
Republic of Iraq
Ministry of Higher Education
and Scientific Research
Al-Nahrain University
College of Science

Implementation of link checker for

analyzing Web Site

A Thesis Submitted to the College of Science, Al-Nahrain
University in Partial Fulfillment of the Requirements for the
Degree of Master of Science in Computer Science

By
EHSAN QAHTAN AHMED

(B.Sc. 2002)

 Supervised By

 DR. ABDUL MONEM S. RAHMA DR. JAMAL F. TAWFEQ

 October 2009 Shawal 1430

 مˇيــحِمٰنِ ٱلرٱاللهِ ٱلرحٌ مـســـبِ

مرِ أَ مِن وحوحِ قُلِ ٱلرويسئَلونك عنِ ٱلر

 ﴾٨٥﴿ قَليلاً لاإٱلعِلمِ َ وتِيتم مِّنمااَبي وَر

 صدق االله العظيم
 الاسراء

SUPERVISOR CERTIFCATION

We certify this thesis was prepared under our supervision at the

Department of Computer Science/College of Science/ Al-Nahrain

University, By Ehsan Qahtan Ahmed as partial fulfillment of the

requirements for the degree of Master of Science in Computer Science.

Signature: Signature:

Name: Dr. Abdul Monem S. Rahma Name: Dr. Jamal F. Tawfeq

Title: Professor Title: Lecturer

Date: / / 2009 Date: / / 2009

In view of the available recommendations, I forward this thesis for

debate by the examination committee.

Signature:

Name : Dr. Taha S. Bashaga

Title : Head of the Department of Computer Science, Al-Nahrain

University.

Date : / / 2009

Certification of the examination committee

We chairman and members of the examination committee certify that we

have studies this thesis "Implementation of Link Checker for

Analyzing Web Site" presented by the student Ehsan Qahtan Ahmed

and examined her in its contents and that we have found it worthy to be

accepted for the degree of Master of Science in Computer Science with

good degree.

 Signature:
Name: Dr. Murtadha M. Hamad

 Title: Assistant Professor
 Date: / / 2010
 (Chairman)

Signature: Signature:
Name: Dr. Baraa A. Atia Name: Dr. Osama A. Awad
Title: Assistant Professor Title: Lecturer
Date: / / 2010 Date: / / 2010
 (Member) (Member)

Signature: Signature:
Name: Dr. Abdul Monem S. Rahma Name: Dr. Jamal F. Tawfeq
Title: Professor Title: Lecturer
Date: / / 2010 Date: / / 2010
 (Supervisor) (Supervisor)

Approved by the Dean of the Collage of Science, Al-Nahrain University.

Signature:
Name: Dr. LAITH ABDUL AZIZ AL-ANI
Title: Assist. Prof.
Date: / / 2010
 (Dean of Collage of Science)

Dedication

To

My Beloved Family

The Memory of My Father and Brother

Everyone Taught me a Letter

 Ehsan

Acknowledgment

First, I would like to thank God for all the blessings that

have given us.

Second, I would like to express my sincere appreciation to my

supervisors Dr. Abul Monem S. Rahma and Dr. Jamal F. Tawfeq

for their valuable guidance, supervision and untiring efforts

during the course of this work.

Grateful thanks for the Head of Department of Computer

Science Dr. Taha S. Bashaga, staff, employees and everyone who

teaches me.

Finally, my very special thanks to my family, the faithful

friend who teaches me the alphabetic of the life and my lovely

friends for continuous supports and encouragement during the

period of my studies.

 Ehsan

 i

Abstract

Broken links in a Web site is common problem on the Internet today.

It inconvenience visitors, inhibits proper navigation of a site, prohibit

access to Web site content and reduce the productivity of Web

professionals.

This thesis aim to design and implement a software that test website

links and then classified them to four lists according to link's type

(relative-link list, fragment-link list, absolute-link list, image-link list),

after classification process, the proposed link checker software check all

links in each list to verify if link work correctly this means it is good link

else it is a broken link.

The structure of proposed link checker software consists of three main

modules. The first is called crawler and extractor module, the second is

called extractor image link module and third is called checker module

which consists of two sub-modules text link checker and image link

checker.

The proposed link checker is implemented for HTML Web Sites. A

Web Site for the computer science department at al Nahrain University is

taken as a test bed.

The result obtained shows the applicability of the proposed link

checker software to discover all the broken links in the Web Site. Also

some statistical records are evaluated by the software, which is found

useful for pre-Site evaluation and Web Sites developers.

 ii

The presented link checker can be used as a useful tool, for offline

maintenance.

It is especially helpful to run as a final step before uploading the Web

Site for production.

The programming tools used in proposed software are: Microsoft

Visual Basic 6.0, Hypertext Markup Language and Windows operating

system.

 iii

List of Abbreviations

Abbreviation Meaning

CERN European laboratory for particle physics

DNS Domain Name System

FRESS File Retrieval and Editing System

FTP File Transfer Protocol

HREF Hypertext References

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IEEE Institute of Electrical and Electronics
Engineers Standard Associative

KDE Kernel Density Estimation

KMU Knowledge Management System

Memex Memory and Index System

MIT Massachusetts Institute of Technology

NLS On Line System

SGML Standard Generalized Markup Language

URL Uniform Resource Locator

W3C World Wide Web Consortium

WWW World Wide Web

Xerox Xerox Corporation

XHTML Extensible Hypertext Markup Language

 iv

TABLE OF CONTENTS

Chapter One: General Introduction

1.1 Introduction ….……………………………………………… 1

1.2 World Wide Web's Hyperlink……………………………... 1

1.3 The Broken Link's Problem………………………………… 3

1.4 Literature Survey……………………………………………. 5

1.5 Aim of Thesis……………………………………………….. 6

1.6 Thesis Outline………………………………………………. 6

Chapter Two: Web and Hyperlinks

2.1 Introduction ….…………………………………………….. 8

2.2 The History of World Wide Web…………………………... 8

2.3 Web Page Document……………………………………….. 9

2.4 Web Site…………………………………………………….. 10

2.5 The Uniform Resource Locator…………………………….. 12

 2.5.1 The Different Protocols for URLs……………………. 12

2.6 Hypertext Markup Language……………………………….. 13

2.7 Hyperlinks Concept………………………………………… 15

2.8 Creating Link by Using Anchor tag………………………… 17

2.9 Types of Hyperlinks………………………………………... 18

 2.9.1 Absolute URLs……………………………………….. 20

 2.9.2 Relative URLs………………………………………... 21

 v

 2.9.3 Linking With Document……………………………… 23

2.11 Simple and Graphical Hyperlinks Structure………………... 23

2.11 404 Error Message………………………………………….. 24

2.12 The Broken Link’s Problem………………………………... 25

 2.12.1 Disadvantage of Broken Link’s Problem…………… 27

2.13 The Basic Crawling Algorithm…………………………….. 30

 2.13.1 Crawling Techniques………………………………... 32

Chapter Three: Design of Proposed Link Checker Software

3.1 Introduction ….………………………………………….….. 34

3.2 Proposed Software Architecture…..……… ……………...... 34

3.3 Crawler and Extractor Module …………………………….. 35

 3.3.1 Initializing the Crawler Information.……………..….. 36

 3.3.2 Concat-root Algorithm….…………………………….. 39

 3.3.3 Search-page Algorithm …………………..…………... 39

 3.3.4 Read-page Algorithm …………...……………………. 40

 3.3.4.1 Is-Fragment Algorithm ...…………………….. 43

 3.3.4.2 Is-Absolute Algorithm …..…………………… 44

3.4 Image Link Extractor Module …...………………………… 45

3.5 Checker Module ………………………………………........ 48

 3.5.1 Text Links Checker Module ……...………………….. 48

 3.5.2 Image Links Checker Module ...……………………... 51

 vi

Chapter Four: Implementation of Proposed Link Checker Software

4.1 Introduction ….………………………………………….….. 53

4.2 Programming Language..…….…………………………...... 53

4.3 Link Checker Software……….…………………………….. 53

4.4 Relative Links Checking ……………….. .……………..….. 56

4.5 Fragment Links Checking ………………………………….. 59

 4.6 External Links Checking ….…………………..…………... 62

 4.7 Image Links Checking …...…………...……………………. 65

4.8 Evaluation Of Proposed Software…………………….. 68

Chapter Five: Conclusions and Suggestions for Future Work

5.1 Conclusions ….………………………………………….….. 70

5.2 Suggestions for Future Work.…….……..………………...... 70

References

Chapter One

General Introduction

Chapter One

General Introduction

1.1 Introduction
 One of most serious problems plaguing the World Wide Web today is

that of broken links, which is a major annoyance to browsing users and

also a cause of tarnished reputation and possible loss of opportunity for

information providers. The root of the problem lies in the current Web

architecture’s lack of support for referential integrity[Vir01].

1.2 World Wide Web's hyperlink

 The World Wide Web (known as "WWW', "Web" or"W3") is the

universe of network-accessible information, the embodiment of human

knowledge.

The Web has a body of software, and a set of protocols and

conventions. Through the use hypertext and multimedia techniques, the

web is easy for anyone to roam, browse, etc.

The WWW is also a distributed hypermedia environment consisting of

documents from around the world. The documents are linked using a

system known as Hypertext, where elements of one document may be

linked to specific elements of another document. The documents may

locate on any computer connected to the internet. In this context, the

world "document" is not limited to text but may include video, audio,

Chapter One: General Introduction

 2

graphics, databases, and a host of other tools that can be accessed from

any web browser [Dav00].

These documents are created with a special language called Hypertext

Markup Language(HTML).This language allows the full use of the

hypermedia including text, images, graphics, sounds and other types of

multimedia[Sab02].

 Hyperlinks allow user to weave together all HTML pages seamlessly

for navigation from one page to the next. Without links, websites would

be virtually worthless and very boring. The link also called hyperlink or

web link, is basic hypertext construct. A link is a connection from one

web source to another. Although a simple concept, the link has been one

of the primary forces driving the success of the web [Jen99].

