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ABSTRACT 
 

The main purpose of this thesis is to study and investigate the most 

important properties of integral transforms ( the discrete fourier transform, the 

discrete sine transform, and the discrete wavelet transform) and their 

mathematical aspects both from the theoretical point of view and for the 

application to image compression. 

As well as, we study the singular value decomposition method and its 

application to image representation. 

Two mathematical models are developed. The first model consists of a 

new multi-transform method that takes advantage of each of the discrete 

wavelet transform and the singular value decomposition method while the 

second model takes advantage of the discrete sine transform and the singular 

value decomposition method. These models are applied to compress images. 

Results show that this new approach yields better function representation and 

reconstruction in image compression application than is possible with the use 

of a single fixed transform. The proposed models improve the efficiency of 

the compressing process in the discrete wavelet transform and the discrete sine 

transform domains. 
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Introduction 

 

The concept of a transformation is familiar to mathematicians. It is a 

standard and a powerful mathematical tool that is employed to solve problems 

in many areas. The idea is to change a mathematical quantity (a number, a 

vector, a function, or anything else) to another form. 

There are many transformation methods that transform a set of 

quantities from their normal spatial representation to a frequency domain. 

Some of these include Discrete Fourier Transform, Discrete Cosine 

Transform, Discrete Sine Transform, and Discrete Wavelet Transform.  

Most real world applications can be reduced to the problem of function 

representation and reconstruction. These two problems which are closely 

related to synthesis and analysis of functions. The Fourier transform is the 

classical tool used to solve them. More recently, wavelets have entered the 

arena providing more robust and flexible solution to discretize and reconstruct 

functions.  

Images are very important representative objects. Among these 

abovementioned transformations, discrete wavelet transform is widely used 

for image compression because of its decorrelation and energy compaction 

properties. The study of wavelet transform had been motivated by the 

overcome some weak points in representing functions and signals by the 

classical Fourier transform. Fourier transform analyzes the components of a 

stationary signal, but it fails to analyze the non-stationary signal where 

wavelet transform allows the components of non-stationary signal to be 

analyzed. 
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Fourier transform is one of the most important transforms in applied 

mathematics and other scientific fields such as engineering and computer 

sciences. The aim of this process is to transform the mathematical functions 

that dependent on time variable to functions dependent on frequency variable. 

There are several different transforms. The varieties of transformations depend 

on a function application, such as Fourier transform, Sine transform, Cosine 

transform, and Wavelet transform. 

Fourier analysis is a family of mathematical techniques, all based on 

decomposing functions (signals) into sinusoids. This surprising fact is now 

known as Fourier expansion and it has many applications in engineering as 

well as in computer sciences, namely, in image processing. The limitation of 

Fourier expansion is that it does not tell us when (at which point or points in 

time) each frequency is active in a given signal. We therefore say that Fourier 

expansion offers frequency resolution but no time resolution. 

Wavelets provide an alternative to classical Fourier methods for both 

one and two dimensional data analysis and synthesis. The wavelet transform is 

very powerful in localizing the global spatial (time) and frequency correlation. 

Applications of wavelets are quite diverse and include big parts of signal and 

image processing, data compression, and many other fields of science and 

engineering. 

One of the most important applications for the wavelet transform is 

image compression. Images are very important representative objects. They 

can represent transmitted television or satellite pictures, medical or computer 

storage pictures and many more. When a two-dimensional light intensity signal 

is sampled and quantized to create a digital image, a huge amount of data is 
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produced. The size of the digitized picture could be so great that results in 

impractical storage or transmission requirements. Image compression deals 

with this problem such that the information required to represent the image is 

reduced while maintaining an acceptable image quality thus making the 

transmission or storage requirements of images more practical. 

Wavelet Image Processing enables computers to store an image in many 

scales of resolutions. Wavelets at different scales (resolutions) produce 

different results [1]. Wavelets are of real use in approximating data with sharp 

discontinuities such as images with lots of edges. An image can be 

decomposed into approximate, horizontal, vertical and diagonal details. 

Discrete Fourier transform (DFT) and its invariants transforms such as 

discrete cosine transform (DCT), discrete sine transform (DST), and discrete 

wavelet transform (DWT) are widely used in digital image representation. 

On the other hand, Singular Value Decomposition (SVD) is a well-

known method in linear algebra. It plays an interesting fundamental role in 

many different applications such as dimensionality reduction and image 

compression [2]. The use of SVD in image compression is motivated by its 

excellent energy compaction property in the least square sense [3]. As a result, 

the use of SVD technique in image compression has been widely studied [4-5]. 

Another image compression technique is based on vector quantization 

(VQ). It is a well-known and very efficient approach to low bit-rate image 

compression [6]. A serious problem in ordinary VQ is edge degradation caused 

by employing the distortion measure, such as the mean square error (MSE), in 

searching for the closest codeword in the codebook, as mean square error does 

not accurately preserve the edge information. To tackle this problem, classified 
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vector quantization (CVQ) based on a composite source model, has been 

introduced by Ramamurthi and Gersho [7]. In CVQ model, the image is 

represented by shade blocks and edge blocks. In CVQ, the classifier separates 

these two classes and then the blocks belong to a class are coded only with the 

codeword belong to the same class. An obvious problem with pixel-based 

classification is high noise-sensitivity because of the high spatial correlation 

among neighboring pixels [8]. Furthermore, several researches have proposed 

the use of CVQ in the transform domain because it has an excellent 

compaction-energy [9]. 

This thesis proposes two mathematical models that combine different 

transforms for compressing still images. The first model makes use the DWT 

and SVD based CVQ, whereas the second model makes use the DST and SVD 

based CVQ. This approach combines the strengths of the DWT, DST, and the 

SVD based CVQ, while avoiding some of their limitations. The proposed 

models are lossy compression schemes that exploit the high correlation 

between the pixels inside the image blocks in the spatial domain as well as the 

energy compaction property of each of the DWT, DST and the SVD 

techniques, to obtain high quality reconstructed images at low bit-rates. 

Classification using transform domain, in which a few energy-compacted 

transform coefficients are used to distinguish edge direction and location, and 

hence it is computationally simpler than classification in the spatial domain.  

This thesis consists of five chapters. Chapter one begins with an 

introduction to Fourier analysis; the basics of Fourier series and Fourier 

transform together with its invariant discrete sine transform.  
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Chapter two is devoted to wavelets, wavelet transforms, and multi 

resolution analysis (MRA) as well as the singular value decomposition method 

and their application to image compression. A brief description of some 

concepts of image processing such as sampling and quantization, an overview 

of the principal approaches used in digital image coding, and a general 

structure of image compression algorithms are presented in chapter three.  

The proposed models, simulation results, are presented in chapter four. 

Finally, conclusions and further work are presented in chapter five. 
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Literature Review 

 

Many researches worked with Fourier transform, but that the first work 

is discovered by Joseph Fourier, and therefore the main branch of mathematics 

leading to wavelets began with Joseph Fourier (1807) with his theories of 

frequency analysis, now often referred to as Fourier synthesis. He asserted that 

any    periodic function f(x) can be expressed as an infinite series of sine 

and cosine functions. Fourier's assertion played an essential role in the 

evolution of the mathematicians ideas about the functions. He opened up the 

door to a new functional universe [10]. 

After 1807, by exploring sense of functions, convergence of Fourier 

series, and orthogonal systems, mathematicians progressively were led from 

their prior concept of frequency analysis to the concept of scale analysis. That 

is, analyzing the function f(x) by creating mathematical structures that differ in 

scale. Take this basic structure, shift it, and scale it. Then, apply it to the same 

signal to get a new approximation [10]. 

The first mention of wavelets appeared in an appendix to the Ph.D. 

thesis of Alfred Haar (1909). One Haar wavelet's property is that it has 

compact support, that means it vanishes outside of a finite interval. In fact, 

Haar wavelets are not continuously differentiable that somewhat limits their 

applications [10]. It constitutes an orthonormal basis, but it lacks smoothness; 

and although the Haar basis is compact in physical space, it decays slowly in 

Fourier space [11]. 
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After that, in the 1930, several groups working independently explored 

the representation of functions using scale-varying basis functions. 

Understanding the concepts of basis functions and scale-varying basis 

functions is the key to understanding wavelets [10]. 

In 1980, Morlet and Grossman, defined wavelets in the context of 

quantum physics. These two researchers provided a manner of thinking for 

wavelets based on physical intuition [10]. 

In 1985, Stephane Mallat gave wavelets an additional jump-start 

through his work in digital signal processing [10]. A couple of years later, 

Ingrid Daubechies utilized Mallat's work to construct wavelet orthonormal 

basis functions that are  perhaps the most elegant, and have be the cornerstone 

of wavelet applications today [12]. 

In 1991, Myung-Sin Song focused on wavelet application in the field of 

image compression so as to observe how wavelet is implemented to be applied 

in the process of compression of an image, as well as, how wavelet's 

mathematical aspects affect the compression process and the results of it [13]. 

The concept of combining multiple transforms is getting popular in 

recent years as researchers have put efforts in developing schemes with various 

different discrete transforms. For example, the author in [14] presented a 

scalable algorithm for video coding where the DWT is performed on the DCT 

coefficients. 

In 2006 Jain Y.K. and Jain S. [15], discussed important features of 

wavelet transform in compression of images, as well as, evaluate and compare 

seven different wavelet families on variety of test images set. 
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In order to benefit from the respective strengths of individual popular 

coding schemes, a new scheme, known as hybrid algorithm, has been 

developed where two transforms techniques are implemented together. There 

have been few efforts devoted to such hybrid implementation. Usama [16], 

presented a scalable hybrid scheme for image coding that combines both the 

wavelet and the Fourier transforms. Moreover, the Fourier-Wavelet Transform 

can be used to improve the denoising performance for images [17] 

In [18], the authors have presented a hybrid transformation scheme for 

video coding, which minimizes prediction error. The DWT was used for intra-

coding and the DCT for interceding. An extended version of the object-based 

coding algorithm is presented in [19]. 

In 2012 Harjeetpal S. and Sakhi S. [20], studied image compression 

techniques using DCT and DWT and concluded that DCT is used for 

transformation in JPEG standard and performs efficiently at medium bit rates, 

while DWT is used as basis for transformation in JPEG 2000 standard and 

provides high quality compression at low bit rates. DWT performs better than 

DCT in the context that it avoids blocking artifacts which degrade 

reconstructed images and DWT provides lower quality than JPEG at low 

compression rates as well as DWT requires longer compression time. 

 In 2015 Banti D. and Vieck A. [21], introduced  and studying  image 

compression using DCT and DWT, and explained that the image compression 

is of prime importance in real time applications like video conferencing, 

where data are transmitted through a channel. They concluded that DWT is 

more general and efficient than DCT due to no need to divide the input coding 

into non-overlapping 2-D blocks, and it has higher compression ratios while 
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avoiding blocking artifacts,  allows good localization both in time and 

frequency domain. 

Our work deal with combines the strengths of the DWT, DST, and the 

SVD based CVQ, while avoiding some of their limitations. They are lossy 

compression schemes that exploit the high correlation between the pixels 

inside the image blocks in the spatial domain as well as the energy compaction 

property of each of the DWT, DST and the SVD techniques, to obtain high 

quality reconstructed images at low bit-rates. 
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1.1    Introduction  

In this chapter, we will recall some basic definitions and theorems from 

the linear algebra that will help to understand the concepts of Fourier 

transform and its invariants. Mathematics of some linear transforms which are 

used as transformations for image is reviewed. These transforms are Fourier 

Transform (FT), Discrete Fourier Transform (DFT), and Discrete Sine 

Transform (DST).  

 

Image transforms are designed to have the following advantages:  

1. They can be utilized to an image to convert it from one domain to 

another. Image viewing in domain such as frequency space enables the 

identification of features that may be not easily discovered in the time 

domain. 

2. They are used to decorrelate of image data and transform the image data 

from dependent data to independent data. 

3. They used to characterize the less important parts of the image by 

isolating the diverse frequencies of the image where the first transform 

coefficient should match to zero pixel frequency, and the remaining 

coefficients should match to higher and higher frequencies. 

4. They also implement the inverse transforms. 
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1.2  Basic Definitions 

Definition 1.2.1 [22]: Let u and v be two vectors in    , such that  

   [

  

  

 
  

]    [

  

  

 
  

]   then 

1. the dot product  (also called the Euclidean inner product) of u and v is 

denoted by      and is defined  by : 

                         ∑    

 

   

                             

2. the norm of   (also called the length of u or the magnitude of u) is 

denoted by  ‖ ‖ and is defined by:  

‖ ‖   √  
     

        
   √                                             

3. the distance between u and v is denoted by        and it is defined by 

       ‖   ‖   √                                                  

 

The analog in the complex case is the following: 
 

Definition 1.2.2 [22]: Suppose z and w are two vectors in    , such that  

   [

  
  
 
  

]    [

  

  

 
  

]   then the (complex) dot product  of z and w is  

      ∑  

 

   

 ̅  

where  ̅  is the complex conjugate of   . This complex dot product is a 

special case of a (complex) inner product. 
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Theorem 1.2.1 [22]: Cauchy—Schwarz Inequality 

Let u and v are two vectors in    , such that  

   [

  

  

 
  

]    [

  

  

 
  

]   then 

|   |  ‖ ‖‖ ‖                                                                                    

or in terms of components 

|                |     
    

      
  

 
     

    
      

  
 
  

 

Definition 1.2.3 [22]: Let u and v are two nonzero vectors in   , and    is the 

angle between u and v, then 

     
|   |

‖ ‖‖ ‖
                                                            

 

Remark 1.2.1: From Eq. (1.2.5), the angle    between two nonzero vectors u 

and v in    can be defined as 

       (
   

‖ ‖‖ ‖
)                                                                          

where the inverse cosine in Eq. (1.2.6) is not defined unless its argument 

satisfies the inequalities    
   

‖ ‖‖ ‖
    These inequalities in fact, do hold 

for all nonzero vectors u and v in    as a result of Theorem 1.2.1. 

 

Definition 1.2.4 [22]: Two nonzero vectors u and v in    are said to be 

orthogonal (or perpendicular) if         A nonempty set of vectors in    is 
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called an orthogonal set if all pairs of distinct vectors in the set are 

orthogonal. An orthogonal set of unit vectors is called an orthonormal set. 

Definition 1.2.5 [22]: Le   be a field. A vector space V over a field   is a set 

with operations of vector addition (+) and scalar multiplication (·) satisfying 

the following properties: 

1. (Closure for Addition):                       

2. (Commutativity for Addition):                        

3. (Associativity for Addition):                           

4. (Existence of Additive Identity): There is a zero vector     such that 

      

5. (Existence of Additive Inverse): For every vector      there is a 

vector      such that          

6. (Closure for Scalar Multiplication): For any     and      , the 

vector      

7. (Associativity of scalar multiplication): For any     and        , 

then             

8. (Multiplicative Identity): For any    ,      , where 1 is the 

multiplicative identity in  . 

