

Republic of Iraq
Ministry of Higher Education and Scientific Research
Al-Nahrain University
College of Science

Implementation of a Parallel
Computing Environment Using

Message Passing Interface

A Thesis
Submitted to the College of Science, Al-Nahrain University

In Partial Fulfillment of the Requirements for
The Degree of Master of Science in Computer Science

By

Dunia Hamid Hameed
(B.Sc. 2004)

Supervisors

 Dr. Lamia H. Khalid Dr. Sawsan K. Thamer

 December 2007 Dhulhejja 1428

Supervisor Certification

We certify that this thesis was prepared under our supervision at the

Department of Computer Science/College of Science/Al-Nahrain University, by

Dunia Hamid Hameed as partial fulfillment of the requirements for the degree

of Master of Science in Computer Science.

Supervisors

Signature: Signature:

Name: Lamia H. Khalid Name:Sawsan K. Thamer

Title: Assist. Prof. Title: Lecturer

Date: 16 / 12 / 2007 Date: 16 / 12 / 2007

The Head of the Department Certification

In view of the available recommendations, I forward this thesis for debate

by the examination committee.

Signature:

Name: Dr. Taha S. Bashaga

Title: Head of the department of Computer Science, Al-Nahrain University.

Date: 17 / 12 / 2007

Examining Committee Certification

We certify that we have read this thesis and as an examining committee,

examined the student in its content and what is related to it, and that in our

opinion it meets the standard of a thesis for the degree of Master of Science in

Computer Science.

Examining Committee Certification

Signature:

Name: Dr. Abdul Monem S. Rahma

Title: Assistance Professor (Chairman)

Date: 20 / 4 / 2008

Signature: Signature:

Name: Dr. Amir S. Al-Malah Name: Dr. Jamal M. Kadhum

Title: Assistant Professor (Member) Title: Lecturer (Member)

Date: 20 / 4 / 2008 Date: 20 / 4 / 2008

Supervisors Certification

Signature: Signature:

Name: Dr. Lamia H. Khalid Name: Sawsan K. Thamer

Title: Assistance Professor Title: Lecturer

Date: 16 / 4 / 2008 Date: 16 / 4 / 2008

The Dean of the College Certification

 Approved by the Council of the College of Science

Signature:

Name: Dr. LAITH ABDUL AZIZ AL - ANI

Title: The Dean of College of Science, Al-Nahrain University.

Date: / / 2008

Dedication

To the two candles in my life, my father for his
guidance and support throughout my life, to extend
my gratitude from all my heart to my mother, I am
eternally grateful for their continuous love, patience,
and understanding, especially during this project.

To my uncle Eng.Saad who helped me as my
father and whatever I do for him I will see it little in
his right because he deserves more.

My very special thanks to my family (my sisters
and my brothers) especially, my brother Dr. Ghaith
for their continuous supports and encouragement
during the period of my study.

 To every one who helps me and supports me
 I could not do this without you, so thank you.

 Dunia

Acknowledgement
First of all, my great thanks to God who helped me and gave

me the ability to perform this work.

I am very grateful to Dr. Lamia H. Khalid for guiding
me with a lot of helpful and advice. I would like to express my
gratitude to Dr. Sawsan Kamal because she gave me many
useful suggestions. They built the whole infrastructure of my work.
And they supplied much functionality to the infrastructure in
response to my requests.

I also wish to give my thanks to all the members of
Computer Science Department in Al-Nahrain University for
their help and encouragement, especially the Head of Department
of Computer Science Dr. Taha S. Bashaga.

Special thanks to Haider Mageed for his help during the
period of my study. Furthermore, this work would not have been
achieved without the support and friendship of my classmate
Wurood Saad.

I would like to thank my family for their love and patience
during my project time.

 Dunia

Abstract

Message Passing Interface (MPI) provides an infrastructure that enables

users to build a high performance distributed computing environment from

networked computers with minimum effort. It provides a common Application

Programming Interface (API) for the development of parallel applications

regardless of the type of multiprocessor system used.

This research implements a distributed computing system called Java

Message Passing Interface Middleware which supports a Message Passing

Interface Application Programming Interface (MPI API). It installs Java

Message Passing Interface (JMPI) package and runs three applications (Range

Addition, Matrix - Vector Multiplication and Gauss Elimination method) in two

modes serial and parallel.

The system implemented on a Local Area Network (LAN) consisted of

five computers. Many experiments have been performed to test the system and it

found that results of parallel applications were close to the results of serial

applications because the calculation times of applications were simple compared

to communication times.

I

Table of Contents
Abstract I

List of Abbreviations V
List of Figures VII
Chapter One: Introduction

1.1 Parallel Computing 1
1.2 Message Passing Model 3

1.3 Message Passing Libraries 5

1.4 Message passing Interface (MPI) Overview 6

1.5 Literature Survey 8

1.6 Thesis's Objective 12

1.7 Thesis's Outlines 13

Chapter Two: Process Communication
2.1 Process Definition 14

2.2 Process Communication Overview 15

 2.2.1 Named Pipes 17

 2.2.2 Semaphore 18

 2.2.3 Shared Memory 18

 2.2.4 Remote Procedure Call (RPC) 19

 2.2.5 Socket 20

 2.2.6 Remote Method Invocation (RMI) 22

2.3 Java Messaging Systems 24

II

Chapter Three: Message Passing Interface (MPI)
 3.1 Introduction to Message Passing Interface (MPI) 26

 3.2 MPI Advantages 28

 3.3 MPI Basic Concepts 29

 3.3.1 Point to Point Communications 30

 3.3.1.1 Buffering 31

 3.3.1.2 Parts of MPI Message 32

 3.3.2 Collective Communications 33

 3.3.3 Process Groups 34

 3.3.4 Communication Contexts 35

 3.3.5 Process Topologies 36

 3.3.6 Bindings for Fortran and C 36

 3.3.7 Environmental management and inquiry 36

 3.3.8 Profiling Interface 37

 3.4 Java Binding of MPI 38

 3.5 Message Passing in JMPI 39

 3.6 JMPI Architecture 40

 3.6.1 MPI Application Programmer's Interface 41

 3.6.2 Communication Layer 43

 3.6.3 Java Virtual Machine (JVM) 46

Chapter Four: Design and Implementation of JMPI

Middleware System
 4.1 Introduction 47

 4.2 JMPI Middleware System 48

 4.3 JMPI Middleware System Applications 54

 4.3.1 Range Addition Application 56

III

 4.3.2 Matrix-Vector Multiplication Application 58

 4.3.3 Gauss Elimination Application 60

 4.4 JMPI Middleware System Tests 65

Chapter Five: Conclusions and Future Work

 5.1 Conclusions 76

 5.2 Future Work 77

References 78

 Appendix A

IV

List of Abbreviations

API Application Programming Interface

CSR Compressed Sparse Row

DSG Distributed Systems Group

FIFO First In First Out

GUI Graphical User Interface

IBM International Business Machine

I/O Input / Output

IPC InterPrrocess Communication

JDK Java Development Kit

JMPI Java Message Passing Interface

JNI Java Native Interface

JVM Java Virtual Machine

LAM/MPI Local Area Multicomputer / Message Passing Interface

LAN Local Area Network

MBCF Memory-Based Communication Facilities

MIMD Multiple Instruction, Multiple Data

MPI Message Passing Interface

MPIF Message Passing Interface Forum

MPL Message Passing Library

NAS Numerical Aerodynamic Simulation

NIO New Input Output

NOWs Networks of Workstations

NPAC Northeast Parallel Architecture Center

ORNL Oak Ridge National Laboratory

V

PCG Precondition Conjugate Gradient

PVM Parallel Virtual Machine

RMI Remote Method Invocation

RPC Remote Procedure Call

RSH Remote SHell

Rshd Remote shell daemon

SPCs Scalable Parallel Computers

SPMD Single Program, Multiple Data

SSI System Service Interface

TCP Transmission Control Protocol

URL Uniform Resource Locator

WAN Wide Area Network

VI

List of Figures

 Figure Name page number

Figure (1-1): The message-passing programming paradigm 4

Figure (2-1): Principle of RPC between a Client and Server Program 20

Figure (2-2): Connection Request 21

Figure (2-3): Communication between Client and Server 21

Figure (3-1): Four process Distributed Parallel Application 40

Figure (3-2): JMPI Architecture 41

Figure (3-3): MPI API Class Organization 43

Figure (4-1): JMPI Middleware System 48

Figure (4-2): JMPI Process Communication in LAN 50

Figure (4-3): Flowchart of JMPI Middleware model 51

Figure (4-4): Flowchart of JMPI Middleware Installation 52

Figure (4-5): Flowchart of Running Applications Using 53

 JMPI Middleware System

Figure (4-6): Warning Window 65

Figure (4-7): Exit Window 65

Figure (4-8): Installed JMPI Middleware System 66

Figure (4-9): JMPI Middleware System Applications Window 66

Figure (4-10): checked Serial option Window 67

Figure (4-11): One computer option window 67

Figure (4-12): LAN option window 68

Figure (4-13): Range Addition Application window 68

Figure (4-14): Matrix-Vector Multiplication Application window 69

VII

Figure (4-15): Gauss Elimination Application window 69

Figure (4-16): Help window 70

Figure (4-17): Time comparison in execution of Serial and Parallel 71

 (one computer) of Range Addition application

Figure (4-18): Time comparison in execution of Serial and Parallel 72

 (LAN) of Range Addition application

Figure (4-19): Time comparison in execution of Serial and Parallel 73

 (one computer)of Matrix-Vector Multiplication application

Figure (4-20):Time comparison in execution of Serial and Parallel 74

 (LAN)of Matrix-Vector Multiplication application

Figure (4-21):Time comparison in execution of Serial and Parallel 75

 (one computer) of Gauss Elimination application

Figure (4-22): Time comparison in execution of Serial 75

 and Parallel of Gauss Elimination application

VIII

Chapter One
Introduction

Chapter One
Introduction

1.1 Parallel Computing

A parallel computer simply comprises a number of processes that work

together to solve a computational problem. There are a number of different types

of computers and classifications are made on the basis of both instruction/data

stream characteristics and memory architectures [Baq06].

While, parallel computing is the simultaneous execution of the same task

(split up and specially adapted) on multiple processors in order to obtain results

faster. The idea is based on the fact that the process of solving a problem usually

can be divided into smaller tasks, which may be carried out simultaneously with

some coordination [Wik06].

 In the simplest sense, parallel computing is the simultaneous use of multiple

computer resources working together to solve a computational problem. To run a

problem using multiple processors, a problem is broken into discrete parts that can

be solved concurrently, and then each part is further broken down to a series of

instructions. After that the instructions from each part execute simultaneously on

different processors. The primary reasons for using parallel computing are

[Bar06]:

• Save time.

• Solve larger problems.

1

• Provide concurrency (do multiple things at the same time).

• Taking advantage of non-local resources - using available computer

resources on a Wide Area Network (WAN), or even the Internet when

local computer resources are scarce.

• Cost savings - using multiple "cheap" computing resources instead of

paying for time on a supercomputer.

• Overcoming memory constraints - single computers have very finite

memory resources. For large problems, using the memories of multiple

computers may overcome this obstacle.

A parallel programming model is a set of software technologies to express

parallel algorithms and match applications with the underlying parallel systems. It

encloses the areas of applications, languages, compilers, libraries, communication

systems, and parallel Input/Output (I/O). People have to choose a proper parallel

programming model or a form of mixture of them to develop their parallel

applications on a particular platform. Parallel programming models are

implemented in several ways: as libraries invoked from traditional sequential

languages, as language extensions, or complete new execution models [Wik06].

There are five parallel programming models in common use. They are

[Bar06]:

1. Shared Memory: tasks share a common address space, which they read

and write asynchronously. Various mechanisms such as locks and

semaphores may be used to control access to the shared memory.

2. Threads: a single process can have multiple, concurrent execution paths.

Perhaps the simplest analogy that can be used to describe threads is the

concept of a single program that includes a number of subroutines.

2

3. Message Passing: A set of tasks that use their own local memory during

computation. Multiple tasks can reside on the same physical machine as

well across an arbitrary number of machines. Tasks exchange data

through communications by sending and receiving messages. Data

transfer usually requires cooperative operations to be performed by each

process. For example, a send operation must have a matching receive

operation. This model is described in more details in the following

sections because it is implemented in the proposed system.

4. Data Parallel: A set of tasks work collectively on the same data structure,

however, each task works on a different partition of the same data

structure.

5. Hybrid: any two or more parallel programming models are combined.

Like the combination of the message passing model with either the

threads model or the shared memory model. Another common example of

a hybrid model is combining data parallel with message passing.

