Ministry of Higher Education

and Scientific Research

Al-Nahrain University

College of Science %
Department of Computer Science

o[
)

o

Hiding Text in Sequence Number
Field of TCP/IP

A Thesis

Submitted to the College of Science / Al-Nahrain University in partial
fulfillment of the requirement for the degree of Master of Science in

Computer science

By

Abeer Eesa Abed
(B.Sc Computer Science / College of Science / Al- Nahrain University, 2009)

Supervised by
Dr. Jamal M. Kadhim

January 2017 Rabie Al- Akhar 1438

o) o) 41 s

_..--
-

e) e ¥ Sz 16

fizﬁf\uwxda

adasdl Al Guo
byl By

(Yv) 4V

" Supervisor Certification

I certify that this thesis entitled "Hiding Text in Sequence Number Field of
TCP/IP" was prepared by "Abeer Eesa Abed" under my supervision at the College
of Science /Al-Nahrain University as a partial fulfillment of the requirements for the

Degree of Master of Science in computer science

g e
Signature: '

Name . Dr. Jamal Muhammad Kadhim
Scientific Degree: Lecturer

Address: College of Science /Al-Nahrain University
Date :24/%F/ 2017

In view of the available recommendations, I forward this thesis for

debate by the examination committee.

' 2 e
Signature: =

Name :Dr. Bai Nadeem Dhannoon

Scientific Degree: Professor

Address: Head of Computer Science Department / Al-Nahrain
University

Date 197/ %/ 2017

Committee Certification

We, the examining committee certify that we have read this thesis
entitled “Hiding Text in Sequence Number Field of TCP/IP” and
examined the student “Abeer Eesa Abed” in its content and that in our
opinion; it is accepted for the Degree of Master of Science in Computer
Science. '

Signature: :
Name: Dr. Ban Nadeem Dhannoon

Scientific Degree: Professor

Address: College of Science /Al-Nahrain University
Date: 27/ B /2017 -
(Chairman)

S1gnatur£:;— Signature: Q
Name: Dr. Abeer T. Maolood Name: Dr. Raghad A. Azeez
Scientific Degree: Assistant Prof. Scientific Degree: Assistant Prof.
Address: Dept. of Computer Science Address: College of Education
University of Technology for Human Science — Ibn
Rushd / Baghdad University

Date:24/ £ /2017 Date:23/ 7/2017

(Member) . (Member)

P e |
Signature: L.-___jh/fﬂar’

Name: Dr. Jamal Muhammad Kadhim
Scientific Degree: Lecturer

b
I,_

Address: College of Science /Al- ﬁﬁ"émﬁmversﬁy
Date: 24/7/2017 7 Wjﬂ“ “

Name: Dr. HadlM A. Abood
Scientific Degree: Professor

Address: Dean of College of Science /Al-Nahrain University
Date:% 9 /2017

Dedicated To

Allah...
Who was with me each pulse of

my heart,
My Family, and
Every One Prayer for me ...
Abeer

Acknowledgement

I would like to thank Allah, who set me up stars that glittered
in the sky of my studies starter with my supervisor Dr. Jamal
Mohummed Kadhim. Deep appreciation and many thanks to him for
suggestion the subject, guidance, valuable assistance and advice,

Grateful thanks to the Head of Computer Science Department

Dr.Ban Nadeem for Rindness and attention,
Deep gratitude and honest thanks to Dr. Haithem Abdeulateef

and DrTaha S. Bashagha for their encouraging words and
attention,

Thanks a lot to staff of computer science department and my

friends for attention,
And ended with my family specially my father and my mother.
I owe deeply grateful to them for their patience and help during my

studies and every one helped me and prayer for me.

Abeer

ABSTRACT

The exchanging process inside Local Area Network (LAN) or through Internet
may be exposed to be stolen, altered or damaged by baleful person who was
represented as real threats to transport process and also to information especially if
this information was sensitive, important and must be accessed by only authorized
person. Wherefore this data must be secured against such threats. Many ideas was
suggested under security concept for protecting data from this threats such as hiding
content of the message sent which was named cryptography or concealment the
existence of such message which was named steganography.

Two ways were suggested to hide this data. One of them used the source port
and destination port fields of the Transmission Control Protocol (TCP) header as the
Stego key. And the other use the combination of source and source port fields of the
Transmission Control Protocol (TCP) header with the protocol and version fields of
the Internet Protocol (IP) header. The process is summarized by the implementation
of the exclusive OR (XOR) between those data required to be hidden with the
STEGO key. A sequence number field was selected from the Transmitter Control
Protocol (TCP) to be the carrier for hidden data. Four characters are included in this
field and sent in one connection.

The suggested methods differ from the existing methods. One of them was sent
one character through one connection while in the proposed methods four characters
are sent. In addition to this difference, the stego key that was used also differed.
Because the constant value will be collected with the ASCII character code. While in
the proposed methods are variable and the collection process is not used but XOR is
used. Although in the other methods four characters have been sent, but they used
many resources for execution because the characters have been compressed and
encrypted.

Abbreviation

ACK
AES

API
ARPANET
ATM

DES

DF

DNS

DoD

DS

FIN

FTP

FSM
HICCUPS
HTTP
ICMP
IGMP
IHL

1P

IPv4

List of Abbreviations

Meaning
Acknowledgement
Advanced Encryption Standard
Application Programming Interface
Advanced Research Projects Agency Network
Asynchronous Transfer Mode

Data Encryption Standards

Do not Fragment
Domain Name System
Department of Defense
Differentiated Services
Finish
File Transfer Protocol

Finite State Machine

Hidden Communication System for Corrupted Networks

Hyper Text Transfer Protocol
Internet Control Message Protocol
Internet Group Management Protocol
IPHeaderLength

Internet Protocol

IP version 4

ISO
ISN
MF
MTU
MSS
NFS
NIC
NS
OSlI
OSPF
PPP
PSH
RSA
RST
SLIP
SMTP
SNMP
SYN
SYN-ACK
TCP
ToS
UDP
URG
VER

International Standards Organization
Initial Sequence Number

More Fragment

Maximum Transfer Unit
Maximum Segment Size
Network File System

Network Interface Card
Network systems

Open Systems Interconnect
Open Shortest Path First
Point-to-Point Protocol

Push

Rivest-Shamir-Adleman

Reset

Serial Line Internet Protocol
Simple Mail Transfer Protocol
Simple Network Management Protocol
Synchronize

Synchronize- Acknowledgement
Transmission Control Protocol
Type of Service

User Datagram Protocol

Urgent

Version

Algorithm Name

Algorithm (3.1)
Algorithm (3.2)
Algorithm (3.3)
Algorithm (3.4)

Algorithm (3.5)

Algorithm (3.6)
Algorithm (3.7)
Algorithm (3.8)
Algorithm (3.9)
Algorithm (3.10)

Algorithm (3.11)

Table of Algorithms

Generate Packet

CreatelPHeader

Create TCPheader

Generate sequence number with srcdstports

Generate sequence number with srcport,

destport, protocol, and version

Receive SYN -ACK packet

Packet Capturing and Analyzing at Layer 3
Capturing Packet Function

Capturing and Analyzing at layer 2

Data Extraction using acknowledgement

number with srcdstports

Data Extraction with srcport, destport,

protocol and version

Page number

34
35
36
38
40

42
43
44
46

49

50

Figure Name

Figure (2.1)
Figure (2.2)
Figure (2.3)
Figure (2.4)
Figure (2.5)
Figure (2.6)

Figure (2.7)
Figure (2.8)

Figure (2.9)
Figure (2.10)

Figure (2.11)
Figure (2.12)

Figure (3.1)
Figure (3.2)
Figure (3.3)
Figure (3.4)

Figure (4.1)

Table of Figures

TCP / IP Layers and Protocols
Encapsulation and Decapuslation
IP header format

TCP header format

Socket

Types of Sockets

Client — Server connection through TCP socket
Three way handshake

nc command

watch with netstat commands
nc with watch and netstat
watch with netstat commands after executing

the proposed system model
Stego-key from TCP Header
Stego-key from IP and TCP Headers
Data Extraction Module

source and destination addresses with the data-
First method

Page Number

11
14
17

19

22

24

25

25

25

33
37
39
48
53

Figure (4.2)

Figure (4.3)

Figure (4.4)

Figure (4.5)

Figure (4.6)

Figure (4.7)

Figure (4.8)

Figure (4.9)

Figure (4.10)

Figure (4.11)

Figure (4.12)

Figure (4.13)

Figure (4.14)

Figure (4.15)

source and destination ports — First method

data hiding process — First method — First

gxecution

Capturing and Analyzing — Layer 3- First

gxecution

Data extraction process — First method- First

gxecution

source and destination ports — First method —

Second execution

Data hiding process — First method — Second

execution

Capturing and Analyzing — Ethernet — First

method- Second execution

Data extraction process — First method- Second

execution

source and destination addresses, version,

protocol, data- Second method

source and destination ports- Second method-

First execution

Data hiding process — Second method — First

execution

Capturing and Analyzing — Layer 3- Second

method — First execution

Data extraction process — Second Method- First

gexecution

source and destination ports- Second method-

Vi

53

53

54

54

55

55

55

56

56

56

57

57

57

58

Figure (4.16)

Figure (4.17)

Figure (4.18)

Figure (4.19)
Figure (4.20)
Figure (4.21)
Figure (4.22)
Figure (4.23)
Figure (4.24)
Figure (4.25)
Figure (4.26)
Figure (4.27)

Figure (4.28)

Second execution

Data hiding process — Second method — Second

gxecution

Capturing and Analyzing — Ethernet — Second

method- Second execution

Data extraction process — Second Method-

Second execution

Changing iptables values

SYN packet

IPHeader of SYN packet

TCPHeader of SYN packet

SYN-ACK packet

IPHeader of SYN-ACK packet

TCPHeader of SYN-ACK packet

Execution of program after changing iptables
Execution of program without changing iptables

TCPHeader of RST packet

\1

58

59

59

60

60

61

62

63

64

64

65

67

Table of Contents

Chapter one

General Introduction
1.1 Introduction

1.2 Literature Review
1.3 Aim of Thesis

1.4 Thesis Layout

Chapter Two

TCP / IP and Steganography under Linux Environment

2.1 Introduction

2.2 TCP / IP Reference Model
2.2.1 Internet Protocol (IP)
2.2.2 Transmission Control Protocol
2.2.3 Packet Analysis

2.3 Client- Server Architecture
2.3.1 Application Programming Interface
2.3.2 Server

2.4 Information Hiding
2.4.1 History of Steganography
2.4.2 Modern Steganography

2.5 Linux

Chapter Three

Steganography in TCP/IP System Design and Implementation

VIl

10
13
16
16
17
23
25
26
26

28

3.1 Introduction

3.2 Text Hiding Using Sequence Number field Implementation

3.3 System Model
3.4 Sender Model
3.4.1 Generate Packet

3.4.2 Send SYN packet
3.4.3 Receive SYN-ACK packet
3.5 Receiver Model
3.5.1 Capturing and Analyzing process
3.5.2 Data Extraction
3.6 Server Model
Chapter Four
Results
4.1 Introduction
4.2 Results

Chapter Five

Discussion, Conclusions, and Future Work

5.1 Discussion
5.2 Conclusions
5.3 Future Work

References

30

30
32

34

34

41
41
42
43
47

o1

52
52

68
69
70

71

CHAPTER ONE

CHAPTER ONE GENERAL INTRODUCTION

CHAPTER ONE
GENERAL INTRODUCTION

1.1 Introduction

After computer appearance and pervasion in most institutes like companies,
universities, and homes, the need for network appeared. Since these places had
limited hardware resources like printers, scanners...etc, so individuals, especially
employees needed to share these resources because each employee had no need to
have private printer. Also, after growth of most institutes which was represented by
having different branches distributed in different places like companies and
universities, so the individuals really need to communicate and at the same time to
exchange important information to do their work, so the need to connect these
institutes by network became necessary[TANO3].

Network in simple case connect at least two computers using connection means
Network may be built in homogeneous form (i.e. every computer in network has the
same operating system ,Network Interface Card (NIC) ... etc like LAN or in
heterogeneous form (i.e. every computer has different operating system, NIC, ... etc)
like Internet . As a result, this development in communication means leads to
exchange huge information.

The exchanging process inside LAN or through Internet may be exposed to be
stolen, altered or damaged by baleful person who was represented as real threats to
transport process and also to information especially if this information was sensitive,
Important and must be accessed by only authorized person.

Wherefore this data must be secured against such threats. Many ideas was

suggested under security concept for protecting data from this threats such as hiding

CHAPTER ONE GENERAL INTRODUCTION

content of the message sent which was named cryptography or concealment the

existence of such message which was named steganography.

1.2 Literature Review

Previous works show many techniques used to hide data in TCP/IP protocol
suite either by using reserved or unused bits in headers and payload or by using
synchronization time of the packets or combine between them.

Rowland [ROW97] applied his ideas to hide data using Initial Sequence
Number Field (ISN) (16-bit) of TCP by multiplying ASCII of each character with
(65536 * 256) to generate number which was placed as a sequence number value for
each connection. On receiver side, opposite process was applied to get the character
by dividing the sequence number's value on (65536 * 256). The big disadvantage,
when every character is transferred through a connection, is that many requests were
made to connect to the server without receiving Synchronize- Acknowledgement
(SYN/ ACK) packet would attract the attention.

Ciobanu [CIO06] suggested SCONeP (Steganography and Cryptography
Over Network Protocols) and used ISN after solved the issue which was appeared in
[ROWO97] by sending a Reset (RST) packet to abort a connection instead of an
Acknowledgement (ACK) packet after 4-bytes would be transmitted. The data was
encrypted and compressed before transferred.

Singh [SIN13] implemented data hiding by using the identification field (16-
bit) with ISN field (32-bit) for disguising (6-bytes) of characters after encrypted it
using an algorithm which was chosen by the sender and whether to compress it or not
is determined by the sender.