 When look back to the history of hypertext and show different

hypertext systems each using their own way to deal with navigation an

orientation problem.

1. 1945 Vannevar bush proposed Memory and Index (Memex) in his

article "As We May Think". Memex was designed as a mechanical

hypertext device that used microfilm.

2. 1965 Ted Nelson introduced the Xanadu distributed system concept

and coined the term hypertext. It took until 1999 to actually build

Xanadu.

3. 1967 Andries van Dam developed the Hypertext Editing System at

Brown University, followed by the introduction of File Retrieval and

Editing System (FRESS) in 1968.

Chapter One: General Introduction

 3

4. 1968 Doug Engelbart gave a demo of On Line System(NLS), the

NLS, as an experimental tool to store specifications, plans, designs,

programs, documentation, reports, etc.

5. 1975 A team at Carnegie Mellon University (CMU), headed by

Robertson, developed the Zionist Occupation Government (ZOG)

system, which later became Knowledge Management System

(KMS).

6. 1978 A team at Massachusetts Institute of Technology System

(MIT), headed by Andrew Lippman, developed the Aspen Movie

Map, the first true example of a multimedia application including

videodisk.

7. 1985 Janet Walker developed the Symbolic Document Examiner,

claimed to be the first hypertext system used by "real" customers.

The user-interface was kept as simple as possible.

8. 1985 Several other hypertext systems were announced, including

NoteCards from Xerox and Intermedia from Brown University.

9. 1986 Office Workstation Ltd. (OWL) introduced Guide for the

Macintosh, the rest widely available hypertext system, based on the

Unix Guide system and developed by Peter Brown at the University

of Kent.

10. 1987 Apple started delivering HyperCard for free with every

Macintosh [Hon02].

1.3 The Broken Link's Problem
Most of internet's users faced the problem "file not found" in the

internet which represent by error 404 this error message indicates that the

server name is valid, but the web page could not be found at the specified

location. Two things could be wrong.

Chapter One: General Introduction

 4

1. The page might have moved or deleted. In this case, the user can try

to find its new location. Strip off the filename and see whether the

resulting URL takes him (her) to a related page. If it does, he (she)

might be able to navigate back to the desired page. If that step fails,

strip off the next directory in the Uniform Resource Locator (URL)

and test that address. With a little luck one of the shorter URLs will

produce a home page that he (she) can use to locate the correct

page.

2. Error in the syntax of link. [Dav00]

Nonworking links can frustrate web site visitors, so keep web page in

good operating condition by periodically verifying that all links still work

correctly. It is not enough to know that a link was working when first

created it.

After all, a link that works today might not work tomorrow. The page

might be removed from the web or the page's author might rearrange

some files of directories, rendering the old URL obsolete.

Ongoing maintenance is needed to ensure that hyperlinks remain

operational next week, next month, and next year. This requirement is

one of the hidden costs associated with posting pages on the web.

Although it is certainly fun to create new pages, most people find

maintaining pages to be tedious, if one web page contains only 5 to 10

links, designer can check them manually and still keep his site in tip-top

shape. Unfortunately, manual link checking soon becomes onerous, even

for a small number of links. If the designer forgot this routine, his site

will suffer and his users will feel neglected or annoyed and may never

return. If his site is compelling and entertaining, his users may forgive

him. Most of users can't count on such a loyal and understanding

following, so it's important to keep all web page links operational and

Chapter One: General Introduction

 5

current, to solve this big broken link's problem, the user need system that

check all links of web site and find the broken links to correct them.

[Chu98].

1.4 Literature Survey
There are some previous literature survey works on broken links to

correct them:

1. Link Tek Corporation [Lin02], "Link Fixer Plus": This

application specifically designed to fix broken links throughout

the local copy of a Web site, totally automatically. By helping

eliminate the tedium of manually finding and fixing broken

links, Link Fixer Plus frees up time that Web professionals

would otherwise spend manually repairing links throughout

their Web sites. Additionally, by using Link Fixer Plus, Web

professionals can more efficiently ensure the integrity of links

in their Web sites, while simultaneously increasing their overall

productivity.

2. Michael D. Larue [Mic02], "Link Controller": it is checking

links have been broken for a period of time and then finding

which documents they occur in.

3. Zubin Jamshed Dalal[Zub03], "Solving the Broken Link

Problem in Walden's Paths": This thesis proposes an algorithm

to extract representative keyphrases to locate exact copies of the

original page. In the absence of an exact copy, a similar but

separate algorithm is used to extract keyphrases that will help

locating similar pages that can be substituted in place of the

missing page. Both sets of keyphrases are stored as additions to

Chapter One: General Introduction

 6

the page signature in the Walden’s Paths Path Manager tool and

can be used when the original page is removed from its current

location on the Web.

4. Paulo Moura Guedes[Pau04], "KLinkStatus": is a link checker

software for Kernel Density Estimation (KDE). It allows the

user to search internal and external links in his (her) entire web

site, just a single page and chooses the depth to search. The user

can also check local files, ftp, fish, etc.

1.5 Aim of Thesis
This thesis aim to design and implement software that test website

links and then classified them to four lists according to link's type

(relative-link list, fragment-link list, absolute-link list, image-link list),

after classification process, the proposed link checker system check all

links in each list to verify if link work correctly this means it is good link

else it is a broken link.

1.6 Thesis Outline
 The reminder part of this thesis consists of four chapters, and they

organized as follows:

Chapter Two reviews the relevant subjects surrounding the links, and

illustrates about World Wide Web, also explain the component of

website and the broken link’s problem.

Chapter Three explain the design of the proposed link checker system

in detailed.

Chapter Four explains the implementation of proposed system and

how the user can use it.

Chapter One: General Introduction

 7

Chapter Five gives a list of derived conclusions of the presented

work. Also, in this chapter some proposals are expressed for the

direction that the future work may take.

Chapter Two

Web and Hyperlinks

Chapter Two

Web and Hyperlinks

2.1 Introduction

This chapter starts by talking about the World Wide Web and its history,
Web site, HTML language and URL which explain how the Web works.

After describing hyperlinks then talking about types of hyperlinks and

Anchor tag which is used for defining both source and destination of a

hyperlink.

The last part of this chapter describes the problem of broken links and the

suggestion to solve it.

2.2 The History of World Wide Web [Jef01]
Fast forward to 1989. A researcher named Tim Berners-Lee, working at

the European Particle Physics Laboratory, made a proposal for a simple

hypertext system. Hoping to connect the distributed work of physics

researchers, Berners-Lee developed a prototype system for linking

information including three critical pieces: a way of giving everything a

uniform address, a protocol for transmitting these linked bits of information,

and finally a language for encoding the information. Working with fellow

researcher Mike Sendall, Berners-Lee created both a server for storing and

distributing information, as well as a client application for browsing. They

called this system “World Wide Web” it had to embody the following

characteristics:

Chapter Two: Web and Hyperlinks

 9

1. Simplicity: Keenly aware of the incredible complexity inherent in

Generalized Markup Language (SGML), Berners-Lee opted for a tiny

subset of tags for describing a document, and didn’t bother with a

method for describing a document’s styles.

2. Universality: He imagined dozens, or even hundreds, of hypertext

formats in the future, and smart clients that could easily negotiate and

translate documents from servers across the Net. While this vision may

not have become reality, the fact remains today that HTML and its

derivatives can be read on virtually any computer, and on many devices

like phones and hand-held units.

 3. Degradability: While maintaining a simple system, as well as one that

worked across the diversity of the Internet, Berners-Lee realized that

HTML would eventually have to expand. To accommodate managed

growth, he added a final axiom regarding new versions: they must

never break older releases of the language. So as the nascent Web

evolved, it would never require upgrades. New versions would simply

be embellishments of old versions.

2.3 Web Page Document

A Web page is a resource of information that is suitable for the World

Wide Web and can be accessed through a web browser. This information is

usually in HTML or Extensible Hypertext Markup Language XHTML

format, and may provide navigation to other web pages via hypertext links.

Web pages may be retrieved from a local computer or from a remote web

server. The web server may restrict access only to a private network, e.g. a

Chapter Two: Web and Hyperlinks

 10

corporate intranet, or it may publish pages on the World Wide Web. Web

pages are requested and served from web servers using Hypertext Transfer

Protocol (HTTP).

Web pages may consist of files of static text stored within the web

server's file system (static web pages), or the web server may construct the

XHTML for each web page when it is requested by a browser (dynamic web

pages).

A Web page is generally a single HTML document, which might include

text, graphics, sound files, and hypertext links. Each HTML document

created is a single web page, regardless of the length of the document or the

amount of information included [Ann99].

The first document or web page that users see when they enter the site is

called the home page. The site might also contain additional documents, files

or web pages, which are sometimes called child pages [Vir01].

The homepage also called index or default page, is the URL or local file

that automatically loads when a web browser start to search in the Web site

[Sun01].

2.4 Web Site

Web site is a collection of web pages under the control of a particular

person or group. Generally, a web site offers a certain amount of

organization of its internal information. The user might start with an index

or default page for a web site and then use hypertext links to access more

detailed information. Another page within the web site might offer links to

Chapter Two: Web and Hyperlinks

 11

other interesting sites on the web, information about the organization, or just

about anything else [Jim03].

Any web site is represented by a directory structure. Directories (“places”

to store files) are organized into a hierarchical structure that fans out like an

upside-down tree. The top-most directory is known as the root and is written

as a forward slash (/). The root can contain several directories, each of which

can contain subdirectories; each of these can contain more subdirectories,

and so on. A subdirectory is said to be the "child" of the directory that holds

its "parent". Figure (2.1) shows a system with five directories under the root.

The directory users have two subdirectories, jen and richard. Within jen

are two more subdirectories, work and pers, and within pers is the file

art.html [Jen99].

bin lib

Art.html

/

etc users tmp

jen richard

pers work work

(Root)

Figure (2.1) The strucutre of web site

Chapter Two: Web and Hyperlinks

 12

2.5 The Uniform Resource Locator

Every document on the World Wide Web has a unique address, this

document’s address is known as its uniform resource locator (URL).

