
Ministry of Higher Education
and Scientific Research
Al-Nahrain University
College of Science
Department of Computer Science

Hiding Text in Sequence Number

Field of TCP/IP

A Thesis

Submitted to the College of Science / Al-Nahrain University in partial

 fulfillment of the requirement for the degree of Master of Science in

Computer science

By

Abeer Eesa Abed

(B.Sc Computer Science / College of Science / Al- Nahrain University, 2009)

Supervised by
Dr. Jamal M. Kadhim

January 2017 Rabie Al- Akhar 1438

Dedicated To …..

 Allah...

 Who was with me each pulse of

 my heart,

My Family, and

Every One Prayer for me …

Abeer

Acknowledgement

 I would like to thank Allah, who set me up stars that glittered

in the sky of my studies starter with my supervisor Dr. Jamal

Mohummed Kadhim. Deep appreciation and many thanks to him for

suggestion the subject, guidance, valuable assistance and advice,

 Grateful thanks to the Head of Computer Science Department

Dr.Ban Nadeem for kindness and attention,

 Deep gratitude and honest thanks to Dr. Haithem Abdeulateef

and Dr.Taha S. Bashagha for their encouraging words and

attention,

 Thanks a lot to staff of computer science department and my

friends for attention,

 And ended with my family specially my father and my mother.

I owe deeply grateful to them for their patience and help during my

studies and every one helped me and prayer for me.

Abeer

I

ABSTRACT

 The exchanging process inside Local Area Network (LAN) or through Internet

may be exposed to be stolen, altered or damaged by baleful person who was

represented as real threats to transport process and also to information especially if

this information was sensitive, important and must be accessed by only authorized

person. Wherefore this data must be secured against such threats. Many ideas was

suggested under security concept for protecting data from this threats such as hiding

content of the message sent which was named cryptography or concealment the

existence of such message which was named steganography.

 Two ways were suggested to hide this data. One of them used the source port

and destination port fields of the Transmission Control Protocol (TCP) header as the

Stego key. And the other use the combination of source and source port fields of the

Transmission Control Protocol (TCP) header with the protocol and version fields of

the Internet Protocol (IP) header. The process is summarized by the implementation

of the exclusive OR (XOR) between those data required to be hidden with the

STEGO key. A sequence number field was selected from the Transmitter Control

Protocol (TCP) to be the carrier for hidden data. Four characters are included in this

field and sent in one connection.

 The suggested methods differ from the existing methods. One of them was sent

one character through one connection while in the proposed methods four characters

are sent. In addition to this difference, the stego key that was used also differed.

Because the constant value will be collected with the ASCII character code. While in

the proposed methods are variable and the collection process is not used but XOR is

used. Although in the other methods four characters have been sent, but they used

many resources for execution because the characters have been compressed and

encrypted.

II

List of Abbreviations

Abbreviation Meaning

ACK Acknowledgement

AES Advanced Encryption Standard

API Application Programming Interface

ARPANET Advanced Research Projects Agency Network

ATM Asynchronous Transfer Mode

DES Data Encryption Standards

DF Do not Fragment

DNS Domain Name System

DoD Department of Defense

DS Differentiated Services

FIN Finish

FTP File Transfer Protocol

FSM Finite State Machine

HICCUPS Hidden Communication System for Corrupted Networks

HTTP Hyper Text Transfer Protocol

ICMP Internet Control Message Protocol

IGMP Internet Group Management Protocol

IHL IPHeaderLength

IP Internet Protocol

IPv4 IP version 4

III

ISO International Standards Organization

ISN Initial Sequence Number

MF More Fragment

MTU Maximum Transfer Unit

MSS Maximum Segment Size

NFS Network File System

NIC Network Interface Card

NS Network systems

OSI Open Systems Interconnect

OSPF Open Shortest Path First

PPP Point-to-Point Protocol

PSH Push

RSA Rivest-Shamir-Adleman

RST Reset

SLIP Serial Line Internet Protocol

SMTP Simple Mail Transfer Protocol

SNMP Simple Network Management Protocol

SYN Synchronize

SYN-ACK Synchronize- Acknowledgement

TCP Transmission Control Protocol

ToS Type of Service

UDP User Datagram Protocol

URG Urgent

VER Version

IV

Table of Algorithms

Algorithm Name Page number

Algorithm (3.1) Generate Packet 34

Algorithm (3.2) CreateIPHeader 35

Algorithm (3.3) Create TCPheader 36

Algorithm (3.4) Generate sequence number with srcdstports 38

Algorithm (3.5) Generate sequence number with srcport,

destport, protocol, and version

40

Algorithm (3.6) Receive SYN -ACK packet 42

Algorithm (3.7) Packet Capturing and Analyzing at Layer 3 43

Algorithm (3.8) Capturing Packet Function 44

Algorithm (3.9) Capturing and Analyzing at layer 2 46

Algorithm (3.10) Data Extraction using acknowledgement

number with srcdstports

49

Algorithm (3.11) Data Extraction with srcport, destport,

protocol and version

50

V

Table of Figures

Figure Name Page Number

Figure (2.1) TCP / IP Layers and Protocols 8

Figure (2.2) Encapsulation and Decapuslation 9

Figure (2.3) IP header format 11

Figure (2.4) TCP header format 14

Figure (2.5) Socket 17

Figure (2.6) Types of Sockets 19

Figure (2.7) Client – Server connection through TCP socket 20

Figure (2.8) Three way handshake 22

Figure (2.9) nc command 24

Figure (2.10) watch with netstat commands 25

Figure (2.11) nc with watch and netstat 25

Figure (2.12) watch with netstat commands after executing 25

Figure (3.1) the proposed system model 33

Figure (3.2) Stego-key from TCP Header 37

Figure (3.3) Stego-key from IP and TCP Headers 39

Figure (3.4) Data Extraction Module 48

Figure (4.1) source and destination addresses with the data-

First method

53

VI

Figure (4.2) source and destination ports – First method 53

Figure (4.3) data hiding process – First method – First

execution

53

Figure (4.4) Capturing and Analyzing – Layer 3- First

execution

54

Figure (4.5) Data extraction process – First method- First

execution

54

Figure (4.6) source and destination ports – First method –

Second execution

55

Figure (4.7) Data hiding process – First method – Second

execution

55

Figure (4.8) Capturing and Analyzing – Ethernet – First

method- Second execution

55

Figure (4.9) Data extraction process – First method- Second

execution

56

Figure (4.10) source and destination addresses, version,

protocol, data- Second method

56

Figure (4.11) source and destination ports- Second method-

First execution

56

Figure (4.12) Data hiding process – Second method – First

execution

57

Figure (4.13) Capturing and Analyzing – Layer 3- Second

method – First execution

57

Figure (4.14) Data extraction process – Second Method- First

execution

57

Figure (4.15) source and destination ports- Second method- 58

VII

Second execution

Figure (4.16) Data hiding process – Second method – Second

execution

58

Figure (4.17) Capturing and Analyzing – Ethernet – Second

method- Second execution

59

Figure (4.18) Data extraction process – Second Method-

Second execution

59

Figure (4.19) Changing iptables values 60

Figure (4.20) SYN packet 60

Figure (4.21) IPHeader of SYN packet 61

Figure (4.22) TCPHeader of SYN packet 62

Figure (4.23) SYN-ACK packet 63

Figure (4.24) IPHeader of SYN-ACK packet 64

Figure (4.25) TCPHeader of SYN-ACK packet 64

Figure (4.26) Execution of program after changing iptables 65

Figure (4.27) Execution of program without changing iptables 66

Figure (4.28) TCPHeader of RST packet 67

VIII

Table of Contents

Chapter one

General Introduction

1.1 Introduction 1

1.2 Literature Review 2

1.3 Aim of Thesis 3

1.4 Thesis Layout 3

Chapter Two

TCP / IP and Steganography under Linux Environment

2.1 Introduction 5

2.2 TCP / IP Reference Model 5

 2.2.1 Internet Protocol (IP) 10

 2.2.2 Transmission Control Protocol 13

 2.2.3 Packet Analysis 16

2.3 Client- Server Architecture 16

 2.3.1 Application Programming Interface 17

 2.3.2 Server 23

2.4 Information Hiding 25

 2.4.1 History of Steganography 26

 2.4.2 Modern Steganography 26

2.5 Linux 28

Chapter Three

Steganography in TCP/IP System Design and Implementation

IX

 3.1 Introduction 30

3.2 Text Hiding Using Sequence Number field Implementation 30

3.3 System Model 32

3.4 Sender Model 34

 3.4.1 Generate Packet 34

 3.4.2 Send SYN packet 41

 3.4.3 Receive SYN-ACK packet 41

3.5 Receiver Model 42

 3.5.1 Capturing and Analyzing process 43

 3.5.2 Data Extraction 47

 3.6 Server Model 51

Chapter Four

Results

4.1 Introduction 52

4.2 Results 52

Chapter Five

Discussion, Conclusions, and Future Work

5.1 Discussion 68

5.2 Conclusions 69

5.3 Future Work 70

References 71

CCHHAAPPTTEERR OONNEE

CHAPTER ONE GENERAL INTRODUCTION

1

CHAPTER ONE

GENERAL INTRODUCTION

1.1 Introduction

 After computer appearance and pervasion in most institutes like companies,

universities, and homes, the need for network appeared. Since these places had

limited hardware resources like printers, scanners...etc, so individuals, especially

employees needed to share these resources because each employee had no need to

have private printer. Also, after growth of most institutes which was represented by

having different branches distributed in different places like companies and

universities, so the individuals really need to communicate and at the same time to

exchange important information to do their work, so the need to connect these

institutes by network became necessary[TAN03].

 Network in simple case connect at least two computers using connection means

Network may be built in homogeneous form (i.e. every computer in network has the

same operating system ,Network Interface Card (NIC) … etc like LAN or in

heterogeneous form (i.e. every computer has different operating system, NIC, … etc)

like Internet . As a result, this development in communication means leads to

exchange huge information.

 The exchanging process inside LAN or through Internet may be exposed to be

stolen, altered or damaged by baleful person who was represented as real threats to

transport process and also to information especially if this information was sensitive,

important and must be accessed by only authorized person.

 Wherefore this data must be secured against such threats. Many ideas was

suggested under security concept for protecting data from this threats such as hiding

CHAPTER ONE GENERAL INTRODUCTION

2

content of the message sent which was named cryptography or concealment the

existence of such message which was named steganography.

1.2 Literature Review

 Previous works show many techniques used to hide data in TCP/IP protocol

suite either by using reserved or unused bits in headers and payload or by using

synchronization time of the packets or combine between them.

 Rowland [ROW97] applied his ideas to hide data using Initial Sequence

Number Field (ISN) (16-bit) of TCP by multiplying ASCII of each character with

(65536 * 256) to generate number which was placed as a sequence number value for

each connection. On receiver side, opposite process was applied to get the character

by dividing the sequence number's value on (65536 * 256). The big disadvantage,

when every character is transferred through a connection, is that many requests were

made to connect to the server without receiving Synchronize- Acknowledgement

(SYN/ ACK) packet would attract the attention.

 Ciobanu [CIO06] suggested SCONeP (Steganography and Cryptography

Over Network Protocols) and used ISN after solved the issue which was appeared in

[ROW97] by sending a Reset (RST) packet to abort a connection instead of an

Acknowledgement (ACK) packet after 4-bytes would be transmitted. The data was

encrypted and compressed before transferred.

 Singh [SIN13] implemented data hiding by using the identification field (16-

bit) with ISN field (32-bit) for disguising (6-bytes) of characters after encrypted it

using an algorithm which was chosen by the sender and whether to compress it or not

is determined by the sender.