Biswas [BIS16] was using the sequence number field as a carrier for Rivest-

CHAPTER ONE GENERAL INTRODUCTION

Shamir-Adleman /Data Encryption Standards (RSA / DES) key that was used to
encrypt the data then, the ciphertext was embedded in the data field. The receiving
packet was captured through wireshark application. After the ciphertext was taken
from the data field and obtaining the key from the sequence number field, the

ciphertext was decrypted to get the data.

1.3 Aim of Thesis

The aim of thesis is hiding the data by using field of TCP header. It is
implemented by constructing the packet that consists of headers and payload. The
sequence number field of TCP header was chosen for performing data hiding and
sending it to network traffic. The intended recipient is captured the constructed packet

and extracted it to retrieve the original data.

1.4 Thesis Layout

The remaining part of thesis was including four chapters as follows :

» Chapter Two: focuses on viewing TCP / IP model with their protocols
especially IP and TCP protocols and their headers, viewing the client — server
architecture in a brief manner and sockets. It was also viewing information
hiding and turning to steganography concept historically and recently. It is also

displaying Linux operating system that is considered the environment of work.

> Chapter Three: it is over viewed how to implement steganography using IP

CHAPTER ONE GENERAL INTRODUCTION

and TCP headers fields. It is also viewing a layout of system model, the

proposed methods required, and the functions for performing the work.

» Chapter Four: it is viewing the results of the implemented work.

» Chapter Five: it is viewing the discussion, the most prominent conclusions

about over all work and the future work.

CHAPTER TWO

CHAPTER TWO TCP / IP AND STEGANOGRAPHY UNDER LINUX ENVIRONMENT

CHAPTER TWO
TCP /1P AND STEGANOGRAPHY UNDER LINUX
ENVIRONMENT

2.1 Introduction

The TCP/IP Reference Model and its layers are defined in a brief manner.
Internet Protocol (IP) and Transmission Control Protocol (TCP) are explained with its
headers. This chapter is also viewed the concept of client- server Model and packet
analysis. Because the Linux operating system is the environment, the description of

this system is displayed.

2.2 TCP / IP Reference Model

The necessity for general model communicates hundreds of universities and
government installations which were communicated firstly by rented telephone lines
was appeared after satellite and radio networks appended to these communities
because this due to troubling interworking of existing protocols. So U.S. Department
of Defense (DoD) was sponsored research network which was known as Advanced
Research Projects Agency Network (ARPANET) that time and the main goal of it
was to override connectionless between connected multiple networks. Later this
model became known as TCP/IP Reference Model [TAN11].

Functions of data communications protocols were described by an architectural
model which was known as Open Systems Interconnect (OSI) Reference Model that
developed by International Standards Organization (ISO). These functions were

defined by seven layers that comprised in OSI Reference Model.

5

CHAPTER TWO TCP / IP AND STEGANOGRAPHY UNDER LINUX ENVIRONMENT

As mentioned, functions of data communications may be preceded by any
number of protocols so, layer did not define a single protocol but multiple as needed
by these functions. For example File Transfer Protocol (FTP) and Simple Mail
Transfer Protocol (SMTP) are two protocols for different user services that existed in
Application layer.

OSI layers were helping to give description to TCP /IP with layered model.
Definition of layers for this model between three to five layers as functional levels
represented description for TCP / IP. This model consists of four layers where each

layer has its own functions and protocols as illustrated in Figure (2.1):

1. Link Layer or Network Access Layer: It is performed in a network adapter
that sometimes was known as NIC. The basic function of this layer is to
transfer datagram (explained later) from one node to another. Also there is
some other functions include framing, link access, reliable delivery and error
detection and correction [KUR13]. The technologies are used in this layer
include Ethernet (Local Area Network Technology). In Ethernet, a shared link
is used for sending and receiving by set of nodes. Token ring is another
technology. It simply means the set of nodes connected as a ring. Frame Relay
and Asynchronous Transfer Mode (ATM) are examples of virtual circuit
technologies. It requires setting up a connection before any data is sent
[PETO3].

2. Internet Layer: The current Internet is using IP version 4 (IPv4). The main
functions of this layer are addressing, routing and fragmentation. Internet
protocol (IP) represents major protocol of this layer. In addition to IP, Address
Resolution protocol (ARP), Internet Control Message Protocol (ICMP), and

CHAPTER TWO TCP / IP AND STEGANOGRAPHY UNDER LINUX ENVIRONMENT

3. Internet Group Management Protocol (IGMP) also exist. Host — to — host

represents the property of connection [HUNO2].

4. Transport Layer: the location of this layer is above internet layer. It mainly
provides end- to — end communication which means that the process on a
source host takes a message and deliver it to the process that runs on a
destination host. Transmission Control Protocol (TCP) and User Datagram

Protocol (UDP) are protocols that supplied by this layer.

5. Application Layer: it is the top layer of TCP / IP model. The process requests
from hosts and ensuring that connection is turned out to suitable ports is made
by this layer [BEA09]. Many of application protocols are included in this
layer. Type of these applications is different between providing user services
and system administration. Telnet, SMTP, FTP, and Hyper Text Transfer
Protocol (HTTP) are used as user services while Domain Name System (DNS),
Open Shortest Path First (OSPF), and Network File System (NFS) are used as
both user services and system administration [HUNO2]. In addition to these
protocols, Simple Network Management Protocol (SNMP) operates on this

layer. It represents the standard of TCP/IP for network management.

CHAPTER TWO TCP / IPAND STEGANOGRAPHY UNDER, LINUX ENVIRONMENT

OSI Model TCP/IP Model TCP/IP Protocol Suit
Application Layer Application
Layer

Session Layer HTTP FTP DNS SNMP
Transport Layer Transport Layer TCP UDP

Network Layer Internet Layer ARP IP| IGMP ICMP
Data Link Layer Network Access Ethernet Token Frame ATM

Physical Layer Layer Ring Relay

Fig (2.1) TCP / IP Layers and Protocols

When the data was being sent to a network, it should be passed down the stack
while its receiving should be passed up. TCP / IP four layered structure could be seen
as the data was passed down from Application layer. Control information related to
each layer would be added to the data through passing layer for ensuring the suitable
delivery. This control information was added in front of the data to be transferred and
it was known as a header.

Each layer was considering the information that came from above layer as a
data and placed its own header before it. Adding of these control information was
known as encapsulation process. On receiving, the opposite process happened.

Before the data was passing to upper layer, each layer removed its own header since

CHAPTER TWO

TCP / IP AND STEGANOGRAPHY UNDER LINUX ENVIRONMENT

information was received; it was interpreted as header and data. This process was

known as decapuslation as illustrated in Figure (2.2).

Application Layer

Transport Layer

Internet Layer

Network

Access Layer

Dat Dat
A
\ 4
Head | Dat Head | Dat
A
\ 4
Head Head | Dat Heade | Head | Dat
A
\ 4
Heade | Head Head | Dat Head | Heade | Head | Dat

(a) Encapsulation

(b) Decapsulation

Fig. (2.2) Encapsulation and Decapuslation

The different terms were applied to different layers for expressing the data to

be transferred. Stream was known to the data that was used by TCP's Applications

while message was known to the data that was used by UDP's Applications. In

transport layer, TCP's data was named segment while UDP's data was packet.

Datagram represents the name of the data whether it was segment or packet.

expressing the transmitted data [HUNO2].

The different underlying networks were using different terminology for

This model was also known as TCP/IP Protocol Suite. It clearly seems that

protocol suite consists of many protocols but its name came especially from the two

main protocols TCP and IP. TCP was a reliable connection oriented protocol, which

will be explained later while IP was a connectionless.

CHAPTER TWO TCP / IP AND STEGANOGRAPHY UNDER LINUX ENVIRONMENT

2.2.1 Internet Protocol (IP)

It was considered the major protocol in Internet layer. It was responsible for
providing addressing and routing globally. So, it supports universal connectivity.
Also, it supports fragmentation [DOR16]. The most important characteristic is that it
was best effort or connectionless. The meaning of best effort is that the datagram
could be lost, corrupted or reaching out of order [FORO7] while connectionless
means that before transmitting the data, there was no exchanging control information
(known as handshake) to establish end — to end connection that was provided by
connection oriented protocol for example TCP. So, it did not provide
acknowledgment or retransmission when packet loosed or out of order. Because
connection oriented was required, IP must depend on protocols of upper layer that
provided it [HUNO2].

As mentioned previously, the data defined as datagram that means different
routes would followed by datagram through transferring from source to destination.
IP is known as IPv4 because (4) is the current version.

Datagram consists of header and payload. The length of header was variable
and ranges between 20-60 bytes proportion to the existence of option field. This
variation results in variable length datagram. The header of IPv4 is shown in Figure
(2.3) [FORO7] includes:

» VER (version): it is a 4-bit length. It indicates the format of IP datagram that
is IPv4.

» IHL.: this field specifies IPv4 Header Length in 4-bit. Its value either 5 words
(20 bytes) that are representing default value if there is no option field or 15
words (60 bytes) otherwise.

» Type of Service or DS (Differentiated Services): it is an 8-bit length and over

10

CHAPTER TWO TCP / IPAND STEGANOGRAPHY UNDER, LINUX ENVIRONMENT

years it took different definition but the most famous is Type of Service (TOS).
It is mainly representing how the packets would be processed through
transferring component networks according to the necessity of application such
as priority of packet.

20-65536 bytes

20-60 bytes

ﬂ Header Data

VER HLEN DS Total length
4 bits 4 bits 8 bits 16 bits
Identification Flags Fragmentation offset
16 bits 3 bits 13 bits
Time to live Protocol Header checksum
8 bits 8 bits 16 bits

Source IP address

Destination IP address

Option

Fig. (2.3) IP header format [FORO07]

» Total Length: it is a 16-bit length and represents the length of datagram. Since
it is 16-bit so, the maximum size of datagram would be 65,535. This seems to
be too large to encapsulate by physical network due to fragmentation
appearance.

> ldentification Field: it is a 16-bit and it is mainly used in fragmentation
process to identify fragments of one packet from other since each fragment
belongs to the same packet has the identification field value incremented by 1.

» Flags Field: it is a 3-bit length. This 3-bit is interpreted as first bit is reserved,
second bit Do not Fragment (DF) which means do not fragment datagram but

datagram will be discarded if this is set and its size is larger than Maximum

11

CHAPTER TWO TCP / IP AND STEGANOGRAPHY UNDER LINUX ENVIRONMENT

Transfer Unit (MTU), and last bit is More Fragment (MF) bit. When it is set,
this means the fragment is part of the original and every MF's fragment is set
except the last.

» Fragment Offset: it is a 13-bit length and it is assigned to every fragment
inside one datagram. Since it is 13-bit, so there exist 8192 fragments per
datagram.

» Time-to-Live: it is an 8-bit length. This field's value is helping to prevent
packet from routing loops by assigning it an initial value. This value is
decremented by 1 at each router until it is reached to O[FOROQ7].

> Protocol: it is an 8-bit length and its value identifies protocol of above level
that carried by IP datagram. This helps the receiver when decapsulate the
received packet to decide higher level protocol should deliver its payload that
included next header of upper layer. The value of this field is 6 for TCP, 17 for
UDP and 1 for ICMP.

» Header Checksum: it is a 16-bit length and its benefit to detect error of the
datagram. The value must be updated after router modifies Time to Live field
when it decremented it and fragmentation fields if fragmentation happened. To
calculate checksum of header, one's complement to result of using one's
complement arithmetic to adding up 16-bit half words of header. So when
datagram is arrived a router, the router compare computed checksum with the
one of the received packet. If it differs, the datagram must be discarded
because header is corrupted [TAN11].

» Source Address: it is a 32-bit length and is clearly representing source 1Pv4
address where datagram is created. It refers to network interface not to host. It
is represented as a dotted decimal notation that means each byte of 4-bytes
takes values in a decimal between 0-255[TAN11].

12

CHAPTER TWO TCP / IP AND STEGANOGRAPHY UNDER LINUX ENVIRONMENT

» Destination Address: it is a 32-bit length and it is representing intended
destination IPv4 address where the packet must be reached.

» Options: its role could be summed up including the information that does not
exist in the original design. Its length is variable. Such options like security,
Strict source routing, loose source routing, Record route and Timestamps.

Today option fields scarcely used [TAN11].

2.2.2 Transmission Control Protocol (TCP)

TCP is a connection oriented protocol, meaning that the data must be
transferred after the connection is established. In addition to establish connection and
data transmission, the connection must be released. Because it uses sequence number
(described later) to ensure delivery correctness and confirmed no data was lost when
network failure occur by applying retransmission / timeout mechanism, so it was
considered a reliable protocol. It is also using sliding window algorithms to transfer
large files. Also, it is stream-orientation because it uses buffer in sending and
receiving and this enable application to write very small or an amount of data and
divide it into appropriate size [DOR16]. It is also process — to — process
communication through using port numbers [FOR10]. Port numbers from (1- 1023)
are system ports. Port numbers from (1024- 49151) are registered ports while ports
from (49152-65535) are private ports.

TCP segment consists of header part and data part. As shown in Figure (2.4),
the header part fields are:
» Source Port Address: it is a (16-bit) length and its role is identifying sending
service in.
» Destination Port Address: it is a (16-bit) length and its role is identifying

receiving service from.
13

CHAPTER TWO TCP / IPAND STEGANOGRAPHY UNDER, LINUX ENVIRONMENT

» Sequence Number: it is a (32-bit) and it is assigned to every byte of TCP
segment since TCP is byte stream as mentioned previously. When the sequence
number must be generated randomly through establishing connection, SYN bit
flag should be set and it was known as ISN.

» Acknowledgment Number: it is also a (32-bit) and it is essentially
representing the sequence number that expected to receive as a next data byte.
ACK bit should be set with this field [FOR10][MAR13].