1.2 Message Passing Model

Message Passing model is one of the techniques for communicating between

parallel processes. A common use of message passing is for communication in a

parallel computer. A process running on one processor may send a message to a

process running on the same processor or another. The actual transmission of the

message is usually handled by the run-time support of the language in which the

processes are written, or by the operating system [Far05].

The message passing is a model of parallel programming. Several instances

of the sequential paradigm are considered together. That is, the programmer

imagines several processors, each with its own memory space, and writes a

program to run on each processor. But parallel programming by definition

3

requires co-operation between the processors to solve a task, which requires some

means of communication.

The main point of the message passing model is that the processes

communicate by sending messages to each other. Thus the message-passing

model has no concept of a shared memory space or of processors accessing each

other's memory directly. As far as the programs running on the individual

processors are concerned, the message passing operations are just subroutine calls.

Figure (1-1) shows message passing paradigm [Mac95].

Figure (1-1): The message-passing programming paradigm

The message passing model has become increasingly popular. One reason for

this is the wide number of platforms which can support a message passing model.

Programs written in a message passing style can run on distributed or shared

memory multi-processors, networks of workstations, or even uni-processor

systems. The point of having the paradigm, just as in the sequential case, is that

the programmer knows that his or her algorithms should in principle be portable

to any architecture that supports a message passing model. Message passing is

popular, not because it is particularly easy, but because it is so general [Mac95].

4

Message passing is widely used on parallel computers with distributed

memory, and on clusters of servers. The advantages of using message passing

include [Hew03]:

• Portability: Message passing is implemented on most parallel platforms.

• Universality: Model makes minimal assumptions about underlying

parallel hardware. Message passing libraries exist on computers linked by

networks and on shared and distributed memory multiprocessors.

• Simplicity: Model supports explicit control of memory references for

easier debugging.

The principle drawback of message passing is the responsibility it places on

the programmer. The programmer must explicitly implement a data distribution

scheme and all InterProscess Communication (IPC) techniques and

synchronization. In so doing, it is the programmer's responsibility to resolve data

dependencies and avoid deadlock and race conditions [Mau95].

1.3 Message Passing Libraries

The set of communication operations that are allowed by an implementation

of the message passing model form the components of a message passing library.

Examples of message passing libraries include public domain packages that do

not target a specific machine (Parallel Virtual Machine (PVM), Message Passing

Interface (MPI), etc.) as well as machine dependent vendor implementations

(Message Passing Library (MPL)). Until recently, users of message passing

libraries had to choose between using public domain packages for improved code

portability, and vendor implementations for improved performance on a given

machine. The MPI Library has been developed to meet the dual goals of

portability and performance on a wide range of machines. There are three main

criteria for choosing a MPL [Mau95]:

5

• Performance - latency and bandwidth

• Portability

• Functionality

Latency is time to transmit 0 length message, while bandwidth is the amount

of data that can be communicated per unit of time. Commonly expressed as

megabytes/sec. Latency and bandwidth vary greatly from machine to machine.

The best performance on a specific machine is typically obtained from the native

message passing library written specifically for that machine [Bar06].

1.4 Message Passing Interface (MPI) Overview

MPI is a MPL standard based on the consensus of the MPI Forum (MPIF),

which has over 40 participating organizations, including vendors, researchers,

software library developers, and users. The goal of the MPI is to establish a

portable, efficient, and flexible standard for message passing that will be widely

used for writing message passing programs [Bar05].

MPIF started working on the standard in 1992. The first draft (Version 1.0),

which was published in 1994, was strongly influenced by the work at the

International Business Machine (IBM) Thomas J. Watson Research Center. MPIF

has further enhanced the first version to develop a second version (MPI-2) in

1997. The next release of the first version (Version 1.2) is offered as an update to

the previous release and is contained in the MPI-2 document. The design goal of

MPI is quoted from “MPI: A Message-Passing Interface Standard (Version 1.1)”

as follows [Aoy99]:

• Design an Application Programming Interface (API) (not necessarily for

compilers or a system implementation library).

6

• Allow efficient communication: Avoid memory-to-memory copying and

allow overlap of computation and communication and offload to

communication co-processor, where available.

• Allow for implementations that can be used in a heterogeneous

environment.

• Allow convenient C and Fortran bindings for the interface.

• Assume a reliable communication interface: The user need not cope with

communication failures. Such failures are dealt with by the underlying

communication subsystem.

• Define an interface that is not too different from current practice, such as

PVM and provides extensions that allow greater flexibility.

• Define an interface that can be implemented on many vendors’ platforms,

with no significant changes in the underlying communication and system

software.

• Semantics of the interface should be language independent.

• The interface should be designed to allow for thread-safety.

Although several message-passing libraries exist on different systems, MPI is

popular for the following reasons [Hew03]:

• Support for full asynchronous communication: process communication can

overlap process computation.

• Group membership: processes may be grouped based on context.

• Synchronization variables that protect process messaging: When sending

and receiving messages, synchronization is enforced by source and

destination information, message labeling, and context information.

• Portability: All implementations are based on a published standard that

specifies the semantics for usage.

7

1.5 Literature Survey

Various efforts in the field of message passing libraries were introduced;

some of these efforts are summarized below:

1. Morimoto [Mor99], “Implementing Message Passing Communication with

a Shared Memory Communication Mechanism”.

This thesis describes a high-performance implementation of MPI for a

message passing communication library and uses the Memory-Based

Communication Facilities (MBCF). This implementation, called MPI/MBCF,

combines two protocols to utilize the shared memory communication mechanism:

the write protocol and the eager protocol. In the write protocol, Remote Write is

used for communication with no buffering. In the eager protocol, Memory-Based

First In First Out (FIFO) is used for buffering by the library.

These two protocols are switched autonomously according to the precedence

of the send and receive functions. The performance of the MPI/MBCF was

evaluated on a cluster of workstations. The round-trip time and the peak

bandwidth were measured the Numerical Aerodynamic Simulation (NAS) Parallel

Benchmarks were executed. The results show that a MPL achieves high

performance by using a shared memory communication mechanism.

2. Morin [Mor00],”JMPI: Implementing the Message Passing Standard in

Java”.

Java MPI (JMPI) was an experimental implementation of MPI developed at

the architecture and real-time lab at the University of Massachusetts. This library

implemented a large subset of MPI’s functionality. It proposed that MPI and Java

are complementary technologies and develop a reference implementation written

8

completely in Java. This library supports the transfer of multi-dimensional arrays

through the use of introspection. The library had no runtime infrastructure to

support bootstrapping parallel processes on remote hosts. It used Remote Method

Invocation (RMI) as the communication medium and supports the transfer of Java

objects using the object serialization.

3. Mande [Man02], “Performance Prediction of Message Passing

Communication in Distributed Memory Systems”.

Communication is an important component in determining the overall

performance of a distributed memory parallel computing application. It therefore

becomes essential to predict communication performance of applications on the

underlying network hardware of a target distributed memory system. This thesis

concentrates on integrating a cycle driven k-ary n-cube network simulator to the

existing execution driven distributed memory simulator running message passing

called CAL-SIM for evaluating communication performance of message passing

applications. The design and implementation of a suitable network interface

required for the integration is presented. With detailed network simulation, the

accuracy of predictions made is very high.

The impact on communication performance by varying some of the network

design parameters is studied. Other important aspect of this work is the access to

an evaluation platform for evaluating network design tradeoffs, using real

applications as workload instead of synthetic workloads.

9

4. Squyres [Squ04],” A Component Architecture for the MPI: The System

Services Interface (SSI) of Local Area Multicomputer/ Message Passing

Interface (LAM/MPI)”.

This work presents the design and implementation of component system

architecture in LAM/MPI, a production quality, open source implementation of

the MPI-1 and MPI-2 standards. Previous versions of LAM/MPI, as well as other

MPI implementations, are based on monolithic software architectures that –

regardless of how well-abstracted and logically constructed – are highly complex

software packages, presenting a steep learning curve for new developers and third

parties. The current version of LAM/MPI has been re-architected to utilize a

component system architecture consisting of four component frameworks and a

Meta framework that ties them together. Each component framework was

designed from analysis of prior monolithic implementations of LAM/MPI and

represents a major functional category: run-time environment startup, MPI point-

to-point communication, MPI collective communication, and parallel

checkpoint/restart. The result is an MPI implementation that is highly modular,

has published abstraction and interface boundaries, and is significantly easier to

develop, maintain, and use as a vehicle for research. Performance results are

shown demonstrating that this component-based approach provides identical (if

not better) performance compared to prior monolithic-based implementations. But

it found that the module frameworks themselves can be used to explore their

respective domains. Point-to-Point and collective message passing, for example,

still have many unanswered questions.

The design of the MPI specification was specifically intended to allow multi-

threaded MPI applications. Fault tolerance is also becoming increasingly

important. High failure rates can render large computational resources effectively

10

useless, unless models can be determined that allow some form of continued

operation in the presence of faults.

5. Baker, et.al [Bak04], “A Status Report: Early Experiences with the

implementation of a Message Passing System using Java NIO”.

Since its release in 1996, Java has become a popular software development

language. The reasons for its popularity can be attributed to the easy-to-use

syntax, its portability, the extensive set libraries, and the support of object-

oriented features like data hiding and polymorphism. One of the main drawbacks

of Java was the blocking I/O package, but the situation has improved with the

addition of the Java New I/O (NIO) package that adds scalable and non-blocking

I/O to the language. The Distributed Systems Group (DSG) implemented a Java

message passing system based on Java NIO package that runs on heterogeneous

environment. In this report, they discussed and evaluated their reference

implementation, known as MPJ.

One of the obvious advantages of such a message passing system is a

portable approach to problem solving using heterogeneous operating systems and

hardware without compromising the overall communication performance. MPJ

follows a layered structure that allows enhancements to the existing infrastructure.

This also allows the higher communication layers to swap in various device

drivers to make use of specialized hardware or protocols. The mpjdev device

driver implemented as part of this project has an efficient buffering API that is

used to pack/unpack the data to/from the buffer. mpjdev implements three

communication protocols, inter-process, eager-send and the rendezvous protocol.

mpjdev provides a simple interface that provides the basic functionality for

starting up the device, setting up the communication infrastructure and

sending/receiving the data to/from the other peers.

11

6. Baqer [Baq06], “A Multiprocessing Computer System for the Finite

Element Analysis”.

This work uses MPI and describes the parallel implementation of the

Precondition Conjugate Gradient (PCG) iterative method for the solution of large

linear equation systems resulting from the finite element method. A diagonal

Jacobi precondtioner is used in order to accelerate the convergence. Parallel

implementation of the Gaussian Elimination and back substitution method with

different techniques, block 1-D partitioning and row wise partitioning are

presented and compared with sequential implementation of the method. Different

types of matrix storage schemes are implemented such as the Compressed Sparse

Row (CSR) to achieve better performance. An automatic mesh generator is built

using C++ programming language. The code was tested on a machine with dual

processor. The same accuracy was obtained for the serial and parallel code.

The results show that the CSR format reduces computation time compared to

the order format. The parallel run time was reduced to 66% from the sequential

time. Good performance is achieved with MPI. The PCG method (serial or

parallel) is better for the solution of large linear system (sparse matrices) than

Gaussian Elimination and back substitution method.

1.6 Thesis's Objective

The objective of this project is to implement a system using one of the

reference implementations of MPI systems that follows the recommended

standard API, which includes a library and infrastructure that can provide some

support needed by parallel applications. The proposed system supposes to

implement a middleware system to support a MPI API based on a Java binding

MPI which uses one of the Java IPC techniques.

12

1.7 Thesis's Outlines

In this section, the contents of individual chapters of this thesis are briefly

reviewed:

Chapter 2: Presents definitions and types of IPC.

Chapter 3: Describes the concepts of the theoretical part of the project that

provides a more in-depth background of MPI and JMPI package.

Chapter 4: Describes the implementation of the proposed system and

presents test and results of the proposed system.

 Chapter 5: Introduces the conclusions and suggestions for future work.

13

Chapter Two
Process Communication

Chapter Two
Process Communication

2.1 Process Definition

A process is a set of executable instructions (program) which runs on a

processor. One or more processes may execute on a processor. In a message

passing system, all processes communicate with each other by sending messages

- even if they are running on the same processor. In other words, a process is an

instance of a program running in a computer. It is close in meaning to task, a

term used in some operating systems. In Unix and some other operating systems,

a process is started when a program is initiated (either by a user entering a shell

command or by another program). Like a task, a process is a running program

with which a particular set of data is associated so that the process can be kept

track of. An application that is being shared by multiple users will generally

have one process at some stage of execution for each user. A process can initiate

a subprocess, which is a called a child process (and the initiating process is

sometimes referred to as its parent). A child process is a replica of the parent

process and shares some of its resources, but cannot exist if the parent is

terminated [Bar05, Tec06].