 "URL" usually is pronounced "you are ell". A URL consists of the

document's name preceded by the hierarchy of directory names in which the

file is stored (pathname), the Internet domain name of the server that hosts

the file and the software and manner by which the browser and the

document's host server communicate to exchange the document (protocol):

protocol://server_domain_name/pathname

Several HTML tags include a URL attribute value, including hyperlinks,

inline images, and forms. All use the same URL syntax to specify the

location of a web resource, regardless of the type or content of that resource.

That's why it's known as a uniform resource locator.

Since it can be used to represent almost any resource on the Internet,

URLs come in a variety of flavors. All URLs, however, have the same top-

level syntax: scheme: scheme_specific_part.

The scheme describes the kind of object the URL references; the

scheme_specific_part is, well, the part that is peculiar to the specific scheme.

The important thing to note is that the scheme is always separated from

the scheme_specific_part by a colon with no intervening spaces [Chu98].

2.5.1 The Different Protocols for URLs[Ann99]
There are some protocol uses for URL but already mentioned that HTTP

is the protocol most often used by Web browsers to access HTML pages.

Table (2.1) shows some of the other protocols that can be part of an URL.

Chapter Two: Web and Hyperlinks

 13

Table (2.1) Possible Protocols for an URL

By entering one of these protocols, followed by an Internet server address

and a path statement, the user can access nearly any document, directory,

file, or program available on the Internet or on his (her) hard drive.

2.6 Hypertext Markup Language[Ann99]

Hypertext Markup Language (HTML) developed as a subset of SGML

which is a higher-level mark-up language that has long been a favorite of the

Department of Defense. Like HTML, it describes formatting and hypertext

links, and it defines different components of a document. HTML is

definitely the simpler of the two, and although they are related, there are few

browsers that support both.

Because HTML was conceived for transmission over the Internet in the

form of Web pages, it is much simpler than SGML, which is more of an

application-oriented document format. While it's true that many programs

Protocol Accesses…
http:// HTML documents
https:// Some "secure" HTML documents
file:// HTML documents on hard drive
ftp:// FTP sites and files
gopher:// Gopher menus and documents
news:// Use Net newsgroups on a particular news server
news: Use Net newsgroups
mailto: E-mail messages
telnet: Remote Telnet (login) session

Chapter Two: Web and Hyperlinks

 14

can load, edit, create, and save files in the SGML format (just as many

programs can create and save programs in the Microsoft Word format),

SGML is not exactly ideal for transmission across the Internet to many

different types of computers, users, and browser applications.

HTML is more suited to this task. HTML lets the designer create pages

that reasonably sure can be read by the entire population of the Web. Even

users who are unable to view page graphics, for instance, can experience the

bulk of what it communicating if the designer design HTML pages properly.

At the same time, HTML is a simple enough format that typical computer

users can generate HTML documents without the benefit of a special

application. Creating a WordPerfect-format document would be rather

difficult by hand (including all of the required text size, fonts, page breaks,

columns, margins, and other information), even if it weren't a "proprietary"-

that is, nonpublic-document format.

HTML is a public standard, and simple enough. This simplicity is part of

a trade-off, as HTML-format documents don't offer nearly the precision of

control or depth of formatting options that a WordPerfect or Adobe

PageMaker-formatted document would.

The specification of links in HTML: [W3c04]

1. HTML links are not stable: if the destination document is re

(moved) the link points to null.

2. HTML links are unidirectional: destination document's do not

"know" that a link points at them.

Chapter Two: Web and Hyperlinks

 15

3. HTML links are always one to one relationships: there is always

one source and one destination. It is not possible to model more

complex relationships between documents with a HTML link.

4. HTML links do not support version management: as they are hard-

coded it is not possible to update the destination to a new version

automatically. Further it is not possible to create HTML links that

point to a whole bunch of versions of the same document.

5. HTML links do not provide rights management: it is not possible

to control access to a link. An HTML links is always shown and can

be followed by every single user.

6. HTML links do not have types: in other words: there is only one

type of HTML link. It is not possible to map different semantics of

links to different link type.

7. HTML links cannot be annotated by arbitrary metadata: a part from

the title of a link it is not possible to attach metadata. This makes it

impossible to have proper descriptions for semantically complex

link relationship.

2.7 Hyperlinks Concept

Unlike any other Internet service or protocol, the World Wide Web is

based on a concept of information retrieval called hypertext. In a hypertext

document, Hyperlinks are links in a web page that could be clicked on to go

to other web resources. The user can also do thing like open an e-mail

program to send messages for anyone. When the cursor is on hyperlinks, it

changes into the shape of a hand. Usually, a text hyperlink is of a different

color than regular text and underlined. Images can also be hyperlinks,

Chapter Two: Web and Hyperlinks

 16

hyperlinks are also called links. Without links, websites would be virtually

worthless and very boring [Ann99].

The true power of HTML, however, lies in its ability to join collections

of documents together into a full library of information, and to link

documents with other collections around the world. Just as readers have

considerable control over how the document looks onscreen, with hyperlinks

they also have control over the order of presentation as they navigate

through their information[Chu98].

Hypertext gives users the ability to retrieve and display a different

document simply by a click of the keyboard or mouse on an associated word

or phrase hyperlink in HTML document.

Use these interactive hyperlinks to help readers easily navigate and find

information of otherwise separate documents in a variety of formats,

including multimedia, HTML, and plain ASCII text.

 To include a hyperlink to some other document in web collection, all the

user need to know is the document's unique address and how to drop an

anchor into he (she) HTML document [Jen99].

Hypertext is non-sequential by definition. There is no single order that

determines the sequence in which the text is to be read. It provides a means

for readers to actively explore rather than passively absorb a body of

information. Hypertext consists of interlinked pieces of text (or other types

of information). Each unit of information is called a node. Whatever the

grain size of these nodes, each of them may have pointers to other units, and

these pointers are called links.

Figure (2.2) shows that the entire hypertext structure forms a network of

nodes and links. Readers move through this network in an activity called

Chapter Two: Web and Hyperlinks

 17

 browsing or navigating, rather than just "reading", to emphasize that

users must actively determine the order in which they read the nodes.

Figure (2.2) Example of hypertext structure

User interfaces of hypertext systems give users (limited) freedom to

navigate through the hyperspace. (Hyperspace is a term used for the

structure formed by the nodes and links). Users only need to e. g. "click" on

the links to go anywhere they want, and in the meantime users get a

hyperdocument instead of a plain text document. Hypertext systems provide

users a little or a large amount of navigational freedom; depending on how

"rich" the link structure is [Hon02].

2.8 Creating Link by Using Anchor Tag [Ann99]

The anchor (<A>) tag is the HTML feature for defining both the source

and the destination of a hyperlink. The user will most often see and use the

<A> tag with its HyperRefrence attributes (HREF) to define a source

hyperlink. The value of the attribute is the URL of the destination. The

contents of the source <A> tag is the words or images between it and its

Node

Link

Chapter Two: Web and Hyperlinks

 18

 end tag is the portion of the HTML document that is specially

activated in the browser display and that users select to take a hyperlink.

These anchor contents usually look different from the surrounding content

(text in a different color or underlined, images with specially colored

borders, or other effects), and the mouse pointer icon changes when passed

over them. The <A> tag contents, therefore, should be text or an image

(icons are great) that explicitly or intuitively tells users where the hyperlink

will take them. For instance, the browser will specially display and change

the mouse pointer when it passes over the text, for examples:

To a local file:

 ...

To an external file:

 ...

To a named anchor:

 ...

To a named anchor in the same file:

 ...

To send an email message:

 ...

To a file on an FTP server:

...

2.9 Types of Hyperlinks
There are three types of HTML hyperlinks, and each one is used in

different situation.

1. Absolute URLs: links to a page on a different web server.

http://server/path/file.html
http://server/path/file.html#fragment

Chapter Two: Web and Hyperlinks

 19

2. Relative URLs: links to a page on the same web server.

3. Linking within a document: links to a different location on same

web page.

a. Linking to fragment.

b. Linking to fragment in another document.

Figure (2.3) illustrates the difference between relative and absolute

URLs.

If the user creates a web site of any complexity, he (she) will need all

three types of hyperlinks.

All hyperlinks have two components:

1. A link label (a clickable element on a web page).

2. A link destination (a target destination).

The link label and the link destination are both components found inside

the special HTML element used to create hyperlinks. Here's example

preview of a link in HTML:

cs120 homepage

Armed with these two components, the users can add any links needed to

their web pages. A link label can consist of any visible element on a web

page.

Although it is usually text (clickable text), it can also be an image (a

clickable image). A link destination is usually another .html file, but it can

also be any file (not necessarily an html file) that the web page author has

chosen to distribute over the web [Dav00].

Link destination Link label

http://www-edlab.cs.umass.edu/cs120/

Chapter Two: Web and Hyperlinks

 20

Figure (2.3) Relative and absolute URLs

2.9.1 Absolute URLs[Vir01]
An absolute URL is made up of the following components: a protocol

identifier, a host name (the name of the server machine), the pathname (if

there is one), and the specific file name. When users are linking to

documents on other servers, they need to use an absolute URL. The

following is an example of a link with an absolute URL:

 ...

Relative
URL

Absolute
URL

Relative
URL

Absolute
URL

Relative
URL

Kate's web Site

Rٌelative
URL

Absolute
URL

Relative
URL

Wally's web Site

Absolute
URL

http://www.littlechair.com/web/index.html

Chapter Two: Web and Hyperlinks

 21

Here the protocol is identified as http (the standard protocol of the Web),

the host is www.littlechair.com and web/index.html is the pathname leading

to the particular file.

2.9.2 Relative URLs [Vir01]
A relative URL provides a pointer to another document relative to the

location of the current document. The syntax is based on relative pathname

structures in the UNIX operating system.

When users are pointing to another document within their own site (on

the same server), it is usually best to use relative URLs.

For example, if user currently in jcc.html (identified here by its absolute

pathname): www.littlechair.com/web/samples/jcc.html.