9. (Distributive Property): 

a. For any       and      , then              

b. For any     and        , then              
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Definition 1.2.6 [22]: Let V be a vector space and W is a subset of V. If the 

subset W itself is a vector space under the addition and scalar multiplication 

defined on V, then we say that W is a subspace of the vector space V. 

Theorem 1.2.2 [22]: If W is a set of one or more vectors in a vector space V, 

then W is a subspace of V if and only if the following conditions hold: 

a) If u and v are vectors in W, the     is in W. 

b) If k is any scalar and u is any vector in W, then    is in W. 

 

Definition 1.2.7 [22]: If w is a vector in a vector space V, let     then w is 

said to be a linear combination of the vectors            in V if w can be 

expressed in the form 

                   ∑    

 

   

                                     

where            are scalars. These scalars are called the coefficients of the 

linear combination. 

  

Definition 1.2.8 [22]: The subspace of a vector space V that is formed from all 

possible linear combinations of the vectors in a nonempty set S is called the 

span of S, and it is said that the vectors in S span that subspace.  

If    {          }, then we denote the span of S by      {          } 

or span (S). That is; 

        {∑    

 

   

}                                                                         

where            are scalars. 
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Definition 1.2.9 [22]: If    {          } is a nonempty set of vectors in a 

vector space V, then the vector equation                    has at 

least one solution, namely                 . This solution is called 

the trivial solution. If this is the only solution, then S is said to be a linearly 

independent set. If there are solutions in addition to the trivial solution, then S 

is said to be a linearly dependent set. 

 

Definition 1.2.10 [22]: Let V be a vector space and   {          } is a 

finite set of vectors in V,  then S is called a basis for V if S is a linearly 

independent set such that S spans V. 

 

Remark 1.2.2: A vector space that cannot be spanned by finitely many 

vectors is said to be infinite-dimensional, whereas those that can are said to 

be finite-dimensional. 

 

Theorem 1.2.3 [22]:  Let V be a vector space and let U be a non-empty subset 

of V. If U is finite, that is   {          } for some     and       for 

   . Then U is a basis for V if and only if for each      there exists unique 

             such that   ∑     
 
   . 

 

Definition 1.2.11 [23]: Let V be a vector space over the field  , if U and W 

are subspaces of V; then the sum of U and W is the subset of V defined as: 

    {             } 

The vector space V is said to be the direct sum of subspaces U and W if for 

every element      there exists unique elements      and      such 

that        The direct sum is denoted by          
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Theorem 1.2.4 [23]: Let U and W be subspaces of a vector space V. Then V is 

a direct sum of U and W if        and      { }. 

 

Definition 1.2.12 [22]: Let U and V be two vector spaces. A linear 

transformation T is a function        having the following properties: 

1.                             [Additivity property] 

2.                                     . [Scalar homogeneity] 

In the special case, where U = V, the linear transformation T is called a linear 

operator on the vector space V. 

Definition 1.2.13 [22]: Let V  be a real vector space. The inner product 

〈   〉       is a function that associates a real number 〈   〉 with each 

pair of vectors in V such that the following axioms are satisfied for all vectors 

u,v, and w in V and all scalars k. 

1. 〈   〉  〈   〉. [Symmetry axiom] 

2. 〈     〉  〈   〉  〈   〉. [Additivity axiom] 

3. 〈    〉   〈   〉  [Homogeneity axiom] 

4. 〈   〉        〈   〉    if and only if v = 0. [Positivity axiom] 

A real vector space with an inner product is called a real product space. 

Definition 1.2.14 [24]: Let      be real number. Then the   -space is the 

set of all real-valued (or complex-valued) functions f on I, such that 

∫|    |            . If          , then its   -norm defined as: 

‖ ‖  (∫|    |   )
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Example 1.2.1: 

a. The space       is the set of all integrable functions f on I, with    –

norm defined by ‖ ‖  ∫|    |             . 

b. The space       is the set of all square integrable functions f on I, with 

   –norm defined by  ‖ ‖   ∫|    |    
 

           . 

 

Remark 1.2.3 [24]: 

a. Any continuous or piecewise continuous function with finite number of 

jump discontinuities on a finite closed interval I is in        . 

b. Any function bounded on an finite interval I is square integrable on I. 

This includes continuous and piecewise continuous functions with finite 

jump discontinuities on a finite closed interval. 

 

Theorem 1.2.5 [24]: Let I be a finite interval. If         , then        . In 

other words, a square integrable function on a finite interval is integrable. 

 

Remarks 1.2.4 [24]: 

a. The conclusion of theorem 1.2.5 doesn't hold if I is an infinite interval, 

for example, 

     {
 

 
    

     
 

f       but f       . 

b. The converse of theorem 1.2.5 is not true, for example, 

      
 

√ 
         is in           but not in           . 
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Definition 1.2.15 [25]: The   -inner product on       is defined as 

〈   〉   ∫        ̅̅ ̅̅ ̅̅                                                     

where     ̅̅ ̅̅ ̅̅ is the complex conjugate of g. 

In case where the signal is discrete, we represent the signal as a 

sequence          {  }    
  , where each    is the numerical value of the 

signal at the n
th

 time interval  [        ] . 

 

Definition 1.2.16 [26]: A signal is a real- or complex-valued function of an 

integer,             . Thus,      is the n
th

 real (or complex) number in 

the signal, and n represents time as an integer sample number. We can express 

that      as a real discrete-time signal by expressing it as a function mapping 

every integer to a real number: 

      

Alternatively, we can write        for all    . Similarly, a discrete-time 

complex signal is a mapping from each integer to a complex number: 

      

             

 

Definition 1.2.17 [25]: Let      be real number. Then the   -space is the set 

of all real-valued (or complex-valued) sequences of X, such that  

∑ |  |
 

 

    
   

The space    is the set of all sequences X , with ∑ |  |
  

       . The inner 

product on this space is defined by 〈   〉   ∑     ̅̅ ̅
 
     , where 

   {  }    
  and    {  }    

  . 
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Definition 1.2.18 [27]: The convolution of two continuous functions f(x) and 

h(x) of one continuous variable x is defined as the following: 

               ∫     

 

  

                                         

In the following sections, the Fourier analysis and different types of 

some well-known mathematical transformations such as Discrete Fourier 

Transform (DFT) and Discrete Sine Transform (DST) are discussed in detail.   

  

1.3  Fourier Analysis (FA) 

The subject of Fourier analysis (Fourier series and Fourier transform) is 

an old subject in mathematical analysis and is of great importance to 

mathematicians, scientist, and engineers alike. It is known from Fourier theory 

that under certain conditions, a signal (function) can be expressed as the sum 

of a series of sine and cosine functions. Such a representation is called a 

Fourier expansion (series) [28]. That is, the basic goal of Fourier series is to 

take a signal, which will be considered as a function of time variable t, and 

decompose into various frequency components. In other words, transform the 

signal from time domain to frequency domain, so it can be analyzed and 

processed. This classical method is used in applications such as storage of 

visual images on a computer. However, these methods fail to provide efficient 

representations for certain types of functions which have discontinuities. 

Another problem with this sum is that it is infinite. In use, only a finite 

number of terms can be used. More accuracy requires more terms in the series, 

but more terms require more time to compute and more space to store. 
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Definition 1.3.1 [1]: A function f(x) is periodic if there exists a nonzero 

constant   such that f(x+  ) = f(x) for all values of x. The least such   is called 

the period of the function. 

Definition 1.3.2[10]: A Fourier series is the representation of a period 

function, f, in terms of a sum of sine and cosine functions. 

     
 

  
   

 

 
∑                                   

 

   

        

Where, 

   ∫              

  

 

                                               

   ∫              

  

 

                                              

 

More generally, the definition can be generalized to a   -periodic 

function f(x) for any positive real number   by using the trigonometric 

functions       
   

 
  , and      

   

 
  and the following lemma. Thus f(x) can be 

represented by its Fourier series, 

     
 

 
   ∑ (     

   

 
      

   

 
)                           

 

   

 

Where the amplitudes an’s and bn’s are the Fourier series coefficients defined 

by 

   
 

 
∫       (

   

 
)   
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∫       (

   

 
)  

 

  

                                        

  

Lemma 1.3.1 [25]: Suppose f is any 2  -periodic function and c is any real 

number, then 

∫        ∫       
 

  

   

    

                                                             

In applications, Fourier series must be truncated, and this truncation 

will introduce error since the whole sum is no longer being used. Thus, one 

must try to find a balance between the number of terms one uses and how 

much error one is willing to accept. In order to achieve more accuracy, a 

greater number of terms are needed and this will take up more computer time 

and storage space. 

A second problem with Fourier series is that although it represents the 

frequency of a function well, it does not do as good a job representing that 

functions localized properties. For example, a function may contain a high 

peak on an interval while it is small elsewhere. This function could represent a 

wave packet, which is just a peak traveling from one point to another in a 

straight line. Before and after the peak the amplitude is almost zero, as shown 

in Figure 1.3.1. A Fourier series will not do as well when representing this 

function because the sine and cosine functions that make up the Fourier series 

are all periodic and thus it is hard to focus in on the local behavior of this 

wave packet.  
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Figure 1.3.1: Example of Wave Traveling From Left to Right [11] 

 

These were problems that mathematicians as well as physicists had to 

deal with until the 1980’s when a new type of series called wavelet series was 

introduced. These new series were developed to get around some of the 

problems associated with Fourier series.  

For example the reason it take Fourier series many terms to represent 

localized properties is because they depend on a single basis (sines and 

cosines) which represent frequencies well but whose support is not localized. 

Wavelet series give us an infinite number of new bases to choose from so we 

can choose the “best basis” for a function. Thus wavelet representations may 

take fewer terms to represent the same function to the same accuracy as the 

Fourier series. 

 

Lemma 1.3.2 [25]: (The Riemann-Lebesgue Lemma) 

Suppose f is piecewise continuous function on the interval [   ], Then 

   
   

∫                   
   

∫                
 

 

 

 

 

There are two consequences of this theorem one of them is that only the 

first few terms in the Fourier series are the most important, since they 
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contribute more to the sum which means that only finite number of terms can 

be used to approximate the function. This is especially important in data 

compression. Another one is used to proof the convergence of the Fourier 

series. 

An interesting question about Fourier series is: When is an arbitrary 

function equal to its Fourier series and in what sense does that Fourier series 

converge? The answer lies in the notation of a complete orthonormal system. 

 

Definition 1.3.3 [24]: Given a collection of functions {     }         , the 

span of  {     }     denoted by span {     }    is the collection of all 

finite linear combinations of the elements of {     }   . The closure of 

span {     }    denoted by     ̅̅ ̅̅ ̅̅ ̅{     }  and it is defined as follows: 

A function       ̅̅ ̅̅ ̅̅ ̅{     } if for every     there is a function      

    {     }    such that ‖   ‖    . 

 

Definition 1.3.4 [24]: If every function in        is in     ̅̅ ̅̅ ̅̅ ̅{     } where 

{     }    is orthonormal system, then we say that {     }    is complete 

on I, this means that every function in         is equal to its Fourier series in 

     . A complete orthonormal system is called an orthonormal basis. 

 

Remark 1.3.1 [29]: An orthonormal set is said to be complete if no additional 

non-zero orthogonal vector exists which can be added to the set. 

 

Example 1.3.1 [29]: One of the best-known discrete transforms is the Fourier 

series expansion. The basis functions are the complex exponentials 

      
     

√ 
              

which form a complete orthonormal set.  
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The interval considered is   [    ]. The weighting function is  

      . It is noted that any finite interval can be mapped onto the interval 

  [    ]. 

In conclusion, the Fourier series shows that any periodic function can 

be decomposed as an infinite sum of periodic functions (sines and cosines). 

This decomposition makes it easy an analysis of the frequencies present on the 

function f. There exists a fundamental frequency  , and all of the other 

frequencies are integer multiples       , of this fundamental frequency. 

The above description of the function f worked perfectly well. We were 

able to obtain an exact representation of the function f and this representation 

completely characterizes  f  by its frequencies. The only drawback is the fact 

that f was a periodic function.  

Now: Is it possible to extend the above results for non-periodic 

functions? The extension of the Fourier calculus to the entire real line leads 

naturally to the Fourier transform, a powerful mathematical tool for the 

analysis of non-periodic functions.  

In the next section, we motivate the construction by investigating how 

(rescaled) Fourier series behave as the length of the interval goes to infinity. 

The resulting Fourier transform maps a function defined on physical space to a 

function defined on the space of frequencies, whose values quantify the 

“amount” of each periodic frequency contained in the original function.  

The inverse Fourier transform then reconstructs the original function 

from its transformed frequency components. One of the most important 

properties of the Fourier transform is that it converts calculus: differentiation 

and integration into algebra: multiplication and division. The study of Fourier 
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transform, its strength and limitations, is the starting point of the wavelets 

analysis.  

 

1.4  Fourier Transform (FT) 

The Fourier transform can be thought of as a continuous form of 

Fourier series. It can be thought as a limiting case of Fourier series.   

Let      be a function defined for all          . The goal is to 

construct a Fourier expansion for       in terms of basic trigonometric 

functions. One evident approach is to construct its Fourier series on 

progressively longer and longer intervals, and then take the limit as their 

lengths go to infinity. This limiting process converts the Fourier sums into 

integrals, and the resulting representation of a function is renamed the Fourier 

transform. Since we are dealing with an infinite interval, there are no longer 

any periodicity requirements on the function     . Moreover, the frequencies 

represented in the Fourier transform are no longer constrained by the length of 

the interval, and so we are effectively decomposing a quite general, non-

periodic function into a continuous superposition of trigonometric functions of 

all possible frequencies. 

The Fourier Transform is an important mathematical transform that is 

used widely in many application areas such as applied mathematics, physics, 

engineering, and computer science, especially in image processing.  

A time domain function can be either continuous or discrete, and it can 

be either periodic or non periodic. The combination of these two features 

generates the types of Fourier transforms.   
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The Fourier series decomposes a signal (function) on ],[   into 

components that vibrate at integer frequencies. By contrast, the FT 

decomposes a signal defined on an infinite time interval into a   -frequency 

component, where   can be any real (or even complex number). Since the 

support of the bases function        covers the whole time domain (infinite 

support), the Fourier transform of f(x) denoted by   {    } , depends on the 

values of f(x) for all times. This makes the Fourier transform a global 

transform that cannot analyze local or transient properties of the original 

function (signal) f(x).  