14

2.2 Process Communication Overview

When processes interact with one another, two fundamental requirements

must be satisfied: synchronization and IPC. Processes need to be synchronized

to enforce mutual exclusion; cooperating processes may need to exchange

information.

The communication of a message between two processes implies some

level of synchronization between the two processes: The receiver can not

receive a message until it has been sent by another process. In addition, sender

and receiver need to specify what happens to a process after it issues a send or

receive primitive [Sta98].

Consider the send primitive first. When a send primitive is executed in a

process, there are two possibilities: Either the sending process is blocked until

the message is received, or it is not. Similarly, when a process issues a receive

primitive, there are two possibilities [Sta98]:

1. If a message has previously been sent, the message is received and

execution continues.

2. If there is no waiting message, then either: (a) the process is blocked until

the message arrive. Or (b) the process continues to execute, abandoning

the attempt to receive.

Processes can exchange information or synchronize their operation through

several methods of IPC, which is a capability supported by some operating

systems that allows a process to communicate with another one. The processes

can be running on the same computer or on different computers connected

through a network. IPC enables one application to control another one, and for

several applications to share the same data without interfering with one another.

15

IPC is required in all multiprocessing systems, but it is not generally supported

by single-process operating systems [Jup05].

IPC is a set of programming interfaces that allows a programmer to

coordinate activities among different program processes that can run

concurrently in an operating system. This allows a program to handle many user

requests at the same time. Since even a single user request may result in multiple

processes running in the operating system on the user's behalf, the processes

need to communicate with each other. The IPC interfaces make this possible.

Each IPC method has its own advantages and limitations so it is not unusual for

a single program to use all of the IPC methods [Tec05].

IPC should provide the following services [Web1]:

• Protocol for coordinating sending and receiving of data between

processes.

• Queuing mechanism to enable data to be entered asynchronously and

faster than it is processed.

• Support for many-to-one exchanges (a server dealing with many clients).

• Network support, location independence, integrated security, and

recovery.

• Remote procedure support to invoke a remote application service.

• Support for complex data structures.

• Standard programming language interface.

All these services should be implemented with little code and excellent

performance.

16

The following are some of the common IPC methods:

1. Named Pipes.

2. Semaphores.

3. Shared Memory.

4. Remote Procedure Call (RPC).

5. Socket.

6. Remote Method Invocation (RMI).

2.2.1 Named Pipes

A named pipes is a method for passing information from one computer

process to other processes using a pipe or message holding place that is given a

specific name. Unlike a regular pipe, a named pipe can be used by processes that

do not have to share a common process origin and the message sent to the

named pipe can be read by any authorized process that knows the name of the

named pipe. A named pipe is sometimes called a First In-First Out (FIFO)

because the first data written to the pipe is the first data that is read from it

[Tec05].

named pipes support peer-to-peer processing through the provision of two-

way communication between unrelated processes on the same machine or across

the Local Area Network (LAN). The server creates the pipe and waits for clients

to access it. A useful compatibility feature of named pipes supports standard

Operating System (OS/2) file service commands for access. Multiple clients can

use the same named pipe concurrently. named pipes are easy to use, compatible

with the file system, and provide local and remote support. named pipes provide

strong support for many-to-one IPCs [Web1].

17

2.2.2 Semaphore

Semaphores are a technique for coordinating or synchronizing activities in

which multiple processes compete for the same operating system resources. A

semaphore is a value in a designated place in operating system (or kernel)

storage that each process can check and then change. Depending on the value

that is found, the process can use the resource or will find that it is already in use

and must wait for some period before trying again. Semaphores can be binary (0

or 1) or can have additional values. Typically, a process using semaphores

checks the value and then, if it using the resource, changes the value to reflect

this so that subsequent semaphore users will know to wait. Semaphores are

commonly used for two purposes: to share a common memory space and to

share access to files [Tec03].

2.2.3 Shared Memory

In computer programming, shared memory is a method by which program

processes can exchange data more quickly than by reading and writing using the

regular operating system services. For example, a client process may have data

to pass to a server process that the server process is to modify and return to the

client. Ordinarily, this would require the client writing to an output file (using

the buffers of the operating system) and the server then read that file as an input

from the buffers to its own work space. Using a designated area of shared

memory, the data can be made directly accessible to both processes without

having to use the system services. To put the data in shared memory, the client

gets access to shared memory after checking a semaphore value, writes the data,

and then resets the semaphore to signal to the server (which periodically checks

shared memory for possible input) that data is waiting. In turn, the server

18

process writes data back to the shared memory area, using the semaphore to

indicate that data is ready to be read [Tec05].

Shared memory provides IPC when the memory is allocated in a named

segment. Any process that knows the named segment can share it. Each process

is responsible for implementing synchronization techniques to ensure integrity

of updates. Tables are typically implemented in this way to provide rapid access

to information that is infrequently updated [Web1].

2.2.4 Remote Procedure Call (RPC)

RPC means a slice of code in a client application that invokes a procedure

on the server application. RPC is the method that modern middleware often

replaces because they require programmers to rewrite them over and over when

wiring a bunch of applications together. Other middleware approaches are often

more efficient as the number of applications grows [CIO05].

The RPC facility provides for the invocation and execution of requests from

processors running different operating systems and using different hardware

platforms from the caller's. The standardized request form provides the

capability for data and format translation in and out. These standards are

evolving and being adopted by the industry [Web1]. Figure (2-1) shows the

communication between a Client and Server in RPC Method [Web2].

19

Figure (2-1): Principle of RPC between a Client and Server Program

2.2.5 Socket

A socket is a method for communicating between a client program and a

server program in a network. A socket is defined as "the endpoint in a

connection". Sockets are created and used with a set of programming requests or

"function calls" sometimes called the sockets API. Sockets can also be used for

communication between processes within the same computer [Tec01].

In other words, a socket is one endpoint of a two-way communication link

between two programs running on the network. A socket is bound to a port

number so that the Transmission Control Protocol (TCP) layer can identify the

application that data is destined to be sent. Normally, a server runs on a specific

computer and has a socket that is bound to a specific port number. The server

just waits, listening to the socket for a client to make a connection request. On

the client-side; the client knows the hostname of the machine on which the

server is running and the port number to which the server is connected. To make

a connection request, the client tries to rendezvous with the server on the server's

machine and port. Figure (2-2) shows that the original port is used for accepting

connection requests from other clients [Sun07, Tec01].

20

Figure (2-2): Connection Request

If everything goes well, the server accepts the connection. Upon

acceptance, the server gets a new socket bound to a different port. It needs a new

socket (and consequently a different port number) so that it can continue to

listen to the original socket for connection requests while tending to the needs of

the connected client. On the client side, if the connection is accepted, a socket is

successfully created and the client can use the socket to communicate with the

server. Note that the socket on the client side is not bound to the port number

used to rendezvous with the server. Rather, the client is assigned a port number

local to the machine on which the client is running. Figure (2-3) shows that the

new port is used to communicate with each connected client. The client and

server can now communicate by writing to or reading from their sockets

[Sun07].

Figure (2-3): Communication between Client and Server

21

2.2.6 Remote Method Invocation (RMI)

RMI is a mechanism which invokes a method on an object that exists in

another address space. The other address space could be on the same machine or

on a different one. The RMI mechanism is basically an object-oriented

mechanism. RMI provides the mechanism by which the server and the client

communicate and pass information back and forth. Such an application is

sometimes referred to as a distributed object application [Bac98, Sun05].

There are three processes that participate in supporting RMI [Bac98]:

1. A Client is the process that is invoking a method on a remote object.

2. A Server is the process that owns the remote object. The remote object is

an ordinary object in the address space of the server process.

3. An Object Registry is a name server that relates objects with names.

Objects are registered with the Object Registry. Once an object has been

registered, one can use the Object Registry to obtain access to a remote

object using the name of the object.

RMI uses sockets as the underlying communication medium and is

primarily meant for client server interactions rather than the distributed peer

processes. RMI can save a lot of programming time and effort for the developers

of a message passing system, but is not the best option because of the

performance issues associated with RMI. One of the reasons for these issues

includes sending the basic data-types as objects, because all the arguments to the

remote methods should be serializable. Secondly, at least one RMI registry

should be running to locate distributed objects. The address and port of the RMI

registry needs to be known to all processes that have to query the registry to

locate distributed objects [Bak04].

22

Distributed object applications need to [Sun05]:

• Locate remote objects: Applications can use one of two mechanisms to

obtain references to remote objects. An application can register its remote

objects with RMI's simple naming facility, the rmiregistry, or the

application can pass and return remote object references as part of its

normal operation.

• Communicate with remote objects: Details of communication between

remote objects are handled by RMI; to the programmer, remote

communication looks like a standard Java method invocation.

• Load class bytecodes for objects that are passed around: Because RMI

allows a caller to pass objects to remote objects, RMI provides the

necessary mechanisms for loading an object's code, as well as for

transmitting its data.

The primary advantages of RMI are [Sun07]:

1. Object Oriented: RMI can pass full objects as arguments and return

values, not just predefined data types.

2. Mobile Behavior: RMI can move behavior (class implementations) from

client to server and server to client.

3. Design Patterns: Passing objects lets the programmer use the full power

of object oriented technology in distributed computing, such as two- and

three-tier systems.

4. Safe and Secure: RMI uses built-in Java security mechanisms that allow

the programmer’s system to be safe when users downloading

implementations.

5. Easy to Write/Easy to Use: RMI makes it simple to write remote Java

servers and Java clients that access those servers.

23

6. Connects to Existing/Legacy Systems: RMI interacts with existing

systems through Java's Native Interface (JNI) method.

7. Write Once, Run Anywhere: RMI is part of Java's "Write Once, Run

Anywhere" approach. Any RMI based system is 100% portable to any

Java Virtual Machine (JVM).

8. Distributed Garbage Collection: RMI uses its distributed garbage

collection feature to collect remote server objects that are no longer

referenced by any client in the network.

9. Parallel Computing: RMI is multi-threaded, allowing the programmer’s

servers to exploit Java threads for better concurrent processing of client

requests.

10. The Java Distributed Computing Solution: RMI is part of the core

Java platform.

2.3 Java Messaging Systems

There has been a significant amount of effort in developing Java message

passing systems. Most of the systems were experimental and are no longer

supported or in other cases, the software is not available. The approaches used to

implement a Java messaging system can be divided into three categories

[Bak04]:

1. Using JNI: It is a Java API that allows programmers to call C routines

from their applications. Often developers of message passing systems

use this package to interface their Java code to an underlying native MPI

implementation. This technique saves a lot of additional programming

and testing efforts but does not result in a portable code, which is the

primary reason for implementing a message-passing system in pure

Java. JNI also introduces an additional copying of the data between the

24

Java and the native MPI code. Moreover, using JNI breaks the

programming model of Java because there is no way to ensure code type

safety. It also may lead to memory leaks because in C unlike Java, the

programmer is responsible for allocating and freeing the memory.

2. Using Sockets.

3. Using RMI.

25

Chapter Three
Message Passing Interface

(MPI)

Chapter Three
Message Passing Interface (MPI)

3.1 Introduction to Message Passing Interface (MPI)

MPI is a widely adopted communication library for parallel and distributed

computing. It provides an infrastructure for users to build high performance

distributed computing environment using simple, high-level message-passing

primitives. It is portable, and has been implemented on many platforms and in

parallel machines. Although most of the existing MPI standard specifies

language bindings for Fortran, C and C++, there are a number of

implementations of MPI provided for Java [Wan01].

MPIF sought to make use of the most attractive features of a number of

existing message-passing systems, rather than selecting one of them and

adopting it as the standard. They identified some critical shortcomings of

existing message-passing systems, in areas such as complex data layouts or

support for modularity and safe communication. This led to the introduction of

new features in MPI. The MPI standard defines the user interface and

functionality for a wide range of message-passing capabilities. Since its

completion in June of 1994, MPI has become widely accepted and used.

Implementations are available on a range of machines from Scalable Parallel

Computers (SPCs) with distributed memory to Networks Of Workstations

(NOWs). A growing number of SPCs have an MPI supplied and supported by

the vendor. Because of this, MPI has achieved one of its goals - adding

26

credibility to parallel computing. Third party vendors, researchers, and others

have a reliable and portable way to express message-passing, parallel programs

[Sni95].

MPI is a standard protocol in terms of user interface. It uses the same

function names, and MPI functions are called and arguments are passed in the

same way across different platforms. It hides the underlying hardware

implementation of how these functions work. MPI functions are called and pass

their arguments in the same way regardless of the platform. MPI is the leading

message passing programming paradigm. The public domain implementation

was written at Argonne National Laboratory and is currently available for

virtually all major computer architectures [Lat97].

