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Abstract

The main purpose of this work is to study Volterra-Fredholm integral and

integro-differential equations.

This study include the classification of Volterra-Fredholm integral and

integro-differential equations.

Also, some theorems for the existence and uniqueness of the solution for
linear Volterra-Freadholm integral and integro-differential equations are

presented.

Moreover, Taylor expansion method for solving special types of non-
linear Volterra-Freadholm integral and integro-differential equations with some

illustrate examples are discussed.
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[nfioducton

The integral and integro-differential equations are encountered in various
fields of science and numerous applications say in elasticity, plasticity, heat,
mass transfer, oscillation theory, fluid dynamics, filtration theory, electrostatics,
electrodynamics, biomechanics, game theory, control, queuing theory, electrical
engineering, economics and medicine, [Jerri A., 1985].

Recall that the one-dimensional integral equation is an equation in which
the integration is carried out with respect to one independent variable, [Delves L.
and Walsh J., 1974].

Many researchers and authors studied the one-dimensional integral
equations say, [Hochstadt H., 1973] discussed the existence of the unique
solution for the one-dimensional non-linear integral equations, [Delves L. and
Walsh J., 1974] gave some numerical solutions for the one-dimensional integral
equations, [Jerri A., 1985] gave some approximated methods for solving the one-
dimensional integral equations with some real life applications, [Al-Shather A.,
1999] studied the one-dimensional singular integral equations, [Al-Shakry A.,
2001] descried the one-dimensional delay integral equations with their solutions,
[Najieb S., 2002] studied the one-dimensional fuzzy integral equations, [Al-
Shather A., 2003] introduced some approximated solutions for solving the one-
dimensional fractional integral equations with or without delays, [Mustafa M.,
2004] devoted the numerical solutions for systems of the one-dimensional
integral equations via spline functions, [Al-Jawary M., 2005] used some
numerical methods for solving systems of the one-dimensional linear

Volterra integral equations, [Ibrahim G., 2005] used some numerical methods for
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solving systems of the one-dimensional linear Fredholm integral equations,
[Abdul-Jabbar R., 2005] presented the inverse problem for the one-dimensional
fractional integral equations.

Also, many researchers and authors studied the integro-differential
equations say, [Choi M., 1993] studied the collocation method to solve integro-

differential equations in which memory kernels have a singularity at t =0, [Al-

Timeme A., 2003] studied the resolvent kernel method for solving linear
Volterra integro-differential equations, [Yaslan H. and Dascioglu A., 2006]
developed a Chebyshev collocation method to find the approximated solutions
for non-linear Volterra-Fredholm integro-differential equations.

Recall that the multi-dimensional integral equation is an equation in which
the integrations are carried out with respect to multiple independent variables,
[Ladopoulas G., 1988]. Many researchers concerned with the multi-dimensional
integral equations say, [Ladopoulas G., 1988] gave some numerical solutions of
the multi-dimensional singular integral equations namely, the quadrature
methods, [Xu Y. and Zhou A., 2004] used the collocation method for solving the
multi-dimensional integral equations, [Cardone A., Mession E. and Russa E.,
2006] used some iterative methods for solving the two-dimensional Volterra-
Fredholm integral equations namely, Numman series method and successive
method, [Al-Niamey L., 2006] used the degenerate kernel method for solving the
multi-dimensional integral equations.

The aim of this work is to devote Volterra-Fredholm integral and integro-
differential equations with their classification. Also, some theorems that grantee
the existence of a unique solution for the linear Volterra-Fredholm integral and
integro-differential equations are presented. Moreover, special types of non-
linear Volterra-Fredholm integral and integro-differential equations via Taylor

expansion method is described.
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This thesis consists of three chapters.

In chapter one, we classify the integral and integro-differential equations
into linear/nonlinear, Fredholm/Volterra/Volterra-Fredholm, first kind/second
kind, homogeneous/nonhomogeneous and singular/nonsingular. Also, some
existence and uniqueness theorems of the solution for the non-singular linear
Volterra-Fredholm integral and integro-differential equations are given.
Moreover, some real life applications of integral and integro-differential
equations are illustrated.

In chapter two, we use Taylor expansion method to solve the linear
Fredholm, Volterra and Volterra-Fredholm integral and integro-differential
equations.

In chapter three, we use Taylor expansion method to solve special types of
the nonlinear integral and integro-differential equations. These types are in
which their kernel are product of two functions, the first function depends on two
variables (the independent variable and its dummy variable) and the second
function is a power function for the unknown function of these integral and

integro-differential equations.



Chapter One The Integral and Integro-Differential Equations

Introduction:-

Recall that the integral equations are important not only to mathematicians
but also may be used to model many real life applications in physics, biology
and engineering, [Hochstadt H., 1973].

This chapter concerns with the integral and integro-differential equations
with their classification and some real life applications. Also, the existence and
unigueness theorems of the solution for special types of the non-singular integral

and integro-differential equations.

This chapter consist of three sections.

In section one, we gave a classification of the integral and integro-
differential equation. Also, we gave some types of the singular integral
equations.

In section two, we give two theorems for the existence of the unique
solution for the linear Volterra-Fredholm integral and integro-differential
equations.

In section three, we gave some real life applications for the integral and

integro-differential equations.
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1.1 Classification of Integral and Integro-Differential Equations:-

An integral equation is an equation in which the unknown function
appears under one or more integral signs. The integral equations occur naturally
in many fields of mechanics and mathematical physics, [Jerri A., 1985]. They
also arise as representation formulas for the solution of differential equations.
Indeed, a differential equation can be replaced by an integral equation which
incorporates it’s boundary conditions, [Tricami F., 1985].

An integral equation is called linear in u(x) if no nonlinear functions of
the unknown function u(x) are involved otherwise it is nonlinear, [Chambers L.,
1976].

The general form of the linear integral equation that contains n integral

operators is
n bj (x)
h(x)u(x):g(x)+z/1i Iki (x,t)u(t)dt (1.1)
i=1 a
where g,h, b; and k; are known functions. The function g is said to be the
driving term and k; is said to be the i-th kernel function that depends on x, t, /;

Is a scalar parameter, a is a known constant and u is the unknown function that
must be determined.
On the other hand, the general form of the nonlinear integral equation is
n o 0i(x)
h(x)u(x) = g(x) + %li J'ki (x,t,u(t)) dt (1.2)
= a
where g,h, by, a, 4; are defined similar to the previous and k; is the i-th kernel
function that depends on x, t and u(t).

An integro-differential equation is an equation in which the unknown

function appears under integral and derivative signs. The integro-differential
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equations are the natural mathematical model for representing a physically
interesting situation, [Linz P., 1985].

The general form of the m-th order linear integro-differential equation that
contains n integral equations is

n  bi(x)

ihi U ) =g(x)+Y 4 [ki(xDu(t)dt (1.3)
i=0

T
where g,h;, b; and k; are known functions such that h,, = 0. The function g is
said to be the driving term and k; is said to be the i-th kernel function, 4; is a
scalar parameter, a is a known constant and u is the unknown function that
must be determined.

On the other hand, the general form of the m-th order nonlinear integro-
differential equation that contains n integral operators is
m _ n bi(x)
S huP (=g +> 4 [kixtu() dt (1.4)
i=0 i=l a
where g,h;, b;, a, 4, u are defined similar to the previous and k; is the i-th
kernel function that depends on x, t and u(t).

The following equations are special types of equations (1.1)-(1.4) that are

of main interest:

(1) The Linear Integral and Integro-Differential Equations:-

The linear integral and integro-differential equations that contain n linear

integral operators can be divided into three kinds:-
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(1) The Linear Fredholm Integral and Integro-Differential Equations:-

If b;j(x)=Db;, where b; is a known constant for each i=12,...,n then

equation (1.1) and equation (1.3) are said to be the general form of the linear
Fredholm integral equation and the general form of the m-th order linear

Fredholm integro-differential equation respectively and take the following

forms:-
n b

h(x)u(x) =g(x) + Z/ii Iki (x,Hu(t)dt, a<x< 1rzl_ax {bi } (1.5)
i=1 a <I<n

and

m n bj

> h; (x)u(i) X)=9(X)+ D4 J'ki (x,)u(t)dt, a<x ng_ax {o; } (1.6)

i=0 i=l g =i=n

respectively.
These integral and integro-differential equations can be divided into the
following types:-

(a) If h(x) =0 for each a < x < max{b; } then equation (1.5) becomes

1<i<n
n b
g() =—>4 [ki(x,tu(t)dt, a<x< maxib;}
i=1 a 1<i<n

and it is said to be the linear Fredholm integral equation of the first kind.

(b) If h(x) =1 for each a < x < max{b;} then equation (1.5) becomes

1<i<n
n b
u(x)=g(x)+ >4 jki (x,)u(t)dt, a3xslm_ax{bi}
o3 <i<n

and it is said to be the linear Fredholm integral equation of the second kind.

Also, if equation (1.6) takes the form:
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m ) n bj
> u () =g(x)+ > 4 [ki(xu(t)dt, a<x< max {b;}

20 i-1 5 1<i<n

then it is said to be the m-th order linear Fredholm integro-differential equation
of the second kind.

(c) If g(x)=0 for each a<x < max {bi} then equations (1.5) and (1.6) becomes
1<i<n

n b
h()u(x) =>4 [k (x,Hu(t)dt, a<x< max {b;}

i=1 a 1<i<n

and

m . n b

> u® () =>4 [ki(x.Du(t)dt, a<x< max{b;}
i=0

i=1 a 1<i<n

are said to be the homogeneous linear Fredholm integral and integro-differential

equations respectively.

(2) The Linear Volterra Integral and Integro-Differential Equations:-

If b, (x) =x for some ie{l,2,...,n} then equation (1.1) and equation (1.3)
are said to be the general form of the linear Volterra integral equation and the

general form of the m-th order linear Volterra integro-differential equation

respectively. Therefore
X
g() =—A[k(x,tu)dt, x>a
a
and

u(x)=g(x)+ AJ)Ek(x,t)u(t)dt , X>a
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are said to be the linear Volterra integral equations of the first and second kinds

respectively. Morever,
X

h(x)u(x) = A[k(x,Hu(t)dt, x>a
a

is said to be the homogeneous linear Volterra integral equation.
On the other hand,

ihi x)u® (x) = g(x) + l]sk(x,t)u(t)dt  x>a

i=0 a
Is said to be the m-th order linear Volterra integro-differential equation of the

second kind. Also,

m ) X

b u® () = Afk(x,tu(t)dt, x>a

i=0 a

Is said to be the m-th order homogeneous linear Volterra integro-differential

equation.

(3) The Linear Volterra-Fredholm Integral and Integro-Differential

Equations:-
If n=2, bj(x)=x and by,(x)=b where b is a known constant then

equation (1.1) and equation (1.3) are said to be the general form of the linear
Volterra-Fredholm integral equation and the general form of the m-th order

linear Volterra-Fredholm integro-differential equation respectively. Therefore
X b
9(9) =—4 [ky (x,Hu(t)dt — 2 [ky (x,u(t)dt, a<x<b
a a

and
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X b
u(x) = g(x) + 4 [k (x,u(t)dt + 4, [kp (x, ) u(t)dt, a<x<h

are said to be the linear Volterra-Fredholm integral equations of the first and

second kinds respectively. Moreover,
X b

h()Uu(X) = A [ ke (x,)u(t)dt + 2 [ko (x,tu(t)dt, a<x <b
a a

Is said to be the homogeneous linear Volterra-Fredholm integral equation.
On the other hand,

m . X b
> b ()u® (x) = g (x) + A [k (x,Du(t)dt + 2, [k (x,u(t)dt, a<x<b
i=0 a a

is said to be the m-th order linear Volterra-Fredholm integro-differential

equation of the second kind. Also,

m ) X b
> 0 u® (x) =24 [ky (x,u(t)dt + 2, [k (x,u(t)dt, a<x<b
i=0 a a

is said to be the m-th order homogeneous linear Volterra-Fredholm integro-

differential equation.

(I11) The Nonlinear Integral and Integro-Differential Equations:-

The nonlinear integral and integro-differential equations that contain n

nonlinear integral operators can be divided into three types:-

(1) The Nonlinear Fredholm Integral and Integro-Differential Equations:-

If bj(x)=Db;, where b; is a known constant for each i1=L12,...,n then

equation (1.2) and equation (1.4) are said to be the general form of the nonlinear

Fredholm integral equation and the general form of the m-th order nonlinear
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Fredholm integro-differential equation respectively and take the following

forms:-
n b

h(x)u(x) = g(x) +>_ 4 Jki (x,t,u(t)) dt, a<x Slm_ax {o; } (1.7)
i=1 a <1<n

and

m . n bj

> u(x) = g(x)+ X 4 [ki(x,t,u() dt, a<x< max b} (1.8)

i=0 i=1 g3 <i<n

respectively.
These integral and integro-differential equations can be divided into the
following types:-

(@) If h(x) =0 for each a < x < max {bi} then equation (1.7) becomes

1<i<n
n Db
g() =—>"4 [k (xtu®)dt, a<x< max{b;}
i=1l g 1<i<n

and it is said to be the nonlinear Fredholm integral equation of the first kind.