The time and frequency domains are alternative ways of representing 

signals (functions). The FT is the mathematical relationship between these two 

representations [27]. In image compression application, FT decomposes such 

an image function into a set of orthogonal functions and converts the spatial 

(time) intensity image into its frequency domain [30].  

There are two types of Fourier transforms, which are the continuous 

Fourier transform (CFT), and the discrete Fourier transform (DFT). We 

shall give the definition of FT in one-dimensional and two-dimensional spaces 

of continuous function (CFT) and the corresponding discrete Fourier 

transform(DFT). 

 

1.4.1 Continuous Fourier Transform (CFT) 

Let      be a continuous function of a continuous variable, x. The 

 one – dimensional (1-D) CFT is given by the Equation: 

     ∫     
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where    is also a continuous variable. 

The inverse of CFT in 1-D is given by the Equation: 

     ∫    

 

  

                                                                      

Where      is a given continuous–time signal and      is a continuous 

Fourier transform of it and ω is the frequency variable [29].  

However, the CFT in two-dimensional (2-D) is given by: 

       ∫ ∫       

 

  

 

  

                                                 

and its inverse is given by: 

       ∫ ∫      

 

  

 

  

                                                  

Where        be a given continuous–time signal (function) of two continuous 

variables x,y ; and        be a continuous Fourier transform of it and u,v are 

the frequency variables [31]. 

The Fourier transform is generally complex; by using Euler's formula 

we can express [30]: 

                 |    |                                            

     ∫     

 

  

[                     ]                       
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     ∫     

 

  

[                     ]                      

Where      and      are the real and imaginary components of     , 

respectively, and  

|    |  √                                                                        

                   ⁄                                                              

|    | is called the Fourier spectrum of f(x) (the magnitude of F(u,v)),  

      is called the energy (or power) of spectrum, and      is called the 

phase angle [30]. 

 

1.4.2    Discrete Fourier Transform (DFT) 

  The input to the DFT is a sequence of numbers rather than a 

continuous function of time f(x). The sequence of numbers usually results 

from periodically sampling a continuous signal f(x) at an interval of    [30]. 

The DFT is derived from a continuous-time function f(x) using N

samples taken at times                      where x is the sampling 

interval. These N samples of f(x) form a data sequence: 

{                            [   ]   } 

It will be convenient to use x as either a continuous or a discrete 

variable, depending on the context of discussion. Therefore,           

    , where x now assumes the discrete values             [32]. The 

simplified notations {                       } mean N  uniformly 
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spaced samples of a continuous function. Figure 1.4.2.1 illustrations this 

concept [30]. 

 

Figure 1.4.2.1: Sampling a Continuous Function[32] 

 

The DFT pair in one – dimensional (1-D) is given by: 

     
 

 
∑     

   

   

 
      

                                      

The inverse of DFT in (1-D) is defined as:  

     ∑     

   

   

 
     

                                             

The values               in the DFT given in Eq. (1.4.2.1) 

correspond to samples of the continuous transform at values 

                   [32]. The following examples calculate the four-

points DFT of the aperiodic sequence x[k] and its inverse of length N = 4. 
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Example 1.4.2.1: 

Calculate the four-point DFT of the aperiodic sequence x[k] of length N = 4, 

which is defined as follows: 

 [ ]  {

             
             
           
             

 

Solution : 

Using Eq. (1.4.2.1), the four-point DFT of x[k] is given by 

    [ ]  
 

 
∑ [ ]    

    
 

 

 

   

 

              
 

 
(         

   
 

      
  (

      
 

)
     

  (
      

 
)
)  

for 0 ≤ r ≤ 3. On substituting different values of r, we obtain 

              [ ]  
 

 
          

 

 
  

             [ ]  
 

 
(     

  (
  
 

)
    

  (
     

 
)
    

  (
     

 
)
) 

                               
 

 
                      

    

 
  

        [ ]  
 

 
(     

  (
     

 
)
    

  (
        

 
)
    

  (
        

 
)
) 

                         
 

 
(                  )  

  

 
 

            [ ]  
 

 
(     

  (
     

 
)
    

  (
        

 
)
    

  (
        

 
)
)  

                      
 

 
(                  )  
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Example 1.4.2.2: 

Calculate the inverse DFT of 

 [ ]  

{
 
 
 

 
 
 

 

 
                    

    

 
            

  

 
                  

    

 
            

 

Solution: 

Using Eq. (1.4.2.2), the inverse DFT of X[r] is given by 

 [ ]  ∑ [ ] 
 (

    
 

)

 

   

  

           [
 

 
 

    

 
 
 (

   
 

)
 

 

 
 
 (

      
 

)
 

    

 
 
 (

      
 

)
] 

for 0 ≤ k ≤ 3. On substituting different values of k, we obtain 

 [ ]   
 

 
[                 ]      

 [ ]   
 

 
*         

 (
  
 

)
   

 (
     

 
)
        

 (
     

 
)
+ 

             
 

 
[                            ]     

 [ ]   
 

 
*         

 (
     

 
)
   

 (
        

 
)
        

 (
        

 
)
+ 

             
 

 
[                            ]      

 [ ]   
 

 
*         

 (
     

 
)
   

 (
        

 
)
        

 (
        

 
)
+ 

              
 

 
[                            ]    
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Remark 1.4.2.1: The DFT can be expressed in matrix form,  as the following: 

By expanding Eq.( 1.4.2.1),  

     
 

 
∑     

   

   

 
      

                         

An alternative representation for computing the DFT in term of the time 

and frequency indices ( ,x) , the resulting equations are expressed as follows 

[33]: 

 

 [ ]  
 

 
 [ ]  

 

 
 [ ]  

 

 
 [ ]    

 

 
 [   ]                                                                            

 [ ]  
 

 
 [ ]  

 

 
 [ ]   (  

 
)  

 

 
 [ ]   (  

 
)    

 

 
  [   ]   ( 

      
 

)                              

 [ ]  
 

 
 [ ]  

 

 
 [ ]   (  

 
)  

 

 
 [ ]   (  

 
)     

 

 
 [   ]   ( 

      
 

)                              

 

 [   ]  
 

 
 [ ]  

 

 
 [ ]   ( 

      
 

)  
 

 
 [ ]   ( 

      
 

)     
 

 
 [   ]   (

           
 

)

}
 
 
 
 

 
 
 
 

 

                                                                                                      (1.4.2.3) 

In the matrix-vector format they are given by 

[
 
 
 
 
 
 

 [ ]

 [ ]

 [ ]
 

 

 

 [   ]]
 
 
 
 
 
 

⏟      

 

             ⃗⃗  

  
 

 

[
 
 
 
 
 
 

 

  

 

 

 

 

        ⁄

        ⁄
 

 

 

             ⁄

 

        ⁄

        ⁄
 

 

 

             ⁄

 

 

 

 

 

 

             ⁄

             ⁄
 

 

 

                  ⁄ ]
 
 
 
 
 

⏟                              
            

 

[
 
 
 
 
 
 

 [ ]

 [ ]

 [ ]
 

 

 

 [   ]]
 
 
 
 
 
 

⏟      
                 

            

 

Eq. (1.4.2.4) shows that the DFT coefficients      can be computed by 

left multiplying the DT sequence     , arranged in a column vector x in a 

scending order with respect to the time index  , by the DFT matrix F. 

Similarly, the expression for the inverse DFT given in Eq. (1.4.2.2) can 

be expressed as follows [33]: 
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[
 
 
 
 
 
 

 [ ]

 [ ]

 [ ]
 

 

 

 [   ]]
 
 
 
 
 
 

⏟      
                ⃗ 

  

[
 
 
 
 
 
 

 

  

 

 

 

 

       ⁄

       ⁄
 

 

 

            ⁄

 

       ⁄

       ⁄
 

 

 

            ⁄

 

 

 

 

 

 

            ⁄

            ⁄
 

 

 

                 ⁄ ]
 
 
 
 
 

⏟                            
                

 

[
 
 
 
 
 
 

 [ ]

 [ ]

 [ ]
 

 

 

 [   ]]
 
 
 
 
 
 

 

⏟      

            ⃗⃗   

                    

 

The disadvantage application of the DFT is the difficulty of using this 

transformation due to the requirement to process both real and imaginary 

components as shown in Eq. (1.4.2.4). 

For image, an NN image can be decomposed into a weighted sum of   

2-D sinusoidal term. The 2-D (DFT) equation is given by [32]: 

 

       
 

  
∑ ∑               

 
   

 
                                 

   

   

  

   

   

 

 

The inverse of DFT in 2-D is defined as:  

       ∑ ∑           (  
 

   
 

)                                           

   

   

   

   

 

The application of two-dimensional DFT to image arrays produces a 

two-dimensional spectrum of the data where highly correlated image data 

have small energy at high spatial frequencies [34]. One important property of 

the DFT is its separability in which the two-dimensional basis image can be 

decomposed into two product terms. If the basis images are separable, then the 

result can be found by successive application of two, one-dimensional 

transforms. This can be done by first separating the basis image term into 

product terms as follows: 
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Eq.(1.4.2.6) can be written as 

 

       
 

  
∑  

      
 ∑        

      
                                                   

   

   

   

   

 

As it can be noticed from Eq. (1.4.2.9), the advantage of the separability 

property is that F (u, v) or f (x, y) can be obtained in two steps by successive 

application of the one-dimensional Fourier transform or it’s inverse. One of 

the main reasons that the DFT has become an important tool in signal 

processing is that it can be implemented using Fast Fourier Transforms (FFT) 

[31]. 

The inverse DFT generates samples which are periodic extension of the 

first N samples [35], that is, 

                                                                         

and 

                                                           

                                                                                         

 

This periodicity in DFT causes discontinuities at the beginning and end 

of each block. This effect can be seen in Figure 1.4.2.2 . 
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   (a)                                                 (b) 

                                       Figure 1.4.2.2:  Side Effect in DFT 

A big problem in using Fourier transform is that it is not localized. It 

does not reveal how the signal’s frequency contents vary with time. This 

localization is of great importance in several applications, and in particular in 

the problem of function representation. The existence of a certain frequency 

detects the presence of some object, and the localization of a frequency allows 

us to determine the object position. Because the temporal structure of the 

signal is not detected, the feature of the Fourier transform is limited; 

specifically, it is not suitable for analyzing non-stationary signals. 

In order to overcome the limitation of the Fourier transform, the Short-

Time Fourier Transform (STFT) was introduced by Dennis Gabor in 1946 

[36]. The STFT is a modification in the definition of the Fourier transform to 

obtain a transform with better localization properties in the time-frequency 

domain. It consists of an analysis window of specific length that glides during 

the signal along the time axis to perform a “time-localized” Fourier transform.  
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1.4.3   Short Time Fourier Transform (STFT) 

The Short-Time Fourier Transform (STFT) or windowed Fourier 

Transform, is the simplest time frequency representation. Instead of 

transforming the whole signal, all at once using the Fourier Transform, it is 

transformed on a (block-by-block) basis using a moving time-window, 

centered at the time instant τ [37]. 

The Short-Time Fourier Transform (STFT) employs a sliding window 

function g(t) that is centered at time τ. For each certain τ, a time-localized 

Fourier transform is performed on the signal x(t) in the window. If the window 

shape is given by g(t), the STFT is formally given by [36] 

       ∫                                                                 

This means that the signal (function) x(t) which is to be analyzed is 

multiplied with an analysis window        which is centered at time τ . 

Then, the window is movable by τ along the time line, and another Fourier 

transform is performed. Through such sequential operations, Fourier transform 

of the whole signal can be performed. The signal segment in the window 

function is assumed to be approximately stationary. As a result, the Short-

Time Fourier Transform (STFT) decomposes a time domain signal into a 2D 

time-frequency representation, and alteration of the frequency content of that 

signal within the window function are revealed, as illustrated in Figure 1.4.3.1 

[36]. 
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Figure 1.4.3.1: Illustration of Short-Time Fourier 

 Transform on The Test Signal x(t)[36] 

 

It should be known that the choice of the window function directly 

impact the time and frequency resolutions of the analysis result. While higher 

resolution in general provides best separation of the constituent components 

within a signal, the time and frequency resolutions of the Short-Time Fourier 

Transform (STFT) technique cannot be selection arbitrarily at the same time, 

according to the uncertainty principle [36]. 
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1.5  Discrete Sine Transform (DST) 

The Discrete Sine Transform (DST) is a member of a family of 

sinusoidal unitary transforms. A sinusoidal unitary transform is an invertible 

linear transform whose kernel describes a set of complete, orthogonal discrete 

cosine and/or sine basis functions. The DST has found applications in digital 

signal and image processing and particularly in transform coding systems for 

data compression/decompression. It was firstly introduced into the digital 

image processing by Jain [38]. It is found that in the case of image with high 

correlation coefficient, DST gives lower bit rate [39]. 

The most common DST definition of a 1-D sequence of length N is given by: 

         ∑     

   

   

   *
        

  
+                               

Similarly, the inverse transformation is defined as 

     ∑         

   

   

   *
        

  
+                              

 

In both equations of DST and its inverse;      is defined as 

     

{
 

 √
 

 
                                            

√
 

 
                                           

                              

 

In addition, the 2-D DST is a direct extension of the 1-D case and is given by 

 

               ∑ ∑          *
        

  
+    *

        

  
+  
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For                   and      and      are defined in 

Eq.(1.5.3). The inverse transform is defined as 

 

       ∑ ∑                  *
        

  
+    *

        

  
+  

   

   

   

   

                      

for                     

 

Besides being real, orthogonal, and separable, the DST properties are 

relevant to data compression and fast algorithms for its computation have 

proved to be of practical value. Figure 1.5.1 depicts the 64 basis image of the  

2-D DST of an 8×8 image matrix [38]. 

 

 

Figure 1.5.1: The 64 Basis Images of the DST in Two Dimensions[1] 
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2.1 Introduction 

In this chapter we introduce the basic idea of the wavelet transform 

(WT) and its properties, as well as, its applications. Wavelet application in the 

field of image compression will be discussed so as to observe how wavelet is 

implemented to be applied to an image in the process of compression, and also 

how mathematical aspects of wavelet affect the compression process and the 

results of it. The insights of how wavelets in mathematics are implemented in 

a way to fit the engineering model of image compression will be studied. Then 

the concept of Multiresolution Analysis (MRA) and Singular Value 

Decomposition (SVD) are explained. 

 

2.2  Wavelet Transform (WT) 

For the analysis of a non-stationary (transient) signal, using the FT does 

not give suitable results since sinusoids are smooth and predictable and are 

good at describing constant frequencies (stationary) signals. Wavelets are 

better at describing irregularities, and other events that start and stop within 

the signal. Therefore, wavelet analysis (or the wavelet transform) is a 

successful approach to the problem of analyzing a non-stationary signal both 

in time and in frequency [11]. 