Biswas [BIS16] was using the sequence number field as a carrier for Rivest-

CHAPTER ONE GENERAL INTRODUCTION

3

Shamir-Adleman /Data Encryption Standards (RSA / DES) key that was used to

encrypt the data then, the ciphertext was embedded in the data field. The receiving

packet was captured through wireshark application. After the ciphertext was taken

from the data field and obtaining the key from the sequence number field, the

ciphertext was decrypted to get the data.

1.3 Aim of Thesis

 The aim of thesis is hiding the data by using field of TCP header. It is

implemented by constructing the packet that consists of headers and payload. The

sequence number field of TCP header was chosen for performing data hiding and

sending it to network traffic. The intended recipient is captured the constructed packet

and extracted it to retrieve the original data.

1.4 Thesis Layout

 The remaining part of thesis was including four chapters as follows :

 Chapter Two: focuses on viewing TCP / IP model with their protocols

especially IP and TCP protocols and their headers, viewing the client – server

architecture in a brief manner and sockets. It was also viewing information

hiding and turning to steganography concept historically and recently. It is also

displaying Linux operating system that is considered the environment of work.

 Chapter Three: it is over viewed how to implement steganography using IP

CHAPTER ONE GENERAL INTRODUCTION

4

and TCP headers fields. It is also viewing a layout of system model, the

proposed methods required, and the functions for performing the work.

 Chapter Four: it is viewing the results of the implemented work.

 Chapter Five: it is viewing the discussion, the most prominent conclusions

about over all work and the future work.

CCHHAAPPTTEERR TTWWOO

CHAPTER TWO TCP / IP AND STEGANOGRAPHY UNDER LINUX ENVIRONMENT

5

CHAPTER TWO

TCP / IP AND STEGANOGRAPHY UNDER LINUX

ENVIRONMENT

2.1 Introduction

 The TCP/IP Reference Model and its layers are defined in a brief manner.

Internet Protocol (IP) and Transmission Control Protocol (TCP) are explained with its

headers. This chapter is also viewed the concept of client- server Model and packet

analysis. Because the Linux operating system is the environment, the description of

this system is displayed.

2.2 TCP / IP Reference Model

 The necessity for general model communicates hundreds of universities and

government installations which were communicated firstly by rented telephone lines

was appeared after satellite and radio networks appended to these communities

because this due to troubling interworking of existing protocols. So U.S. Department

of Defense (DoD) was sponsored research network which was known as Advanced

Research Projects Agency Network (ARPANET) that time and the main goal of it

was to override connectionless between connected multiple networks. Later this

model became known as TCP/IP Reference Model [TAN11].

 Functions of data communications protocols were described by an architectural

model which was known as Open Systems Interconnect (OSI) Reference Model that

developed by International Standards Organization (ISO). These functions were

defined by seven layers that comprised in OSI Reference Model.

CHAPTER TWO TCP / IP AND STEGANOGRAPHY UNDER LINUX ENVIRONMENT

6

 As mentioned, functions of data communications may be preceded by any

number of protocols so, layer did not define a single protocol but multiple as needed

by these functions. For example File Transfer Protocol (FTP) and Simple Mail

Transfer Protocol (SMTP) are two protocols for different user services that existed in

Application layer.

 OSI layers were helping to give description to TCP /IP with layered model.

Definition of layers for this model between three to five layers as functional levels

represented description for TCP / IP. This model consists of four layers where each

layer has its own functions and protocols as illustrated in Figure (2.1):

1. Link Layer or Network Access Layer: It is performed in a network adapter

that sometimes was known as NIC. The basic function of this layer is to

transfer datagram (explained later) from one node to another. Also there is

some other functions include framing, link access, reliable delivery and error

detection and correction [KUR13]. The technologies are used in this layer

include Ethernet (Local Area Network Technology). In Ethernet, a shared link

is used for sending and receiving by set of nodes. Token ring is another

technology. It simply means the set of nodes connected as a ring. Frame Relay

and Asynchronous Transfer Mode (ATM) are examples of virtual circuit

technologies. It requires setting up a connection before any data is sent

[PET03].

2. Internet Layer: The current Internet is using IP version 4 (IPv4). The main

functions of this layer are addressing, routing and fragmentation. Internet

protocol (IP) represents major protocol of this layer. In addition to IP, Address

Resolution protocol (ARP), Internet Control Message Protocol (ICMP), and

CHAPTER TWO TCP / IP AND STEGANOGRAPHY UNDER LINUX ENVIRONMENT

7

3. Internet Group Management Protocol (IGMP) also exist. Host – to – host

represents the property of connection [HUN02].

4. Transport Layer: the location of this layer is above internet layer. It mainly

provides end- to – end communication which means that the process on a

source host takes a message and deliver it to the process that runs on a

destination host. Transmission Control Protocol (TCP) and User Datagram

Protocol (UDP) are protocols that supplied by this layer.

5. Application Layer: it is the top layer of TCP / IP model. The process requests

from hosts and ensuring that connection is turned out to suitable ports is made

by this layer [BEA09]. Many of application protocols are included in this

layer. Type of these applications is different between providing user services

and system administration. Telnet, SMTP, FTP, and Hyper Text Transfer

Protocol (HTTP) are used as user services while Domain Name System (DNS),

Open Shortest Path First (OSPF), and Network File System (NFS) are used as

both user services and system administration [HUN02]. In addition to these

protocols, Simple Network Management Protocol (SNMP) operates on this

layer. It represents the standard of TCP/IP for network management.

CHAPTER TWO TCP / IP AND STEGANOGRAPHY UNDER LINUX ENVIRONMENT

8

Fig (2.1) TCP / IP Layers and Protocols

 When the data was being sent to a network, it should be passed down the stack

while its receiving should be passed up. TCP / IP four layered structure could be seen

as the data was passed down from Application layer. Control information related to

each layer would be added to the data through passing layer for ensuring the suitable

delivery. This control information was added in front of the data to be transferred and

it was known as a header.

 Each layer was considering the information that came from above layer as a

data and placed its own header before it. Adding of these control information was

known as encapsulation process. On receiving, the opposite process happened.

Before the data was passing to upper layer, each layer removed its own header since

OSI Model

Application Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

TCP/IP Model

Application

Layer

Transport Layer

Internet Layer

Network Access

 Layer

HTTP FTP DNS SNMP

TCP UDP

IP
ARP

IGMP ICMP

Ethernet Token

Ring

Frame

Relay

ATM

TCP/IP Protocol Suit

CHAPTER TWO TCP / IP AND STEGANOGRAPHY UNDER LINUX ENVIRONMENT

9

information was received; it was interpreted as header and data. This process was

known as decapuslation as illustrated in Figure (2.2).

Fig. (2.2) Encapsulation and Decapuslation

 The different terms were applied to different layers for expressing the data to

be transferred. Stream was known to the data that was used by TCP's Applications

while message was known to the data that was used by UDP's Applications. In

transport layer, TCP's data was named segment while UDP's data was packet.

Datagram represents the name of the data whether it was segment or packet.

 The different underlying networks were using different terminology for

expressing the transmitted data [HUN02].

 This model was also known as TCP/IP Protocol Suite. It clearly seems that

protocol suite consists of many protocols but its name came especially from the two

main protocols TCP and IP. TCP was a reliable connection oriented protocol, which

will be explained later while IP was a connectionless.

Application Layer

Transport Layer

Internet Layer

Network

Access Layer

 (a) Encapsulation (b) Decapsulation

Dat

a

Dat

a

Head

er

Dat

a

Head

er

Head

er

Dat

a

Head

er

Head

er

Heade

r

Dat

a

Dat

a

Head

er

Dat

a

Head

er

Heade

r

Dat

a

Head

er

Heade

r

Head

er

CHAPTER TWO TCP / IP AND STEGANOGRAPHY UNDER LINUX ENVIRONMENT

10

2.2.1 Internet Protocol (IP)

 It was considered the major protocol in Internet layer. It was responsible for

providing addressing and routing globally. So, it supports universal connectivity.

Also, it supports fragmentation [DOR16]. The most important characteristic is that it

was best effort or connectionless. The meaning of best effort is that the datagram

could be lost, corrupted or reaching out of order [FOR07] while connectionless

means that before transmitting the data, there was no exchanging control information

(known as handshake) to establish end – to end connection that was provided by

connection oriented protocol for example TCP. So, it did not provide

acknowledgment or retransmission when packet loosed or out of order. Because

connection oriented was required, IP must depend on protocols of upper layer that

provided it [HUN02].

 As mentioned previously, the data defined as datagram that means different

routes would followed by datagram through transferring from source to destination.

IP is known as IPv4 because (4) is the current version.

 Datagram consists of header and payload. The length of header was variable

and ranges between 20-60 bytes proportion to the existence of option field. This

variation results in variable length datagram. The header of IPv4 is shown in Figure

(2.3) [FOR07] includes:

 VER (version): it is a 4-bit length. It indicates the format of IP datagram that

is IPv4.

 IHL: this field specifies IPv4 Header Length in 4-bit. Its value either 5 words

(20 bytes) that are representing default value if there is no option field or 15

words (60 bytes) otherwise.

 Type of Service or DS (Differentiated Services): it is an 8-bit length and over

CHAPTER TWO TCP / IP AND STEGANOGRAPHY UNDER LINUX ENVIRONMENT

11

years it took different definition but the most famous is Type of Service (TOS).

It is mainly representing how the packets would be processed through

transferring component networks according to the necessity of application such

as priority of packet.

Fig. (2.3) IP header format [FOR07]

 Total Length: it is a 16-bit length and represents the length of datagram. Since

it is 16-bit so, the maximum size of datagram would be 65,535. This seems to

be too large to encapsulate by physical network due to fragmentation

appearance.

 Identification Field: it is a 16-bit and it is mainly used in fragmentation

process to identify fragments of one packet from other since each fragment

belongs to the same packet has the identification field value incremented by 1.

 Flags Field: it is a 3-bit length. This 3-bit is interpreted as first bit is reserved,

second bit Do not Fragment (DF) which means do not fragment datagram but

datagram will be discarded if this is set and its size is larger than Maximum

CHAPTER TWO TCP / IP AND STEGANOGRAPHY UNDER LINUX ENVIRONMENT

12

Transfer Unit (MTU), and last bit is More Fragment (MF) bit. When it is set,

this means the fragment is part of the original and every MF's fragment is set

except the last.

 Fragment Offset: it is a 13-bit length and it is assigned to every fragment

inside one datagram. Since it is 13-bit, so there exist 8192 fragments per

datagram.

 Time-to-Live: it is an 8-bit length. This field's value is helping to prevent

packet from routing loops by assigning it an initial value. This value is

decremented by 1 at each router until it is reached to 0[FOR07].

 Protocol: it is an 8-bit length and its value identifies protocol of above level

that carried by IP datagram. This helps the receiver when decapsulate the

received packet to decide higher level protocol should deliver its payload that

included next header of upper layer. The value of this field is 6 for TCP, 17 for

UDP and 1 for ICMP.

 Header Checksum: it is a 16-bit length and its benefit to detect error of the

datagram. The value must be updated after router modifies Time to Live field

when it decremented it and fragmentation fields if fragmentation happened. To

calculate checksum of header, one's complement to result of using one's

complement arithmetic to adding up 16-bit half words of header. So when

datagram is arrived a router, the router compare computed checksum with the

one of the received packet. If it differs, the datagram must be discarded

because header is corrupted [TAN11].