(b) If h(x) =1 for each a < x < max {b; } then equation (1.7) becomes

1<i<n
n Db
u() =g+ > 4 [ki(xtu()dt, a£x£1m_ax{bi}
i-1 3 <i<n

and it is said to be the nonlinear Fredholm integral equation of the second kind.

Also, if equation (1.8) takes the form:
m , n b
S hiu(x)=g(x)+ Y 4 [ki(xtu(t))dt, a<x< maxfo;}

0 i1 3 1<i<n

then it is said to be the m-th order nonlinear Fredholm integro-differential
equation of the second kind.

(c) If g(x)=0 for each a < x < max {bi} then equations (1.7) and (1.8) becomes
1<i<n
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n b
h()u(x) =Y 4 [ki(x,t,u(t))dt, a<x< max {b; }
i1 3 <i<n

and

m , n B
S hu® )= 4 [ki(x,tu®)dt, a<x< maxib}

20 i-1 3 1<i<n

are said to be the homogeneous nonlinear Fredholm integral and integro-

differential equations respectively.

(2) The Nonlinear Volterra Integral and Integro-Differential Equations:-

If bj(x)=x for some je{1,2,...,n} then equation (1.2) and equation (1.4)

are said to be the general form of the nonlinear Volterra integral equation and the
general form of the m-th order nonlinear Volterra integro-differential equation

respectively. Therefore
X
g0 =—A[k(xt,u)dt, x>a
a
and
X
u(x) = g(x) + A[k(x.tu(®)dt, x>a
a

are said to be the nonlinear Volterra integral equations of the first and second

kinds respectively. Morever,
X

h(x)u(x) = /Ij'k(x,t,u(t))dt , X>a
a

is said to be the homogeneous nonlinear Volterra integral equation.
On the other hand,
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ihi )u® (x) = g(x) + sz(x,t,u(t))dt  x>a
i=0 a

Is said to be the m-th order nonlinear Volterra integro-differential equation of the

second kind. Also,

ihi (x)u® (x) = /IJ)Ek(x,t,u(t))dt ,X>a

i=0 a
Is said to be the m-th order homogeneous nonlinear Volterra integro-differential

equation.

(3) The Nonlinear Volterra-Fredholm Integral and Integro-Differential

Equations:-
If n=2,b(x)=x and b,(x)=b where b is a known constant then

equation (1.2) and equation (1.4) are said to be the general form of the nonlinear
Volterra-Fredholm integral equation and the general form of the m-th order
nonlinear  Volterra-Fredholm integro-differential equation  respectively.

Therefore
g(x) =—/1Jk1(x,t,u(t))dt —lz?kz(x,t,u(t))dt, a<x<h

and a a

u(x) = g(x) +21Tk1(x,t,u(t))dt MZTkZ(x,t,u(t))dt, a<x<b

are said to be the nonlinear Volterra-Fredholm integral equations of the first and

second kinds respectively. Moreover,

X b
h(x)u(x) = zljkl(x,t,u(t))dt +/12jk2 (x,t,u(t))dt, a<x<b

10
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Is said to be the homogeneous nonlinear Volterra-Fredholm integral equation.
On the other hand,

m . X b
> b )u® (x) = g(x) + 4 [k (x,t,u(®))dt + 2, [kp (x,t,u(t))dt, a<x<b
i=0 a a

is said to be the m-th order nonlinear Volterra-Fredholm integro-differential

equation of the second kind. Also,

m . X b
> b u® (x) =24 [ kg (x,t,u(®))dt + 4, [kp (x,t,u(t))dt, a<x<b

i=0 a a
Is said to be the m-th order homogeneous nonlinear Volterra-Fredholm integro-

differential equation.

Remark (1.1):-

The integral and integro-differential equations in which the range of

integration is infinite, or in which the kernel k;(x,t) is discontinuous for some
ie{,2,---,n} are called singular integral and integro-differential equations

otherwise are called nonsingular. For examples, the integral and integro-

differential equations

g(x) = Tsin(xt)u(t)dt,
0

u'(x)=3x+ [eu(t)dt,
0

[
000 =)

and

11
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X
u'(x) =5x° +jﬂdt
X—t
0
are singular integral and integro-differential equations.
t—x).
If ki (x,t) :cot(Tj,l e{,2,---,n}

in equation (1.1) and equation (1.3) then these equations are said to be linear

Fredholm singular integral and integro-differential equations with Hilbert kernel.

Also, if k (x,0) =33V 50 ie 2, n) (1.9)
(x—1)“

where g is a known function of x and t, then equation (1.1) and equation (1.3)
are said to be linear Fredholm singular integral and integro-differential equations
with weakly singular kernel.

Notice that, if o =1 in equation (1.9) then equation (1.1) and equation (1.3) are
said to be linear Fredholm singular integral and integro-differential equations

with Cauchy kernel.

1.2 Existence and Uniqueness Theorems of the Solution for Linear

Volterra-Fredholm Integral and Integro-Differential Equations:-

In this section, we give two theorems for the existence of a unique solution
of linear Volterra-Freadholm integral and integro-differential equations. These
theorems are generalization of the theorems that appeared in [Chambes L.,
1976].

Theorem (1.1):-

Consider the linear Volterra-Fredholm integral equation of the second

kind:

12
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n b
u(x) = g(x)+/11J'k1(x Hu)dt+ > 4 Ik (x,t)u(t)dt,a<x<b= max {o; }
i=2 a sisn

(1.10)

If |ky(x,t)|<Ly for each a<t<x<b, |k(xt)<L; for each a<tx<b,

n
i=2,3,...,n and ) |4]|Li(b—a) then equation (1.10) has a unique solution for
i=1

each continuous function g.

Proof:-

By rewriting the above equation in an operator equation one can have:

u=Tu
n b

where Tu—g(x)+ﬂljk1(x Hu@dt+ 4 [k (x tu(t)dt
i=2 a

It is known that the set of all continuous functions defined on the interval [a,b]

Is a complete metric space with the following distance

d(ug,up) = sup |uy(x) —uy(x)|
a<x<b

Next, we show that T is a contraction mapping. To do this, consider
d (TU]_,TUZ) =

sup
a<x<b

A [ kg (x,t)uy (t)dt + zz j ki (x,t)uy (t)dt —4 j ky (X, t)u, (t)dt — 2/1 [ ki (X, t)u, (t)dt

a

= sup
as<x<b

ﬁljkl(xt)ul(t) uz(t)dt+z/1 Ik(xt)ul(t) u, (t)Jdt

a

13
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Therefore

a<x<b a 1=2 a

X n bj
d(Tug, Tup) < sup \ul(x)—uz(x)\[\z,l\Ll fdt+ > |alL | dt]

= supb\ul(x) — U (X)‘|:‘21‘L1(X —a)+ > |AilL (b - a)}
i=2

asx<

<d(ug,up)Y |Ai|Li (b - a).
i=1

n

But Z‘ﬂi“—i (b—a)<1. Thus T is a contraction mapping. By using Banach fixed
i=1

point theorem one can have T has a unique fixed point and hence equation

(1.10) has a unique solution.
To illustrate this theorem, consider the following example.
Example (1.1):-

Consider the linear Volterra-Fredholm integral equation of the second
Kind:

1

X 2
u(x)=g(x) + [3xtu(t)dt + [ x*sintu(t)dt
0 0

\kl(x,t)\:\3xt\:3\th\£%, \kz(x,t)\:‘xzsint‘:‘xz‘\sint\si. Therefore Ll:%

and L, :%. But 4, =1, =1. Hence
2
Z/liLi(b—a)z(LijGj:id
=l 4 4)\2) 2

14



Chapter One The Integral and Integro-Differential Equations

Thus by using theorem (1.1), the above equation has a unique solution for each

continuous function g.

Theorem (1.2):-

Consider the first order linear Volterra-Fredholm integro-differential

equation:
n b
u'(x)=g(x)+ 4 j ky (x,t)u(t)dt +|22/1 | [ki(xu(tdt, a<x<b= 2rgla<xn{b !
a
(1.11.a)
together with the initial condition
u(@) =«a (1.11.b)

If [ky(x,t)| <Ly for each a<t<x<b, |kj(xt)<L; for each a<t, x<b and

0 n
‘ﬂl‘l—l + 22‘/1' ‘LI

i=2,3,...,n and 2'22 (b—a)?|<1, then equations (1.11) has a

unique solution.

Proof:-

By integrating both sides of equation (1.11.a) with respect to X, one can

get:
n x bj
u(x) =a + j 9(z)dz + 4 j j ke (z,t)u(t)dtdz + 3" 4 [ [ki(z,t)u(t)dtdz (1.12)
aa iI=2 aa

We rewrite equation (1.12) as Tu =u, where

15
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n x bj
Tu=a+ j g9(z)dz + A j j ke (z,tyu(t)dtdz +>" 4 [ [k;(z,t)u(t)dtdz
aa i=2 aa

Next, we show that T is a contractive mapping. To do this, consider
d(Tuy,Tu,) =

Xb|
sup zlj j ky (z,t)[u (t) - u2(t)]dtdz+z/1j [Ki(2,D)u (t) - up (1) dtdz
as<x<b| ga i=2 aa

where

Tuy = j 9(2)dz + A j j ke (z,t)uy (t)dtdz +4, j j K, (z,t)uy (t)dtdz

aa aa

and

Tu, _j 9(z)dz + A j j ky(z,t)u, (t)dtdz +4, j j K, (z,t)u, (t)dtdz

aa aa

d (TU]_,TUZ)

Xb|
< sup Juy(x) - u2(x)\[\il\L1+ >4l ”dtdz]“dtdz

a<x<b aa aa

:d(ul,uzml\Ll[ )]+(x a)ZWL(b ]

0 b— 2 n
< d(Ul,Uz) M‘l“—l( Za) + Z‘ﬂ'l‘l_l (b - a)2:|
i—2
— n = r n N
Al + 23 AL ALy + 23 |4 L

- (b~ a)? |d(ug,uy) .But 2‘=2 (b-a)*|<1,

therefore T is a contractive mapping. By using Banach fixed point theorem, T

has exactly one fixed point and hence equations (1.11) has a unique solution.

16



Chapter One The Integral and Integro-Differential Equations

1.3 Some Real Life Applications for Integral and Inteqgro-

Differential Equations:-

In this section, we give some real life applications for the integral and
integro-differential equations namely, Human population and the Contact
problem for applications of the integral equations and nuclear reactor dynamics

and Electricity for applications of the integro-differential equations.

(a) Human population, [Jerri A., 1985]:-

Let the number of people presented at time x=0 be ngy. If we look at the

survival or insurance tables, we find that there is some sort of a survival function

f (x) which gives the fraction of people surviving to age x. It is assumed that
these people are either male or female. The surviving population ng(x) at time x
IS

Ns(X) =ng f(x) (1.13)
where ng(0) =ng f(0) =ng.

Under normal circumstances there is a continuous addition to the
population through new births. If children are born at an average rate r(x), then
in a particular time interval A;z about the time z;, there are r(zj)A;z children
added who, if they survive, will be of age x —z; at time x. A fraction f(x—7;)
of these children will survive to age x—rzj, so the final addition to the
population at time X, from the children born in the interval Ajz about time z;, is
f(X=17y)r(zj)Ai7

Now if this process is repeated for all the m subintervals of the time

interval (0,x), we obtain the partial sum

17
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bm(X)Zif(X—Ti)I’(Ti)AiT (1.14)
i=1

as the number of people added through new births which, if passed to the limit,

becomes the integral
X

b(x)=[ f(x-7)r(z)dr (1.15)
0

If this is added to ng(x) in equation (1.13) (the survivors of the initial

population), we obtain the total population at time x as
X
n(x):ns(x)+b(x)=n0f(x)+jf(x—r)r(r)dr (1.16)
0

It is reasonable now to assume that the rate of birth r(x) is proportional to n(x),

the number of the population present at time x,
r(x)=kn(x) (1.17)
From equations (1.16) and (1.17) it follows that

X

n(x):nof(x)+kjf(x—r)n(r)dr (1.18)
0

which is a Volterra integral equation of the second kind in n(x) with a difference

kernel k f (x —17).