 If user wants to put a link on that page to talk.html, which is in the same

directory: www.littlechair.com/web/samples/talk.html.

Using a relative URL within the link as follows:

 ...

 Using the same example, to link to the file index.html in a higher level

directory (web), use the relative pathname to that file as shown:

This relative URL is the equivalent to the absolute URL

 http://www.littlechair.com/web/index.html.

2.9.3. Linking Within a Document
By default, when user links to a page, the browser displays the top of that

page. To aid in navigation, the user can use the anchor tag to link to a

specific point or section within a same document or within another

document in same web site.

http://www.littlechair.com
http://www.littlechair.com/web/samples/jcc.html
http://www.littlechair.com/web/samples/talk.html
http://www.littlechair.com/web/index.html

Chapter Two: Web and Hyperlinks

 22

1. Naming a Fragment within Same document

a. Naming a Fragment

 First, the user need to identify and name the portion of the document

(called a fragment) that wanted to link to. The fragment is marked using the

anchor (<A>) tag with its name attribute, giving the document fragment a

name that can be referenced from a link.

 To illustrate, let’s set up a named fragment within a sample document

called Dailynews.html so users can link directly to the Stock Quotes section

of the page.

 The following anchor tag marks the Stock Quotes title as a fragment

named “stocks.”

 Daily Stock Quotes

 b. Linking to a Fragment

 The second step is to create a link to the fragment using a standard

anchor tag with its HREF attribute. Fragment identifiers are placed at the

end of the pathname and are preceded by the hash (#) symbol.

To link to the “stocks” fragment from within dailynews.html, the link

would look like this:

 Check out the Stock Quotes

2. Linking to a Fragment in another Document

 The user can create a link to a named fragment of any document on the

Web by using the complete pathname. (Of course, the named anchors would

have to be in place already.) To link to the stocks section from another

document in the same directory, use a relative pathname as follows:

Go to today’s Stock Quotes

[Jen99]

Chapter Two: Web and Hyperlinks

 23

2.10 Simple and Graphical Hyperlinks Structure
Hyperlinks may represented by text, graphics, list or other structure

types, in this research using text and graphics structure:

1. Simple Hypertext Links

The anchor (<a>) tag is used to identify a string of text that serves as a

hypertext link to another document. In its simplest incarnation, it looks like

this:

 The News

2. Graphical Links

 Graphics work as well as all other types of HTML tags. Simply by

placing an tag inside an anchor tag; the user could be creating a

clickable image, which can substitute for the descriptive text in a link. For

example:

 <IMG SRC="biglogo.gif"

ALT="Bigcorp">

 Notice that the example doesn't include any sort of descriptive text in the

link. If a user's graphical viewer can support this type of image, the link

displays the graphic, with a colored border. Clicking the image sends the

browser to the associated link. If the user isn't viewing this page with a

graphical viewer, he or she sees the ALT text, which works as a hyperlink.

[Ann99].

2.11 404 Error Message[Ger99]
404 is an HTTP status code, anyone who uses a computer on a regular

basis has been faced with a 404 error message.

http://www.fakecorp.com/

Chapter Two: Web and Hyperlinks

 24

The 404 error message commonly appears when users request a URL that

the server does not have. For some reason, the server chooses to simply flash

a 404 error message rather than providing them with the information that

they need. All they know from the information provided is that the page has

not been found. This is usually a default message that most Web servers

return when someone requests a URL that the server does not have.

Every time the user visits a web page, his (her) computer (client) is

requesting data from a server using HTTP, or Hypertext Transfer Protocol.

Before the web page is even displayed in his (her) browser, the web server

has sent the HTTP header, which contains the status code.

For a normal web page, the status is 200 OK. The user doesn't see this

because the server proceeds to send his (her) the contents of the page. It's

only when user encounters an error that sees the actual status code, such as

404 not found. HTTP status codes were established by the World Wide Web

Consortium (W3C) in 1992. They were defined by Tim Berners-Lee, the

same person who single-handedly invented the web and the first web

browser in 1990.

 Code 404 is meaning that, the first 4 code indicates a client error. The

server is saying that user have done something wrong, such as misspell the

URL or request a page which is no longer there. The middle 0 code refers to

a general syntax error. This could indicate a spelling mistake.The last 4 code

just indicates the specific error in the group of 40x, which also includes 400:

Bad Request, 401: Unauthorized, etc.

Chapter Two: Web and Hyperlinks

 25

2.12 The Broken Link’s Problem

In hypertext systems such as the World Wide Web, links are a vital

component to the navigation between and within Web pages on the Internet.

A common problem in Web pages is the presence of broken links, broken

links occurs when a link points to a file that can not be accessed.

Based upon a literature of surveys performed on variety Web

professionals, the most common reasons broken links occur are the moving

or renaming of linked files or the misspelling of the path name in the link

itself, hardly a single Web professional has not experienced some sort of

difficulty caused by sources external to their area of responsibility and

outside of their control. Difficulties such as shared network resources are

being changed, including folders being renamed or network drive mappings

being altered. Reorganization of directory structures alone would wreak

havoc on a Web site and the links contained within it. Every Web

professional involved with the development and management of a Web site

has to address the problem of broken links. As the Cyber economy grows,

the task of keeping links accurate and up-to-date becomes even more crucial.

According to Nielsen ratings, as of May 2002 there were 580.78 million

people online worldwide. In 2001, Google — the leading Internet search

engine — had access to over 1.5 million URLs which contain over 2.4

billion Web pages. If we conservatively estimate that each Web page on the

Internet has at least one broken link, then in 2.4 billion instances,

information intended to be exchanged on a Web site would not be available,

and in many of these cases visitors would be prevented from successfully

navigating the site.

Chapter Two: Web and Hyperlinks

 26

A Web site, if not properly maintained, can become a liability, even

when a site is regularly maintained, problems still can occur.

Broken links, when not found have caused frustrated and irritated users,

lost customers and lost revenue. As a result, Web developers and

Webmasters currently spend a significant amount of their valuable

production time manually maintaining links within their Web sites in an

effort to reduce the number of lost visitors and, therefore, lost profits

[Lin02].

A dead link or broken link is a link on the World Wide Web that

points to a web page or server that is permanently unavailable. The most

common result of a dead link is a 404 error, which indicates that the web

server responded, but the specific page could not be found. The browser may

also return a Domain Name Server (DNS) error indicating that a web server

could not be found at that domain name.

Another type of dead link is a URL that points to a site unrelated to the

content sought. This can sometimes occur when a domain name is allowed

to lapse, and is subsequently reregistered by another party. Domain names

acquired in this manner are attractive to those who wish to take advantage of

the stream of unsuspecting surfers that will inflate hit counters and Page

Ranking [Gre99].

 Twelve percent of the sites' links did not lead to the information

promised, a condition that damages the logos appeal of the site. While most

designers test for broken links, the content analysis located them more

comprehensively [Hea05].

Chapter Two: Web and Hyperlinks

 27

2.12.1 Disadvantages of Broken Link's Problem
One of the most important indicators of a high-quality site is absence of

broken links.

 1-There is nothing worse for a user than coming across either a link that

leads nowhere or an empty square instead of an image or video.

 2-Broken links ruin web site reputation and bring down its rating on search

engines.

 Broken links are not just errors in the design of a site but they can cost

rating, traffic and money [Jef01].

 The interconnected, hypertext character of the Web contributes

significantly to its importance. It allows for rapid changes to be made to

files, easy connections between one site and another and detailed intrasite

navigational features. The Web encourages rapid, frequent, and direct

publication of information. At the same time, it means that just as rapidly,

pages can disappear, move, and change their entire content.

The links on Web pages connect to other Web pages. Some of the pages

could be on the same Web server while others can be anywhere else on the

Web. This great strength of the Web is also a weakness, in that a company

can never know every Internet site, intranet page, or bookmark list that links

to its pages. And thus, it is impossible to update every page linking to its

pages.

A Web page dies every time that one or more files on a Web server have

their names changed, their location in the subdirectory structure moved, or

their host names modified. If a file named FIRSTtry.htm becomes

redesign.html, anyone linking to the old URL will get the "404 File not

Chapter Two: Web and Hyperlinks

 28

Found" message. When "www.name.org/directory/subdirectory/file.html"

becomes "www.name.org/directory/file.html"; the old URL is again left

orphaned.

Links also die when a server name changes. When "www.host.net/

company" becomes "www.company.com" and no redirect files are left

behind, all the links to the old host die. Then again, there are plenty of pages,

directories, and sites that have just been removed. An organization may

cease to exist, stop paying its Web bills, or get cut off by its hosting

company. Once again, all the links pointing to those pages then die [Gre99].

Diomiidis Spinellis group studied over four thousand references to

WWW resources collected from research papers published in

communications of the Associated Colleges of Midwest (ACM) and Institute

of Electrical and Electronics Engineers Standard Association (IEEE)

computer society journals from 1995 through 1999 and results was as below

the biggest source of unavailable references was 404 Not Found errors,

according for 21.82% of the total. DNS resolution was the second biggest

problem, which caused 11.32% of the references to not fail.

From the Figure (2.4) shown below is clear to see that there is a strong

correlation to year and the number of DNS errors, while there is only weak

correlation to 404 Not Found errors which stayed mostly the same from year

to year [Rya00].

http://www.name.org/directory/subdirectory/file.html
http://www.name.org/directory/file.html
http://www.host.net/
http://www.company.com

Chapter Two: Web and Hyperlinks

 29

Figure (2.4) Availability of Reference in WWW

Broken links have hitherto been a source of constant annoyance for Web

professionals who have been charged with maintaining the integrity of links

within Web sites. Surveys conducted by LinkTek Corporation have served

to uncover the scope of the problem of broken links.

When Web professionals were asked what the resulting problems caused

by broken links there are found as follows:

1. 71% reported that visitors were unable to find what they were looking

for.

2. 69% reported that visitors were unable to properly navigate the site.

3. 57% reported that visitors became frustrated and irritated due to

broken links.