A Header Data
Source port address Destination port address
16 bits 16 bits

Sequence number
32 bits

Acknowledgment number
32 bits

HLEN |Reserved U NS P R L Window size
abits | 6bis | RPELS|S X! 16 bits
s G| K|H|T|IN|N s
Checksum Urgent pointer
16 bits 16 bits

Options and Padding

Fig. (2.4) TCP header format [FORQ7]

» HLEN: also known as offset field. It determines TCP header length as 32-bit
words. Since header length was variable depending on option field existence
so, the regular value would be 5 words (20 byte) if option field does not exist
while it is 15 (40 byte) with existence [MAR13].

» Reserved: it is also known as unused field. It is set to 0 since it is specified for
using in future.

» Flags : six flags are contained in this field as follows :

14

CHAPTER TWO TCP / IP AND STEGANOGRAPHY UNDER LINUX ENVIRONMENT

» URG (Urgent): describes the data of urgent pointer. It is validated when
it is set

» ACK (Acknowledgment) : this field tells recipient to take attention of
acknowledgement number since it is set when the field of acknowledgement
number of header is valid

» PSH (Push): when it is set, the received data must be passed to the
receiving application by TCP receiver.

> RST (Reset): a setting of this field means that the receiver must abort a
connection because some conditions are abnormal. For example when the received
segment is not expected by the sender so the connection is aborted like port
scanning that is performed by an attacker.

» SYN (Synchronize): the connection establishment required setting this
bit.

» FIN (Finish): when TCP sender does not have any data to send to TCP
receiver, this bit must be set to inform that. Although TCP sender has no data to
be sent, it can receive a data from TCP receiver until it sends segment with FIN bit
setting.

» Window: it specifies the number of bytes that the sender can accept when it
represents as a TCP receiver. This important to control flow of data and
congestion.

» Header Checksum: this field is useful to detect errors in the receiving
segment.

» Urgent Pointer: the value of this field should be added to the sequence
number value when URG- bit is set. The data in the received buffer should be
considered urgent when it is pointed by this field.

» Option and padding: the functions that do not cover by a regular TCP header

15

CHAPTER TWO TCP / IP AND STEGANOGRAPHY UNDER LINUX ENVIRONMENT

may be provided through this field. The maximum length of this field is 40-
byte and extra padding bits must be added when its length is not a multiple 32-
bit [MAR13].

2.2.3 Packet Analysis

Packet analysis, often named as a packet sniffing or protocol analysis,
symbolizes to the capturing and interpreting process of live data when it flows via a
network. The tool was known packet sniffer was used to capture a raw network data
via the wire.

Packet analysis could help to understand the characteristics of network,
studying who is on a network, the determination of peak network usage times, the
determination of malicious activity or possible attacks, and finding out unsecured
applications.

The packet-sniffing process included three steps [SAN11]:

1. Collection: the purpose of this step is collecting a binary data from
transmission media whether it was wire or wireless.

2. Conversion: after collecting the binary data, it must be converted to a legible
form.

3. Analysis: this is the final step where analyzing the captured and converted

data.

2.3 Client- Server Architecture

This architecture was defining two hosts. One of them was services allocation

known as a server and the other represents all hosts that request services known as

16

CHAPTER TWO TCP / IPAND STEGANOGRAPHY UNDER, LINUX ENVIRONMENT

clients. The web application represents an example for this architecture where
browser (client) sends requests to web server (server). Actually these services could
be considered as processes (program in running) and exchanged between two hosts as
messages. These messages must be passed through the underlying network in sending
and receiving. So to perform this process, a software interface (socket) was needed
[KUR13].

2.3.1 Application Programming Interface

Socket or Application Programming Interface (API) represents the important
interface in writing network applications. Its position between Application layer and
Transport layer as shown in Figure (2.5) so the application developer would be
controlled application layer widely while controlling transport layer was little. The
type of the used protocol and maximum buffer should be received could be

determined by an application developer [KUR13].

application socket application controlled by
) \ app developer
> PP P
ml L=l
controlled
: ‘/ Internet 305

Fig.(2.5) socket [KUR14]

Sockets could be classified according to the properties of communication

apparent to user. For processes communication, sockets of the same type were

17

CHAPTER TWO TCP / IP AND STEGANOGRAPHY UNDER LINUX ENVIRONMENT

supposed. There were four types of sockets as follows [LEF86]:

1. Stream socket: this type was provided for bidirectional, reliable,
sequenced, and unduplicated flow of data without record boundaries.

2. Datagram socket: this type was provided only for bidirectional but not
for sequenced, reliable, or unduplicated data flow.

3. Raw socket: this type was provided for accessing underlying
communication protocol. It was datagram- oriented and mainly
dependent on interface provided by protocol. It was not specified for
general user but for ones that concerned in accessing some facilities that
esoteric of an existing protocol or development new communication
protocols.

4. Sequenced packet socket: it was a part that provided in Network systems
(NS) socket abstraction. It was similar to stream socket except that

preservation of record boundaries.

Figure (2.6) states the relation for each socket with protocol related to it. The
most important property of a raw socket that was allowing new protocols of IPv4 to
be performed in user space. Sending or receiving raw datagram without header of
link layer was provided by raw socket [KERO7].

There are many types of socket's functions. The socket function that was used
for creating socket was socket while the others that were used in connection included
connect, bind, listen, and accept. Another type of functions was used for sending the
data over socket included send and sendto while recv and recvfrom were used for

receiving data from socket [KERO7].

18

CHAPTER TWO TCP / IPAND STEGANOGRAPHY UNDER, LINUX ENVIRONMENT

A
Application Application Applicatio Application User
Y Y . Layer Space
v
Datagram Raw Stream A
Socket Socket Socket
v . T t | Kernel
ranspor erne
TCP
ubP Layer Space
\4
IP Internet
< Layer |
A
A Network Hardware
Network Interface Hardware ACCESS
Y Layer
v
\ 4
Network Medium

Fig. (2.6) Types of Sockets

Figure (2.7) explains TCP client — server connection. It clearly seems that
server's Listen function is waiting for a request from a client through connect()

operation. After server accepted client's request, the connection is established and
data will be transferred.

19

CHAPTER TWO TCP / IPAND STEGANOGRAPHY UNDER, LINUX ENVIRONMENT

TCP Server
TCP Client sockol
[socket() , * '
l ’ bind()
[“ -
connect() (:)
listen()
7t . /
l C'°3~w (1)]
ayba f accept() |
>[write() ”ds,()ake | p |
Oas @
e ’eq block until connection
Csy \ from client
_{ y e read()
read() }v\ . &
o\‘\’(\oa“o“ o ;
L _gOf “‘76 @ process]
lQ
fep/ L request
[close()] Y v

: write() }7
v

close()]

Fig. (2.7) Client — Server connection through TCP Socket [PERO05]

a. TCP Establishment Connection
Before TCP establishment connection explained, types of exchanged messages
must be mentioned. Three types of messages were using three abbreviations with

respect to TCP header flags. These are:

» SYN (A Synchronize message): an initiating and establishing a connection
happened when this bit set. Because one of its functions was to synchronize

sequence numbers, so it was named as SYN message.

20

CHAPTER TWO TCP / IP AND STEGANOGRAPHY UNDER LINUX ENVIRONMENT

> FIN (A Finish message): when a device wants to terminating a connection,
the FIN Dbit set.

» ACK (An Acknowledgment message): a reception of a message such as a
SYN or a FIN was indicated when this bit set.

The establishing connection between a TCP client and server included the

following three steps as shown in Figure (2.8):
» A SYN message was sent by client.

» A message was sent from server combining an ACK for the client’s SYN and

contains the server’s SYN.
» Finally, an ACK sent from client for the server’s SYN.

SYN and ACK messages used for establishing a connection. The Initialized
connection from segment indicated by SYN. SYN represents synchronize that refers
to sequence number synchronization duty. The device that sending a segment is
transferring an acknowledgment when it is received a message.

Sequence of steps that was taken in a TCP session could be represented as
Finite State Machine (FSM). FSM is a theoretical tool used for a protocol description.
The concepts of FSM are as follows:

1. State: the protocol software on a machine is described through this status at a
given time.

2. Transition: the moving from one state to another is representing this concept.

3. Event: a transition between states is occurred by something causes that.

4. Action: before device transitions to another state, it did something for response
to an event.

All the different states the protocol could be in, the events that could be happen, the

21

CHAPTER TWO

TCP / 1P AND STEGANOGRAPHY UNDER LINUX ENVIRONMENT

actions were taken for responsive to the events and the transition occurs as a result

are explained by an FSM.

Table (2.1) describes each state and its description of the client and server in

the establishment of connection.

Client

Client State

CLOSED

Wait For Server

Active Open: Create
TCB, Send S¥YN

SYN-SENT

Server

Passive Open:
Create TCB

Wait For Client

\ Receive SYN,

Server State

CLOSED

LISTEN

Wait for ACK .
to SYN @ send SYN+ACK
/ SYN-RECEIVED
SYN+ACK
Receive SYN+ACK, " . Wait for ACK
send ACK to SYN
(#)
T~ ACK
Receive ACK ESTABLISHED:
Fig. (2.8) three-way handshake
Table (2.1) states and state's description
State State Description
CLOSED Each connection started with the default state (CLOSED) before
connection established
LISTEN Related to device that waiting to receive SYN message (server)

22

CHAPTER TWO TCP / IP AND STEGANOGRAPHY UNDER LINUX ENVIRONMENT

SYN-SENT Related to device that sending SYN message (client)

SYN-RECEIVED [Related to device that receiving SYN message (server) and

waiting for ACK message after sending its own SYN

ESTABLISHED |Means TCP connection was opened

Segment with the RST bit was created by the device that wants to reset connection
so that the connection could be reestablished. To ensure that the action is valid, the
value of sequence number field was checked to guarantee that it belongs to the reset
itself. The handling of message when reset is valid depends on device's state that it
receives as follows [KOZO05]:

> If the state of device is LISTEN, the reset is ignored.

> If the state of device is SYN-RECEIVED but LISTEN was the previously

state, it will return to the LISTEN state.

> The device returns to the CLOSED state for that connection because the reset

aborted the device connection.

2.3.2 Server

Server model can be programmed or using tools. netcat (also known as nc)
represents Unix utility that is dealing with reading and writing data through the

connection of network by using protocols of transport layer.

It is a reliable tool either used by other programs or scripts or used directly.
Netcat can be used as a server by doing reading or writing for inbound connections

on arbitrary ports by listening [FRY11].

There are many options that is used by nc but two options are concerned:

23

CHAPTER TWO TCP / IPAND STEGANOGRAPHY UNDER, LINUX ENVIRONMENT

1. -I: listening for an incoming connection by nc and not initiate connection.
2. -p source_port : nc should use source port specified by this option[HOB].

nc command executed through terminal shown in Figure (2.9)

o

abeer@abeer-VirtualBox: ~

abeer@abeer-VirtualBox:~% nc -1 -p 86086

Fig (2.9) nc command

Another tool which is used in conjunction with nc that is netstat. Netstat
("network statistics”) have many advantages like displaying network connections
whether it is incoming or outgoing, routing tables and a number of network interface
and network protocol statistics. It is available in many operating systems like Linux,
Windows, etc. Finding problems in the network and the performance measurements
by determining the amount of traffic on the network are implemented through this
tool.

Netstat like nc uses many options but two options of them are concerned:

> -n: instead of determining symbolic host and port, the numerical addresses are
showing.
» -a, --all : showing both listening and non-listening sockets through this
option.
All active connections to the server are shown through netstat —an [BAU13].

Running command repeatedly and displaying of output is performed via
watch. It has ability to change watching program output over time. By default, every
two seconds, program is executed [COL99]. Watch command used with netstat as

shown in Figure (2.10)

24

CHAPTER TWO TCP / IPAND STEGANOGRAPHY UNDER, LINUX ENVIRONMENT

F .-

abeer@abeer-VirtualBox: ~

abeer@abeer-virtualBox:~5 watch "netstat'-an | grep 8086"

Fig (2.10) watch with netstat commands

the terminals with nc and watch with netstat shown in Figure (2.11)

@ ® (abeer@abeer-VirtualBox: ~

abeer@abeer-virtualBox:~% nc -1 -p 8080 abeer@abeer-VirtualBox:~$ watch "netstat -an | grep 8680"

Fig. (2.11) nc with watch and netstat

After executing watch with netstat commands, it will seem as shown in Figure (2.12)

abeer@abeer-VirtualBox:~$ nc -1 -p 8680

A

abeer@abeer-VirtualBox: ~
Every 2.0s: netstat -an | grep 8880 Sat Feb 18 21:18:39 2017

tcp 0 0 0.0.0.0:8080 LISTEN

Fig. (2.12) watch with netstat commands after executing

2.4 Information Hiding

Information or data is an important resource. After the communication was
developed through the emergence of network, the information or data was transferred
through communication media. Transmission means do not provide any security to

protect it from unintended recipient through transmission so that, finding methods for

25

CHAPTER TWO TCP / IP AND STEGANOGRAPHY UNDER LINUX ENVIRONMENT

protecting it became very necessary.

Many types of data required protection such as personal and private data,
sensitive data, trades secret and confidential data, avoiding misapplied data...
etc[GUP14].

Many ideas were defined to protect it. Some of these were depending on hiding
the content of data (cryptography) while the others were depending on concealment
the existence of it (steganography). In this thesis, steganography was considered
direction for hiding information but it was necessary to view the meaning of

steganography historically and recently.

2.4.1 History of Steganography

Previously, especially in ancient Greece, Herodotus (c. 486-425 B.C.) was told
about how a message was sent for inciting mutiny against the Persians. So to
guarantee that anyone could not notice that, Histizeus chose the most faithful slave
and shaved his head, tattooed it with the required message and waiting until his hair
had regrown, then he was sent[KATQO].