(b) The Contact problem, [Badr A., 2000]:-

Consider the semi-symmetric problem, when the tangent force q(x) is

related with the normal pressure p(x) in the contact region of the two surfaces,
by the relation:
q(x) =k p(x)

18
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where k; is the friction coefficient. Also, the normal stress z,; with the tangent
stress oy satisfying the relation:
Tyt = k1 O

For the displacement components vf and v; in the t-direction we have the

relation:
dvp _a(x)  dvz _d(0 (1.19)
dx Gl ’ dx Gz

where G; and G, are the displacement compressible materials of two surfaces
g1(x) and g,(x) respectively. Such problem reduces to the following integral
equation:

Gl + G2
ko
GG

ju(t)dt+(v1+vz)fk( - j (t)dt =& — g1(x) - 92(%),

-1

for 1e[0.), k(t)=— | tanhu ity
2 s

under the condition:

1

ju(t)dt =p<oo, U(-1)=u(l)=0, (p isconstant)

-1

where the contact domain between the two surfaces g;(x) and g,(x) ,o is the
rigid displacement under the action of a force p, k, is a physical constant, k is

the discontinuous kernel of the problem with singularity at the point x=t, and

Vi = 1- 'u' (1=12), 14, p, are Poisson’s coefficients and E;, E; are Young
TE

coefficients and u is the unknown potential function which is continuous
through the interval of integration [-1,1]. The kernel can be written in the

following form:
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1 % tanhu ;
k(t)== [ ——e'du=—In
(t) Zj -

X—t) . e "
If 1 — o0 and the term (th is very small, such that it satisfies the condition

tanh z = z, then we have

_Int—d, (d _ nﬂj (1.20)

T

In

Hence, equation (1.19) with the aid of equation (1.20) can be adapted in the form

ju(t)dt+vj[ Injt - x|+ dJu(t)dt =g~ (x) (1.21)
-1
where
_ (1 +V2)GiGy g (x) = [6 - 91(%) = 92(0]G,G,
ka(Gy +Gy) kz(G1 +Gy)

Differentiating equation (1.21) with respect to x, one can get
u(x)+vj ()dt—g(x) [g(x) dg (X)J (1.22)
dx

Equation (1.27) represents a Fredholm integral equation of the second kind with

Cauchy singular kernel.

(c) Nuclear reactor dynamics, [Linz P., 1985]:-

The relation between the temperature of the reactor £(x,t) and the power

produced u(t), can be described by the rather complication set of equations:

du(x) _

i j (X) B(x,t)dt, —o0 < X < 00
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OB(x1) _ d*B(x, t)+e(x)u(t

—o<X<owo, t>0
OX ot? )

Additional conditions will be taken as:
u(0)=0, A(x,0)= f(x)

and

lim B(x, t)— I|m —ﬁ(x t)=0.

X—+o0o

The first equation expresses the power production as a function of the
temperature and the second equation is simply a diffusion equation with an
added source term due to the power generated by the reactor.
By some more manipulation, and applying the full Fourier transform to second
equation and using integration by parts with condition at infinity, the Fourier
transform B(w,t) satisfies:
oB(w,t)

OX

together with the initial condition:
B(w,0) = F(w)

~W?B(W,t) + u(t) E(w)

After using inverse Fourier transform in the solutions of the above

differential equation and by substituting the result £(x,t) into first equation and

exchanging order of integration, one can obtain:

du(x)

\/_ ju(t) j ja(x)e kg =W (-8 £ () dxclwlt +

: 2
% j j a(x)e ™ e WX E (w)dxdw
T oo

This equation can be written in the explicit form:
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dux) :fk(x,t)u(t)dt +g(x) (1.23)
dx 5

o 2
where k(x,t) =— IA(—W)E(W)e_W =0 gw,

—00

and g(x)=— TA(—W)F(W)e_WZXdW

—00
where A, E and F are Fourier transforms to «, e and f respectively. Equation

(1.23) represents a first order linear Volterra integro-differential equation of the

second kind.

(d) Electricity, [Burton T., 1983]:-

If a single-loop circuit contains resistance R, capacitance C and L with

impressed voltage E, then the basic series circuit equation is

Ld—|+ RI(x) +1q(x) =E(x), x>0
dx C

where the current is defined by | :d_q- Therefore

dx
a(x) =go + [ 1(£)d&, x=0
0

where qq is the initial charge on capacitor. Thus

dl (x)
dx

L

+RI(X) +%{qo +f|(§)d§] ZE(x), x>0
0

which is a first order linear Volterra integro-differential equation of the second
kind.
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Introduction:-

It is known that, when a Taylor series is truncated to a finite number of
terms the result is a Taylor polynomial. This Taylor polynomial is used to
approximate functions numerically, [Taylor B., 1985].

Taylor expansion method can be used to solve the linear Fredholm integral
equations of the second kind, [Kanwal R. and Liv K., 1989].

The aim of this chapter is to use Taylor expansion method to solve the
homogenous linear Fredholm integral equations. Also we use this method to
solve the linear Volterra-Fredholm integral and integro-differential equations.

This chapter consist of two sections.

In section one, we use Taylor expansion method to solve the linear
homogenous and nonhomogenous Fredholm integral equations. Also this method
can be also used to solve the linear Volterra integral equations of the second kind
and the linear Volterra-Fredholm integral equations of the second kind that
contains two integral operators.

In section two, we will solve the same types by using the same method
followed in section one but in the linear integro-differential equations and we

gave some examples of this types.
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2.1 Taylor Expansion Method for Solving the Linear Integral

Equations:-

In this section, we use Taylor expansion method to solve the linear
Fredholm, Volterra and Volterra-Fredholm integral equations with some

illustrative examples.

2.1.1 Taylor Expansion Method for Solving the Linear Fredholm Integral

Equations:-
As seen before, [Kanwal R. and Liv K., 1989] used Taylor expansion

method for solving the non-homogeneous linear Fredholm integral equations.
In this section, we use the same method to solve the homogenous linear
Fredholm integral equations. To do this, first consider the linear Fredholm

integral equation of the second kind:

b
u(x) =g+ A[k(x,Hudt, a<x<b (2.1)
a
Assume that the solution U can be approximated in terms of Taylor polynomials
of the form:
% n1 . .
u(x) ~ U (x):z_—'u(')(c)(x—c)', a<c<b (2.2)
Y
1=0"

which is a Taylor polynomial of degree n at x=c and u(i)(c), 1=0,1,...,n are
the unknown coefficients that must be determined.

Therefore

ut) ~u" ()= Y w(i)z; (t) (2.3)

i=0

where W(i) :_l'u(i)(c) and z;(t)=(t—c),i=0,1,...,n.
I!
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By substituting equation (2.3) into equation (2.1) one can get:
n b
u(x) = g(x) + 4y w(i) [k(x.t) z; (t)dt
i=0 a
To find the approximated solution of equation (2.1), we differentiate the above

equation j-times with respect to X to get:

. . n b PY
uD(x)=gWP(x) +/12W(i)'[;k(x,t)zi(t)dt, j=0,1,...,n
X

i=0 a

and hence

n b j
uDe)y=gWP )+ ﬂZW(i)J'[a—J.k(x,t)
i=0 a 8XJ

Z; (t)] dt

(t —c)‘]dt

- n H
_ g(J)(C)Mz_l'u'(c)ki,j, j=0,1,...,n
i:()l'

(J) 1 Gy f] O
~g (c)+ﬂ,i§)i—!u (c)£ gk(x,t)

where

bl 5]
ki,j = J.(aa— k(X,t)}

; (t—c)dt, i,j=0,1....n (2.4)
a X

X=C

Therefore from equation (2.4) one can obtain the following linear system:
U-AKY =G

where
Cu©) 1 koo ko o keo] | U©
U- UISC) K= kq’l kl_’l kr?,l - U’(:C)
_u(n;(c)_ Kon Kin o Knn | _%u(n)(c)_
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- 9(0) |
(¢
and G= gf )
9™ ()]
The above system can be rewritten as
K'U=G (2.5)
where
—dkey  —Ak, Ak At ot |
0,0 1,0 I 2,0 (n—l)! n-1,0 n! n,0
1 1 1
— Ak 1- 4k - A=K .. —A Kn_ - A—Kk
0,1 L1 Il 2,1 (n—l)! n-1,1 n! n,l
1 1 1
K* _ _ﬂ’kO,Z —ﬂ/kl,z l—ﬂg!kz’z —l(n _1)!kn_1,2 —/?,H!kn’z
: ; . : L .
~Akon-1 — Ak —Ag Ko 1—/1(n_1)!kn—1,n—1 — A Knn-t
1 1 1
_ — AKo.n — Ky —ﬂikz,n _/I(n—l)!kn N 1—)tﬁkn,n _
(2.6)

This linear system can be solved by any suitable method to find the values of
u(c), u'(c,..., u(n)(C).These values are substituted in equation (2.2) to get the

approximated solution of equation (2.1) .
Second, consider the homogenous linear Fredholm integral equation of the

second kind:
b

u(x) = Afk(x,u(tydt, a<x<b (2.7)
a

Assume that the solution U can be approximated as in equation (2.2). In this

case, equation (2.7) can be written as
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n b
u(x) =AY w(i) [k(x.t) z; (t)dt

i=0 a

where W, z; are defined previously. Therefore

. n b o]
u(J)(x) = JZw(i).[%k(x,t)zi(t)dt, j=0,1,...,n
X

i=0 a
and this implies that
. n . 1
uDey=21y u(')(c)_—'ki,j, j=0,1,...,n
i—0 1!
where

bl 41
ki,j = J(;(—J k(X,t)j

a

(t—c)dt, i,j=0,1,....,n (2.8)

X=C

Therefore from the above equation one can obtain the following homogenous
linear system:
I-2K)U =0 (2.9)

where I is the (n+1)x(n + 1) identity matrix,

1
koo ko - akn,o [ uc) |
1 u'(c
K =| Kog kg o F!kn,l and U = Q
: )
kO,n kl,n %kn,n L (C)'

It is clear that U =0 for any values of 4. But if
1-2K|=0 (2.10)
then A is said to be the generalized eigenvalue of the pair of matrices (I,K). So

by solving the above characteristic equation one can get the values of 4 which

can be substituted into equation (2.9) to find the corresponding eigenvectors U.
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To illustrate this method, consider the following examples.

Example (2.1):-

Consider the linear Fredholm integral equation of the second kind:

1
u(x)=%x2+jx2t2u(t)dt, 0<x<1 (2.11)
0

We solve this example by using Taylor expansion method. To do this,
assume that the solution U can be approximated in terms of Taylor polynomials

of the form:

i e 2
u(X)zé)il!u(i)G)(x—%j :u(%)+u’e)(x—9+ E?j(x—%j :

which is a Taylor polynomial of degree 2 at X :% and u(i)(%} 1=0,1,2 are the

unknown coefficients that must be determined .

Moreover since g(X) =§X2 then g'(X) :gx and g"(X)= %

-
g(zj 5

Thus G = g'(lj |2 :
2 5
8
5

() |

Next, we substitute i, ] =0,1,2 in equation (2.4) to get:

1 1
1 1 1 1 1
Koo=[kl =t|dt=—, kjo=[kl=t|t—=|dt=—,
0.0 {(2 j 127 L0 g(z j( 2) 48
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1 2 1 1
kzoZIk(l,tj(t—lj dt=1 oy = [ Tkoety =[O =l
AV 2 120 ox WL S P
2 2
1 1
ki = [k x,b) (t—l)dtzjixztz (t—ljdt=i,
10X AU 2T e [l 2)T 12
2 2
1 2 1 2
k21_j3k(x,t) (t—lj dtzjixztz (t—lj dt=,
) OX wedt U 2 o OX wedt U 2 30
2 2
1 42 1 A2
koo =[Loket)  dt=[ T x4 dt=2,
0,2 2 2
O@x x_l 08X le 3
2 2
2 1 A2
klz_ja—k( X,t) (t—ljdtz ‘3—2x2t2 (t—ljdt:l
U 2] U 2) 6
2 2
and
1 2 2 1 ;2 2
kzz_ja—k( x| [t-t dt:ja—xzt2 t- L) at=L
08X _1v 2 0 OX L2 15
2 2
11 1] no_t 1]
12 48 120 12 48 240
Thus K = 11 and K" = I .
3012 30 312 60
2 11 2 2
3 6 15 3 12 30

Hence, equation (2.5) becomes

11 _L'u(lj' 1]
12 48 240 2 5
L e ur(l) _| 4

312 60 2 5
22 b 29 8
3 6 30 |M (Ej 5
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Then the solution of this linear system is u(%) :i, u’(%) =1 and u”(%) =2.

Thus u(x) = x? is the approximated solution of equation (2.11). Notice that, this

solution is the exact solution of equation (2.11).

Example (2.2):-

Consider the linear Fredholm integral equation of the second kind:

1
u(x) =sin X +x> (cos(1) —sin(1)) + [ X’tu(t)dt, 0<x <1 (2.12)
0

This example is constructed such that the exact solution of this it is U(X) = sin X.

Assume that the solution U can be approximated in terms of Taylor polynomials

of the form:

1 . .
u(x) ~ Z%u(')(O)x' =u(0)+Uu'(0)X.
i=0""

which is a Taylor polynomial of degree 1 at X=0 and u(i)(O), 1=0,1 are the
unknown coefficients that must be determined. Moreover since

g(X)=sinX + x> (cos(1) —sin(1)) then g'(X) =cos X + 3x? (cos(1) —sin(1)).

