

2

n v

n
v eg v v

n

− −
−

−= < < ∞
−⎛ ⎞

⎜ ⎟
⎝ ⎠

 

also the MLE for λ as given in eq.(1.23) 

               

0, .e w=

1

ˆ
1 1

i

n

i

n

X X

λ

=

=
⎛ ⎞

−⎜ ⎟
⎝ ⎠

∑
 

then 

      

1

1ˆ ( )
1 1n

ii

n nE E E n E
V V

X X

λλ λ

=

⎡ ⎤
⎢ ⎥
⎢ ⎥ ⎛ ⎞⎡ ⎤ = = =⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎛ ⎞⎢ ⎥−⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑
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( )
1 1

2 21 1
1

20

ˆ .
12

2

n v

n
v eE n E V n v dv

n
λ λ λ

− −
−∞

− −
−

⎡ ⎤ = =⎣ ⎦ −⎛ ⎞Γ⎜ ⎟
⎝ ⎠

∫                                    (1.25)                

  From advance calculus we have 

( )1 ( )η η ηΓ + = Γ         

Then,    3 31
2 2

n n n− −⎛ ⎞ ⎛Γ + = Γ⎜ ⎟ ⎜
⎝ ⎠ ⎝

 3
2
− ⎞

⎟
⎠

               

Now, eq.(1.25) becomes 

3 1
2 2

3
20

ˆ
3 32

2

n v

n
n v eE dv

n n

λλ

− −
−∞

−
⎡ ⎤ =⎣ ⎦ − −⎛ ⎞Γ⎜ ⎟

⎝ ⎠

∫                                               (1.26) 

. is unity, then The integral of the last eq

ˆ
(

E
3)

n
n

λ λ⎡ ⎤ =⎣ ⎦ −
 

Therefore, the statistic 

1

3 3ˆ̂ ˆn n nλ λ− −
= =   

1 1n

ii

n n

X X
=

⎛ ⎞
−⎜ ⎟

⎝ ⎠
∑

1

3ˆ̂ nλ −
=        

1 1n

ii
X X

=

⎛ ⎞
−⎜ ⎟

⎝ ⎠
∑

                                                                              (1.27) 

is unbiased estimator for λ.                               

 



 
Chapter  One                                                                                                                                 On The Inverse Gaussian Distribution 

 30

1.6 Some Related Theorems:  

 ..               In this section we shall give three  theorems explain the relationship 

 between the inverse Gaussian distribution and the other distributions. 

 

Theorem (1.8)[40] 

            Let the r.v X ~ ( , )IG μ λ   then,   
2

22
Y

X
( )Xλ μ−

μ
= ~ 2

(1)χ   

 Proof: 

By using the m.g.f technique, let MY (t) be the m.g.f of the r.v Y then 

    MY (t) = ( )
2

2
( )Xt

XtYE Ee e
λ μ

μ
−⎛ ⎞

⎜ ⎟=
⎜ ⎟⎜ ⎟
⎝ ⎠

     

          

2 2
2 2

0

( ) ( )3
22

2
x x

x xt
x dxe e

λ μ λ μ
μ μλ

− − −−
=

π∫  
∞

          

2
2

0

( )3 (2 1) 22
2

x
xt

x dxe
λ μ

μλ
π

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

∞ −− −
= ∫  

MY (t) 

2

2

1
2 0

(1 2 ) ( )3
221 (1 2 )

2(1 2 )

x
t x

t x dx
t

e
λ μ
μλ

π

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

∞ − − −−−
=

−
∫  

where the integral 
0

2

2
(1 2 ) ( )3

22(1 2 )
2

x
t x

t x dxe
λ μ
μλ

π

⎡ ⎤
∞ ⎢ ⎥

⎢ ⎥
⎣ ⎦

− − −−−∫ is unity 

Hence  
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MY (t) 1
2

1

(1 2 )t
=

−
,  which is the m.g.f of the r.v  Y~ 2

(1)χ  

 

] 

If the r.v )

Theorem (1.9) [46

X ~ ( ,IG μ λ , then for fixed λ and μ approaches infinity the 

r.v  1 1 ,
2 2

Y G
X

λ⎛ ⎞= ⎟
⎠

     ⎜
⎝

∼

Proof: 

Let  

 

Now to find the p.d.f of the r.v Y. The function 1y
x

=  define one to one 

transformation that maps the space A { }: 0x x= < < ∞  onto the space 

B { }: 0y y= < < ∞ , with inverse 1x
y

=  and 
2

1dx
dy y

−
=  then: 

1( ) dxh y g
x dy

⎛ ⎞= ⎜ ⎟
⎝ ⎠  

        
1

2 2
2

y
y e

λλ
π

− −
=   

( )2lim3
2

2 ( )3 lim
2

3
2 2

( ) l
2

2

2

x

x

x

g x x

x

x

e

e

e

μ

22

4

im ( )
x

x

f x

λ μ
μ

μ
μ

λ

π

λ
π

λ
π

μ

λ
μ

λ
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∞
→∞

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

− −− →

−−
→∞

− −

= =

=

=
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1
2

21 11

1 2
2( )

2

y

h y y e λ

λ

⎜ ⎟
⎝ ⎠=

⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

   Which is the p.d.f of the r.v 
⎛ ⎞
⎜ ⎟

−
−

⎛ ⎞⎛ ⎞Γ

1 ,
2 2

Y G λ⎛ ⎞
⎝ ⎠
⎜ ⎟∼ . 

            

            To best of our knowledge, the following theorem seems to be new:  

Theorem (1.10)  

If X and Y are two independent r.v,s with exp
2

X μ⎛ ⎞
⎜ ⎟
⎝ ⎠

∼  and 

3 2,
2

Y G
μ

⎛ ⎞
⎜ ⎟
⎝ ⎠

∼ . Define the transformation  

Z XY=  and XW
Y

=  then the conditional distn. of W given Z=z is 

Gaussian distn. inverse ( , )
2

IG zμ μ , where Z has gamma distn. 

The joint p.d.f of  X and Y are 

Proof: 

1 2( ) ( )( , )f x y f x f y=  

              

21
22 ,

3
0
02

2
.0, .

yx x
y

y e

e w

μ
μμ ⎜ ⎟

⎜ ⎟
⎝ ⎠

⎛ ⎞− + < < ∞
=

< < ∞⎛ ⎞Γ⎜ ⎟
⎝ ⎠

=
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The functions  z x= y   and  xw
y

=  define one to one transformation that 

maps the space A { }( , ) : 0 ,0x y x y= < < ∞ < < ∞  onto the space 

B { }( ,z w= ) : 0 ,0z< < w∞ < < ∞ , with inverse x zw=  and zy
w

=  with 

2

2
1

dx dx w z
zdz dwJ zdy dy w

Then the joint p.d.f of Z a

w wdz dw

−
= = =−  

nd W are 

( , ) , zg z w f zw J
w

⎛ ⎞= ⎜ ⎟
⎝ ⎠

        

23 3
22 22( , ) , 0 , 0

3
2

0, . .

z w z
wg z w z w z w

e w

e
μ

μμ
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

− − +
= <

⎛ ⎞Γ⎜ ⎟
⎝ ⎠

=

 
< ∞ < < ∞

 

Now, the marginal p.d.f of Z is: 

         

1( ) ( , )
w

g z f z w dw= ∫  

0

3 232 222
3
2

z w z
wz w de

μ
μμ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

∞ − − +
=

⎛ ⎞Γ⎜ ⎟
⎝ ⎠

∫ w          

Set  WV
Z

=   ⇒ W=VZ  ⇒  dw=zdv 
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2

1( )g z =
0

2
3 2

22
3
2

z v
vz v dve

μ
μμ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

∞ − +−

⎛ ⎞Γ⎜ ⎟
⎝ ⎠

∫  

2

1

0

4232zz eπ μ
∞ −− 2 2

22( )
3 2
2

z vz v
g z v dve

μ
μ

π

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

− +

=
⎛ ⎞Γ⎜ ⎟
⎝ ⎠

∫  

where the integral 

2

0

423 2 2
2

2

z vz v
v de

μ
μμ

π

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

∞ − +−

∫ v  is unity, then 

1

22( )
3
2

zzg z eπ −
=

⎛ ⎞Γ⎜ ⎟
⎝ ⎠

 

From advance calculus [1]:  1
2

π ⎛ ⎞= Γ⎜ ⎟
⎝ ⎠

    and  3 1 1
2 2 2

⎞ ⎛ ⎞= Γ⎟ ⎜ ⎟
⎝ ⎠

 ⎛Γ⎜
⎝ ⎠

So  

1 2
2 21( ) 4

1(2)
2

z zg z z ze e− −= =
⎛ ⎞Γ ⎜ ⎟
⎝ ⎠

 which is the p.d.f of the r.v  

12,
2

Z G ⎛ ⎞
⎜ ⎟
⎝ ⎠

∼ . 

The conditional p.d.f of W given Z=z is 

1

( , )( )
( )

g z wh W Z z
g z

= =  
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23 32
z w

22 2

2

3
2

2
3
2

z
w

z

z w

z

e

e

μ
μμ

⎛
⎜
⎜ ⎟

− −

π

⎞
⎟

⎝ ⎠
+

−

⎛ ⎞Γ⎜ ⎟
⎝ ⎠=

⎛ ⎞Γ⎜ ⎟
⎝ ⎠

 

                 
23 2 22

2

z w zz wz w e
μ

μμ
π

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

− − +
=  

 

2

2
2

3
2 2( )

2

z w

wz

μ

h W Z z w e

μ
μμ

π

⎛ ⎞
⎜ ⎟
⎝ ⎠

− −

−
= =   

which is the p.d.f of the r.v  ,
2

W IG zμ μ⎛ ⎞
⎜ ⎟
⎝ ⎠

∼  

  



 



 Chapter Two                                                                                                                                Properties and Estimation of the Reliability and
Hazard Functions of Inverse Gaussian Distribution

2.1 Introduction 

The world has witnessed since the beginning of the fifties of the last 

century on the appearance of a variety of electronic equipments. Those 

equipments and gadgets were contributing and still contributing in an increase 

rate to facilitating daily life. Today they are indispensable items in our day to 

day life. It was only natural that those developments be accompanied by the 

problem of determining dependability of those devices and its life time. 

Failure of a device causes despair on the side of users in addition of course to 

the incurred costs and time losses. This is of course if it was possible to 

restore the original functionality of the device. 

Thus determining the so called "life time" of a device seem to be an urgent 

and sometimes the most important requirement when studying it's economic 

feasibility. 

 Most of the times determining the life-time of a device can not be 

determined because of the variety of causes that leads to it's failure. Some of 

those causes are controllable and some are not in addition due to human 

operation error. Thus the life time of a device becomes a random variable. 

 Since the forties of the last century, statisticians began to construct the theory 

of reliability as a sub-disspline of statistics to deal with life-time problems. 

At the beginning reliability theory took the direction of using 

observational data to derive the specific distribution of the random variable of 

the life time of a specified device. The approach was to fit observational data 

to a known distribution. It was observed that special categories of 

distributions are especially suitable for reliability. Those require the random 

distribution to have positive values and its probability density function 

flexible enough to be right skewed. 
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The probability of survival of aging devices should be decreasingly 

small, thus Weibull distribution, and log-normal distribution are special cases 

were used in reliability theory. The inverse Gaussian distribution used in this 

work was not less important. Thus the study of this distribution in reliability 

as enunciated by Chhikara and Folks [11] is involved in this work. 

This chapter involves four sections. In section (2.2) we gave some basic 

concepts of reliability, while in section (2.3) we gave some important 

properties of the reliability and hazard functions of the inverse Gaussian 

distn.. In section (2.4) we use the obtained estimators of parameters from 

chapter one together with Basu method to estimate the  reliability and hazard 

functions of the inverse Gaussian distn.  
 

2.2 Reliability Concept 

In this section we shall give some concepts and properties of the 

reliability function. 

 

Definition (2.1) (Reliability) [28] 

Reliability is known as the probability that a device will perform its 

intended functions satisfactorily for a specified period of time under specified 

operating conditions.  

Probability theory has been used to analyze the reliability of 

components as well as the reliability of systems consisting of these 

components.  

Since the performance of a system usually depends on the performance 

of its components, the reliability of a system is a function of the reliability of 

its components. The intended function of the device is supposedly understood 

and the degree of success of the device's performance of the intended function 
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can be measured so that we can easily conclude if the performance is 

satisfactory or not. Time is an important factor in defining reliability, for 

instance if a newly purchased device can perform its intended functions 

satisfactorily, the question arise what is the probability that it will continue to 

perform satisfactorily for a specified period of time,in other words, what will 

be the life of this device? The lifetime of the device can be treated as a r.v 

with a statistical probability distn.  

Further, the operating conditions, such as stress, load, temperature, 

pressure, and/or other environmental factors, under which the device is 

expected to operate, must be specified.  

Definition (2.2) (Reliability Function) [32] 

Let X be a r.v representing the lifetime of a device. The units of 

measurement for the lifetime may be a time unit such as seconds, hours, days, 

and years or a usage unit such as miles driven and cycles of operation. If the 

random variable X is continuous and can take only nonnegative values. Its 

statistical distn. can be described by its p.d.f  f(x), its c.d.f F(x), and/or its 

characteristics such as mean and variance. Given that we understand the 

intended functions, the operating conditions, and the satisfactory performance 

of the device when it is new, we need only to deal with the probability that the 

device can last beyond a specified period x. Thus, the reliability function of 

the device, denoted by R(x), is given by 

= = =
x

R(x) Pr(X > x) f(w) dw 1 - F(x)
∞

∫                                             (2.1) 

2.2.1 Some Properties of Reliability Function [32] 

Based on the definition (2.2), we can illustrate some properties of the 

reliability function as follows: 

 38



 Chapter Two                                                                                                                                Properties and Estimation of the Reliability and
Hazard Functions of Inverse Gaussian Distribution

 39

1- 0 ( ) 1R x≤ ≤  

2- R(0) =1 and R(∞) = 0. 

3- The function R(x) is a non-increasing function of x. 

4- The function R(x) is continuous from the left at each x. 

Definition (2.3) (Hazard Function) [32] 

The failure rate function, or the hazard function, denoted by h(x), is 

defined to be the probability that a device will fail in the next time unit given 

that it has been working properly up to time x, that is, 

     
0

( )( ) lim Pr( )
( )x

f xh x X x x X x
R xΔ →

= ≤ + Δ > =

0

( ) ( )
x

                                      (2.2) 

The cumulative failure rate function, or the cumulative hazard function, 

denoted by H(x), is defined to be 

H x h w dw=∫                                                                               (2.3) 

The failure rate function is often used to indicate the health condition of 

a working device. A high failure rate indicates a bad health condition because 

the probability for the device to fail in the next instant of time is high. 

 

2.2.2 Relationships Among h(x), R(x) and f(x) [28] 

It is obvious that one of the functions f(x), F(x), R(x), h(x) is adequate 

to specify completely the lifetime distribution of a device. These functions are 

satisfied the well-known relations  

1- 
[ ]

( ) ( )( )
( ) 1 ( )

d R x f xdxh x
R x F x

−

= =
−

 

2-   0
( )

( )

x
h w dw

R x e
−∫

=
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3-  0
( )

( ) ( ). ( ) ( ).

x
h w dw

f x h x R x h x e
− ∫

= =  

 

2.2.3 Reasons for Collecting Reliability Data [28] 

There are many possible reasons for collecting reliability data. 

Examples include the following:  

• Assessing characteristics of materials over a warranty period or over the  

product's design life.  

• Predicting product reliability.  

• Predicting product warranty costs.  

• Providing needed inputs for system-failure risk assessment.  

• Assessing the effect of a proposed design change.  

• Assessing whether customer requirements and government regulations have 

been met.  

• Tracking the product in the field to provide information on causes of failure 

and methods of improving product reliability.  

• Supporting programs to improve reliability through the use of laboratory  

experiments, including accelerated life tests.  

• Comparing components from two or more different manufacturers, 

materials, production periods, operating environments, and so on.  

• Checking the veracity of an advertising claim. 
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2.3 Properties of Reliability and Hazard Functions of the Inverse 

Gaussian Distribution 

     In this section we shall give some mathematical properties of the 

reliability and the hazard functions of the inverse Gaussian distn. 

 

 

2.3.1 Reliability Function [28] 

The reliability function of the inverse Gaussian distn. can be obtained 

in terms of the c.d.f of eq.(1.4) as follows: 

 
2

( ) 1 1x xF x
x x

e
λ

μλ λ
μ μ

⎡ ⎤ ⎡⎛ ⎞ ⎛
= Φ − + Φ − +⎢ ⎥ ⎢⎜ ⎟ ⎜

⎝ ⎠ ⎝⎣ ⎦ ⎣

⎤⎞
⎥⎟

⎠⎦
 

Then the reliability function of the inverse Gaussian distn. is 

R(x) = 1 - F(x) = 
2

11 1x x
x x

e
λ

μλ λ
μ μ

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
− Φ − − Φ − +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
 

R(x)= 
2

1 1x x
x x

e
λ

μλ λ
μ μ

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
− Φ − +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
Φ −                                      (2.4) 

 

2.3.2 Hazard Function [28] 

The hazard function of the inverse Gaussian distn. can be obtained in 

terms of the p.d.f of eq.(1.1)  and the reliability function of eq. (2.4) as follows: 

h(x) = ( )
( )

f x
R x

 = 

3
2

2

2( )
22

2

1 1

x
x

x

x x
x x

e

e
λ

μ

λ μ
μλ

π

λ λ
μ μ

−

⎡ ⎤− −
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡⎛ ⎞ ⎛ ⎞
Φ − − Φ − +

⎤
⎢ ⎥ ⎢⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎥

⎣ ⎦ ⎣ ⎦

                     (2.5) 



 Chapter Two                                                                                                                                Properties and Estimation of the Reliability and
Hazard Functions of Inverse Gaussian Distribution

 42

 

The expression for h(x) is rather complicated but it is not difficult to 

compute its value for any given μ and λ. Several typical failure rate curves are 

given in Figure (2.1). Inspection of these curves makes it obvious that the 

failure rate is not monotonic for all μ and λ. However, one might be led to ask 

whether it is monotonic for some parameter values. We shall show that h(x), 

in general, is non-monotonic. 

2.3.2.1 Properties of  Hazard Function [11] 

In this sub-section we shall give some properties of the hazard function 

as follows: 

1- h(x) is an increasing function for mx x< , where  mx  is the mode of the 

inverse Gaussian distn. given by eq.(1.16) [11]. 