When asked what methods Web professionals currently use to fix broken

links in a Web site:

1. 88% reported that they manually correct broken links on a regular

basis.

Chapter Two: Web and Hyperlinks

 30

2. The remaining 12% reported using a Web authoring program to assist

with the finding and manual fixing of broken links.

And when they asked what actions Web professionals take to prevent

broken links from occurring:

• 74% reported that they perform manual link checking and verification

on a regular basis.

Given the ubiquity of the problem, along with the existing inefficient

manual methods of maintenance and repair, the need for a productivity

enhancing application that could not only find but also repair broken links

became obvious [Lin02].

2.13 The Basic Crawling Algorithm
Web crawling is a process to collect all the web pages that are interests

[Jia00].

Crawlers are also called robots, spiders, worms, wander walkers, and

know bots. The first crawler, Wanderer was developed by Matthew Gray in

1993. Due to the competitive nature of the search engine business; the

designs of these crawlers have not been publicly described. There are several

crawling techniques available in public. The simplest one is to start with a

set of URLs and from that extracts other URLs recursively in breadth-first or

depth-first manner [Sun01].

The crawler consists of a URL list, downloading program and a URL

extractor. Before running the crawler designers will have to initialize the

URL list with some URLs (Home page and other frequently requested

URLs). The downloading program contains a pointer that points to one of

the links in the URL list, which will be initialized to zero.

Chapter Two: Web and Hyperlinks

 31

When the crawler start running, the downloading program will increase

the pointer by one and check if there is a link at the pointed position in the

URL list. If there is a link, then the downloading program will request to

download that link from the internet and save it as a file on the storage unit.

If there was no link then this means that there are no new links in the URL

list, which is the end of the crawling process. After downloading a page

from the internet, it will be send to the URL extractor, which will extract all

the links inside it and these links will be added to the URL list, but without

duplicates (only the new links are added). The crawler complete it's work

when there will be no more new links are added to the URL list and the

pointer of the downloading program cross the last location in the URL list.

Figure (2.5) shows the whole process.

Running a web crawler is a challenging task. There are tricky

performance and reliability issues and even more importantly, there are

social issues [SL98].

The design of a good crawler presents many challenges. Externally, the

crawler must avoid overloading Web sites or network links as it goes about

its business. Internally, the crawler must deal with huge volumes of data.

Unless it has unlimited computing resources and unlimited time, it must

carefully decide what URLs to scan and in what order [JHL98].

Chapter Two: Web and Hyperlinks

 32

Start

2.13.1 Crawling Policies
There are two policies used to traverse web pages. The first one is

breadth-first policy. It looks at all the pages linked by the current page and

so on. The coverage will be wide but shallow. This may cause the web

server to have many rapid requests. The second is depth-first policy. The

users follow the first link of a page and they do the same on that page until

they cannot go deeper. After that, it returns recursively. The advantage of

using depth-first search is deep and space complexity is cheaper. But

disadvantage of using it is narrow. Consider the web site shown in Figure

(2.5).

Initialize the
URL list

Returning URL

Request for
Page

Returning
Page

Send to Extractor
Add
new

URLs

URL
Extractor

Downloading
Function

Storage Unit

URL
List

0

1
2

3

4

5

6

Figure (2.5) Crawling Process

Web Site

List of the
most popular

pages

Chapter Two: Web and Hyperlinks

 33

If the crawler is using a breadth-first policy then the pages will be

downloaded in the order (home, page1, page2, page3, page4, page5, page6,

page7, page8, page9, page10, page11). If the crawler is using a depth-first

policy then the pages will be downloaded in the order (Home, page1, page4,

page5, page10, page11, page6, page2, page7, page8, page3, page9)[Eih05].

Home

Page2 Page3

Page4 Page5

Page1

Page6 Page7 Page8 Page9

Page11 Page10

Figure (2.5) website example

Chapter Three

 Design of proposed Link
Checker Software

Chapter Three

Design of Proposed
 Link Checker Software

3.1 Introduction

This chapter is organized as follows: at first, in section (3.2),

software architecture is explained. Section (3.3) illustrates the crawler

module. In section (3.4), image link extractor module explained in detail.

Section (3.5), illustrates the checker module.

3.2 Proposed Software Architecture
 This thesis aim to design and implement software that test website

links, and gives a report about broken links, whether these links were text

links or image links. The structure of the proposed link checker software

consists of three main modules as shown in Figure (3.1), each module has

specific functions.

These three modules are:
1. Crawler and extractor module: this module accesses all the

pages of website starting with home page, and then extracts all the

text links founded within web pages, then they classified them

according to their types (absolute link, relative link, fragment link).

2. Image link extractor module: all image links in web pages are

extracted in this module.

 3. Checker module: this module consists of two sub-modules:

a. Text links checker module: all fragment links and absolute

links are checked.

Chapter Three: Design of Proposed Link Checker Software

 35

b. Image links checker module: all extracted image links are

checked.

 The above mentioned modules will be discussed in details in the next

sections. Figure (3.1) show the general structure of proposed link checker

software.

Figure (3.1) Proposed link checker software modules

3.3 Crawler and Extractor Module

The crawling is a process to collect all web pages. There are several

crawling techniques available in public. The simplest one is to start with a

set of URLs and from that extract other URLs recursively in breadth-first

or depth-first manner, in this proposed software a depth first search is

used because it is less than in complexity.

The crawler consists of two parts in this proposed link checker; as

shown in Figure (3.2).

Checker Module

Crawler and
Extractor text
links Module

Extractor Image
link Module

 Web Site

Report about
 all good links and bad

links

Chapter Three: Design of Proposed Link Checker Software

 36

 These two parts are:

1. Initializing the crawling information: All information related to

the crawling process is initialized, this information represents by three

lists of records (relative list, absolute list and fragment list), size of

these lists and the pointer which is used to locate current link.

 2. Extracting links and classified them to their types: In this step

the crawling fetch links one by one from relative list then open it as

file for reading to extracting all text links and classified to their three

types (relative list, absolute list and fragment list).

Figure (3.2) Crawler module

3.3.1 Initializing the Crawler Information
 The crawler considers that relative list is the main list which contains

the first page in website (home page).

Start

Initializing
information

Extracting all text link and
classified to (relative link ,fragment

link, absolute link)

End

Chapter Three: Design of Proposed Link Checker Software

 37

The information of the crawling process contains the following

variables, which will be initialized to zero as shown in Algorithm (3.1).

1. Size-relative, size-absolute and size-fragment: Each one of these

variables initialized to zero.

2. Relative-list, absolute-list and fragment-list: Each one of these

lists is initialized to empty.

3. Current-link: Initialized the index of current link to zero.

 Relative-list, fragment-list and absolute-list are lists of records each

record consists of five fields:

1. Link field: Contains the name of the link.

2. Found field: Contain boolean value (true or false) which explain if

the link found in the website or not.

3. Check field: The crawler prevent duplication in link lists (only

new links are added) so this field needed, contain boolean value

(true or false) which explain if current link checked or not (i.e. if

already exist in relative-list).

4. Source-page field: Contains the name of page which the link

extracted from it.

5. Destination-page field: Contains the name of destination page

which the link pointed to.

Algorithm (3.1) startup Algorithm

Goal: Initializing crawler information.
Input: home page of a website.

 Output: relative-list with the first link value.

Set relative-list (current-link) of link field ← home page
Set relative-list (current-link) of check field ← false
Set relative-list (current-link) of page-destination field ← name of home

page

Chapter Three: Design of Proposed Link Checker Software

 38

After initializing relative-list with the name of home page in previous

Algorithm, now fetching links from relative-list one by one begins with

home page, after each page is checked, all links in that page are extracted

out and then classified them to their types (i.e. if the link is relative link

put it in relative-list, if the link is fragment link put it in fragment-list, if

the link is absolute link put it in absolute-list).

The crawler finishes its work when there is no more links in relative

link list and the current link point to the last link (see Algorithm (3.2)).

Algorithm (3.2) is the main Algorithm for crawling web pages.

Algorithm (3.2) crawling web pages

 Goal: Traverse relative-list starting with home page
 Input: all pages of web site
 Output: relative-list, absolute-list and fragment list

Variables: link, fullpath as string

 While (current-link ≤ size-relative) do
 Set link ← relative-list (current-link).link
 Set fullpath-link execute concat-root(link)
 Execute search-page(link) //check If link found or not
 If search-page(link) = false then
 Set relative-list (current-link).found ← false
 Else
 Set relative-list (current-link).found← true
 End If
 If relative-list (current-link).check equal false then
 Execute read-page(link) //to extract all links and classified
 Set relative-list(current-link).check← true
 End If

 End While

Chapter Three: Design of Proposed Link Checker Software

 39

The crawling Algorithm calls three Algorithms:

1. Concat-root Algorithm.

2. Search-page Algorithm.

3. Read-page Algorithm.

3.3.2 Concat-root Algorithm
 Link's syntax in HTML language is written without writing root

directory, so this Algorithm is used to get fullpath of link, then by this

fullpath of link the crawling Algorithm could reach exact links.

For example:

 Let's website named al-nahrin university which is represent the same

name of root directory exist in drive D:\.

 Let's relative link "Msc-student.html" exists in dept-computer-science

subdirectory, so the full path of that page is "D:\al-nahrin university\

dept-computer-science\Msc-student.html".

 Algorithm (3.3) concat-root

Goal: Get fullpath of link
Input: link
Output: fullpath-link
Variables: root as string

Set root ← "drive-name:\directory"
 If first character of link = "\" then
 Set fullpath-link ←root + link //means the page in root directory
 Else
 Set fullpath-link ← root+ "\" + link
 End If
Return fullpath-link

3.3.3 Search-page Algorithm
 This Algorithm used to check if page is actually exists within website

or not.

Chapter Three: Design of Proposed Link Checker Software

 40

Algorithm (3.4) Search-page

 Goal: Check If page exist within Web site or not
 Input: page-name

Output: True or False
Variable: path

Set path←Dir(page-name)
If path ≠ " " then
 Return true
Else
 Return false
End if

3.3.4 Read-page Algorithm

This Algorithm considered as main and important Algorithm of this

proposed software, is used to extract all text links and classified them to

their types. See Algorithm (3.5).