0 0
Thus G{gf )H }
9'(0)) L1
Next, we substitute i, j =0,1 in equation (2.4) to get:

1 1
Koo = [k(0,1)dt =0, k; o = [k(0,D)tdt =0,
0 0

j 0
k(),l = —k(X,t)
08x

dt=0
X=0

1
dt = j O 3
x=0 0 OX

and
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1

0
kit = [kt
Oax

0 0 « |1 O
Thus K = and K = .
0 0 0 1

Hence, equation (2.5) becomes

o i)

Then the solution of this linear system is u(0)=0 and u’(0)=1. Thus u(x) ~ X is

tdt=0.
x=0

1
tdt:j£x3t
O@x

Xx=0

the approximated solution of equation (2.12). By substituting this approximated

solution into the right hand side of equation (2.12) one can get:

1
sin X + x° (cos(1) —sin(1))+ Jx3t u(t)dt = sin X + X{% + cos(l) — sin(l))
0
# U(X) = X.

So, we must increase the value of n. Therefore let n =2, then the approximated

solution of equation (2.12) takes the form:

«2
u(x) ~u(0)+u’(0)x + u”(O)E.

Moreover since g'(X) = cos X +3x%(cos(1) — sin(1))

then g”"(X)=—sin X+ 6x(cos(1) —sin(1)).

g | (0
Thus G =| g'(0) |=| 1.
g"(0)| |0

Next, we substitute i, j =0,1,2 in equation (2.4) to get:

1
Koo =ki.0 =0, Ky o = [k(0,)t* dt =0,
0
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1

1
0 2 0 .3 2
ko,lzku:O, k2’1: —k(X,t) t dt: —Xt t dt:O,
{ax x=0 £5X x=0
1 A2 1 ;2
koz_jazk(x,t) dt:ja—x3t dt =0,
0 OX <=0 0 OX <=0
1 A2 1 A2
kl,zzja—zk(x,t) tdt:ja—2x3t tdt=0
06x <=0 Oax =0
and
1 a2 1 A2
koo =[5 kxb) trdt=[—x* t>dt=0
0 OX <=0 o OX <=0
00 0 1 00
Thus K=|0 0 Oland K'=|0 1 0]
00 0 0 0 1

Hence, equation (2.5) becomes

1 0 O}l u®0) 0

0 1 0fju'(0)|=|1].

0 0 1(|u"©)| (O
Then the solution of this linear system is u(0)=u"(0)=0 and u'(0)=1. Thus
u(x) = X is the approximated solution of equation (2.12). But this solution is not
sufficient satisfactory. So we must increase the value of n. Therefore let n=3,
then the approximated solution of equation (2.12) takes the form:

X2 X3
u(x)=u(0)+u’(0)x + u”(O)?+ u’”(O)?.

By following the same previous steps, the system given by equation (2.5)
becomes
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1 0 0

01 u) 7 0

0 1 0 0y 1

0 0 13 2 u"(0) B 0
3 _2 _ 1S u"(0)] |-1+6(cos(1)—sin(1))

Then the solution of this linear system is u(0)=u"(0)=0, u'(0)=1 and
w515 . X

u”(0) = 2 + ?(cos(l) —sin(1)) = —-1.009. Thus u(xX)=Xx-— 1.009? is the

approximated solution of equation (2.12). This solution is also not sufficient

satisfactory. So we must increase the value of n. The following table shows that

the approximated solutions of equation (2.12) for n=4,5,...,9.

Table (2.1) represents the approximated solutions of equation (2.12) for

different values of n

n u(x)
3
4 X —1.009
31
3 5
5 XX
3 s
3 5
6 x—X—+X—
3 s
3 5
7 x—09872_ 4+ X _ X
3 s
3 5
8 x—0987 0 X _ X
3 s
3 5 7 9
9 x—0987% X X X
35 7 o
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From this table, for n=9, the approximated solution of equation (2.12) takes the
form:

x> x> x! X

uxX)=x—-0987—+ ———+—.
3579

By substituting this approximated solution into the right hand side of equation

(2.12) one can get:

1
sin X +x° (cos(1) — sin(1)) + [ X tu(t)dt ~sinx + 4.333x10™*x°
0

3 XS X7 X9

zu(x)zx—0.987x—+———+—.
3579l

Example (2.3):-

Consider the homogeneous linear Fredholm integral equation:
1 16
u(x):ij(xz +3tju(t)dt, 0<x<1 (2.13)
0

We solve this example by using Taylor expansion method. To do this,
assume that the solution U can be approximated in terms of Taylor polynomials
of the form:

u(x)~u(0)+u’(0)x.

Next, we substitute i, j =0,1 in equation (2.8) to get:

1 1 1 1
16 8 16 ,» 16
Koo =1kO,t)dt = |—tdt=—, ko; =|k(O,D)tdt = | —t“ dt =—,
0,0 £ (0,1) £9 g Kol { (0,t) £9 >
La La
kl,O = —k(X,t) dt =0 and kl,l = —k(X,t) tdt=0.
[[ax X=0 gax x=0
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9 16
Thus K=|g 927 |.In this case, equation (2.10) becomes
0 1
9 16
1-aK|=/""g% T*57]=0
0 1

and this implies that A4 :% By substituting 4 :g into equation (2.9) one can
obtain the following linear system:

0 —=1 uc0) 0
o 1 lu©] o

which has the solution u’(0)=0. Therefore u(x)=u(0),u(0)=0 is the

1

approximated eigenfunction of the pair of operators [I J.(X2 + %t) dt]
0

corresponding to the generalized eigenvalue 4 :% By substituting (A,u(t)) into

the right hand side of equation (2.13) one can get:

ﬁ,j(x +—t]u(t)dt ~—u(0)j(x +Et)dt

g2y ?
—S(X +8ju(0)

#U(X) = u(0).
So, we must increase the value of n. Therefore let n =2, then the approximated

solution of equation (2.12) takes the form:
X2
u(x) ~u(0)+u’(0)x + u"(O);

By substituting i, j =0,1,2 in equation (2.8) one can get:
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8 16 2
9 27 9
K=0 0 0
2 1 l
— 3_

In this case, equation (2.10) becomes

R Y
9 27 9
1-2K|=| 0 1 0 |=0

-21 —A 1—1/1
3

and this implies that 4; =-9 and 4, =%.

By substituting these values into equation (2.9) one can get the following linear

systems:
16 ]
9 3 2Mu@] [o
0 1 0ju'©)|=]0
18 9 4J u”(0) 0
and
14 L
3 9 p u(0) 0
0 1 0 ||u'(0)|=]0
3 3 3
-= = Z |ju"(0 0
2 4 4 ] ©

respectively. The solution of these systems are

_ 0 _ L
U, = 0 =u(0) 0 [Lu(0)=0
_2u(0) _2
L 2 i L 2]

and
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u(0) 1
U,=| 0 [=u(0)0]|,u0)=0
2u(0) 2

respectively. Therefore 4, =-9 and A, :% are the generalized eigenvalues
corresponding to the eigenfunctions

9 2
u;(X)=u(0) - ZU(O)X ,Uu(0)=0

and
Uy (X) =U(0) + u(0)x?, u(0) =0

respectively.
By substituting the eigenvalues 4; =—9 and 4, :% and the corresponding

eigenfunctions U; and U, into the right hand side of equation (2.13) one can

have:
1 1
2 16 - 2 E _2 2
zlg(x +Et)u1(t)dt~ 9u(0)£(x + 9t)(1 4tj
:u(O)(l—%xzj
= Uy (X).
and
1 1
lzg(xz +%t)u2(t)dt z%u(O)z[)(x2 +%tj(1+t2)it
:u(O)(1+x2)
= U,y (X).
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Therefore (— 9,u(0)(1 —%in and (%,U(O)(l +x? )) are the exact eigenpair of

1
the pair of operators {I, j (xz + %t).dt}.
0

2.1.2 Taylor Expansion Method for Solving the Linear Volterra Integral

Equations:-

Consider the linear Volterra integral equation of the second kind:

X
u(X)=g(x)+A[k(x.bubdt, x>a (2.14)
a

Assume that the solution U can be approximated in terms of Taylor polynomials

of the form:

u(x)zu*(x):Zn:%u(i)(c)(x—c)i, c>a (2.15)
i=0""

which is a Taylor polynomial of degree n at X=c, and u(i)(c), 1=0,1,...,n are
the unknown coefficients that must be determined. By substituting equation

(2.15) in equation (2.14) one can get:

u(x) = g(x) + ﬂ,zn:w(i)jk(x,t) z; (t)dt

i=0 a
where W and z; are defined previously.

Then by differentiating the above equation j-times with respect to X one can

have:
. . n dj X
uP =g W)+ Ay wi)— [ k(x.t)z (t)dt
i=0 dXJ a
Hence
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. . n .
uDc)= g“)(c)+/12_l'u'(c)ki’j, j=0,1,...,n (2.16)
i=o"
where
dl ¥ : .
ki.j = —.jk(x,t)(t—c) dt| ,i,j=0,1,...,n (2.17)
’ dxt -

Therefore from equation (2.17) one can get the following linear system:
U -AKY =G

where
Cu©) ] koo ko v kno] | U©
U - u'{c) K= Ko.1 kl.,l Kn.1 v u’(:c)
@] [kn ki o K )
[ 9(0) |
and G = ngC)
97,
The above system can be rewritten as
KU =G (2.18)

where K is defined by equation (2.6).

This linear system can be solved by any suitable method to find the values of
u(c), u’(c),..., u(n)(c).These values are substituted in equation (2.15) to get the

approximated solution of equation (2.14) .
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Remark (2.1):-
In equation (2.15), if c=a, then by substituting X=a in equation (2.14)

one can get u(a)=g(a). In this case, the values of u’(a), u”(a),...,u(”)(a) can

be obtained by solving the linear system

K1U1 :GI (219)
where
_ . . _
l_lkl,l _iikz’l PP _iﬁ!kn’l
| 1
Kl* — _Z/kl’z l_ﬂzakz,z PP _ﬂzmkn,z ,
: K ) 1
__ﬂzkl’n _/Iik‘?‘?n PP ]._/Iﬁ!kn,n_
(U@ ] [ g'(a) + Ao, u(a) |
u”(a "(a) + Ak Hu(a
U, = g) and G, = 9"(a) :0,2()
u™ (@) 9™ (@) + Akg qu(a)

To illustrate this method, consider the following example.

Example (2.4):-

Consider the linear Volterra integral equation of the second kind:

X

00=2x + 1xd 3 222 C L B Tkttt (2.20)
200 3 2" 12710

We solve this example by using Taylor expansion method. To do this,
first, assume that the solution U can be approximated in terms of Taylor

polynomials of the form:
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u(x) =u() +u'(H(x—1)+ %(x ~1)7 + @(x ~1)%.

which is a Taylor polynomial of degree 3 at x=1 and u(i)(l), 1=0,1,2,3 are the
unknown coefficients that must be determined .

Moreover since g(x):_—lx5 +1X4 +X° —2X2 —LX+—3 then g(1) =-2
20 3 2 12 10

Thus the above approximated solution of equation (2.19) becomes

u(x)= =2 +u'(H(x—1)+ u”2('1) (x—1)* + u';('l) (x-1)°.

Since g’(x)=_71x4 +§x3 +3x2 —9x—$, g”(x):—x3 +4x% +6Xx-9

and 9" (X)= —3x% +8x + 6, thus g'()=-5,9"(1)=0 and g"(1)=11.
Next, we substitute i1 =0,1,2,3 and j=1,2,3 into equation (2.17) one can

have:

d X
kn1=|—|(x-1)dt
0,1 dx!( )

~0,

x=1

d X
=0, kyp = [& Jox=tyt- l)dt]
x=1 1

_ ) I 3 )
kp.1 = —j(x t)(t—1) dt] =0, k3,1_[&j(x—t)(t—1) dt] =0,
x=1 1 x=1
d X d2 X
Koo =|— dt| =1 kj,=|—1[(x-t)t-Ddt| =0,
0,2 L !X ) ] } 1,2 dxz{(x )(t-1)
X= x=1
{d T 2 dz}( 3

koo =| — J(x-t(E-1) dt} =0, k332:{—2 (X—=t)(t-1) dt] =0,

1 x=1 a 1 x=1

1

b

d X
k03 —[—3.[ X—t)dt]
1

d3
3y =0, ki3 = ﬁ{(x—t)(t—l)olt

x=1
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d3 )
kos = d?'l[(x—t)(t—l) dt| =0

x=1

d®
andk33:—3j(x—t)(t—1)3dt =0.
’ dx”

x=1
0 00 -5

Thus Ky={0 0 O|and G, =|-2|
1 00 11

Therefore, equation (2.19) becomes
1 0 0} u'() -5
0O 1 Oo|u")|=|-2].
-1 0 1|u"1 11

Then the solution of this linear system is u'(l)=-5,u"(1)=-2 and u”(0)=6.
2 3_.3 2 .