Because the p.d.f of the inverse Gaussian distn. is an increasing 

function and the reliability function is decreasing function from 0 to mx  

where mx  is the mode of the inverse Gaussian function, it follow that the 

hazard function is an increasing function for mx x< . 

2 – h(x) is a decreasing function for 0x x>  where  0
2
3

x λ
=  . 

To prove this property we shall test the derivative of the natural log of h(x) as 

follows: 

[ ] ( ) ( ) ( ) ( )ln ( )
( ) ( ) ( ) ( )

x

d h x P x f t fh x dt
dx h x R x P t P x

∞
x⎡ ⎤′ ′⎢ ⎥= = +

⎢ ⎥
⎣ ⎦
∫             

where 

[ ] 2
3( ) ln ( )

2 2 2
dP x f x
dx x 2x

λ λ
μ

= = + +             

Then, we find: 
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2 3
3( )

2
P x

x x
λ−′ = +  

Therefore; 

2( ) 0,
3

P x x λ′ < >            and            2( ) 0,
3

P x x λ′ > <                    (2.6) 

Then, we can verify that 0
2
3mx x λ

< =

*

.  

3- Has a maximum value at the point  x  when  *x  in the interval 0[ , ]mx x  

[11]. 

2.3.2.2 Asymptotic  of  Hazard Function [11] 

Examination of the graph in figures (2.1.a) and (2.1.b) indicates there 

exists a nonzero asymptotic value of  h(x)  unlike the failure rate of the log 

normal which approaches zero asymptotically.  

To find the asymptotic value we first find the upper and lower bounds for h(x) 

as follows:  

The failure rate h(x) can be written as:  

2
2

3
( )2 ( )

21
( )

t xt x
tx

x

x dt
h x t

e
λ μ

μ

⎡ ⎤− −⎧ ⎫∞ − −⎢ ⎥⎨ ⎬
⎩ ⎭⎢ ⎥⎣ ⎦⎛ ⎞= ⎜ ⎟

⎝ ⎠∫                

 

 Letting   we obtain ( )z t x= −

1

2

3
12 2 22

0

1 1
( )

z z
x xx z dz

h x x
e e

λ λλ
μ

−⎡ ⎤− − ⎛ ⎞∞ + −⎢ ⎥⎜ ⎟
⎝ ⎠⎢⎣⎛ ⎞= +⎜ ⎟

⎝ ⎠∫ ⎥⎦                                           (2.7) 

For any x >0  and  z >0  we have: 
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1
1

2
2 1

z
x

x
xe e

λ

λ

−⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

− +

−
≤ ≤                                                                          (2.8) 

 

Due to the first inequality in (2.8) it follows from (2.7) that  

3
2

0

221 1
( )

z
z dz

h x x
e

λ
μ

⎛ ⎞
− ⎜ ⎟∞

⎜ ⎟
⎝ ⎠

−
⎛ ⎞> +⎜ ⎟
⎝ ⎠∫                  

Set  1 1zy z yx dz xdy
x

= + ⇒ = − ⇒ = , then 

3
2

1

22 221
( )

xyx

x y dy
h x

e e
λλ
μμ

⎛ ⎞
⎜ ⎟∞ −
⎜ ⎟
⎝ ⎠

−

> ∫             

Integrated the right side by parts, on gets for an upper bound of the failure 

rate, 

1( ) ( )22
h x A xλ

μ
−≤                          

where 

( 1)5 2223( ) 1
2

x

yx
A x y dye

λ
μ

⎡ ⎤
∞ ⎢ ⎥

⎢ ⎥⎣ ⎦

−−−
⎛ ⎞= − ⎜ ⎟
⎝ ⎠∫                     

On the other hand, due to the second inequality in (2.8), it follows from 

(2.7) that a lower bound for h(x) given by  

1
2

2( ) ( )
2

xh x A x e
λλ

μ
−

−
≥                              

or 
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2
2( )

2
xh x e
λλ

μ

−
≥                                

The hazard function is asymptotically equal to 22
λ
μ

 when x approaches 

to infinity. 

We now have a good idea of the general behavior of h(x), it increases 

from zero to a modal value, then decreases, approaching its asymptotic 

value 22
λ
μ

. 

From figures (2.1.a) and (2.1.b) one can observe that h(x) is virtually 

non-decreasing for all  x when  λ is large relative to μ. 
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Fig(2.1.a): failure rate of Inverse Gaussian distribution with μ =1 and λ = 0.25,0.5,1,2,4,16 
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Fig(2.1.b): failure rate of Inverse Gaussian distribution with μ =0.25,0.5,1,2,4,16 and λ = 1 
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2.4 Estimation of the Reliability and Hazard Functions of the 

Inverse Gaussian Distribution 

In chapter one, we observe estimators by two different methods namely 

MM and MLM for the parameters of inverse Gaussian distribution. 

These estimators could be used to estimate the reliability and hazard 

functions. 

 

2.4.1  Estimation by Using MLM Estimators 

From chapter one, the maximum likelihood estimators of μ and λ as 

given by (1.22) and (1.27) are  

 

                                    
1

1ˆ i

n

i
x X

n
μ

=
= =∑               

and  

                                    

1

( 3)ˆ̂
1 1

i

n

i

n

x x

λ

=

−
=

⎡ ⎤
−⎢ ⎥

⎣ ⎦
∑

        

 accordingly the M.L.E of  R(x) and h(x)  is now obtained by replacing   μ  

and λ  in (2.4) and (2.5)   by their estimates ˆ̂ˆ andμ λ  given in (1.22) and 

(1.27). 

  Accordingly the M.L.E of R(x) is:  

  

ˆ̂2
ˆ

ˆ ˆˆ ˆ
R̂ (x)= 1 1

ˆ ˆmlm
x

x x
e

λ
μλ

μ μ

⎡ ⎤ ⎡
⎛ ⎞ ⎛ ⎞⎢ ⎥ ⎢Φ − − Φ − +⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢⎣ ⎦ ⎣

 xλ
⎤
⎥
⎥
⎥⎦

                          (2.9) 

 

and  the M.L.E. of h(x) is: 
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3
2

ˆ̂2
ˆ

ˆ 2ˆ ˆ( )
2ˆ ˆ2ˆ

2ˆ ( )
ˆ ˆˆ ˆ

1 1
ˆ ˆ

mlm

x
x

x
h x

x x
x x

e

e
λ

μ

λ μ
μλ

π

λ λ
μ μ

−

⎡ ⎤− −⎢ ⎥
⎢ ⎥
⎣ ⎦

=
⎡ ⎤ ⎡

⎛ ⎞ ⎛⎢ ⎥ ⎢Φ − − Φ − +⎜ ⎟ ⎜⎢ ⎥ ⎢⎝ ⎠ ⎝
⎣ ⎦ ⎣

⎤
⎞⎥
⎟⎥⎠
⎦

                         (2.10) 

 

2.4.2  Estimation by Using M.M Estimators 

From chapter one, the M.M estimators of μ and λ as given by (1.17) and 

(1.18) are 

                           

                              ˆ Xμ =  

and 

                      
3

2
ˆ

( 1)
nX

n S
λ =

−
 

accordingly the estimators of R(x) and h(x)  is now obtained by replacing   μ  

and λ  in (2.4) and (2.5)   by their estimates ˆˆ andμ λ  given in (1.17) and 

(1.18). 

Accordingly the estimator of R(x) is: 
ˆ2

ˆˆ ˆ
R̂ (x)= 1 1

ˆ ˆmm
x

x x
e

λ
μλ

μ μ

⎡ ⎤ ⎡⎛ ⎞ ⎛ ⎞
⎢ ⎥ ⎢Φ − − Φ − +⎜ ⎟ ⎜ ⎟
⎢ ⎥ ⎢⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣

 xλ ⎤
⎥
⎥⎦

                          (2.11) 

 

 

and  the estimator of h(x) is: 
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3
2

ˆ2
ˆ

2ˆ ˆ( )
2ˆ ˆ2

2ˆ ( )
ˆ ˆ

1 1
ˆ ˆ

mm

x
x

x
h x

x x
x x

e

e
λ

μ

λ μ
μλ

π

λ λ
μ μ

−

⎡ ⎤− −
⎢ ⎥
⎢ ⎥⎣ ⎦

=
⎡ ⎤ ⎡⎛ ⎞ ⎛
⎢ ⎥ ⎢Φ − − Φ − +⎜ ⎟ ⎜
⎢ ⎥ ⎢⎝ ⎠ ⎝⎣ ⎦ ⎣

⎤⎞
⎥⎟
⎥⎠⎦

( ) yE Y

                           (2.12) 

We note that the estimators of  R(x) and h(x)  given in eq.,s (2.9) , (2.10) 

,(2.11) and (2.12) are biased estimators for R(x) and h(x).         

So we need to find new estimator forms to be unbiased estimators for R(x) 

and h(x). 

To derive these estimators we shall use Basu method [5], but before 

describing this method we need the following theorem. 

 

Theorem (2.1)  (Rao-Blackwell theorem) [35] 

 Let X and Y are two independent r.v,s such that μ=

2( ) yVar Y

and 

σ= , let ( ) ( )E y X x Xφ= =

(

, then 

         1- )( ) YE Xφ μ=

(

 

       2- )( ) ( )r X Var YVa φ ≤  

 

2.4.3 Basu Method [5] 

Let be a r.s of size n from a distn. with density 1 2 3( , , ,..., )nX X X X X=

( ; )f x θ , where  1 2( , , 3,..., )dθ θ θ θ=

1d ≥ ˆ ˆ( )Xθ θ=

θ  is a vector of unknown 

parameters, . Let  be a complete sufficient statistic for  θ  and 

let its density be given by ˆ
ˆ( )f θ θ . 

  The r.s 1 2 3( , , ,..., )nX X X X X=   may possibly be thought of as made 

of two independent components (ξ  ) and  1 2 3 1( , , ,..., )nV V V V V −=  
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of sizes 1 and (n - 1) respectively where ξ   may be any one of the ,s
iX  and 

comprises the remaining . If     is the 

M.V.U.E. of  

V ,( 1) ,s
in x i− = (1,2,3,..., )n * *( )Vθ θ=

θ  from  V  , we may find the joint density of ξ  and *θ , and  

hence that of ξ  and θ̂  (which is always possible for the cases under 

consideration) from which the conditional disn.  ( )ˆf ξ θ of ξ  given θ̂  is 

obtained.  

         Now, let ( )XI ξ  be a function defined as the following: 

{ ,( ) ,
0
1

xI X x
ξξ ξ

≤= >

( ) r( ) ( )

                                                                      (2.13) 

Then,  

PE I X x R xX ξ⎡ ⎤ = ≥ =⎣ ⎦ . 

It means that this function is  an unbiased estimator of R(x), hence by 

theorem (2.1) and theorem (1.5), the unique M.V.U.E, of R(x) is: 

( )* ˆ ˆ( ) ) ( )
x

(xR x E f X dI ξ θ ξ θ ξ
∞

⎡ ⎤= =⎣ ⎦ ∫  

Now, we want to apply this method to estimate R(x) for the inverse 

Gaussian distn., by taking three different cases for the parameters of the distn. 

as follows: 

(i) When μ  is unknown and λ  is known. 

(ii) When μ  is known and λ  is unknown. 

(iii) When μ  is unknown and λ  is unknown. 

Now, we shall explain every cases individually: 
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Case(i) The M.V.U.E of R(x) Whenμ  is Unknown and λ is Known.  

To find the M.V.U.E of R(x) when μ  is unknown and λ  is known we 

shall use Basu method as follows: 

Let  be a r.s of  IG(µ,λ) then 1 2 3, , ,..., nX X X X 1

n
i

i
X

n
=
∑

X = ~IG(µ,nλ) is a 

complete sufficient statistic for the parameter µ, so  2
( 1)

n
i

i
X

n
=
∑

=
−

Y ~IG(µ,(n-1)λ) 

is a M.V.U.E  for µ.  

Then, the joint p.d.f of the two independent r.v,s  1X and Y  is: 

1 1 1 2( , ) ( ). ( )f x y f x f y=  

               

2 2
11

1 3 2
12

1

01 ( ) ( 1)( )( , ) exp ,
02

2 ( )
0, .

xn x n yf x y
yx y

x y
e w

λ λ μ μ
μ

π

⎡ ⎤⎧ ⎫ < < ∞− − − − −⎪ ⎪= +⎢ ⎥⎨ ⎬ < < ∞⎪ ⎪⎢ ⎥⎩ ⎭⎣ ⎦

=

   

Now, by using the transformation 1( 1)n Y XX
n

− +
=  we obtain the joint p.d.f 

of 1 ,X X as: 

[ ]

[ ]22
11

1 13 2
1 121 1

( ) ( )( 1) ( )( , ) exp ,0
22 ( )

0, .

n x xn n xf x x x nx
x nx xx nx x

e w

μ μλ λ μ
μπ

⎡ ⎤− − −− − −⎢ ⎥= +
−⎢ ⎥⎣ ⎦−

=

< <

We already know that the p.d.f of the r.v X is: 
3

2
2

2
( )( ) exp , 0

2 2
0, .

n n xg x x x
x

e w

λ λ μ
π μ

− ⎡ ⎤− −
= <⎢ ⎥

⎢ ⎥⎣ ⎦
=

< ∞  

So, the conditional distn. of  X1 given X x=  is: 
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[ ] ( )

1
1

3
22

1
1 13

1 121 1

( , )( )
( )

( 1) ( )( ) exp , 0
22 ( )

0, .

f x xh x x
g x

n n x n x xh x x x nx
x x nx xx nx x

e w

λ λ

π

=

⎡ ⎤− − −
= <⎢ ⎥−⎣ ⎦−

=

<    

Hence, we derive the M.V.U.E of  R(x) as: 

*
1 1( ) ( )

x

R x h x x dx
∞

= ∫  

Now, with some simplification steps, we found that: 

*

( 1)2

1, 0
( ) 0,

2( ) ( ), .
n

nx

x
R x x nx

nw w e w
n

e
λ−⎡ ⎤

⎢ ⎥⎣ ⎦

⎧
⎪

<⎪
⎪= >⎨
⎪
⎪ −⎛ ⎞ ′Φ − − Φ −⎜ ⎟⎪ ⎝ ⎠⎩

                       (2.14) 

 

where 

[ ]
[ ]

[ ]1/ 2 1/ 2
( 2)( ) ,

( ) ( )

nx n xn x xw w
xx nx x nxx nx x

λλ + −− ′= =
− −
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Case(ii) The M.V.U.E of R(x) When μ  is Known and λ  is 

Unknown.  

To find the M.V.U.E of R(x) when μ  is known and λ  is unknown we 

shall use Basu method as follows: 

Let  be a r.s of  IG(µ,λ) then  the statistic T=1 2 3, , ,..., nX X X X ( )2

1

n
i

ii

x
x

μ

=

−∑  

is a complete sufficient statistic for the parameter λ, and from theorem (1.8) 

we have 2
Tλ

μ
~  then if   2

( )nχ ( )2

2

n
i

i

x

i
x

Y
μ

=

−
= ∑  implies that  2

Yλ
μ

~   2
( 1)nχ −

1 nd Y

1 1 1 2( , ) ( ) ( )

Then the joint p.d.f of the two independent r.v,s  X a  is: 

f x y f x f y=  

                                     

3 3 22 112 2
1 2

112

0( )exp ,
0212

2
0, .

n
n

n
n

xxx y y
yxn

e w

λ λ μ
μ

π μ

− −

−

⎡ ⎤⎛ ⎞ < < ∞− −
= +⎢ ⎥⎜ ⎟⎜ ⎟ < < ∞⎢ ⎥− ⎝ ⎠⎛ ⎞ ⎣ ⎦Γ⎜ ⎟

⎝ ⎠
=
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Now, by using the transformation 
2

1

1

X
Y

X
T

μ−
 w

as: 

= + e obtain the joint p.d.f 

of 1,X T

3
3 2 22 2

1 12
1 1 2

1 112
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212

2
0, .

n n

n
n

x t xf x t x t t
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e w
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π μ

−
−

−

⎡ ⎤ ⎡ ⎤− − −
= − <⎢ ⎥ ⎢ ⎥

− ⎣ ⎦⎣ ⎦⎛ ⎞Γ⎜ ⎟
⎝ ⎠

=

μ
<

 

We already know that the p.d.f of the r.v T is: 
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So, the conditional distn. of X1 given T =  is: 
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1
1

1 1
3 2

1
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Consider the inequality 
2

1

1

( )x t
x

μ−
<  

Then,   ( ) ( )
1 1

2 22 2
1

1 12 4 2 4
2 2

t t t x t t tμ μ μ μ
⎡ ⎤ ⎡ ⎤

+ − + < < + + +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

Set, 

 L= ( )
1

2 21 2 4
2

t t tμ μ
⎡ ⎤

+ − +⎢ ⎥
⎢ ⎥⎣ ⎦

  ,   U= ( )
1

2 21 2 4
2

t t tμ μ
⎡ ⎤

+ + +⎢ ⎥
⎢ ⎥⎣ ⎦

 

Hence, we derive the M.V.U.E of  R(x) as: 

 

 

 

Now, with some simplification steps, we found that: 

 

*
1 1( ) ( )

U

L

R x h x x dx= ∫
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*

2
2

,( 1) 1 ,( 1) 1

0,
( ) 1,

4( ) ( ), .
n

t n t n

x U
R x x

tF w F w e w
t

μ
−

− −

⎧
⎪
⎪ >
⎪

= <⎨
⎪
⎪ +⎛ ⎞ ′− − −⎪ ⎜ ⎟

⎝ ⎠⎩

L                 (2.15) 

where  

[ ]
1 12 1/ 22 2

1
,

( )

n x
w w

tx x

μ

μ μ

− +
′= =

⎡ ⎤− −⎣ ⎦

,( 1)t nF −

1/
1( )

( )

n x

tx x

μ− −

⎡ ⎤− −⎣ ⎦

 

and  denotes the c.d.f of student's t distribution with (n-1) degree of 

freedom. 