2.4.2 Modern Steganography

Recently, with computer and information technology emergence, information
hiding takes another direction by using text, image, audio and video which were
representing a suitable carrier for transferring secret information. Also, Protocols of
TCP / IP protocol suite can be utilized to transfer these information which was known
Network Steganography protocol [SIN13]. It was introduced firstly by Krzysztof

Szczypiorski in 2003 through implementing hidden data in Hidden Communication

26

CHAPTER TWO TCP / IP AND STEGANOGRAPHY UNDER LINUX ENVIRONMENT

System for Corrupted Networks (HICCUPS) [SZCO03]. Before that, the concept that
was known as covert channel produced by Lampson in 1973 which provides
desirable environment. It means utilizing unused fields of network protocols or
changing uncritical data [ROH11]. This leads to create a carrier to hide information
far away protocol specification. Because the requirement of steganography for carrier
to hide information, the network steganography can be implemented through
existence of covert channel [C1006].
There were many types of covert channel depending on what was using as a
carrier:
1. Storage Covert Channel: a shared resource was used by one process to write and
was read by other process [MIL14].
2. Timing Covert Channel: in this channel, an event's timing was used for covering
information.
3. Hybrid Covert Channel: a combination of the two previous channels was used.
Network steganography methods could be intra - protocol or inter- protocol
where intra- protocol was using a single protocol to perform the hidden
communication while inter-protocol was using two or more protocols to hide
information [JAN10].
Intra — protocol methods could be classified depending on which part was exploited
as described in covert channel above to:
1. Methods that are modifying protocol structure whether it was payload, headers
or both for example IP, TCP, UDP headers.
2. Methods that are modifying relations of time between Protocol Data Unit by
modifying delay or order of packets
3. Methods that are modifying both structure and time relations [MAZ13].

It was obvious whether in historical or modern steganography, this process

27

CHAPTER TWO TCP / IP AND STEGANOGRAPHY UNDER LINUX ENVIRONMENT

needed essential elements for hiding as follows:

1. Carrier: also known as cover- object and defined as the place where a message
was included and concealed existence of it.

2. Message: represented the data which the sender wants to be secret.

3. Password: also known as a stego — key that represented a decoding key which
was known only by the recipient and hence would be extracting the hidden
data from the cover object [AMI03].

Analysis of these covert channel could be performed by calculation the number of
bits (steganogram) transferred during a packet according to the equation supposed by

l. .
[MAZ08] : PRBRys = (SB°+lzjlsB’) [bits/packet]............ (2.1)

where;

PRBRNS (Packet Raw Bit Rate) denotes the bandwidth of the covert channel
created by IP/TCP/UDP steganography [bits/packet],

SBO is the total amount of bits for IP/TCP/UDP protocols that can be covertly
sent in the fields of the first packet. This value differs from the value that achieved
for the following packets because in the first packet the initial values of certain
fields can be used (e.g. sequence number for TCP protocol),

SBj denotes the total amount of bits for IP/TCP/UDP protocols that can be
covertly sent in the fields of the following packets, and

| is the number of packets that sent besides the first packet.

2.5 Linux

Linux was a copy of UNIX operating system. Personal computers represented
with Intel 80386 one of variety of platforms that Linux run on. A wide range of
software was supported like GNU C/C++ compiler, TCP/IP. Multitasking and
multiuser were properties of Linux as same as the other versions of UNIX.

28

CHAPTER TWO TCP / IP AND STEGANOGRAPHY UNDER LINUX ENVIRONMENT

Ext2 file system was supported by Linux as various file systems supported by
it that is used to storing data. Advanced features like the protected-mode that
provides multitasking, descriptor based, and memory-management paradigm was
used by Linux after developing it. Disk paging was implemented by Linux for
increasing the amount of memory.

Dynamically linked and shared libraries were used by executable files which
occupy a little disk space and supported by Linux. Routines that implemented by
programmer could be used instead of standard ones.

The standard libraries, programming tools, compilers, and debuggers that
embedded in UNIX programming environment which provided by Linux.

TCP/IP networking software also provided by Linux and many Ethernet cards
and interfaces also provided. Also accessing Internet through modem was provided
by supporting Serial Line Internet Protocol (SLIP) and Point-to-Point Protocol (PPP)
[WEL96].

29

CHAPTER THREE

CHAPTER THREE STEGANOGRAPHY IN TCP / IP SYSTEM DESIGN AND IMPLEMENTATION

CHAPTER THREE

STEGANOGRAPHY IN TCP/IP SYSTEM DESIGN AND
IMPLEMENTATION

3.1 Introduction

The proposed system model is viewed in this chapter. All the proposed
methods for three-way handshake and generation of a sequence number are
displayed. Sending request (SYN packet) and replying (SYN-ACK packet) that
represents the two steps of three-way handshake are implemented. The two proposed
methods for hiding text in a sequence number field are executed. The two proposed

methods for extracting the hidden data are viewed too.

3.2 Text Hiding Using Sequence Number field Implementation

1. Although, there are fields that are suitable for hiding like reserved or option
fields of TCP header protocol but sequence number was chosen for hiding
information. A reserved field is not used because it is designed for future use.
All bits set to zero so any change to its values may attract attention. Although
the option field size up to (40- byte) but it is susceptible to filtering. This leads
to exclude from hiding.

2. The choice of using sequence number field means that TCP and IP headers
must be created manually because in the normal transmission of data in client —
server architecture, operating system's kernel was taking care of adding
required headers.

3. As mentioned in chapter 2, IP and TCP header have variable size between 20-

30

CHAPTER THREE STEGANOGRAPHY IN TCP / IP SYSTEM DESIGN AND IMPLEMENTATION

60 bytes depending on the existence of an option field. In the proposed system,
the option field was not taken into consideration.

4. Some fields of the two protocol headers must remain unchanged through data
transmission while others must be changed.

5. The unchanged fields of IP protocol header are version, header length, and type
of service. Other fields like identification, flags, and fragment offset that
specified for fragmentation strategy are changed through fragmentation, total
length, time to live, checksum, source address and destination address will be
changed. Protocol field has (6) value that is pointed to payload of IP header is
TCP segment.

6. In other side, fields of TCP header like source port, destination port, sequence
number, acknowledge number, flags, checksum, and window fields should be
changed through transmission.

7. Regardless of which operating system was used, root privilege level access
should be used since custom header of packet was created.

8. As mentioned earlier, through packet creation, the sequence number field was
used in hiding data. In the proposed system, two methods for generating and
hiding data in sequence number field were used.

I. In the first one, source and destination ports of TCP header fields were
used.

ii. A combination of fields from IP and TCP protocols headers (source and
destination ports, version, and protocol) were used to generate the
sequence number field in the second method.

9. Sending packet that included the hidden data in sequence number field was in
SYN packet. As described earlier, SYN packet is the first packet in three way
handshake process.

31

CHAPTER THREE STEGANOGRAPHY IN TCP / IP SYSTEM DESIGN AND IMPLEMENTATION

10.Receiving packet to extract the hidden data was in SYN-ACK packet which
represents the second packet in three way handshakes and also acts as a reply

to the connection request from sender.

3.3 System Model

The structure of the proposed system for Hiding Text in TCP / IP is illustrated
in Figure (3.1). It consists of three models. The sender (client), server and receiver

are the three models respectively.

Three parts are in the sender model. These parts are: create packet, send SYN
packet, receive SYN-ACK packet. The second model is the server. The main function
of the server is to listen for the connection and reply to the sender. The last model is
the receiver model. It consists of three parts. These parts are: capturing packet,

analyzing packet and data extraction procedures.

32

CHAPTER THREE

STEGANOGRAPHY IN TCP / IP SYSTEM DESIGN AND IMPLEMENTATION

Generate Sequence

Number

Data

<

Stego_Key

User

N2

N\

Destination and

Source ports

Destination and

Source ports with version

A

A

TCP/ IP Layers

»
.

TCP header

Application Laver

Sender Model ‘

IP header

Transport Laver

Create Packet

Server Model

<

Sender

h

Internet Laver

> -
— \

Send SYN Packet

MNetwork Access Laver

Receive SYN-ACK

Packet

Netcat program
with Watch and
netstat utility

Capturing Packet

v

Analyvzing Packet

!

Data Extraction

Receiver Model

Fig. (3.1) the proposed system model

33

CHAPTER THREE STEGANOGRAPHY IN TCP / IP SYSTEM DESIGN AND IMPLEMENTATION

3.4 Sender Model

As described previously, the main parts of the sender model were generating a
packet, sending SYN packet and receiving SYN-ACK packet. The description of

these parts will be described in the next section.
3.4.1 Generate Packet

The process of creating IPHeader, TCPHeader, and the final packet to be sent
to the server were the main functions of this module as described in algorithm (3.1).

Each function in this module will be described separately in the next section.

Algorithm (3.1) Generate Packet
Input:
None
Output:
Packet consists of IPHeader +TCPHeader + Data
Begin
Step 1: calling createlPHeader function
Step 2: read data to be hidden
Step 3: calling createTCPHeader function
Step 4: create packet
Step 5: return packet
End

a. Create IPHeader Function

The process of creating the IPHeader was the main purpose of this function. In

the beginning of this function, all fields of IPHeader were initialized. IP source and
34

CHAPTER THREE STEGANOGRAPHY IN TCP / IP SYSTEM DESIGN AND IMPLEMENTATION

destination addresses must be converted to network byte order. Version and
IPHeaderLength(IHL) must be combined in one byte because each of them was 4-bit

as follows :
version_ihl=version <<4 + [HL (3.1)

and flags was 3-bit. It must be combined with offset as shown below
flags_offset= flags << 13 + offset (3.2)

The pack function of struct library in python was used for gathering the fields

of IP header together. Steps of this function are illustrated in algorithm (3.2)

Algorithm (3.2) CreateIPHeader
Input:
None
Output:
IPHeader
Begin
Step 1: set source and destination addresses as global variables
Step 2: set values to source and destination addresses
Step 3: pass source and destination addresses to IP class's object
Step 4: set result of grouping IPHeader's fields to iph variable
Step 5: return
End

b. Create TCPheader function

Like previous function, the purpose of this function is the same as the previous

35

CHAPTER THREE STEGANOGRAPHY IN TCP / IP SYSTEM DESIGN AND IMPLEMENTATION

one but the difference was to create TCPheader not IPHeader. In this function, the

fields of TCPHeader were initialized.

Port number was selected randomly between (1024-65535). Destination port is
chosen to be (8080).

As mentioned before, the carrier object for hiding data was the sequence
number field. It must be random to prevent overlap in establishing connection. The

generation of sequence number will be explained in the next section.

Since creating the packet were to establish connection, SYN bit field must be
set. All the other control flags were set to 0. Steps of this function are illustrated in
algorithm (3.3).

Algorithm (3.3) Create TCPheader
Input:
Data to be hidden

Output:
TCP header with hidden data
Begin
Step 1: set source and destination ports as global variables
Step 2: set result of random function to source port
Step 3: set value (8080) to destination port
Step 4: set value (empty string) to data
Step 5: pass source and destination ports to TCP class's object
Step 6: changing value of sequence number
Step 7: set SYN bit

36

CHAPTER THREE STEGANOGRAPHY IN TCP / IP SYSTEM DESIGN AND IMPLEMENTATION

Step 8: set length of data to data length field

Step 9: set result of pack function (grouping TCPHeader fields) to tcph variable
Step 10: return TCPHeader with the hidden data

End

I. Generate Sequence Number
As described earlier, two methods are applied to hide data through the
sequence number field. These methods are as follows:
1. Using TCP Header Fields

Source and destination ports were chosen to be a stego — key as
shown in Figure (3.2). The generation of source port will be random

through using random function in python.
A hiding is accomplished by using XOR operation. Since XOR is

a logical operation, so all values were converted to binary. The steps of

this function are illustrated in algorithm (3.4).

TCP Header

A A 4

Source Port (16-bit) Destination Port (16-bit)

A 4

Stego-Key

Fig. (3.2) Stego-key from TCP Header
37

CHAPTER THREE STEGANOGRAPHY IN TCP / IP SYSTEM DESIGN AND IMPLEMENTATION

Algorithm (3.4) Generate sequence number with srcdstports
Input:
Data to be hidden, source port, destination port
Output:
Sequence number with hidden data
Begin
Step 1: converting data's characters to decimal
Step 2: convert result of stepl to binary
Step 3: set result of step 2 to bindata variable
Step 4: converting source port to binary
Step 5: set result of step 4 to binsrcport variable
Step 6: converting destination port to binary
Step 7: set result of step 6 to bindestport variable
Step 8: concatenation source and destination ports in their binary representation
Step 9: set result of step 8 to binsrcdest variable
Step 10: implementation XOR operation between result of setp3 and step 9
Step 11: set result of step 10 to binsteg variable
Step 12: converting binsteg to decimal
Step 13: set result of step 12 to sequence number
Step 14: return sequence number
End

2. Using IP and TCP Header Fields

This method is the same as the previous one except that the

destination port will be altered. Version and protocol fields from
38

CHAPTER THREE STEGANOGRAPHY IN TCP / IP SYSTEM DESIGN AND IMPLEMENTATION

IPHeader were selected for this alternation. This addition will make
steganography process more complicated. The alternation of destination

port will be on the second 8-bit as shown in Figure (3.3).

By returning to the IPHeader structure, an important thing can be
noticed. The number of bits of version field is 4-bit and protocol is 8-bit.
So protocol field will also be altered by replacing second 4-bit of
protocol field value with version field value. Steps in algorithm (3.5) are

illustrated a generation clearly.