 Source Address: it is a 32-bit length and is clearly representing source IPv4

address where datagram is created. It refers to network interface not to host. It

is represented as a dotted decimal notation that means each byte of 4-bytes

takes values in a decimal between 0-255[TAN11].

CHAPTER TWO TCP / IP AND STEGANOGRAPHY UNDER LINUX ENVIRONMENT

13

 Destination Address: it is a 32-bit length and it is representing intended

destination IPv4 address where the packet must be reached.

 Options: its role could be summed up including the information that does not

exist in the original design. Its length is variable. Such options like security,

Strict source routing, loose source routing, Record route and Timestamps.

Today option fields scarcely used [TAN11].

2.2.2 Transmission Control Protocol (TCP)

 TCP is a connection oriented protocol, meaning that the data must be

transferred after the connection is established. In addition to establish connection and

data transmission, the connection must be released. Because it uses sequence number

(described later) to ensure delivery correctness and confirmed no data was lost when

network failure occur by applying retransmission / timeout mechanism, so it was

considered a reliable protocol. It is also using sliding window algorithms to transfer

large files. Also, it is stream-orientation because it uses buffer in sending and

receiving and this enable application to write very small or an amount of data and

divide it into appropriate size [DOR16]. It is also process – to – process

communication through using port numbers [FOR10]. Port numbers from (1- 1023)

are system ports. Port numbers from (1024- 49151) are registered ports while ports

from (49152-65535) are private ports.

 TCP segment consists of header part and data part. As shown in Figure (2.4),

the header part fields are:

 Source Port Address: it is a (16-bit) length and its role is identifying sending

service in.

 Destination Port Address: it is a (16-bit) length and its role is identifying

receiving service from.

CHAPTER TWO TCP / IP AND STEGANOGRAPHY UNDER LINUX ENVIRONMENT

14

 Sequence Number: it is a (32-bit) and it is assigned to every byte of TCP

segment since TCP is byte stream as mentioned previously. When the sequence

number must be generated randomly through establishing connection, SYN bit

flag should be set and it was known as ISN.

 Acknowledgment Number: it is also a (32-bit) and it is essentially

representing the sequence number that expected to receive as a next data byte.

ACK bit should be set with this field [FOR10][MAR13].

 Fig. (2.4) TCP header format [FOR07]

 HLEN: also known as offset field. It determines TCP header length as 32-bit

words. Since header length was variable depending on option field existence

so, the regular value would be 5 words (20 byte) if option field does not exist

while it is 15 (40 byte) with existence [MAR13].

 Reserved: it is also known as unused field. It is set to 0 since it is specified for

using in future.

 Flags : six flags are contained in this field as follows :

CHAPTER TWO TCP / IP AND STEGANOGRAPHY UNDER LINUX ENVIRONMENT

15

 URG (Urgent): describes the data of urgent pointer. It is validated when

it is set

 ACK (Acknowledgment) : this field tells recipient to take attention of

acknowledgement number since it is set when the field of acknowledgement

number of header is valid

 PSH (Push): when it is set, the received data must be passed to the

receiving application by TCP receiver.

 RST (Reset): a setting of this field means that the receiver must abort a

connection because some conditions are abnormal. For example when the received

segment is not expected by the sender so the connection is aborted like port

scanning that is performed by an attacker.

 SYN (Synchronize): the connection establishment required setting this

bit.

 FIN (Finish): when TCP sender does not have any data to send to TCP

receiver, this bit must be set to inform that. Although TCP sender has no data to

be sent, it can receive a data from TCP receiver until it sends segment with FIN bit

setting.

 Window: it specifies the number of bytes that the sender can accept when it

represents as a TCP receiver. This important to control flow of data and

congestion.

 Header Checksum: this field is useful to detect errors in the receiving

segment.

 Urgent Pointer: the value of this field should be added to the sequence

number value when URG- bit is set. The data in the received buffer should be

considered urgent when it is pointed by this field.

 Option and padding: the functions that do not cover by a regular TCP header

CHAPTER TWO TCP / IP AND STEGANOGRAPHY UNDER LINUX ENVIRONMENT

16

may be provided through this field. The maximum length of this field is 40-

byte and extra padding bits must be added when its length is not a multiple 32-

bit [MAR13].

2.2.3 Packet Analysis

 Packet analysis, often named as a packet sniffing or protocol analysis,

symbolizes to the capturing and interpreting process of live data when it flows via a

network. The tool was known packet sniffer was used to capture a raw network data

via the wire.

 Packet analysis could help to understand the characteristics of network,

studying who is on a network, the determination of peak network usage times, the

determination of malicious activity or possible attacks, and finding out unsecured

applications.

 The packet-sniffing process included three steps [SAN11]:

1. Collection: the purpose of this step is collecting a binary data from

transmission media whether it was wire or wireless.

2. Conversion: after collecting the binary data, it must be converted to a legible

form.

3. Analysis: this is the final step where analyzing the captured and converted

data.

2.3 Client- Server Architecture

 This architecture was defining two hosts. One of them was services allocation

known as a server and the other represents all hosts that request services known as

CHAPTER TWO TCP / IP AND STEGANOGRAPHY UNDER LINUX ENVIRONMENT

17

clients. The web application represents an example for this architecture where

browser (client) sends requests to web server (server). Actually these services could

be considered as processes (program in running) and exchanged between two hosts as

messages. These messages must be passed through the underlying network in sending

and receiving. So to perform this process, a software interface (socket) was needed

[KUR13].

2.3.1 Application Programming Interface

 Socket or Application Programming Interface (API) represents the important

interface in writing network applications. Its position between Application layer and

Transport layer as shown in Figure (2.5) so the application developer would be

controlled application layer widely while controlling transport layer was little. The

type of the used protocol and maximum buffer should be received could be

determined by an application developer [KUR13].

 Fig.(2.5) socket [KUR14]

 Sockets could be classified according to the properties of communication

apparent to user. For processes communication, sockets of the same type were

CHAPTER TWO TCP / IP AND STEGANOGRAPHY UNDER LINUX ENVIRONMENT

18

supposed. There were four types of sockets as follows [LEF86]:

1. Stream socket: this type was provided for bidirectional, reliable,

sequenced, and unduplicated flow of data without record boundaries.

2. Datagram socket: this type was provided only for bidirectional but not

for sequenced, reliable, or unduplicated data flow.

3. Raw socket: this type was provided for accessing underlying

communication protocol. It was datagram- oriented and mainly

dependent on interface provided by protocol. It was not specified for

general user but for ones that concerned in accessing some facilities that

esoteric of an existing protocol or development new communication

protocols.

4. Sequenced packet socket: it was a part that provided in Network systems

(NS) socket abstraction. It was similar to stream socket except that

preservation of record boundaries.

 Figure (2.6) states the relation for each socket with protocol related to it. The

most important property of a raw socket that was allowing new protocols of IPv4 to

be performed in user space. Sending or receiving raw datagram without header of

link layer was provided by raw socket [KER07].

There are many types of socket's functions. The socket function that was used

for creating socket was socket while the others that were used in connection included

connect, bind, listen, and accept. Another type of functions was used for sending the

data over socket included send and sendto while recv and recvfrom were used for

receiving data from socket [KER07].

CHAPTER TWO TCP / IP AND STEGANOGRAPHY UNDER LINUX ENVIRONMENT

19

 Fig. (2.6) Types of Sockets

 Figure (2.7) explains TCP client – server connection. It clearly seems that

server's Listen function is waiting for a request from a client through connect()

operation. After server accepted client's request, the connection is established and

data will be transferred.

 Application User
 Layer Space

 Datagram Raw Stream
 Socket Socket Socket

 Transport Kernel
 Layer Space

 Internet
 Layer

 Network Hardware

 Access

 Layer

 Network Medium

Network Interface Hardware

IP

TCP UDP

Applicatio

n
Application Application

CHAPTER TWO TCP / IP AND STEGANOGRAPHY UNDER LINUX ENVIRONMENT

20

 Fig. (2.7) Client – Server connection through TCP Socket [PER05]

a. TCP Establishment Connection

 Before TCP establishment connection explained, types of exchanged messages

must be mentioned. Three types of messages were using three abbreviations with

respect to TCP header flags. These are:

 SYN (A Synchronize message): an initiating and establishing a connection

happened when this bit set. Because one of its functions was to synchronize

sequence numbers, so it was named as SYN message.

CHAPTER TWO TCP / IP AND STEGANOGRAPHY UNDER LINUX ENVIRONMENT

21

 FIN (A Finish message): when a device wants to terminating a connection,

the FIN bit set.

 ACK (An Acknowledgment message): a reception of a message such as a

SYN or a FIN was indicated when this bit set.

 The establishing connection between a TCP client and server included the

following three steps as shown in Figure (2.8):

 A SYN message was sent by client.

 A message was sent from server combining an ACK for the client’s SYN and

contains the server’s SYN.

 Finally, an ACK sent from client for the server’s SYN.

 SYN and ACK messages used for establishing a connection. The Initialized

connection from segment indicated by SYN. SYN represents synchronize that refers

to sequence number synchronization duty. The device that sending a segment is

transferring an acknowledgment when it is received a message.

 Sequence of steps that was taken in a TCP session could be represented as

Finite State Machine (FSM). FSM is a theoretical tool used for a protocol description.

The concepts of FSM are as follows:

1. State: the protocol software on a machine is described through this status at a

given time.

2. Transition: the moving from one state to another is representing this concept.

3. Event: a transition between states is occurred by something causes that.

4. Action: before device transitions to another state, it did something for response

to an event.

All the different states the protocol could be in, the events that could be happen, the

CHAPTER TWO TCP / IP AND STEGANOGRAPHY UNDER LINUX ENVIRONMENT

22

actions were taken for responsive to the events and the transition occurs as a result

are explained by an FSM.

 Table (2.1) describes each state and its description of the client and server in

the establishment of connection.

Fig. (2.8) three-way handshake

Table (2.1) states and state's description

State State Description

CLOSED Each connection started with the default state (CLOSED) before

connection established

LISTEN Related to device that waiting to receive SYN message (server)

CHAPTER TWO TCP / IP AND STEGANOGRAPHY UNDER LINUX ENVIRONMENT

23

SYN-SENT Related to device that sending SYN message (client)

SYN-RECEIVED Related to device that receiving SYN message (server) and

waiting for ACK message after sending its own SYN

ESTABLISHED Means TCP connection was opened

Segment with the RST bit was created by the device that wants to reset connection

so that the connection could be reestablished. To ensure that the action is valid, the

value of sequence number field was checked to guarantee that it belongs to the reset

itself. The handling of message when reset is valid depends on device's state that it

receives as follows [KOZ05]:

 If the state of device is LISTEN, the reset is ignored.

 If the state of device is SYN-RECEIVED but LISTEN was the previously

state, it will return to the LISTEN state.

 The device returns to the CLOSED state for that connection because the reset

aborted the device connection.

2.3.2 Server

 Server model can be programmed or using tools. netcat (also known as nc)

represents Unix utility that is dealing with reading and writing data through the

connection of network by using protocols of transport layer.

 It is a reliable tool either used by other programs or scripts or used directly.

Netcat can be used as a server by doing reading or writing for inbound connections

on arbitrary ports by listening [FRY11].

 There are many options that is used by nc but two options are concerned:

CHAPTER TWO TCP / IP AND STEGANOGRAPHY UNDER LINUX ENVIRONMENT

24

1. -l: listening for an incoming connection by nc and not initiate connection.