 

Case(iii)  The M.V.U.E of  R(x) When Both μ and λ  are Unknown 

To find the M.V.U.E of R(x) when μ  is unknown and λ  is unknown 

we shall use Basu method as follows: 

Let  be a r.s of  IG(µ,λ) then  the statistic T=1 2 3, , ,..., nX X X X ( , )X V  where 

X ~ IG(µ,nλ) 
1

1 1n

ii

V
X X

=

⎛ ⎞
= −⎜

⎝ ⎠
∑ ⎟ , are complete sufficient statistic for (µ,λ), 

and from theorem (1.7) we have X and  are stochastically independent, and 

~

V

V 21 ( 1nχ
λ

− ) . Let 2
( 1)

n
i

i
X

n
=
∑

=Y
−

~IG (µ, (n-1) λ) and 

1
2

1 1n

ii

V
X X

λ λ
=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ )~ 2

( 2nχ − , Then the joint p.d.f of the three independent 

r.v,s  1,X Y andV  is: 
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2 24 ( ) ( 1)( )1 1 12 2 2 2121
1 1

3 3
1 1

0
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2 2 02

0, .

n n x vn y
x y

n

x
n vf x y v y
n x y v

e w

μ λλ μ

μλ

π

⎡ ⎤⎧ ⎫− − − −⎪ ⎪⎢ ⎥− + −⎨ ⎬
⎢ ⎥⎪ ⎪⎩ ⎭⎣ ⎦

< < ∞
−

= < < ∞
−⎛ ⎞Γ < < ∞⎜ ⎟

⎝ ⎠
=

 Now, by using the transformations 

 1
1 1 1

1

( 1) ( 1) 1, ,n Y X n nX X X V V
n Y X X

− + −
= = = + + −   

we obtain the joint p.d.f of 1 ,X X and V as: 

[ ]

4
2 21

1
3 3 1 1

1 1

22 2( ) ( )( ) ( )11 1 12 2 ( )1 1 1 12 2
1

1 1

( 1) ( )( , , )
2 ( )2 ( )

2

0
e , ( )0

( )
0, .

n n

n

n x xx n x xv
x nx x x x nx x

n n n x xf x x v v
n x x nx xx nx x

x nx

n x x v
x x nx x

e w

μ μμλ λ

μ

λ

π

−

⎡ ⎤⎧ ⎫ ⎛ ⎞− − −− −⎪ ⎪⎢ ⎥⎜ ⎟− + − −⎨ ⎬⎢ ⎥⎜ ⎟− −⎪ ⎪ ⎝ ⎠⎩ ⎭⎣ ⎦

⎡ ⎤− −
= −⎢ ⎥− −⎛ ⎞ ⎣ ⎦Γ −⎜ ⎟

⎝ ⎠

< <

−
< <

−
=

 

The joint p.d.f of X and V is: 

21 ( )
3 2 2 22

3
01( , ) ,

1 02
2

0, .

n x v
n n

x
n

xn vg x v e
n vx

e w

λ μ λ

μλ
π

⎛ ⎞−⎜ ⎟− −− ⎜ ⎟
⎝ ⎠

⎡ ⎤ >
= ⎢ ⎥− >⎛ ⎞ ⎣ ⎦Γ⎜ ⎟

⎝ ⎠
=

 

So, the conditional distn. of X1 given ( , )T x v= is: 
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1
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1 (2 ) 4 ( 1)

2
xL n vx n n vx nvx

n vx

⎧ ⎫⎪ ⎪⎡ ⎤= + − − +⎨ ⎬⎣ ⎦+ ⎪ ⎪⎩ ⎭
 

[ ] ( )
1

2 2
1 (2 ) 4 ( 1)
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xU n vx n n vx nvx

n vx

⎧ ⎫⎪ ⎪⎡ ⎤= + + − +⎨ ⎬⎣ ⎦+ ⎪ ⎪⎩ ⎭
 

Hence, we derive the M.V.U.E of  R(x) as: 

1
*

1 1( ) ( , )
U

x

R x h x x v dx= ∫  

Now, with some simplification steps, we found that: 

 

*
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                                                                                                                (2.16) 
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3.1 Introduction 

After constructing a mathematical model for the problem under 

consideration, the next step is to derive a solution. There are analytic and 

numerical solution methods. The analytic solution is usually obtained directly 

from its mathematical representation in the form of formula, while the 

numerical solution is generally an approximate solution obtained as a result of 

substitution of numerical values for the variables and parameters of the 

model. Many numerical methods are iterative, that is, each successive step in 

the solution uses the result from the previous step such as Newton’s method 

for approximating the root of non-linear eq.. Two special types of numerical 

methods simulation and the Monte Carlo are designed for a solution of 

deterministic and stochastic problem [21]. 

Simulation in a wide sense is defined as a numerical technique for 

conducting experiments on a digital computer which involve certain types of 

mathematical and logical models that describe the behavior of system over 

extended periods of real time, for example, simulating a football game, 

supersonic jet flight, a telephone communication system, wind tunnel [16], a 

large scale military battle (to evaluate defensive or offensive weapon system), 

or a mainterinance operation (to determine the optimal size of repair crews) 

and a live applications of real equipment in mock combat scenarios or firing 

range, these allow pilots, tank derivers and others soldiers to practice the 

physical activates of a war with their real equipment, etc.   

Whereas simulation in a narrow sense (also called stochastic 

simulation) is defined as experimenting with the model over time, it includes 

sampling stochastic variates from probability distn.. Often simulation is 

viewed as a “Method of Last Resort” to be used when every things else has 

failed. Software building and technical development have made simulation 
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one of the most widely used and accepted tools for designers in the system 

analysis and operation research. 

This chapter involves six sections. In section (3.2) we gave a historical 

review on Monte-Carlo simulation. In section (3.3) we discussed the random 

numbers generation. In section (3.4) introduced two methods to generate 

random variates from continuous probability distn., namely Acceptance-

Rejection method and transformation with multiple root method, in section 

(3.5) these two methods  applied together with Box and Muller method  on 

three procedures for generating random variates from inverse Gaussian distn.. 

In section (3.6), the simulated inverse Gaussian samples are observed in 

section (3.5) used to estimate the distribution parameters, reliability function, 

and hazard function by  three methods given in section (2.4) of chapter two.  

 

3.2 Monte Carlo Simulation 

The Monte Carlo method provides approximate solutions to a variety of 

mathematical problems by performing statistical sampling experiments on a 

digital computer. The method applies to problems with no probabilistic 

content as well as to those with inherent probabilistic structure. Among all 

numerical methods that rely on N-point evaluations in M-dimensional space 

to produce an approximate solution, the Monte Carlo method has absolute 

error of estimate that decreases as N-1/2 whereas, in the absence of exploitable 

special structure all others have errors that decrease as N -1/M at best.[21] 

 The method is called after the city in the Monaco principality, because 

of a roulette, a simple random number generator. The name and the 

systematic development of Monte Carlo methods dates from about 1944.[30] 

  There are however a number of isolated and undeveloped instances on 

much earlier occasions. For example, in the second half of the nineteenth 
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century a number of people performed experiments, in which they threw a 

needle in a haphazard manner onto a board ruled with parallel straight lines 

and inferred the value of π = 3.14… from observations of the number of 

intersections between needle and lines. An account of this playful diversion 

(indulged in by certain Captain Fox, amongst others, whilst recovering from 

wounds incurred in the American Civil War) occurs in a paper Hall (A. 

HALL 1873. " On an experimental determination of π").[16] 

In 1899 Lord Rayleigh use simulation and show that a one-dimensional 

random walk without absorbing barriers could provide an approximate 

solution to a parabolic differential equation [37]. In early part of the twentieth 

century, British statistical schools indulged in a fair amount of 

unsophisticated Monte Carlo work. Most of this seems to have been of 

didactic character and rarely used for research or discovery. Only on a few 

rare occasions was the emphasis on original discovery rather than comforting 

verification. In 1908 Student (W.S. Gosset) used experimental sampling to 

help him towards his discovery of the t-distribution and the estimate of its 

correlation coefficient [16]. Kolmogorov (1931) showed the relationship 

between Markov stochastic processes and certain integro-differential 

equations [30]. The real use of Monte Carlo methods as a research tool stems 

from work on the atomic bomb during the second world war, this work 

involved a direct simulation of the probabilistic problems concerned with 

random neutron diffusion in fissile material; but even at an early stage of 

these investigations, Von Neumann and Ulam refined this particular " Russian 

roulette" and "splitting" methods. About 1948 Fermi, Metropolis, and Ulam 

obtained Monte Carlo estimates for the eigenvalues of Schrodinger 

equation[33]. Shortly thereafter Monte Carlo methods used to evaluate 

complex multidimensional integrals, stochastic problems, and deterministic 

problems if they have the same formal expressions as some stochastic 
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process. Also Monte Carlo method is used for solution of certain integrals and 

differential equations, sampling of random variates from probability distn.,s, 

and for analyzing complex problem (such as radiation transport to rivers).     

Useful references related to Monte Carlo simulation by James E. 

Gentle(2003) [21] and George S. Fishman (1996) [16]. 

 

3.3 Random Number Generation 

Many techniques for generating random numbers on digital computer 

by Monte Carlo method and simulation have been suggested, and used in 

recent years. Some of these methods are based on random phenomena, others 

on deterministic recurrence procedures. 

Initially manual methods were used to generate, a sequence of numbers 

such as coin flipping, dice rolling, card shuffling, and roulette wheels, but 

these methods were too slow for general use and moreover the generated 

sequence of such methods could not reproduced .           

With the computer aid it become possible to obtained random numbers. 

In (1951) Von Neumann suggested the mid-square method using the 

arithmetic operations of a computer [44]. His idea was to take the square of 

the preceding random number and extract the middle digits. For instance, 

suppose we wish to generate 4-digits numbers. 

1−Choose any 4-digits to generate 4-digits numbers, say 3201. 

2−Square it, to have 10246401. 

3−The next 4-digits numbers is the middle 4-digit in step (2), that is 

     2464. 

4−Repeat the process.           
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  This method proved slow and awkward for statistical analysis, 

furthermore the sequence tend to cyclicity, and once a zero is encountered the 

sequence terminates. 

One method of generating random numbers on digital computer was 

published by RAND Corporation (1955), consist of preparing a table of  

million random digits stored in the computer memory [36]. The advantage of 

this method is reproducibility and its disadvantage, was it’s slow and the risk 

of exhausting the table. 

We say that, the random numbers generated by any method is a “good” 

one if the random numbers are uniformly distributed, statistically independent 

and reproducible, more over the method is necessarily fast and requires 

minimum capacity in the computer memory. 

The Congruential methods for generating pseudorandom numbers are 

designed specifically to satisfy as many of these requirements as possible. 

These methods produce a nonrandom sequence of numbers according 

to some recursive formula based on calculating the residues module of some 

integer m of a linear transformation. The Congruential methods are based on a 

fundamental congruence relationship, which may be formulated as:    

 ( )( )1 modi iX aX c+ = + m 1,2,...,i, m= .                                     (3.1) 

where a is the multiplier, c is the increment , and m is the modulus (a, c, m are 

non-negative integers), (mod m) mean that eq.(3.1) can be written as: 

                                                       (3.2) [ ]1i iX aX c m+ = + − z

where [ ] iaX cz
m
+⎡= ⎢⎣ ⎦

⎤
⎥ is the greater integer in z. 

Given an initial starting value  with fixed values of a, c and m, then 

eq. (3.2) yields congruence relationship (modulo m) for any values i of the 

1X
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sequence {Xi}. The seq. { }iX

4=

 will repeat itself in at most m steps and will be 

therefore periodic. 

For example: 

Let , and 1a c X= = 9m = ,then the sequence obtained from the 

recursive formula 

( )( )1 4 4i iX X+ = + mod 9  is 4,2,3,7,5,6,10,4..., 1,2,3,...iX i= =  . 

The random number on the unit interval [0,1] can be obtained by:  

i
i

XU
m

= , i 1,2,...,m=                                                                  (3.3) 

It follows from eq.(3.3) that iX m≤ , i∀ , this inequality mean that the 

period of the generator cannot exceed m, that is, the sequence { }iX  contains 

at most m distinct numbers. So we should choose m as large as possible to 

ensure, a sufficiently large sequence of distinct numbers in the cycle. 

It is noted in the literature, [30] that good statistical result can be 

achieved from computers by choosing a 7 12 +=  , c 1=  , and m .   352=

  

3.4 Random Variates Generation From Continuous Distribution   
Many methods and procedures are proposed in the literature for 

generating random variates from different distn. We shall utilize two methods 

namely, Acceptance-Rejection method  and Transformation with multiple 

root method. 

 

3.4.1 Acceptance-Rejection Method 

This method is due to Von Numann [44]. This method can be applied 

to generate variable from an appropriate distn. and subjecting it to a test to 

determine whether or not it will be acceptable for use.    
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To carry out the method, we represent the p.d.f. ( )f x  of the generated 

r.v X as ( ) ( ) ( )f x c h x g x=  where , h(x) is also a p.d.f. and 1c ≥

( )0 g x≤ 1≤  . Then we generate two r.v,s U and Y from  and h(y), 

respectively, and test to see whether or not the inequality 

(0,1

(

)U

)U g Y≤  holds. 

1- If the inequality holds, then accept Y=X as a variate generated from 

         ( )f x  . 

2- If the inequality is violated, reject the pair U, Y and try again. 

Theorem (3.1) [44]: 

Let X be a random variable distributed with the p.d.f. ( )f x  ,  x I∈ , 

which is represented as ( ) ( ) ( )f x c h x g x=  where , h(x) is also a p.d.f. 

and 

1c ≥

( )0 1g x≤ ≤  . 

Let U and Y be a distributed ( )0,1U and h(y), respectively, then 

( ) ( )Pr Y x U g Y f x⎡ ⎤= ≤ =⎣ ⎦ . 

Proof: 

( ) ( )
( )

( )
( )

Pr ,
Pr

Pr

Pr

Pr ,
x

Y x U g Y
Y x U g Y

U g Y

Y x U g Y

Y x U g Y dx

= ≤⎡ ⎤⎣ ⎦⎡ ⎤= ≤ =⎣ ⎦ ≤⎡ ⎤⎣ ⎦
⎡ ⎤= ≤⎣ ⎦=

= ≤⎡ ⎤⎣ ⎦∫

 

Using Bayes theorem, we have: 

( ) ( )( ) ( )
( ) ( )

Pr Pr
Pr

Pr , Pr
x

U g Y Y x Y x
Y x U g Y

U g Y Y x Y x dx

≤ = =
⎡ ⎤= ≤ =⎣ ⎦ ≤ = =⎡ ⎤⎣ ⎦∫

 

Since, 

( ) ( ) ( )Pr PrU g Y Y x U g x g x≤ = = ≤ =⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦  and ( ) ( )Pr Y x h x= =   



 
Chapter  Three                                                                                                                                                     Monte-Carlo Application

 67

Therefore ; 

( ) ( ) ( )
( ) ( )

( ) ( )
( )

( ) ( )Pr 1
g x h x g x h x g x h x

Y x U g Y
f xg x h x dx

⎡ ⎤= ≤ = = =⎣ ⎦ ∫x
x

dx cc∫
 

                                         ( ) ( )c h x g x= .    

The efficiency of Acceptance-Rejection Method is to determined by the 

inequality ( )U g Y≤  where efficiency= ( ) 1Pr U g Y p
c

≤ = =⎡ ⎤⎣ ⎦ . 

Because the trails are independent, the probability of success in each 

trials is 1p
c

= . The number of trials N before a successful pair (U,Y) has 

geometric distn. with p.d.f.  

( ) ( ) 1Pr 1 , 1,2,3,...
0 , . .

nN n p p n
e w

−= = − =

=
 

With the expected number of trails ( ) 1E N c
p

= = .  

The AR-Algorithm describes the necessary steps of generating a 

random variable by Acceptance-Rejection Method. 

AR-Algorithm: 

1- Generate U from ( )0,1U . 

2- Generate Y from h(y). 

3- If ( )U g Y≤ , deliver (we accept) Y=X as a random variable                      

generated from the p.d.f. ( )f x . Go to step (5).        

4- Else go to step (1). 

5- Stop. 

We note that, for the acceptance-rejection method to be practiced 

interest, the following criteria must be used. 
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a- It should be easy to generate from h(x). 

b- The efficiency (probability) of the procedure 1
c

 should be large, that is, 

c closed to one. 

 

3.4.2 Transformation with multiple root method [23] 

Consider the problem of generation of a random vector X where 

                                                 g(X) = V                                                     (3.4) 

and a value of x is sought for each value of v that is generated. 

When a single-valued inverse does not exist, more than one value of x 

satisfies (3.4). 

For a specific roots of (3.4) denoted 1 2 3, , ,..., kx x x x . The problem is how to 

determine the multinomial probabilities for choosing each of the k roots. 

If X and V are discrete random variables then probability can be associated 

with each of k roots. The conditional probability with which the ith root should 

be chosen, 0( )ip v , is easily seen to be 

 

0 0( ) (i i )p v p X x V v= = =   

           0

0

( , ) (
( )

( )

i i
k

j
j i

p X x V v p X x
p V v

)

p X x
=

= = =
= =

=
=∑

                                          (3.5) 

  For the continuous case, a similar expression will be developed for an 

interval about v0, Then the limit will be taken as the interval shrinks to the 

point v0, the result is not generally a simple ratio of the likelihood of the ith 

root to the sum of the likelihoods of the k roots. 

Suppose X and V are absolutely continuous random variables. Let f(x) 

and F(x) denote the p.d.f and c.d.f of X, respectively. Let g be such that the 
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first derivative of g, , exists, are continuous, and nonzero, except on a 

closed set of values for X with probability zero. Consider the 

interval , where h > 0. According to the inverse function 

theorem, for h sufficiently small, the inverse image of  is 

comprised of k disjoint intervals about the k distinct roots. Let the interval 

containing the ith root, xi , be denoted (yi1, yi2). If p(v0) is the probability with 

which an observation should be chosen from the ith interval given that V is in 

the interval , then, similar to (3.5) 

g ′

)h+

0v

0 0( ,v h v−

0( ,v h−

0 0( ,v h v h− + )

)h+

[ ]

1 2 1 2
0

1 2 1
1 1

( ) ( ) (( )

( ) ( )

h i i i i
i k k

i i i
j j

P y X y F y F yp v

P y X y F y F y
= =

< < −
= =

< < −∑ ∑ 2

)

( )i

 

Since selection is to be made among the k points 1 2 3, , ,..., kx x x x  

(having observed the point v0), and these points are the limits 

1 20
lim ( , )j jh

y y x
→

⎡ ⎤ j=⎣ ⎦  and  [ ]0 00
lim ( , )
h

v h v h v
→

0− + =  then 

0 0
( ) lim ( )h

i h 0ip v p
→

⎡= ⎣ v ⎤
⎦  will yield the conditional probability with which the 

ith root should be selected. Hence  

0 00
1

2 1

0 2 11,

( ) lim ( )

( ) ( )
1 lim

( ) ( )

h
i ih

k
j j

h i ij j i

p v p v

F y F y
F y F y

→
−

→
= ≠

⎡ ⎤= ⎣ ⎦

⎧ ⎫−⎡ ⎤⎪ ⎪= +⎨ ⎬⎢ ⎥−⎣ ⎦⎪ ⎪⎩ ⎭
∑

 

                          

[ ]

1
2 1 2 12 1

0 2 1 2 1 2 11,

( ) ( ) ( )( )
1 lim .