IP Header

TCP Header

A 4 A

Protocol Version

A 4 A 4

. - 4-bit | 4-bit 4-bit
Source Port (16-bit) Destination Port :

8-bit 8-bit

A

\ 4

Stego-Key

Fig.(3.3) Stego-key from IP and TCP Headers

39

CHAPTER THREE STEGANOGRAPHY IN TCP / IP SYSTEM DESIGN AND IMPLEMENTATION

Algorithm (3.5) Generate sequence number with srcport,destport,protocol and
version
Input:
Data to be hidden, source port, destination port,protocol and version
Output:
Sequence number with hidden data
Begin
Step 1: converting data's characters to decimal
Step 2: converting result of step 1 to binary
Step 3: set result of step 2 to bindata variable
Step 4: converting source port to binary
Step 5: set result of step 4 to binsrcport variable
Step 6: converting destination port to binary
Step 7: set result of step 6 to bindestport variable
Step 8: converting protocol field value to binary
Step 9: set result of step 8 to binproto variable
Step 10: converting version field value to binary
Step 11: set result of step 10 to binver variable
Step 12: replacing second 4-bit of step 9's result with step 11's result
Step 13: set result of step 12 to binprotover variable
Step 14: replacing first 8-bit of step 7's result with step 13's result
Step 15: set result of step 14 to destprotover variable
Step 16: concatenation source and altered destination in their binary representation
Step 17: set result of step 16 to binsrcdestpv variable

Step 18: implementation XOR operation between result of step 3 and step 17

40

CHAPTER THREE STEGANOGRAPHY IN TCP / IP SYSTEM DESIGN AND IMPLEMENTATION

Step 19: set result of step 18 to binsteg variable
Step 20: converting binsteg value to decimal
Step 21: set result of step 20 to sequence number
Step 22: return sequence number

End

c. Create Packet

The Packet or datagram represents the final result in the Internet layer that

consists of IP header that encapsulates TCP header and payload.

3.4.2 Send SYN packet

The generated packet with the hidden data was sent to the server to establish
the connection. After Internet raw socket object was created and checked for creation
error, the created packet and address was passed as parameters to sendto function.

Then, it is sent.

3.4.3 Receive SYN-ACK packet

This part is concerned with the capturing SYN-ACK packet that was sent as a
reply to SYN packet by server.

The destination IP address and destination port must be identified to begin
receiving the replied packet. The analyzing fetched packet was completed after

receiving it.

41

CHAPTER THREE STEGANOGRAPHY IN TCP / IP SYSTEM DESIGN AND IMPLEMENTATION

Through the analyzing process, IPHeader and TCPHeader were extracted.
Unpack function of struct library in python was used for extraction process.
Algorithm (3.6) is illustrated that.

Algorithm (3.6) Receive SYN -ACK_ packet
Input:

None
Output:

Received SYN-ACK packet

Begin:
Step 1: create an Internet raw socket object at layer 3
Step 2: check for creation error, if it is then system exit
Step 3: passing destination address and destination port to raw socket's
binding function
Step 4: receive packet through raw socket's receiving function
Step 5: Analyze packet
Step 6: extract IP header and separate fields
Step 7: extract TCP header and separate fields
Step 8: return
End

3.5 Receiver Model (Packet Analysis)

As mentioned in chapter two, a packet analysis process helped in get live data
and interpreted it. The intended recipient will get the hidden data by using packet
analysis. Packet analysis is accomplished on the Internet layer and Ethernet for the

two methods that are used to hide data.
42

CHAPTER THREE STEGANOGRAPHY IN TCP / IP SYSTEM DESIGN AND IMPLEMENTATION

In general, the capturing and analyzing packets processes for the two layers
were different in addition to the part that is relating to receive the hidden data because
the two methods are using different techniques for hiding, as it is illustrated in next

section.

3.5.1 Capturing and analyzing process

Algorithm (3.7) is explaining capturing and analyzing at layer 3 (Internet layer)
while algorithm (3.8) is explaining it at layer 2 (Ethernet). After that, a function that

Is using to get the hidden data will be explained later for the two embedding methods.

a. Capturing and Analyzing at Layer 3

This function represents a general function that is calling the necessary
functions for capturing, analyzing and extraction the hidden data. Each of them

will be explained later in separate section.

Algorithm (3.7) Packet Capturing and Analyzing at Layer 3
Input:

None
Output:

Hidden Data

Begin:
Step 1: calling capturing packet function
Step 2: calling analyzing IPHeader function

Step 3: calling analyzing TCPHeader function

43

CHAPTER THREE STEGANOGRAPHY IN TCP / IP SYSTEM DESIGN AND IMPLEMENTATION

Step 4: calling extraction function to get hidden data
Step 5: return
End

I. Capturing Packet
The purpose of this function is to capture SYN-ACK packet which is

representing the replied packet by server.

Analyzing packet to extract IPHeader and TCPHeader also it will be
explained in separate sections to get the concerned fields that is relating to
hiding process. The extraction hidden data from the packet will also be

explained in separate section. Algorithm (3.8) includes these steps.

Algorithm (3.8) Capturing Packet Function
Input:
None
Output:
Captured packet
Begin
Step 1: create an Internet raw socket object at layer 3
Step 2: check for creation error, if it is then system exit
Step 3: passing destination address and destination port to raw socket's binding
function
Step 4: capturing packet through raw socket's receiving function
Step 5: return captured packet
End

44

CHAPTER THREE STEGANOGRAPHY IN TCP / IP SYSTEM DESIGN AND IMPLEMENTATION

Ii. Analyzing IPHeader

The main role of this module is to extract fields of IPHeader from the
packet. As mentioned earlier, the length of IPHeader is 20 — 60 bytes. Version
and IPHeaderLength (IHL) each of them was 4-bit and combined in one byte.

These two fields must be separated as follows :
version = version_ihl >> 4
ihl = version_ihl and F

Also, IP source and destination addresses must be converted to a host
byte order since it was received as a network byte order. After defining total
length as a global variable, the separation process for IP fields was done using

unpack function.
ii. Analyzing TCPHeader

The role of this function is same as the previous one except that it is for
TCPHeader not IP. As mentioned previously, thesize of TCPHeader is 20- 60

bytes.

A note can be seen when TCPHeader is extracted. Source port will
contain the value of destination host because the sender of SYN -ACK packet
will be the server and the receiver will be the sender, and this applied for

destination port too.

Another note is seen during the extraction of TCPHeader.
Acknowledgement field that has (0) value in sending SYN packet, it will have
value that is a summation of sequence number value + number of bytes that

the server expected to receive after connection established.

45

CHAPTER THREE STEGANOGRAPHY IN TCP / IP SYSTEM DESIGN AND IMPLEMENTATION

The sequence number field has server's sequence number. Also, ACK bit

field has set to 1. To implement analyzing process, the fields of source port,

destination port , and acknowledgement defined as a global variables. Then,

unpack function was used for separating fields.

b. Capturing and analyzing at layer 2

Capturing and analyzing process on Ethernet is different from the one
implemented on layer 3 (Internet) because capturing on Ethernet will require

dealing with device driver.

This function will capture packet after packet and analyze it by
extracting the fields of headers at the same time until capturing a packet with the
specified source port. As described in capturing on Internet layer, the source port
value represents destination port of sender since the capturing process is on

incoming packets from server.

After performing capturing and analyzing packets process, the data
extraction function will be executed to get the hidden data as illustrated in
algorithm (3.9).

Algorithm (3.9) Capturing and Analyzing at layer 2
Input:
Destination port
Output:
Hidden data
Begin
Step 1: reading destination port

46

CHAPTER THREE STEGANOGRAPHY IN TCP / IP SYSTEM DESIGN AND IMPLEMENTATION

Step 2: calling capturing and analyzing packet with destination port passing as
Input
Step 3: set source and destination ports, acknowledgement fields as global
variables
Step 4: create packet raw socket object
Step 5: while condition true

Step 5.1: receiving packets through recvfrom function

Step 5.2: extract Ethernet header

Step 5.3: extract IP header

Step 5.4: extract TCP header

Step 5.5: check if destination port == the one passed as input then break,

Else goto step 5.1

Step 6: calling data extraction function (which is explained in next section)
Step 7: return
End

3.5.2 Data Extraction

As described in previous section of hiding data, two techniques were used to

implement the hiding process.

In these techniques, the sequence number field is used for hiding but in
extraction process, the acknowledgement field is used since it was resulting from
sequence number value +1 with the other fields that were using through hiding

process to get the hidden data as shown in Figure (3.4).

47

CHAPTER THREE STEGANOGRAPHY IN TCP / IP SYSTEM DESIGN AND IMPLEMENTATION

The Hidden Data

Acknowledgment Y any Stego_Key
Number N / \
Destination and Destination and
Source ports Source ports with version
A T
TCP header IP header

Fig.(3.4) Data Extraction Module

a. Data Extraction using TCP Header (Acknowledgement Number, Source Port

and Destination Port)

The hidden data will be extracted from the acknowledgement field of SYN-
ACK packet since the data is hidden in sequence number field of SYN packet. As

mentioned previously, acknowledgment number value is sequence number value +1.

Attention is taken for source port and destination port because their values are
replaced with each other with respect to sender and server. After that, the data is

retrieved as illustrated in algorithm (3.10).

48

CHAPTER THREE STEGANOGRAPHY IN TCP / IP SYSTEM DESIGN AND IMPLEMENTATION

Algorithm (3.10) Data Extraction using acknowledgement number with
srcdstports
Input:
Acknowledge number, source port, and destination port
Output:
Hidden Data
Begin
Step 1: converting acknowledgement number to binary
Step 2: set result to ackn variable
Step 3: converting source port to binary
Step 4: set result to binsrcport variable
Step 5: converting destination port to binary
Step 6: set result to bindestport variable
Step 7: concatenation source and destination ports in their binary representation
Step 8: set result to binsrcdest variable
Step 9: implementation XOR operation between result of step 2 and step 8
Step 10: set result to binsteg variable
Step 11: converting result of step 10 to decimal
Step 12: set result to dessteg variable
Step 13: converting result of step 12 to data
Step 14: set result to hiddendata variable
Step 15: return hiddendata
End

49

CHAPTER THREE STEGANOGRAPHY IN TCP / IP SYSTEM DESIGN AND IMPLEMENTATION

b. Data Extraction using IP and TCP Header (Acknowledgement Number,

Source Port, Destination Port, Protocol and Version)

The beginning of this function is the same as the previous one except
additional fields is added. The difference is instead of combined source and
destination ports field, source port (destination port in sender) field is altered through
the processing that is described in section of generating sequence number with

version and protocol fields as illustrated in algorithm (3.11).

Algorithm (3.11) Data Extraction with srcport,destport,protocol and version
Input:
Acknowledgement number source port, destination port, protocol and
version
Output:
Hidden data
Begin
Step 1: converting acknowledgement number to binary
Step 2: set result to ackn variable
Step 3: converting source port to binary
Step 4: set result to binsrcport variable
Step 5: converting destination port to binary
Step 6: set result to bindestport variable
Step 7: converting protocol field value to binary
Step 8: set result to binproto variable

Step 9: converting version field value to binary

50

CHAPTER THREE STEGANOGRAPHY IN TCP / IP SYSTEM DESIGN AND IMPLEMENTATION

Step 10: set result to binver variable

Step 11: replacing second 4-bit of step 8 value with step 10 value

Step 12: set result to binprotover variable

Step 13: replacing first 8-bit of step 6 value with step 12

Step 14: set result to destprotover variable

Step 15: concatenation source and altered destination in their binary representation
Step 16: set result to binsrcdestpv variable

Step 17: implementation XOR operation between result of step 2 and step 16
Step 18: set result to binsteg variable

Step 19: converting binsteg to decimal

Step 20: set result to dessteg variable

Step 21: converting result of step 20 to data

Step 22: set result to hiddendata varisble

Step 23: return hiddendata

End

3.6 Server Model

The server model represents the tools that are described in chapter 2. These

tools are netcat, netstat, and watch.

o1

CHAPTER FOUR

CHAPTER FOUR, RESULTS

CHAPTER FOUR
RESULTS

4.1 Introduction

The proposed system is achieved using Linux kernel raw sockets. Linux is a
good environment provides the easiest access of raw sockets interface.

The task is performed with the aid of additional means. Wireshark is the first
mean that is used to monitor traffic and ensure if a packet reached and viewing
request and reply.

Virtualbox is the second tool that is using to setup ubuntu 15.10 for using
netcat. Netcat represents the server that listens and waits for connection request from
the client (sender of the hidden data).

Sending environment is supposed to be ideal (i.e. no lossed packet, no

retransmission occurred).

4.2 Results

The coding is executed through Python scripting. Transmission is sent from the
host node to a predetermined IP address located at the beginning of the code. The
address in this case was determined to be 192.168.3.102 or any other address set to
virtual adapter. The sender should select an IP address with respect to the receiver’s
IP address to allow for delivery.

Whether changing iptables (see Appendix A) or not, the hidden data is sent.
The execution of program for the two methods in embedding and extraction is shown
below. The chosen word to be hidden was (help). After applying algorithm (3.2), the
result will be as shown in Figure (4.1)

52

CHAPTER FOUR, RESULTS

The Source Address is : 192.168.3.187
The Destination Address is : 192.168.3.102

The Data to be Hidden is : help

Fig. (4.1) source and destination addresses with the data- First method

Then, the TCP header was created after applying algorithm (3.3) as shown in
Figure (4.2); the Figure displayed only the source and destination ports because they
had the active role in hiding process.

The Source Port is : 27542
The Destination Port is : 8880

Fig (4.2) source and destination ports — First method

The sequence number with the hidden data was generated through creation of
TCP header. By applying algorithm (3.4), the sequence number with the hidden data
is created using the first method for hiding. As described in chapter 3, the first
method includes source and destination ports as a stego-key. The Figure (4.3)

explains that.

The Geneartion of Sequence Number is started

Message to binary = 01101080011001010110110601110008

Source port to bimary = 0110180111810116

Destination port to binary = 8000188111111668

Concatination of source and destination ports in binary= ©110180111016116086001060111111066
XOR of Message with Source and Destination ports = 00808001101160081161180160118001660

The Generated Sequence Number is : 296144256

Fig. (4.3) Data hiding process — First method — First execution

53

CHAPTER FOUR, RESULTS

As seen, the sequence number value is (296144256) represents the decimal
result of XOR operation between the data to be hidden (help) and the stego-key.

To get the hidden data for this method, packet analysis on Internet layer or
Ethernet is implemented. Figure (4.4) displays the result of algorithm (3.8) for

capturing and analyzing at layer 3.

Capturing and Analyzing SYN-ACK Packet is begining
Source Address : 192.168.3.102

Destination Address : 152.168.3.1687

Source Port : 8080

Destination Port : 27542

Sequence Number : 1023081466

Acknowledgement : 296144257

Data :

Fig. (4.4) Capturing and Analyzing — Layer 3- First execution

As seen, acknowledgement number value is (296144257) that represent the
sequence number value +1. Algorithm (3.13) is applied to extract the hidden data for

the first method of hiding process as shown in Figure (4.5).