MPI supports process grouping capability and allows the programmer to

[NCS02]:

• Organize tasks based upon application nature into task groups.

• Enable Collective Communications operations across a subset of related

tasks.

• Provide basis for implementing virtual communication topologies.

• Ensure the communication safety and handle the application complexity.

This standard is intended for use by all those who want to write portable

message-passing programs. This includes individual application programmers,

developers of software designed to run on parallel machines, and creators of

environments and tools. In order to be attractive to this wide audience, the

standard must provide a simple, easy-to-use interface for the basic user while

not semantically precluding the high-performance message-passing operations

available on advanced machines [MPI94].

27

There have been efforts to provide MPI for Java language. Existing

approaches to MPI for Java can be grouped into two types [Wan01]:

1. Native MPI bindings where some native MPI library is called by

Java programs through Java wrappers:

The native MPI binding approach provides efficient MPI

communication through calling native MPI methods. Conflicts could arise

on the use of system resources such as signals between the MPI library

and JVM.

2. Pure Java implementations:

The pure Java implementation approach on the other hand can

provide a portable MPI implementation since the whole MPI library is

rewritten in Java, but the MPI communication would be relatively less

efficient since Java operates at a higher level.

3.2 MPI Advantages

The main advantages of MPI are [Lat97, Sni95]:

• MPI provides a high degree of portability. An MPI source code can be

ported to different platforms, compiled, and run without modification

as long as the MPI library is available on the system.

• MPI can run jobs across heterogeneous systems where a mixture of

processors of different architecture is clustered together. The MPI

library transparently does the appropriate data conversion when data

are sent between different systems.

• MPI standards are flexible. They specify what the MPI functions

should do, but it is left to vendors how to implement them in the most

efficient way that meets the standards.

28

• MPI is widely supported by most vendors of parallel systems, who

have developed highly optimized native implementations for systems.

• MPI offers a high degree of functionality with over 100 routines

implemented in the MPI library.

• MPI was designed to encourage overlap of communication and

computation, so as to take advantage of intelligent communication

agents, and to hide communication latencies. This is achieved by the

use of nonblocking communication calls, which separate the initiation

of a communication from its completion.

• MPI allows or supports scalability through several of its design

features. For example, an application can create subgroups of

processes that, in turn, allow collective communication operations to

limit their scope to the processes involved.

• MPI, as all good standards, is valuable in that it defines a known,

minimum behavior of message-passing implementations. This relieves

the programmer from having to worry about certain problems that can

arise. One example is that MPI guarantees that the underlying

transmission of messages is reliable. The user need not check if a

message is received correctly.

3.3 MPI Basic Concepts

An MPI program consists of a set of processes and a logical communication

medium connecting those processes. An MPI process cannot directly access

memory in another MPI process. IPC requires calling MPI routines in both

processes. MPI defines a library of routines through which MPI processes

communicate [Hew03].

29

The MPI standard routines provide a set of functions that support the

following [MPI03]:

• Point-to-point communications.

• Collective communications.

• Process groups.

• Communication contexts.

• Process topologies.

• Bindings for Fortran and C.

• Environmental management and inquiry.

• Profiling interface.

3.3.1 Point to Point Communications

Point-to-point: is the basic communication pattern in MPI. As the name

implies, point-to-point communications handle data transmission between any

two processes in a communicator. Only two processes are involved: one sends

the data and the other receives it. Most MPI communications are built around

this basic point-to-point communications [NCS01].

There are different types of send and receive routines used for different

purposes. Some of them are [Bar05]:

• Synchronous send.

• Blocking send / blocking receive.

• Non-blocking send / non-blocking receive.

• Buffered send.

• Combined send/receive.

• "Ready" send.

30

Any type of send routine can be paired with any type of receive routine.

MPI also provides several routines associated with send - receive operations,

such as those used to wait for a message's arrival or probe to find out if a

message has arrived.

Most of the MPI point-to-point routines can be used in either blocking or

non-blocking mode [Bar05]:

• Blocking Communication: A communication routine is blocked if the

completion of the call is dependent on certain "events". For sends, the

data must be successfully sent or safely copied to system buffer space so

that the application buffer that contained the data is available for reuse.

For receives, the data must be safely stored in the receive buffer so that it

is ready for use.

• Non-blocking Communication: A communication routine is non-

blocking if the call returns without waiting for any communications

events to complete (such as copying of message from user memory to

system memory or arrival of message). It is not safe to modify or use the

application buffer after completion of a non-blocking send. It is the

programmer's responsibility to insure that the application buffer is free for

reuse. Non-blocking communications are primarily used to overlap

computation with communication to effect performance gains.

3.3.1.1 Buffering

In a perfect world, every send operation would be perfectly synchronized

with its matching receive. This is rarely the case. Somehow or other, the MPI

implementation must be able to deal with storing data when the two tasks are

out of synchronization. Consider the following two cases [Bar05]:

31

• A send operation occurs 5 seconds before the receive is ready - where is

the message while the receive is pending?

• Multiple sends arrive at the same receiving task which can only accept

one send at a time - what happens to the messages that are "backing up"?

The MPI implementation (not the MPI standard) decides what happens to

data in these types of cases. Typically, a system buffer area is reserved to hold

data in transit. System buffer space is [Bar05]:

• Opaque to the programmer and managed entirely by the MPI library

• A finite resource that can be easy to exhaust

• Often mysterious and not well documented

• Able to exist on the sending side, the receiving side, or both

• Something that may improve program performance because it allows

send - receive operations to be asynchronous.

User managed address space (i.e. user’s program variables) is called the

application buffer. MPI also provides for a user managed send buffer.

3.3.1.2 Parts of MPI Message

The arguments passed to an MPI function distinguish two parts of an MPI

message [NCS02]:

1. Message data, which describes the actual data in the message

2. Message envelope, which contains extra information to help deliver the

message in a SEND and insure it is the right message to receive in a

RECV function.

32

3.3.2 Collective Communications

As the name implies, collective communications refers to those MPI

functions involving all the processes within the defined communicator group.

Collective communications are mostly built around point-to-point

communications. Several features distinguish collective communications from

point-to-point communications, which are [NCS02]:

• A collective operation requires that all processes within the communicator

group call the same collective communication function with matching

arguments.

• The size of data sent must exactly match the size of data received. In

point-to-point communications, a sender buffer may be smaller than the

receiver buffer. In collective communications they must be the same.

• Except for synchronization routines, MPI collective communication

functions are not synchronizing as set by the MPI standards.

• Collective communications exist in blocking mode only. Blocking here

means that a process will block until its role in the collective

communication is complete, no matter what the completion status is of the

other processes participating in the communications.

• Collective operations do not use the tag field. They are matched according

to the order they are executed.

There are three types of collective communication [Bar05]:

1. Synchronization: processes wait until all members of the group have

reached the synchronization point.

2. Data Movement: broadcast, scatter/gather, all to all.

33

3. Collective Computation (reductions): one member of the group collects

data from the other members and performs an operation (min, max, add,

multiply, etc.) on that data.

There are number of considerations and restrictions that must be considered

by the programmer in collective communication routines, some of those are

[Bar05]:

• Collective operations are blocking.

• Collective communication routines do not take message tag arguments.

• Collective operations within subsets of processes are accomplished by

first partitioning the subsets into new groups and then attaching the new

groups to new communicators.

• Collective operations can only be used with MPI predefined datatypes -

not with MPI Derived Data Types.

3.3.3 Process Groups

A process group is an ordered collection of processes, and each process is

uniquely identified by its rank within the ordering. For a group of n processes

the ranks run from 0 to n-1. This definition of groups closely conforms to

current practice.

Process groups can be used in two important ways. First, they can be used

to specify which processes are involved in a collective communication

operation, such as a broadcast. Second, they can be used to introduce task

parallelism into an application, so that different groups perform different tasks.

If this is done by loading different executable codes into each group, then the

programmers refer to this as Multiple Instruction, Multiple Data (MIMD) task

34

parallelism. Alternatively, if each group executes a different conditional branch

within the same executable code, then this will be referred as Single Program,

Multiple Data (SPMD) task parallelism (also known as control parallelism)

[MPI93].

3.3.4 Communication Contexts

Communication contexts were initially proposed to allow the creation of

distinct, separable message streams between processes, with each stream having

a unique context. A common use of contexts is to ensure that messages sent in

one phase of an application are not incorrectly intercepted by another phase. The

point here is that the two phases may actually be calls to two different third-

party library routines, and the application developer has no way of knowing if

the message tag, group, and rank completely disambiguate the message traffic of

the different libraries from one another and from the rest of the application.

Context provides an additional criterion for message selection, and hence

permits the construction of independent message tag spaces [MPI93].

A communicator encompasses a group of processes that may communicate

with each other. All MPI messages must specify a communicator. In the

simplest sense, the communicator is an extra "tag" that must be included with

MPI calls. Like groups, communicators are represented within system memory

as objects and are accessible to the programmer only by "handles" [Bar05].

Within a communicator, every process has its own unique, integer identifier

assigned by the system when the process initializes. A rank is sometimes also

called a "process ID". Ranks are contiguous and begin at zero and they are used

by the programmer to specify the source and destination of messages. Often

35

used conditionally by the application to control program execution (if rank=0 do

this / if rank=1 do that) [Bar05].

3.3.5 Process topologies

A topology is an extra, optional attribute that one can give to an intra-

communicator; topologies cannot be added to inter-communicators. A topology

can provide a convenient naming mechanism for the processes of a group

(within a communicator), and additionally, may assist the runtime system in

mapping the processes onto hardware [Sni95].

MPI provides a means for ordering the processes of a group into topologies.

MPI topologies are virtual - there may be no relation between the physical

structure of the parallel machine and the process topology. Virtual topologies

allow application programmer to attach numerical names other than group

names to processes, so that the domain decomposition or other application –

relevant mapping of data to processes is intuitive and convenient. MPI provides

such mapping of convenience of the application programmer; both Cartesian

grids and general graph mappings are supported [Bar05, Skj94].

3.3.6 Bindings for Fortran and C

Defines the rules for MPI language bindings in general and defines for

Fortran and C in particular [MPI03].

3.3.7 Environmental management and inquiry

Environmental management and inquiry discusses routines for getting and,

where appropriate, setting various parameters that relate to the MPI

implementation and the execution environment (such as error handling). It also

36

describes the procedures for entering and leaving the MPI execution

environment [MPI03].

3.3.8 Profiling interface.

The objective of the MPI profiling interface is to ensure that it is relatively

easy for authors of profiling (and other similar) tools to interface their codes to

MPI implementations on different machines [MPI03].

To satisfy the requirements of the MPI profiling interface, an

implementation of the MPI functions must [Sni95]:

1. Provide a mechanism through which all of the MPI defined functions may

be accessed with a name shift.

2. Ensure that those MPI functions which are not replaced may still be linked

into an executable image without causing name clashes.

3. Document the implementation of different language bindings of the MPI

interface if they are layered on top of each other, so that the profiler

developer knows whether the profile interface must be implemented for

each binding, or whether it needs to be implemented only for the lowest

level routines.

4. Ensure that where the implementation of different language bindings is

done through a layered approach, these wrapper functions are separable

from the rest of the library. This is necessary to allow a separate profiling

library to be correctly implemented, since the profiling library must

contain these wrapper functions if it is to perform as expected. This

requirement allows the person who builds the profiling library to extract

37

these functions from the original MPI library and add them into the

profiling library without bringing along any other unnecessary code.

3.4 Java Binding of MPI

Although MPI has Fortran, C and C++ language bindings, a Java binding

for MPI are designed for the Java implementation of MPI. Note that the Java

language is different from Fortran, C or C++ in many ways. For example, in

Java, The programmers program with classes and objects, and they use objects

by reference, not by pointer. C is not an object-oriented language. Even C++ is

not a pure object-oriented programming language, due to the requirement of

being compatible with C. Therefore, they have to design a Java binding for MPI.

In the Java binding, MPI functions are mapped to classes, methods and objects

[Pen99].

One of the Java Binding for MPI is the Java Message Passing Interface

(JMPI). It is implemented according to the Java binding for MPI.

Although no formal Java bindings exist yet for the MPI standard, the

bindings as proposed by the Northeast Parallel Architectures Center (NPAC)

was used in JMPI. First of all, the proposed Java bindings are derived from and

closely follow the official C++ bindings developed by the MPI Forum.

Secondly, it was important to maintain compatibility between the JMPI

implementation of MPI and other implementations based on the proposed

bindings. As a result, programmers don’t need to modify their code for it to

work with different Java implementations of MPI [Mor00].

38

3.5 Message Passing in JMPI

 JMPI is an implementation of the Message Passing Interface for distributed

memory multi-processing in Java. JMPI is completely written in Java and runs

on any host that the JVM is supported on [Kor01].