2. -p source_port : nc should use source port specified by this option[HOB].

 nc command executed through terminal shown in Figure (2.9)

Fig (2.9) nc command

 Another tool which is used in conjunction with nc that is netstat. Netstat

("network statistics") have many advantages like displaying network connections

whether it is incoming or outgoing, routing tables and a number of network interface

and network protocol statistics. It is available in many operating systems like Linux,

Windows, etc. Finding problems in the network and the performance measurements

by determining the amount of traffic on the network are implemented through this

tool.

 Netstat like nc uses many options but two options of them are concerned:

 -n: instead of determining symbolic host and port, the numerical addresses are

showing.

 -a, --all : showing both listening and non-listening sockets through this

option.

All active connections to the server are shown through netstat –an [BAU13].

 Running command repeatedly and displaying of output is performed via

watch. It has ability to change watching program output over time. By default, every

two seconds, program is executed [COL99]. Watch command used with netstat as

shown in Figure (2.10)

CHAPTER TWO TCP / IP AND STEGANOGRAPHY UNDER LINUX ENVIRONMENT

25

Fig (2.10) watch with netstat commands

the terminals with nc and watch with netstat shown in Figure (2.11)

 Fig. (2.11) nc with watch and netstat

After executing watch with netstat commands, it will seem as shown in Figure (2.12)

Fig. (2.12) watch with netstat commands after executing

2.4 Information Hiding

 Information or data is an important resource. After the communication was

developed through the emergence of network, the information or data was transferred

through communication media. Transmission means do not provide any security to

protect it from unintended recipient through transmission so that, finding methods for

CHAPTER TWO TCP / IP AND STEGANOGRAPHY UNDER LINUX ENVIRONMENT

26

protecting it became very necessary.

 Many types of data required protection such as personal and private data,

sensitive data, trades secret and confidential data, avoiding misapplied data...

etc[GUP14].

 Many ideas were defined to protect it. Some of these were depending on hiding

the content of data (cryptography) while the others were depending on concealment

the existence of it (steganography). In this thesis, steganography was considered

direction for hiding information but it was necessary to view the meaning of

steganography historically and recently.

2.4.1 History of Steganography

 Previously, especially in ancient Greece, Herodotus (c. 486-425 B.C.) was told

about how a message was sent for inciting mutiny against the Persians. So to

guarantee that anyone could not notice that, Histiæus chose the most faithful slave

and shaved his head, tattooed it with the required message and waiting until his hair

had regrown, then he was sent[KAT00].

2.4.2 Modern Steganography

 Recently, with computer and information technology emergence, information

hiding takes another direction by using text, image, audio and video which were

representing a suitable carrier for transferring secret information. Also, Protocols of

TCP / IP protocol suite can be utilized to transfer these information which was known

Network Steganography protocol [SIN13]. It was introduced firstly by Krzysztof

Szczypiorski in 2003 through implementing hidden data in Hidden Communication

CHAPTER TWO TCP / IP AND STEGANOGRAPHY UNDER LINUX ENVIRONMENT

27

System for Corrupted Networks (HICCUPS) [SZC03]. Before that, the concept that

was known as covert channel produced by Lampson in 1973 which provides

desirable environment. It means utilizing unused fields of network protocols or

changing uncritical data [ROH11]. This leads to create a carrier to hide information

far away protocol specification. Because the requirement of steganography for carrier

to hide information, the network steganography can be implemented through

existence of covert channel [CIO06].

 There were many types of covert channel depending on what was using as a

carrier:

 1. Storage Covert Channel: a shared resource was used by one process to write and

 was read by other process [MIL14].

 2. Timing Covert Channel: in this channel, an event's timing was used for covering

 information.

 3. Hybrid Covert Channel: a combination of the two previous channels was used.

 Network steganography methods could be intra - protocol or inter- protocol

where intra- protocol was using a single protocol to perform the hidden

communication while inter-protocol was using two or more protocols to hide

information [JAN10].

Intra – protocol methods could be classified depending on which part was exploited

as described in covert channel above to:

1. Methods that are modifying protocol structure whether it was payload, headers

or both for example IP, TCP, UDP headers.

2. Methods that are modifying relations of time between Protocol Data Unit by

modifying delay or order of packets

3. Methods that are modifying both structure and time relations [MAZ13].

 It was obvious whether in historical or modern steganography, this process

CHAPTER TWO TCP / IP AND STEGANOGRAPHY UNDER LINUX ENVIRONMENT

28

needed essential elements for hiding as follows:

1. Carrier: also known as cover- object and defined as the place where a message

was included and concealed existence of it.

2. Message: represented the data which the sender wants to be secret.

3. Password: also known as a stego – key that represented a decoding key which

was known only by the recipient and hence would be extracting the hidden

data from the cover object [AMI03].

Analysis of these covert channel could be performed by calculation the number of

bits (steganogram) transferred during a packet according to the equation supposed by

[MAZ08] :

 ………… (2.1)

where:

 PRBRNS (Packet Raw Bit Rate) denotes the bandwidth of the covert channel

created by IP/TCP/UDP steganography [bits/packet],

 SB0 is the total amount of bits for IP/TCP/UDP protocols that can be covertly

sent in the fields of the first packet. This value differs from the value that achieved

for the following packets because in the first packet the initial values of certain

fields can be used (e.g. sequence number for TCP protocol),

 SBj denotes the total amount of bits for IP/TCP/UDP protocols that can be

covertly sent in the fields of the following packets, and

 l is the number of packets that sent besides the first packet.

2.5 Linux

 Linux was a copy of UNIX operating system. Personal computers represented

with Intel 80386 one of variety of platforms that Linux run on. A wide range of

software was supported like GNU C/C++ compiler, TCP/IP. Multitasking and

multiuser were properties of Linux as same as the other versions of UNIX.

CHAPTER TWO TCP / IP AND STEGANOGRAPHY UNDER LINUX ENVIRONMENT

29

 Ext2 file system was supported by Linux as various file systems supported by

it that is used to storing data. Advanced features like the protected-mode that

provides multitasking, descriptor based, and memory-management paradigm was

used by Linux after developing it. Disk paging was implemented by Linux for

increasing the amount of memory.

 Dynamically linked and shared libraries were used by executable files which

occupy a little disk space and supported by Linux. Routines that implemented by

programmer could be used instead of standard ones.

 The standard libraries, programming tools, compilers, and debuggers that

embedded in UNIX programming environment which provided by Linux.

 TCP/IP networking software also provided by Linux and many Ethernet cards

and interfaces also provided. Also accessing Internet through modem was provided

by supporting Serial Line Internet Protocol (SLIP) and Point-to-Point Protocol (PPP)

[WEL96].

CCHHAAPPTTEERR TTHHRREEEE

CHAPTER THREE STEGANOGRAPHY IN TCP / IP SYSTEM DESIGN AND IMPLEMENTATION

30

CHAPTER THREE

STEGANOGRAPHY IN TCP / IP SYSTEM DESIGN AND

IMPLEMENTATION

3.1 Introduction

 The proposed system model is viewed in this chapter. All the proposed

methods for three-way handshake and generation of a sequence number are

displayed. Sending request (SYN packet) and replying (SYN-ACK packet) that

represents the two steps of three-way handshake are implemented. The two proposed

methods for hiding text in a sequence number field are executed. The two proposed

methods for extracting the hidden data are viewed too.

3.2 Text Hiding Using Sequence Number field Implementation

1. Although, there are fields that are suitable for hiding like reserved or option

fields of TCP header protocol but sequence number was chosen for hiding

information. A reserved field is not used because it is designed for future use.

All bits set to zero so any change to its values may attract attention. Although

the option field size up to (40- byte) but it is susceptible to filtering. This leads

to exclude from hiding.

2. The choice of using sequence number field means that TCP and IP headers

must be created manually because in the normal transmission of data in client –

server architecture, operating system's kernel was taking care of adding

required headers.

3. As mentioned in chapter 2, IP and TCP header have variable size between 20-

CHAPTER THREE STEGANOGRAPHY IN TCP / IP SYSTEM DESIGN AND IMPLEMENTATION

31

60 bytes depending on the existence of an option field. In the proposed system,

the option field was not taken into consideration.

4. Some fields of the two protocol headers must remain unchanged through data

transmission while others must be changed.

5. The unchanged fields of IP protocol header are version, header length, and type

of service. Other fields like identification, flags, and fragment offset that

specified for fragmentation strategy are changed through fragmentation, total

length, time to live, checksum, source address and destination address will be

changed. Protocol field has (6) value that is pointed to payload of IP header is

TCP segment.

6. In other side, fields of TCP header like source port, destination port, sequence

number, acknowledge number, flags, checksum, and window fields should be

changed through transmission.

7. Regardless of which operating system was used, root privilege level access

should be used since custom header of packet was created.

8. As mentioned earlier, through packet creation, the sequence number field was

used in hiding data. In the proposed system, two methods for generating and

hiding data in sequence number field were used.

i. In the first one, source and destination ports of TCP header fields were

used.

ii. A combination of fields from IP and TCP protocols headers (source and

destination ports, version, and protocol) were used to generate the

sequence number field in the second method.

9. Sending packet that included the hidden data in sequence number field was in

SYN packet. As described earlier, SYN packet is the first packet in three way

handshake process.

CHAPTER THREE STEGANOGRAPHY IN TCP / IP SYSTEM DESIGN AND IMPLEMENTATION

32

10. Receiving packet to extract the hidden data was in SYN-ACK packet which

represents the second packet in three way handshakes and also acts as a reply

to the connection request from sender.

3.3 System Model

 The structure of the proposed system for Hiding Text in TCP / IP is illustrated

in Figure (3.1). It consists of three models. The sender (client), server and receiver

are the three models respectively.

 Three parts are in the sender model. These parts are: create packet, send SYN

packet, receive SYN-ACK packet. The second model is the server. The main function

of the server is to listen for the connection and reply to the sender. The last model is

the receiver model. It consists of three parts. These parts are: capturing packet,

analyzing packet and data extraction procedures.

CHAPTER THREE STEGANOGRAPHY IN TCP / IP SYSTEM DESIGN AND IMPLEMENTATION

33

 Receiver Model

Fig. (3.1) the proposed system model

TCP header

Destination and

Source ports with version

and protocol fields

Destination and

Source ports

Data Stego_Key

Generate Sequence

Number

User

IP header

 TCP / IP Layers Sender Model

Server Model

CHAPTER THREE STEGANOGRAPHY IN TCP / IP SYSTEM DESIGN AND IMPLEMENTATION

34

3.4 Sender Model

 As described previously, the main parts of the sender model were generating a

packet, sending SYN packet and receiving SYN-ACK packet. The description of

these parts will be described in the next section.

 3.4.1 Generate Packet

 The process of creating IPHeader, TCPHeader, and the final packet to be sent

to the server were the main functions of this module as described in algorithm (3.1).