Wavelets are mathematical functions defined over a finite interval and 

having an average value of zero that transform data into different frequency 

components, representing each component with a resolution matched to its 

scale [40]. It was first introduced by A. Grossmann and J. Morlet in 1984 [41]. 

The basic idea of the (WT) is to represent any arbitrary function      as a 

superposition of a set of such wavelets or basis functions. These basis 
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functions are obtained from a single wavelet called mother wavelet 

     because all other wavelet functions within the family are obtained by 

dilating and translating of       by amounts    and   respectively as given 

bellow [42]:  

        { (
   

 
)              }                                      

The process of changing the two parameters     and   that result in the 

basis functions are shown in Figure 2.2.1. 

 

 

Figure 2.2.1: Effect of Time Dilation and Translation 

on the Mother Wavelet[42] 

(a)Mother wavelet                    (b) Wavelet                   

(c) Wavelet                          (d) Wavelet                               

 

These wavelets are distinguishing by compactly supported functions 

defined over a finite interval and having an average value of zero, and that 

leads to efficient implementation. The mother wavelet      is the function 

with zero translation and a dilation of one. 
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In wavelet transform the basis functions are wavelets. Wavelets tend to 

be irregular and symmetric. All wavelet functions,         , are derived 

from a single mother wavelet,     . This wavelet is a small wave or pulse like 

the one shown in Figure 2.2.2 [40]. 

 

 

Figure 2.2.2: Mother Wavelet       [43] 

 

Normally it starts at time t = 0 and ends at t = T. The shifted wavelet 

       starts at      and ends at      . The scaled wavelets         

start at t = 0 and end at t = T/2s. Their graphs are       compressed by the 

factor of 2s as shown in Figure 2.2.3. For example, when s = 1, the wavelet is 

shown in Figure 2.2.3(a). If s = 2 and 3, they are shown in (b) and (c), 

respectively [40]  

 

Figure 2.2.3: Scaling the Wavelets [43] 
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By a dilation we mean a scaling of the argument; so, given any function 

     and a parameter s  ,   
   

 
   is a dilation of     . Consequently, a 

dilation of a function corresponds to either a spreading out or contraction of 

the function. The factor 
 

√| |
 is introduced with         equation to keep the 

energy of the mother wavelets constant that it yields normalization necessary 

to have an orthonormal wavelet basis.   

The translation simply means a shift of the argument along the real axis, 

that is, given, the translation of      by   is       . For any analyzing 

wavelet      we thus define a family of functions         by the dilations and 

translations of      as given by the Eq. (2.2.2): 

        {
 

√ 
 (

   

 
)            }                                    

Each      is called a wavelet. 

Where,        is a mother wavelet, 

            is coefficient of expansions or scaling (dilation), 

             is a coefficient of translation. 

The translation   and dilation s allow the wavelet transform to be 

localized in time and frequency. Also, wavelet basis functions can represent 

functions with discontinuities and spikes in a more compact way than sine and 

cosine [30]. 

The wavelets are called orthogonal when their inner products are zero. 

The smaller the scaling factor is, the wider the wavelet is. Wide wavelets are 

comparable to low-frequency sinusoids and narrow wavelets are comparable 

to high frequency sinusoids [40]. 
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The following are some important definitions which are related to the 

wavelet transform. 

 

Definitions 2.2.1: 

 Translation[11] 

Let       and    , then the translation        , is an operator 

defined by 

                                                                                           

 

 t-Dilation[11] 

Let       and      , then the t-dilation         is defined by 

      
 

 
 (

 

 
)                                                                                    

 

 Orthogonally[44] 

The expansion functions {       } form an orthogonal of basis 

functions: 

〈              
   〉  ∫              

                

                                      {
                
                

                       

Where,          : is a decomposition wavelet, 

                and   : are dilation (scaling) factors, 

                and   : are translating (shifting) factors. 

 

 Compact Support[1] 

We say that      has compact support on interval I, if it has zero values 

(vanish) outside this interval, so it is limited in time domain. 
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 Admissibility Condition[1] 

The inverse wavelet transform is held if the wavelet function is satisfied 

for any      , then: 

  ∫
|    | 

| |

 

  

                                                                       

Where      is the Fourier transform of the fundamental mother wavelet 

    ,      ∫     
 

  
       , and c represents how closely correlated of 

the wavelet with this section of the signal, so the higher value of c is the more 

of similarity. Then c is positive and finite, in most cases, this simply means 

that        and                 fast enough to make    .  

The requirement that c be positive and finite imposes another restriction 

of the choice of wavelet. 

 

 Normalized[44] 

A wavelet function is defined as a function with a zero average 

∫     

 

  

           ‖    ‖                                                    

It is normalized, and centered in the neighborhood for x = 0. 

 

 Series Expansion[45] 

A function or signal f(x) can often be better analyzed as a linear 

combination of expansion function. 

     ∑       

 

                                                                           

Where,  k   is an integer index of the finite or infinite sum, 

      are real valued expansion coefficients, 
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       are real valued expansion functions and called (basis functions). 

The expressible functions form a function space that is referred to as the 

closed span of the expansion set, denoted by: 

      {     }̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅                                                                                 

 

 Scaling Functions [45] 

The set of expansion functions composed of integer translations and 

binary scaling of the real, square integrable function     ; is the set {       } 

where  

           ⁄                                                    

 

Where,      :    is         ’s width, how broad or narrow it is along x-axis, 

        :   is the position of          along the x-axis, 

      
 
 :   is controls         ’s height or amplitude.  

 

Because the shape of         changes with s,      is called a scaling 

function. By Eq. (     ), we will denote the subspaces spanned over    for any 

s as, 

        {       }
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅                                                                           

A     sequence of nested closed subspaces functions spanned by       over τ 

for any s; by Eq. (     ), if          then, it can be written as 

     ∑         

 

                                                                        

 It is noted that increasing s increases the size of    , which implies that 

functions with smaller variations will be included in the subspace. This is 
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because when s is increasing, the set {       } becomes narrower and 

separated by smaller changes in x, as will be seen in the following example: 

 

Example 2.2.1 [45]: Consider the unit-height, unit-width scaling function 

    , which is called Haar scaling function, where; 

     {
      
          

                                                                  

Figures 2.2.4 (a)-(d) depicts some of the many expansion functions by 

substituting the given scaling function into Eq. (2.2.10). 

Note that the expansion functions for s = 1 in Figures 2.2.4(c) and (d) 

are half as wide as those for s = 0 in Figures 2.2.4(a) and (b). In addition, it 

can be defined twice as many    scaling functions as     scaling functions (for 

example:       and       of      versus       of     for  [     ). 

Figure 2.2.4(e) shows a member of subspace    . This function does not 

belong to     because the     expansion functions in Figures 2.2.4(a) and (b) 

are too coarse to represent it. Higher resolution functions like those in Figures 

2.2.4(c) and (d) are required. They can be used, as shown in (e), to represent 

the function by the expansion 

     
 

 
                

 

 
                                               

Also, the decomposition of         as a sum of     expansion functions 

is included in Figure 2.2.4(f). Similarly, any     expansion function can be 

decomposed using the following relation: 

        
 

√ 
         

 

√ 
                                                  

Thus, if           then         . This means        . 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

Figures 2.2.4 : Some Haar Scaling Functions [45] 
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 Wavelet Function [45] 

A wavelet function          can be defined as spans for the difference 

between any two adjacent scaling subspaces,     and     . 

The set         of wavelets can be defined as a basis wavelet from the 

mother function      such as: 

         
 
                                                                            

Where       and            that spans the     spaces as 

        {       }
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅                                                                         

Where    is a sequence of closed subspaces of functions spanned by         

over τ for any s, by Eq. (      , if         then, it can be written as 

     ∑         

 

                                                                        

 

Remark 2.2.1 [45]: 

The subspaces spanned by the scaling function at low scales are nested 

within those spanned at higher scales. So, the subspaces containing high-

resolution function must also contain all lower resolution functions, that is, 

                                            

Figure 2.2.5 explains this remark. 

 

Figure 2.2.5: The Nested Function Spaces Spanned  

By a Scaling Function [45] 
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Remark 2.2.2 [45]: 

The scaling and wavelet functions subspace are related by  

                  
                                     

Where   denotes the union of spaces (like the union of sets) and       . 

 

For constructing orthogonal wavelets, the theory of multiresolution 

analysis (MRA) explained a systematic method to achieve this task. The first 

basic concept of (MRA) was introduced by Mallat [46]. This concept is the 

material of the following section. 

 

2.3 Multiresolution Analysis (MRA) 

The (MRA) is related to the representation and analysis of signals (or 

images) at more than one resolution. It is to approximate a function f(x) at 

various levels of resolution by analyzing a function at different scales [45]. In 

(MRA), two functions are taking into consideration: the scaling function      

which structures, using Eq.(2.2.10), a number of scaling functions         by 

the dilated (scaled) and translated (shifted); and the mother wavelet     , 

which structures, using Eq.(2.2.16), a number of orthogonal wavelet basis 

functions        . 

‖    ‖  
 

 ‖ ‖  
  , because if we let          , we obtain 

‖    ‖  
 

 ∫ |   ⁄         |
 

 
   ∫   |        | 

 
   

∫ |    | 
 

   ‖ ‖  
  . 

Similarly, ‖    ‖  
 

 ‖ ‖  
  . In fact, ‖    ‖  

 
 ‖    ‖  

 
         . 
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To design a multiresolution analysis, we need a set of nested spaces, by 

selecting the functions              ; we determine the nested spaces  

         . For fixed s , the set of scaling functions      are orthonormal. 

Now consider      to be the vector spaces corresponding to spanning set 

{       }, assuming that the resolution increases with decreasing s, and these 

vector spaces characterize successive approximation vector spaces, ( i.e, each 

space      is contained in the next resolution space     ), this is depicted in 

Figure 2.2.5 and each with resolution    such as in Eq.(2.2.19) [46]. To say 

that        means that f(x) belongs to the closed span of         and can be 

written in the form of Eq.(2.2.12). 

Thus, a (MRA) with scaling function    consists of a sequence of closed 

subspaces  {          }   of         which have the following properties [45]: 

1.              . (Nested) 

2. ⋃      
̅̅ ̅̅ ̅̅ ̅̅ ̅        . (Density) 

3. ⋂       { } . (Trivial intersection) 

4. The following scale relations exist: 

                    . (Scaling invariance property) 

                        . (Scaling invariance property) 

5.  There exists a scaling function      such that its integer translates,  

{      } is an orthonormal basis of   , where         as in 

Eq.(2.2.10) 

This means that the basic rule of multiresolution analysis is that 

whenever the above properties are satisfied, there exists an orthonormal 

wavelet basis and scaling basis such that any            can be expanded 

as a linear combination of both the scaling basis function         and the 

wavelet basis functions          . 
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In a (MRA), since            and {           } is an 

orthonormal basis of   , there exists some set of coefficients {       } such 

that the function         can be represented as a linear combination of the 

functions from     and so [45], 

     ∑  

 

                                                                         

Alternatively, if we consider property (4: Scaling invariance property) 

of (MRA) written as a linear combination of       in the scaled form defined 

in Eq.(2.3.1), the recursion for      can be written in terms of a new set of 

coefficients {  }  as:  

     √ ∑  

 

                                                                   

where, 

∑  

 

 √ ∑  

 

                                                                              

For some coefficients {       }, using the fact that {       } are 

orthonormal. The coefficients {       }  can be obtained by computing the 

inner product: 

   √ ∫     
 

  
                                                                

Where the function        is the scaling function. 

It is interesting to notice that the scaling function      can be 

recursively generated by scaled (shrunk to half) and shifted versions of itself, 

as it is described by Eq. (2.3.1). This means that the scaling function       

has the self similarity property. 

For each (MRA), it is also possible to define a mother wavelet,      , 

which will explain the detail at each level s . Assume     to be the orthogonal 
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complement of      in       ; that is     is the difference between the function 

space       spanned by scaling functions            ; and the function space 

   spanned by           , so that 

                                                                                               

Where   represents the union of the two spaces. The space     is 

composed of all functions representable in      but not representable in    . 

This can be carried out recursively to get: 

                                                      

Similar to a function space    spanned by the scaling functions        , 

the function space      is also spanned by a set of basis function, called the 

wavelet functions. Then the fundamental result is that  {             }  

forms an orthonormal basis for     , and        , orthogonal to all functions 

in    , where         is defined as in Eq. (2.2.16). 

The wavelet functions           can be expanded in the space        as: 

        ∑  

 

          ∑  

 

       ⁄                           

Where    are the expansion coefficients. Usually we let      and 

drop the subscripts    and    to indicate that any wavelet function            

can be expressed as a linear combination of the basis scaling functions      of 

the functions from    ; 

     √ ∑  

 

                                                                   

This is in the same form for the scaling functions Eq.(2.3.2).  

The Eq. (2.3.8) can be expressed as: 
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     ∑     

 

                                                              

Where, 

            ⁄                                                                           

The coefficients {  } can be obtained by computing the inner product: 

   √ ∫     

 

  

                                                               

These coefficients are called coefficients of highpass filter. Coefficients 

of  highpass filter can be calculated from coefficients of lowpass filter using 

this Equation [45]: 

                                                                                             

 

Remark 2.3.1: The scaling function in example (2.2.1) satisfies the 

requirements of (MRA). 

Example 2.3.1: The Haar scaling coefficients was defined with the boundary 

conditions:  

            
 

√ 
   Using Eq.(2.3.12), the coefficients for the wavelet 

function are: 

                
 

√ 
  and                   

 

√ 
  

Substituting these values into Eq.(2.3.8), we obtained the wavelet functions as: 

     √ ∑  

 

        √ 
 

√ 
      √ 

 

√ 
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                          . 