Hence UX)=-2-5(X-1)—(X=D"+(X=1)" =x" —4x” +1 1s the

approximated solution of equation (2.20). Notice that, this solution is the exact

solution of equation (2.20).

Second, assume that the solution U can be approximated in terms of

B

2!

Taylor polynomials of the form:

eonfgjof2fed ey Ay

which is a Taylor polynomial of degree 3 at x :% and u(i)(g), 1=0,1,2,3 are the

unknown coefficients that must be determined .

In this case,
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[\

G [G)
gl = uj — _ _
2 2 AR U S
(gj (g) 8 24 128 960
g u
G= 2 U= 2 and K~ = SER N
g,,(g)’ u,,(gj 2 8 48 384
(3j (3j o0 -1 0 1
9" > u"l 3 - )
— 2 - — 2 -
Therefore, equation (2.18) becomes
_ (3j
_ - uf —
71 11 A2 _37
8 24 128 960 | 3 8
LIS U S A0 I 2
2 8 48 3841 (3| | 4
-1 0 1 0 [|Ul5 1

o -1 o 1],
- “lu

N | W

j L 6 ]

Then the solution of this linear system is u 3 :—ﬂ, u’ 3 :—2, u” 3 =1
2 8 2 4 2

and u”(0)=6.

2 3
In this case u(x)z—ﬂ—g(x—§j+l(x—§j +(X—§j =x>—4x% +1 is
8 4 2) 2 2 2

the approximated solution of equation (2.20).

2.1.3 Taylor Expansion Method for Solving the Linear Volterra-Fredholm

Integral Equations:-

Consider the linear Volterra-Fredholm integral equation of the second

kind:
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X b
u(x) = g(x) + ilfkl(x,t)u(t)dt + zzjkz(x,t)u(t)dt ,a<x<b (2.21)
a a

Assume that the solution U can be approximated as in equation (2.2). By

substituting equation (2.3) into equation (2.21) one can get:

n X n b
u(x) = g(x) + 41 2 w(i) [k (D zi (D dt + 4 3 w(i) [ Ky (x,1) Z; () dt

i=0 a i=0 a

n X b
=g(x)+ Zw(i){iljkl(x,t)zi (Hdt+ Azjkz(x,t)zi (t)dt]

i=0
where W and z; are defined previously.

To find the approximated solution of equation (2.21), we must differentiate the

above equation j-times with respect to X to get:

i o -
uD =g+ > wi) zld—J.jkl(x,t)zi(t)dt +/12ja—1.k2(x,t)zi(t)dt
dx 3 - oxJ

i=0
Zj (t)}dt:l
X=C
(t—c) }dt
X=C

and hence

uPe)=gV )+ iwﬁ){zl{jz [kixbz, (t)dt}
X a

i=0

bl
o)
+ 2 {axjkz(x,t)
a

X=C

. n 1 . dJ X :
:g(l)(c)+zﬂu(')(c) P djjkl(x,t)(t—c)'dt
X" a

i=0"

ol
o}
sz[axj K (X,t)

a

X=C
: n : .
:g(”(c)+z_l'u(')(c)[/11 ki + A ki’j], j=0,1,...,n
i=ol

where

dl X i ..
ki.j=| —[kiubt—c)'dt| ,i,j=0,L...,n (2.22)

’ dx’ 3 -

and
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. Ral .

ki j =I—jkz(x,t) (t-0)'dt,i,j=0,1...,n (2.23)
5 OX ec

Therefore from the above equations one can obtain the following linear system:

U-KY =G

where
- u(c) | Akoo + koo Ak +Aokig o Akng + Aok
U - w©) | _| Akoy + MoKy AiKiy ki Ak + Aok
V@) | Ao+ Aakon AkintAKin o Ak +Aokng |
u©) | [ 90 ]
u’(c) '(c
Y = . and G = J ( )
L m '
_ﬁu (C)_ _g(n) (C)_
The above system can be rewritten as
K'U=G (2.24)
where
i * * . 1 1 = ]
1-4ikoo — koo —Aikio—Akoo @ -4 ﬁkn,o ) ﬁko,o
* * ) 1 |
K*=| —Akor—Aakoo 1-Aky =k 1 -4 Hkn,l ) Hko,l
B e 1 1, s
—Akon —okon —Akin—kin ¢ 1-4 Hkn,n ) Ekn,n

The solution of this linear system u(c), u’(c),..., u(n)(c) can be substituted into

equation (2.2) to get the approximated solution of equation (2.21) .

To illustrate this method, consider the following example.
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Example (2.5):-

Consider the linear Volterra-Fredholm integral equation of the second
kind:

X 1
u(x):3x—%x2 - 3% + [2xu(ydt + [ x* uydt, 0<x<1 (2.25)
0 0

We solve this example by using Taylor expansion method. To do this,
assume that the solution U can be approximated in terms of Taylor polynomials
of the form:

«2
u(x) ~u(0)+u’(0)x + u”(O);.

Moreover since g(X)=3X— %Xz —3x’then g'(X)=3-3x— 9x>

and g"(X)=-3—18x.

9(0) 0
Thus G =| g'(0) |=| 3
9"(0)] [-3

Next, we substitute i, j =0,1,2 into equations (2.22)-(2.23) to get:

=0,

d X
Ko,o =ki0 =ka,0=0, Ko = [&Pth]
0 x=0

d ¥ d ¥
kll = —sztdt :O, k21 = —sztz dt :O,
’ dxo ’ de
d2 ¥ d2 ¥
Ky, =|——=|2xdt =4, ki, =| —= | 2xtdt =0,
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d2 %, 5
k22: —— 2Xt dt :O,
’ dx2£
x=0
* 12 * 12 * 12 2
Koo =X dt=0, kiog=|x tdt=0,k, 5 =|X t=dt=0,
0.0 E.). x=0 Lo -([ x=0 20 £ x=0
. bd . kd . b
Kog=[--x*| dt=0,kiy =[x tdt=0,ky;=[--x*| t*dt=0,
0 dx x=0 0 dx x=0 0 dx x=0
1 42 1 42
k(>)k,2: d—2X2 dt:2, kl*,2: d—2X2 tdt:1
o dx (=0 o dx (=0
and
1 42
Ky = d_2X2 tzdtzg.
o dx <=0
0 0 O 1 0 O
Thus K=/0 0 O0|andK'=[ 0 1 0
6 1 % -6 -1 g
L 3] i 3]
Hence, equation (2.24) becomes
10 0/ u) 0
0 1 0lu]|=]3
—6 -1 % OIS

Then the solution of this linear system is u(0)=u"(0)=0 and u'(0)=3. Thus
u(x)=3x is the approximated solution of equation (2.25). Notice that, this

solution is the exact solutions of equation (2.25).
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2.2 Taylor Expansion Method for Solving the Linear Inteqro-

Differential Equations:-

In this section, we use Taylor expansion method for solving the linear

Fredholm, Volterra and Volterra-Fredholm integro-differential equations.

2.2.1 Taylor Expansion Method for Solving the Linear Fredholm Integro-

Differential Equations:-

Consider the first order linear Fredholm integro-differential equation of

the second kind:

b
U'(x)=g(x) + A[k(xHu(t)dt, a<x<b (2.26.a)

together with the boundary condition:
o u(@)+au(c)+azu(b)=p4, a<c<b (2.26.b)
where a;,a; ,a3 and B are known constants.

Assume that the solution U can be approximated as in equation (2.2). By

substituting equation (2.3) into equation (2.26.a) one can get:
n b
W'(x)=g(x)+ A > w(i) [k(x,t) z ()t
i=0 a
To find the approximated solution of equation (2.26), we differentiate the above
equation j-times with respect to X to get:
. . n b aj
u It ) =gW(x) + ﬁ,zv\/(i)j—jk(x,t)zi t)dt, j=0,1,...,n—1
i=0 a OX

and hence

i=0 a

n b j
u D)= g(j)(c)+/12w(i)j[a—1.k(x,t) zi(t)]dt
ox? e
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() 01 Gy ] 0
- g (c)+/1i§)i—!u (c)£ 5k(x,t)

(t —c)i]dt

- n H
i=0!" ’
where

(t—c)dt, i=0,1,....n, j=0,1,....n—1 (2.27)

X=C

b 5]
ki,j :Ia—jk(x,t)
5 OX

Therefore from the above equation one can obtain the following linear system:

U-AKY =G (2.28)
where

L u'(0) | koo Koo o kng | - u©
uo| WO || Ko R Ky u’(:c)

_U(ni(C)_ Kon-1 Kinot o Kpnor _%U(n)(c)_

g(c)
and G = g'FC)
9 )

Now, we substitute Xx=a and X =D into equation (2.2) to get:
N1 . N1 . .
u@@) ~ Z_—'u(')(c)(a —c) and u(b)~ Z_—'u(')(c)(b —c)!
Al il
1=0 i=0

Therefore, equation (2.26.b) becomes

n

Z%u(i)(c)[al (a-c) +a3(b—c) ]+ a,u(c) =B
i=0""

Next, we consider the following two cases:
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Case (1):-

u(c)=L

This equation together with the linear system given by equation (2.28) can be

If o, #0 then

@)

written as in the following linear system:

U -aK'Y =G"
where
] | 2
vt YO 6| 0©
U™ (e), _g(”_;)(c)_
and

C 1 1
———|ay +a3] ———|aj(@a-c)+a3(b-c)]
Q’z Q’z/l
k0,0 kl,O

Ko.n-1 Ki.n-1

The above system can be rewritten as

KU =G

where

1+L[051 +a3] L[051(6‘—0)+0‘3(b—C)]
12%) 2%)

-A ko’o 1-4 kl,O

—AKon-1 — Ky

50

{ﬂ— Z%u@(c)[al(a—c)‘ +a3(b —c)‘]}
i=0""

J—bﬂa—®n+aﬂb—®n

@

_/l_kn,n 1

kn,O

kn,n—l

1
_/1Hkn,0

.

n!

(2.29)

—L[al(a—c)” +asz(b—c)"
azl

(2.30)
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The solution of this linear system u(c), u’(c),..., u(n)(c) can be substituted into

equation (2.2) to get the approximated solution of the boundary value problem

given by equations (2.26) .

Case (2):
If o, =0, then the boundary condition given by equation (2.26.b)

becomes

a _;)il!u(i)(c)(a —o)' + a3§)il!u(i)(c)(b —o)' =2

Now, consider the following two cases:

Case (I):-

If oy + a3 # 0 then the above boundary condition can be written as

1
a1+a3

u(e)= p-ay @ @-o - a3 b -cf
i=1" i=1"

This equation together with the linear system given by equation (2.29) can be

written as in the following linear system:

U'—AK'Y=G" (2.31)
where
" u(©) | P
' al+a3
* C *
TR B SN B TOO
() :
[um () g Do)
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0 4 @a-0-—B ¢ o —— N @B ¢
/1(051"'0‘3)( 2 /1(051"'“3)( ) /1( 1+a3)( 2 /1(0‘1“‘053)( )
K" = ko,o kl,O kn,o
_kO,n—l k1,n—1 kn,n—l |
L u(c)
u’(c)
and Y = .
lu(n)(c)
Ln! ]

This system can be rewritten as

KU =G (2.32)
where

1 Y (a- )+—(b—c) e N @)+ — B o)

Aa; +a3) Uay +az) Ala; + az)n! Aoy +az)n!
1

K, =| —4Koo 12K —iﬁkn,o

: : : /

—AKon1 —AKina 1-2 n Kn,n-1

By solving this system one can get the values of u(c),u'(c),...,u(”)(c).

Case (11):-

If a; + a3 =0 then the boundary condition given by equation (2.26.b) can
be written as

> L e)a-of Zlu“’(c)(b o=~
a

i= 1I i=1 1
This equation together with the linear system given by equation (2.29) can be

written as in the following linear system:
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U - i1K'Y =G’
where
" u©) v
' aq
* u(c *
ut=| Y9 6" <] e
() :
u'™(c _
(€) _g(n D(C)_
1 (a-c)+(b-c)
A A
K*=| Koo Ki.o
_kO,n—l kl,n—l

This system can be rewritten as

KIU * = G*
where
0 —(a-¢c)—(b-0)
—AKon-1 — K-

1 n n 1
—l(a-c)" +(b-c
P (@a-c) +(b-c)
Kn,0 and Y =
kn,n—l

—l(a—c)“+(b—c)”
n!
1
_iakn,o

1.

lu (n) (c)
Ln! i

(2.33)

u(c)
u'(c)

(2.34)

By solving this system one can get the values of u(c),u’(c),...,u(”)(c).