After each link extraction, read-page Algorithm calls two Algorithms

to classify extracted link to its type. These are:

a. Is-Fragment Algorithm: this Algorithm is used to check if link is

fragment or not. See Algorithm(3.9)

b. Is-Absolute Algorithm: this Algorithm is used to check if link is

absolute or not. See Algorithm(3.10)

Finally, if link is neither fragment link or absolute link this means it is

relative link. To avoid duplicate same link in one list, so that Check-exist

Algorithm was used. See Algorithm (3.8)

Chapter Three: Design of Proposed Link Checker Software

 41

 Algorithm (3.5) Read-page

 Goal: Open page as file to extracted all links and classified them
 to there types.
 Input: page-name

 Output: Relative-list, Absolute-list and Fragment-list
 Variables: ch as character; HR, st, link, fragment, destination-page

as string; absolute-flag, flag-exist as boolean

 Open page as file
 While not end of file
 Read character(ch) from file
 If ch = "<" then
 Read ch from file
 If ch = "A" OR ch = "a" then //found <A\> tag
 Read ch from file
 If ch = " " then
 Set HR ← " " //found HREF attribute
 Read ch from file
 While ch ≠ "="
 Set HR ← HR + ch
 Read ch from file
 End while
 End If

 If execute (check-HREF) = true then
 Set st ← " "
 While ch ≠ " " "
 Read ch from file
 Set st ← st+ch
 End While
 End If
 While ch ≠ " " " character
 Read ch from file
 If ch = " "" character then
 Set st ← st+ch
 End If
 End While
 Set link ← st
 Set destination-page← " "
 To be continue

Chapter Three: Design of Proposed Link Checker Software

 42

 Set fragment ← execute Is-fragment (page-name, link, destination-page)
 If fragment ≠ " " then

Set fragment-list(size-fragment).link← fragment
Set fragment-list(size-fragment).found← false
Set fragment-list(size-fragment).check← false
Set fragment-list(size-fragment).source-page← page name
Set fragment-list(size-fragment).destination-page← page-destination

 Set size-fragment ← size-fragment+1
 End If

 Else
 Set absolute-flag ← execute is-absolute (link)
 If absolute-flag = true then
 If execute check-exist(absolute-list) = false then
 Set absolute-list (size-absolute).link← link

 Set absolute-list (size-absolute).source-page← page-name
 Set absolute-list (size-absolute).destination-page← link

 Set size-absolute ← size-absolute+1
 Else
 Exit If
 End If
 End If
 Else
 Set flag-exist ← execute check-exist(link)
 If flag-exist =l false then
 Set size-relative ← size-relative+1
 Set relative-list(size-relative).link← link

 Set relative-list(size-relative).source-page← page-name
 Set relative-list(size-relative).destination-page← link
 End If
 End If
 End If
End while
Close file

Algorithm (3.7) illustrates the process of checking "HREF" attribute

which means hypertext references.

Chapter Three: Design of Proposed Link Checker Software

 43

Algorithm (3.7) Check-HREF

Goal: Check HREF attribute
Input: HR
Output: True or False

Convert all characters in HR string to small characters
If HR = "href" then
 Return true
Else
 Return false
End If

Algorithm (3.8) Check-exist
Goal: Check if page is found in list or not
Input: page-name, list, size //list is either (relative list or absolute list)
 //size is either relative size or absolute size
Output: True or False
Variables: i as integer; flag as boolean.

Set flag ← false
For i = 0 to size-1
 If list(i).link = page-name then
 Set flag ← true
 Exit For loop
 End If
End For
Return flag

3.3.4.1 Is-Fragment Algorithm

This Algorithm depends on "#" character to check if this link is

fragment link or not. See Algorithm (3.9)

Chapter Three: Design of Proposed Link Checker Software

 44

 Algorithm (3.9) Is-Fragment

Goal: Check link If fragment link or not
Input: link, page-name, destination-page
Output: fragment-name
Variables: fragment-link as string; i, j as integer; ch as character

Set fragment-link ← " "
Set destination-page ←" "
If first character of link string = "#" then //fragment link is linking to

fragment
 For i = 1 to length (link)
 Read ch
 Set fragment-link ←fragment-link+ch
 End For
 Set destination-page ←page-name
Else
 For i = 1 to length(link)
 Read ch from link
 If ch ="#" then //fragment linking to fragment in another document
 For j = i+1 to length(link)
 Read ch
 Set fragment-link ← fragment-link+ch
 End For
 For i = 0 to position (#)
 Read ch
 Set destination-page ←destination-page+ch
 End For
 End If
End If
 Return fragment-link
 Return destination-page

3.3.4.2 Is-Absolute Algorithm
 The Checking absolute link represented by check syntax of it's. The

URL of absolute link (External website) begins with one of these five

protocols (http, news, mailto, gopher, ftp, www). Algorithm (3.10) show

the link checking if it's absolute or not.

Chapter Three: Design of Proposed Link Checker Software

 45

 Algorithm (3.10) Is-absolute

Goal: Check link if it is absolute or not
Input: link
Output: True or False

If (first 7 characters of link equal "http:\\") OR
 (first 7 characters of link equal "news:\\") OR
 (first 4 characters of link equal "www.") OR
 (first 9 characters of link equal "mailto:\\") OR
 (first 9 characters of link equal "gopher:\\")OR
 (first 6 character of link equal "ftp:\\") then
 Return true
 Else
 Return false

 End If

3.4 Image Link Extractor Module

The proposed link checker software traverses and checks the image

links also, after traversing all three types of text links(relative-links,

absolute links and fragment links).The proposed software extracted an

image link from relative link list because this list contains all pages in a

Web site.

In Algorithm (3.11) at first fetch all links one by one from relative list

until no more links in it's to extract the image.

The information of the checking image link contains the following

variables, which initialized to zero.

1. Size of image-list: it is the size of image list.

2. Image-list: it is a list of records each record consists of four fields,

These are:

a. Link field: contains the name of image.

b. Found field: contains boolean value (true or false) which explains

if link found or not.

Chapter Three: Design of Proposed Link Checker Software

 46

c. Check field: this field contain boolean value (true or false) which

explain if current link checked or not (i.e. if already exist in

relative-list).

d. Source-page field: contains the name of page which the link

extracted from it.

Algorithm (3.11) send relative link to another Algorithm which was

extract-image link Algorithm (3.12).

Algorithm (3.11) stopped while no more link in relative link list.

Algorithm (3.11) Fetch-relative link

Goal: Fetch relative link from relative list to found image link.
 Input: Relative link list
 Output: image-list
 Variables: i as integer; link, page-name as string

 For i = 0 to (size-relative)-1
 If relative-list(i).found = true then
 Set link ← relative-list(i).link
 Set page-name execute concat-root(link)
 Execute extract-image-link(page-name)
 End If
 End For

In Algorithm (3.11), number of steps will be done to extract image

link.

 Algorithm (3.12) Extract-image link

 Goal: Traverse image link and check If found or not
 Input: page-name
 Output: image-list
 Variables: ch as character; img-tag, scr-tag, img-name as string
 Open page-name as file
 While not end of file
 Read character from file
 To be continue

Chapter Three: Design of Proposed Link Checker Software

 47

 If ch = "<" then
 Set img-tag ← " "
 For i = 1 to 3 // find IMG tag
 Read character from file
 Set img-tag ← img-tag+ch
 End For
 If img-tag equal "img" then
 Read ch from file
 If ch = " " then
 Set scr-tag ← " "
 For i =1 to 3 //find SCR tag
 Read ch from file
 Set scr-tag ← scr-tag+ch
 End For
 End If
 If scr-tag = "scr" then
 Read ch from file
 While ch ≠ " " "
 Read ch from file
 End While
 Set img-name ← " "
 Read ch from file
 Set img-name ← img-name+ch
 While ch not equal (")
 Read ch from file
 If ch = " " " then Exit do
 End While
 End If
 Set img-name ← img-name +ch
 If execute check_image(img-name, source-page) =false Then
 Set image-list(img-size).link ← img-name
 Set image-list(img-size).check ← True
 Set image-list(img-size).found ← True
 Set image-list(img-size).source-page← page-name
 Set img-size ← img-size + 1
 End If
 End If
 End If
 End While
Close file

Chapter Three: Design of Proposed Link Checker Software

 48

To prevent duplicated same image link in image-list the software

check if image checked previously or not. See Algorithm (3.13)

 Algorithm (3.13) Check-img

Goal: Check if image checked previously or not
Input: img-name, source-page
Output: True or False
Variables: i as integer

 For i = 0 to img-size - 1
 If (((image-list(i).link = img_name) And
 (image-list(i).source-pages = source-page)) OR
 (image-list(i).link = img_name)) Then
 Return true
 Exit For
 Else
 Return False
 End If

 End For

3.5 Checker Module

After all links (text links or image links) extracted, the proposed

software checks to satisfy if these links found or not.

This module consists of two sub-modules:

1. Text links checker module: in this module all fragment were

checked.

2. Image links checker module: all extracted image link were checked

in this module.

3.5.1 Text Links Checker Module

Since, relative links represents web pages and all links (either text or

image) were extracted, so it must be checked if are really exists in Web

Chapter Three: Design of Proposed Link Checker Software

 49

site then the reading operation and links extraction operation were done.

So checking relative links was done during crawler process.

Associated with, since the software is working offline the absolute

links will be checked for syntax only. Therefore the checker module will

work on fragments links.

At first the proposed software fetch all fragment links one by one as

shown in Algorithm (3.14) to send each one to another Algorithm (3.15)

to check if found or not.