Which is plotted in Figure 2.3.1(a), thus, the Haar wavelet function is 

 

     {
        
         
          

 

 

Using Eq. (2.2.16), we can generate the universe of scaled and 

translated Haar. Figure 2.3.1(a) explains                        , 

and two such wavelets         and         are plotted in Figure 2.3.1(b) and 

Figure 2.3.1(c) respectively, where; 

                           

          
 

        √       

Finally, Figure 2.3.1(d) shows a function of space     that is not in the 

subspace    . However, Eq.( 2.3.5)  indicates that it can be expanded using    

and      expansion functions as: 

                                                                                        

Where, 

      
 √ 

 
        

√ 

 
          

and                      
 √ 

 
        

√ 

 
           

 

Here,        is an approximation of        using    scaling functions, 

while       is the difference              as a sum of    wavelets. The two 

expansions are shown in Figures 2.3.1(e) and (f) [45]. 
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 (a) 

 

 (b) 

 

 (c) 

 

 (d) 

 

 (e) 

 

 (f) 

 

Figure 2.3.1: Haar Wavelet Functions in 0W  and 
1W  [45] 

The wavelet transform has two types of transforms that are explained in the 

following section. 
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2.4  Wavelet Transform Types  

 

2.4.1 The Continuous Wavelet Transform (CWT): 

The Continuous wavelet transform (CWT) of a function f(x) includes a 

mother wavelet      . The mother wavelet can be any continuous function, 

real or complex, that satisfies the following properties [1]: 

1.  The total area under the curve of the function is zero, such that : 

∫         

 

  

                                                                                  

2.  The total area of |    |  is finite , such that  

∫|    | 
 

  

                                                                                 

 

The CWT in 1-D of a square integrable function f(x) with respect to the 

wavelet       is a function           of two variables      , and defined as: 

        ∫              

 

  

                                                        

Where,  

         
 

√ 
 (

   

 
)                                                 

        : is the wavelet coefficient of the function f(x). 

               : is the scale parameter. 

               : is the position parameter. 

The quantity 
 

√ 
 is a normalizing factor that guarantees the energy of 

     remains independent of s and  , such that [1]: 
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∫|       |
 
    ∫|    |    

 

  

 

  

                                                 

For any s,         is a copy of         shifted   along the time axis. 

Setting     ,    is said to be translation parameter, such that : 

        
 

√ 
 (

 

 
)                                                                  

The parameter s is said to be a scaling (dilation) parameter. 

If     stretch the wavelet, while         shrink the wavelet, as 

shown in Figure 2.4.1.1 [1]. 

 

 

Figure 2.4.1.1: Typical Wavelet Family in Time and 

Frequency Domains[47] 
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A function f(x) can be restored using the inverse continuous wavelet 

transformation by the formula: 

      
 

  
∫ ∫

 

  
                   

 

  

 

 

                                 

Where, 

       : is a given wavelet coefficient  

           is Wavelet function. 

           :  is defined as 

   ∫
|    | 

| |
  

 

  

                                                                        

And      is the Fourier transform of       such that: 

     ∫            

 

  

                                                               

The inverse CWT exists if    is positive and finite. Since    is defined 

by means of Ψ, which itself is defined by means of the wavelet     , the 

requirement that    be positive and finite imposes another restriction, called 

the admissibility condition, on the choice of wavelet. So the wavelet is called 

admissible if      [1]. 

In applications such as image compression, the sampled data are 

discrete in time. Thus, a discrete representation of time and frequency is 

needed, which is called the Discrete Wavelet Transform (DWT). Before 

giving the definition of DWT, we need to explain the concept of wavelet 

series expansion.  
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 Wavelet Series Expansion [45] 

For a specific value       , by means of these subspaces, the Eq. 

(2.3.5) discussed in section (2.3) can be decomposed as  

                                                

This is shown in Figure 2.4.1.2. 

 

Figure 2.4.1.2: The Relationship Between Scaling and  

Wavelet Function Space [45] 

 

It indicates that any square-integrable function             can be 

expanded as a linear combination of both the scaling basis functions       
     

and the wavelet basis functions         ,             . That is, each 

function              can be represented in its wavelet series expansion: 

     ∑             

 

 ∑ ∑    

 

 

    

                                 

where         is called approximation coefficient or scaling coefficients 

defined as: 

         〈             〉  ∫                                    
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and        is called detail coefficient or wavelet coefficients defined as: 

        〈            〉  ∫                                       

The first term contained in the wavelet expansion of the function      

Eq. (2.4.1.11) represents the approximation of the function at scale level     

by the linear combination of the scaling functions           , and the 

summation with index s in the second term in the expansion is for the details 

of different levels contained in the function       approximated by the linear 

combination of the wavelet functions of progressively higher scales    

        . . 

 

Example 2.4.1.1: Consider a continuous function     , which is defined over 

the period       : 

     { 
      
          

 . 

Figure 2.4.1.3: Wavelet Series Expansion of f(x)=x
2
 Using Haar Wavelets [45] 
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A shown in Figure 2.4.1.3. Using Harr wavelet and a starting scale   

    , each individual space              is spanned by different number 

of basis functions. Eqs. (2.4.1.12) and (2.4.1.13)   can be used to compute the 

expansion coefficients: 

Since         ∫                , then; 

      ∫  

 

 

          ∫  

 

 

   
 

 
 

      ∫  

 

 

          ∫  

 
 

 

     ∫  

 

 
 

     
 

 
 

      ∫  

 

 

          ∫  

 
 

 

√       ∫  

 
 

 
 

√       
√ 

  
 

      ∫  

 

 

          ∫  

 
 

 

√       ∫  

 

 
 

√       
 √ 

  
 

Substituting these values into Eq. (2.4.1.11), we get the wavelet series 

expansion 

  
 

 
       ⏟      

  

 [ 
 

 
       ]⏟        
  ⏟                

        

 * 
√ 

  
         

 √ 

  
       +

⏟                    
  

⏟                                      
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The first term in this expansion uses       to generate a subspace    

approximation of the function being expanded. This approximation is shown 

in Figure 2.4.1.3(b) and is the average value of the original function. The 

second term uses         to refine the approximation by adding a level of 

detail from subspace   . The added detail and resulting     approximation are 

shown in Figures 2.4.1.3(c) and (d), respectively. Another level of detail is 

added by the subspace    cofficients         and       . This additional 

detail is shown in Figure 2.4.1.3(e) and the resulting      approximation is 

depicted in Figure 2.4.1.3(f). 

 

2.4.2 The Discrete Wavelet Transform (DWT): 

The DWT was proposed by Mallat (1989) [46], is an efficient algorithm 

for calculating the coefficients of the wavelet transform of a discrete series. It 

is like the Fourier series expansion, the wavelet series expansion of the 

previous section maps a function of a continuous variable into a sequence of 

coefficients. If the function being expanded is discrete, the resulting 

coefficients are called the DWT [45]. 

 The DWT in one – dimension (1-D) is given by: 

         
 

√ 
∑            

 

                                                  

called the approximation or scaling coefficients, and 

        
 

√ 
∑           

 

                                        

called the detail or wavelet coefficients.  
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The inverse of DWT in (1-D) is given by:  

     
 

√ 
∑             

    
 

√ 
∑ ∑              

 

 

     

                

Here            
   , and         are functions of discrete variable x, 

for example                and              . The factor 
 

√ 
 is 

normalizing factor.  

Normally, we let        and select M to be a power of 2 (i.e.     ) 

so that the summations are performed over                 

            and                [45]. 

The transform itself is composed of M coefficients, the minimum scale 

is 0 and the maximum scale is (s – 1). 

The           and          of Eqs.(2.4.2.1) and (2.4.2.2) correspond 

to the        's and       's of the wavelet series expansion that explained in 

the previous section, that is Eqs. (2.4.1.12) and (2.4.1.13). 

 

Example 2.4.2.1: To compute the 1-D DWT coefficients, consider the 

discrete function of four points: f(0) = 1, f(1) = 4, f(2) = -3 and f(3) = 0. M = 4, 

s = 2 and     . The summations are performed over x = 0,1,2,3 ; s = 0,1 and 

  = 0 for s = 0 or   =0,1 for s = 1. We will use the Haar scaling and wavelet 

functions and assume that the four sampling of     are distributed over the 

support of the basis functions, which is 1. Substituting the four samples into 

Eqs. (2.4.2.1) and (2.4.2.2), we find : 
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∑           

 

   

 

        
 

 
[               ]    (since           for          ) 

        
 

√ 
∑           

 

 

        
 

 
[                     ]     

        
 

 
[  √      √          ]      √  

        
 

 
[          √      √  ]      √  

Thus, the DWT of the given four sample function relative to the Haar 

wavelet and scaling function is [1,4,     √      √ ], where the transform 

coefficients have been arranged in the order in which they were calculated. 

To reconstruct the original function from its transform, using the 

Eq.(2.4.2.3): 

     
 

√ 
∑             

    
 

√ 
∑ ∑              

 

 

     

 

Then; 

     
 

 
[                                                           ] 

For x = 0,1,2,3. If x = 0, 

     
 

 
[        (   √ ) (√ )  (   √ )  ]    . 
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The one dimensional transforms (1-D) are extended easily to two 

dimensional transform (2-D) by using a 2-D scaling function       , and 

three 2-D wavelets,                            , so to reconstruct the 

signal        of size     in form the 2-D discrete wavelet 

coefficient(         ), we found 2-D DWT pair becomes as [45]: 

           
 

√  
∑ ∑                   

   

   

   

   

                   

  
         

 

√  
∑ ∑             

      

   

   

   

   

                      

where,  

              
  
                                                    

      
        

 
                                                       

For      and     {     } . 
 

As in 1-D case,    is an arbitrary starting scale and the            

coefficients define an approximation of        at scale   . The   
         

coefficients add horizontal, vertical, and diagonal details for scales      . 

Usually, let      and        so that s             and 

                . The inverse discrete wavelet ransform IDWT for 

2-D is given by [45] : 

       
 

√  
∑∑                      

  

 
 

√  
∑ ∑ ∑∑  
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Definition 2.4.2.1 [45] : 

A two dimensional scaling function,         and three of two 

dimensional wavelet,                        , each is isolated by using 

the separable property to simplify the complexity computations. Where a two 

dimensional scaling function products of one dimensional scaling function as : 

                                                                                        

and three with two dimensional wavelet,                        , each is 

the products of one dimensional wavelet function with respect to directionally 

sensitive wavelet as : 

                                                                                      

                                                                                      

                                                                                      

 

These wavelet measure practical variations intensity or gray level 

variations for images along different directions as : 

   : measures variations along columns (horizontal edges). 

   : measures variations along rows (vertical edges). 

   : measures variations along diagonals. 

 

Remark 2.4.2.1 : 

The component that defined in Eq.(2.4.2.4) is called the approximation 

or the low pass component [  ] and characterizes the image’s low frequency 

information; the component that defined in Eq.(2.4.2.5) is called the detail or 

high pass component [  
    

    
 ] and contains its high frequency 

information with various orientation. 
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      2.5 How the Wavelets Transform Works 

 In order to explain how the wavelets transform works, we take the Haar 

wavelet transform, which is one of the simplest and basic transformations 

from the space domain to a local frequency domain. A Haar transform 

decomposes each signal into two components, one is called average 

(approximation) and the other is known as difference (detail) [1]. The 

following steps illustrate how the Haar transform can be used to calculate of a 

matrix of       size. 

Step 1: Find the average of each pair of elements. 

Step 2: Find the difference between each average and the elements it was 

calculated from. 

Step 3: Fill the first half of the matrix with averages. 

Step 4: Fill the second half of the matrix with differences. 

Step 5: Repeat the process on the first half of the matrix. 

Step 6: If the dimension is odd number, we can add row(coulum) of zero 

elements. 

 

In order to give an idea of its implementation, the procedure of its 

application may be explained with the help of a simple example as shown 

below.  
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Example 2.5.1: Consider the 8x8 matrix , 



































163624559588

5610115352141549

4818194544222341

2539382829353432

3331303637272640

2442432120464717

165051131254559

577660613264

M
 

We start with an arbitrary vector representing one row of an 88  matrix. 

Step 1: Average 

           577660613264y  

 32333233B        
2

577
   

2

660
    

2

613
   

2

264
 


 

Where B is called approximation coefficients, and the results become the first 

four entries of our modified string     .  

Differencing  

 25272931C         32-7       33-60         32-3       33-64   

WhereC  is called detail coefficients, and the results become the last four 

entries of      . 

 
 25272931323332331

1





y

CBy
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Step 2: Average 

 252729311  32333233y  

 5.325.32B            
2

3233
     

2

3233
         


 

Differencing  

 5.05.0C          32.5-33     32.5-33          

 252729315.05.02  32.532.5y  

Step 3: Average 

 252729315.05.02  32.532.5y  

 5.32B                
2

5.325.32
         


 

Differencing  

 0C                  32.5-32.5          

 252729315.05.03  032.5y  

 

The Haar wavelet does this transformation to each row of the image 

matrix, and then again to every column in the matrix. The resulting matrix is 

known as the Haar wavelet transform of the original matrix. It is important to 

note at this point that this process is entirely reversible. It is this fact that 

makes it possible to retrieve the original matrix from the Haar wavelet 

transform of the matrix. 

Apply average and differencing to the entire matrix M 
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First: the rows of matrix M is: 

  

[
 
 
 
 
 
 
 
  
 
  
  
  
  
  
 

  

   
  
  
  
  
  
  
  

   

   
  
  
  
  
  
  
  

   

  
  
  
  
  
  
  
   

  

  
  
  
  
  
  
  
   

  

   
  
  
  
  
  
  
   

  

   
  
  
  
  
  
  
  

  

  
  
  
  
  
  
  
   ]

 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
    
    
    
    
    
    
    
    

  

 
 
 
 
 
 
 
 

     
   
   
     
     
   
   
     

 

     
   
   
     
     
   
   

     

     
   
   
      
  
     
   
   

   
     
    
  
     
   
   
     

     
   
   
    
  
    
     
  

 

   
     
     
   
      
   
   
     ]

 
 
 
 
 
 
 

 

 

Second: the columns of matrix M is: 

 

[
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   ]

 
 
 
 
 
 
 

=N 

 

              A matrix   can be represented as a more concise manner, with one 

overall average in the upper left-hand corner of the matrix is called 

approximation coefficients. The remaining components are all detail 

coefficients that now represent the amount of detail in that area of the matrix. 

Because we know this, we can eliminate some information from the given 

matrix and still be capable of attaining a fairly good approximation of the 

original matrix. Doing this it can choose some number   and set equal to zero 

all elements with a magnitude less than  .  

Choosing    , then eighteen of the detail coefficients (bold) are eliminated. 
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Remark 2.5.1: 

The averaging and differencing method that we just discussed is very 

effective. Using linear algebra, we can use three matrices             that 

perform each of the three steps of the averaging and differencing process. In 

our previous Example (2.5.1), the transformation of   to    can describe as 

        

 [                                 ]
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 [                                 ] 
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It can next be shown that the transformation from    to    can be 

written as         

 [                                 ] 

[
 
 
 
 
 
 
 
  ⁄

  ⁄
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 [                                       ] 

 

and lastly we can show that         

 [                                     ] 

[
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 ]
 
 
 
 
 
 
 

 

 [                                        ] 

         This whole transformation can be done in one step by multiplying these 

three matrices together to obtain a single transform matrix          . We 

can now multiply the original string by just one transform matrix to go 

directly from the original string to the final results of step 3.where   is, 
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2/10004/108/18/1

2/10004/108/18/1

02/1004/108/18/1

02/1004/108/18/1

002/1004/18/18/1

002/1004/18/18/1

0002/104/18/18/1

0002/104/18/18/1

577660613264W

    [                                    ] 

The following equations simplify this process of matrix multiplication 

of the averaging and differencing. 