To illustrate this method, consider the following examples.
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Example (2.6):-

Consider the first order linear Fredholm integro-differential equation of

the second kind:

2
u'(x) = 4x° —33—2x2 + [x*tu(tydt, 0<x<2 (2.35.)
0

together with the boundary condition:
2u(0) +4u(1)—%u(2) =0 (2.35.b)

We solve this example by using Taylor expansion method. To do this,
assume that the solution U can be approximated in terms of Taylor polynomials

of the form:

u(x) =~ u(h)+u'(H(x—1)+ %(x ~1)%.

Moreover since g(X) = 4x3 - %Xz then g'(x) = 12x% - %X.
Therefore g(1) = —2—30 and g'(1) = —%.

From the boundary condition given by equation (2.35.b) one can deduce that:

a1=2,a2=4,a3=_71 and S =0.

R
. | 22 %o

Thus G = g(1) |= et
a'(l) 28
N

Next, we substitute i =0,1,2, j=0,1 into equation (2.27) to get:

2 2
k0,0 = Ik(lat)dt =2, kl,O = Ik(l,t)(t — l)dt = %)
0 0
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2

2
kzozjk(l,t)(t—l)zdtzz, kmzjﬁk(x,t) dt =4,
Ty 3 T OX =1
25 4 29 5. 4
k11: —k(X,t) (t—l)dt:— and k21: —k(X,t) (t—l) dt =—.
’ -([ax =1 3 ’ {ax =1 3
Since A =1, then
—L[aﬁras]:—l, ——[051(a ) +az(b—c)]=—
azﬂ/ 16 21
and
——a a-c) +az(b-c
Jm@a-cr +as0-02]--L.
79 1
16 16 16
Thus K =| 2 2 2
3 3
s 4 4
i 33
Hence, equation (2.29) becomes
A A N
u(l 16 16 16 || u(l 0
o2 202 | o |2
, 33 |4 3|
u'(1) 4 4 || =u"Q) 28
4 = =2 —-—
L 3 3 - - L 3
: . : 452
Then the solution of this linear system is u(l):g, (1)—— and
urny - 1044 18 452 1044 88 592 522 »
1)=——. Thus ¥r—+—(X—1)+——(x— — X+ X
u’(1) 35 u(x) = 35 ( )+ ( 1)? = 35 1t 38

is the approximated solution of equations (2.35). By substituting this

approximated solution into the right hand side of equation (2.35.a) one can get:
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2
4x3 —gx2 +'[x2tu(t)dt=4x3 +£x2
3 0 35
, 592 1044
ZU(X)r ——+——X
35 35

Therefore, we must increase the value of n. So, assume that the solution of

equations (2.35) takes the form:

u(x) = u(l)+ u'((x —1) + “”2('1) (x—17 + “(;(l) (x-1Y.

In this case

B 0 ] _Z 2 _l 2
B ]| 20 6 16 16 16
PR . 2 2 2
G =| 9D |=| 28| and K = 33 5
) 3 303 05
'] | = 4 4 4
[ 3 4 - - <
i 3 3 5
Hence, equation (2.29) becomes
7 9 7 9] -
76 16 16 16 U ] Y
u(l) , _20
2 2 2 u'(l)
: 2 = = = 3
ud | _ 3003 sy |<| 28,
S IR BN
Lu" (D) 11 allbuvo] |8
4 — - -6 3]
i 33 5

Then the solution of this linear system is u(l):7.712><10_2,

u’(1)=-1.409, u"(1)=—16.226 and u"(1) =-28.226.

Thus U(X) ~1.486 —1.409% —8.113(x — 1)> — 4.704(x — 1)’
is the approximated solution of equations (2.35). By substituting this

approximated solution into the right hand side of equation (2.35.a) one can get:
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2
4x3 —%xz +Jx2tu(t)dt =4x> —18.742x>
0

£U(X) ~1.486 —1.409% —8.113(x —1)* — 4.704(x —1)’.
Therefore, we must increase the value of n. So, assume that the solution of

equations (2.35) takes the form:
31 (i) i
u(x) ~ Z&)i—!u MH(x-1".

By following the same previous steps, the system given by equation (2.29)

becomes

. Rk
i) 2 2 2 2 | v B
' 2 = = = = 1 3
u'(®) 3 3 5 5 —u"(l) 78
u'd) |- 4 4 4 4 2 -2
4 - - 2 2 3

u"(1) 33 5 5 | —u") 3

4 4 4 4 4 6 -
- - 3 3 5 5 || —=u‘"(1) 24
0 0 0 0 o0 |L24 BT

Then the solution of this linear system is u(l)=1, u'(l)=4, u"(1)=12,u"(1) =24
and UV (1)=24. Thus u(x) ~ 1+ 4(x = 1) + 6(x — )% + 4(x = 1)° + (x = )* = x*

is the approximated solution of equations (2.35). Notice that, this solution is the

exact solutions of equations (2.35).

Example (2.7):-

Consider the first order linear Fredholm integro-differential equation of

the second kind:

2
u'(x)=1-8x+3[xtu(t)dt, 0< x <2 (2.36.a)
0
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together with the boundary condition:

u0)+u(2)=2 (2.36.b)
We solve this example by using Taylor expansion method. To do this,

assume that the solution U can be approximated in terms of Taylor polynomials

of the form:

u(x) =u(l)+ u'()(x—1)+ ””2('1) (x—1).

Moreover since g(X)=1-8x then g'(x)=-8.
Therefore g(1)=-7 and g'(1) =-8.
From the boundary condition given by equation (2.36.b) one can deduce that:

a=La,=0,a5=1,a;+a3=2#0 and f=2.

_ ﬂ _
. 0(1+0(3 1

Thus G* =| g1) [=|-7].
g'(h) -8

Next, we substitute i =0,1,2, j=0,1 into equation (2.27) and since A =1,

then
YD a-c)+—B _b-c)=0
a1+a3 0[1+C¥3
and
(@-0) + 2 —(b-0) =
2(e + a3) (o +a3)
o !
Thus K, =| -6 —1 —1]|
-6 -2 0
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Hence, equation (2.32) becomes

uc) 1
-6 -1 —-1{ju)|=|-7|
-6 -2 0 (|u"() -8

Then the solution of this linear system is u(l)=1,u’(1)=1 and u”(1)=0. Thus
u(x)=x 1is the approximated solution of equation (2.36). Notice that this

solution is the exact solution of equation (2.36).

Example (2.8):-

Consider the first order linear Fredholm integro-differential equation of

the second kind:

2
u’(x):1—8x+3jxtu(t)dt,O£x£2 (2.37.a)
0

together with the boundary condition:

u(0)-u2)=-2 (2.37.b)
We solve this example by using Taylor expansion method. To do this,

assume that the solution U can be approximated in terms of Taylor polynomials

of the form:

u(x) =u(l)+ u'(H(x—1)+ ””2('1) (x—1).

Moreover since g(X)=1-8x then g'(x)=-8.
Therefore g(1)=-7 and g'(1) =-8.
From the boundary condition given by equation (2.36.b) one can deduce that:

op=1,0,=0,a5=-1, 01 +a3=0 and f=-2.
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va
Thus G™ =| g(1) |=|-7|.
g'm| |-8

Next, we substitute 1 =0,1,2, j=0,1 into equation (2.27) and since 1 =1,

then

(a—c)+(b-¢)=0 and%:(a—c)2+(b—c)2 =1.

0 -2 0]
Thus K, =|-6 -1 —1]|
-6 -2 0|

Hence, equation (2.34) becomes
0 -2 0| u® -2
-6 -1 —1(ju'()|=|-7|
-6 =2 0 [|u"() -8

Then the solution of this linear system is u(l)=1,u’(1)=1 and u”(1)=0. Thus
u(x)=x 1is the approximated solution of equation (2.37). Notice that this

solution is the exact solution of equation (2.37).

2.2.2 Taylor Expansion Method for Solving the Linear Volterra Integro-

Differential Equations:-

Consider the first order linear Volterra integro-differential equation of the

second kind:
X

u'(x) = g(x)Mjk(x,t)u(t)dt, X>a (2.38.2)
a

together with the initial condition:
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u@) =a (2.38.b)
where « is a known constant.
Assume that the solution U can be approximated as in terms of Taylor

polynomial of the form:
* LN -
u(x)=u (x)= Z_—'u(')(a)(x -a)'
ry
=0

then by using the above initial condition and the fact that u’(a) = g(a), the above

approximated solution reduces to

n _ :
u(X) = a +g(a)(x—a)+ Z_l'u(')(a)(x -a)'

i=2|'
where u’(a),u”(a),..., u(”)(a) are the unknowns coefficients that must be

determined.

By substituting equation (2.15) into equation (2.38.a) one can get:

u'(x) = g(x) + ziw(i)jk(x,t)zi (t)dt

i=0 a
where w(i)= _l'u“)(a) and z;(t)=(t—a)',i=0,1...,n.
1!

Then by differentiating the above equation j-times with respect to X and setting

X =a in the resulting equation one can have:

. . n H
g(+D (@)= g(J)(a)+12%Ul(a)ki,j: j=L2,...,n-1
i=0"

where k; j 1s defined as in equation (2.17).

Therefore from the above equation one can get the following system:
U-AKY =G (2.39)

where
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@l T 1| @
u’(a) Koy Ksp o 0 Ky 2
m r .,
U~ u :(a) K= k2:,2 k3.,2 | kn-,z Y= au (a)
_u(n) (a)_ _k2,n—1 k3,n—1 kn,n—l_ lu(r})(a)
! i
g'(@+Aa ko +1g(a)k
9"(@)+ Aaky, + Ag(a)k 5
and G = ;

19" V@) + A kop_y + 29k

The above system can be rewritten as

K'U=G

where
1 1 1 |
1 - E!ﬂ’kzal - aﬂ«k3,1 PRP - F!ikn’l

. Lok, 1oLk Lk

K = _5! 2,2 _E! 3,2 _F! n,2
o o o
_—Elﬂ/kzjn_l —g!ﬂ/k:;,n_l —H!/Ikn’n_l_

The values of u”(a),u”(a),..., u(”)(a) can be obtained from solving the above

linear system.

To illustrate this method, consider the following example.

Example (2.9):-

Consider the first order linear Volterra integro-differential equation of the

second kind:
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X
u'(x):l—%x3 +j(x+t)u(t)dt, x>0 (2.40.2)
0

together with the initial condition:

u(0)=0 (2.40.b)
We solve this example by using Taylor expansion method. To do this, let

n =3, then the approximated solution of this example takes the form:

x? x>
u(x)=u(0)+u’(0)x+ u”(O)? + u’”(O)?.
But by using the above initial condition and the fact that u'(0)=g(0)=1, then

the above approximated solution reduces to

2 3

" X n X
u(X)=x+u (0)5 +Uu (0)§.

Moreover since g(X)=1 —%X3 then g'(x) = —%5 x? and g"(x)=-5x.
By substituting i =0,1, j=1,2 in equation (2.15) one can get:

Ko, =ki,1 =Ko =kj2=0.

But u(0)=0,u’(0)=1 and A =1, therefore

G- 9'(0)+ Aako; +A9(0)ky; | [0
1 9"(0)+ Aakg, +A9(0)ky 5 | |0

By substituting 1 =2,3, j=1,2 in equation (2.15) one can have:
Ky =Kz =Ky =k, =0.

Hence, equation (2.31) becomes

1 0J[u"®] [o
0 1||u"©)| |o]
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which has the solution u”(0)=u"(0)=0. Hence u(X)~ X 1is the approximated

solution of equations (2.40). Notice that, this solution is the exact solutions of

equations (2.40).

2.2.3 Taylor Expansion Method for Solving the Linear Volterra-Fredholm

Integro-Differential Equations:-

Consider the first order linear Volterra-Fredholm integro-differential

equation of the second kind:
X b

U'(x) = g(x) + 4 [k (. Hut)dt + 2, [k (xHyu(t)dt (2.41.a)
a a

together with the boundary condition:
o u(@)+aru(c)+azu(b)=p4, a<c<b (2.41.b)
Here we assume that a, #0. The case a, =0 can be discussed similar to the

previous section.

By following the same previous steps one can have:

n

u*Dc)=gD(c) + Zﬁu(')(c)[ﬂl ki.j + A ki | ] j=0,1,...,n,
i=0"

where k; j and k:: j are defined by equations (2.21)-(2.22).