Algorithm (3.14) Travers-fragment link
Goal: fetch all fragment links from fragment-list to send to Algorithm

(3.15) and update fragment list
Input: fragment-list
Output: fragment-list with update information
Variables: i as integer; destination-page, link as string

 For i = 0 to size-fragment -1
 Set destination-page ← fragment-list(i).destination-page
 Set link ← fragment-list(i).link
 If execute check-fragment (link,destination-page) = true then

 Set fragment-list(i).found← true //fragment link is found
 End If

 End For

 Algorithm (3.15) using the name of destination-page which sent by

Algorithm (3.14) to open it as file for reading to search on fragment link,

if found the returned value is true else is false.

 Algorithm (3.15)check-fragment

Goal: Check fragment link if found or not
Input: fragment-link, destination-page

 Output: True or False
 Variables: ch as character; tag, st as string
 Open destination-page as file

 To be continue

Chapter Three: Design of Proposed Link Checker Software

 50

 If execute search-page (destination-page) = false then

//check if destination-page found in website or not
 Return false
 Exit
 End If
 While not end of file
 Read ch from file
 If ch = "<" then // find A tag
 Read ch from file
 If ch = "A" OR ch ="a" then
 Read ch from file
 If ch = " " then
 Set tag ← " "
 Read ch from file
 While ch ≠ "="
 Set tag ← tag+ch //find NAME tag
 End While
 If (tag = "name") OR (tag = "NAME") then
 Read character from file
 Set st ← " "
 While ch not equal (")
 Set st ← st +ch
 Read character from file
 If st ←link then //if link s the same word after

NAME tag
 Return true
 Else
 Return false
 End If
 End While
 End If
 End If
 End If
 End If
 End While
Close file

Chapter Three: Design of Proposed Link Checker Software

 51

3.5.2 Image Links Checker Module

All extracted Image links are check in this module, Algorithm (3.16)
imagelink-checking used to checking if image exist in web site or not.

Algorithm (3.16) Imagelink-checking

Goal: check if image link is found in website or not
Input: image-list
Output: updated image-list
Variables: fullpath-img as string; i as integer

 For i = 0 to img-size -1
 Set Fullpath-img ← concat-root(image-list(i).link)
 If execute search_img(fullpath-img) = true then
 Set image-list (img-size).found ← True
 Else
 Set image-list (img-size).found ← False
 End If
 End For

 Algorithm (3.17) search on image path to check if image is exists in
web site.

Algorithm (3.17) Search-Image

Goal: Check image if really exist in web site or not
Input: img-name
Output: True or False
Variable: path

Set path ←Dir(page-name)
If path ≠ " " then
 Return true
Else
 Return false

 End If

Chapter Four

Implementation of Proposed
link checker Software

Chapter Four

Implementation of Proposed Link
Checker Software

4.1 Introduction
 This chapter consists of three parts, the first part explains the

programming language used in the proposed link checker software, the

second part explain how to run and explain the user interface of the

proposed software.

 This proposed software work under widows XP operating system. The

tests have been applied using a personal computer (Pentium 4, processor

2.66GHz, RAM 256MB).

4.2 Programming Language
 Visual Basic was used as programming language for the

implementation of the user interface of the system.

 Visual Basic was used because it is simple, easy to learn and provide

a flexible user interface to other languages, leaving lots of time for the

project design.

4.3 Link Checker Software
 The proposed link checker software checking links in Web Site by

receiving Web Site's URL as input to extract links and then classified to

their types (relative links, fragment links, absolute links and image

links).When the user clicks on link checker software icon, the software

open the first interface as shown in Figure (4.1) which contain two

commands buttons. They are:

Chapter Four: Implementation of Proposed Link Checker Software

 53

 1. Begin Command Button: when the user clicks on this command

button the software going to main menu interface.

 2. Exit Command Button: this command button is used to exit from

the software.

Figure (4.1) Starting interface of proposed software and its Commands

 After user clicks on begin command button, the main menu interface

appear, the user select one Web Site from the list of Web Sites URLs

which found in "Enter URL" field as shown in Figure (4.2) show the

Main Menu Interface.

1. Enter URL Field: this field is used to select Web Site's URL.

2. Check Command Button: this command button is used to extract

all links in a Web Site and then classified to their types.

3. Total Web Site Links Command Button: this command button is

used to calculate the number of all links in the Web Site.

4. Check the Percentage of Good Links Command Button: this

command button is used to check the percentage of good links to

Web Site. Where:

Link Checker
Software

BEGIN

EXIT

Chapter Four: Implementation of Proposed Link Checker Software

 54

 Percentage= (no. of good links/no. links of Web Site)*100

Links is representing all type of links.

5. Check Relative Links Command Button: this command button is

used to display another interface which called relative links

checking.

6. Check Fragment Links Command Button: this command button

is used to display another interface which called fragment links

checking.

7. Check External links Command Button: this command button is

used to display another interface called external Links checking.

8. Check Image links Command Button: this command button is

used to display another interface called image links checking.

9. Return Command Button: this command button is used to return

to the starting interface.

Figure (4.2) Main menu interface

When the user display the main menu interface, at beginning all

command buttons (3 to 8) were disabled except command button 9 is

enabled. Figure (4.3) show the main menu interface with no user input,

3

1

5

7

9

4

2

8

6

Chapter Four: Implementation of Proposed Link Checker Software

 55

till the user select Web Site's URL, the command button 2 is enabled as

shown in Figure (4.4), checking Web Site start when the user click on

command button 2, after the user selection the software extracted all links

and classified to their types and all command buttons from (3 to 8) were

enabled. Figure (4.5) show the main menu interface after user click on

command button 2. Each command button (3 to 8) will be discussed in

the next sections.

Figure (4.3) Main menu interface with no user input

Chapter Four: Implementation of Proposed Link Checker Software

 56

Figure (4.4) Main menu after user input URL

Figure (4.5) Main menu after user click on command button 2

4.4 Relative Links Checking:

When the user click on command button "Check Relative Links" the

proposed software opened new interface which called "Relative Links

Checking" as shown in figure (4.6), in this interface all in interface

information about relative links will be displayed, this interface contains

4 commands buttons to process relative links. These are.

2

Chapter Four: Implementation of Proposed Link Checker Software

 57

 These 4 command buttons in relative links checking interface are:

1. Check Relative Links Command Button: when the user click on

this Command Button, the software display table of links

information. Figure (4.7) show the table of link information.

a. No. Field: it represent index field.

b. Source Page Field: it represents the source link.

c. Destination Page Field: it represents the destination page which

the link pointed to.

d. Status Field: it contains two values either GOOD or BAD. If the

proposed software find the destination page the status is GOOD

else the status is BAD.

Figure (4.6) Relative links checking interface

Relative Links
Checking

Chapter Four: Implementation of Proposed Link Checker Software

 58

Figure (4.7) Relative links checking interface with information

2. Show Bad Links Only Command Button: when the user clicks on

this command button the proposed software display bad relative

links only. If no bad links in web site, a message will be appeared to

user contain this text "No Bad Links". Figure (4.8) show the table of

link information with Bad links only.

Figure (4.8) Bad links

Chapter Four: Implementation of Proposed Link Checker Software

 59

3. Show the Percentage of Bad Links Command Button: when the

user click on this command button the percentage of bad links will

be calculated. Figure (4.9) show the percentage of bad links. Where:

percentage = (no. of bad relative links/total no. of web links)*100

4. Return: this command button is used to return to main menu

interface.

Figure (4.9) Percentage of bad links

4.5 Fragment Links Checking:
 When the user click on command button (check fragment links) the

software opened new interface which called fragment links checking, in

this interface all information about fragment links will be displayed, this

interface contains 4 command buttons to process fragment links. Figure

(4.10) show fragment links checking interface.

These 4 command buttons in fragment links checking interface are:

1. Check Fragment Links Command Button: when the user click on

this Command Button, the software display table of link information.

Chapter Four: Implementation of Proposed Link Checker Software

 60

Link information is represented by these table's fields. Figure

(4.11) show the table of link information.

a. No. Field: this field represent index field.

b. Source Page Field: this field represents the source link.

c. Destination Page Field: this field represents the destination

page which the link pointed to it.

d. Status Field: this field contains two values either GOOD or

BAD. if the software find the destination page the status is

GOOD else the status is BAD.

Figure (4.10) Fragment links checking interface

Fragment Links
Checking

Chapter Four: Implementation of Proposed Link Checker Software

 61

Figure (4.11) Table of link information

2. Show BAD Links Only Command Button: when the user clicks

on this Command Button the software display bad fragment links

only. If no bad links in web site, message will be appearing to user

contain this text "No Bad Links". Figure (4.12) show the table of

link information with BAD links only.

Figure (4.12) Table of link information with bad links only

Chapter Four: Implementation of Proposed Link Checker Software

 62

3. Show the Percentage of BAD Links Command Button: when the

user click on this Command Button the percentage of BAD links

will be calculated. Figure (4.13) show the percentage of BAD

links, where:

 Percentage = (no. of bad fragment links/total no. of web links)*100

4. Return: this Command Button is used to return to main menu
interface.

Figure (4.13) Percentage of bad links

4.6 External Links Checking:

When the user click on command button (check external links) the

software opened new interface which called external links checking, in

this interface all information about external links will be displayed, this

interface contains 4 Command Buttons to process external links. Figure

(4.14) show external links checking interface.

These 4 command buttons in external links checking interface are:

Chapter Four: Implementation of Proposed Link Checker Software

 63

1. Check External Links Command Button: when the user click on

this Command Button, the software display table of link information.

Link information is represented by these table's fields. Figure (4.15)

show the table of link information.

a. No. Field: this field represent index field.

b. Source Page Field: this field represents the source link.

c. Destination Web Site Field: this field represents the destination

page which the link pointed to it.

d. Status Field: this field contains two values either GOOD or BAD.

if the syntax of external links right the status is GOOD else

BAD.

Figure (4.14)External links checking interface

2. Show BAD Links Only Command Button: when the user clicks

on this Command Button the software display BAD external links

only. If no BAD links in web site, message will be appearing to

user contain this text "No BAD Links". Figure (4.16) show the

table of link information with BAD links only.