Each function in this module will be described separately in the next section.

a. Create IPHeader Function

 The process of creating the IPHeader was the main purpose of this function. In

the beginning of this function, all fields of IPHeader were initialized. IP source and

Algorithm (3.1) Generate Packet

Input:

 None

Output:

 Packet consists of IPHeader +TCPHeader + Data

Begin

Step 1: calling createIPHeader function

Step 2: read data to be hidden

Step 3: calling createTCPHeader function

Step 4: create packet

Step 5: return packet

End

CHAPTER THREE STEGANOGRAPHY IN TCP / IP SYSTEM DESIGN AND IMPLEMENTATION

35

destination addresses must be converted to network byte order. Version and

IPHeaderLength(IHL) must be combined in one byte because each of them was 4-bit

as follows :

 version_ihl= version << 4 + IHL ……….. (3.1)

and flags was 3-bit. It must be combined with offset as shown below

 flags_offset= flags << 13 + offset ……………. (3.2)

 The pack function of struct library in python was used for gathering the fields

of IP header together. Steps of this function are illustrated in algorithm (3.2)

b. Create TCPheader function

 Like previous function, the purpose of this function is the same as the previous

Algorithm (3.2) CreateIPHeader

Input:

 None

Output:

 IPHeader

Begin

Step 1: set source and destination addresses as global variables

Step 2: set values to source and destination addresses

Step 3: pass source and destination addresses to IP class's object

Step 4: set result of grouping IPHeader's fields to iph variable

Step 5: return

End

CHAPTER THREE STEGANOGRAPHY IN TCP / IP SYSTEM DESIGN AND IMPLEMENTATION

36

one but the difference was to create TCPheader not IPHeader. In this function, the

fields of TCPHeader were initialized.

 Port number was selected randomly between (1024-65535). Destination port is

chosen to be (8080).

 As mentioned before, the carrier object for hiding data was the sequence

number field. It must be random to prevent overlap in establishing connection. The

generation of sequence number will be explained in the next section.

 Since creating the packet were to establish connection, SYN bit field must be

set. All the other control flags were set to 0. Steps of this function are illustrated in

algorithm (3.3).

Algorithm (3.3) Create TCPheader

 Input:

 Data to be hidden

 Output:

 TCP header with hidden data

 Begin

 Step 1: set source and destination ports as global variables

 Step 2: set result of random function to source port

 Step 3: set value (8080) to destination port

 Step 4: set value (empty string) to data

 Step 5: pass source and destination ports to TCP class's object

Step 6: changing value of sequence number

Step 7: set SYN bit

CHAPTER THREE STEGANOGRAPHY IN TCP / IP SYSTEM DESIGN AND IMPLEMENTATION

37

i. Generate Sequence Number

 As described earlier, two methods are applied to hide data through the

 sequence number field. These methods are as follows:

1. Using TCP Header Fields

Source and destination ports were chosen to be a stego – key as

shown in Figure (3.2). The generation of source port will be random

through using random function in python.

 A hiding is accomplished by using XOR operation. Since XOR is

a logical operation, so all values were converted to binary. The steps of

this function are illustrated in algorithm (3.4).

Fig. (3.2) Stego-key from TCP Header

Step 8: set length of data to data length field

Step 9: set result of pack function (grouping TCPHeader fields) to tcph variable

Step 10: return TCPHeader with the hidden data

End

TCP Header

Source Port (16-bit) Destination Port (16-bit)

Stego-Key

CHAPTER THREE STEGANOGRAPHY IN TCP / IP SYSTEM DESIGN AND IMPLEMENTATION

38

2. Using IP and TCP Header Fields

This method is the same as the previous one except that the

destination port will be altered. Version and protocol fields from

Algorithm (3.4) Generate sequence number with srcdstports

Input:

 Data to be hidden, source port, destination port

Output:

 Sequence number with hidden data

Begin

Step 1: converting data's characters to decimal

Step 2: convert result of step1 to binary

Step 3: set result of step 2 to bindata variable

Step 4: converting source port to binary

Step 5: set result of step 4 to binsrcport variable

Step 6: converting destination port to binary

Step 7: set result of step 6 to bindestport variable

Step 8: concatenation source and destination ports in their binary representation

Step 9: set result of step 8 to binsrcdest variable

Step 10: implementation XOR operation between result of setp3 and step 9

Step 11: set result of step 10 to binsteg variable

Step 12: converting binsteg to decimal

Step 13: set result of step 12 to sequence number

Step 14: return sequence number

End

CHAPTER THREE STEGANOGRAPHY IN TCP / IP SYSTEM DESIGN AND IMPLEMENTATION

39

IPHeader were selected for this alternation. This addition will make

steganography process more complicated. The alternation of destination

port will be on the second 8-bit as shown in Figure (3.3).

By returning to the IPHeader structure, an important thing can be

noticed. The number of bits of version field is 4-bit and protocol is 8-bit.

So protocol field will also be altered by replacing second 4-bit of

protocol field value with version field value. Steps in algorithm (3.5) are

illustrated a generation clearly.

Fig.(3.3) Stego-key from IP and TCP Headers

TCP Header

Source Port (16-bit) Destination Port

 8-bit 8-bit

Stego-Key

IP Header

Version

4-bit

Protocol

 4-bit 4-bit

CHAPTER THREE STEGANOGRAPHY IN TCP / IP SYSTEM DESIGN AND IMPLEMENTATION

40

Algorithm (3.5) Generate sequence number with srcport,destport,protocol and

version

Input:

 Data to be hidden, source port, destination port,protocol and version

Output:

 Sequence number with hidden data

Begin

Step 1: converting data's characters to decimal

Step 2: converting result of step 1 to binary

Step 3: set result of step 2 to bindata variable

Step 4: converting source port to binary

Step 5: set result of step 4 to binsrcport variable

Step 6: converting destination port to binary

Step 7: set result of step 6 to bindestport variable

Step 8: converting protocol field value to binary

Step 9: set result of step 8 to binproto variable

Step 10: converting version field value to binary

Step 11: set result of step 10 to binver variable

Step 12: replacing second 4-bit of step 9's result with step 11's result

Step 13: set result of step 12 to binprotover variable

Step 14: replacing first 8-bit of step 7's result with step 13's result

Step 15: set result of step 14 to destprotover variable

Step 16: concatenation source and altered destination in their binary representation

Step 17: set result of step 16 to binsrcdestpv variable

Step 18: implementation XOR operation between result of step 3 and step 17

CHAPTER THREE STEGANOGRAPHY IN TCP / IP SYSTEM DESIGN AND IMPLEMENTATION

41

c. Create Packet

 The Packet or datagram represents the final result in the Internet layer that

consists of IP header that encapsulates TCP header and payload.

3.4.2 Send SYN packet

 The generated packet with the hidden data was sent to the server to establish

the connection. After Internet raw socket object was created and checked for creation

error, the created packet and address was passed as parameters to sendto function.

Then, it is sent.

3.4.3 Receive SYN-ACK packet

 This part is concerned with the capturing SYN-ACK packet that was sent as a

reply to SYN packet by server.

 The destination IP address and destination port must be identified to begin

receiving the replied packet. The analyzing fetched packet was completed after

receiving it.

Step 19: set result of step 18 to binsteg variable

Step 20: converting binsteg value to decimal

Step 21: set result of step 20 to sequence number

Step 22: return sequence number

End

CHAPTER THREE STEGANOGRAPHY IN TCP / IP SYSTEM DESIGN AND IMPLEMENTATION

42

 Through the analyzing process, IPHeader and TCPHeader were extracted.

Unpack function of struct library in python was used for extraction process.

Algorithm (3.6) is illustrated that.

3.5 Receiver Model (Packet Analysis)

 As mentioned in chapter two, a packet analysis process helped in get live data

and interpreted it. The intended recipient will get the hidden data by using packet

analysis. Packet analysis is accomplished on the Internet layer and Ethernet for the

two methods that are used to hide data.

Algorithm (3.6) Receive SYN -ACK packet

Input:

 None

Output:

 Received SYN-ACK packet

Begin:

Step 1: create an Internet raw socket object at layer 3

Step 2: check for creation error, if it is then system exit

Step 3: passing destination address and destination port to raw socket's

binding function

Step 4: receive packet through raw socket's receiving function

Step 5: Analyze packet

Step 6: extract IP header and separate fields

Step 7: extract TCP header and separate fields

Step 8: return

End

CHAPTER THREE STEGANOGRAPHY IN TCP / IP SYSTEM DESIGN AND IMPLEMENTATION

43

 In general, the capturing and analyzing packets processes for the two layers

were different in addition to the part that is relating to receive the hidden data because

the two methods are using different techniques for hiding, as it is illustrated in next

section.

3.5.1 Capturing and analyzing process

 Algorithm (3.7) is explaining capturing and analyzing at layer 3 (Internet layer)

while algorithm (3.8) is explaining it at layer 2 (Ethernet). After that, a function that

is using to get the hidden data will be explained later for the two embedding methods.

a. Capturing and Analyzing at Layer 3

This function represents a general function that is calling the necessary

functions for capturing, analyzing and extraction the hidden data. Each of them

will be explained later in separate section.

Algorithm (3.7) Packet Capturing and Analyzing at Layer 3

Input:

 None

Output:

 Hidden Data

Begin:

Step 1: calling capturing packet function

Step 2: calling analyzing IPHeader function

Step 3: calling analyzing TCPHeader function

CHAPTER THREE STEGANOGRAPHY IN TCP / IP SYSTEM DESIGN AND IMPLEMENTATION

44

 i. Capturing Packet

 The purpose of this function is to capture SYN-ACK packet which is

 representing the replied packet by server.

Analyzing packet to extract IPHeader and TCPHeader also it will be

explained in separate sections to get the concerned fields that is relating to

hiding process. The extraction hidden data from the packet will also be

explained in separate section. Algorithm (3.8) includes these steps.

Step 4: calling extraction function to get hidden data

Step 5: return

End

Algorithm (3.8) Capturing Packet Function

Input:

 None

Output:

 Captured packet

Begin

Step 1: create an Internet raw socket object at layer 3

Step 2: check for creation error, if it is then system exit

Step 3: passing destination address and destination port to raw socket's binding

function

Step 4: capturing packet through raw socket's receiving function

Step 5: return captured packet

End

CHAPTER THREE STEGANOGRAPHY IN TCP / IP SYSTEM DESIGN AND IMPLEMENTATION

45

ii. Analyzing IPHeader

The main role of this module is to extract fields of IPHeader from the

packet. As mentioned earlier, the length of IPHeader is 20 – 60 bytes. Version

and IPHeaderLength (IHL) each of them was 4-bit and combined in one byte.

These two fields must be separated as follows :

 version = version_ihl >> 4

 ihl = version_ihl and F

Also, IP source and destination addresses must be converted to a host

byte order since it was received as a network byte order. After defining total

length as a global variable, the separation process for IP fields was done using

unpack function.

 iii. Analyzing TCPHeader

 The role of this function is same as the previous one except that it is for

 TCPHeader not IP. As mentioned previously, thesize of TCPHeader is 20- 60

 bytes.

A note can be seen when TCPHeader is extracted. Source port will

contain the value of destination host because the sender of SYN -ACK packet

will be the server and the receiver will be the sender, and this applied for

destination port too.

 Another note is seen during the extraction of TCPHeader.

 Acknowledgement field that has (0) value in sending SYN packet, it will have

 value that is a summation of sequence number value + number of bytes that

 the server expected to receive after connection established.

CHAPTER THREE STEGANOGRAPHY IN TCP / IP SYSTEM DESIGN AND IMPLEMENTATION

46

 The sequence number field has server's sequence number. Also, ACK bit

 field has set to 1. To implement analyzing process, the fields of source port,

destination port , and acknowledgement defined as a global variables. Then,

unpack function was used for separating fields.

b. Capturing and analyzing at layer 2

Capturing and analyzing process on Ethernet is different from the one

implemented on layer 3 (Internet) because capturing on Ethernet will require

dealing with device driver.

This function will capture packet after packet and analyze it by

extracting the fields of headers at the same time until capturing a packet with the

specified source port. As described in capturing on Internet layer, the source port

value represents destination port of sender since the capturing process is on

incoming packets from server.

After performing capturing and analyzing packets process, the data

extraction function will be executed to get the hidden data as illustrated in

algorithm (3.9).