Therefore from the above equations one can obtain the following linear system:

U-KY=G (2.42)
where

U@ T
u=| "9

W)
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As seen before from the boundary condition:

U(C) — L{IB — Z%u(i)(c)[al (a — C)i + a3(b — C)i :I}
i=0"

2%

LKoo + AoKo. Ak + Aok AKno + AoKno |
AKoy + Aok, Ak + Aok1, AKng + Aokn ,
_ﬂlko,n—l + /12k(1)<,n—1 K no1 + AoKing oo Kot + AoKnn1 |
ue) | C ()
U'(:C) and G = g’fc)
%z”(n)(c)_ e

This equation together with the linear system given by equation (2.42) can be

written as in the following linear system:

K'U=G"
where
" u(c) | ﬁ
' o)
* ui(c *
u'=| 9 et <| 9@
(n) :
(Ut (C) ] gD ()
and
i 1 1
I-—la+a3]  ——la(@a-c)+asb—c)]
2%) 2%)
K" = —ﬂlko,o—izkg,o 1=k 0 +/12k1*,0
_llko,n—l _/Izk;)k,n—l _/Ilkl,n—l _ﬁvzkl*,n—l
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The solution of this linear system u(c), u’(c),..., u(n)(c) can be substituted into

equation (2.2) to get the approximated solution of the boundary value problem

given by equations (2.41) .
To illustrate this method, consider the following example.

Example (2.10):-

Consider the first order linear Volterra-Fredholm integro-differential

equation of the second kind:
1 X 1
u'(x) = cos x(e‘2 —¢? )— e+ (x+1)e™* + [e*tu®dt + [cosxe tu(t)dt
-1 -1
(2.44.2)
where —1< x <1, together with the boundary condition:
2u(=1)+5u(0) +u(l)=2e +5+e7! (2.44.b)
We solve this example by using Taylor expansion method. To do this,

assume that the solution U can be approximated in terms of Taylor polynomials

of the form:

u"(0)

U(X) = U(0)+ u'(0)X + sz.

which is a Taylor polynomial of degree 2 at Xx=0 and u(i)(O), 1=0,1,2 are the
unknown coefficients that must be determined .

: 1 _ _ _
Moreover since g(X) = Ecos x(e 2_ ez)_ e X +(x+1e 2x

then g'(X) =%sin x(e2 - e_z)— 2(x+)e X ye X pe7x
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9(0)} l(e_z—ez)
g'(0)] | 2 |

Thus G ={ =
0

From the boundary condition given by equation (2.44.b) one can deduce that:

a1 =2,0,=5,03=1 and ,B:2e+5+e_1.

1

_ﬁ_ 2e+55+e_
a2 1
Thus G™ =| g(0) |=| ~le™? —e?)|
6" </ 90) b -e?)
9'(0) 0

Next, by substituting i =0,1,2, j=0,1 in equations (2.21)-(2.22) and using

a=-1,b=1c=00;=2,ap =5,a5 =1 and ﬁ:26+5+e_1 one can get:

_3 _1 _3
5 5 5
K =)Ll etiel 1oget 1 5ot ¢
2 3
1 1 1
i 2 3 4 ]

Hence, equation (2.35) becomes

1.6  -02 03 TJu©)7] [2.1608
~1.8504 1.4024 -0.3144 | u'(0)|=|-3.627|.
~05 0333 0875 ||u”(0) 0

Which has the solution u(0)=1.0448, u'(0)=-0.9902 and u"(0)=0.9735.

Hence Uu(Xx)~1.0448—0.9902x + x? is the approximated solution of

0.9735
!

equations (2.44). By substituting this approximated solution into the right hand

side of equation (2.44.a) one can get:
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X 1
%cos x(e_2 - ez)— e X +(x+1)e ?* + je_xtu(t)dt + jcos xe tu(t)dt
-l -l

~—0.016cos X + e‘X(— 1.974 +0.522x% — 0.33x° + 0.121x4)+ (X +1)e~2%

#U(X) ~1.0448 — 0.9902X + X2,

0.9735
!

So we must increase the value of n. The following table shows that the

approximated solutions of equations (2.44) for n=3,4,5,6,7,8.

Table (2.2) represents the approximated solutions of equation (2.36) for different values of n

n U*(X)
’ 1.017 - 0.988x + 0'9?6 X2 - 0-;85 N
4 1.002 —0.999x + 2222 y2 _ 0997 5 0995 4
3! 4!
. 1001—x—Lx? - Ly3, 0994 Lys
2! 3! 4! 3!
6 loxit2 Lz 14 1.5 1004 ¢
27 3 4 A 6!
7 foya 2 Lis 1oa 1.5 1004 5 1017 5
2! 3! 41 5! 6! 7
5 loxadiy2 Ly boa Tos Lo 107
20 30 4 s e 7

From this table, for n=8, the approximated solution of equations (2.44) takes
the form:

u(x)zl—xqtlx2 —lx3 +lx4 —lx5 +lx6 —lx7.
2! 3! 4 5! 0! 7!
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By substituting this approximated solution into the right hand side of equation

(2.44.a) one can get:

X
%cos x(e_2 - ez)— e+ (x+De” + Je M tuat
i

Lty Ly Ly Ly
3! 4! S! 6!
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Introduction:-

The aim of this chapter is to use Taylor expansion method to solve special
types of nonlinear Volterra-Fredholm integral and integro-differential equations

with some illustrative examples.

This chapter consist of two sections.

In section one, we use Taylor expansion method to solve special types of
nonlinear Fredholm, Volterra and Volterra-Fredholm integral equations.

In section two, we use the same method to solve special types of first

order nonlinear Volterra-Fredholm integro-differential equations.
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3.1 Taylor Expansion Method for Solving the Nonlinear Integral

Equations:-

In this section, we use Taylor expansion method to solve the nonlinear
Fredholm, Volterra and Volterra-Fredholm integral equations with some

illustrative examples.

3.1.1 Taylor Expansion Method for Solving the Nonlinear Fredholm Integral

Equations:-
Consider the nonlinear Fredholm integral equation of the second kind:

b
u(x):g(x)+ﬂ,'[k(x,t)(u(t))IO dt, a<x<b (3.1)

where p is a nonnegative integer.
Assume that the solution can be approximated as in equation (2.2).

Let q(t)=(u(t))P. Assume that q can be approximated in terms of a Taylor

polynomials of the form:
n . .
100 ~" 0= qV ) (x~c) ,a<cs<h (32)
izol-

which is a Taylor polynomial of degree n at x=c and u(i)(c), 1=0,1,...,n are

the unknown coefficients that must be determined. Therefore

q(t) =g (t) = > w(i) 7 (t) (3.3)
i=0

where w(i) =%q(i)(c) and 7 (t)=(t—c),i=0,L...,n.

By substituting equation (3.3) into equation (3.1) one can get:
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n b
u(x)=g(x) + EZW(i)jk(x,t) zj (t)dt

i=0 a
To find the approximated solution of equation (3.1), we must differentiate the
above equation j-times with respect to x and setting x=c in the resulting

equation one can get:

n b j
u”HQ=g”NQ+ﬂZMMM{§LMKU 4aﬂm
i0  alox! x=c
:g“R®+lzﬁ*MMW}D i i j=01...,n (3.4)
i=0"" X=C

where k; ; is given by equation (2.4).

Therefore from equation (3.4) one can obtain the following nonlinear system:

U-AKY =G (3.5)
where
. o e
u(c) koo kio - Kno -(())p-'
' k k ek \ULx))" |
U~ uEC) K= (?,1 11 ‘ r?,l’Y: e
_u(n)(c)_ _kO,n kl,n kn,n_ l-(u(x))p-n)
ni* -
i x=c |
- g(c) |
and G = g:(c)
9]

This nonlinear system can be solved by any suitable method to find the values
of u(c), u'(c),..., u™ (c) and by substituting these values into equation (2.2) one

can get the approximated solution of equation (3.1) .
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To illustrate this method, consider the following example.

Example (3.1):-

Consider the nonlinear Fredholm integral equation of the second kind:
1 1
u(x):l—zx+jxt3(u(t))2dt, 0<x<1 (3.6)
0

We solve this example by using Taylor expansion method. To do this, let

n=2andc :% then the approximated solution of equation (3.6) takes the form:

u!! l 2
1 (1 1 (2) 1
uX) =ul = [+U] = || Xx—= [+—| x—=| .
2 2 2 2! 2
which is a Taylor polynomial of degree 2 at x :% and u(i)(%} 1=0,1,2 are the

unknown coefficients that must be determined . Moreover since g(x) :1—%x

then g’(x):—% and g"(x)=0.

IR

Thus G = g’(—) =l-=1.

Next, we substitute i, j =0,1,2 in equation (2.4) to get
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ON|FRPO|F

Since q(x) = (u(x))?, then %(u(x))2 =2u(x)u’(x) and

42
ax?

Therefore Y =

§

)

1

BIEIE

Hence, equation (3.5) becomes

OoON|FROO|F

1 1]
10 12
11
5 6
0 0

which has the two solutions

RO

and

1

J-o

2

18

2 o)
M

(000)? =2 Ju(u'00]= 20000 + 240U (9.

)
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14 18 1 18
Thus u(X)=1land ur(X)=—+—| x—=|=1+—X.
L) 200=" 5[ 2) .

But
T
1- VR jxt3 (ug ()% dt =1=uy(x)
0
and

17 18
1——x+J.xt3(u2(t))2 dt =1+ "—x=uy(X) .
4 9 5

Therefore uy(x)=1and u,(x) =1+ %x are the exact solutions of equation (3.6).

3.1.2 Taylor Expansion Method for Solving the Nonlinear Volterra Integral

Equations:-
Consider the nonlinear Volterra integral equation of the second kind:

u(x) =g(x) + }L_)fk(x,t)(u(t))Io dt, x>a (3.7)

where p is a nonnegative integer.

Let q(t)=(u(t))’and assume that q can be approximated in terms of

Taylor polynomial of the form:
n . :
q(x)=q (x) = Z%q(') c)(x—c),c>a
i=0""

which is a Taylor polynomial of degree n at x=c and u(i)(c), 1=0,1,...,n are

the unknown coefficients that must be determined.

Therefore
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qt) ~q (1) = > w(i)z (t) (3.8)

i=0
where w(i)==q® (c) and z;(t)=(t - )}, i=04....n
i!
By substituting equation (3.8) into equation (3.7) one can get:
n X

u(x)=g(x) + ﬁZW(i)jk(x,t)zi (t)dt.

i=0 4
Hence

uDe)= 9@+ 23 Huco) "
i=0""

ki,j’ j:O,l,...,n (39)

X=C

where k; j is given by equation (2.17).

Therefore from equation (3.9) one can obtain the following nonlinear system:
U-A1KY =G (3.10)

p
- u(c) | koo k1o - Kno| - (U(C)}'

u’(c) Koa ki1 - Knz (())®

where U =
_U(n)(c)_ _kO,n k1,n kn,nj l(u(X))p "
n* :

[ g(c) |

and G = g ,(C)

g™ ()]
This nonlinear system can be solved by any suitable method to find the values
of u(c), u'(c),..., u™ (c) and by substituting these values into equation (2.15)

one can get the approximated solution of equation (3.7) .

76



Chapter Three Taylor Expansion Method for Solving the Nonlinear Integral and Integro-Differential Equations

To illustrate this method, consider the following example.

Example (3.2):-

Consider the nonlinear Volterra integral equation of the second kind:

U(X)=2X—%X8 +jfx2t2(u(t))3 dt, x>0 (3.11)
0

We solve this example by using Taylor expansion method. To do this, let
n=2 and c=0 then the approximated solution of equation (3.11) takes the

form:

u(x) ~u(0) +u’(0)x +%x2.

But u(0) =0, thus u(x) ~u'(0)x + ! 2(|O) G

which is a Taylor polynomial of degree 2 at x=0 and u(i)(O), 1=0,1,2 are the
unknown coefficients that must be determined . Moreover since g(x) = 2x —%XS

then g'(x)=2- %ﬂand g"(x)= —2—§4x6 :

Thus G{g’@HZ}.
g"(0)] |0

Next, we substitute i, j =1,2 in equation (2.17) to get:

kip= ka1 = K2 =Kz 2 =0.

0 0
Thus K = )
oo

Since q(x) = (u(x))*, then %(u(x))3 =3(u(x))*u'(x)

and
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2
200 =3 {u00f w080 (W 0)? + 300 w0,
rerefore Y 3(u(©)’u'(0) o

T i@ )P + S UO)Pu) ‘M‘

Hence, equation (3.10) becomes

vo)lo
u"(0)| |0
Then the solution of this nonlinear system is u’(0)=2 and u”(0)=0. Thus
u(x)=2x is the approximated solution of equation (3.11). Notice that this
solution is the exact solution of equation (3.11).

Next, if we choose ¢=1 and n=3 then the approximated solution of

equation (3.11) takes the form:

W) (12,

, u"(2)
U =u@ +U Q-1+ = (x=1)°+ 3

which is a Taylor polynomial of degree 3 at x=1 and u(i)(l), 1=0,1,2,3 are the

unknown coefficients that must be determined.

Moreover since g”(x):—z—?’x6 then g”’(x)=—448x5.