Extraction of the Hidden Data is started

Acknoweldgement to binary = 00E000011011061181166010110601660

Destination port to binary = ©11010011108161160

Source port to binary = G000106111111086

Concatination of source and destination ports in binary= ©119186111019110060001801111110686
XOR of Acknoweldegment with Source and Destination ports is 011018860811881816110110081110680

The Hidden Data is : help

Fig (4.5) Data extraction process — First method- First execution
When algorithm (3.2) is applied again, the result will be the same as in Figure

(4.1) while the result of applying algorithm (3.3) is different because the source port

is generated randomly as shown in Figure (4.6)

54

CHAPTER FOUR, RESULTS

The Source Port is : 22666
The Destination Port is : 8086

Fig (4.6) source and destination ports — First method — Second execution

S0, the sequence number that is generated with respect to these new values after

applying algorithm (3.4) is different as it shown in Figure (4.7)

The Geneartion of Sequence Number is started

Message to binary = 0116100001160101011011600811108686

Source port to binary = 01810861660011016

Destination port to binary = @600106111111666

Concatination of source and destination ports in binary= 9181686616860116016060601860111111086
¥OR of Message with Source and Destination ports = ©61119016111111181168616118861660

The Generated Sequence Number is : 296156828

Fig (4.7) Data hiding process — First method — Second execution

The algorithm (3.12) and is applied for capturing and analyzing packet at
Ethernet. Figure (4.8) shows the result of this algorithm and Figure (4.9) shows the
result of algorithm (3.13) since the extraction process for the first method is the same

while the capturing and analyzing processes are different

Enter port number to listen on: 8688

Capturing and Analyzing SYM-ACK Packet is begining
Source Port is : 22666

Destination port is : 8086

Acknowledgment Mumber is :; 296156829

Fig (4.8) Capturing and Analyzing — Ethernet — First method- Second execution

As seen, the acknowledgement value is (296156829) that results from the

sequence number value in Figure (4.7) +1.

55

CHAPTER FOUR, RESULTS

Extraction of the Hidden Data is started

Acknoweldgement to binary = 881110601011111116011861081160681808

Destination port to binary = @00016081111116000

Source port to bimary = 01810601800811610

Concatination of source and destination ports in binary= 818108010861101600800160111111066
XOR of Acknoweldegment with Source and Destination ports ©110180081188181011601100011100606

The Hidden Data is : help

Fig (4.9) Data extraction process — First method- Second execution

Although the data is the same as in Figure (4.1) but different sequence number
Is generated as in Figures (4.3), (4.7) respectively.
The second method for hiding data represents the result of applying algorithm
(3.5) as it shown in Figure (4.12). As mentioned in chapter 3, the used stego_ key for
hiding data is the combination of IP and TCP headers fields. But before that applying
of algorithm (3.2) and (3.3) is necessary since the fields of stego_key is different as

they are shown in Figures (4.10), (4.11) respectively.

The Source Address is : 192.168.3.187

The Destination Address is : 192.168.3.104
The wversion value is : 4

The protocol value is : 6

The Data to be hidden is : help

Fig (4.10) source and destination addresses, version, protocol, data- Second method

The Source Port is : 31696
The Destination Port is : 8080

Fig (4.11) source and destination ports- Second method- First execution

56

CHAPTER FOUR, RESULTS

The Geneartion of Sequence MWumber is started

Message to binary = €11010800110818161161160611160668

Source port to binmary = 00800181111811116

Destimation port to binary = ©0081881111116800

Protocol to binary = 01100000

Version to binary = 8016

Protocol with Version to binary = 8118086818

Destination port with Protocol and Version to binary = 9110861611111080
Concatination of source port and destination port with Protocol and Version in binary=
BE00161111911116060116601611111800

XOR of Message with Source port and Destination port with Protocel and Version
01100011101110110606001119100016000

The Generated Sequence Number is : 292609478

Fig (4.12) Data hiding process — Second method — First execution

Figure (4.13) displays the result of algorithm (3.8) for capturing and analyzing

at layer 3 for the second method of hiding.

Capturing and Analyzing SYN-ACK Packet is begining
Source Address : 192.168.3.104
Destination Address : 192.168.3.1687

Source Port : BOSO
Destination Port : 31696
Acknowledgement : 292609479

Fig. (4.13) Capturing and Analyzing — Layer 3- Second method — First execution

Figure (4.14) displays the extraction process to get the hidden data for the
second method

Extraction of the Hidden Data is started

Acknoweldgement to binary = 911000111011181180088111818001808

Destination port to binary = 0008101111011116

Source port to bimary = 8060180111111888

Protocol to binary = 611060800

Version to binary = @81

Protocol with Version in binary = 01100010

Source port with Protocol and Version in binary = 81160018111118686

Concatination of Destination port and Source port with Protocol and Version in binary=
0EE010111101111600116606010111116000

¥OR of Acknowledgment with Destination port and Source port with Protocol amd Version =
0110100060110616191161108601110666

The Hidden Data is : help

Fig. (4.14) Data extraction process — Second Method- First execution

S7

CHAPTER FOUR, RESULTS

For the second method of hiding and capturing and analyzing on Ethernet is
used, the result of applying algorithm (3.2) will be the same as it in Figure (4.10)
while the result of applying algorithm (3.3) is different because the source port is

generated randomly as shown in Figure (4.15).

The Source Port is : 61652
The Destination Port is : B080

Fig (4.15) source and destination ports- Second method- Second execution

After applying algorithm (3.5) again but for new execution, the result of
sequence number will be different from the one that is shown in Figure (4.12)
because source port is different since it is generated randomly for the second
execution. Figure (4.16) explains that and shows (292574914) as the value of the

generated sequence number.

The Geneartion of Sequence Number is started

Message to binary = 8110106001168101611601160001110088

Source port to bimary = 0010161180681111

Destination port to binary = 0068168111111608

Protocol to bimary = 81106068060

Version to binary = @810

Protocol with Version to binary = 01108618

Destination port with Protocol and Version to binary = 9118681011111886
Concatination of source port and destination port with Protocol and Version in bimary=
B01010110000111101100010111116000

XOR of Message with Source port and Destination port with Protocol and Version
610000116116016100800011101606010006

The Generated Sequence Number is : 292574914

Fig (4.16) Data hiding process — Second method — Second execution

Figure (4.17) displays the use of capturing and analyzing processes on Ethernet

to get the hidden data for the second method of hiding.

58

CHAPTER FOUR, RESULTS

Enter port mumber to listen on: 8088
Source Port is : 61652

Destination port is : 8088
Acknowledgment Wumber is : 292574915

Fig (4.17) Capturing and Analyzing — Ethernet — Second method- Second execution

It is clearly that the acknowledgement value is (292574915). The extraction
process of the hidden data on this type of capturing is shown in Figure (4.18)

Extraction of the Hidden Data is started

Acknoweldgement to binary = 8108601161101016880681110168601608

Destination port to binary = ©019101166001111

Source port to binary = 0060180111111868

Protocol to bimary = @1100000

Version to binary = @e18

Protocol with Version inm binary = 8110688186

Source port with Protocol and Version in binary = 8118688168111116868

Concatination of Destination port and Source port with Protocol and Version in binary=
0E1019116000011110110001611111000

XOR of Acknowledgment with Destination port and Source port with Protocol and Version
011616000110016101101160011100006

The Hidden Data is : help

Fig. (4.18) Data extraction process — Second Method- Second execution

The treatment of values in embedding and extraction processes includes
converting all values to binary because the logical XOR that is supposed deals with
binary values.

Capturing packet is proceeded in two methods as seen above. One of them
represents direct method because it is binding to specific socket address (i.e.
combination of IP destination address and port address) while the other represents
indirect because it captured all incoming packets and specific condition causes
stopping the capturing.

For implementing three way handshakes, iptables must be changed through the

following statement executed through terminal as shown in Figure (4.19).

59

CHAPTER FOUR, RESULTS

abeer@abeer-HP-15-Notebook-PC:~$ sudo iptables -A OUTPUT -p tcp --tcp-flags RST
RST -j DROP
[sudo] password for abeer:

abeer@abeer-HP-15-Notebook-PC:~5 I

Fig. (4.19) Changing iptables values

To ensure that all packets are transmitted, the packet sniffing program
Wireshark will be used to collect all transmitted packets through my network. As
shown in Figure (4.20), the SYN packet of the proposed system is sent from
"192.168.0.104" source address to "192.168.0.105" destination address and "7365"
random source port to "8080" destination port. The analyzed packet can be shown for
the two protocols IP and TCP. In Figure (4.21), IPHeader of SYN packet is shown.

AN A0 @ERE Q< IVIPAS S 000 E
~| Expression..
No. Time Source Destination Protocol Length Identification Info
40 4.866573414 192.168.0.104 104.197.53.200 TCP 66 Ox4a61 (19041) 50718-443 [FIN, ACK] Seq=1800359945 Ack=34..
41 5.128116835 104.197.53.200 192.168.0.104 TCP 66 Oxe149 (57673) 443-58718 [ACK] Seq=345230550 Ack=18083599..
43 7.099155208 PcsSyste _d7:98:a4 Broadcast ARP 60 Who has 192.168.0.104?7 Tell 192.168.0.105
44 7.099170033 HonHaiPr_41:e3:21 PcsSyste_d7:98:a4 ARP 42 192.168.0.104 is at 2c:33:7a:41:e3:21
45 7.099178297 HonHaiPr_41:e3:21 Broadcast ARP 60 Who has 192.168.0.164? Tell 192.168.6.105 ..
46 7.099900504 192.168.0.105 192.168.0.104 TCP 60 6x0000 (0) 8080-7563 [SYN, ACK] Seq=2613593363 Ack=83..
47 7.478059953 192.168.0.104 217.12.15.96 TLSv1.2 112 Oxe4d7 (58583) Application Data
48 7.537676496 192.168.0.104 217.12.15.96 TLSvi.2 112 Oxedd8 (58584) Application Data
49 7.548589550 192.168.0.104 217.12.15.96 TLSv1.2 97 Oxe4d9 (58585) Encrypted Alert
50 7.541323306 192.168.0.104 217.12.15.96 TCP 66 Oxedda (58586) 48288-443 [FIN, ACK] Seq-3B08914352 Ack=27..
51 7.629220832 217.12.15.96 192.166.08.104 TLSvi.2 112 6x9feb (40939) Application Data
52 7.702693260 217.12.15.96 192.168.0.104 TLSv1.2 97 ex9fec (40940) Encrypted Alert
53 7.703576625 217.12.15.96 192.168.0.104 TCP 66 ©x9fed (40941) 443-48288 [FIN, ACK] Seq=2735915843 Ack=38..
12,1 3 16 54 x0008 (8) 443-48288 [RST] Seq=2735915766 Win=0 Len=0

443-48288 [RST] Seq=2735915766 Wi
..I]

57 8.479032986 . . TLSv1.2 112 0x3846
» Frame 42: 54 bytes on wire (432 bits), 54 bytes captured (432 bits) on interface ©
» Ethernet II, Src: HonHaiPr_41:e3:21 (2c:33:7a:41:e3:21), Dst: PcsSyste_d7:98:a4 (08:00:27:d7:98:a4)
v Internet Protocol Version 4, Src: 192.168.0.184, Dst: 192.168.0.185
0108 = Version: 4

©8 60 27 d7 98 a4 2c 33 7a 41 e3 21 68 80 vo eoa 3 ZALLL

1d 8b 1f 90 31 8e bb a5 00 G0 08 00 50 02 ceads vaaaalP
de 16 33 5b @0 60 3

Fig (4.20) SYN packet

60

CHAPTER FOUR, RESULTS

v Frame 42: 54 bytes on wire (432 bits), 54 bytes captured (432 bits) on interface 0
v Ethernet 11, Src: HonHaiPr_41:e3:21 (2c:33:7a:41:e3:2), Dst: PesSyste d7:98:a4 (08:00:27:07:98:a4)
Internet Protocol Version 4, Src: 192.168.8.104, Dst: 192.168.0.105

6160 = Version: 4

» Differentiated Services Field: ©x0@ (DSCP: €SO, ECN: Not-ECT)
Total Length: 4@
Identification: @xddSe (56670)

» Flags: 0x00

Protocol: TCP (6)

Header checksum; @xacdf [validation disabled]

[Header checksum status: Unverified]
Source: 192.168.0.104

Destination: 192.168.0.165

[Source GeoIP: Unknown]

A066 68 00 27 a7 98 ad 2c 33 Ta 41 e3 21 08 0 RN
GENCIN00 28 dd 5e 00 60 ff 06 5c 4F cO a8 00 68 cO af
0026 ClGE 1d 8b 1f 90 31 Be bb a5 60 00 00 66 50 62
2030 de 16 33 5b 60 66

Fig. (4.21) IPHeader of SYN packet

and TCPHeader is seen in Figure (4.22). It clearly appears values of source and
destination ports, sequence number with the hidden data, acknowledgement number
value and SYN bit flag. A very important notation is seen that sequence number has

value because the type of packet is SYN packet while acknowledgement number has

61

CHAPTER FOUR, RESULTS

no value.

Transmission Control Protocol, Src Port: 7563, Dst Port: 8080, Seq: 831437733, Len: @

Source Port: 7563
Destination Port: 8080

[Stream index: 5]
Sequence number: 831437733

Acknowledgment number: @

Header Length: 20 bytes
C»Flags: exee2 (s)
0000 08 0@ 27 d7 98 a4 2c 33 7a 41 e3 21 08 00 45 00 7 N -

0010 00 28 dd 5e 00 00 ff 06 5c 4f cO ad 00 68 cO a8 (.7 \0...h..
Gl R1d 8b 1f 90 31 82 bb a5 00 00 00 00 50 02
Clek{*BMd0 16 33 5b 00 @0

Fig (4.22) TCPHeader of SYN packet

The SYN-ACK packet can be seen as shown in Figure (4.23). The receiver of
the hidden data captures this type of packet to extract data from it.