External Links
Checking

Chapter Four: Implementation of Proposed Link Checker Software

 64

Figure (4.15) Table of link information

Figure (4.16) Table of link information with bad links only

3. Show the Percentage of BAD Links Command Button: when the

user click on this Command Button the percentage of BAD links

Chapter Four: Implementation of Proposed Link Checker Software

 65

will be calculated. Figure (4.17) show the percentage of BAD

links, where:

 Percentage = (no. of bad external links/total no. of web links)*100

4. Return: this Command Button is used to return to main menu
interface.

Figure (4.17) Percentage of bad links

4.7 Image Links Checking:

When the user click on command button (check image links) the

software opened new interface which called image links checking, in

this interface all information about image links will be displayed, this

interface contains 4 Command Buttons to process image links. Figure

(4.18) show image links checking interface.

These 4 command buttons in external links checking interface are:

1. Check Image Links Command Button: when the user click on

this Command Button, the software display table of link information.

Chapter Four: Implementation of Proposed Link Checker Software

 66

Link information is represented by these table's fields. Figure (4.19)

show the table of link information.

a. No. Field: this field represent index field.

b. Source Page Field: this field represents the source page.

c. Destination Image Field: this field represents the destination

image which the link pointed to it.

d. Status Field: this field contains two values either GOOD or

BAD. if the software find the destination page the status is

GOOD else the status is BAD.

Figure (4.18) External links checking interface

2. Show BAD Links Only Command Button: when the user clicks

on this Command Button the software display BAD image links

only. If no BAD links in web site, message will be appearing to

user contain this text "No BAD Links". Figure (4.20) show the

table of link information with BAD links only.

Image Links
Checking

Chapter Four: Implementation of Proposed Link Checker Software

 67

Figure (4.19) Table of link information

Figure (4.20) Table of link information with BAD links only

3. Show the Percentage of BAD Links Command Button: when the

user click on this Command Button the percentage of BAD links

Chapter Four: Implementation of Proposed Link Checker Software

 68

will be calculated. Figure (4.21) show the percentage of BAD

links, where:

 Percentage = (no. of bad image links/total no. of web links)*100

3. Return: this Command Button is used to return to main menu
interface.

Figure (4.21) Percentage of BAD links

4.8 Evaluation of Proposed Software

After applying proposed link checker software on the computer

science department Web Site at al-Nahrain University as sample Web

Site links to check its links, it has a total of (130)links :

Total No. of Link =130 Links.

Table (4.1) shows the results of applying proposed software on this Web

Site.

Chapter Four: Implementation of Proposed Link Checker Software

 69

Link's Type Total No.
No. of Good

Link

No. of Bad

Link

Percentage of Bad

Link

Relative Link 33 30 3 9%

Fragment Link 23 21 2 8%

External Link 13 13 0 0%

Image Link 61 58 3 5%

 Table (4.1) Results of applying proposed software on Web site

This results represented by Flowchart (4.1).

0
10
20
30
40
50
60
70
80
90

100
110
120
130

Relative
Fragment
External
Image

Flowchart (4.1) Results of applying proposed software on Web site

No. of Good Links

Total No. of Links

Chapter Five

Conclusions and Suggestions
 for Future Work

Chapter Five

Conclusions and Suggestions
 for Future Work

5.1 Conclusions

Through execution and implementation of the proposed link checker

software on a Web Site, it is noticed that:

1. Most cases of browsing process in internet shows that there is

always a number of bad links in Web sites.

2. The results obtained shows the applicability of the proposed link

checker software to find all broken links in HTML Web Site,

whether these links are text or image.

3. Some statistical records are evaluated by the software to reflect the

efficiency of the Web Site, which is found useful for pre-site

evaluation and Web Site developers.

4. The presented link checker can be used as a useful tool after off

line maintenance of any Web site, and before uploading the Web

Site for production.

5.2 Suggestions for Future Work

1. Construct more flexible system which works on Web site written

by PHP language in addition to HTML language.

2. Developing the current software to support audio and video links.

3. Connect proposed software to online for the check of external

links.

References

References

[Ann99] Ann N. and Todd S.,"HTML by Example", Que, Inc., 1999

[Avi99] Avi R., "Robots and Spiders and Crawlers", 1999, available at

[Bil00] Bill G., "404 Error Message", 2000, available at

http://www.get-articales.com

[Chu98] Chuck M. and Bill, K., "HTML the Definitive Guide ", 3rd

Edition, O'Reilly and Associates, Inc., 1998

[Dav00] David M.,"CGI programming with Tcl", Addison-Wesley,

2000

[Eih05] Eihab A., "Development of a Web Site Search Engine", M.Sc.

Thesis, Al-Nahrain University, 2005

[Gre99] Greg R., "Raising Deal links", Reference Librarian Montana

State University, Online Inc., 1999

[Hea05] Heather M., "Non- usability Testing methods for Learning

how Web Sites function", Technical communication ",

Volume 52, 2005

[Hon02] Hongjing W., "A Reference Architecture for Adaptive

Hypermedia Applications", University Press Facilities,

Eindhoven, the Netherlands, 2002

[Ing95] Ingham D., B., Canghey S. J. and Litlle M.C., "Fixing the

Broken Link Problem", United Kingdom, 1995

[Jef01] Jeffery V., "The Art and Science of Web Design", 2nd, United

state of America, 2001

[Jen99] Jenneifer N., "Web Design in a Nutshell", 1st Edition, Orally

and Associates Inc., 1999

http://www.get-articales.com

[JHL98] Cho J. , Garcia-Molina H., Page L., "Efficient Crawling

Through URL Ordering", Department of Computer Science,

Stanford University, 1998
[Jim03] Jim B., "Microsoft Office FrontPage 2003 Inside Out",

Microsoft Press, 2003

[Lin02] Linktek Corporation, "Link Fixer Plus", available at

www.linkfierplus.com, 2002

[Mic02] Michael D. Larue, "link Controller", General Public

License, 2004

[Pau04] Paulo M., "Klinkstatus", General Public License, 2004

[Rya00] Ryan, H., "How Dead are Dead Links”, 2000

[Sab02] Saba A., "Internet and Arabic Search Engines", M. Sc. Thesis,

Al-Nahrain University, 2002

[SL98] Birn S. and Page L., " The Anatomy of a Large Scale

Hypertextual Web Search Engine", Computer Science

Department, Stanford University, 1998

[Sun01] Sunny L., "The Overview of Web Search Engines",

Department of Computer Science, University of Waterloo,

Ontario Canada, 2001

[Vir01] Virtualis Glossary, "Virtualis System", 2001, available at

http://www.virtualis.com/guides-glossary.html

[W3c04] W3c Recommendation," Architecture of the World Wide

Web", Volume one, 2004

[Zub03] Zubin J., "Solving the Broken Link Problem in Walden's

Paths", M.Sc. Thesis, Texas A and M University, 2003

http://www.linkfierplus.com
http://www.virtualis.com/guides-glossary.html

 أ

 هـالخلاص

 ان مشكلة الروابط المقطوعه في المواقع الالكترونيه هي من المشاكل الشائعه علـى شـبكة
وتمنع عمليـة نفور زوار الموقع الالكتروني الى وتؤدي هذه المشكله .الانترنيت في الوقت الحاضر

ا اصبح اكثر نتمعبما ان مج و,الى المعلومات المطلوبه التصفح داخل الموقع بصوره سليمه والوصول
 .بشكل صحيحاعتماداً على الانترنيت فأن من اهم الاولويات هي ضمان عمل الروابط

روابط الموقع الالكتـروني وتنفيذ نظام يقوم باختبار جميع الى تصميميهدف هذا البحث ان

ط النـسبي،قائمة قائمة الـراب (وبعدها يقوم النظام بتصنيفها الى اربع قوائم طبقاً الى نوع الرابط
وبعد عملية التصنيف يقوم النظـام)الرابط الضمني،قائمة الرابط المطلق و قائمة الرابط الصوري

بعملية تدقيق الروابط في كل قائمه لكي يتحقق فيما اذا كان الرابط يعمل بشكل صحيح او كلا
 .واعطاء تقرير حول جميع الروابط

ولى وتدعى الا, ثلاث وحدات رئيسيهألف منقترح يتالرابط الممدقق ان هيكلية نظام
والثالثه ,والثانيه تدعى وحدة استخراج الرابط الصوري, استخراج الرابط النصيالمتابعه و حدةو

 تدقيق الرابط النصي و وحدة تين فرعيه وهما وحدةالتدقيق والتي تتكون من وحدتدعى وحدة
 .تدقيق الرابط الصوري

ان مدقق).HTML(رح يطبق على المواقع الالكترونيه المكتوبه بلغة الان مدقق الرابط المقت
اعتمد الموقع الالكتروني لجامعة النهرين كنموذج للاختبار وقد تبين من النتائج المستحصله الرابط

 المقطوعه في الموقع البرنامج المقترح قدرة مدقق الرابط على اكتشاف جميع الروابطمن تطبيق
 بعض الاحصائيات المسجله من قبل البرنامج والتي وجدت باا احتسبتك كذل. الالكتروني

 . الموقع الالكترونينتقييم مسبقاً و لمطوريلمفيده ل
الأدامه وخاصةً كخطوه اخيره قيل رفعه داة مهمه في عملية أيستعمل كان مدقق الرابط

 .للنشر على الانترنيت

 ب

 Microsoft Visual:دوات البرمجيه التاليه الالقد تم في هذا النظام المقترح استخدام
Basic 6.0, Hypertext Markup Language and Windows operating system.

 العراق ةجمھوری
 والبحث العلمي لتعلیم العالياوزارة

 جامعة النھرین
 كلیة العلوم

لموقع ا لتحليلالرابط تطبيق مدقق
 الالكتروني

 ةرسال

علوم في جامعة النهرين كجزء من متطلبـات الكلية الى ه مقدم
 نيــل درجــة الماجــستير في علــوم الحاســبات

 من قبل
 أحمد حسان قحطانإ

)2002 جامعة النهرينس بكالوريو(

 شرافإ
 جمال فاضل توفيق .د رحمهصالح عبد المنعم.د

 1430شوال 2009 لوتشرين الا