N
g@®) 326
(1 _2b
Thus G = g”( ) = 3 |
9" () 224
_gm(l)_ —T
|- 448

Next, we substitute i, j =0,1,2,3 in equation (2.17) to get:
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Nw|Nwlowlr
ol
|
|

10 2 0

2

Since jx—z(u(x)) 31[(u(x) (x)] 6u(x) (u'(x))* +3(u(x) > u"(x)

3
then j—s(u(x))3 =6(u’(x))* +18u(X)u’(X)u"(x) + 3(u(x))*u"(x).
X
| ) ]
3u®)?u'@)
Therefore Y=\ u@)(u'@) + 5 (u@)Pu')
(u'@)® +3u@u'@Wu"@) + = (u(l))2 "©

Hence, equation (3.10) becomes

e L)

‘@ TP 9 3(u(D))2u'@)

3
.+ g 6 15 30 O + ()P
'Ol |0 5 1T 1 QWD) + SO v
3

_Um(l)_ 6 E 30 ' " 2
0 10 2 0 (v () +3u@u'@Wu" @) + = (u(l)) u"@)
P
3
_2%6
= 3 .
_224
3
| — 448 |

Then the solution of this nonlinear system is u(l) =2, u'(1) = 2,
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u"(1) =2.783x1072 and u"(1) =8.653x1078, Thus u(x) ~ 2x

Is the approximated solution of equation (3.11). Notice that this solution is the

exact solution of equation (3.11).

3.1.3 Taylor Expansion Method for Solving the Nonlinear Volterra-Fredholm

Integral Equations:-

Consider the nonlinear Volterra-Fredholm integral equation of the second
Kind:

X b
U(X) =900 + A [k (D) (U®)PLdt + 2 [k (x, ) (U(t))P2 dt, a<x<b  (3.12)

where p; and p, are nonnegative integers.
Assume that the solution can be approximated as in equation (2.2). Let

gu(t)=(u())® and go(t)=(u(t))P2. Assume that ¢, and g, can be

approximated in terms of Taylor polynomials of the forms:
= — L) i
Ay (X) ~ dg (X) = Zﬁql (c)(x—c),a<c<b
i=0"
and

02 (X) ~ 02 (X) = Z%qg)(c)(x—c)i, a<c<b.
i—o"

Therefore

0 (t)~ ) () = __iowl(n () (313)
and i

G2(1) = 0 () = i_ﬁowz(i) () (314)
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where wl(i):%ql(i)(c), wz(i):%qg)(c) and z;(t)=(t—c)',i=01,...,n.

By substituting equations (3.13)-(3.14) into equation (3.12) one can get:

n X n b
u(x) = g(x) + 20 2w (i) [k () i (V) dt + 25 D wa (i) [ Ko (x,8) 73 (1) lt
i=0 a i=0 a

Thus

WDy = g o)+ ﬂ,% % [(u(x))pl](i) ~ G+ AZZ&, % [(u(x))pz ](i) ~ )
(3.15)

where

gl % : .

ki,j:@ _!;kl(x,t)(t—c) dt| ,i,j=041...,n (3.16)

and

i | =£{§k2(x,t)J ) (t—c)'dt,i,j=01,...,n (3.17)

Therefore from equation (3.15) one can obtain the following nonlinear system:

U-4KY, -2 K'Y, =G

where
Fu) ] koo ko o Kno] koo Kio - kno|
0o YO | oftor fa e s ke kg
uM(c). (kon Kin o Knn kon kin - Koo
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- | (u(c))_pl | i _ (u(c))l?z o
u(x))" ‘ u(x))P2 ,
Yy = ( ).-X=C , Yo = ( ) “lx=c and G= g:(c)
L A I -0 R I G

This nonlinear system can be solved by any suitable method to find the values of
u(c), u’(c),..., u(m (c) and by substituting these values into equation (2.2) one

can get the approximated solution of equation (3.12) .
To illustrate this method, consider the following example.
Example (3.3):-

Consider the nonlinear Volterra-Fredholm integral equation of the second
Kind:

2_ 6295x+3—£x6 —ﬂx7 —4—9x5 —9—7x4 ~19x3+

5
u(x) =——=x———
2 28 3 5 3

X

1
(b2 +tJu®Pdt+ [xt@@Pdt  (318)

0 0

We solve this example by using Taylor expansion method. To do this, let
n=2 and c:% then the approximated solution of equation (3.18) takes the

form:

somf3)oo3fo-3) 333

which is a Taylor polynomial of degree 2 at x :% and u(i)@), 1=0,1,2 are the
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unknown coefficients that must be determined .

5

Morever since g(x) = —2x2 —@x+3—£x6 —ﬂx7 —4—9x5 —9—7x4 ~19x3
2 28 3
then g'(x) =— x——6295 —&x5 —@x6 —&x4 —@x3 —57x?
28 3 5 3
and g"(x)=-5- 510 x4 — 168 X° —@P —@x2 —114x.
3 5 3
_g(}j_
3 —73.297
Thus G = g'(%) =|—237.570|.
g"(lj —89.669
- 3 -

Next, we substitute i, j =0,1,2 in equation (3.16) to get:

1
81
1

27
1

3

7

2916
2

243 |
2

8L |

Now, we substitute i, j =0,1,2 in equation (3.17) to get:

5

54

K=| 2
3

3

1

6

K =L
2

0

L
8

|

1
6
0

Since gy (x) = (U(x))?, then %(u(x))z = 2u(X)u’(X)

and
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2
jx_Z(U(X))Z =2u(x)u”(x) + 2(U'(X))2 -

)
e ()
B3R

Since g, (x) =(u(x)), then %(u(x))3 =3(u(x)? u'(x) and

2
00 =3 {00 w00 800097 + 300 Puo.

2
Therefore Y, = 3(u %D u’[%j

Hence
i T 2 7T _
u(lj 5 1 7 ((Ejj 1101
3 54 81 2916 3 6 18 36
(1) 2 1 2 (1) (1) 1 1 1
u=ll-1= -= — 2ul = (u'| = -1= = =
3 3 27 243 3) (3 2 6 12
B 1 s )] U
A (3)7 3 3)) | - :
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W
S

Then the solution of this nonlinear system is

u(l) =4 956, u’(l) =6.834and u"(lj =8.833.
3 3 3

Thus u(x) =3.168 +3.890x + 4.417x? is the approximated solution of equation
(3.18). By substituting this approximated solution into the right hand side of
equation (3.18) one can get:

> )2 —6295x+ AN % —4—9x5—

—_— 9—7x4 —19x3 +
2 28 3 5 3 4

X 1
j(x2 + t)(u(t))2 dt + [ xt(u(t))® dt
0

0

~3+84.046X + 2.520x2 — 0.742x3 —1.145x* + 4.911x° + 6.174x% + 3.101x’
#U(X) ~ 3.168 + 3.890X + 4.417x°.

So, we must increase the value of n. By following the same previous steps for

n=3,4,5 one can get the same results. But for n=6, the approximated solution

of equation (3.18) takes the form:
u(x) ~ 2x% + 5% +3.

By substituting this approximated solution into the right hand side of equation

(3.18) one can get:
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—§x2 —@x+3—£x6 —ﬂx7 —ﬂx5 —ﬂx4 —19x° +
2 28 3 5 3

X 1

j(x2 + t)(u(t))2 dt + [ xt(u(t))* dt
0 0

=2x% +5X+3~ u(x).

In this case the above solution is the exact solution of equation (3.18).

3.2 Taylor Expansion Method for Solving the Nonlinear Volterra-

Fredholm Integro-Differential Equations:-

Consider the first order nonlinear Volterra-Fredholm integro-differential

equation of the second kind:
X b

U'(x)=g(x) + A [k (D) (u()PL dt + 2, [kp (x, 1) (u(t))P2 dt, a<x<b (3.19.3)
a a

together with the initial condition:
u@)=«a (3.19.b)
where p; and p, are nonnegative integers.

Assume that the solution can be approximated as in equation (2.15).

By substituting equation (3.13)-(3.14) into equation (3.19.a) one can get:
n X n b
U'(x) = g (x) + A D Wi (i) [ Ky (x,8) Z (1) dt + 2o 2w (i) [ ko (x,1) 23 (1)t
i=0 a i=0 a
Thus

u(j+1)(a): g(j)(a)—kﬂiZn:%[(u(x))pl ](i)
i=0"

X=a X=a

Ki.j + 42 Z%[(U(X))pz ](i)
i—ol"

where k; ; and kifj are defined as in equations (3.16) and (3.17).
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Therefore from equation (3.20) one can obtain the following nonlinear system:

U-4KY - K Yy, =G

where
- u'(a) | koo kig Kno |
U= u"fa) Ko 01 M k'}l ,
_u(n)(a)_ _kO,n—l K,n-1 kn,n—l_
koo Kig Kn.0
K* — k(.),l k]:,l kr-],]_ |
_kS,n—l kf,n—l k;,n—l_
@ ][ @)™
' 1 - 1 g(a)
()P (u(x))P2 ‘ 9'(a)
Y1= x=a |, Yp= ~ Ix=a |and G= :
Llwoym [ Llweoyr: [ 9" (a)
_n! ] ) X=a | _n! ) ) X=a

To illustrate this method, consider the following example.

Example (3.4):-

Consider the first order nonlinear Volterra-Fredholm integro-differential
equation of the second kind:

4

7

u'(x) =2 x4 —gx4 +

5 12

2

')f(x +1)(u(t))? dt +
0 0

together with the initial condition:

u(0)=0.
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We solve this example by using Taylor expansion method. To do this,

assume that the approximated solution of equation (3.21) takes the form:

u(x) =u(0) +u’'(0)x + u"2(!0) X2 + u";f!O) xS

=u'(0)x + u"(0) X%+ 2 (©) x3.
2! 3l

which is a Taylor polynomial of degree 3 at x=0 and u(i)(O), 1=0,1,2,3 are the

unknown coefficients that must be determined . Moreover, Since

4 7 4 9 4 , 7.3 " 5 2
X)=———X"——=Xx" then X)=-—x" and X) =" -7x“.
g(x) =71 5 g'(x) 2 g"(x)
4
90 | |5
Thus G=| g'(0) |=| 0|
g’ |0

Next, we substitute i=0,1,2,3 and j=0,1,2 in equation (3.16) to get:

0 00O
K={0 0 0 0]
3 000

Now, we substitute i =0,1,2,3 and j=0,1,2 in equation (3.17) to get:

e

Il
o ON|E
o OoOwlk
o oOoh|PF
o oulr

Since q;(x) = (u(x))?, then %(u(x))z = 2u(x)u’(x),

2
2001 = 2000u"00 + 200 (9
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3
and d—s(u(x))2 =6u’(x)u”(x) + 2u(x)u”(x) .
dx

(u(0))? I o
2u(0)u’(0) 0
uOu"(0)+ ') |7| ()
u’(0)u"(0) + %u(O)u’"(O) u’(0)u"(0) |

ThUS Yl =

Since g, (x) = (u(x)), then o (u(x))3 3(u(x))?u'(x),
d? 3 . d 2.
& 00 =3 U0 | 8u00 (w00 + 30 P w0

3
and j—g(u(x))3 =6(u’(x))> +18u(x)u’(x)u"(x) + 3(u(x))’u"(x) .
X

u((©)’ S

3(u(0)°u'0) X

Therefore Y, = 3u(0)(u'(0))? + 3 (u (0))2u"(0) =l
(u'(0))® +3u(0)u’(0)u"(0) + = (u(0))2 "0)] ('O |

Hence

, o0 ] [1 111 o ] [4]

u'(0) 00 00O . > 3 1 & 0 c

u"(0)|-10 0 0 0 L |-|10 0 0 O =0

n (U(O)) O

u"(@| |3 0 0 Of| , = 0 00 O], , 3| |O
uwOu0)| | JLW©@)y] ||

Then the solution of this nonlinear system is

u’(0)=1,u"(0)=0 and u”(0)=0. Thus u(x) =~ x is the approximated solution of
equation (3.21). Notice that this approximated solution is the exact solution of
equation (3.21).
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From the present study, we can conclude the following:

1. Volterra-Fredholm integral and integro-differential equations are so difficult
to solve analytically.

2. Fredholm and Volterra integral and integro-differential equations are special
types of Volterra-Fredholm integral and integro-differential equations.

3. By using Taylor expansion method, the homogenous linear Fredholm integral
equation may have more than one nontrivial solution.

4. Taylor expansion method gave more accurate results as the degree of Taylor
polynomial increases.

5. Taylor expansion method can be used also to solve Volterra-Fredholm integral
and integro-differential equations that contain integral operators. In this case,
the approximated solution can be expressed as in equation (2.2), where

a<c< max{p}
1<i<n

For future work, the following problems may be recommended:

1. Modify Taylor expansion method to solve the multi-dimensional integral
and integro-differential equations.

2. Use other methods to solve the non-linear integral and integro-differential
equations say, Chebyshev method.

3. Solve some real life applications in which its mathematical modeling can be
represented as Volterra-Fredholm integral and integro-differential equations
by using Taylor expansion method.

4. Solve another types of the Generalize nonlinear Volterra-Fredholm integral
and integro-differential equations via Taylor expansion method and to

solving the ordinary differential equations.
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