Algorithm (3.9) Capturing and Analyzing at layer 2

Input:

 Destination port

Output:

 Hidden data

Begin

Step 1: reading destination port

CHAPTER THREE STEGANOGRAPHY IN TCP / IP SYSTEM DESIGN AND IMPLEMENTATION

47

3.5.2 Data Extraction

 As described in previous section of hiding data, two techniques were used to

implement the hiding process.

 In these techniques, the sequence number field is used for hiding but in

extraction process, the acknowledgement field is used since it was resulting from

sequence number value +1 with the other fields that were using through hiding

process to get the hidden data as shown in Figure (3.4).

Step 2: calling capturing and analyzing packet with destination port passing as

Input

Step 3: set source and destination ports, acknowledgement fields as global

variables

Step 4: create packet raw socket object

Step 5: while condition true

 Step 5.1: receiving packets through recvfrom function

 Step 5.2: extract Ethernet header

 Step 5.3: extract IP header

 Step 5.4: extract TCP header

 Step 5.5: check if destination port == the one passed as input then break,

 Else go to step 5.1

Step 6: calling data extraction function (which is explained in next section)

Step 7: return

End

CHAPTER THREE STEGANOGRAPHY IN TCP / IP SYSTEM DESIGN AND IMPLEMENTATION

48

Fig.(3.4) Data Extraction Module

a. Data Extraction using TCP Header (Acknowledgement Number, Source Port

and Destination Port)

 The hidden data will be extracted from the acknowledgement field of SYN-

ACK packet since the data is hidden in sequence number field of SYN packet. As

mentioned previously, acknowledgment number value is sequence number value +1.

 Attention is taken for source port and destination port because their values are

replaced with each other with respect to sender and server. After that, the data is

retrieved as illustrated in algorithm (3.10).

TCP header

Destination and

Source ports with version

and protocol fields

Destination and

Source ports

Acknowledgment

Number

Stego_Key

The Hidden Data

IP header

CHAPTER THREE STEGANOGRAPHY IN TCP / IP SYSTEM DESIGN AND IMPLEMENTATION

49

Algorithm (3.10) Data Extraction using acknowledgement number with

srcdstports

Input:

 Acknowledge number, source port, and destination port

Output:

 Hidden Data

Begin

Step 1: converting acknowledgement number to binary

Step 2: set result to ackn variable

Step 3: converting source port to binary

Step 4: set result to binsrcport variable

Step 5: converting destination port to binary

Step 6: set result to bindestport variable

Step 7: concatenation source and destination ports in their binary representation

Step 8: set result to binsrcdest variable

Step 9: implementation XOR operation between result of step 2 and step 8

Step 10: set result to binsteg variable

Step 11: converting result of step 10 to decimal

Step 12: set result to dessteg variable

Step 13: converting result of step 12 to data

Step 14: set result to hiddendata variable

Step 15: return hiddendata

End

CHAPTER THREE STEGANOGRAPHY IN TCP / IP SYSTEM DESIGN AND IMPLEMENTATION

50

b. Data Extraction using IP and TCP Header (Acknowledgement Number,

Source Port, Destination Port, Protocol and Version)

 The beginning of this function is the same as the previous one except

additional fields is added. The difference is instead of combined source and

destination ports field, source port (destination port in sender) field is altered through

the processing that is described in section of generating sequence number with

version and protocol fields as illustrated in algorithm (3.11).

 Algorithm (3.11) Data Extraction with srcport,destport,protocol and version

Input:

 Acknowledgement number source port, destination port, protocol and

version

Output:

 Hidden data

Begin

Step 1: converting acknowledgement number to binary

Step 2: set result to ackn variable

Step 3: converting source port to binary

Step 4: set result to binsrcport variable

Step 5: converting destination port to binary

Step 6: set result to bindestport variable

Step 7: converting protocol field value to binary

Step 8: set result to binproto variable

Step 9: converting version field value to binary

CHAPTER THREE STEGANOGRAPHY IN TCP / IP SYSTEM DESIGN AND IMPLEMENTATION

51

3.6 Server Model

 The server model represents the tools that are described in chapter 2. These

tools are netcat, netstat, and watch.

Step 10: set result to binver variable

Step 11: replacing second 4-bit of step 8 value with step 10 value

Step 12: set result to binprotover variable

Step 13: replacing first 8-bit of step 6 value with step 12

Step 14: set result to destprotover variable

Step 15: concatenation source and altered destination in their binary representation

Step 16: set result to binsrcdestpv variable

Step 17: implementation XOR operation between result of step 2 and step 16

Step 18: set result to binsteg variable

Step 19: converting binsteg to decimal

Step 20: set result to dessteg variable

Step 21: converting result of step 20 to data

Step 22: set result to hiddendata varisble

Step 23: return hiddendata

End

CCHHAAPPTTEERR FFOOUURR

CHAPTER FOUR RESULTS

52

CHAPTER FOUR

RESULTS

4.1 Introduction

 The proposed system is achieved using Linux kernel raw sockets. Linux is a

good environment provides the easiest access of raw sockets interface.

 The task is performed with the aid of additional means. Wireshark is the first

mean that is used to monitor traffic and ensure if a packet reached and viewing

request and reply.

 Virtualbox is the second tool that is using to setup ubuntu 15.10 for using

netcat. Netcat represents the server that listens and waits for connection request from

the client (sender of the hidden data).

 Sending environment is supposed to be ideal (i.e. no lossed packet, no

retransmission occurred).

4.2 Results

 The coding is executed through Python scripting. Transmission is sent from the

host node to a predetermined IP address located at the beginning of the code. The

address in this case was determined to be 192.168.3.102 or any other address set to

virtual adapter. The sender should select an IP address with respect to the receiver’s

IP address to allow for delivery.

 Whether changing iptables (see Appendix A) or not, the hidden data is sent.

The execution of program for the two methods in embedding and extraction is shown

below. The chosen word to be hidden was (help). After applying algorithm (3.2), the

result will be as shown in Figure (4.1)

CHAPTER FOUR RESULTS

53

 Fig. (4.1) source and destination addresses with the data- First method

 Then, the TCP header was created after applying algorithm (3.3) as shown in

Figure (4.2); the Figure displayed only the source and destination ports because they

had the active role in hiding process.

 Fig (4.2) source and destination ports – First method

The sequence number with the hidden data was generated through creation of

TCP header. By applying algorithm (3.4), the sequence number with the hidden data

is created using the first method for hiding. As described in chapter 3, the first

method includes source and destination ports as a stego-key. The Figure (4.3)

explains that.

Fig. (4.3) Data hiding process – First method – First execution

CHAPTER FOUR RESULTS

54

 As seen, the sequence number value is (296144256) represents the decimal

result of XOR operation between the data to be hidden (help) and the stego-key.

 To get the hidden data for this method, packet analysis on Internet layer or

Ethernet is implemented. Figure (4.4) displays the result of algorithm (3.8) for

capturing and analyzing at layer 3.

 Fig. (4.4) Capturing and Analyzing – Layer 3- First execution

 As seen, acknowledgement number value is (296144257) that represent the

sequence number value +1. Algorithm (3.13) is applied to extract the hidden data for

the first method of hiding process as shown in Figure (4.5).

Fig (4.5) Data extraction process – First method- First execution

 When algorithm (3.2) is applied again, the result will be the same as in Figure

(4.1) while the result of applying algorithm (3.3) is different because the source port

is generated randomly as shown in Figure (4.6)

CHAPTER FOUR RESULTS

55

Fig (4.6) source and destination ports – First method – Second execution

so, the sequence number that is generated with respect to these new values after

applying algorithm (3.4) is different as it shown in Figure (4.7)

Fig (4.7) Data hiding process – First method – Second execution

 The algorithm (3.12) and is applied for capturing and analyzing packet at

Ethernet. Figure (4.8) shows the result of this algorithm and Figure (4.9) shows the

result of algorithm (3.13) since the extraction process for the first method is the same

while the capturing and analyzing processes are different

Fig (4.8) Capturing and Analyzing – Ethernet – First method- Second execution

 As seen, the acknowledgement value is (296156829) that results from the

sequence number value in Figure (4.7) +1.

CHAPTER FOUR RESULTS

56

Fig (4.9) Data extraction process – First method- Second execution

Although the data is the same as in Figure (4.1) but different sequence number

is generated as in Figures (4.3), (4.7) respectively.

 The second method for hiding data represents the result of applying algorithm

(3.5) as it shown in Figure (4.12). As mentioned in chapter 3, the used stego_ key for

hiding data is the combination of IP and TCP headers fields. But before that applying

of algorithm (3.2) and (3.3) is necessary since the fields of stego_key is different as

they are shown in Figures (4.10), (4.11) respectively.

Fig (4.10) source and destination addresses, version, protocol, data- Second method

Fig (4.11) source and destination ports- Second method- First execution

CHAPTER FOUR RESULTS

57

Fig (4.12) Data hiding process – Second method – First execution

Figure (4.13) displays the result of algorithm (3.8) for capturing and analyzing

at layer 3 for the second method of hiding.

 Fig. (4.13) Capturing and Analyzing – Layer 3- Second method – First execution

Figure (4.14) displays the extraction process to get the hidden data for the

second method

Fig. (4.14) Data extraction process – Second Method- First execution

CHAPTER FOUR RESULTS

58

 For the second method of hiding and capturing and analyzing on Ethernet is

used, the result of applying algorithm (3.2) will be the same as it in Figure (4.10)

while the result of applying algorithm (3.3) is different because the source port is

generated randomly as shown in Figure (4.15).

Fig (4.15) source and destination ports- Second method- Second execution

After applying algorithm (3.5) again but for new execution, the result of

sequence number will be different from the one that is shown in Figure (4.12)

because source port is different since it is generated randomly for the second

execution. Figure (4.16) explains that and shows (292574914) as the value of the

generated sequence number.

Fig (4.16) Data hiding process – Second method – Second execution

Figure (4.17) displays the use of capturing and analyzing processes on Ethernet

to get the hidden data for the second method of hiding.

CHAPTER FOUR RESULTS

59

Fig (4.17) Capturing and Analyzing – Ethernet – Second method- Second execution

It is clearly that the acknowledgement value is (292574915). The extraction

process of the hidden data on this type of capturing is shown in Figure (4.18)

Fig. (4.18) Data extraction process – Second Method- Second execution

 The treatment of values in embedding and extraction processes includes

converting all values to binary because the logical XOR that is supposed deals with

binary values.

 Capturing packet is proceeded in two methods as seen above. One of them

represents direct method because it is binding to specific socket address (i.e.

combination of IP destination address and port address) while the other represents

indirect because it captured all incoming packets and specific condition causes

stopping the capturing.

 For implementing three way handshakes, iptables must be changed through the

following statement executed through terminal as shown in Figure (4.19).

CHAPTER FOUR RESULTS

60

Fig. (4.19) Changing iptables values

 To ensure that all packets are transmitted, the packet sniffing program

Wireshark will be used to collect all transmitted packets through my network. As

shown in Figure (4.20), the SYN packet of the proposed system is sent from

''192.168.0.104'' source address to ''192.168.0.105'' destination address and ''7365''

random source port to ''8080'' destination port. The analyzed packet can be shown for

the two protocols IP and TCP. In Figure (4.21), IPHeader of SYN packet is shown.

Fig (4.20) SYN packet

CHAPTER FOUR RESULTS

61

Fig. (4.21) IPHeader of SYN packet

and TCPHeader is seen in Figure (4.22). It clearly appears values of source and

destination ports, sequence number with the hidden data, acknowledgement number

value and SYN bit flag. A very important notation is seen that sequence number has

value because the type of packet is SYN packet while acknowledgement number has

CHAPTER FOUR RESULTS

62

no value.