            

           

               

       

It is also important to note that since every column of the individual 

matrices that comprise   is orthogonal to every other column, the matrices 

are invertible. Thus, 

      
    

    
  ,  then 

       

             

Where,   M  is original matrix 

W is transforming matrix 

N is compressed matrix  
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2.6  Singular Value Decomposition (SVD) 

Singular value decomposition (SVD), in a least square sense, is the 

optimal matrix decomposition that it packages the maximum signal energy 

into as few coefficients as possible. In numerical analysis, SVD is a numerical 

technique used to diagonalize matrices [48]. It is well-known method in linear 

algebra [2] to diagonalise a rectangular     matrix A by factorizing it into 

three matrices U, S, and V, such that, 

                                                                                                    

 

 

Figure 2.6.1: Illustration of Factoring A to USV
T
 

 

Where S is a diagonal     matrix (the same dimensions as A) with elements 

   along the diagonal and zeros everywhere else. U and V are orthonormal 

matrices with sizes      and     , respectively. The matrix U is called 

the left singular matrix, V is called the right singular matrix, and the diagonal 

matrix S is the singular values matrix. The singular vectors form orthonormal 

bases and lead to the following relationship: 

                                                                                                      

The SVD is an approximation method which effectively reduces any 

matrix into a smaller invertible and square matrix. Thus, one special feature of 

SVD is that it can be performed on any real      matrix. Eq. (2.6.2) can be 

expressed as [49] : 
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  ∑      
                                                                                      

 

   

 

Where    and    are the     column vectors of U and V respectively,    are the 

singular values, and      {   }. If the singular values are ordered so that 

          , and if the matrix A has a rank    , then the last     

singular values are equal to zero, and the matrix A can be approximated by a 

matrix    with rank r ( i.e. the SVD becomes   ) as the following equation: 

   ∑      
                                                                                     

 

   

 

Hence, the approximation error matrix    is dependent on the 

performance accuracy of the quantization and/or truncation by parameter r, 

which can be described as        . The 2-norm of a matrix may be 

calculated from the singular values. The 2-norm of approximation error is 

calculated by 

     
  ‖    ‖  ‖∑      

 

 

   

 ∑      
 

 

   

‖

 

  ‖ ∑       
 

 

     

‖

 

 

                    ∑     
 

 

     

                                                                      

As the singular values are in descending order, it can be seen that the 

error decreases towards zero in the 2- norm sense. The property of SVD to 

provide the closest rank r approximation for a matrix A as shown in Eq. 

(2.6.4) can be used in image processing for compression and noise reduction. 

By setting the small singular values to zero, matrix approximations whose 

rank equals the number of remaining singular values can be obtained [49].
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3.1     Introduction 

Images are vastly used in computer applications and storing these 

images in less memory leads to reduction directly in storage cost and faster 

data transmission.  

In this chapter we shed light on the some definitions and concepts that 

are concerning to image compression in order to decrease requirements of data 

storage and hence communication costs. Thus the development of efficient 

compression techniques will continue to be a design challenge for future 

communication systems and advanced multimedia applications. 

Data compression may be the fundamental expression of Information 

Theory. Information Theory is a branch of mathematics that had its beginning 

in the late 1940s with the work of Claude Shannon. Data compression enters 

into the field of Information Theory because of its concern with ways of 

storing and redundancy. Redundant information takes extra bit to encode, and 

if it can get rid of that extra information, the size will have reduced [50]. 

 

3.2  Some Definitions  

 Digital Image [45]: 

An image is defined as a two-dimensional function,       , contains of 

small dots called "pixels". Each one of pixel can be either one bit, points to a 

black or a white dot; or several bits, points to one of several colors or shades 

of gray. Each pixel is identified with unique positional (x,y).  The elements of 

array       ,  of image having M rows and N columns and (M x N) sets the 

resolution of the image. In other meaning, image is stored as a two-

dimensional signal and represented by function       , where x and y are 

spatial coordinates of a pixel and the value of a function at any pair of 
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coordinate is called the gray level of the image  or “the intensity” of a pixel at 

that point. 

The representation of the function        is: 

       [

      

      
 

        

      

      
 

        

 
 
  

        

        
 

          

]            

Digital image has a finite number of elements; each of these elements 

has a particular value and location. There are different types of images and in 

this thesis we depend on a gray-scale image which contains the brightness 

information. This image contains 8 bits per pixel; so, there are 256 different 

possible gray-level or intensity values from 0 to 255. 

 Image Compression [50]: 

Image compression is a branch of the data compression that searches for 

reduce the number of bits used to store or transmit information in images. 

Data is represented as a combination of information and redundancy. 

Information is the portion of data that must be preserved always in its original 

form in order to correctly understand the meaning or purpose of the image. 

Redundancy is that portion of data that can be removed when it is not needed. 

A technique to reduce the redundancy of data is defined as data compression. 

         From a mathematical viewpoint, the compression process is a 

transformation of a 2-D pixel array into a statistically uncorrelated data set 

.The transformation is applied prior to storage or transmission of the image. 

Therefore, the basic objective of image compression is to find an image 

representation in which pixels are less correlated. 
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There are two types of image compression methods. The first type that 

preserve the data, is called “lossless” methods, since no data are lost and the 

original image can be exactly recreated from the compressed data. The second 

type of compression methods that allow some loss of data, are called “lossy” 

methods, since they allow a loss in the actual image data, so the original 

uncompressed image cannot be exactly created from the compressed image.  

 

 Edge Detecting [45]: 

Edges are formed from pixels with derivative values that override a 

preset threshold. Thus, the idea of an edge is a “local” concept that is based on 

an amount of intensity-level discontinuity at a point. That is, the basic idea 

behind edge detection is to detect places in an image where the intensity 

changes rapidly, using one of two generic criteria: 

1. Find places where the 1
st
 derivative of the intensity is greater in 

magnitude than a specified threshold. 

2. Find places where the 2
ed

 derivative of the intensity has a zero 

crossing. 

 

 Distortion Measures [1]: 

A distortion measure is a criterion that appropriates a "quality number" 

to an image. It caused in the recovered image by the image compression 

process and can be measured in several ways. There are different kinds of 

distortion measures with different properties and the most important examples 

for mathematical distortion measures are the Mean Squared Error (MSE), the 

Peak Signal to Noise Ratio (PSNR). They work by comparing the squared 

error (power) between the original and the recovered digital image: 
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∑ ∑[              ] 

 

   

 

   

                                      

            (
      

   
)                                                          

Where,  

L    : is the number of gray levels (e.g., for 8 bits L = 256).  

      : the original image,        : the decompressed image.  

x , y     : row and column of the image f. 

 

 Structural Similarity [51]: 

The structural similarity (SSIM) index is a method used for measuring 

the similarity between two images. It is a full reference metric; in other 

meaning, SSIM is contagious to improve on classical methods such as peak 

signal-to-noise ratio (PSNR) and mean squared error (MSE), which have 

proven to be inconsistent with human visual perception. It has been defined as 

follows: 

          
(        )(       )

(  
    

    )(  
    

    )
                            

Where, 

   
 

 
∑    

 
    : the average of x, 

   
 

 
∑    

 
    : the average of y, 

  
  

 

   
∑        

  
    : the variance of x, 

  
  

 

   
∑ (     )

  
    : the variance of y, 

    
 

   
∑        (     )

 
    : the  covariance of x and y, 

https://en.wikipedia.org/wiki/Average
https://en.wikipedia.org/wiki/Average
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Covariance
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 } : two variables to stabilize the division with weak  denominator, 

L : is the dynamic range of the pixel values (256 for 8-bit images) 

K1 = 0.01 and K2 = 0.03 by default. 

The overall image quality is measured by the Mean SSIM (MSSIM) 

index which is given by 

           
 

 
∑    (     )

 

   

                                              

 

 Compression Performance 

 Various measures are commonly used to express the performance of a 

compression method: 

1. The Compression Ratio (CR) [1]: It is defined as 

                   
                         

                        
                

The compression ratio can also be called bit per pixel “bpp”.  It is the 

number of bits necessary to describe one pixel of the image. It is defined as 
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2. The Compression Factor (CF) [1]: It is the inverse of the compression 

ratio defined as: 

                    
                    

                     
                     

In this state, values greater than (1) indicate compression and values 

less than (1) imply expansion. This measure seems natural to many people, 

since the bigger the factor, the better the compression. 

  

3.3 Advantages and Disadvantages of Data Compression 

Compression of data offer many advantages: 

 Reduce disk space required. 

 Unused disk space can be used for shadowing to increase reliability. 

 Compressed data can be transferred faster to and from disk. 

 Faster transfer rates across the network.  

Although data compression offers many advantages, it has some 

disadvantage too, depending on sensitivity of the data and the application area. 

Some of these disadvantages are: 

 Data compression generally reduces the reliability of the compression 

files. 

 the extra overhead incurred by encoding and decoding processes is one 

of the most serious drawbacks of data compression 

 Transmission of very sensitive compressed data through a noisy 

communication channel is risky because the burst errors introduced by 

the noisy can destroy the transmitted data. 

 Disruption of some data properties of a compressed data, it will result 

when the compressed data largely different from the original data. 
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3.4 Compression System Model [52] 

The compression system model consists of two parts: "the compressor", 

and "the de-compressor", as illustrated in Figure 3.4.1. 

 

Figure 3.4.1: Compression System Model [52] 

 

The compressor classifies into a pre-processing stage and encoding stage: 

- The first stage in pre-processing is data reduction: here, the image data 

can be reduced by gray-level and/or spatial quantization, or they can 

undergo any desired image improvement (for example, noise removal) 

process. 

- The second step in pre-processing is the mapping process, which maps 

the original image data into another mathematical space where it is 

easier to compress the data.  

- Next, as part of the encoding process, is the quantization stage, which 

takes the possibly continuous data from the mapping stage and puts it in 

discrete form. 

- The final stage of encoding includes coding the resulting data, which 

maps the discrete data from the quantizer stage onto a code in an 

optimal mode. All the compressor stages illustrated in Figure 3.4.2. 
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Figure 3.4.2: The Compressor Stages [52] 

 

The de-compressor can be further broken down into the two-stages: 

decoding stage followed by a post processing stage, as illustrated in 

Figure3.4.3. 

- The first, the decoding stage, takes the compressed file and reverses the 

original coding by mapping the codes to the original (quantized values). 

- Then, these values ( de-quantized values ) are processed by a stage that 

performs an inverse mapping to reverse the original mapping process. 

- Ultimately, the image may be post processed to enhance the final 

image. 

Before encoding stage, pre-processing is performed to prepare the image for 

the encoding process, and consists of a number of operations that are 

application specific. After the compressed file has been decoded, post 

processing can be performed to eliminate some of the possibly undesirable 

artifacts brought about by the compression process. Oftentimes, many 

practical compression algorithms are a combination of a number of different 

individual compression techniques. A compression algorithm may consist of 

all these stages, or it may consist of only one or two of these stages. 
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Figure 3.4.3: The Decompression Stages [52] 

 

3.5  Classification of Compression Algorithms  
 

As mentioned previously in section 3.2, the data compression 

algorithms can be classified in two categories-lossless and lossy. Lossless 

compression can only achieve a modest amount of compression [1]. An image 

reconstructed following lossy compression contains degradation relative to the 

original. Often this is because the compression scheme completely discards 

redundant information. Therefore, it is impossible to produce an exact replica 

of the original image when the image is reconstructed. However, lossy 

schemes are capable of achieving much higher compression.  

Transform coding, such as DFT and its invariants DCT, DST and DWT 

were used effectively in lossy image compression scheme. These 

transformations transform the image from its spatial domain representation in 

to a different type of representation then code the transformed values 

(coefficients). On the other hand, the most robust and quantization technique 

used for the image compression is vector quantization (VQ). The following 

subsection describes the concept of VQ scheme and its application in the 

image compression. 
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3.5.1  Vector Quantization (VQ) 

Vector quantization is one form of lossy compression technique because 

the quantization is a many-to-one mapping that replaces a set of values with 

only one representative value [53]. By definition, after this mapping the 

original value cannot be recovered exactly. 

Mathematically, a vector quantizer (VQ) of dimension k and size N is a 

mapping of a vector in k-dimensional Euclidean space,    , in to a finite subset 

Y of     containing N reproduction points, thus [6], 

                                                                                                   

 The most robust and quantization technique used for the image 

compression is vector quantization (VQ). The idea is similar to that of 

“rounding-off” (the nearest integer). It is an approximator.     

Vector Quantization (VQ) includes four stages: vector formation, 

Training set selection, codebook generation (partition) and quantization. The 

first step is to split the input image into set of vectors. Taken subset of vectors 

in this set later and chosen as a training sequence. The codebook of code 

words is acquired by an iterative clustering algorithm. Lastly, in quantizing an 

input vector, closest code words in the codebook is specified and 

corresponding label of this code word is transmitted [54]. Figure (3.5.1.1) 

depicts the basis processing steps of VQ system. 
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Figure 3.5.1.1: Basic Processing Steps of VQ System. 

 

In the vector space   , a vector quantizer maps k-dimensional vectors 

into a finite set of vectors   {              } . Each vector    is called a 

code vector (or a codeword), and the set of all the code vectors (or codewords) 

is called a codebook. Related with each codeword  y, is a nearest neighbor 

region called encoding region (or Voronoi region) and it is defined by: 

   {     ||    ||  ||    ||           }                  

The set of encoding regions division the entire space    such that [55]: 

⋃             ⋂                   

 

   

                                    

Thus the set of all encoding regions is called the partition of the space. 

In Figure 3.5.1.2, we take vectors in the two-dimensional case without 

loss of generality. Input vectors are marked with green dots, codewords are 

marked with red stars, and the Voronoi regions are divided with boundary 

lines. The figure shows some vectors in space. Related with each cluster of 

vectors is a representative codeword, and each codeword resides in its own 

Voronoi region which is separated with imaginary boundary lines. When 

given an input vector, the codeword that is selection to represent it is the one 
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in the same Voronoi region. The representative codeword is specified to be the 

closest in Euclidean distance from the input vector [55]. 

 

Figure 3.5.1.2 : Codewords in 2-Dimentional Space [55] 

 

The best-matched codevector is chosen using a minimum distortion 

rule. The most widely used distortion measure in VQ is the squared Euclidean 

distance between the input vector x and its corresponding codevector y. This 

measure is given by: 

       √∑(     )
 

 

   

                                                                

where xj, and yj are the j
th

 elements of the vectors x and y [55]. 
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3.6   An Overview of Image Compression Standard 

This section explains the most important compression method which its 

concepts are used in the proposed model system in this thesis. This method is 

the well-known image compression standard JPEG2000 (Joint Photographic 

Experts Group 2000). 