( ) ( ) ( ) ( )

k
j j j jj j

h i i i i i ij j i

F y F y y yy y h
y y h F y F y y y

−

→
= ≠

⎧ ⎫⎡ ⎤⎡ ⎤− −−⎪ ⎪⎣ ⎦⎢ ⎥= +⎨ ⎬− − −⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
∑  



 
Chapter  Three                                                                                                                                                     Monte-Carlo Application

 70

1

0
1,

( )( )( ) 1 .
( ) ( )

k
ji

i
j ij j i

f xg xp v
g x f x

−

= ≠

⎧ ⎫′⎪= +⎨ ′⎪ ⎪⎩ ⎭
∑ ⎪

⎬                                                            (3.6) 

To generate random variates from inverse Gaussian distribution we 

shall use the transformation with multiple root method in follows: 

Let the r.v ~X ( , )IG μ λ  then from theorem (1.5.1) we have: 

              
2

2

( )( )
2
XV g x

X
λ μ

μ
−

= = ~ 2
(1)χ                                                     (3.7) 

Observations from 2
(1)χ  are easily generated as the squares of standard 

normal variates. For each chi-square variate,  , we must solve (3.7) for x to 

obtain a corresponding observation from the inverse Gaussian distribution. 

For any >0 there are exactly two roots of the associated quadratic eq. which 

can always be expressed as  

0v

0v

2
2 20

1 0 04
2 2

vx v vμ μμ μλ μ
λ λ

= + − +   and   
2

2
1

x
x
μ

=  

Since the relationship which exists between the roots of any quadratic 

equation implies here that 2
1 2 .x x μ=  

The difficulty in generating observations with the inverse Gaussian 

distribution now lies in choosing between the two roots. From (3.5)  we have, 

1x  should be chosen with the probability  

1
1 2

1 0 2 0
2 1

( ) ( )( ) 1 ( ) 1 .
( ) ( )

g x f xp v p v
g x f x

−
⎧ ⎫′⎪ ⎪= − = +⎨ ⎬′⎪ ⎪⎩ ⎭

  

By using eq.(1.1) we have  
3

2 1

1

( )
( )

f x x
f x μ

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

       and      
2 2

1 1

2 1 2 1

( ) ( )
( ) ( )

g x g x
g x x g x x

μ μ⎛ ⎞ ⎛ ⎞′ ′
= − ⇒ =⎜ ⎟ ⎜ ⎟′ ′⎝ ⎠ ⎝ ⎠
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Hence the smaller root, 1x , should be chosen with the probability 

                                  1 0
1

( )p v
x

μ
μ

=
+

                                                       (3.8) 

So for each random observation from 2
(1)χ ,  , the smaller root calculated. 

An auxiliary Bernoulli trail is then preformed with 

0v

1 0
1

( )p v
x

μ
μ

=
+

. If the 

trail results in a '' success'', 1x  is chosen; otherwise the larger root 
2

2
1

x
x
μ

= , is 

chosen. So the algorithm of generating random variates from inverse 

Gaussian distn. by using transformation with multiple roots can be illustrated 

as follows: 

Multiple roots algorithm: 

     1- Read µ, λ. 

     2- Generate X from N(0,1).   

3-Set Z=X2. 

4- Set 
2

2 2
1 4

2 2
ZV Zμ μμ μλ
λ λ

= + − + Zμ . 

5- Generate U3 from ( )0,1U . 

6- If  U3< 
1V

μ
μ +

  Deliver V=V1  as a r.v. generated from IG(µ,λ). 

      7- Else deliver  
2

1
V

V
μ

=  as a r.v. generated from IG(µ,λ). 

 8- Stop.  

The problem now is how to generate a r.v. from N(0,1).  So we shall use three 

different procedures for generating r.v.,s from N(0,1) as follows: 
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3.5 Procedures for Generating Random Variates for inverse     

Gaussian Distribution 

  In this section we shall consider three different procedures to generate 

random variates from the inverse Gaussian distn. 

 

3.5.1 Procedure (IG-1): 

The procedure is based on Acceptance-Rejection method to generate 

standard normal variates and the transformation with multiple root method to 

generate inverse Gaussian variate as follows: 

The p.d.f. of r.v. ∼X ( )0,1N  is  

( )
2

21 ,
2

x

f x e x
π

−
= −∞ < < ∞  where we make use the inequality 

2

2
2

2
1

x

e
x

−

≤
+

 . 

To apply the Acceptance-Rejection method, we need to write the p.d.f. as 

( ) ( ) ( )f x c h x g x=  as shown in section (3.4.1). 

Now, we consider the inequality 
2

2
2

2
1

x

e
x

−

≤
+

⇒

2

2
2

1 1
2 2 1

x

e 2
xπ π

−

≤
+

, then 

( ) ( )
2

2
2

1 1 2
2 2 1

x

f x e
x

ϕ
π π

−
= ≤ = x

+
 . 

( ) ( ) ( ) ( )2
2 2

2 1
c h x x c x dx dx c

x
ϕ ϕ π

π

∞ ∞

−∞ −∞

= ⇒ = = ⇒ =
+∫ ∫  .  
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( ) ( )
( ) ( )

2
2 21 1

2

xf x
g x x e

xϕ
−

= = + , where ( )0 1g x≤ ≤ . 

Set   ⇒  ( )2u H y= ( )1
2

1 tan
2

u y−= +  implies 2
1tan
2

y uπ⎡ ⎤⎛ ⎞= −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
. 

The efficiency (probability) of the method is equal to 1 1 0.40
2π

= ≈
c

 

And the number of trials equal to 2 2.51c  π= ≈

Algorithm (IG-1) 

1- Read µ, λ. 

2- Generate U1 and U2 from ( )0,1U  . 

3- Set 2
1tan
2

Y uπ⎡ ⎤⎛ ⎞= −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 . 

5- If U1>g(Y) go to step (2). 

6- Else set X=Y as a r.v. generated from ( )0,1N . 

7- Set  Z=X2. 

8- Set 
2

2 2
1 4

2 2
ZV Zμ μμ μλ
λ λ

= + − + Zμ . 

9- Generate U3 from . ( )0,1U

10- If  U3< 
1V

μ
μ +

  deliver V=V1  as a r.v. generated from IG(µ,λ). 

     11- Else deliver  
2

1
V

V
μ

=  as a r.v. generated from IG(µ,λ) 

     12- Stop. 
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3.5.2 Procedure (IG-2): 

       This Procedure due to Box and Muller (1958) [6], where the inverse 

Gaussian variates is generated by utilizing the standard normal distn.  

If U1 and U2 is a r.s. of size 2 from ( )0,1U  , then the r.v.’s  

( ) ( ) ( ) (
1 1
21 1 2 2 12ln cos 2 , 2ln sin 2X U U X U Uπ π= − = − )2 2 represent a r.s. 

of size 2 from ( )0,1N . 

Since, the joint distn. of U1 and U2 are: 

( )1 2, 1,0 1, 1,2 .
0, . .

ig u u u i
e w

= < < =

=
 

The function ( ) ( ) ( ) ( )
1 1
2 21 1 2 2 12ln cos 2 , 2ln sin 2X U U X U Uπ π= − = − 2 is 

defined ( )1 1−  transformation that maps ( ){ }1 2, : 1, 1,2u u o x i= < <A = on 

to the space ( ){ }1 2, : ix x x i= −∞ < < , 1,2∞ =B with inverse transforms  

( ) ( ) ( ) ( )
( ) ( )

2 2 2 2
1 2 1 2 1 2

2 2
1 2 2

2 2 1 1
1 2 1 2

2

2ln cos 2 2ln sin 2

2ln cos 2 sin 2

12ln tan
2

x x u u u

u u u

xx x u u
x

π π

π π

π
−

+ = − + −

⎡ ⎤= − +⎣ ⎦
⎛ ⎞

+ = − ⇒ = ⎜ ⎟
⎝ ⎠

u

 

with Jacobin transformation    

   ( )
( )

( ) ( )

( )

1 12 2 2 2
1 2 1 22 2

1 2

21 2
2
1 11 2

2 2
1 2

2 1

1 2 2
1 22

1,
1 1,

2 2
1 1

1
2

x x x x

x x

x e x e

xu u
J x xu u

x x
x x

e

π π

π

− + − +

− +

− −

⎛ ⎞− ⎛ ⎞∂ ⎜ ⎟= = ⎜ ⎟
∂ ⎝ ⎠ ⎝

⎛ ⎞ ⎛ ⎞
+ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

−
=

⎠  

 Then, the joint distn. of X1 and X2 is: 
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( ) ( )

( )

1 2 2
1 2 1 22

1 2
1

2 2
1 2

1, , tan
2

1 , ,
2

x x

x x

x

1,2 .

f x x g e J
x

e x i

π

π

− + −

− +

⎛ ⎞⎛ ⎞
⎜ ⎟= ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

= −∞ < < ∞ =

 

( )1 2,X X X=
∼

 distributed as a r.v. vector of size 2 from ( )0,1N ., and we 

shall use the Transformation with multiple root method to generate inverse 

Gaussian variates. 

  Algorithm IG-2 
1) Generate 1U  and 2U  from (0,1)U . 

2) Set )2Uπ , )2Uπ . ( ) (1/ 2
1 12ln cos 2X U= − ( ) (1/ 2

2 12ln sin 2X U= −

3) Deliver 1 2)( ,X X X=  as a random vector of size 2 generated from 

(0,1)N . 

4) Set  2 2
1 1 2 2,Z X Z X= =    

5) Set   
2

2 21
11 1 14

2 2
ZV Z Zμ . μ μμ μλ
λ λ

= + − +

6) Set   
2

2 22
21 2 24

2 2
ZV Zμ μμ μλ
λ λ

= + − + Zμ  

7) Generate U3 from ( )0,1U . 

8) If  U3< 
11V

μ
μ +

  set V1=V11 , else set  
2

1
11

V
V
μ

=  

9) If  U3< 
21V

μ
μ +

  set V2=V21 , else set  
2

2
21

V
V
μ

=  

10)  Deliver 1 2  as a random vector of size 2 generated from     

IG(µ,λ). 
( , )V V V=

11) Stop. 
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3.5.3 Procedure (IG-3): 

    This procedure is based on Acceptance-Rejection method, where the 

Inverse Gaussian variate is generated by utilizing the standard normal distn. 

as follows: 

Since the standard normal distribution is symmetric about origin, then the 

p.d.f. of r.v. X ∼ ( )0,1N +  can be written as: 

( )
2

220 , 0

0 , . .

x

f x x e x

e w
π

−
> = < < ∞

=

 

where we use of inequality ( )21 0x − ≥ .  

To apply the Acceptance-Rejection method, we need to write the p.d.f. as 

( ) ( ) ( )f x c h x g x=  as shown in section (2.4.3). 

 Now, we consider the inequality ( )21 0x − ≥ ⇒ 2 2 1 0x x− + ≥            

⇒

2 12
2 21

2 2

x xx x e e
− −−

≤ − ⇒ ≤  

then ( )
2 1

2 22 2 2x x xee e e ϕ
π π π

− − −≤ = = x . 

( ) ( ) ( )
0 0

2 xec h x x c x dx e dxϕ ϕ
π

∞ ∞
−= ⇒ = =∫ ∫  implies 2ec

π
=   

( ) ( ) , 0

0, . .

xx
h x e x

c
e w

ϕ −= = < <

=

∞

0

 

( ) ( ) ( )
0

0 ,

Pr 1 ,0
1 ,

x

x

H x X x h t dt e x
x

∞
−

≤⎧
⎪

= ≤ = = − < <⎨
⎪ →∞⎩

∫ ∞  
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( ) ( )
( )

( )21
2

xf x
g x e

xϕ

−
−

= =  where ( )0 1g x< < . 

Set ( )2u H y=  ⇒ 2 1 yu e −= − ⇒y= ( )2ln u− . 

The efficiency (probability) of the method is equal to 1 0.76
2c e
π

= ≈  and 

the number of trails equal to 2 1.32ec  
π

= ≈

Algorithm (IG-3): 

1- Read µ, λ.  

2- Generate U1 and U2 from ( )0,1U . 

3- Set ( )2lnY u= − . 

4- If U1>g(Y) go to step (2) . 

5- Generate U3 from ( )0,1U  . 

6- If 3
1
2

U <  set X= Y as a r.v. generated from − ( )0,1N −  . Go to              

    step(7). 

7- Else set X=Y as a r.v. generated from ( )0,1N + . 

8- Set  Z=X2. 

9- Set 
2

2 2
1 4

2 2
ZV Zμ μμ μλ
λ λ

= + − + Zμ . 

10- Generate U4 from ( )0,1U . 

11- If  U4< 
1V

μ
μ +

  deliver V=V1  as a r.v. generated from IG(µ,λ). 

      12- Else deliver  
2

1
V

V
μ

=  as a r.v. generated from IG(µ,λ). 

 13- Stop. 
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3.6 Monte Carlo Applications 

In this section we shall utilize Monte Carlo method for estimate the 

parameters of inverse Gaussian distribution namely moment method and 

maximum likelihood method as given in sections (1.4.1.1) and (1.4.1.2) of 

chapter one, The simulated inverse Gaussian samples are observed by monte 

carlo method according to the three procedures given in sections (3.5.1), 

(3.5.2) and (3.5.3) seperatelly. These estimators are used to estimate the 

reliability and the hazard functions by three methods given by section (2.4) of 

chapter two. 

 

3.6.1 Application of Estimation of Pararameter 
In this section we shall use the three procedures given in sections 

(3.5.1), (3.5.2) and (3.5.3) to estimate the parameters of the inverse gaussian 

distn.  

 

3.6.1.1 Application of Procedure (IG-1) 
A computer program for procedure (IG-1) of section (3.5.1) was made 

to generate the IG(1,1) varaites is shown in program (1) of Appendix (A). 

Sample size n=5(1)10(2)20(5)30 are taken. For high accuracy the procedure 

repeats itself 500 times and the results of estimators together with the bias is 

display in table (3.1). we find practically that the efficiency of this procedure 

equal to 0.3998. 
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Table (3.1) 

Parameters estimation using procedure (IG-1) 

n Moment method Maximum likelihood method 

μ̂  Bias 

μ̂  
λ̂  

Bias 

λ̂  

μ̂  Bias μ̂  λ̂  
Bias 

λ̂  

5 1.031 0.013 1.996 0.996 1.031 0.013 1.02 0.02 

6 0.99 0.01 1.834 0.834 0.99 0.01 1.072 0.072 

7 0.99 0.01 1.454 0.454 0.99 0.01 1.023 0.023 

8 0.991 0.009 1.442 0.442 0.991 0.009 0.989 0.011 

9 0.991 0.009 1.44 0.44 0.991 0.009 0.996 0.004 

10 1.005 0.005 1.381 0.381 1.005 0.005 0.965 0.035 

12 0.991 0.009 1.34 0.34 0.991 0.009 0.968 0.032 

14 0.991 0.009 1.28 0.82 0.991 0.009 1.033 0.033 

16 0.993 0.007 1.317 0.317 0.993 0.007 0.982 0.018 

18 1.001 0.001 1.206 0.206 1.001 0.001 0.991 0.009 

20 0.999 0.001 1.261 0.261 0.999 0.001 0.976 0.024 

25 0.998 0.002 1.237 0.237 0.998 0.002 1.003 0.003 

30 1.002 0.002 1.192 0.192 1.002 0.002 1.009 0.009 
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3.6.1.2 Application of Procedure ( )2IG −  

A computer program for procedure (IG-2) of section (3.5.2) was made 

to generate the IG(1,1) varaites is shown in program (2) of Appendix (A). 

Sample size n=5(1)10(2)20(5)30 are taken. For high accuracy the procedure 

repeats itself 500 times and the results of estimators together with the bias is 

display in table (3.2). 
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Table (3.2) 

Parameters estimation using procedure (IG-2) 

 

n 

Moment method Maximum likelihood method 

μ̂  Bias 

μ̂  
  λ̂  

Bias 

λ̂  

μ̂  Bias 

μ̂  
λ̂  

Bias 

λ̂  

5 0.981 0.019 1.656 0.656 0.981 0.019 0.934 0.066 

6 0.983 0.017 1.576 0.576 0.983 0.017 0.942 0.058 

7 1.027 0.027 1.526 0.526 1.027 0.027 0.987 0.013 

8 1.027 0.027 1.358 0.358 1.027 0.027 0.982 0.018 

9 1.015 0.015 1.296 0.296 1.015 0.015 1.033 0.033 

10 0.993 0.007 1.286 0.286 0.993 0.007 0.997 0.003 

12 1.01 0.01 1.286 0.286 1.01 0.01 1.012 0.012 

14 1.006 0.004 1.263 0.263 1.006 0.004 0.992 0.008 

16 0.993 0.007 1.25 0.25 0.993 0.007 1.01 0.01 

18 0.999 0.001 1.225 0.225 0.999 0.001 1.01 0.01 

20 1.008 0.008 1.222 0.222 1.008 0.008 0.992 0.008 

25 0.998 0.002 1.208 0.208 0.998 0.002 1 0 

30 1.001 0.001 1.136 0.136 1.001 0.001 1.002 0.002 
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3.6.1.3 Application of Procedure ( )3IG −  

A computer program for procedure (IG-3) of section (3.5.3) was made 

to generate the IG(1,1) varaites is shown in program (3) of Appendix (A). 