Fig (4.22) TCPHeader of SYN packet

 The SYN-ACK packet can be seen as shown in Figure (4.23). The receiver of

the hidden data captures this type of packet to extract data from it.

CHAPTER FOUR RESULTS

63

Fig (4.23) SYN-ACK packet

SYN-ACK packet can be seen after analyzed both IPHeader and TCPHeader in

Figures (4.24), (4.25) respectively.

CHAPTER FOUR RESULTS

64

Fig (4.24) IPHeader of SYN-ACK packet

Fig. (4.25) TCPHeader of SYN-ACK packet

CHAPTER FOUR RESULTS

65

 The program is executed in two experiments. One of them is executed after

changing Iptables. This means that the RST packet that operating system's kernel

sends is dropping so that nc server is contentiously resends SYN-ACK packet until it

receives ACK packet to establish connection or time-out and hence closing the

connection as shown in Figure (4.26).

Fig. (4.26) Execution of program after changing iptables

 When iptables does not change, RST packet is sent by operating system's

kernel normally and a connection is aborted as shown in Figure (4.27)

CHAPTER FOUR RESULTS

66

Fig. (4.27) Execution of program without changing iptables

 TCPHeader of RST packet is shown in Figure (4.28). It is appeared that

sequence number has value while acknowledgement number has no value. In

addition, RST bit is set. This property is due to abort connection.

CHAPTER FOUR RESULTS

67

Fig. (4.28) TCPHeader of RST packet

CCHHAAPPTTEERR FFIIVVEE

CHAPTER FIVE DISCUSSION, CONCLUSION S, AND FUTURE WORK

68

CHAPTER FIVE

DISCUSSION, CONCLUSIONS, AND FUTURE WORK

5.1 Discussion

 The environment of work was ubuntu 15.10. The work required dealing with

TCP / IP protocol suite internally. Socket API represented interface for that. Different

types of sockets existed depending on selected protocol of transport layer. In the

beginning of implementation, TCP socket was used. Because this type of socket just

sending data without creating headers, it had to be thinking about another type of

socket enables the configuration of headers. Raw socket provided this ability. It deals

with Internet layer directly.

 Many of the existing tools based on the use of raw socket. Scapy (see

Appendix B) one of these tools. After Scapy experienced, it proves that it is not

suitable for performing task. A lot of problems appeared while using it. Such

problems are how to convert configuration to deal with layer 3, send and receive from

one port to another in loopback address ('127.0.0.1') because server concept requires

listening for specific port specified to specific service.

 The task is achieved in the use of pure raw socket for injection packet to traffic

and capturing it from.

 Server environment is needed. It was provided in using netcat utility in

conjunction with netstat and watch. Surely, another copy of operating system is

needed to operate server program. This is provided in set up virtual operating system

inside virtualbox after install it.

 Linux environment facilitated the work. The installation process of necessary

packages is easy except it required fast Internet connection. Some of them installed

CHAPTER FIVE DISCUSSION, CONCLUSION S, AND FUTURE WORK

69

from Ubuntu Software Center while the other from availability on Internet as

packages. For example Integrated Development Environment (IDE) for python

programming language is provided from Ubuntu Software Center.

5.2 Conclusions

 In this thesis, a steganography system based on TCP/IP protocols was

constructed. The basic requirements for hiding data in such carrier were described.

 A good combination for network programming was shown through python as a

modern programming language and Linux. TCP/IP header fields were found as a

good carrier for sensitive data to be hided. With few minor operations with the field's

contents, a secure carrier can be constructed. The serious issue was the restriction of

field's sizes, since it is limited to a fixed size. This limitation may restrict the size of

data in turn. Therefore, in order to send more data, the sender has to increase the

connections.

 As compared with [ROW97], the proposed methods are transferring four bytes

through one connection while in [ROW97] one byte is transferred. The stego_key in

[ROW97] is a static value summed with the ASCII of each character to be transferred

while in the proposed methods its value is variable and contentiously changed. In

both [CIO06] and [SIN13], two algorithms' for encrypting and compressing are

applied to (4-byte) of data before transferring it. This leads to increase the used

resources for processing.

5.3 Future work

1. The proposed system can be developed by adding interfaces to program. It can

also make it as a tool running from terminal.

CHAPTER FIVE DISCUSSION, CONCLUSION S, AND FUTURE WORK

70

2. Other fields can be exploited for hiding as sequence number as like

identification field in conjunction with sequence number. Other protocols can

be used and its fields combined with fields of IP and TCP protocol headers.

3. Step 3 of three-way handshake can be implemented and sending normal data

with hidden data in the header's fields as it happens in normal connection (i.e.

without hiding data).

4. Packet analysis can be on incoming and outgoing packets in addition to the

previous ones.

5. The data can be encrypted before hiding using modern algorithms of

encryption like Advanced Encryption Standard (AES)

RREEFFEERREENNCCEESS

71

RReeffeerreenncceess

[AMI03] Amin, M. M., and et al, “Information Hiding Using Steganography”,

Universiti Teknologi Malaysia, 2003.

[BAU13] Baumgarten F., http://net-tools.sourceforge.net/man/netstat.8.html, 2013

[BEA09] Beasley J. S., “Networking, Second Edition”, published by Pearson

Education, 2
nd

 Edition, 2009.

[BIS16] Biswas R., Samir K. B., “TCP Packet Steganography using SDA

Algorithm”, Journal of Scientific and Engineering Research, Vol 3, NO (2): p.p 47-

51, 2016.

[BUR07] Burns B. and et al, “Security Power Tools”, published by O’Reilly Media,

Inc., 1
st
 Edition, 2007

[CIO11] Ciobanu R., and et al, “Steganography and Cryptography Over Network

Protocols”, published in Roedunet International Conference (RoEduNet), 10
th

Edition, pp. 1-6. IEEE, 2011.

[COL99] Coleman M. https://linux.die.net/man/1/watch, 1999

[COM00] Comer D. E., “Internetworking with TCP/IP: Principles, Protocols,

and Architecture”, published by Prentice Hall, Inc., Vol. 1, 4
th

 Edition, 2000.

http://net-tools.sourceforge.net/man/netstat.8.html
https://linux.die.net/man/1/watch

72

[DOR16] Dordal P. L., “An Introduction to Computer Networks”, free copy,

released under Attribution-NonCommercial-NoDerivs, Release 1.8.24, September

2016.

[FOR07] Forouzan B. A., “Data Communications and Networking”, published by

McGraw-Hil Press, 4
th
 Edition, 2007.

[FOR10] Forouzan B. A., “TCP/IP Protocol Suite”, published by McGraw-Hill

Press, 4
th
 Edition, 2010.

[FRY11] Frysigner M., http://nc110.sourceforge.net/, 2011

[GAN14] Gandhi, Dr. Ch. and et al “Packet Sniffer – A Comparative Study”,

published in International Journal of Computer Networks and Communications

Security, Vol. 2, No. 5, p.p. 179–187, May 2014.

[GUP14] Gupta R., Sunny G., and Anuradha S., “Importance and Techniques of

Information Hiding: A Review”, International Journal of Computer Trends and

Technology (IJCTT), Vol. 9, No. 5, March 2014.

[HOB] Hobbit, https://linux.die.net/man/1/nc,

[HUN02] Hunt C., “TCP/IP Network Administration”, Published by O’Reilly

Media, Inc., 3
rd

 Edition, April 2002.

 [JAN10] Jankowski B., Mazurczyk W., and Szczypiorski, K., “Information hiding

using improper frame padding”, published in proceedings of 14
th
 international

telecommunications networks strategy and planning symposium (NETWORKS), p.p.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://nc110.sourceforge.net/
https://linux.die.net/man/1/nc

73

77–82, 27–30 September 2010

 [KAT00] Katzenbeisser S., Petitcolas F. A. P. “Information Hiding Techniques

for Steganography and Digital Watermarking”, published by Artech House, 2000.

 [KER07] Kerrisk M., http://man7.org/linux/man-pages/man7/raw.7.html, 2007

[KOZ05] Kozierok Ch. M., “The TCP/IP Guide: A Comprehensive, Illustrated

Internet Protocols Reference”, published by No Starch Press,Inc. , 2005.

[KUR13] Kurose J. F., Ross K. W., “Computer Networking A top Down

Approach”, published by Pearson Education, Inc., 6
th
 Edition, 2013.

[KUR14] Kurose J. F., Ross K. W., “Computer Networking: A top Down

Approach” .ppt, http://www-net.cs.umass.edu/kurose-ross-ppt-6e/, 2014

[LEF86] Leffler S. J. and et al “An Advanced 4.4BSD Interprocess

Communication Tutorial”, Computer Systems Research Group, Department of

Electrical Engineering and Computer Science, University of California, Berkeley CA

and Heterogeneous Systems Laboratory, Department of Computer Science,

University of Maryland, College Park, 1986

https://docs.freebsd.org/44doc/psd/21.ipc/paper.pdf.

[MAR13] Marsic I., “Computer Networks Performance and Quality of Service”,

published in Rutgers University, New Brunswick, New Jersey, 2013.

[MAZ08] Mazurczyk W., Szczypiorski, K., “Steganography of VoIP Streams”, In:

Tari, Z. (ed.) On the Move to Meaningful Internet Systems (OTM 2008), Monterrey,

http://man7.org/linux/man-pages/man7/raw.7.html
http://www-net.cs.umass.edu/kurose-ross-ppt-6e/

74

Mexico, LNCS, Vol. 5332, p.p 1001–1018, 9-14 November 2008.

[MAZ09] Mazurczyk W., Smolarczyk M., Szczypiorski K., “Retransmission

steganography and its detection”, Springer-Verlag, 2009.

[MAZ13] Mazurczyk W., Smolarczyk M., Szczypiorski K., “On Information

Hiding in Retransmissions”, published in telecommunication Systems: Modelling,

Analysis, Design and Management, Vol. 52, issue 2, p.p.1113-1121, 2013.

[MIL14] Mileva A., Boris P., “Covert Channels in TCP/IP Protocol Stack -

extended version-”, published in Central European Journal of Computer Science,

Vol 4, NO (2). pp. 45-66, 2014.

[PER05] Perrone Prof. L. F. , “CSCI 363 – Computer Networks”, Department of

Computer Science, Bucknell University,

http://www.eg.bucknell.edu/~cs363/wordpress/?page_id=88 , 2005

[PET03] Peterson, L. L., Bruce, S. D.,”Computer Networks A Systems

Approach”, 3
rd

 Edition, 2003.

[ROH11] Rohankar, N. D., Deorankar, A. V., Chatur, Dr. P. N., “A Review of

Literature on Design and Detection of Network Covert Channel”, November

2011.

[ROW97] Rowland C. H., “Covert Channels in the TCP/IP Protocol Suite”, (First

Monday Journal on the Internet), Vol. 2, No. (5), May, 1997.

[SAN11] Sanders C. “Practical Packet Analysis”, published by No Starch Press,

http://www.eg.bucknell.edu/~perrone
http://www.eg.bucknell.edu/~cs363/wordpress/?page_id=88

75

2
nd

 Edition, 2011.

[SIN13] Singh J., Lalitsen Sh., “Framework for Efficient Secure Steganographic

Communication over Network Protocols”, International Journal of Advanced

Computer Research, Vol. 3, No. 4, Issue-13, p.p 146-150, December-2013.

[SZC03] Szczypiorski K., “HICCUPS: Hidden Communication System for

Corrupted Networks”, In Proc. of: ACS’2003, Miedzyzdroje, Poland, p.p 31–40,

October 22–24, 2003.