JMPI implements Message Passing with Java’s RMI. RMI is a native

construct in Java that allows a method running on the local host to invoke a

method on a remote host. One benefit of RMI is that a call to a remote method

has the same semantics as a call to a local method. As a result, Serializable

objects can be passed as parameters and returned as results of remote method

invocations. Object Serialization is the process of encoding a Java Object into a

stream of bytes for transmission across the network. On the remote host, the

object is reconstructed by deserializing the object from the byte array stream. If

the object contains references to other objects, the complete graph is serialized

[Kor01].

For example, assume that Host B in Figure (3-1) wishes to send a message

to Host C. At the time the distributed machine is formed, Host C registers a local

object available for remote method invocation with a Java registry. The purpose

of the registry is to function as a naming service. The registry allows a local

method, such as the one running on Host B, to turn the object’s Uniform

Resource Locator (URL) into a reference to the remote method. Once the

reference is bound, the process on Host B invokes the remote method with the

Message as a single parameter. The method running on Host C inserts the

message into a local FIFO queue, and notifies all blocked threads that a new

message has arrived. The remote method returns a Boolean value of true to

indicate the successful transmission of a message, otherwise false is returned

[Mor00].

39

Figure (3-1): Four process Distributed Parallel Application

3.6 JMPI Architecture

JMPI has three distinct layers as shown in Figure (3-2): the MPI API, the

Communications Layer and the JVM. The MPI API, which is based on the

proposed set of Java bindings by the NPAC at Syracuse University, provides the

core set of MPI functions that MPI applications are written to. The

Communications Layer contains a core set of communication primitives used to

implement the MPI API. Finally, the JVM that compiles and executes Java

Bytecode [Kor01].

40

Figure (3-2): JMPI Architecture

3.6.1 MPI Application Programmering Interface

MPI API is divided into six main classes: MPI, Group, Comm, Datatype,

Status and Request. They are all placed in a package called mpi. These classes

include [Mor00]:

• MPI: A class that includes constants in MPI and functions for

initialization and finalization. The constants, variables, and methods in the

MPI class are all declared as class constants, class variables, and class

methods, respectively.

• Group: The class of the group objects. This class includes all group-

related methods, which are used to create groups.

• Comm: The class of the communicators that includes all point-to-point

communication and attribute-caching methods. All kinds of

communicators are subclasses of the Comm class. The Comm has two

JMPI
Package

Message Passing Interface
API

Communication Layer

Java Virtual Machine

Operating System

Applications using JMPI
package

41

subclasses: the Intracomm class and the Intercomm class. Intracomm

class inherits the Comm class and includes all functions of point-to-point

intra-communication. The functions of collective communication are

added to the IntraComm class. This class is the superclass of various

intra-communicators, while the Intercomm class inherits the Comm class

and includes all functions of point-to-point inter-communication.

Furthermore, Intracomm class is splited into two subclasses: Cartcomm

and Graphcomm. CartComm inherits from the IntraComm class. A

CartComm object is an intra-communicator with the cartesian topological

attributes. The CartComm class includes all the methods used for the

cartesian topology management, while Graphcomm class inherits from the

IntraComm class. A GraphComm object is an intra-communicator with

the graph topological attributes. The GraphComm class includes all the

methods used for the graph topology management.

• Datatype: This class includes several methods for constructing derived

data types like Contiguous, Vector, Indexed and Struct.

• Status: The class of the return-status objects in communications. A Status

object contains the information about the source, tag, count, and data type

of the message in a communication.

• Request: The class of the request objects. The request objects are used in

non-blocking or permanent communications.

Figure (3-3) shows the organization of the MPI API [Mor00].

42

Figure (3-3): MPI API Class Organization

3.6.2 Communications Layer

The Communications Layer has three primary responsibilities: virtual

machine initialization, routing messages between processes, and providing a

core set of communications primitives to the MPI API. The Communications

Layer is multi-threaded and runs in a separate thread than the MPI process. This

allows for the implementation of non-blocking and synchronous communication

primitives in the MPI API. Messages are transmitted directly to their destination

via RMI [Kor01].

The Communications Layer performs three tasks during virtual machine

initialization: start an instance of the Java registry, register an instance of the

Communication Layer’s server skeleton and client stub with the registry, and

perform a barrier with all other processes which will participate in the virtual

machine. The Registry serves as an object manager and naming service. Each

43

process within the virtual machine registers an instance of the Communications

Layer with the local registry. The registered instance of the Communication

Layer is addressable with a URL of the form [Mor00, Kor01]:

rmi://hostname.domainname.com:portno/Commx

Where portno represents the port number that the registry accepts

connections on, and x represents the rank of the local process, which ranges

from 0 to n-1, where n is the total number of processes in the virtual machine.

One of the command line parameters passed to each process during initialization

is the URL of the Rank 0 Communications Layer. After the Communications

Layer has started its local registry and registered its instance of the local

Communications Layer, the last step during initialization is to perform a barrier

with all other processes. There are two advantages of barrier operation: ensure

that all processes have initialized properly, and receive a table containing the

URLs of all the remote processes Communications Layers within the virtual

machine. The barrier is formed when all processes have invoked the barrier

method on the rank 0 process. For processes 1 to n-1, this means a remote

method invocation on the rank 0 process. Before the remote method can be

invoked, the process must bind a reference to the remote object through its

uniform resource locator. Once the reference is bound, the remote method is

invoked in the same manner as a local method would be. The barrier on the rank

0 process uses Java’s notify and wait methods to implement the barrier[Mor00].

Messages between processes are passed as a parameter to a remote method

invocation on the destination process. The Message is a serializable object that

consists of fields to represent the source rank, the destination rank, and message

tag. In addition, the Message incorporates a Datatype object to indicate the type

of data being sent in the message, as well as the actual data. The remote method

44

inserts the message object into the local processes FIFO Message Queue, and

then notifies all locally blocked processes that a new message has arrived

through Java’s synchronization routines. For synchronous mode sends, where

completion of the call indicates the receiver has progressed to the matching

receive, the Communication Layer blocks and waits for notification from the

local process that the matching receives has started. Java’s wait and notify

methods are used to implement synchronous mode sends. For all other

communication modes, the remote method returns after the message has been

inserted into the local message queue [Kor01].

The local process receives messages by invoking a local method in the

Communications Layer. This method checks the incoming message queue for a

message that matches the source rank and message tag passed as parameters. If a

matching message is found, the receive call returns with this message.

Otherwise, the call blocks and waits for a new message to come in. The message

queue is implemented with a Java Vector Class for two reasons: synchronized

access allows more than one thread to insert or remove messages at a time, and

Vectors perform significantly faster than a hand-coded linked list

implementation. In addition, Vectors also support out-of-order removal of

messages, which is required to implement the MPI receive calls [Mor00,

Kor01].

The Communications Layer provides communication primitives from

which all other MPI bindings are implemented. The blocking point-to-point

primitives have been discussed in the previous paragraphs. The non-blocking

versions of the point-to-point primitives are implemented by creating a separate

thread of execution, which simply calls the respective blocking version of the

communication primitive. Collective communication primitives, such as a

45

broadcast to all processes are built on top of the point-to-point primitives. A

separate message queue is used to buffer incoming collective operations to

satisfy the MPI specification document. Two probe functions allow the message

queue to be searched for matching messages without retrieving them. Finally, a

barrier primitive allows all processes within an intracommunicator to

synchronize their execution [Mor00, Kor01].

3.6.3 Java Virtual Machine (JVM)

Java source code is compiled to produce object code, known as bytecode.

So far, this is just like any other language. The critical difference is that

bytecode is not the binary code of any existing computer. It is an architecture-

neutral machine code that can quickly be interpreted to run on any specific

computer. A Java program is executed by running another program called the

JVM. The JVM is typically invoked by running the program called Java. The

JVM reads the bytecode program and interprets or translates it into the native

instruction set.

Running bytecode on a JVM is a highly significant feature and this makes

the Java software is “Write Once, Run Everywhere”. A Java executable is a

binary file that runs on every processor. A Java program is compiled on any

computer and runs on any computer.

The JVM – a fancy name for interpreter – needs to be implemented once

for each computer system; then all bytecode will run on that system. There are

several alternative JVMs available for the personal computers, and they differ in

speed, cost and quality [Lin99].

46

Chapter Four
Implementation of JMPI

Middleware System

Chapter Four
Implementation of JMPI Middleware System

4.1 Introduction

This chapter concerned with the implementation of the JMPI Middleware

system, which is a system for installing and running JMPI package, and run

applications using this package. Three applications are taken as examples to be

run on this system. They can be run in two ways: Serial and Parallel.

JMPI is completely written in Java, and it uses RMI technique. It requires a

Java Development Kit (JDK), which is a Sun Microsystems product aimed at

Java developers. Since the introduction of Java, it has been by far the most

widely used Java Software Development Kit. The primary components of the

JDK are a selection of programming tools, including: loader, compiler,

debugger, etc. JDK Version 1.3 is preferred over Version 1.2 because of the

performance enhancements made to RMI and Object Serialization.

JMPI Middleware System implemented on a LAN consists from five

computers. Each computer is an IBM Pentium 4 has CPU 3.0 GHz

Hyperthreading, 512 cache and RAM is 512 MB. The LAN connected by a

switch which sends a signal to specific computers. The topology of LAN is star

topology.

47

4.2 JMPI Middleware System

JMPI Middleware system is a software which performs the installation and

simplifies JMPI package usage by the application programmer. The process of

downloading and installing JMPI software and configuring the Virtual Machine

are described in more details in appendix A. JMPI Middleware system must

check that JMPI package is installed on the client computer or not. If JMPI is

not installed, then JMPI Middleware system adds a key to the Windows registry

and create a String value in it called JMPI_Reg. The proposed system knows

that JMPI package is not installed if the key is not available in the registry.

During the Installation, JMPI Middleware System does the following operations:

• Setup RSH service.

• Copy JMPI package from Compact Disk to the Hard Disk.

• Change value of Path system variable.

• Create CLASSPATH system variable and put path of mpi.jar file.

• Create Machine File.

Figure (4-1) depicts the architecture of JMPI Middlware system.

Figure (4-1): JMPI Middleware System

To execute any application of JMPI Middleware system, the package

should be imported and there are initialization and finalization for MPI

JMPI Package
 Operating System

JMPI Middleware
System

Parallel Applications Import JMPI
package

Initialize MPI

Do work and use JMPI

Terminate MPI
Environment

48

execution environment. The initialization is in the form of MPI.Init(args) call.

This function must be called in every MPI program. It must be called before any

other MPI functions, and must be called only once in an MPI program. It gives

an indication to the OS that "this is an MPI program" and allows the OS to do

any necessary initialization. The finalization is in the form of MPI.Finalize()

call, which indicates OS that "clean up" with respect to MPI can commence.

This function should be the last MPI routine called in every MPI program and

no other MPI routines may be called after it.

JMPI Middleware system can be executed on one computer (stand-alone) or

several computers (LAN).The Proposed Middleware system runs multiple

processes as separate threads within one JVM on the stand-alone client computer

because communication layer in JMPI package is multithreaded. The Middleware

system runs one process per computer when it is executed on a LAN for reasons

of efficiency, because message passing systems generally associate only one

process per processor. RMI technique is used to exchange messages between the

processes.

JMPI Middleware partitions the user application program into a number of

processes to make all processors busy and none of them remains idle, so many

processes working toward one solution. The basic premise is that multiple parallel

processes work concurrently towards a common target using "messages" as their

means of communicating with each other. Figure (4-2) shows communication

between processes in a LAN by using JMPI Middleware system.

49

Figure (4-2): JMPI Process Communication in LAN

Figure (4-3) shows Flowchart of JMPI Middleware system model, it consists

of two sub models (JMPI Middleware Installation) and (Use JMPI Middleware

Package), which are appeared in more details in Figures (4-4 and 4-5).

Communication via JMPI

Process (0)

JMPI
Middleware

System
.........

Process (n)

JMPI
Middleware

System

Process (1)

JMPI
Middleware

System

50

Figure (4-3): Flowchart of JMPI Middleware model

Start

No Yes

JMPI Middleware
Installation

Use the JMPI
Middleware

package

JMPI Middleware
system installed?

End

51

Figure (4-4): Flowchart of JMPI Middleware Installation

No

Yes

Exit

2

Setup RSH Service

Copy JMPI package
from Compact Disk

to the Hard Disk

Change value of
Path System

variable

Create
CLASSPATH

variable and put
path of mpi.jar file

Create Machine File

Change
Registration value

to "yes"

Yes

Yes

JMPI Middleware
installation

Is JMPI Package
installed? 2

No

No

Are you
sure
you

want to
Exit?

Do you want to
install JMPI

Middleware System?