Sample size n=5(1)10(2)20(5)30 are taken. For high accuracy the procedure 

repeats itself 500 times and the results of estimators together with the bias is 

display in table (3.3). we find practically that the efficiency of this procedure 

equal to 0.7599. 
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Table (3.3) 

Parameters estimation using procedure (IG-3) 

 

n 

Moment method Maximum likelihood method 

 

μ̂  

Bias 

μ̂  

 

λ̂  

Bias 

λ̂  

 

μ̂  

Bias 

μ̂  

 

λ̂  

Bias 

λ̂  

5 0.986 0.014 1.764 0.764 0.986 0.014 1.103 0.103 

6 0.987 0.013 1.683 0.683 0.987 0.013 0.938 0.062 

7 0.988 0.012 1.566 0.566 0.988 0.012 0.937 0.063 

8 1.012 0.012 1.502 0.502 1.012 0.012 0.981 0.019 

9 0.993 0.007 1.404 0.404 0.993 0.007 1.044 0.044 

10 0.996 0.004 1.355 0.355 0.996 0.004 1.027 0.027 

12 1.009 0.009 1.336 0.336 1.009 0.009 1.027 0.027 

14 1.011 0.011 1.329 0.329 1.011 0.011 0.985 0.015 

16 0.989 0.011 1.312 0.312 0.989 0.011 0.985 0.015 

18 1.009 0.009 1.308 0.308 1.009 0.009 0.991 0.009 

20 1.007 0.007 1.221 0.221 1.007 0.007 0.995 0.005 

25 1.008 0.008 1.218 0.218 1.008 0.008 0.996 0.004 

30 1.001 0.001 1.181 0.181 1.001 0.001 1.002 0.002 
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3.6.2 Application of Estimation of reliability and hazard functions 
In this section we shall use the estimators in section (3.6.1) to estimate 

the reliability and the hazard functions. 
 

 

3.6.2.1 Application of Procedure (IG-1) 

 

  The estimators in table (3.1) are used to find the estimates of the 

reliability and the hazard functions by three methods given in section (2.4), 

the result is display in tables (3.4) and (3.5), the biased of the estimators 

shown in tables (3.6) and (3.7). 
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Table (3.4) 

Estimation of R(x) using procedure (IG-1) 

 

 

 

n 
Estimation of ˆ ( )R x  

True 

value 

M.L.M M.M Basu (i) Basu (ii) Basu (iii)

5 0.4957 0.4969 0.5513 0.5317 0.501 0.4968 

6 0.4959 0.4923 0.5458 0.5246 0.4772 0.4991 

7 0.5038 0.4972 0.534 0.5322 0.4486 0.5024 

8 0.499 0.5065 0.5545 0.5221 0.5295 0.5025 

9 0.5021 0.4999 0.5315 0.519 0.5064 0.5016 

10 0.4962 0.5002 0.5294 0.5195 0.4822 0.5001 

12 0.5023 0.503 0.5219 0.5161 0.5042 0.5022 

14 0.5018 0.4984 0.5288 0.5137 4886 0.4997 

16 0.5007 0.5034 0.5204 0.5143 0.4972 0.5034 

18 0.5008 0.5015 0.5225 0.5108 0.4978 0.5005 

20 0.5013 0.499 0.5221 0.5083 0.4913 0.5003 

25 0.4975 0.4989 0.5178 0.5059 0.5014 0.4987 

30 0.5038 0.4991 0.5153 0.5073 0.5052 0.5003 
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Table (3.5) 

Estimation of h(x) using procedure (IG-1) 

 

 

 

n 
Estimation of h x  ˆ( )

True 

value 

M.L.M M.M Basu (i) Basu (ii) Basu (iii) 

5 0.7793 0.7523 0.9213 0.7059 0.7575 0.7566 

6 0.8186 0.829 0.9941 0.7832 0.861 0.823 

7 0.7834 0.7626 0.8562 0.7124 0.8451 0.7648 

8 0.8019 0.8224 0.9832 0.7979 0.7867 0.8198 

9 0.8153 0.8263 0.9173 0.7959 0.8157 0.8236 

10 0.7805 0.7728 0.8493 0.7441 0.8016 0.7767 

12 0.8038 0.8129 0.8846 0.7923 0.8111 0.8105 

14 0.8028 0.8005 0.8852 0.7767 0.8165 0.8015 

16 0.7877 0.7827 0.8295 0.7631 0.7894 0.7859 

18 0.7989 0.8021 0.8581 0.7874 0.8081 0.8007 

20 0.8084 0.8126 0.8758 0.7977 0.8253 0.8104 

25 0.7974 0.7953 0.8468 0.7861 0.7932 0.7962 

30 0.8062 0.8158 0.8476 0.7927 0.7961 0.8038 
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Table (3.6) 

Bias of Estimator ( )ˆ ( )R x  

 

n 
Bias of Estimator ( )ˆ ( )R x  

M.L.M M.M Basu (i) Basu (ii) Basu (iii) 

5 0.0011 0.0556 0.0058 0.0052 0.0011 

6 0.0036 0.0499 0.0287 0.0187 0.0033 

7 0.0066 0.0302 0.0284 0.0552 0.0014 

8 0.0075 0.0555 0.0231 0.0305 0.0035 

9 0.0022 0.0294 0.0169 0.0043 0.0005 

10 0.004 0.0333 0.0233 0.014 0.0039 

12 0.0007 0.0268 0.0138 0.0018 0.0001 

14 0.0034 0.027 0.0118 0.0132 0.0022 

16 0.0027 0.0197 0.0135 0.0036 0.0027 

18 0.0006 0.0216 0.01 0.0031 0.0003 

20 0.0023 0.0208 0.0069 0.0101 0.001 

25 0.0014 0.0203 0.0084 0.0039 0.0012 

30 0.0048 0.0114 0.0035 0.0013 0.0035 
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Table (3.7) 

Bias of Estimator ( )ˆ( )h x  

 

n 
Bias of Estimation ( )ˆ( )h x  

M.L.M M.M Basu (i) Basu (ii) Basu (iii) 

5 0.027 0.1438 0.0734 0.0218 0.0227 

6 0.0105 0.1755 0.0354 0.0424 0.0045 

7 0.0208 0.0729 0.071 0.0617 0.0186 

8 0.0205 0.1814 0.004 0.0152 0.0179 

9 0.011 0.102 0.0194 0.0004 0.0083 

10 0.0078 0.0687 0.0365 0.0211 0.0038 

12 0.0091 0.0808 0.0116 0.0072 0.0067 

14 0.0023 0.0824 0.0261 0.0137 0.0013 

16 0.005 0.0418 0.0246 0.0016 0.0018 

18 0.0033 0.0592 0.0114 0.0093 0.0033 

20 0.0042 0.0674 0.0107 0.0169 0.002 

25 0.0021 0.0494 0.0112 0.0041 0.0012 

30 0.0096 0.0415 0.0135 0.0101 0.0024 
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3.6.2.2 Application of Procedure (IG-2) 

 

The estimators given in table (3.2) are used to find the estimates of the 

reliability and the hazard functions by three methods given in section (2.4), 

the result is display in tables (3.8) and (3.9), the biased of the estimators 

shown in tables (3.10) and (3.11). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 89



 
Chapter  Three                                                                                                                                                     Monte-Carlo Application

 90

Table (3.8) 

Estimation of R(x) using procedure (IG-2) 

 

 

 

 

 

n 
Estimation of ˆ ( )R x  

True 

value 

M.L.M M.M Basu (i) Basu (ii) Basu 

(iii) 

5 0.4981 0.5053 0.5416 0.5361 0.4781 0.5016 

6 0.493 0.4996 0.5418 0.5296 0.4762 0.4981 

7 0.4937 0.498 0.5407 0.5257 0.4778 0.4963 

8 0.507 0.5001 0.5381 0.5251 0.4923 0.5018 

9 0.4992 0.5031 0.5387 0.522 0.4703 0.5003 

10 0.4961 0.5006 0.5341 0.5155 0.4764 0.5007 

12 0.5049 0.5004 0.5301 0.5175 0.5016 0.5012 

14 0.4939 0.5015 0.5317 0.5118 0.4942 0.4994 

16 0.4962 0.501 0.5313 0.5092 0.4887 0.5011 

18 0.5024 0.5002 0.5262 0.515 0.4895 0.5011 

20 0.5 0.5015 0.5199 0.5155 0.4946 0.501 

25 0.5031 0.5003 0.5202 0.5006 0.4978 0.5015 

30 0.5002 0.5007 0.5152 0.5069 0.491 0.5004 
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Table (3.9) 

Estimation of h(x) using procedure (IG-2) 

 

 

 

 

 

n 
Estimation of  ˆ( )h x

True 

value 

M.L.M M.M Basu  

(i) 

Basu  

(ii) 

Basu 

(iii) 

5 0.7967 0.8111 0.9224 0.7643 0.8572 0.8101 

6 0.7814 0.7764 0.8999 0.7325 0.8145 0.7759 

7 0.78 0.7641 0.8924 0.729 0.802 0.7656 

8 0.8132 0.8172 0.9282 0.7784 0.8303 0.8144 

9 0.7894 0.7963 0.8914 0.7627 0.8465 0.7957 

10 0.8022 0.8115 0.9095 0.788 0.8527 0.8113 

12 0.8056 0.8069 0.8892 0.7802 0.8049 0.8056 

14 0.785 0.7898 0.8702 0.7702 0.7975 0.7892 

16 0.7911 0.8065 0.8911 0.7935 0.8268 0.8063 

18 0.7841 0.7622 0.8317 0.7448 0.784 0.7658 

20 0.7872 0.7821 0.8287 0.7674 0.7936 0.7824 

25 0.8138 0.8245 0.8779 0.8133 0.8278 0.8243 

30 0.7953 0.7939 0.8312 0.7851 0.8106 0.7949 
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Table (3.10) 

Bias of Estimator ( )ˆ ( )R x  

 

n 
Bias of Estimator ( )ˆ ( )R x  

M.L.M M.M Basu (i) Basu (ii) Basu (iii)

5 0.0072 0.0436 0.0381 0.02 0.0035 

6 0.0066 0.0488 0.0365 0.0168 0.0051 

7 0.0042 0.0469 0.0319 0.016 0.0026 

8 0.0069 0.0311 0.018 0.0148 0.0052 

9 0.0039 0.0395 0.0228 0.0289 0.0011 

10 0.0044 0.038 0.0194 0.0198 0.0045 

12 0.0044 0.0253 0.0127 0.0032 0.0036 

14 0.0075 0.0378 0.0178 0.0003 0.0055 

16 0.0064 0.0349 0.0128 0.0077 0.0047 

18 0.0023 0.0238 0.0128 0.013 0.0013 

20 0.0015 0.0199 0.0115 0.0054 0.001 

25 0.0027 0.0171 0.0035 0.0053 0.0016 

30 0.0005 0.015 0.0067 0.0092 0.0002 
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Table (3.11) 

Bias of Estimator ( )ˆ( )h x  

 

n 
Bias of Estimation ( )ˆ( )h x  

M.L.M M.M Basu (i) Basu (ii) Basu (iii)

5 0.0143 0.1256 0.0324 0.0604 0.0134 

6 0.0049 0.1185 0.0489 0.0331 0.0054 

7 0.0159 0.1124 0.051 0.0221 0.0144 

8 0.004 0.1149 0.0348 0.017 0.0012 

9 0.0069 0.102 0.0267 0.0572 0.0063 

10 0.0093 0.1072 0.0142 0.0505 0.0091 

12 0.0013 0.0836 0.0254 0.0007 0.0001 

14 0.0048 0.0852 0.0148 0.0125 0.0042 

16 0.0075 0.092 0.0055 0.0277 0.0073 

18 0.0219 0.0504 0.0366 0.0027 0.0155 

20 0.0051 0.0415 0.0198 0.0064 0.0048 

25 0.0107 0.0641 0.0004 0.014 0.0105 

30 0.0014 0.0359 0.0102 0.0153 0.0004 
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3.6.2.3 Application of Procedure (IG-3) 

 

The estimators given in table (3.3) are used to find the estimates of the 

reliability and the hazard functions by three methods given in section (2.4), 

the result is display in tables (3.12) and (3.13), the biased of the estimators 

shown in tables (3.14) and (3.15). 
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Table (3.12) 

Estimation of R(x) using procedure (IG-3) 

 

 

 

 

n 
Estimation of ˆ ( )R x  

True 

value 

M.L.M M.M Basu (i) Basu (ii) Basu 

(iii) 

5 0.4999 0.5076 0.5599 0.5385 0.5291 0.5019 

6 0.5001 0.4924 0.5435 0.5327 0.5167 0.501 

7 0.4996 0.4986 0.5348 0.5255 0.4859 0.5008 

8 0.4976 0.5012 0.5404 0.515 0.4992 0.4981 

9 0.5051 0.5008 0.5453 0.5212 0.525 0.5025 

10 0.5009 0.5048 0.5448 0.5218 0.4949 0.5021 

12 0.5055 0.5036 0.534 0.5211 0.4795 0.5038 

14 0.4946 0.4984 0.5231 0.5094 0.4879 0.5004 

16 0.5016 0.5003 0.5134 0.5118 0.4884 0.5015 

18 0.4996 0.5005 0.5222 0.511 0.4848 0.5011 

20 0.504 0.5019 0.5188 0.5116 0.5084 0.503 

25 0.5043 0.5005 0.5199 0.5098 0.4966 0.502 

30 0.498 0.5007 0.5182 0.5061 0.4964 0.5 
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Table (3.13) 

Estimation of h(x) using procedure (IG-3) 

 

 

 

n 
Estimation of h x  ˆ( )

True 

value 

M.L.M M.M Basu (i) Basu (ii) Basu (iii)

5 0.7919 0.8057 0.9764 0.7594 0.773 0.8053 

6 0.7902 0.7676 0.9082 0.7095 0.7315 0.7544 

7 0.8044 0.8065 0.9086 0.7652 0.8275 0.8029 

8 0.833 0.8697 1.009 0.8465 0.8732 0.8682 

9 0.8144 0.8233 0.9618 0.791 0.7853 0.8204 

10 0.7846 0.7949 0.8996 0.7593 0.8006 0.7891 

12 0.7899 0.7975 0.8658 0.7669 0.8334 0.7933 

14 0.8069 0.8143 0.8826 0.7968 0.8319 0.8112 

16 0.8038 0.8072 0.8403 0.7891 0.8296 0.8052 

18 0.7939 0.7916 0.8488 0.7764 0.8183 0.7918 

20 0.8009 0.8031 0.8461 0.7879 0.7984 0.8013 

25 0.8012 0.8 0.8479 0.7853 0.8063 0.8005 

30 0.7922 0.7919 0.8363 0.7836 0.7988 0.7921 
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Table (3.14) 

Bias of Estimator ( )ˆ ( )R x  

 

 

n 
Bias of Estimator ( )ˆ ( )R x  

M.L.M M.M Basu (i) Basu (ii) Basu (iii)

5 0.0077 0.06 0.0387 0.0292 0.002 

6 0.0077 0.0433 0.0326 0.0166 0.0009 

7 0.001 0.0352 0.0259 0.0137 0.001 

8 0.0036 0.0428 0.0173 0.0016 0.0005 

9 0.0043 0.0402 0.0161 0.0199 0.0026 

10 0.0039 0.0439 0.0209 0.006 0.0012 

12 0.0019 0.0285 0.0156 0.026 0.0018 

14 0.002 0.0267 0.013 0.0086 0.0039 

16 0.0013 0.0118 0.0102 0.0132 0 

18 0.0009 0.0226 0.0114 0.0148 0.0015 

20 0.0021 0.0148 0.0076 0.0009 0.0009 

25 0.0038 0.0156 0.0056 0.0077 0.0023 

30 0.0027 0.0201 0.008 0.0017 0.002 
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Table (3.15) 

Bias of Estimator ( )ˆ( )h x  

 

n 

Bias of Estimation ( )ˆ( )h x  

M.L.M M.M Basu (i) Basu (ii) Basu (iii)

5 0.0138 0.1845 0.0325 0.0189 0.0134 

6 0.0226 0.118 0.0807 0.0587 0.0358 

7 0.0021 0.1042 0.0392 0.0231 0.0015 

8 0.0367 0.1761 0.0135 0.0402 0.0352 

9 0.0089 0.1474 0.0234 0.0292 0.006 

10 0.0103 0.1151 0.0252 0.0161 0.0046 

12 0.0076 0.0759 0.023 0.0435 0.0034 

14 0.0074 0.0757 0.0101 0.025 0.0043 

16 0.0034 0.0365 0.0147 0.0231 0.0015 

18 0.0023 0.0549 0.0175 0.0245 0.0021 

20 0.0022 0.0452 0.013 0.0025 0.0004 

25 0.0013 0.0485 0.0159 0.0051 0.0007 

30 0.0003 0.0441 0.0087 0.0066 0.0001 
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conclusions

 
 
    
 

1. The best procedure for generating sample variates from inverse 

Gaussian distribution was procedure (IG-2), which depends on (Box 

and Muller) method, which consumes less time in comparison with the 

other two procedures of generation. 

2. The theory and practice showed that the efficiency of procedure (IG-3) 

was better than procedures (IG-1) . 

3. For small and moderate sample sizes, the M.L.M  gave estimates μ̂  

and λ̂  very close to the true values of µ and λ. 

4. For large sample sizes, the M.M and M.L.M gave estimates close to the 

true values of  µ and λ. But the M.L.M is superior than M.M. 

5. For all sample sizes, the Basu(iii) and M.L.M methods  gave estimates 

ˆ ( )R x  and ˆ( )h x  very close to the true value of R(x) and h(x). But the 

Basu(iii) method was superior than M.L.M. 

6. For all sample sizes, the Basu(i) and Basu(ii) methods were  better than 

M.M for estimates  R(x) and h(x).  

7. The disadvantage of Monte-Carlo methods depends on generating 

pseudorandom variates and that might carry dirty data. 
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Future Work

 
 
 
 
 
 
 
 
 

1. This work can be use for generalized inverse Gaussian distribution of 

three parameters and other life distribution. 

2. Another methods can be used to estimate the distribution parameters µ, 

λ, R(x) and  h(x) like least squares method, modified moment method, 

Minimum Chi-square method, Minimum Distance method, Bayesian 

Method, … etc.  

3. It can be generate r.v.,s from inverse Gaussian distribution by other new 

procedures which can be compare their efficiency with our used 

procedures.  