[TAN03] Tanenbaum, A. S., Wetherall, D. J., “Computer Networks”, published by

Pearson Education, 4
th
 Edition, 2003.

[TAN11] Tanenbaum, A. S., Wetherall, D. J., “Computer Networks”, published

by Pearson Education, 5
th

 Edition, 2011.

[WEL96] Welsh M., “Linux Installation and Getting Started”, published by Free

Software Foundation, Inc., 1996

[ZAN07] Zander S., Armitage G., Brancha P., “Survey of Covert Channels and

Countermeasures in Computer Network Protocols”, Vol. 9, No. 3, 3
rd

 Quarter

2007.

AAPPPPEENNDDIIXX AA

iptables [HUN02]

 For any operating system, firewall was existing. The main role of it was

protecting network system from outside world by applying strict control for

accessing. When destination of packet was host behind firewall, the delivery would

be to firewall. In simple definition, firewall was a filtering router that detects

undesirable traffic. Filtering router was a combination of routing capabilities of multi

- homed Linux (i.e. does not foreword packet to IP layer but process packet through

application layer) and filtering features of iptables. The Linux kernel classified

firewall traffic into three categories and different filter rules was applied to each of

these categories

 INPUT: INPUT filter rules was tested incoming traffic that bounding for a

process on the local system before it was accepted.

 OUTPUT: OUTPUT filter rules was tested for outbound traffic that initiated

on the local system before it was sending.

 FORWARD: FORWARDING filter rules were tested for traffic from one

external system that bounding for another external system.

 When system was represented as a host, the INPUT and OUTPUT rules were

used while the FORWARD rules were used when it was represented as a router.

iptables also accepted user – defined additional to these categories. The set of rules

was defined by Linux kernel is shown in table (1) below.

Table (1)

Option Function

-A Appends rules to the end of a rule set.

-D Deletes rules from a rule set.

-E Renames a rule set.

-F Removes all of the rules from a ruleset.

-I Inserts a rule into a specific location in a rule set.

-L Lists all rules in a ruleset

-N Creates a user-defined rule set with the specified name.

-P Sets the default policy for a chain

-R Replaces a rule in a chain

-X Deletes the specified user-defined rule set

-Z Resets all packet and byte counters to zero.

 Rules of firewall were a combination of filter with the packets that were

matched and action taken if a packet and filter was matching. The action could either

be a standard policy or jumping to rule set that was representing user-defined. The

command line -j target was either a user-defined ruleset or a standard policy for

packet handling. The name of a ruleset or standard policy that identified by a

keyword was represented target. These keywords are as follows:

 ACCEPT : packet was allowed to passing firewall

 DROP: Discard the packet.

 QUEUE: packet should be passed up to user space for processing.

 RETURN: returning to ruleset that called this ruleset in a user-defined ruleset.

The filters that were constructed using iptables command using different command-

line parameters which was as follows:

 -p protocol: specifies the protocol which was applied by rule. Protocol value

could be tcp, udp or icmp as keyword

 -s address [/mask] : specifies the source address of packet which was applied

by rule. Its value could be a host name, network name, or IP address.

 --sport [port [: port]]: specifies the source port of packets which was applied by

rule. The format port: port was represented as a range of ports could be

identified.

 -d address [/mask]: specifies the destination address of packet which was

applied by rule. Its value could be a host name, network name, or IP address.

 --dport [port [: port]: specifies the destination port of packets which was

applied by rule. All traffic was bounded to a specific port was filtered.

 --icmp-type type: specifies ICMP type which was applied by rule. Validated

message type number or name was referred to type.

 -i name: specifies the name of the input network which was applied by rule.

The packet was affected by this rule which was received on this interface

 -o name: specifies the name of the output network which was applied by rule.

The packet was affected by this rule which was sent out this interface.

 -f: related with second and subsequent of fragmented packet that the rule was

referred.

 AAPPPPEENNDDIIXX BB

SSCCAAPPYY [[BBUURR0077]]

1. Introduction

 Scapy is a Python program written to manipulate network packets. It differs

from most other tools because it is not a shell command program but comes in the

shape of an interpreter. Actually, Scapy uses the Python interpreter evaluation loop to

let you manipulate classes, instances, and functions.

 Scapy comes with some new concepts and paradigms that make it a bit

different from other tools in the domain of networking tools. With Scapy, packets are

materialized in the shape of class instances. Creating a packet means instantiating an

object, and manipulating a packet means changing attributes or calling methods of

this instance object.

 The basic building block of a packet is a layer, and a whole packet is built by

stacking layers on top of one another. For example, a DNS packet captured on an

Ethernet link will be seen as a DNS layer stacked over a UDP layer, stacked over an

IP layer, stacked over an Ethernet layer. Because of this layering, using objects

allows for an almost natural representation and code implementation. By

implementing packets as objects, creating a packet from scratch is done in one line of

code while it would have taken many lines in C, even with the best libraries. This

allows for ease of use, and the user can implement and experiment with theoretical

attacks much faster.

 Moreover, the logic of sending packets, sniffing packets, matching a query and

a reply, presenting couples, and tables is always the same and is provided by Scapy.

A new tool can be designed in three steps:

1. Create your set of packets.

2. Call Scapy’s logic to send them, gather the replies, parse them, match stimuli

and answers.

3. Display the result.

 Scapy dissociates the information harvesting phase and the result analysis. For

example, you have to send a specific set of packets when you want to do a test, a port

scan, or a traceroute. The packets you get back contain more information than just

the simple result of the test and may be used for other purposes. Scapy returns the

whole capture of the sent and received packets, matched by stimulus-response cou-

ples. You can then analyze it offline, as many times as you want, without probing

again. This reduces the amount of network traffic and exposure to being noticed or

flagging some IDS.

 This raw result is decoded by Scapy and usually contains too much information

for a human being to interpret anything right away. In order to make sense of the

data, you will need to choose an initial view of interpretation where a meaning may

become obvious.

 The drawback of this that it requires many more resources than only keeping

what is useful for the current interpretation. However, it can save time and effort

afterwards. Also, refining an interpretation without a new probe is more accurate

because you can guarantee that the observed object did not change between probes.

Always working on the same probe’s data guarantees consistency of observations.

2. Working with Scapy

 Scapy is not a traditional shell command-line application. When you run it, it

will provide you with a textual environment to manipulate packets. Actually, it will

run the Python interpreter and provide you many objects and functions that will

enable you to manipulate packets.

 Scapy runs in a Python interpreter; because of this, you can leverage the full

functionality of Python. This means that you will be able to use Python commands,

loops, and the whole language when dealing with packets.

3. Creating and Manipulating Packets with Scapy

 A network packet is divided into layers, and each layer is represented by a

Python instance. Thus manipulating a network packet is done by playing with

instances’attributes and methods representing the different layers of the packet.

 Creating a packet is done by creating instances, one for each layer, and

stacking them together.

4. Scapy’s Limitations

 While Scapy has numerous features, it does come with some quirks that the

user should be aware of. The first is that Scapy is not designed for fast throughput. It

is written in Python, has many layers of abstraction, and it is not very fast. Do not

expect a packet rate higher than 6 Mbs per second. Because of these layers of

abstraction, and because of being written in Python, it may also require a lot of mem-

- ory. When dealing with large amounts of packets, packet manipulation becomes

uncomfortable after about 216 packets.

 Scapy is stimulus-response-oriented. While you could do it, handling stream

protocols may become painful. This is clearly an area of improvement. Yet, for the

moment, it is possible to play with a datagram-oriented protocol over a stream socket

managed by the kernel.

 It easily designs something that sniffs, mangles, and sends. This is exactly what

is needed for some attacks. But you will be disappointed in terms of performance or

efficiency if you expect Scapy to do the job of a router. Do not confuse Scapy with a

production mangling router that you could obtain with Netfilter.

 الملخــص

قد تتعرض عملية التبادل داخل شبكة المنطقة المحلية أو عبر شبكة الإنترنت إلى الرىرقة أو

التغيير أوالتدمير من قبل الشخص المؤذي الذي يمثل تهديدا حقيقيىا لعمليىة النقىل وأيلىا للمعل مىا

مىن قبىل الشىخص خاصة إذا كانت هذه المعل ما حراسة ومهمىة وينبغىأ أي يكى ي ال صى ل إليهىا

وقد اقترح العديد من الأفكىا . ولهذا يجب تأمين هذه البيانا مقابل هذه التهديدا . المصرح به فقط

فأ إطا مفه م الأمن لحماية البيانا من هذه التهديدا مثل إخفىا محتى ا الرسىالة المرسىلة التىأ

 . غرافأكانت ترم التشفير أو إخفا وج د هذه الرسالة التأ سميت ستيغان

أحدها استخدمت حق ل منفذ المصىد ومنفىذ ال جهىة . اقترحت طريقتاي لإخفا هذه البيانا

والآخىر اسىتخدم مى يح حقى ل . كمفتىاح سىتيغ (PCT)من أس بروت ك ل الىتحك فىأ الإ سىال

مع حقى ل الإصىدا (PCT) منفذ المصد ومنفذ ال جهة من أس بروت ك ل التحك فأ الإ سال

العمليىة تلخصىت مىن خىنل تنفيىذ أو حصىرية (. PT)لبروت ك ل من أس بروت كى ل الإنترنىت وا

(ROX) تى اختيىا حقىل قى ترلرىل مىن . بين تلى البيانىا المطلى خ إخفا هىا مىع مفتىاح سىتيغ

أ بعىىة أحىىر تىى . ليكىى ي الناقىىل للبيانىىا المخفيىىة(PCT) أس بروت كىى ل الىىتحك فىىأ الإ سىىال

 .أ هذا الحقل وإ سالها فأ اتصال واحدتلمينها ف

واحىىد منهىىا تىى إ سىىال حىىر واحىىد مىىن . م الم جىى د تختلىىا الطىىرم المقترحىىة عىىن الطىىر

ضىىافة إلىى هىىذا لإبىىا.إ سىىال أ بعىىة أحىىر خىىنل إتصىىال واحىىد بينمىىا فىىأ الطىىرم المقترحىىة يىىت

نىىه سىىيت جمىىع قيمىىة ابتىىة مىىع لأ. ، فىى ي مفتىىاح الرىىتيغ الىىذي تىى إسىىتخدامه أيلىىا إختلىىاتن خىىلإا

(IICPP) المقترحة ه متغير وعملية الجمع لى تسرىتخدم بىل تى إسىتخدام مبينما فأ الطر. الـحر

ROX . العديىد إسىتخدمتلكنهىا و إ سىال أ بعىة أحىر ت الطرم الأخرا فأ عل الرغ من أنه

 .وتشفيرها قد ت ضغطها الأحر لأيمن الم ا د للتنفيذ

 جمهورية العراق

 وزارة التعليم العالي والبحث العلمي

 جامعة النهرين

 كلية العلوم

 قسم علوم الحاسوب

 إخفـاء النـص في حقـل رقـم التسلسل

 نترنتلإلحزمة مواثيق ا

 رسالة

 مقدمة إلى كلية العلوم في جامعة النهرين كجزء من متطلبات
 نيل درجة الماجستير في علوم الحاسوب

 مــن قبـــل

 عبيــر عيســى عبــد
)۲۰۰۹،علوم / جامعة النهرين/ كلية ال (بكالوريوس علوم الحاسوب

 اشــراف
جمــال محمــد كاظــم.د

 ۲۰۱۷كانون الثاني ۱٤۳۸خر لآربيع ا