52

Figure (4-5): Flowchart of Running Applications Using JMPI Middleware System

Yes

Choose names
of computers

No

Yes

Update Machine
File

Do you want
one computer?

Select Type of parallel
method (one computer

or LAN)

Choose
computer

name

Enter
number of
processes

2

Select Method of
Execution (Serial or

Parallel)

Yes No Did you choose
Serial Method?

Choose application

Print Result of
application

No

Do you want
to run

another
application?

Exit

53

4.3 JMPI Middleware System Applications

The applications which are implemented in this system have the facility to be

executed in two ways serial and parallel. These applications are Range Addition,

Matrix-Vector Multiplication and Gauss Elimination.

In parallel algorithm the following functions of JMPI package will be

called:

• MPI.COMM_WORLD.Size(): Determines the number of processes in

the group associated with a communicator. Generally used within the

communicator MPI_COMM_WORLD to determine the number of

processes being used by user’s application.

• MPI.COMM_WORLD.Rank(): Determines the rank of the calling

process within the communicator. Initially, each process will be

assigned a unique integer rank between 0 and number of processors - 1

within the communicator MPI_COMM_WORLD. This rank is often

referred to as a task ID. If a process becomes associated with other

communicators, it will have a unique rank within each of these as well.

• MPI.COMM_WORLD.Send(buf, offset, count, datatype, dest, tag) :

Basic blocking send operation. The functtion returns only after the

application buffer in the sending task is free for reuse. This function may

be implemented differently on different systems. The MPI standard

permits the use of a system buffer but does not require it. Some

implementations may actually use a synchronous send to implement the

54

 basic blocking send. The arguments are:

 buf: buffer of data.

 offset: .starting address of data.

 count: number of elements in the send buffer.

 datatype: data type of the elements in the send buffer

 dest: process rank to send the data.

 tag: Arbitrary non-negative integer assigned by the programmer to

uniquely identify a message.

• MPI.COMM_WORLD.Recv(buf, offset, count, datatype, source, tag):

Receives a message and blocks until the requested data is available in

the application buffer in the receiving task.

The arguments are:

 buf: buffer of data.

 offset: .starting address of data.

 count: number of elements in the send buffer.

 datatype: data type of the elements in the send buffer

 source: process rank indicates the originating process of the message.

tag: Arbitrary non-negative integer assigned by the programmer to

uniquely identify a message.

• MPI.COMM_WORLD.Allreduce(sendbuf, sendoffset, recvbuf,

recvoffset, count, datatype, op): is collective communication function.

One member of thr group collects data from the other members and

perform an operation (such as add) on that data. This is equivalent to an

MPI.COMM_WORLD.Reduce followed by

MPI.COMM_WORLD.Bcast.

• MPI.COMM_WORLD.Barrier():Creates a barrier synchronization in a

group. Each task, when reaching the MPI.COMM_WORLD.Barrier()

55

call, blocks until all tasks in the group reach the same

MPI.COMM_WORLD.Barrier() call.

4.3.1 Range Addition Application

This Application is used to find the summation of a set of numbers within a

specific range using two methods: serial and parallel. Algorithms (4.1) and (4.2)

illustrate the serial method and the parallel method respectively.

Algorithm (4.1): Range Addition Using Serial Method

Goal: Find Sum of Numbers between Lower and Upper bounds.

Input: Lower and Upper Bounds.

Output: Result of Summation and program Time.

Store starting clock time.

Read Lower_bound and Upper_bound of range.

If (Lower Bound>Upper Bound)

 Print "Range is incorrect".

 Else Do I=Lower_bound,…Upper_bound

 sum=sum+I

Print sum.

Store time after finishing calculations.

Compute and print time of execution.

56

Algorithm (4.2): Range Addition Using Parallel Method

Goal: Find Sum of Numbers between Lower and Upper bounds.

Input: Lower and Upper Bounds.

Output: Result of Summation and program Time.

Initialize MPI Environment using MPI.Init(args) function.

Compute number of processes (size) using MPI.COMM_WORLD.Size() function.

Find Rank of Process using MPI.COMM_WORLD.Rank() function.

Store starting clock time.

Read Lower_bound and Upper_bound of range.

If (Lower Bound>Upper Bound) Print Range is incorrect.

 Else {

 start_value = Upper_bound*rank/size+Lower_bound

 end_value = Upper_bound*(Rank+Lower_bound)/size

 Do I=start_value,…end_value

 sum= sum+ I;

 If (Rank!=0)

 Call MPI.COMM_WORLD.Send(sum,0,1,MPI.INT,0,1) function

 Else

 Do J=1,..size {

 Call MPI.COMM_WORLD.Recv(accum,0,1,MPI.INT,j,1) function.

 sum= sum + accum.

 }

Print Sum.

Store time after finishing calculations.

Compute and print time of execution.

57

4.3.2 Matrix-Vector Multiplication Application

This Application is used to find the product of a Matrix and a Vector using

two methods: Serial and Parallel. Algorithms (4.3) and (4.4) illustrate the serial

method and the parallel method respectively.

Algorithm (4.3): Matrix-Vector Multiplication Using Serial Method

Goal: Multiplying a Matrix with a Vector and store the result in a Vector Result.

Input: Matrix of size N*N and Vector of size N.

Output: Vector of size N.

Store starting clock time.

Read Matrix and Vector.

Result = 0.

Do I=0,…,N.

 {

 sum1=0

 Do J=0,…,N

 {

 Multiply Matrix [I][J] with Vector [J] and store the result in sum2

 Add sum2 to sum1

 }

 Result [I]= sum1

}

Print Matrix, Vector and Result.

Store time after finishing calculations.

Compute and print time of execution.

58

 (

Algorithm (4.4): Matrix-Vector Multiplication Using Parallel Method

Goal: Multiplying a Matrix with a Vector and store the result in a Vector Result.

Input: Matrix of size N*N and Vector of size N.

Output: Vector of size N.

Initialize MPI Environment using MPI.Init(args) function.

Compute number of processes using MPI.COMM_WORLD.Size() function.

Find Rank of Process using MPI.COMM_WORLD.Rank()

Store starting clock time

Read Matrix and Vector.

Result = 0.

Do I=0,…,N.

 Do J=0,…,N

 Result[I]=Result[I]+Matrix[I][J]*Vector[J].

 Call MPI.COMM_WORLD.Allreduce(Result,0,Matrix,0,N,MPI.DOUBLE

,MPI.SUM) function.

If (Rank=0) Print values of Matrix, Vector and Result.

Store time after finishing calculations.

Compute and print time of execution.

Finalize MPI Environment using MPI.Finalize().

59

4.3.3 Gauss Elimination Application

This Application is used to find the values of a Vector X from the equation

(A*X=B) using two methods: serial and parallel. Algorithm (4.5) and (4.8)

illustrate the serial method and the parallel method respectively.

Algorithm (4.5): Gauss Elimination Using Serial Method

Goal: Find the values of Vector X in equation AX=B.

Input: N, Matrix A of size N*N, Vector B of size N.

Output: Vector X of size N.

Store starting clock time.

Read A and B.

X=0.

// k = current row

for (k=0; k<n; k++)

{

// in division step

 for(j=k+1; j<n; j++)

{

 if(A[k*n+k] != 0)

 A[k*n+j] = A[k*n+j] / A[k*n+k]

 else

 A[k*n+j] = 0

 }

// calculates new value

 if (A[k*n+k] != 0)

60

 // for equation solution

 X[k] = b[k] / A [k*n+k]

else

 X[k] = 0.0

// sets Upper Triangular Matrix diagonal value

 A[k*n+k] = 1.0

// Guassian elimination occurs in all remaining rows

for(i=k+1; i<n; i++) {

 for(j=k+1; j<n; j++)

 A[i*n+j] -= A[i*n+k] * A[k*n+j]

 b[i] -= A[i*n+k] * y[k]

 A[i*n+k] = 0.0

 }

}

Print A,B and X.

Store time after finishing calculations.

Compute and print time of execution.

61

Algorithm (4.7): Matrix Gathering

Goal: Gather Matrix from Processes.

Input: Matrix LM of size x by y, Matrix M of size x by y, x and y.

Output: None

if(rank = = 0) {

 for(p=0; p<size; p++) {

 if(p != 0)

 MPI.COMM_WORLD.Recv(LM,0,(y/size*x),MPI.DOUBLE,p,10)

 for(i=p;i<y;i+=size)

 for(j=0;j<x;j++)

 M[i*x+j]=LM[(i/size)x+j] }}

 else MPI.COMM_WORLD.Send(LM,0,(y/size)*x,MPI.DOUBLE, 0,10)

}

Algorithm (4.6): Matrix Distribution

Goal: Distribute Matrix among Processes.

Input: Matrix M of size x by y, Matrix M of size x by y ,x and y.

Output: None

if(rank = = 0)

 { for(p=size-1; p>=0; p--) {

 for(i=p; i<y; i=i+size)

 for(j=0; j<x; j++) {

 LM[(i/size)*x+j] = M[i*x+j] }

 if (p != 0)

 MPI.COMM_WORLD.Send(LM,0,(y/size*x),MPI.DOUBLE,p,10) }

 else MPI.COMM_WORLD.Recv(LM,0,(y/size)*x,MPI.DOUBLE, 0,10)

}

62

Algorithm (4.8): Gauss Elimination Method Using Parallel Method

Goal: Find the values of Vector X in equation AX=B.

Input: N, Matrix A of size n*n, Vector B of size n.

Output: Vector X of size n.

Store starting clock time.

Read A,B.

X = 0.

Initialize MPI Environment using MPI.Init(args) function.

Compute number of processes using MPI.COMM_WORLD.Size() function.

Find Rank of Process using MPI.COMM_WORLD.Rank() function

 pred = (size+(rank-1)) % size

 succ = (rank+1) % size

// Distribute Matrix

Distribute_matrix(A,LA,n,n).

Distribute_matrix(B,LB.1,n).

for(k=0; k<n; k++) {

 if((k%size) == rank) {

 ksn = (k/size)*n

// Peform division step

 for(j=k+1; j<n; j++)

 LA[ksn+j] = LA[ksn+j] / LA[ksn+k]

 Ly[k/size] = Lb[k/size] / LA[ksn+k]

 LA[ksn+k] = 1.0

 for(j=0; j<n; j++)

 cur_row[j] = LA[(k/size)*n+j]

 cur_row[n] = Ly[k/size]

 // Send row to successor using MPI.COMM_WORLD.Send function

63

MPI.COMM_WORLD.Send(cur_row,0, n+1, MPI.DOUBLE , succ, 20)

 }

else

 {

// Receive row from predecessor using MPI.COMM_WORLD.Recv function

 MPI.COMM_WORLD.Recv(cur_row,0, n+1, MPI.DOUBLE, pred, 20)

 if(succ != k%size) {

// Forward row to successor using MPI.COMM_WORLD.Send function

MPI.COMM_WORLD.Send(cur_row,0, n+1, MPI.DOUBLE, succ, 20)

 }

 }

// compute starting point

 start = (rank <= k%size) ? (int) k/size+1 : (int) k/size

// Perform elimination step

 for(i=start; i<np; i++) {

 in = i*n; ink = in+k;

for(j=k+1; j<n; j++) {

 LA[in+j] -= LA[ink] * cur_row[j];

 }

 Lb[i] -= LA[ink] * cur_row[n];

LA[ink] = 0.0; } }

 MPI.COMM_WORLD.Barrier();

Print A,B and X.

Store time after finishing calculations.

Compute and print time of execution

64

4.4 JMPI Middleware System Tests

JMPI Middleware system designed with two main frames to enable the user

to install and run applications. These frames are: JMPI Middleware System

Startup and JMPI Middleware System Applications.

When JMPI Middleware system executed, it will check JMPI_Reg key in

Windows Registry. If the key is not found then Warning Message will appear as

shown in Figure(4-6) to inform the user that, JMPI package is not installed and

ask him to install it or not. If the user wants to start the installation, then he must

choose Ok button. After that the installation begins with RSH service setup and

continues as mentioned in the appendix A.

Figure (4-6): Warning Window

If the user chooses cancel then Exit window will be displayed as shown in

Figure (4-7).

Figure (4-7): Exit Window

If the JMPI Middleware system installed properly, then the window in

Figure (4-8) will be displayed and Next button will be enabled.

65

Figure (4-8): Installed JMPI Middleware System

When the user selects Next button, the JMPI Middleware System

Applications window will be displayed as shown in Figure (4-9). The user can

not choose any application unless he chooses an Execution Method.

Figure (4-9): JMPI Middleware System Applications Window

Execution Method contains two options: Serial and Parallel. Parallel

involves two choices: One computer and LAN. If one of these options selected

by the user, then application menu is enabled.