4. The bias of estimation is a r.v. of unknown distribution which can be 

investigated approximately by using well-known statistical tests such 

as Chi-Square Goodness-of-Fit Test, Kolmogorov-Smirnov Goodness-of-

Fit Test, Serial Test, …etc.  
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 A-1

 
Program(1) : procedure (IG-1) 
 
Enter your values of µ, λ, n and m 
 
 
λ :=      μ :=     n :=      m :=  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 

 

X =X

X

u1 rnd 1( )←

u2 rnd 1( )←

b tan π u2⋅( )
5
2

−⎡⎢
⎣

⎤⎥
⎦

←

u1 rnd 1( )←

u2 rnd 1( )←

b tan π u2⋅( )
π

2
−⎡⎢

⎣
⎤⎥
⎦

←

u1
1
2

1 b2
+( )⋅ e

b2−

2
⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

>while

y b2←

x1 μ
μ

2 y⋅
2 λ⋅

+
μ

2 λ⋅
4 μ⋅ λ⋅ y⋅ μ2 y2⋅+⋅−←

u rnd 1( )←

xi j, x1 u
μ

μ x1+
≤if

μ
2

x1
otherwise

←

x

i 0 n( )1−..∈for

x

j 0 m 1−..∈for

x

:=

n



 
Appendices                                                                                                                                                                     Appendix A

 A-2

Program(2) : procedure (IG-2) 
 
Enter your values of µ, λ, n and m 
 
λ :=      μ :=     n :=      m :=  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

 
  

X

u1 rnd 1( )←

u2 rnd 1( )←

b1i j, 2− ln u1( )⋅ cos 2π u2⋅( )⋅←

b2i j, 2− ln u1( )⋅ sin 2π u2⋅( )⋅←

z1 b1 i j, ( )2
←

z2 b2 i j, ( )2
←

b11 i j, μ
μ

2 z1⋅

2 λ⋅
+

μ

2 λ⋅
4 μ⋅ λ⋅ z1⋅ μ

2 z12
⋅+⋅−←

b21 i j, μ
μ

2 z2⋅

2 λ⋅
+

μ

2 λ⋅
4 μ⋅ λ⋅ z2⋅ μ

2 z22
⋅+⋅−←

u3 rnd 1( )←

y1i j, b11 i j, u3
μ

μ b11 i j, +
≤if

μ
2

b11 i j, 
otherwise

←

y2i j, b21 i j, u3
μ

μ b21 i j, +
≤if

μ
2

b21 i j, 
otherwise

←

y1

y2

i 0 n 1−..∈for

y1

y2

j 0 m 1−..∈for

y1

y2

:=

n

X =X
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Program(3) : procedure (IG-3) 
 
Enter your values of µ, λ, n and m 
 
λ :=      μ :=     n :=      m :=  
 

A-3

i 0 −..:= nn 111       j 0 m −..:=
 

 
 bi j, u1 rnd 1( )←

u2 rnd 1( )←

y ln u2( )−←

u1 rnd 1( )←

u2 rnd 1( )←

y ln u2( )−←

 
 
 
 
 
 
 
  

u1 e

y 1−( )2−

2
>while

u3 rnd 1( )←

y− u3
1
2

<if

y u3
1
2

>if

:=i j, u1 rnd 1( )←

u2 rnd 1( )←

y ln u2( )−←

u1 rnd 1( )←

u2 rnd 1( )←

y ln u2( )−←

b

u1 e

y 1−( )2−

2
>while

u3 rnd 1( )←

y− u3
1
2

<if

y u3
1
2

>if

:=

X

y bt j, ( )2
←

x1t j, μ
μ

2 y⋅
2 λ⋅

+
μ

2 λ⋅
4 μ⋅ λ⋅ y⋅ μ

2 y2
⋅+⋅−←

u rnd 1( )←

xt j, x1t j, u
μ

μ x1t j, +
≤if

μ
2

x1t j, 
otherwise

←

x

t 0 n 1−..∈for

j 0 m 1−..∈for

x

:=

b

XX =
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 B-1

 
 
 

Program(4) : procedure (IG-1) 
 
Enter your values of µ, λ, n and m 
λ :=      μ :=     n :=      m :=  
 
 

 

X

u1 rnd 1( )←

u2 rnd 1( )←

b tan π u2⋅( )
5
2

−⎡⎢
⎣

⎤⎥
⎦

←

u1 rnd 1( )←

u2 rnd 1( )←

b tan π u2⋅( )
π

2
−⎡⎢

⎣
⎤⎥
⎦

←

u1
1
2

1 b2
+( )⋅ e

b2−

2
⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

>while

y b2←

x1 μ
μ

2 y⋅
2 λ⋅

+
μ

2 λ⋅
4 μ⋅ λ⋅ y⋅ μ2 y2⋅+⋅−←

u rnd 1( )←

xi j, x1 u
μ

μ x1+
≤if

μ
2

x1
otherwise

←

x

i 0 n( )1−..∈for

x

j 0 m 1−..∈for

x

:=

n

X =X
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i 0 −..:= nn 11     j 0 m −..:= 1

i

 

                

        

   
 

a1 j, 

∞−

λ

Xi j, 
1

Xi j, 

μ
−

⎛
⎜
⎝

⎞
⎟
⎠

⋅

w
1

2 π⋅
e

1−
2

w2⋅
⋅

⌠
⎮
⎮
⌡

d:=i

i

 

 

b1 j, e

2 λ⋅
μ

∞−

λ

Xi j, 
− 1

Xi j, 

μ
+

⎛
⎜
⎝

⎞
⎟
⎠

⋅

w
1

2 π⋅
e

1−
2

w2⋅
⋅

⌠
⎮
⎮
⌡

d⋅

⎡⎢
⎢
⎢
⎢
⎣

⎤⎥
⎥
⎥
⎥
⎦

:=i a1i ja1

RRj
0

n 1−

i

Ri j, ∑
=

n

             
RRi j, , b1i j, −:=

 

:=RRj
0

n 1−

i

Ri j, ∑
=

n
:=

RR

               Rtrue
0

m 1−

i
i∑

=
m

:=

RR

      htrue

λ

2 π⋅
Xb

3−
2⋅ e

λ− Xb μ−( )2⋅

2 μ
2⋅ Xb⋅⋅

Rtrue
:=

Xb
 

 
 

a2i j, 

∞−

λml
Xi j, 

1
Xi j, 

Xb
−

⎛
⎜
⎝

⎞
⎟
⎠

⋅

w
1

2 π⋅
e

1−
2

w2⋅
⋅

⌠
⎮
⎮
⌡

d:=i
 

 
 

xbj
1

n
0

n 1−

i

Xi j, ∑
=

⋅:=xbj
1

n
0

n 1−

i

Xi j, ∑
=

⋅:=
Xb

0

m 1−

i

xbi∑
=

m
:=

xb

XXj
0

n 1−

i

Xi j, ∑
=

n
:=XXj

0

n 1−

i

Xi j, ∑
=

n
:=

SAj
1

n 1−( )
0

n 1−

i

Xi j, xbi−( )2∑
=

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅:=SAj
1

n 1−( )
0

n 1−

i

Xi j, xbi−( )2∑
=

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅:= λ1 j
n xbj( )3⋅

n 1−( ) SAj⋅
:=λ1 j

n xbj( )3⋅

n 1−( ) SAj⋅
:=

λ1

λm
0

m 1−

i
i∑

=
m

:=

λml
0

m 1

λ1

−

i

λ3 i∑
=

m
:=

λ3

λ3 j
n 3−( )

0

n 1−

i

1

Xi j, 

1

xbj
−⎛⎜

⎝
⎞⎟
⎠∑

=

:=λ3 j
n 3−( )

0

n 1−

i

1

Xi j, 

1

xbj
−⎛⎜

⎝
⎞⎟
⎠∑

=

:=
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b2 j, e

2 λml⋅
Xb

i

∞−

λml
Xi j, 

1
Xi j, 

Xb
+

⎛
⎜
⎝

⎞
⎟
⎠

⋅
⎡
⎢
⎣

⎤
⎥
⎦

−

w
1

2 π⋅
e

1−
2

w2⋅
⋅

⌠
⎮
⎮
⌡

d⋅

⎡⎢
⎢
⎢
⎢
⎣

⎤⎥
⎥
⎥
⎥
⎦

:=i
a2i ja2

RCABj
0

n 1−

i

Rcabi j, ∑
=

n

          Rcab  i j, , b2i j, −:=

 

:=RCABj
0

n 1−

i

Rcabi j, ∑
=

n
:=             Rmlm

0

m 1−

i

RCABi∑
=

m
:=

RCAB λml

     hmlm
2 π⋅

Xb
3−

2⋅

Rmlm
:=

λml

i

 

a3 j, 

∞−

λm
Xi j, 

1
Xi j, 

Xb
−

⎛
⎜
⎝

⎞
⎟
⎠

⋅

w
1

2 π⋅
e

1−
2

w2⋅
⋅

⌠
⎮
⎮
⌡

d:=i

i

 

b3 j, e

2 λm⋅
Xb

∞−

λm
Xi j, 

− 1
Xi j, 

Xb
+

⎛
⎜
⎝

⎞
⎟
⎠

⋅

w
1

2 π⋅
e

1−
2

w2⋅
⋅

⌠
⎮
⎮
⌡

d⋅

⎡⎢
⎢
⎢
⎢
⎣

⎤⎥
⎥
⎥
⎥
⎦

:=i a3i ja3

RCAB2j
0

n 1−

i

Rcab2i j, ∑
=

n

       

Rcab2i j, , b3i j, −:=

:=RCAB2j
0

n 1−

i

Rcab2i j, ∑
=

n
:=           Rmm

0

m 1−

i

RCAB2i∑
=

m
:=

RCAB2 λm

      hmm
2 π⋅

Xb
3−

2⋅

Rmm
:=

λm

i

 

 

a4 j, 

∞−

n λ⋅ Xi j, Xb−( )⋅⎡⎣ ⎤⎦−

Xi j, ( ) Xb⋅ n Xb⋅ Xi j, −⋅

w
1

2 π⋅
e

w2−
2⋅

⌠⎮
⎮
⎮
⌡

d:=i

i

 
 

b4 j, 

∞−

λ− n Xb⋅ n 2−( ) Xi j, ⋅+⎡⎣ ⎤⎦

n Xi j, ⋅ Xb⋅ n Xb⋅ Xi j, −( )⋅⎡⎣ ⎤⎦
1

2

w
1

2 π⋅
e

w2−
2⋅

n 2−
n

⎛⎜
⎝

⎞⎟
⎠

e

2 n 1−( )⋅ λ⋅
n Xb⋅

⎡
⎢
⎣

⎤
⎥
⎦⋅

⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

⋅

⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

⌠
⎮
⎮
⎮
⌡

d

⎡⎢
⎢
⎢
⎢
⎢⎣

⎤⎥
⎥
⎥
⎥
⎥⎦

:=i

a4i ja4 RSTAR1j
0

n 1−

i

Rstar1i j, ( )∑
=

 

Rstar1i j, , b4i j, −:=         

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

n
:=RSTAR1j

0

n 1−

i

Rstar1i j, ( )∑
=

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

n
:=          RBasu1

0

m 1−

i

( )∑
=

RSTAR1i
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

m
:=

RSTAR1

λml

 

hBasu1
2 π⋅

Xb
3−

2⋅

RBasu1
:=

λml
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y j

1

n 1−

i

Xi j, μ−( )2

Xi j, ∑
=

:=yj
1

n 1−

i

Xi j, μ−( )2

Xi j, ∑
=

:=

y

      y1
0

n 1−

i
i∑

=
n

:=

y

XX1XX xfirst      xfirst           t:= y1+:=  xfirst

ia5 j, 

∞−

n 1−− Xi j, μ−( )⋅

t Xi j, ⋅ Xi j, μ−( )2−

w
Γ

n
2

⎛
⎝

⎞
⎠

π n 1−( ) Γ
n 1−

2
⎛
⎝

⎞
⎠⋅ 1

w 2

n 1−
+

⎛
⎜
⎝

⎞
⎟
⎠

n
2

⋅

⌠
⎮
⎮
⎮
⎮
⎮
⎮
⌡

d:=

 

i

i

 

b5 j, 
t 4μ+

t
⎛⎜
⎝

⎞⎟
⎠

n 2−
2

∞−

n 1−− Xi j, μ+( )⋅

t Xi j, ⋅ Xi j, μ−( )2−

w
Γ

n
2

⎛
⎝

⎞
⎠

π n 1−( ) Γ
n 1−

2
⎛
⎝

⎞
⎠⋅ 1

w 2

n 1−
+

⎛
⎜
⎝

⎞
⎟
⎠

n
2

⋅

⌠
⎮
⎮
⎮
⎮
⎮
⎮
⌡

d⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

:=

     

i

a5i ja5 RSTAR2j
0

n 1−

i

Rstar2i j, ∑
=

n

 

Rstar2i j, , b5i j, −:=       :=RSTAR2j
0

n 1−

i

Rstar2i j, ∑
=

n
:=        RBasu2

0

m 1−

i

RSTAR2i∑
=

m
:=

RSTAR2

λml

 

hBasu2
2 π⋅

Xb
3−

2⋅

RBasu2
:=

λml

V1j
0

n 1−

i

1

Xi j,         
1

Xb
−⎛⎜

⎝
⎞⎟
⎠∑

=

:=V1j
0

n 1−

i

1

Xi j, 

1

Xb
−⎛⎜

⎝
⎞⎟
⎠∑

=

:=

V1

              V
0

m 1−

i
i∑

=
m

:=

V1

i

 

a6 j, 

∞−

n n 2−( )− Xi j, Xb−( )⋅

V Xi j, ⋅ Xb⋅ n Xb⋅ Xi j, −( )⋅ n Xi j, Xb−( )2⋅−

w
Γ

n 1−
2

⎛
⎝

⎞
⎠

π n 2−( ) Γ
n 2−

2
⎛
⎝

⎞
⎠⋅ 1

w 2

n 2−
+

⎛
⎜
⎝

⎞
⎟
⎠

n 1−
2

⋅

⌠
⎮
⎮
⎮
⎮
⎮
⎮
⌡

d:=i

i

 

b6 j, 
4 n 1−( )⋅
n V⋅ Xb⋅

1+⎡⎢
⎣

⎤⎥
⎦

n 3−
2 n 2−

n
⎛⎜
⎝

⎞⎟
⎠

⋅

∞−

n n 2−( )− Xb
n 2−( )Xi j, 

n
+

⎡
⎢
⎣

⎤
⎥
⎦

⋅

V Xi j, ⋅ Xb⋅ n Xb⋅ Xi j, −( )⋅ n Xi j, Xb−( ) 2⋅−

w
Γ

n 1−
2

⎛
⎝

⎞
⎠

π n 2−( ) Γ
n 2−

2
⎛
⎝

⎞
⎠⋅ 1

w 2

n 2−
+

⎛
⎜
⎝

⎞
⎟
⎠

n 1−
2

⋅

⌠
⎮
⎮
⎮
⎮
⎮
⎮
⌡

d⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

:=i

a6i ja6

 
 
 
Rstar3i j, , b6i j, −:=
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RSTAR3j
0

n 1−

i

Rstar3i j, ∑
=

n
:=RSTAR3j

0

n 1−

i

Rstar3i j, ∑
=

n
:=

    
RBasu3

0

m 1−

i

RSTAR3i∑
=

m
:=

RSTAR3 λml

     
hBasu3

2 π⋅
Xb

3−
2⋅

RBasu3
:=

λml

 

ER1

0

∞

tXb
λ

2 π⋅ t3⋅

⎛
⎜
⎝

⎞
⎟
⎠

1

2

e

λ− t μ−( )2⋅

2 μ
2⋅ t⋅

⎡
⎢
⎣

⎤
⎥
⎦⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⌠
⎮
⎮
⎮
⌡

d:= Xb
ER1         BiasXb μ−:=  ER1

ER2

0

∞

tλml
λ

2 π⋅ t3⋅

⎛
⎜
⎝

⎞
⎟
⎠

1

2

e

λ− t μ−( )2⋅

2 μ
2⋅ t⋅

⎡
⎢
⎣

⎤
⎥
⎦⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⌠
⎮
⎮
⎮
⌡

d:= λml
ER2         Biasλml λ−:=  ER2

ER3

0

∞

tλm
λ

2 π⋅ t3⋅

⎛
⎜
⎝

⎞
⎟
⎠

1

2

e

λ− t μ−( )2⋅

2 μ
2⋅ t⋅

⎡
⎢
⎣

⎤
⎥
⎦⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⌠
⎮
⎮
⎮
⌡

d:= λm
ER3         Biasλm λ−:=  ER3

ER4

0

∞

tRmlm
λ

2 π⋅ t3⋅

⎛
⎜
⎝

⎞
⎟
⎠

1

2

e

λ− t μ−( )2⋅

2 μ
2⋅ t⋅

⎡
⎢
⎣

⎤
⎥
⎦⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⌠
⎮
⎮
⎮
⌡

d:= Rmlm ER4     BiasRmlm Rtrue−:=  ER4

ER5

0

∞

tRmm
λ

2 π⋅ t3⋅

⎛
⎜
⎝

⎞
⎟
⎠

1

2

e

λ− t μ−( )2⋅

2 μ
2⋅ t⋅

⎡
⎢
⎣

⎤
⎥
⎦⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⌠
⎮
⎮
⎮
⌡

d:= Rmm
ER5       BiasRmm Rtrue−:=  ER5

ER6

0

∞

tRBasu1
λ

2 π⋅ t3⋅

⎛
⎜
⎝

⎞
⎟
⎠

1

2

e

λ− t μ−( )2⋅

2 μ
2⋅ t⋅

⎡
⎢
⎣

⎤
⎥
⎦⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⌠
⎮
⎮
⎮
⌡

d:= RBasu1
ER6       BiasRBasu1 Rtrue−:=  ER6

ER7

0

∞

tRBasu2
λ

2 π⋅ t3⋅

⎛
⎜
⎝

⎞
⎟
⎠

1

2

e

λ− t μ−( )2⋅

2 μ
2⋅ t⋅

⎡
⎢
⎣

⎤
⎥
⎦⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⌠
⎮
⎮
⎮
⌡

d:= RBasu2
ER7       BiasRBasu2 Rtrue−:=  ER7

ER8

0

∞

tRBasu3
λ

2 π⋅ t3⋅

⎛
⎜
⎝

⎞
⎟
⎠

1

2

e

λ− t μ−( )2⋅

2 μ
2⋅ t⋅

⎡
⎢
⎣

⎤
⎥
⎦⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⌠
⎮
⎮
⎮
⌡

d:= RBasu3
ER8       BiasRBasu3 Rtrue−:=  ER8

ER9

0

∞

thmlm
λ

2 π⋅ t3⋅

⎛
⎜
⎝

⎞
⎟
⎠

1

2

e

λ− t μ−( )2⋅

2 μ
2⋅ t⋅

⎡
⎢
⎣

⎤
⎥
⎦⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⌠
⎮
⎮
⎮
⌡

d:= hmlm
ER9        Biashmlm htrue−:=  ER9

ER10

0

∞

thmm
λ

2 π⋅ t3⋅

⎛
⎜
⎝

⎞
⎟
⎠

1

2

e

λ− t μ−( )2⋅

2 μ
2⋅ t⋅

⎡
⎢
⎣

⎤
⎥
⎦⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⌠
⎮
⎮
⎮
⌡

d:= hmm
ER10            Biashmm htrue−:=  ER10
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ER11