 

JPEG2000 [1]: 

In 1997, the new standard for image compression was introduced 

named JPEG2000 that uses the DWT because of their data reduction capacity. 

The JPEG 2000 outperforms the other standard compression technique called 

JPEG in several aspects. The JPEG standard is lossy still image compression 

method that uses Discrete Cosine Transform DCT. 

In a wavelet compression system, the entire image is transformed and 

compressed as a single matrix rather than block by block as in a DCT-based 

compression system. The DWT offers adaptive spatial-frequency resolution 

(better spatial resolution at high frequencies and better frequency resolution at 

low frequencies) that is well suited to the properties of a Human Visual 

System (HVS). It can provide better image quality than DCT, especially on a 

higher compression ratio. 

JPEG2000 depends on three fundamental stages which are 

transformation, quantization and coding. The first stage explains the using of 

DWT to transform the data from time domain to mathematical space as 

explained before in chapter (2). Wavelet compression technique uses the 

wavelet filters for image decomposition. The image is divided into 

approximation and detail sub images. The forward discrete wavelet transform 

graphically represented in Figure 3.6.1 involves two filters, one is 
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corresponding to the scaling filter or low-pass filter, and the other is 

corresponding to wavelet filter or high-pass filter. Moreover, it is noticed that 

low-pass filter leads to the scaling function and the high-pass filter leads to 

wavelet function. 

 

Figure 3.6.1: JPEG2000 Stages Graph [1] 

 

The basic idea of a filter is that it shows an analysis consisting of two 

filters, a low-pass filter H0 and a high-pass filter H1. The low-pass filter works 

convolution to remove the high frequencies from the input signal f(x,y) and let 

the low frequencies through. The high-pass filter does the opposite. Together, 

they separate the input into frequency bands (levels), so the outputs of the 

analysis are called subband coefficients. The filters divide the input image into 

four non– intersecting multi-resolution coefficient sets, a lower resolution 

approximation image (LL1) as well as horizontal (HL1), vertical (LH1) and 

diagonal (HH1) detail components. The subband LL1 represents the scaling 

function where the scaling function for 2-D DWT can be obtained by 

multiplying two 1-D scaling functions defined in Eq. (2.4.2.1.1). However, the 

coefficient sets HL1, LH1 and HH1 represent the wavelet functions where the 

wavelet functions for 2-D DWT coefficients can be obtained by multiplying 

two wavelet functions or wavelet and scaling function. It follows that for 2-D 

case there exist three wavelet functions that analysis details in horizontal, 

vertical and diagonal as defined in Eqs. (2.4.2.1.2), ( 2.4.2.1.3), and 
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(2.4.2.1.4) respectively. The Esq. (2.4.2.1.2 – 2.4.2.1.4) are used efficiently in 

the proposed first model in this thesis, for determining the orientations of 

discontinuities. 

Figure (3.6.2-a) explains the one-Level 2D wavelet decomposition. 

H0(x) and H1(x) are horizontal low-pass and high-pass filter functions whereas 

H0(y) and H1(y) are vertical low-pass and high-pass filter functions 

respectively.     fL(x, y) and fH(x, y) are horizontal low-pass and high-pass 

wavelet coefficients respectively; approximation, horizontal, vertical and 

diagonal details are respectively represented by fLL(x,y), fLH(x,y), fHL(x,y) and 

fHH(x,y).These operations can be reversed with the same filters to get an image 

reconstruction.  This is illustrated in Figure (3.6.2-b). 

 
Figure 3.6.2: Two–Dimensional Wavelet Decomposition and Reconstruction[1] 

(a)One – Level, Two–Dimensional Wavelet Decomposition. 

(b)One – Level, Two–Dimensional Wavelet Reconstruction. 

 

The outputs of the low-pass filter H0 are normally passed through the 

analysis filter several times, creating shorter and shorter outputs that show in 

the Figure 3.6.3 [56]. They can be quantized by using threshold. It is the 

second stage in which each subband can have a different quantization step size 

[1]. Figure 3.6.7 shows the two-level transform of the original "Lena" image. 
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Figure 3.6.3: Three- Bands (Level) 2-D DWT Decomposition of an Image [56] 

 

 

Figure 3.6.4: Two-Level 2-D Wavelet Transform of Lena Image [56] 

 

Each wavelet coefficient in the subband is divided by the quantization 

step size and the result is truncated. The quantization step size may be 

determined iteratively in order to achieve a goal bitrates (i.e., the compression 

factor may be specified in advance by the user) or in order to achieve a 

predetermined level of image quality. In the third stage, the output 

quantization coefficients can be coded by Huffman coding, for example. 
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4.1 Introduction 

This chapter contains the proposed compressed models, the 

experimental results of the application, discussions, conclusions and future 

works. Two models were proposed. The first model consists of using the DWT 

and SVD based classified VQ (CVQ), while the second model consists of 

implementing the DST and SVD based CVQ. Five grey scale images such as 

(Barbara, Peppers, Lena, Baboon and Goldhill) were used to evaluate the 

efficiency of the proposed models. These images have different size and 

details, gray (8-bit) and BMP format. We used mathematical software 

MATLAB to compress the image data.  

4.2  First Proposed Compression Model  

          An efficient image compression technique using SVD based CVQ and 

DWT in both the spatial and frequency domains for the efficient representation 

of still images. The proposed model combines the properties of SVD, CVQ, 

and DWT; while avoiding some of their limitations. A simple but efficient 

classifier based gradient method in the spatial domain, which employs only 

one threshold to determine the class of the input image block into one of finite 

number of classes, and uses only the first level of the DWT coefficients to 

determine the orientation of the block without employing any threshold that 

results in a good image quality was utilized. SVD method was used for 

efficient construction of the classified codebooks. The proposed technique was 

benchmarked with the conventional approach based VQ, existing methods 

using CVQ; and JPEG-2000 image compression techniques. Simulation results 

indicated that the proposed approach alleviates edge degradation and can 
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reconstruct good visual quality images with higher PSNR than the 

benchmarked techniques.  

Like any compression system, the new proposed technique consists of 

an encoder and a decoder. At the encoder, a block classification process will 

be performed to classify the image blocks into shade or edge (discontinuous) 

blocks. SVD based CVQ method is used for the reconstructions of the various 

codebooks. The next sections explain the implementation of block 

classification and construction of the codebook, and the encoder and the 

decoder operations. 

 Block Classification: 

The proposed model assumes that any edge information within a small 

image block can be described by a straight line across the block with an abrupt 

change of intensity (value) in the spatial domain. However, the assumption 

that any edge segment within a block is a straight line starts to fail for 6×6 

blocks and bigger, and therefore a block size of 4×4 was utilized. The discrete 

gradient of the block is used as a measure of the edge content of the block in 

the spatial domain. The orientation of the edge is used to further classify the 

edge blocks in the frequency domain. Normally, for 4×4 image blocks, the 

orientations are restricted to four types: horizontal, vertical and two diagonals. 

Only first level of DWT decomposition is employed to determine the 

orientation of the edge block. 

At the outset, the block mean value is calculated and subtracted from 

each pixel in the block. 
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Let   {             }  represents a 4x4 image block. In this case 

    is the gray level pixel value corresponding to position (i, j) of row i and 

column j in the image block B. The discrete gradients of the block B in the x 

and y directions are determined as follows: 
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In general, for an even numbers n×m block size, the directional derivatives 

are: 
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Where                     . The gradient magnitude within each 

image block is defined by: 

| |  √   
    

                                                                                 

If the gradient magnitude |G| of the block B is smaller than a threshold 

T, the block contains no significant gradient and it is classified as a shade 

block; otherwise, it will be classified as an edge block. Once a block is 
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classified as an edge block, the orientation of the edge pattern within the block 

will be computed using DWT. First level 2-D DWT decomposition will be 

used to determine the edge directions, namely, HL, LH, and HH as follows:  

 

1) Compute each of the edge direction    for   {  
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Where, 

     
 

 
     

 

 
     

 

 
                         

2) The    value whose measure is the largest will be selected as the 

block edge orientation of the block. 

 

Once the block classification process has been completed, five different 

sub-codebooks are generated, representing the different orientations of edge 

block information and the shade block. SVD-based CVQ is used for designing 

the sub-codebooks corresponding to each class. Different rank values have 

been used in the codebook generating process according to the type of the 

codebook. Figure 4.2.1 shows the classification process.  
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Figure 4.2.1: Block Diagram of the Classification Process 

 Construction of the Codebook:  

Two standard 512×512 monochromatic images, Barbara and Peppers, 

are used for codebook constructions. The selected training images are divided 

into small non-overlapping blocks of size 4×4 pixels making the vector 

dimension equal to 16. The block mean value is computed and subtracted 

from each pixel in the block and then the classification process is performed 

as shown above. The process is resulted in a better utilization of codevectors 

for encoding shade blocks because they are mapped into small regions near 

the origin where they can be encoded efficiently. Visually sensitive edge 

blocks and shade blocks are encoded with a codebook specifically designed 

for that class of blocks so that distortion (error) is minimized. The value of the 

threshold T is determined experimentally and set to 15 to obtain a reasonable 

percentage of the shade blocks. Once the block classification process has been 

completed, different sub-codebooks corresponding to the different classes are 

generated, using SVD-based CVQ technique with different rank values. As VQ 

scheme requires operations in multidimensional space, the utility of the SVD 

for dimensionality reduction purpose may alleviate the complexity of a 
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scheme based VQ. The different five sub-codebooks corresponding to the 

classified classes were generated by projecting the n-dimensional dataset of a 

class to the space spanned by the m (m < n) most significant singular vectors 

of the m (m < n) largest singular values. That is, the sub-codebooks were 

generated from the eigenvectors of a set of image in a corresponding class. 

 

 Encoder:  

The encoder of the proposed model operates on the residual blocks 

where the mean value of the input image block is subtracted from each pixel 

in the block to yield a residual block (vector). The mean values are then 

encoded separately. This is because the mean values are usually highly 

correlated with adjacent mean values. The first and most obvious way, of 

coding the mean in a useful way is via scalar quantization. By implementing 

this type of quantization scheme, the mean values are encoded with 6-bits 

value for a 256 level gray scale image based on both the desired quality and 

rate, using prediction method together with an improved greyscale (IGS) 

quantization method [45].  

The next step is to encode the image by decomposing the image blocks 

into shade and edge blocks using Eq. (3.2.4). If a block is classified as an edge 

block, the orientation of the edge pattern within the block will be computed 

using Eq. (4.2.5). Then it encodes the two types of blocks (the shade block and 

the edge-orientation block) separately using CVQ scheme. The input image is 

divided into small non-overlapping blocks of size 4×4 pixels which are then 

processed independently. Each input image block is compared with the closest 

codeword in the codebook of the same type using the MSE as the distortion 
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measure. The codeword with the lowest MSE is selected as the block 

compressor. This technique reduces the computational complexity by 

comparing the input image block with only those of the same type to obtain 

the closest codeword. Figure 4.2.2 shows the block diagram of the proposed 

model encoder. 

 

Figure 4.2.2: Block Diagram of the Proposed Model Encoder 
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 Decoder:  

   The decoder performs simple table look-up operations to retrieve the 

corresponding codeword from the same codebook as the encoder used, and 

computes the inverse of the used transforms. As the residual block is used in 

the encoding process, the block mean value is added to the reconstructed 

image block. 

 

 Simulation Results:  

A database of five grey level images was developed to systematically 

evaluate the application of the proposed system. MATLAB code was written 

for the generation of the proposed model. The training set used is obtained 

from two 512×512 monochromatic images of 8-bit intensity, Barbara512 and 

Peppers512. Three test images outside the training set: Baboon512, Lena512 

and Goldhill256 as well as the two images inside the training set: Barbara512 

and Peppers512 were used to evaluate the performance of the proposed model. 

These test images were coded by the proposed model employing the same 

codebooks that were used for coding the images Barbara512 and Peppers512. 

The performance of this model is usually characterized using the MSE and the 

PSNR as image quality metrics based error, as well as the SSIM defined in 

Eqs. (3.2.2), (3.2.3), and (3.2.4) respectively.  

Tables 4.2.1 and 4.2.2 show the performance of the proposed model 

characterized by the PSNR and the MSSIM based approaches respectively.  
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Table 4.2.1: Reconstruction Performance for the Proposed Model Trained on the Top Two 

Images (Barbara512 and Peppers512) and Generated to the Rest of the Images 

 Proposed Model VQ JPEG-2000 

Image Bitrate 
(bpp) 

PSNR (dB) Bitrate 
(bpp) 

PSNR 
(dB) 

Bitrate 
(bpp) 

PSNR (dB) 

Barbara512 0.5639 33.2273 0.5604 27.3250 0.5654 33.1516 

Peppers512 0.5434 35.8529 0.5446 28.5478 0.5333 35.8340 

Lena512 0.5270 36.1468 0.5282 28.7617 0.5114 36.7676 

Baboon512 0.6378 30.8584 0.6229 25.5914 0.6534 30.2985 

Goldhill256 0.7332 32.7935 0.7124 26.7216 0.7554 31.4860 

 

 

Table 4.2.2: Reconstruction Performance for the Proposed Model Trained on the Top Two 

Images (Barbara512 and Peppers512) and Generated to the Rest of the Images. 

 The Proposed Model VQ JPEG-2000 

Image Bitrate 
(bpp) 

MSSIM Bitrate 
(bpp) 

MSSIM Bitrate 
(bpp) 

MSSIM 

Barbara512 0.5639 0.8664 0.5604 0.1973 0.5654 0.9087 

Peppers512 0.5434 0.9229 0.5446 0.2761 0.5333 0.9208 

Lena512 0.5270 0.9300 0.5282 0.4742 0.5114 0.9427 

Baboon512 0.6378 0.7907 0.6229 0.1223 0.6534 0.7836 

Goldhill256 0.7332 0.8510 0.7124 0.1429 0.7554 0.8354 

 

The results in Table 4.2.1 and 4.2.2 show that, in all cases, the proposed 

model outperformed ordinary VQ and show competitive results in comparison 

to JPEG-2000 standard which was generated using MATLAB [45] in terms of 

both the PSNR and the MSSIM. However, the proposed model outperforms 

JPEG-2000 in some cases where the test images were of high detail type (the 

images Baboon512 and Goldhill256). This is because of the good 

approximation of the edge blocks which lie far away from the densely region 

near the origin. On the other hand, popular transform-based lossy compression 

techniques tend to introduce artifacts at high frequency signal components 
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since such details often represent high frequency components in frequency 

domain. 