66

If the user selects Serial, then his working computer name will be

displayed and application menu will be enabled as shown in Figure (4-10).

Figure (4-10): checked Serial option Window

If the user selects Parallel option, and then selects One computer, the

window in Figure (4-11) will be appeared which contains computer name and

the default value of number of processes which can be changed by the user.

Figure (4-11): One computer option window

If the user selects Parallel option, and then selects LAN, the window in

Figure (4-12) will be appeared which contains list of Available Installed

Computers and list of chosen computers which are selected by the user.

67

Figure (4-12): LAN option window

Then the user can choose any application. If he selects Range Addition

the Figure (4-13) will be appeared and he must choose one of the Ranges that

given in the list. After that the Result of addition and time of execution program

will be printed.

Figure (4-13): Range Addition Application window

If the user selects Matrix-Vector Multiplication, Figure (4-14) will be

appeared and he must choose one of the matrix sizes that have been given in the

list. After that the values of resulted vector and time of execution program will

be printed.

68

 Figure (4-14): Matrix-Vector Multiplication Application window

If the user selects Gauss Elimination, the Figure (4-15) will be appeared

and he must choose one of the matrix sizes that have been given in the list. After

that the values of resulted vector and time of execution program will be printed.

Figure (4-15): Gauss Elimination Application window

Help menu is an option to display a message box contains short

information about the JMPI Middleware System, as shown in Figure (4.16).

69

Figure (4-16): Help window

JMPI Middleware System tested on three applications with different Runs

in two modes: Serial and Parallel on different sizes of data. In general the tested

serial execution times are less than parallel execution times. Also the running

time of using the LAN is less than using one computer. These differences in

execution times are caused by the following reasons:

1. The speed of the used LAN (Fast Ethernet 100Mb/sec) is slow and

also there is an overhead time resulted from using RMI technique.

These two points increased the communication time which is added to

the total execution time.

2. The execution times of one computer were increased in general when

the number of processes increased. This was resulted from the time

required by the OS to perform process and thread management.

The obtained results are in Tables (4-1), (4-2) and (4-3). Each value has

been taken from the average of ten runs, and it is measured in millisecond (ms).

When running the Gauss Elimination Application, the number of processes must

be chosen such that the division of the data size over the number of processes is

an integer number (i.e. data size mod number of processes = 0). Figures from (4-

70

17) to (4-22) show Time comparison in execution of Serial and Parallel (one

computer) and Time comparison in execution of Serial and Parallel (LAN) of

the three applications.

Table (4-1): Results of Range Addition Application

Time In

Parallel (ms)

One Computer
(number of processes)

LAN
(number of computers)

Application
Name Range Serial

(ms)

1 2 3 4 5 2 3 4 5

1..1000 0.015 0.051 0.163 0.212 0.328 0.254 0.078 0.079 0.104 0.089

1..50000 0.029 0.054 0.176 0.226 0.304 0.397 0.081 0.081 0.104 0.107

1..100000 0.017 0.046 0.162 0.209 0.279 0.378 0.078 0.079 0.102 0.097

1..150000 0.025 0.073 0.152 0.211 0.266 0.367 0.083 0.084 0.092 0.104

 Range
Addition

Application

1..250000 0.028 0.043 0.149 0.206 0.249 0.37 0.079 0.084 0.098 0.099

0

0.05

0.1
0.15

0.2

0.25

0.3
0.35

0.4

0.45

1..
10

00

1..
50

00
0

1..
10

00
00

1..
15

00
00

1..
25

00
00

Range

Ti
m

e(
m

s) Serial

Parallel: 1-Process

Parallel: 3-Processes

Parallel: 5-Processes

71

Figure (4-17): Time comparison in execution of Serial and Parallel (one computer)

of Range Addition application

0

0.02

0.04

0.06

0.08

0.1

0.12

1..
10

00

1..
50

00
0

1..
10

00
00

1..
15

00
00

1..
25

00
00

Range

Ti
m

e(
m

s) Serial
Parallel: 2-Computers

Parallel: 5-Computers

Figure (4-18): Time comparison in execution of Serial and Parallel (LAN)

of Range Addition application

72

Table (4-2): Results of Matrix-Vector Multiplication Application

Time In

Parallel (ms)

One Computer (number
of processes)

LAN
(number of computers)

Application
Name

Size
(N) Serial

(ms)

1 2 3 4 5 2 3 4 5

50 0.09 0.155 0.205 0.155 0.158 0.157 0.154 0.253 0.157 0.15

100 0.181 0.241 0.409 0.487 0.615 0.656 0.239 0.253 0.251 0.243

150 0.182 0.246 0.415 0.526 0.769 1.03 0.253 0.245 0.249 0.403

200 0.2 0.262 0.441 0.559 0.704 0.974 0.263 0.262 0.263 0.628

250 0.184 0.25 0.410 0.576 0.788 0.884 0.251 0.251 0.249 0.936

 Matrix-Vector
Multiplication

300 0.185 0.25 0.414 0.549 0.723 1.002 0.257 0.251 0.254 1.267

0

0.2

0.4

0.6

0.8

1

1.2

50 100 150 200 250 300

Size

Ti
m

e(
m

s) Serial

Parallel: 1-Process

Parallel: 3-Processes

Parallel: 5-Processes

Figure (4-19): Time comparison in execution of Serial and Parallel (one

computer) of Matrix-Vector Multiplication application

73

0

0.2

0.4

0.6

0.8

1

1.2

1.4

50 100 150 200 250 300

Size

Ti
m

e(
m

s) Serial

Parallel: 2-Computer

Parallel: 5-Computers

Figure (4-20): Time comparison in execution of Serial and Parallel (LAN)

of Matrix-Vector Multiplication application

Table (4-3): Results of Gauss Elimination Application

Time In
Parallel (ms)

One Computer
(number of processes)

LAN
(number of processes)

Application
Name

Size
(N) Serial

(ms)
1 2 3 4 5 2 3 4

50 0.108 0.905 1.156 - - 2.062 0.969 - -

100 0.187 1.609 1.735 - 4.594 5.922 1.547 - 3.094

150 0.359 1.219 1.25 2.485 - 4.266 2.109 4.204 -

200 0.594 0.969 3.093 - 4.172 5.172 2.812 - 5.922

Gauss
Elimination
Application

250 0.907 3.733 3.781 - - 6.093 3.468 - -

74

0

1

2

3

4

5

6

7

50 100 150 200 250

Size

Ti
m

e(
m

s) Serial
Parallel: 2-Processes
Parallel: 5- processes

Figure (4-21): Time comparison in execution of Serial and Parallel (one

computer) of Gauss Elimination application

0

1

2

3

4

5

6

7

50 100 150 200 250

Size

Ti
m

e
(m

s)

Serial

Parallel: One Computer:
5-Processes
Parallel: LAN: 2-
Computers

Figure (4-22): Time comparison in execution of Serial and Parallel

of Gauss Elimination application

75

Chapter Five
 Conclusions and

Future Work

Chapter Five
Conclusions and Future Work

5.1 Conclusions

From this research, several things were noticed and concluded. The most

important ones are:

1. There is a difficulty in deciding which work can be accomplished

concurrently and which in parallel. Also when the communication

between these processes are necessary.

2. In the LAN each computer can run more than one process in parallel. For

reasons of efficiency, only one process was run on each computer in this

project.

3. The execution times that have gotten from running parallel applications

were similar to the execution times of running serial applications because

the calculations time of applications were simple compared to

communications time.

4. The running times of using one computer are larger than LAN because of

the time required by the OS to perform process and thread management.

5. The speed of LAN is slow which adds time to the communication time

that makes execution time of using LAN became more than execution

times of using one computer.

76

5.2 Future Work

There are number of suggestions appeared during the implementation of

this work, some of these suggestions will be described below:

1. Modifying JMPI Middleware System to make it able to discover the

installed and logged on computers in LAN automatically and make the

system check the case of

2. Add a new facility to the JMPI Middleware System which gives the user

the ability to add new applications which need distributed environment.

3. Implement another parallel computing system using another MPI package

or another message passing model and make comparison with JMPI

Middleware System.

4. RMI adds time overhead to each message passed. To reduce reliance of

RMI for IPC, replace it with package applies Socket as a communication

technique.

5. In JMPI Middleware System, the input data of the applications are fixed,

add the facility which makes an online input for any data which are

required by the applications.

77

References

References

• [Aoy99]

Y. Aoyama, J. Nakan, "RS/6000 SP: Practical MPI Programming", First

Edition, 1999.

Website: http://www.redbooks.ibm.com/redbooks/pdfs/sg245380.pdf.

• [Bac98]

K. Baclawski, "Java RMI Tutorial", College of Computer Science,

Northeastern University, 1998.

Website: http://www.ccs.neu.edu/home/kenb/com3337/rmi_tut.html.

• [Bak04]

M. A. Baker, H. Ong, A. Shafi, "A Status Report: Early Experiences with the

implementation of a Message Passing System using Java NIO", 2004.

Website: http://dsg.port.ac.uk/%7Eshafia/res/papers/DSG_2.pdf.

• [Baq06]

Z. T. Baqer, "A Multiprocessing Computer System for the Finite Element

Analysis", PhD thesis, Department of computer Engineering, Baghdad

University, 2006.

• [Bar05]

B. Barney, "Message Passing Interface (MPI) ", 2005.

Website: http://www.llnl.gov/computing/tutorials/mpi/.

• [Bar06]

B. Barney, "Introduction to Parallel Computing", 2006.

Website: http://www.llnl.gov/computing/tutorials/parallel_comp/.

78

• [CIO05]

CIO magazine, "Middleware Demystified", 2005.

Website: http://www.cio.com/archive/051500/middle.html.

• [Far05]

Farlex, The Free Dictionary, 2005.

Website:http://computingdictionary.thefreedictionary.com/Message+Passing

+Interface.

• [Hew03]

Hewlett-Packard Development Company, L.P., "HP MPI User’s Guide",

Eighth Edition, 2003.

Website: http://docs.hp.com/en/B6060-96013/B6060-96013.pdf.

• [Jup05]

Jupitermedia Corporation, Small business computing channel," Interprocess

Communication (IPC)", 2005.

Website:http://www.webopedia.com/TERM/I/interprocess_communication_I

PC.html.

• [Kor01]

I. Koren, C. Mani Krishna, S. Morin, "JMPI: Implementing the Message

Passing Standard in Java", Department of Electrical and Computer

Engineering, University of Massachusetts, 2001.

• [Lat97]

LaTeX , "MPI: A Message-Passing Interface Standard", 1997.

Website: http://www.cilea.it/~bottoni/mpi/nodi/mpi-report.htm.

• [Lin99]

P. V. D. Linden, "Just Java", Sun Microsystems, Fourth edition, 1999.

79

• [Mac95]

N. MacDonald, E. Minty, M. Antonioletti, J. Malard, T. Harding, S. Brown,

"Writing Message-Passing Parallel Programs with MPI", Edinburgh Parallel

Computing Centre, The University of Edinburgh, Epic Version, 1995.

Website:http://www.epcc.ed.ac.uk/epic/mpi/notes/mpi-course epic.book_1.html.

• [Man02]

Mande, "Performance Prediction of Message Passing Communication in

Distributed Memory Systems", Master Thesis, the Department of Electrical

and Computer Engineering, University of Houston, 2002.

Website: http://www.bu.edu/caadlab/AparnaMande.pdf.

• [Mau95]

Maui High Performance Computing Center, "SP Parallel Programming

Workshop Message Passing Overview ", 1995.

Website:http://www.hku.hk/cc/sp2/workshop/html/message_passing/messag

e_passing.html#message1.

• [MPI93]

The MPI Forum, "MPI: A Message Passing Interface", 1993.

Website:http://www-fp.mcs.anl.gov/~lusk/papers/mpi-worksho/paper.html.

• [MPI94]

Message Passing Interface Forum, "MPI: A Message-Passing Interface

Standard", 1994.

Website: http://www.cilea.it/~bottoni/mpi/nodi/mpi-report.htm.

• [MPI03]

Message Passing Interface Forum, " MPI: A Message-Passing Interface

Standard", 2003.

Website: http://www.mpi-forum.org/docs/mpi1-report.pdf.

80

• [Mor99]

K. Morimoto, "Implementing Message Passing Communication with a

Shared Memory Communication Mechanism ", Master Thesis, the University

of Tokyo, 1999.

Website:http://www.ssscore.org/ssspc/paper/master99-morimoto.pdf March

1999.

• [Mor00]

S. R. Morin, "JMPI: Implementing the Message Passing Interface in Java",

Master Thesis, Department of Electrical and computer Engineering,

University of Massachusetts, 2000.

Website:http://www.ecs.umass.edu/ece/realtime/publications/steve-

thesis.pdf.