0

∞

thBasu1
λ

2 π⋅ t3⋅

⎛
⎜
⎝

⎞
⎟
⎠

1

2

e

λ− t μ−( )2⋅

2 μ
2⋅ t⋅

⎡
⎢
⎣

⎤
⎥
⎦⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⌠
⎮
⎮
⎮
⌡

d:= hBasu1
ER11           BiashBasu1 htrue−:=  ER11

ER12

0

∞

thBasu2
λ

2 π⋅ t3⋅

⎛
⎜
⎝

⎞
⎟
⎠

1

2

e

λ− t μ−( )2⋅

2 μ
2⋅ t⋅

⎡
⎢
⎣

⎤
⎥
⎦⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⌠
⎮
⎮
⎮
⌡

d:= hBasu2
            BiashBasu2 ER12 htrue−:= ER12  

ER13

0

∞

thBasu3
λ

2 π⋅ t3⋅

⎛
⎜
⎝

⎞
⎟
⎠

1

2

e

λ− t μ−( )2⋅

2 μ
2⋅ t⋅

⎡
⎢
⎣

⎤
⎥
⎦⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⌠
⎮
⎮
⎮
⌡

d:= hBasu3
ER13            BiashBasu3 htrue−:=  ER13

Xb
 

=Xb λm      =λm λmlλml
Rtrue

=  
Rtrue
Rmlm

=  
=Rmlm BiasRmlm      =BiasRmlm RBasu1         =RBasu1 BiasRBasu1          =BiasRBasu1

Rmm
 

=Rmm BiasRmm       =BiasRmm RBasu2          =RBasu2 BiasRBasu2          =BiasRBasu2
RBasu3

 
=RBasu3 BiasRBasu3    =BiasRBasu3

htrue
 

htrue
hmlm

=  
=hmlm Biashmm       =Biashmm hmm           =hmm Biashmlm            =Biashmlm

hBasu1
 

=hBasu1 BiashBasu1     =BiashBasu1 hBasu2       =hBasu2 BiashBasu2         =BiashBasu2
hBasu3

 
=hBasu3 BiashBasu3     =BiashBasu3  
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 B-7

Program(4) : procedure (IG-1) 
 
Enter your values of µ, λ, n and m 
λ :=      μ :=     n :=      m :=  

 
 
 
 
 
 
 
 
 
 
 
 

 

X =X

X

u1 rnd 1( )←

u2 rnd 1( )←

b1i j, 2− ln u1( )⋅ cos 2π u2⋅( )⋅←

b2i j, 2− ln u1( )⋅ sin 2π u2⋅( )⋅←

z1 b1 i j, ( )2
←

z2 b2 i j, ( )2
←

b11 i j, μ
μ

2 z1⋅

2 λ⋅
+

μ

2 λ⋅
4 μ⋅ λ⋅ z1⋅ μ

2 z12
⋅+⋅−←

b21 i j, μ
μ

2 z2⋅

2 λ⋅
+

μ

2 λ⋅
4 μ⋅ λ⋅ z2⋅ μ

2 z22
⋅+⋅−←

u3 rnd 1( )←

y1i j, b11 i j, u3
μ

μ b11 i j, +
≤if

μ
2

b11 i j, 
otherwise

←

y2i j, b21 i j, u3
μ

μ b21 i j, +
≤if

μ
2

b21 i j, 
otherwise

←

y1

y2

i 0 n 1−..∈for

y1

y2

j 0 m 1−..∈for

y1

y2

:=

n
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i 0 −..:= nn 11     j 0 m −..:= 1

i

 

                

        

   
 

a1 j, 

∞−

λ

Xi j, 
1

Xi j, 

μ
−

⎛
⎜
⎝

⎞
⎟
⎠

⋅

w
1

2 π⋅
e

1−
2

w2⋅
⋅

⌠
⎮
⎮
⌡

d:=i

i

 

 

b1 j, e

2 λ⋅
μ

∞−

λ

Xi j, 
− 1

Xi j, 

μ
+

⎛
⎜
⎝

⎞
⎟
⎠

⋅

w
1

2 π⋅
e

1−
2

w2⋅
⋅

⌠
⎮
⎮
⌡

d⋅

⎡⎢
⎢
⎢
⎢
⎣

⎤⎥
⎥
⎥
⎥
⎦

:=i a1i ja1

RRj
0

n 1−

i

Ri j, ∑
=

n

             
RRi j, , b1i j, −:=

 

:=RRj
0

n 1−

i

Ri j, ∑
=

n
:=

RR

               Rtrue
0

m 1−

i
i∑

=
m

:=

RR

      htrue

λ

2 π⋅
Xb

3−
2⋅ e

λ− Xb μ−( )2⋅

2 μ
2⋅ Xb⋅⋅

Rtrue
:=

Xb
 

 
 

a2i j, 

∞−

λml
Xi j, 

1
Xi j, 

Xb
−

⎛
⎜
⎝

⎞
⎟
⎠

⋅

w
1

2 π⋅
e

1−
2

w2⋅
⋅

⌠
⎮
⎮
⌡

d:=i
 

 
 

xbj
1

n
0

n 1−

i

Xi j, ∑
=

⋅:=xbj
1

n
0

n 1−

i

Xi j, ∑
=

⋅:=
Xb

0

m 1−

i

xbi∑
=

m
:=

xb

XXj
0

n 1−

i

Xi j, ∑
=

n
:=XXj

0

n 1−

i

Xi j, ∑
=

n
:=

SAj
1

n 1−( )
0

n 1−

i

Xi j, xbi−( )2∑
=

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅:=SAj
1

n 1−( )
0

n 1−

i

Xi j, xbi−( )2∑
=

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅:= λ1 j
n xbj( )3⋅

n 1−( ) SAj⋅
:=λ1 j

n xbj( )3⋅

n 1−( ) SAj⋅
:=

λ1

λm
0

m 1−

i
i∑

=
m

:=

λml
0

m 1

λ1

−

i

λ3 i∑
=

m
:=

λ3

λ3 j
n 3−( )

0

n 1−

i

1

Xi j, 

1

xbj
−⎛⎜

⎝
⎞⎟
⎠∑

=

:=λ3 j
n 3−( )

0

n 1−

i

1

Xi j, 

1

xbj
−⎛⎜

⎝
⎞⎟
⎠∑

=

:=
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b2 j, e

2 λml⋅
Xb

i

∞−

λml
Xi j, 

1
Xi j, 

Xb
+

⎛
⎜
⎝

⎞
⎟
⎠

⋅
⎡
⎢
⎣

⎤
⎥
⎦

−

w
1

2 π⋅
e

1−
2

w2⋅
⋅

⌠
⎮
⎮
⌡

d⋅

⎡⎢
⎢
⎢
⎢
⎣

⎤⎥
⎥
⎥
⎥
⎦

:=i
a2i ja2

RCABj
0

n 1−

i

Rcabi j, ∑
=

n

          Rcab  i j, , b2i j, −:=

 

:=RCABj
0

n 1−

i

Rcabi j, ∑
=

n
:=             Rmlm

0

m 1−

i

RCABi∑
=

m
:=

RCAB λml

     hmlm
2 π⋅

Xb
3−

2⋅

Rmlm
:=

λml

i

 

a3 j, 

∞−

λm
Xi j, 

1
Xi j, 

Xb
−

⎛
⎜
⎝

⎞
⎟
⎠

⋅

w
1

2 π⋅
e

1−
2

w2⋅
⋅

⌠
⎮
⎮
⌡

d:=i

i

 

b3 j, e

2 λm⋅
Xb

∞−

λm
Xi j, 

− 1
Xi j, 

Xb
+

⎛
⎜
⎝

⎞
⎟
⎠

⋅

w
1

2 π⋅
e

1−
2

w2⋅
⋅

⌠
⎮
⎮
⌡

d⋅

⎡⎢
⎢
⎢
⎢
⎣

⎤⎥
⎥
⎥
⎥
⎦

:=i a3i ja3

RCAB2j
0

n 1−

i

Rcab2i j, ∑
=

n

       

Rcab2i j, , b3i j, −:=

:=RCAB2j
0

n 1−

i

Rcab2i j, ∑
=

n
:=           Rmm

0

m 1−

i

RCAB2i∑
=

m
:=

RCAB2 λm

      hmm
2 π⋅

Xb
3−

2⋅

Rmm
:=

λm

i

 

 

a4 j, 

∞−

n λ⋅ Xi j, Xb−( )⋅⎡⎣ ⎤⎦−

Xi j, ( ) Xb⋅ n Xb⋅ Xi j, −⋅

w
1

2 π⋅
e

w2−
2⋅

⌠⎮
⎮
⎮
⌡

d:=i

i

 
 

b4 j, 

∞−

λ− n Xb⋅ n 2−( ) Xi j, ⋅+⎡⎣ ⎤⎦

n Xi j, ⋅ Xb⋅ n Xb⋅ Xi j, −( )⋅⎡⎣ ⎤⎦
1

2

w
1

2 π⋅
e

w2−
2⋅

n 2−
n

⎛⎜
⎝

⎞⎟
⎠

e

2 n 1−( )⋅ λ⋅
n Xb⋅

⎡
⎢
⎣

⎤
⎥
⎦⋅

⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

⋅

⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

⌠
⎮
⎮
⎮
⌡

d

⎡⎢
⎢
⎢
⎢
⎢⎣

⎤⎥
⎥
⎥
⎥
⎥⎦

:=i

a4i ja4 RSTAR1j
0

n 1−

i

Rstar1i j, ( )∑
=

 

Rstar1i j, , b4i j, −:=         

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

n
:=RSTAR1j

0

n 1−

i

Rstar1i j, ( )∑
=

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

n
:=          RBasu1

0

m 1−

i

( )∑
=

RSTAR1i
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

m
:=

RSTAR1

λml

 

hBasu1
2 π⋅

Xb
3−

2⋅

RBasu1
:=

λml
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y j

1

n 1−

i

Xi j, μ−( )2

Xi j, ∑
=

:=yj
1

n 1−

i

Xi j, μ−( )2

Xi j, ∑
=

:=

y

      y1
0

n 1−

i
i∑

=
n

:=

y

XX1XX xfirst      xfirst           t:= y1+:=  xfirst

ia5 j, 

∞−

n 1−− Xi j, μ−( )⋅

t Xi j, ⋅ Xi j, μ−( )2−

w
Γ

n
2

⎛
⎝

⎞
⎠

π n 1−( ) Γ
n 1−

2
⎛
⎝

⎞
⎠⋅ 1

w 2

n 1−
+

⎛
⎜
⎝

⎞
⎟
⎠

n
2

⋅

⌠
⎮
⎮
⎮
⎮
⎮
⎮
⌡

d:=

 

i

i

 

b5 j, 
t 4μ+

t
⎛⎜
⎝

⎞⎟
⎠

n 2−
2

∞−

n 1−− Xi j, μ+( )⋅

t Xi j, ⋅ Xi j, μ−( )2−

w
Γ

n
2

⎛
⎝

⎞
⎠

π n 1−( ) Γ
n 1−

2
⎛
⎝

⎞
⎠⋅ 1

w 2

n 1−
+

⎛
⎜
⎝

⎞
⎟
⎠

n
2

⋅

⌠
⎮
⎮
⎮
⎮
⎮
⎮
⌡

d⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

:=

     

i

a5i ja5 RSTAR2j
0

n 1−

i

Rstar2i j, ∑
=

n

 

Rstar2i j, , b5i j, −:=       :=RSTAR2j
0

n 1−

i

Rstar2i j, ∑
=

n
:=        RBasu2

0

m 1−

i

RSTAR2i∑
=

m
:=

RSTAR2

λml

 

hBasu2
2 π⋅

Xb
3−

2⋅

RBasu2
:=

λml

V1j
0

n 1−

i

1

Xi j,         
1

Xb
−⎛⎜

⎝
⎞⎟
⎠∑

=

:=V1j
0

n 1−

i

1

Xi j, 

1

Xb
−⎛⎜

⎝
⎞⎟
⎠∑

=

:=

V1

              V
0

m 1−

i
i∑

=
m

:=

V1

i

 

a6 j, 

∞−

n n 2−( )− Xi j, Xb−( )⋅

V Xi j, ⋅ Xb⋅ n Xb⋅ Xi j, −( )⋅ n Xi j, Xb−( )2⋅−

w
Γ

n 1−
2

⎛
⎝

⎞
⎠

π n 2−( ) Γ
n 2−

2
⎛
⎝

⎞
⎠⋅ 1

w 2

n 2−
+

⎛
⎜
⎝

⎞
⎟
⎠

n 1−
2

⋅

⌠
⎮
⎮
⎮
⎮
⎮
⎮
⌡

d:=i

i

 

b6 j, 
4 n 1−( )⋅
n V⋅ Xb⋅

1+⎡⎢
⎣

⎤⎥
⎦

n 3−
2 n 2−

n
⎛⎜
⎝

⎞⎟
⎠

⋅

∞−

n n 2−( )− Xb
n 2−( )Xi j, 

n
+

⎡
⎢
⎣

⎤
⎥
⎦

⋅

V Xi j, ⋅ Xb⋅ n Xb⋅ Xi j, −( )⋅ n Xi j, Xb−( ) 2⋅−

w
Γ

n 1−
2

⎛
⎝

⎞
⎠

π n 2−( ) Γ
n 2−

2
⎛
⎝

⎞
⎠⋅ 1

w 2

n 2−
+

⎛
⎜
⎝

⎞
⎟
⎠

n 1−
2

⋅

⌠
⎮
⎮
⎮
⎮
⎮
⎮
⌡

d⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

:=i

a6i ja6

 
 
 
Rstar3i j, , b6i j, −:=
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RSTAR3j
0

n 1−

i

Rstar3i j, ∑
=

n
:=RSTAR3j

0

n 1−

i

Rstar3i j, ∑
=

n
:=

    
RBasu3

0

m 1−

i

RSTAR3i∑
=

m
:=

RSTAR3 λml

     
hBasu3

2 π⋅
Xb

3−
2⋅

RBasu3
:=

λml

 

ER1

0

∞

tXb
λ

2 π⋅ t3⋅

⎛
⎜
⎝

⎞
⎟
⎠

1

2

e

λ− t μ−( )2⋅

2 μ
2⋅ t⋅

⎡
⎢
⎣

⎤
⎥
⎦⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⌠
⎮
⎮
⎮
⌡

d:= Xb
ER1         BiasXb μ−:=  ER1

ER2

0

∞

tλml
λ

2 π⋅ t3⋅

⎛
⎜
⎝

⎞
⎟
⎠

1

2

e

λ− t μ−( )2⋅

2 μ
2⋅ t⋅

⎡
⎢
⎣

⎤
⎥
⎦⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⌠
⎮
⎮
⎮
⌡

d:= λml
ER2         Biasλml λ−:=  ER2

ER3

0

∞

tλm
λ

2 π⋅ t3⋅

⎛
⎜
⎝

⎞
⎟
⎠

1

2

e

λ− t μ−( )2⋅

2 μ
2⋅ t⋅

⎡
⎢
⎣

⎤
⎥
⎦⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⌠
⎮
⎮
⎮
⌡

d:= λm
ER3         Biasλm λ−:=  ER3

ER4

0

∞

tRmlm
λ

2 π⋅ t3⋅

⎛
⎜
⎝

⎞
⎟
⎠

1

2

e

λ− t μ−( )2⋅

2 μ
2⋅ t⋅

⎡
⎢
⎣

⎤
⎥
⎦⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⌠
⎮
⎮
⎮
⌡

d:= Rmlm ER4     BiasRmlm Rtrue−:=  ER4

ER5

0

∞

tRmm
λ

2 π⋅ t3⋅

⎛
⎜
⎝

⎞
⎟
⎠

1

2

e

λ− t μ−( )2⋅

2 μ
2⋅ t⋅

⎡
⎢
⎣

⎤
⎥
⎦⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⌠
⎮
⎮
⎮
⌡

d:= Rmm
ER5       BiasRmm Rtrue−:=  ER5

ER6

0

∞

tRBasu1
λ

2 π⋅ t3⋅

⎛
⎜
⎝

⎞
⎟
⎠

1

2

e

λ− t μ−( )2⋅

2 μ
2⋅ t⋅

⎡
⎢
⎣

⎤
⎥
⎦⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⌠
⎮
⎮
⎮
⌡

d:= RBasu1
ER6       BiasRBasu1 Rtrue−:=  ER6

ER7

0

∞

tRBasu2
λ

2 π⋅ t3⋅

⎛
⎜
⎝

⎞
⎟
⎠

1

2

e

λ− t μ−( )2⋅

2 μ
2⋅ t⋅

⎡
⎢
⎣

⎤
⎥
⎦⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⌠
⎮
⎮
⎮
⌡

d:= RBasu2
ER7       BiasRBasu2 Rtrue−:=  ER7

ER8

0

∞

tRBasu3
λ

2 π⋅ t3⋅

⎛
⎜
⎝

⎞
⎟
⎠

1

2

e

λ− t μ−( )2⋅

2 μ
2⋅ t⋅

⎡
⎢
⎣

⎤
⎥
⎦⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⌠
⎮
⎮
⎮
⌡

d:= RBasu3
ER8       BiasRBasu3 Rtrue−:=  ER8

ER9

0

∞

thmlm
λ

2 π⋅ t3⋅

⎛
⎜
⎝

⎞
⎟
⎠

1

2

e

λ− t μ−( )2⋅

2 μ
2⋅ t⋅

⎡
⎢
⎣

⎤
⎥
⎦⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⌠
⎮
⎮
⎮
⌡

d:= hmlm
ER9        Biashmlm htrue−:=  ER9

ER10

0

∞

thmm
λ

2 π⋅ t3⋅

⎛
⎜
⎝

⎞
⎟
⎠

1

2

e

λ− t μ−( )2⋅

2 μ
2⋅ t⋅

⎡
⎢
⎣

⎤
⎥
⎦⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⌠
⎮
⎮
⎮
⌡

d:= hmm
ER10            Biashmm htrue−:=  ER10
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ER11