62

CHAPTER FOUR, RESULTS

Time Source Protocol Length Identification
60690476 217.12.15.96 il
3476076718 217.12.15.96 . 8298 [RST] Seq
34, 104.197.53.260 TLSv1.2 119 xe1d7 (57671) Encrypted Alert
38 4.865945940 192.168.0.164 164.197.53.260 TCP 66 0x4a60 (19040) 50718-443 [ACK] Seq=1806359945 Ack=3452305..

415.120116835 104.197.53.200 192.168.0.104 66 Bxe1d9 (57673) 443-50718 [ACK] Seq=345230550 Ack=18003599..
127.098962412 192.168.0.104 192.168.0.165 TCP 54 Bxddse (56676) 7563-8086 [SYN] Seq-831437733 Win=53270 Le..
437.099155208 PesSyste d7:96:a4 Broadcast ARP 60 Who has 192.168.0.1047 Tell 192.166.6.105
447.099170033 HonHaiPr 41:e3:21 PcsSyste d7:98:a4 ARP {2 192.168.0.104 1s at 2c:33:7a:41:e3:21
457.099178297 Rdletd A i

477.476039953 i FrEeE on L L D B W
48 7.537676496 192.168.0.104 217.12.15.% TLSv1.2 112 Gxedds (58584) Application Data
497.54058%590 192.168.0.104 217.12.15.% TLSv1.2 97 fxedd9 (58585) Encrypted Alert

917.629220832 217.12.15.96 192.168.0.104 TLSv1.2 112 6x9feb (48939) Application Data
9217.762693260 217.12.15.96 192.168.0.104 TLSv1.2 97 6xSfec (48948) Encrypted Alert

Fig (4.23) SYN-ACK packet

SYN-ACK packet can be seen after analyzed both IPHeader and TCPHeader in
Figures (4.24), (4.25) respectively.

63

CHAPTER FOUR, RESULTS

» Frame 46: 6@ bytes on wire (480 bits), 6@ bytes captured (480 bits) on interface 0
» Ethernet II, Src: PcsSyste_d7:98:a4 (08:00:27:d7:98:a4), Dst: HonHaiPr_41:e3:21 (2c:33:7a:41:e3:21)
Internet Protocol Version 4, Src: 192.168.0.105, Dst: 192.168.0.104

0160 = Version: 4

. 8101 = Header Length: 20 bytes (5)
Differentiated Services Field: ©0x@@ (DSCP: CS®, ECN: Not-ECT)
Total Length: 44
Identification: Ox0000 (@)
Protocol: TCP (6)
Header checksum: ®xbBaa [validation disabled]
[Header checksum status: Unverified]

Source: 192.168.0.105

0000 2c 33 7a 41 €3 21 08 00 27 d7 98 a4 08 00 [EMCL ,3zA.!.. "..... E.
(CHCRO0 2c 00 00 40 00 40 06 b8 aa cO a8 00 69 cO adyue.,..0.0.1i..
0020 [N 1f 90 1d 8b 9b c8 45 13 31 8e bb a6 60 12 Hj...... SR

0030 72 10 98 b8 60 60 62 04 05 b4 00 6O Fasnanas auas

Fig (4.24) IPHeader of SYN-ACK packet

Sequence number: 2613593363

Acknowledgment number: 831437734
Header Length: 24 bytes

Source Port: 880

Destination Port: 7563

[Stream index: 5]
0000 2c337a41e3210800 27 d7 98 a4 08 00 45 00 77 VP E.
0010 00 2c 00 8O 40 00 40 06 b8 aa cO aB 00 69 cb a8 |
GGG 90 1d 8b 9b c8 45 13 31 8e bb a6 60 12
ER[IM72 10 98 b8 60 00 62 04 05 hJLECL

Fig. (4.25) TCPHeader of SYN-ACK packet

64

CHAPTER FOUR, RESULTS

The program is executed in two experiments. One of them is executed after
changing Iptables. This means that the RST packet that operating system's kernel
sends is dropping so that nc server is contentiously resends SYN-ACK packet until it
receives ACK packet to establish connection or time-out and hence closing the

connection as shown in Figure (4.26).

Time Source Destination Protocol Length Identification Info

415.120116835 104.197.53.200 192.168.0.104 TCP 66 Oxe1d9 (57673) 443-50718 [ACK] Seq=345238550 Ack=18063599..

437.099155208 PcsSyste d7:98:a4 Broadcast ARP 60 Who has 192.168.0.104? Tell 192.168.6.165
447.099170033 HonHaiPr 41:e3:21 PcsSyste d7:98:a4 ARP 2 192.168.8.104 15 at 2c:33:7a:41:e3:21
157.099178297 iPr A:ed 30c; p J g

477.478059953 ' ' A : '
48 7.537676496 192 lﬁﬂ H 104 27.12.15.96 TLSv1.2 112 Oxedds (58584) Appllcatlun Data
497.540569550 192.168.0.104 27.12.15.96 TLSv1.2 7 Bxedd9 (58585) Encrypted Alert

917.629220832 217.12.15.9 192.168.0.104 TLSv1.2 112 6x9feb (46939) Application Data
9217.702693260 217.12.15.9 192.168.0.104 TLSv1.2 97 6xdfec (48940) Encrypted Alert

MWRBE 106860 T0

N7.1.15.96 1 18! TP
192.168.6.165 192.168.0.104 TCP

Fig. (4.26) Execution of program after changing iptables

When iptables does not change, RST packet is sent by operating system's

kernel normally and a connection is aborted as shown in Figure (4.27)

65

CHAPTER FOUR, RESULTS

7 2.863697898 192.168.0.117 230.255.265.250 SSOP 167 Ow3%dd (22861) N-SEARCH * HTTP/1.1
66 2.803233046 HonHaiPr 41:e3:21 Broadcast ARP Y Who has 192.168.0.1657 Tell 192.168.0.164
692.895102558 PesSyste d7:98:a4 HonhiaiPr_41:e3:21 6 192.168.0.165 1s at 08:00:27:d7:98:a4

72 2895350372
13 3.687744740

92.168.0.104 192.168.0.166

0.J0 -

Ta7.202719216 192.168.0.104 20.31.164.174 TLSvL.2 119 BxbBTh (47227) Encrypted Alert

T77.447762462 192.168.0.104 30.31.164.173 TCP 66 Bx6dc9 (1225) 41606-443 [ACK] Seq=2951372361 Ack~1986202..
76 7.600611600 50.31.164.174 192.166.0.104 TCP 66 0x36b0 (39068) 443-54752 [ACK] Seq=1913549468 Ack=1534893..

80 7.684142361 192.168.0.104 50.31.164.174 TP 66 BxbB7d (47229) 54752-443 [ACK] Seq=153493105 Ack=1913549..
§17.689808870 50.31.164.174 197.166.0. 164 TCP 66 0x38b3 (39891) 43-54752 [ACK] Seq=1913549469 Ack=1534993.
837.911490963 PcsSyste d7:98:a4 HonkaiPr 41:e3:21 ARP 60 Who has 192.168.0.1647 Tell 192.168.9.165
§47.911505130 HonHaiPr 41:e3:21 PesSyste d7:98:ad ARP {2 192.168.0.164 s at 2¢:33:7a:4L:e3:1

Fig. (4.27) Execution of program without changing iptables

TCPHeader of RST packet is shown in Figure (4.28). It is appeared that
sequence number has value while acknowledgement number has no value. In

addition, RST bit is set. This property is due to abort connection.

CHAPTER FOUR,

RESULTS

v Transmission Control Protocol, Src Port: 4965, Dst Port: 8080, Seq: 831436168, Len: @

Source Port: 4965
Destination Port: 8086
[Stream index: 5]

Sequence number: 831436108
Acknowledgment number: @
Header Length: 20 bytes

» Flags: 0x004 (RST)

Fig. (4.28) TCPHeader of RST packet

67

CHAPTER FIVE

CHAPTER FIVE DISCUSSION, CONCLUSION S, AND FUTURE WORK.

CHAPTER FIVE
DISCUSSION, CONCLUSIONS, AND FUTURE WORK

5.1 Discussion

The environment of work was ubuntu 15.10. The work required dealing with
TCP / IP protocol suite internally. Socket API represented interface for that. Different
types of sockets existed depending on selected protocol of transport layer. In the
beginning of implementation, TCP socket was used. Because this type of socket just
sending data without creating headers, it had to be thinking about another type of
socket enables the configuration of headers. Raw socket provided this ability. It deals
with Internet layer directly.

Many of the existing tools based on the use of raw socket. Scapy (see
Appendix B) one of these tools. After Scapy experienced, it proves that it is not
suitable for performing task. A lot of problems appeared while using it. Such
problems are how to convert configuration to deal with layer 3, send and receive from
one port to another in loopback address ('127.0.0.1") because server concept requires
listening for specific port specified to specific service.

The task is achieved in the use of pure raw socket for injection packet to traffic
and capturing it from.

Server environment is needed. It was provided in using netcat utility in
conjunction with netstat and watch. Surely, another copy of operating system is
needed to operate server program. This is provided in set up virtual operating system
inside virtualbox after install it.

Linux environment facilitated the work. The installation process of necessary

packages is easy except it required fast Internet connection. Some of them installed

68

CHAPTER FIVE DISCUSSION, CONCLUSION S, AND FUTURE WORK.

from Ubuntu Software Center while the other from availability on Internet as
packages. For example Integrated Development Environment (IDE) for python

programming language is provided from Ubuntu Software Center.

5.2 Conclusions

In this thesis, a steganography system based on TCP/IP protocols was
constructed. The basic requirements for hiding data in such carrier were described.

A good combination for network programming was shown through python as a
modern programming language and Linux. TCP/IP header fields were found as a
good carrier for sensitive data to be hided. With few minor operations with the field's
contents, a secure carrier can be constructed. The serious issue was the restriction of
field's sizes, since it is limited to a fixed size. This limitation may restrict the size of
data in turn. Therefore, in order to send more data, the sender has to increase the
connections.

As compared with [ROW97], the proposed methods are transferring four bytes
through one connection while in [ROW97] one byte is transferred. The stego_key in
[ROW97] is a static value summed with the ASCII of each character to be transferred
while in the proposed methods its value is variable and contentiously changed. In
both [CIO06] and [SIN13], two algorithms' for encrypting and compressing are
applied to (4-byte) of data before transferring it. This leads to increase the used

resources for processing.

5.3 Future work
1. The proposed system can be developed by adding interfaces to program. It can

also make it as a tool running from terminal.

69

CHAPTER FIVE DISCUSSION, CONCLUSION S, AND FUTURE WORK.

2. Other fields can be exploited for hiding as sequence number as like
identification field in conjunction with sequence number. Other protocols can
be used and its fields combined with fields of IP and TCP protocol headers.

3. Step 3 of three-way handshake can be implemented and sending normal data
with hidden data in the header's fields as it happens in normal connection (i.e.
without hiding data).

4. Packet analysis can be on incoming and outgoing packets in addition to the
previous ones.

5. The data can be encrypted before hiding using modern algorithms of

encryption like Advanced Encryption Standard (AES)

70

REFERENCES

References

[AMI03] Amin, M. M., and et al, “Information Hiding Using Steganography”,
Universiti Teknologi Malaysia, 2003.

[BAU13] Baumgarten F., http://net-tools.sourceforge.net/man/netstat.8.html, 2013

[BEAO9] Beasley J. S., “Networking, Second Edition”, published by Pearson
Education, 2" Edition, 2009.

[BIS16] Biswas R., Samir K. B., “TCP Packet Steganography using SDA
Algorithm”, Journal of Scientific and Engineering Research, Vol 3, NO (2): p.p 47-
51, 2016.

[BURO7] Burns B. and et al, “Security Power Tools”, published by O’Reilly Media,
Inc., 1% Edition, 2007

[C1011] Ciobanu R., and et al, “Steganography and Cryptography Over Network
Protocols”, published in Roedunet International Conference (RoEduNet), 10"

Edition, pp. 1-6. IEEE, 2011.

[COL99] Coleman M. https://linux.die.net/man/1/watch, 1999

[COMO0O0] Comer D. E., “Internetworking with TCP/IP: Principles, Protocols,
and Architecture”, published by Prentice Hall, Inc., Vol. 1, 4" Edition, 2000.

71

http://net-tools.sourceforge.net/man/netstat.8.html
https://linux.die.net/man/1/watch

[DOR16] Dordal P. L., “An Introduction to Computer Networks”, free copy,
released under Attribution-NonCommercial-NoDerivs, Release 1.8.24, September
2016.

[FOROQ7] Forouzan B. A., “Data Communications and Networking”, published by
McGraw-Hil Press, 4™ Edition, 2007.

[FOR10] Forouzan B. A., “TCP/IP Protocol Suite”, published by McGraw-Hill
Press, 4™ Edition, 2010.

[FRY11] Frysigner M., http://nc110.sourceforge.net/, 2011

[GAN14] Gandhi, Dr. Ch. and et al “Packet Sniffer — A Comparative Study”,
published in International Journal of Computer Networks and Communications
Security, Vol. 2, No. 5, p.p. 179-187, May 2014.

[GUP14] Gupta R., Sunny G., and Anuradha S., “Importance and Techniques of
Information Hiding: A Review”, International Journal of Computer Trends and

Technology (1JCTT), Vol. 9, No. 5, March 2014.

[HOB] Hobbit, https://linux.die.net/man/1/nc,

[HUNO2] Hunt C., “TCP/IP Network Administration”, Published by O’Reilly
Media, Inc., 3" Edition, April 2002.

[JAN10] Jankowski B., Mazurczyk W., and Szczypiorski, K., “Information hiding
using improper frame padding”, published in proceedings of 14" international

telecommunications networks strategy and planning symposium (NETWORKS), p.p.