• [NCS01]

The National Center for Supercomputing Applications (NCSA), "Point-to-

Point Communication", 2001.

Website:http://www.ncsa.uiuc.edu/UserInfo/Resources/Hardware/CommonD

oc/MessPass/.

• [NCS02]

The National Center for Supercomputing Applications (NCSA), "Message

Passing Interface (MPI)", 2002.

Website:http://www.ncsa.uiuc.edu/UserInfo/Resources/Hardware/CommonD

oc/MessPass/MPI.html.

• [Pen99]

Y._Peng and W. Yang," Java Message Passing Package - A Design and

Implementation of MPI in Java", Department of Computer and Information

Science, National Chiao_Tung University, 1999.

81

Website:http://citeseer.ist.psu.edu/cache/papers/cs/13901/http:zSzzSzwww.ci

s.nctu.edu.twzSz~wuuyangzSzpaperszSzjmpp.pdf/java-message-passing-

package.pdf.

• [Skj94]

A. Skjellum, E. Lusk and W. Gropp, "Early Application in Message-Passing

Interface (MPI)", 1994.

Website:http://citeseer.ist.psu.edu/cache/papers/cs/5069/http:zSzzSzwww.cs.

msstate.eduzSzstaffzSztonyzSzpublic_htmlzSzdocumentszSzApplicationszSze

arly_apps_mpi.pdf/skjellum95early.pdf.

• [Sni95]

M. Snir, S. Otto, S. H. Lederman, D. Walker, J. Dongarra, "MPI: The

Complete Reference", 1995.

Website: http://www.netlib.org/utk/papers/mpi-book/book.html.

• [Squ04]

J. M. Squyres, "A Component Architecture for the Message Passing Interface

(MPI): The System Services Interface (SSI) of LAM\MPI" , PhD Thesis,

University of Notre Dame, 2004.

Website:http://www.osl.iu.edu/publications/prints/2004/squyres04:_compon_

archit_messag_passin_inter_mpi.pdf.

• [Sta98]

W. Stallings, "Operating Systems internals and Design principles", Prentice-

hall.inc, 1998.

• [Sun05]

Sun Microsystems, "An Overview of RMI Applications", 2005.

Website:http://java.sun.com/docs/books/tutorial/rmi/overview.html#generic.

82

• [Sun07]

Sun MicroSystems, 2007.

Website:http://java.sun.com.

• [Tec01]

TechTarget network of industry-specific IT encyclopedia, searchSMB.com

Definitions - powered by whatis.com, "Sockets", 2001.

Website:http://searchsmb.techtarget.com/sDefinition/0,,sid44_gci213021,00.

html.

• [Tec03]

TechTarget network of industry-specific IT encyclopedia, SearchSMB.com

Definitions - powered by whatis.com, "semaphore", 2003.

Website:http://searchopensource.techtarget.com/sDefinition/0,,sid39_gci212

959,00.html.

• [Tec05]

TechTarget network of industry-specific IT encyclopedia, searchSMB.com

Definitions - powered by whatis.com, "interprocess communication",

Copyright © 2004-2005.

Website:http://searchsmb.techtarget.com.

• [Tec06]

TechTarget network of industry-specific IT encyclopedia, "process", 2006.

Website:http://whatis.techtarget.com/definition/0,,sid9_gci212832,00.html.

• [Wan01]

C. L. Wang, R. K. K. Ma, and F. C. M. Lau, "M-JavaMPI: A Java-MPI

Binding with Process Migration Support", Department of Computer Science

and Information Systems, The University of Hong Kong, 2001.

Website:http://www.cs.hku.hk/~clwang/papers/CCGrid2002-2nd-revision-

0201.pdf.

83

• [Wik06]

From Wikipedia, the free encyclopedia, 2006.

Website: http://en.wikipedia.org/wiki/Parallel_computing

Websites

• [Web1]

"Components of Client/Server Applications – Connectivity".

Website:http://www.vanwijk.com/-%3D%20Bookz%20%3D-

/Client%20Server%20Computing%20Second%20Edition/csc05.htm.

• [Web2]

"Inter-process Communication and Coordination".

Website: www.nctu.edu.tw/~claven/course/aos/Chapter04.ppt.

84

Appendix A

Appendix A

A.1 JMPI Package Installation

This appendix describes the process of downloading and installing the

JMPI software and configuring the Virtual Machine using JMPI Middleware

system. The latest version of the JMPI source code, pre-compiled class files, and

documentation are available on the web at:

http://euler.ecs.umass.edu/jmpi

JMPI is distributed as a compressed tar archive for Unix platforms, and as a

WinZip file for Microsoft Windows platforms.

A.1.1 Downloading and installing RSH Service

Users of JMPI on the Microsoft Windows platform need to install and

configure a Remote SHell (RSH) service on their machines. RSH allows the

execution of non-interactive programs on another computer. In some systems,

this command sometimes is called remsh or rcmd. It executes the command on

the remote computer and returns the program's standard output and standard

error output. The remote computer must run a Remote shell daemon (Rshd) to

handle the incoming rsh commands.

The RSH service is available for download from the following website:

http://www.bookcase.com/library/software/win3x.winsock.daemon.rsh.html

The Middleware begins with the installation of RSH service by executing set

up icon of service and the window shown in Figure (A-1) will be displayed.

A-1

Figure (A-1): RSH Setup Window

Select yes to continue, then License agreement window will be displayed as

shown in Figure (A-2).

Figure (A-2): License Agreement Window

By pressing on I agree, another window will be displayed to choose a folder

to install the service in it, as shown in Figure (A-3).

A-2

Figure (A-3): selection of Installation Folder Window

After choosing installation folder, press Install button, then the window in

Figure (A-4) appears on the screen.

Figure (A-4): Installation Window

During the installation process, the window in Figure (A-5) will be displayed

and the user must select yes option to complete installation.

A-3

Figure (A-5): Setup Window

By accomplishing the previous steps, the installation of RSH service will be

done. To show the details of setup operation, the user can press show details

button as shown in Figure (A-4). The window in Figure (A-6) will be displayed.

Figure (A-6): Setup Termination Window

When the user runs the Graphical User Interface (GUI) mode, the screen

shown in Figure (A-7) will be displayed. This screen is used for basic service

settings. Here the user can change the settings of service. For example:

Installing, uninstalling, starting and stopping service. If he needs to set or

change other properties (like startup type: change from automatic to manual

start,...) of installed service, Windows standard dialog for service setting can be

used. To open this dialog, open Control Panel, select Administrative Tools Icon,

A-4

choose Services Icon and choose the service name to change status of this

service (start, stop and pause).

Figure (A-7): Basic Service Settings

The Second screen of the Rshd GUI is used for the daemon settings. It

manages incomming connections and some other functions which are shown in

Figure (A-8). The user can see which type of request he wants to accept, access

logging and address lookup verification (it means that Rshd tries to find out IP

address for remote computer name and translate it back, original and translated

name have to be the same). Rshd gives the user the ability to kill some or all

connections.

A-5

Figure (A-8): Daemon Settings

Figure (A-9) shows the table which holds the users names for remote

connections and corresponding passwords (passwords are certainly ciphered).

Every user on Windows has home directory. If this directory is on shared disk

the user can optionally put the connection entry. These entries will be used for

mounting shared disk. If the user name is not local but the user will use the

account in the domain, he can put the whole name included the domain name.

Figure (A-9): User Names Table

Rshd monitoring can be enabled or disabled by implementing simple telnet

server as shown in Figure (A-10). It provides the following:

• The connected user name and its address.

• The running process and its priority.

A-6

Figure (A-10): Daemon Monitoring

A.1.2 Configuring Virtual Machine

The set of hosts that MPI application will execute on, forms a Virtual

Machine. Before an MPI process is compiled or executed on the Virtual

Machine, two environmental variables need to be set or modified. In addition,

each host in the Virtual Machine needs to have an entry in the .rhosts file of the

host that launches the MPI application with mpirun. The .rhosts file is a text

file in which each line is an entry. An entry consists of the local computer name,

the local user name, and any comments about the entry. Each entry is separated

by a tab or space, and comments begin with a pound sign (#).

 The .rhosts file typically permits network access. The .rhosts file lists

computer names and associated logon names that have access to remote

computers. When the user runs rsh command remotely with a correctly

configured .rhosts file, he do not need to provide logon and password

information for the remote computer.

The JDK uses the CLASSPATH environment variable to locate Java

classes. The filename of the jmpi.jar archive needs to be included in the

CLASSPATH environment variable. These environment variables can be

changed from Windows by doing the following steps: For example, if the

jmpi.jar is located in D:\ jmpi\mpi, then to set the CLASSPATH environment

A-7

variable open Control Panel, select System Icon, go to advanced and choose

Environments Variables as shown in Figure (A-11):

Figure (A-11): System Properties window

Select the CLASSPATH variable from the Environment Variables

window as shown in Figure (A-12).

Figure (A-12): Environment Variables window

Press Edit button, and then print the path of Java classes in the variable

value field as shown in Figure (A-13).

A-8

Figure (A-13): Edit System Variable Window of CLASSPATH variable

The PATH system variable needs to include the PATH where the JDK

binaries are installed. For example, if the JDK is installed in

D:\JBuilder7\jdk1.3.1, include D:\JBuilder7\jdk1.3.1\bin in PATH environment

variable. To include this path, open Control Panel, choose System Icon, go to

Advanced tab, press Environment Variables button and select PATH system

Variable, then press Edit button and print the path of JDK binaries in it as

shown in Figure (A-14).

Figure (A-14): Edit System Variable Window of PATH variable

To perform the changing of CLASSPATH environment variable by using

JMPI Middleware system, copy JMPI package to specific path (For example

D:\) by creating batch file contains:

D:
cd\
@echo on
%windir%\system32\xcopy G:*.* D:\ /E
pause

A-9

JMPI Middleware system changes CLASSPATH and PATH environment

variables by creating batch files and using the following instructions:

set PATH = "path of bin directory of used JDK".
set CLASSPATH = "path of mpi.jar file".

By using previous paths that used in the first method, the batch file will

contains:

set PATH = D:\JBuilder7\jdk1.3.1\bin
set CLASSPATH = D:\ jmpi\mpi\mpi.jar

The last step of installation is creating a file named machinefile, which

contains an entry for each host which will participate in the virtual machine.

Each host is placed on a single line, optionally followed by the number of

processes to run on that host. If omitted, one process is started per machine.

Additionally, the user may optionally specify the path and filename of the Java

class on the remote machine.

After completing Installation process and changing the String value of

JMPI_Reg to "yes", then JMPI package is installed successfully.

A-10

 
 

واجھة عبور الرسالة تُـزود بناء تحتي یُمكن المستخدمین لبن اء بیئ ة حاس بات

موزع ة عالی ة الأداء بإس تخدام ش بكة حاس وبیة ب أدنى جھ د و ی سھل إس تعمال ھ ذه

 و ھ و یجھزواجھ ة نم وذج عب ور الرس الةالبیئ ة ب صورة ب سیطة ن سبیاً بأس تخدام

توازی ة بغ ض النظ ر ع ن ن وع تطبیق برمجیة شائعة لبن اء و تط ویر التطبیق ات الم

 .النظام المتعدد المعالجات المستخدم

ی ستخدم البح ث المقت رح لغ ة الجاف ا لتطبی ق نظ ام إحت سابي م وزع ی سمى

)Java Message Passing Interface Middleware System (یُ ستخدم

 وتنفی ذ ثلاث ة Java Message Passing Interface (JMPI)لتننصیب رزمة

و (Matrix - Vector Multiplication) و) Range Addition(تطبیقات

) Gauss Elimination method (بنمط ین ھم ا المتسل سل و المت وازي ث م

 .حساب النتائج على النظام المُقترح

نُف ذ النظ ام عل ى ش بكة حاس وبیة محلی ة مؤلف ة م ن خم سة حاس بات و طُبِقَ ت

و قد وجدت ان نتائج تنفیذ التطبیق ات المتوازی ة العدید من التجارب لإختبار النظام

مُقارب ة لنت ائج التطبیق ات المُتسل سلة وال سبب ھ و ان وق ت الح سابات الخ اص

 .بالتطبیقات بسیط مُقارنةً بوقت الاتصالات

 جمھوریة العراق
 وزارة التعلیم العالي و البحث العلمي

 جامعة النھرین
 كلیة العلوم


 

جامعة النھرین كجزء من متطلبات نیل شھادة , رسالة مقدمة الى كلیة العلوم
 الماجستیر في علوم الحاسوب

 من قبل
 دنیا حامد حمید

 بكالوریوس

 2004

 المشرفون
 ل ثامرسوسن كما. لمـــیاء حافظ خالد د. د

 1428 ذو الحجة 2007 كانون الأول