0

∞

thBasu1
λ

2 π⋅ t3⋅

⎛
⎜
⎝

⎞
⎟
⎠

1

2

e

λ− t μ−( )2⋅

2 μ
2⋅ t⋅

⎡
⎢
⎣

⎤
⎥
⎦⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⌠
⎮
⎮
⎮
⌡

d:= hBasu1
ER11           BiashBasu1 htrue−:=  ER11

ER12

0

∞

thBasu2
λ

2 π⋅ t3⋅

⎛
⎜
⎝

⎞
⎟
⎠

1

2

e

λ− t μ−( )2⋅

2 μ
2⋅ t⋅

⎡
⎢
⎣

⎤
⎥
⎦⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⌠
⎮
⎮
⎮
⌡

d:= hBasu2
ER12            BiashBasu2 htrue−:=  ER12

ER13

0

∞

thBasu3
λ

2 π⋅ t3⋅

⎛
⎜
⎝

⎞
⎟
⎠

1

2

e

λ− t μ−( )2⋅

2 μ
2⋅ t⋅

⎡
⎢
⎣

⎤
⎥
⎦⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⌠
⎮
⎮
⎮
⌡

d:= hBasu3
ER13            BiashBasu3 htrue−:=  ER13

Xb
 

=Xb λm      =λm λmlλml
Rtrue

=  
Rtrue
Rmlm

=  
=Rmlm BiasRmlm      =BiasRmlm RBasu1         =RBasu1 BiasRBasu1          =BiasRBasu1

Rmm
 

=Rmm BiasRmm       =BiasRmm RBasu2          =RBasu2 BiasRBasu2          =BiasRBasu2
RBasu3

 
=RBasu3 BiasRBasu3    =BiasRBasu3

htrue
 

htrue
hmlm

=  
=hmlm Biashmm       =Biashmm hmm           =hmm Biashmlm            =Biashmlm

hBasu1
 

=hBasu1 BiashBasu1     =BiashBasu1 hBasu2       =hBasu2 BiashBasu2         =BiashBasu2
hBasu3

 
=hBasu3 BiashBasu3     =BiashBasu3  
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Program(4) : procedure (IG-1) 
 
Enter your values of µ, λ, n and m 
λ :=      μ :=     n :=      m :=  
 
i 0 −..:= nn 11     j 0 m −..:= 1

X

 
 
 

 
 
 
 
 
 
 
 
 

X

bi j, u1 rnd 1( )←

u2 rnd 1( )←

y ln u2( )−←

u1 rnd 1( )←

u2 rnd 1( )←

y ln u2( )−←

u1 e

y 1−( )2−

2
>while

u3 rnd 1( )←

y− u3
1
2

<if

y u3
1
2

>if

:=bi j, u1 rnd 1( )←

u2 rnd 1( )←

y ln u2( )−←

u1 rnd 1( )←

u2 rnd 1( )←

y ln u2( )−←

u1 e

y 1−( )2−

2
>while

u3 rnd 1( )←

y− u3
1
2

<if

y u3
1
2

>if

:=

X

y bt j, ( )2
←

x1t j, μ
μ

2 y⋅
2 λ⋅

+
μ

2 λ⋅
4 μ⋅ λ⋅ y⋅ μ

2 y2
⋅+⋅−←

u rnd 1( )←

xt j, x1t j, u
μ

μ x1t j, +
≤if

μ
2

x1t j, 
otherwise

←

x

t 0 n 1−..∈for

j 0 m 1−..∈for

x

:=

b

=

 

 B-13



 
Appendices                                                                                                                                                                       Appendix B

 B-14

 

                

        

   
 

a1 j, 

∞−

λ

Xi j, 

i

1
Xi j, 

μ
−

⎛
⎜
⎝

⎞
⎟
⎠

⋅

w
1

2 π⋅
e

1−
2

w2⋅
⋅

⌠
⎮
⎮
⌡

d:=i

i

 

 

b1 j, e

2 λ⋅
μ

∞−

λ

Xi j, 
− 1

Xi j, 

μ
+

⎛
⎜
⎝

⎞
⎟
⎠

⋅

w
1

2 π⋅
e

1−
2

w2⋅
⋅

⌠
⎮
⎮
⌡

d⋅

⎡⎢
⎢
⎢
⎢
⎣

⎤⎥
⎥
⎥
⎥
⎦

:=i a1i ja1

RRj
0

n 1−

i

Ri j, ∑
=

n

             
RRi j, , b1i j, −:=

 

:=RRj
0

n 1−

i

Ri j, ∑
=

n
:=

RR

               Rtrue
0

m 1−

i
i∑

=
m

:=

RR

      htrue

λ

2 π⋅
Xb

3−
2⋅ e

λ− Xb μ−( )2⋅

2 μ
2⋅ Xb⋅⋅

Rtrue
:=

Xb
 

 
 

a2i j, 

∞−

λml
Xi j, 

1
Xi j, 

Xb
−

⎛
⎜
⎝

⎞
⎟
⎠

⋅

w
1

2 π⋅
e

1−
2

w2⋅
⋅

⌠
⎮
⎮
⌡

d:=i
 

 
 

xbj
1

n
0

n 1−

i

Xi j, ∑
=

⋅:=xbj
1

n
0

n 1−

i

Xi j, ∑
=

⋅:=
Xb

0

m 1−

i

xbi∑
=

m
:=

xb

XXj
0

n 1−

i

Xi j, ∑
=

n
:=XXj

0

n 1−

i

Xi j, ∑
=

n
:=

SAj
1

n 1−( )
0

n 1−

i

Xi j, xbi−( )2∑
=

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅:=SAj
1

n 1−( )
0

n 1−

i

Xi j, xbi−( )2∑
=

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅:= λ1 j
n xbj( )3⋅

n 1−( ) SAj⋅
:=λ1 j

n xbj( )3⋅

n 1−( ) SAj⋅
:=

λ1

λm
0

m 1−

i
i∑

=
m

:=

λml
0

m 1

λ1

−

i

λ3 i∑
=

m
:=

λ3

λ3 j
n 3−( )

0

n 1−

i

1

Xi j, 

1

xbj
−⎛⎜

⎝
⎞⎟
⎠∑

=

:=λ3 j
n 3−( )

0

n 1−

i

1

Xi j, 

1

xbj
−⎛⎜

⎝
⎞⎟
⎠∑

=

:=
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b2 j, e

2 λml⋅
Xb

i

∞−

λml
Xi j, 

1
Xi j, 

Xb
+

⎛
⎜
⎝

⎞
⎟
⎠

⋅
⎡
⎢
⎣

⎤
⎥
⎦

−

w
1

2 π⋅
e

1−
2

w2⋅
⋅

⌠
⎮
⎮
⌡

d⋅

⎡⎢
⎢
⎢
⎢
⎣

⎤⎥
⎥
⎥
⎥
⎦

:=i
a2i ja2

RCABj
0

n 1−

i

Rcabi j, ∑
=

n

          Rcab  i j, , b2i j, −:=

 

:=RCABj
0

n 1−

i

Rcabi j, ∑
=

n
:=             Rmlm

0

m 1−

i

RCABi∑
=

m
:=

RCAB λml

     hmlm
2 π⋅

Xb
3−

2⋅

Rmlm
:=

λml

i

 

a3 j, 

∞−

λm
Xi j, 

1
Xi j, 

Xb
−

⎛
⎜
⎝

⎞
⎟
⎠

⋅

w
1

2 π⋅
e

1−
2

w2⋅
⋅

⌠
⎮
⎮
⌡

d:=i

i

 

b3 j, e

2 λm⋅
Xb

∞−

λm
Xi j, 

− 1
Xi j, 

Xb
+

⎛
⎜
⎝

⎞
⎟
⎠

⋅

w
1

2 π⋅
e

1−
2

w2⋅
⋅

⌠
⎮
⎮
⌡

d⋅

⎡⎢
⎢
⎢
⎢
⎣

⎤⎥
⎥
⎥
⎥
⎦

:=i a3i ja3

RCAB2j
0

n 1−

i

Rcab2i j, ∑
=

n

       

Rcab2i j, , b3i j, −:=

:=RCAB2j
0

n 1−

i

Rcab2i j, ∑
=

n
:=           Rmm

0

m 1−

i

RCAB2i∑
=

m
:=

RCAB2 λm

      hmm
2 π⋅

Xb
3−

2⋅

Rmm
:=

λm

i

 

 

a4 j, 

∞−

n λ⋅ Xi j, Xb−( )⋅⎡⎣ ⎤⎦−

Xi j, ( ) Xb⋅ n Xb⋅ Xi j, −⋅

w
1

2 π⋅
e

w2−
2⋅

⌠⎮
⎮
⎮
⌡

d:=i

i

 
 

b4 j, 

∞−

λ− n Xb⋅ n 2−( ) Xi j, ⋅+⎡⎣ ⎤⎦

n Xi j, ⋅ Xb⋅ n Xb⋅ Xi j, −( )⋅⎡⎣ ⎤⎦
1

2

w
1

2 π⋅
e

w2−
2⋅

n 2−
n

⎛⎜
⎝

⎞⎟
⎠

e

2 n 1−( )⋅ λ⋅
n Xb⋅

⎡
⎢
⎣

⎤
⎥
⎦⋅

⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

⋅

⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

⌠
⎮
⎮
⎮
⌡

d

⎡⎢
⎢
⎢
⎢
⎢⎣

⎤⎥
⎥
⎥
⎥
⎥⎦

:=i

a4i ja4 RSTAR1j
0

n 1−

i

Rstar1i j, ( )∑
=

 

Rstar1i j, , b4i j, −:=         

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

n
:=RSTAR1j

0

n 1−

i

Rstar1i j, ( )∑
=

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

n
:=          RBasu1

0

m 1−

i

( )∑
=

RSTAR1i
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

m
:=

RSTAR1

λml

 

hBasu1
2 π⋅

Xb
3−

2⋅

RBasu1
:=

λml
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y j

1

n 1−

i

Xi j, μ−( )2

Xi j, ∑
=

:=yj
1

n 1−

i

Xi j, μ−( )2

Xi j, ∑
=

:=

y

      y1
0

n 1−

i
i∑

=
n

:=

y

XX1XX xfirst      xfirst           t:= y1+:=  xfirst

ia5 j, 

∞−

n 1−− Xi j, μ−( )⋅

t Xi j, ⋅ Xi j, μ−( )2−

w
Γ

n
2

⎛
⎝

⎞
⎠

π n 1−( ) Γ
n 1−

2
⎛
⎝

⎞
⎠⋅ 1

w 2

n 1−
+

⎛
⎜
⎝

⎞
⎟
⎠

n
2

⋅

⌠
⎮
⎮
⎮
⎮
⎮
⎮
⌡

d:=

 

i

i

 

b5 j, 
t 4μ+

t
⎛⎜
⎝

⎞⎟
⎠

n 2−
2

∞−

n 1−− Xi j, μ+( )⋅

t Xi j, ⋅ Xi j, μ−( )2−

w
Γ

n
2

⎛
⎝

⎞
⎠

π n 1−( ) Γ
n 1−

2
⎛
⎝

⎞
⎠⋅ 1

w 2

n 1−
+

⎛
⎜
⎝

⎞
⎟
⎠

n
2

⋅

⌠
⎮
⎮
⎮
⎮
⎮
⎮
⌡

d⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

:=

     

i

a5i ja5 RSTAR2j
0

n 1−

i

Rstar2i j, ∑
=

n

 

Rstar2i j, , b5i j, −:=       :=RSTAR2j
0

n 1−

i

Rstar2i j, ∑
=

n
:=        RBasu2

0

m 1−

i

RSTAR2i∑
=

m
:=

RSTAR2

λml

 

hBasu2
2 π⋅

Xb
3−

2⋅

RBasu2
:=

λml

V1j
0

n 1−

i

1

Xi j,         
1

Xb
−⎛⎜

⎝
⎞⎟
⎠∑

=

:=V1j
0

n 1−

i

1

Xi j, 

1

Xb
−⎛⎜

⎝
⎞⎟
⎠∑

=

:=

V1

              V
0

m 1−

i
i∑

=
m

:=

V1

i

 

a6 j, 

∞−

n n 2−( )− Xi j, Xb−( )⋅

V Xi j, ⋅ Xb⋅ n Xb⋅ Xi j, −( )⋅ n Xi j, Xb−( )2⋅−

w
Γ

n 1−
2

⎛
⎝

⎞
⎠

π n 2−( ) Γ
n 2−

2
⎛
⎝

⎞
⎠⋅ 1

w 2

n 2−
+

⎛
⎜
⎝

⎞
⎟
⎠

n 1−
2

⋅

⌠
⎮
⎮
⎮
⎮
⎮
⎮
⌡

d:=i

i

 

b6 j, 
4 n 1−( )⋅
n V⋅ Xb⋅

1+⎡⎢
⎣

⎤⎥
⎦

n 3−
2 n 2−

n
⎛⎜
⎝

⎞⎟
⎠

⋅

∞−

n n 2−( )− Xb
n 2−( )Xi j, 

n
+

⎡
⎢
⎣

⎤
⎥
⎦

⋅

V Xi j, ⋅ Xb⋅ n Xb⋅ Xi j, −( )⋅ n Xi j, Xb−( ) 2⋅−

w
Γ

n 1−
2

⎛
⎝

⎞
⎠

π n 2−( ) Γ
n 2−

2
⎛
⎝

⎞
⎠⋅ 1

w 2

n 2−
+

⎛
⎜
⎝

⎞
⎟
⎠

n 1−
2

⋅

⌠
⎮
⎮
⎮
⎮
⎮
⎮
⌡

d⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

:=i

a6i ja6

 
 
 
Rstar3i j, , b6i j, −:=

 

 

 B-16



 
Appendices                                                                                                                                                                       Appendix B

RSTAR3j
0

n 1−

i

Rstar3i j, ∑
=

n
:=RSTAR3j

0

n 1−

i

Rstar3i j, ∑
=

n
:=

    
RBasu3

0

m 1−

i

RSTAR3i∑
=

m
:=

RSTAR3 λml

     
hBasu3

2 π⋅
Xb

3−
2⋅

RBasu3
:=

λml

 

ER1

0

∞

tXb
λ

2 π⋅ t3⋅

⎛
⎜
⎝

⎞
⎟
⎠

1

2

e

λ− t μ−( )2⋅

2 μ
2⋅ t⋅

⎡
⎢
⎣

⎤
⎥
⎦⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⌠
⎮
⎮
⎮
⌡

d:= Xb
ER1         BiasXb μ−:=  ER1

ER2

0

∞

tλml
λ

2 π⋅ t3⋅

⎛
⎜
⎝

⎞
⎟
⎠

1

2

e

λ− t μ−( )2⋅

2 μ
2⋅ t⋅

⎡
⎢
⎣

⎤
⎥
⎦⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⌠
⎮
⎮
⎮
⌡

d:= λml
ER2         Biasλml λ−:=  ER2

ER3

0

∞

tλm
λ

2 π⋅ t3⋅

⎛
⎜
⎝

⎞
⎟
⎠

1

2

e

λ− t μ−( )2⋅

2 μ
2⋅ t⋅

⎡
⎢
⎣

⎤
⎥
⎦⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⌠
⎮
⎮
⎮
⌡

d:= λm
ER3         Biasλm λ−:=  ER3

ER4

0

∞

tRmlm
λ

2 π⋅ t3⋅

⎛
⎜
⎝

⎞
⎟
⎠

1

2

e

λ− t μ−( )2⋅

2 μ
2⋅ t⋅

⎡
⎢
⎣

⎤
⎥
⎦⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⌠
⎮
⎮
⎮
⌡

d:= Rmlm ER4     BiasRmlm Rtrue−:=  ER4

ER5

0

∞

tRmm
λ

2 π⋅ t3⋅

⎛
⎜
⎝

⎞
⎟
⎠

1

2

e

λ− t μ−( )2⋅

2 μ
2⋅ t⋅

⎡
⎢
⎣

⎤
⎥
⎦⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⌠
⎮
⎮
⎮
⌡

d:= Rmm
ER5       BiasRmm Rtrue−:=  ER5

ER6

0

∞

tRBasu1
λ

2 π⋅ t3⋅

⎛
⎜
⎝

⎞
⎟
⎠

1

2

e

λ− t μ−( )2⋅

2 μ
2⋅ t⋅

⎡
⎢
⎣

⎤
⎥
⎦⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⌠
⎮
⎮
⎮
⌡

d:= RBasu1
ER6       BiasRBasu1 Rtrue−:=  ER6

ER7

0

∞

tRBasu2
λ

2 π⋅ t3⋅

⎛
⎜
⎝

⎞
⎟
⎠

1

2

e

λ− t μ−( )2⋅

2 μ
2⋅ t⋅

⎡
⎢
⎣

⎤
⎥
⎦⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⌠
⎮
⎮
⎮
⌡

d:= RBasu2
ER7       BiasRBasu2 Rtrue−:=  ER7

ER8

0

∞

tRBasu3
λ

2 π⋅ t3⋅

⎛
⎜
⎝

⎞
⎟
⎠

1

2

e

λ− t μ−( )2⋅

2 μ
2⋅ t⋅

⎡
⎢
⎣

⎤
⎥
⎦⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⌠
⎮
⎮
⎮
⌡

d:= RBasu3
ER8       BiasRBasu3 Rtrue−:=  ER8

ER9

0

∞

thmlm
λ

2 π⋅ t3⋅

⎛
⎜
⎝

⎞
⎟
⎠

1

2

e

λ− t μ−( )2⋅

2 μ
2⋅ t⋅

⎡
⎢
⎣

⎤
⎥
⎦⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⌠
⎮
⎮
⎮
⌡

d:= hmlm
ER9        Biashmlm htrue−:=  ER9

ER10

0

∞

thmm
λ

2 π⋅ t3⋅

⎛
⎜
⎝

⎞
⎟
⎠

1

2

e

λ− t μ−( )2⋅

2 μ
2⋅ t⋅

⎡
⎢
⎣

⎤
⎥
⎦⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⌠
⎮
⎮
⎮
⌡

d:= hmm
ER10            Biashmm htrue−:=  ER10
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