72

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://nc110.sourceforge.net/
https://linux.die.net/man/1/nc

77-82, 27-30 September 2010

[KATOO] Katzenbeisser S., Petitcolas F. A. P. “Information Hiding Techniques
for Steganography and Digital Watermarking”, published by Artech House, 2000.

[KERO7] Kerrisk M., http://man7.org/linux/man-pages/man?/raw.7.html, 2007

[KOZ05] Kozierok Ch. M., “The TCP/IP Guide: A Comprehensive, Illustrated
Internet Protocols Reference”, published by No Starch Press,Inc. , 2005.

[KUR13] Kurose J. F., Ross K. W., “Computer Networking A top Down
Approach”, published by Pearson Education, Inc., 6™ Edition, 2013.

[KUR14] Kurose J. F., Ross K. W., “Computer Networking: A top Down
Approach” .ppt, http://www-net.cs.umass.edu/kurose-ross-ppt-6e/, 2014

[LEF86] Leffler S. J. and et al “An Advanced 4.4BSD Interprocess
Communication Tutorial’, Computer Systems Research Group, Department of
Electrical Engineering and Computer Science, University of California, Berkeley CA
and Heterogeneous Systems Laboratory, Department of Computer Science,
University of Maryland, College Park, 1986
https://docs.freebsd.org/44doc/psd/21.ipc/paper.pdf.

[MAR13] Marsic I., “Computer Networks Performance and Quality of Service”,
published in Rutgers University, New Brunswick, New Jersey, 2013.

[MAZ08] Mazurczyk W., Szczypiorski, K., “Steganography of VoIP Streams”, In:
Tari, Z. (ed.) On the Move to Meaningful Internet Systems (OTM 2008), Monterrey,

73

http://man7.org/linux/man-pages/man7/raw.7.html
http://www-net.cs.umass.edu/kurose-ross-ppt-6e/

Mexico, LNCS, Vol. 5332, p.p 1001-1018, 9-14 November 2008.

[MAZ09] Mazurczyk W., Smolarczyk M., Szczypiorski K., “Retransmission
steganography and its detection”, Springer-Verlag, 2009.

[MAZ13] Mazurczyk W., Smolarczyk M., Szczypiorski K., “On Information
Hiding in Retransmissions”, published in telecommunication Systems: Modelling,
Analysis, Design and Management, Vol. 52, issue 2, p.p.1113-1121, 2013.

[MIL14] Mileva A., Boris P., “Covert Channels in TCP/IP Protocol Stack -
extended version-", published in Central European Journal of Computer Science,
Vol 4, NO (2). pp. 45-66, 2014.

[PERO5] Perrone Prof. L. F. , “CSCI 363 — Computer Networks”, Department of
Computer Science, Bucknell University,

http://www.eg.bucknell.edu/~cs363/wordpress/?page_id=88 , 2005

[PETO3] Peterson, L. L., Bruce, S. D.,”Computer Networks A Systems
Approach”, 3 Edition, 2003.

[ROH11] Rohankar, N. D., Deorankar, A. V., Chatur, Dr. P. N., “A Review of
Literature on Design and Detection of Network Covert Channel”, November
2011.

[ROW9I7] Rowland C. H., “Covert Channels in the TCP/IP Protocol Suite”, (First
Monday Journal on the Internet), Vol. 2, No. (5), May, 1997.

[SAN11] Sanders C. “Practical Packet Analysis”, published by No Starch Press,
74

http://www.eg.bucknell.edu/~perrone
http://www.eg.bucknell.edu/~cs363/wordpress/?page_id=88

2" Edition, 2011.

[SIN13] Singh J., Lalitsen Sh., “Framework for Efficient Secure Steganographic
Communication over Network Protocols”, International Journal of Advanced
Computer Research, Vol. 3, No. 4, Issue-13, p.p 146-150, December-2013.

[SZCO03] Szczypiorski K., “HICCUPS: Hidden Communication System for
Corrupted Networks”, In Proc. of: ACS’2003, Miedzyzdroje, Poland, p.p 3140,
October 22—-24, 2003.

[TANO3] Tanenbaum, A. S., Wetherall, D. J., “Computer Networks”, published by
Pearson Education, 4™ Edition, 2003.

[TAN11] Tanenbaum, A. S., Wetherall, D. J., “Computer Networks”, published
by Pearson Education, 5" Edition, 2011.

[WEL96] Welsh M., “Linux Installation and Getting Started”, published by Free

Software Foundation, Inc., 1996
[ZANO7] Zander S., Armitage G., Brancha P., “Survey of Covert Channels and

Countermeasures in Computer Network Protocols”, Vol. 9, No. 3, 3" Quarter
2007.

75

APPENDIX A

Iptables [HUNO2]

For any operating system, firewall was existing. The main role of it was
protecting network system from outside world by applying strict control for
accessing. When destination of packet was host behind firewall, the delivery would
be to firewall. In simple definition, firewall was a filtering router that detects
undesirable traffic. Filtering router was a combination of routing capabilities of multi
- homed Linux (i.e. does not foreword packet to IP layer but process packet through
application layer) and filtering features of iptables. The Linux kernel classified
firewall traffic into three categories and different filter rules was applied to each of
these categories

> INPUT: INPUT filter rules was tested incoming traffic that bounding for a
process on the local system before it was accepted.

» OUTPUT: OUTPUT filter rules was tested for outbound traffic that initiated
on the local system before it was sending.

» FORWARD: FORWARDING filter rules were tested for traffic from one

external system that bounding for another external system.

When system was represented as a host, the INPUT and OUTPUT rules were
used while the FORWARD rules were used when it was represented as a router.
iptables also accepted user — defined additional to these categories. The set of rules

was defined by Linux kernel is shown in table (1) below.

Table (1)
Option Function
-A Appends rules to the end of a rule set.
-D Deletes rules from a rule set.
-E Renames a rule set.

-F Removes all of the rules from a ruleset.

-1 Inserts a rule into a specific location in a rule set.

-L Lists all rules in a ruleset

-N Creates a user-defined rule set with the specified name.
-P Sets the default policy for a chain

-R Replaces a rule in a chain

-X Deletes the specified user-defined rule set

-Z Resets all packet and byte counters to zero.

Rules of firewall were a combination of filter with the packets that were
matched and action taken if a packet and filter was matching. The action could either
be a standard policy or jumping to rule set that was representing user-defined. The
command line -j target was either a user-defined ruleset or a standard policy for
packet handling. The name of a ruleset or standard policy that identified by a
keyword was represented target. These keywords are as follows:

» ACCEPT : packet was allowed to passing firewall

» DROP: Discard the packet.

» QUEUE: packet should be passed up to user space for processing.

» RETURN: returning to ruleset that called this ruleset in a user-defined ruleset.
The filters that were constructed using iptables command using different command-
line parameters which was as follows:

> -p protocol: specifies the protocol which was applied by rule. Protocol value

could be tcp, udp or icmp as keyword

» -s address [/mask] : specifies the source address of packet which was applied

by rule. Its value could be a host name, network name, or IP address.

> --sport [port [: port]]: specifies the source port of packets which was applied by

rule. The format port: port was represented as a range of ports could be

identified.

» -d address [/mask]: specifies the destination address of packet which was
applied by rule. Its value could be a host name, network name, or IP address.

» --dport [port [: port]: specifies the destination port of packets which was
applied by rule. All traffic was bounded to a specific port was filtered.

» --icmp-type type: specifies ICMP type which was applied by rule. Validated
message type number or name was referred to type.

» -i name: specifies the name of the input network which was applied by rule.
The packet was affected by this rule which was received on this interface

» -0 name: specifies the name of the output network which was applied by rule.

The packet was affected by this rule which was sent out this interface.
» -f: related with second and subsequent of fragmented packet that the rule was

referred.

APPENDIX B

SCAPY [BUR07]

1. Introduction

Scapy is a Python program written to manipulate network packets. It differs
from most other tools because it is not a shell command program but comes in the
shape of an interpreter. Actually, Scapy uses the Python interpreter evaluation loop to
let you manipulate classes, instances, and functions.

Scapy comes with some new concepts and paradigms that make it a bit
different from other tools in the domain of networking tools. With Scapy, packets are
materialized in the shape of class instances. Creating a packet means instantiating an
object, and manipulating a packet means changing attributes or calling methods of
this instance object.

The basic building block of a packet is a layer, and a whole packet is built by
stacking layers on top of one another. For example, a DNS packet captured on an
Ethernet link will be seen as a DNS layer stacked over a UDP layer, stacked over an
IP layer, stacked over an Ethernet layer. Because of this layering, using objects
allows for an almost natural representation and code implementation. By
implementing packets as objects, creating a packet from scratch is done in one line of
code while it would have taken many lines in C, even with the best libraries. This
allows for ease of use, and the user can implement and experiment with theoretical
attacks much faster.

Moreover, the logic of sending packets, sniffing packets, matching a query and
a reply, presenting couples, and tables is always the same and is provided by Scapy.
A new tool can be designed in three steps:

1. Create your set of packets.
2. Call Scapy’s logic to send them, gather the replies, parse them, match stimuli
and answers.

3. Display the result.

Scapy dissociates the information harvesting phase and the result analysis. For
example, you have to send a specific set of packets when you want to do a test, a port
scan, or a traceroute. The packets you get back contain more information than just
the simple result of the test and may be used for other purposes. Scapy returns the
whole capture of the sent and received packets, matched by stimulus-response cou-
ples. You can then analyze it offline, as many times as you want, without probing
again. This reduces the amount of network traffic and exposure to being noticed or
flagging some IDS.

This raw result is decoded by Scapy and usually contains too much information
for a human being to interpret anything right away. In order to make sense of the
data, you will need to choose an initial view of interpretation where a meaning may
become obvious.

The drawback of this that it requires many more resources than only keeping
what is useful for the current interpretation. However, it can save time and effort
afterwards. Also, refining an interpretation without a new probe is more accurate
because you can guarantee that the observed object did not change between probes.

Always working on the same probe’s data guarantees consistency of observations.

2. Working with Scapy

Scapy is not a traditional shell command-line application. When you run it, it
will provide you with a textual environment to manipulate packets. Actually, it will
run the Python interpreter and provide you many objects and functions that will
enable you to manipulate packets.

Scapy runs in a Python interpreter; because of this, you can leverage the full
functionality of Python. This means that you will be able to use Python commands,

loops, and the whole language when dealing with packets.

3. Creating and Manipulating Packets with Scapy

A network packet is divided into layers, and each layer is represented by a
Python instance. Thus manipulating a network packet is done by playing with
instances’attributes and methods representing the different layers of the packet.

Creating a packet is done by creating instances, one for each layer, and

stacking them together.

4. Scapy’s Limitations

While Scapy has numerous features, it does come with some quirks that the
user should be aware of. The first is that Scapy is not designed for fast throughput. It
Is written in Python, has many layers of abstraction, and it is not very fast. Do not
expect a packet rate higher than 6 Mbs per second. Because of these layers of
abstraction, and because of being written in Python, it may also require a lot of mem-
- ory. When dealing with large amounts of packets, packet manipulation becomes
uncomfortable after about 216 packets.

Scapy is stimulus-response-oriented. While you could do it, handling stream
protocols may become painful. This is clearly an area of improvement. Yet, for the
moment, it is possible to play with a datagram-oriented protocol over a stream socket
managed by the kernel.

It easily designs something that sniffs, mangles, and sends. This is exactly what
is needed for some attacks. But you will be disappointed in terms of performance or
efficiency if you expect Scapy to do the job of a router. Do not confuse Scapy with a

production mangling router that you could obtain with Netfilter.

ua=Alall

A8)) Y Al e) Adaal) dakaiall 4805 Jals Jolil) Adee (ym alii 3B
e slaall Lyl 5 Jaall dleal Litida 105 Jiay (53 (53 3al) paddll 8 (o peill 5] sl
panill Jud e el Jma sl (5% o (i s Aaga s Anlan Cila glaall o cilS 13 Aals
OLSEYT (e el 581 38 g lanagll a8 Jilie ULl 628 (el Cany 13gd 5 a4y & el
I Al yall Al (5 sina olia) Jia lauagl) o2 (e bl dlead (1Y) o sede Ha) b
(sl e il Cusans Al ALl 038 S ga g olia) o il e cailS

dea ol aia g Haiadl) Mia Jgia Craadind laaal bl sda gAY U jla caa G
Jsia g aadinl AV 5 saiiv #LS (TCP) Jlu)Y (A aSaill J oS 5550 (ol) (1
¥l Jsia aa (TCP) Y (8 oSl J oS 55 5 el (00 Agansl) Mg jraall 2iia
A pas ol 288 PR e Gadliddaall (TP) < yiY) J oS 55 ol e S 535l
O i a8) Jia HLEA) o5 srin - Ue ae Lo 5l o slladd) i) &l 0 (XOR)
oyl Al Aiaall clilall JBU 0 o< (TCP) Jla)Y (8 wSaill J 55 3 ol
aly Juail 8 Ll)5 daall 1 L

O dal 5 Gipa Jlu)] ad Lgie Baaly | 33 g gall 3dl) (e da il 3 dal) Caliag
e Al G pal da)l Jen) sy ds il 5 hll 8 Laiy aal) 5 Joai) JA
e IS el pen s 409 Calid) Uil Aot o3 3 sagudl ~Lihe L8 (aDIAY)
Aasiu) a8 o padiad ol weall ddes 5 ke 58 da el 3kl 8 Laiw sl (ASCI)
el Caanding LeiSly o yal dayyf Jla) a5 AV Gkl 3 4l (e a2 Il e . XOR
i g Ledania o3 38 G a1 (Y 2anll o) sall (e

5B ESPYYREN

ealad) Gal) g Alad) andail) 3) 3
O daala

polal) A4l

G gulal) o gle and

Juadodlll aB) S8 B adll LES)

il
Sl (a8 328) el B o stal) 205) i
Qalal) agle B piualall da i g

i (e
el e O

(Yo AeCmugl) Anala / o glad) A4S / G gualad) o gle (a5 511S5)

) i}
Al 2 ana Jlan

YOV AGl eils VEYA AY any