The simulation results also indicated that the proposed technique needs 

shorter encoding CPU time (in seconds) than the ordinary VQ while the 

standard JPEG-2000 needs shorter encoding CPU time than the proposed 

model as indicated in Table 4.2.3 : 

 

Table 4.2.3: Comparison of Computing Time Between the Proposed Model and 

Each of the Ordinary VQ and JPEG-2000 Technique at Fixed Bitrate. 

Image Bitrate (bpp) Ordinary VQ using k-means 
Time (sec.) 

proposed 
model 

Time (sec.) 

JPEG-2000 
Time (sec.) 

Barbara 512 0.5639  103.31 16.9573 5.32 

Peppers 12 0.5434 104.65 9.5317 5.17 

Lena 512 0.5270 103.08 11.5597 5.66 

Baboon 512 0.6378 104.05 24.5234 5.42 

Goldhill 256 0.7332 26.39 6.3960 1.78 

 

 

Figure (4.2.3) shows some of the reconstructed compressed images of the 

proposed model and their corresponding reconstructed error. 
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(a) 

 
(a*) 

 
(b) 

 
(b*) 

 
(c) 

 
(c*) 

 
(d) 

 
(d*) 

 

 
(e) 

 
(e*) 

 

 

Figure 4.3.1. Some of the Reconstructed Compressed Images by the Proposed Model. 

(a)512×512reconstructed image Barbara512 at bitrate 0.5639bpp and psnr= 33.2273dB. 

(b)512×512reconstructed image Peppers512 at bitrate 0.5434bpp and psnr= 35.8529dB. 

(c)512×512 reconstructed image Lena512 at bitrate 0.5270bpp and psnr=36.1468dB.  

(d)512×512reconstructed image Baboon512 at bitrate 0.6378bpp and psnr = 30.8584dB. 

(e)256×256reconstructed image Goldhill256 at bitrate 0.7332bpp and psnr = 32.7935dB. 

The images a*, b*, c*, d*, e* are the differences between the original images and their 

reconstructed images a, b, c, d and e plus 128, respectively. 
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By comparing the proposed scheme with more conventional CVQ 

methods [7], [57], [8], [58], and [59]. It has been noted that the proposed 

model maintains higher PSNR values for the same images at the same bitrate. 

For example, for the image Lena512, the comparisons are summarized in Table 

4.2.4  

 

Table 4.2.4: Comparison Results Between the Proposed Model and More Conventional CVQ for the 

Image Lena512.This Comparison is Calculated by Using Approximately the Same Bitrate. 

 PSNR (dB) values for the image Lena512 by different methods  

This comparison is calculated by using approximately the same bitrate. 

Bitrate (bpp) Reference 
[7] 

Reference 
[57] 

Reference 
[8] 

Reference 
[58] 

Reference 
[59] 

Proposed 
Model 

0.625 - 31.26 - 32.65 36.7972 37.0248 

0.688 - 31.79 - 33.27 37.1509 37.3145 

0.70 29.79 - - - 37.1885 37.3581 

0.750 - 32.23 - 33.80 37.4166 37.4639 

0.530 - - 34.14 - 36.0838 36.3964 

0.572 - - 34.49 - 36.4723 36.7124 

0.600 - - 34.74 - 36.6557 36.7943 

    

As a conclusion, the combined mathematical properties of each of SVD 

based method and DWT result in building an efficient coding method for 

accurate reconstruction of still images at low bit-rates. The quality of the 

reconstructed images by the proposed scheme is preserved. Edges are 

reproduced faithfully and their jaggedness is greatly reduced. This method also 

shows an advantage in PSNR and MSSIM over the standard VQ method using 

the k-means algorithm and the existing methods using CVQ scheme; and 

competitive to the JPEG-2000, for similar values of the bit-rate. 
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4.3  Second Proposed Compression Model:  

Here, the same approach as the first one in section 4.2 is adopted, 

except, this model makes use DST instead of DWT to determine the orientation 

of the edge blocks. Only three AC coefficients of DST coefficients are 

employed. Three AC coefficients of DST coefficients will be used to determine 

the orientation of the edge block, namely S(0,1), S(1,0), and S(1,1) as follows: 

1) Compute each of the edge direction      for    {  
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2) The   value whose measure is the largest will be selected as the block 

edge orientation of the block. 

Figures 4.3.1 and 4.3.2 show the block diagrams of the classification 

process and the proposed model encoder, respectively. 

 
Figure 4.3.1: Block Diagram of the Classification Process 
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Figure 4.3.2: Block Diagram of the Proposed Model Encoder. 

 

Tables 4.3.1 and 4.3.2 show the performance of the proposed model 

characterized by the PSNR and the MSSIM based approaches respectively.  

Table 4.3.1: Reconstruction Performance for the Proposed Model Trained on the Top Two 

Images (Barbara512 and Peppers512) and Generated to the Rest of the Images. 

 Proposed Model VQ JPEG-2000 

Image Bitrate 
(bpp) 

PSNR (dB) Bitrate 
(bpp) 

PSNR 
(dB) 

Bitrate 
(bpp) 

PSNR (dB) 

Barbara512 0.5625 33.3686 0.5604 27.3250 0.5654 33.1516 

Peppers512 0.5427 35.8856 0.5446 28.5478 0.5333 35.8340 

Lena512 0.5257 36.1862 0.5282 28.7617 0.5114 36.7676 

Baboon512 0.6526 30.8762 0.6229 25.5914 0.6534 30.2985 

Goldhill256 0.7511 32.8406 0.7124 26.7216 0.7554 31.4860 

 

Table 4.3.2: Reconstruction Performance for the Proposed Model Trained on the Top 

Two Images (Barbara512 and Peppers512) and Generated to the Rest of the Images. 

 The Proposed Model VQ JPEG-2000 

Image Bitrate 
(bpp) 

 MSSIM Bitrate 
(bpp) 

MSSIM Bitrate 
(bpp) 

MSSIM 

Barbara512 0.5625 0.8664 0.5604 0.1973 0.5654 0.9100 

Peppers512 0.5427 0.9230 0.5446 0.2761 0.5333 0.9208 

Lena512 0.5257 0.9312 0.5282 0.4742 0.5114 0.9427 

Baboon512 0.6526 0.7897 0.6229 0.1223 0.6534 0.7836 

Goldhill256 0.7511 0.8549 0.7124 0.1429 0.7554 0.8207 
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The results in Tables 4.3.1 and 4.3.2 show that, in all cases, the 

proposed model outperformed ordinary VQ using the k-means algorithm and 

show competitive results in comparison to JPEG-2000 standard in terms of 

both the PSNR and the MSSIM. However, the proposed model outperforms 

JPEG-2000 in some cases where the test images were of high detail type (the 

images Baboon512 and Goldhill256). This is because of the good 

approximation of the edge blocks which lie far away from the densely region 

near the origin, that result from the mean-removed process, so that the high 

amplitude vectors may be adequately represented. On the other hand, popular 

transform-based lossy compression techniques tend to introduce artifacts at 

high frequency signal components since such details often represent high 

frequency components in frequency domain. 

It is noted that the edge direction is highly correlated with the 

corresponding DST coefficients. This means that DST coefficients appear 

along the direction perpendicular to the edge direction. This is together with 

the excellent energy-compaction property of DST, the used classifier provides 

high accuracy in terms of determining each of the strength and the edge-

orientation of a given input image block. The properties of DST together with 

the compact energy and low-rank approximation properties provided by SVD 

transform led to high image quality for the proposed model at reasonable 

bitrate. 

Figure (4.3.3) shows some of the reconstructed compressed images of 

the proposed model and their corresponding reconstructed error. 
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(a) 

 
(a*) 

 
(b) 

 
(b*) 

 
(c) 

 
(c*) 

 
(d) 

 
(d*) 

 

(e) 
 

(e*) 

Figure 4.3.3: Some of the Reconstructed Compressed Images by the Proposed Model. 

(a)512×512reconstructed image Barbara512 at bitrate 0.5625bpp and psnr = 33.3686dB. 

(b)512×512 reconstructed image Peppers512 at bitrate 0.5427bpp and psnr = 35.8856dB 

(c)512×512 reconstructed image Lena512 at bitrate 0.5257bpp and psnr=36.1846dB 

(d)512× 512 reconstructed image Baboon512 at bitrate 0.6526bpp and psnr = 30.8762dB 

(e)256×256reconstructed image Goldhill256 at bitrate 0.7511bpp and psnr = 32.8406dB. 

The images a*, b*, c*, d*, e* are the differences between the original images and their 

reconstructed images a, b, c, d and e plus 128, respectively. 
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Again, the quality of the reconstructed images by the proposed scheme 

is preserved. Additionally, the proposed scheme was compared with more 

conventional CVQ methods [7], [57], [8], [58], and [59]. It has been noted that 

the proposed model maintains higher PSNR values for the same images at the 

same bitrate. For example, for the image Lena512, the comparisons are 

summarized in Table 4.3.3. 

 

Table 4.3.3: Comparison Results Between the Proposed Model and More Conventional CVQ for the 

Image Lena512.This Comparison is Calculated by Using Approximately the Same Bitrate 

 PSNR (dB) values for the image Lena512 by different methods. This comparison is 

calculated by using approximately the same bitrate. 

Bitrate (bpp) Reference 

[7] 

Reference 

[57] 

Reference 

[8] 

Reference 

[58] 

Reference 

[59] 
Proposed 

Model 

0.625 - 31.26 - 32.65 36.7972 36.8793 

0.688 - 31.79 - 33.27 37.1509 36.9019 

0.70 29.79 - - - 37.1885 37.3191 

0.750 - 32.23 - 33.80 37.4166 37.4463 

0.530 - - 34.14 - 36.0838 36.3245 

0.572 - - 34.49 - 36.4723 36.6729 

0.600 - - 34.74 - 36.6557 36.8693 
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5.1 Introduction 

This chapter contains the conclusions and possible future works of the 

two models were proposed. 

5.2  Conclusions 

Efficient coding models for accurate reconstruction of still images at 

low bit-rates were presented in this research work. These models combine 

SVD based CVQ as well as the DWT and the DST in both the spatial and 

transform domains. The capability of dimensionality reduction of the SVD 

method and the multiresolution analysis property of each of the DWT and DST 

were utilized that result in constructing efficient mathematical models for still 

image compression. The models also show an advantage in PSNR and MSSIM 

over the standard VQ method and the existing methods using CVQ scheme; 

and competitive to the JPEG-2000, for similar values of the bit-rate. 

Different images that have different spatial (time) and frequency 

characteristics have been selected for measuring the performance of the 

proposed models. It is noted that the image statistical nature being viewed 

influences the performance of the compression model. The test image 

Baboon512 has a lot of details, it contains components in high frequency part, 

so it presents low redundant image and thus difficult for compression. On the 

other hand, the test image Lena512 and Goldhill256 are images with less detail 

than Baboon512. The test image Lena512 does not contain large amounts of 

high frequency whereas the test image Goldhill256 has components in high 

frequency area more than the image Lena512. 

The results in Tables 4.2.1 , 4.2.2 , 4.3.1 and  4.3.2 show that, in all 

cases, the proposed models outperformed ordinary VQ and show competitive 
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results in comparison to JPEG-2000 standard which was generated using 

MATLAB [45] in terms of both the PSNR and the MSSIM. However, the 

proposed model outperforms JPEG-2000 in some cases where the test images 

were of high detail type (the images Baboon512 and Goldhill256). This is 

because of the good approximation of the edge blocks which lie far away from 

the densely region near the origin. On the other hand, popular transform-based 

lossy compression techniques tend to introduce artifacts at high frequency 

signal components since such details often represent high frequency 

components in frequency domain. In the case of the test image Lena512, the 

proposed models show competitive results in comparison to JPEG2000 

because this image contains fewer details than the other test images. 

The quality of the reconstructed images by the proposed models is 

preserved. Edges (discontinuities) are reproduced faithfully and their 

jaggedness is greatly reduced. The good visual quality of the reconstructed 

images is attributed to the grouping of perceptually similar blocks (matrices) 

by the classifier and the subsequent codebook design of each class. 

The simulation results also indicated that the proposed models need 

shorter encoding CPU time (in seconds) than the ordinary VQ which is time 

consuming. The faster training and shorter encoding time of the proposed 

models than the standard VQ is due to the design of the encoding part that 

utilizes the properties of the SVD method. However, the standard JPEG-2000 

needs shorter encoding CPU time than the proposed models as indicated in 

Table 4.2.3 since it works direct in frequency domain. 

 Additionally, Tables 4.2.4 and 4.3.3 show that the performance of the 

proposed schemes were compared with more conventional CVQ methods [7], 
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[57], [8], [58], and [59]. It has been noted that the proposed models maintain 

higher PSNR values for the same images at the same bitrate. 

Finally the performance of the second proposed model in which the 

DST made use instead of DWT for determining the orientation of the 

discontinuities blocks showed some gain in reconstructed image quality than 

the first model. This is due to the good utilization of the multiresolution 

property of the DST as shown in Tables 4.2.1 and 4.3.1.  

 

5.3 Suggestions: 

The classification process can be improved by using more effective 

mathematical methods relating to gradient measure. On the other hand, the 

type of visible error such as the staircase and the blurring may decrease by 

studying the boundary properties of sub images (matrices).  
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 خصــلـمال
 التحويلات من خصائصال أىم وتحقيق دراسة ىو البحث ىذا من الرئيسي الغرض

 وجوانبيا(  المنفصل المويجاتتحويل و  منفصل، جيبتحويل ال المنفصل، فورييو تحويل ) التكاممية
 .ةالصور  لضغط ياتطبيقو  النظرية الناحية من سواء الرياضية

 .الصورة تمثيل عمى اوتطبيقيالمفردة  القيمة تجزئ  طريقة درسنا وكذلك،
 جديدأسموب التحويل المتعدد ال من الأول النموذج يتكون . رياضيين نموذجين تطوير تم

 حين في المنفردة القيمة تجزئ  وطريقة المنفصل المويجاتتحويل  من كلميزة  من يستفيد الذي
ق يتطب تم. المنفردة القيمة تجزئ  ةوطريق منفصل جيبتحويل ال من الاستفادة الثاني النموذج يتناول

ينتج عنيا  الجديد)المعالجة(  النيج ىذا أن إلى النتائج وتشير.  ةضغط الصور في ىذه النماذج 
 مع ممكن ىو ممااكثر  صورةتطبيق ضغط ال فيبناءىا  وا عادة وظيفة تمثيللمدالة  أفضلتمثيل 
مجالي تحويل  في ضغطال عممية اءةكف نتحس   المقترحة النماذج. منفرد  واحدتحويل  استخدام

 . منفصمةال جيبتحويل الو  المنفصل المويجات
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