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Abstract 

  

The main theme of this thesis is oriented about three objects: 

The first objective is to study the basic concepts of fractional calculus 

and variable-order fractional differential equations. 

The second objective is about solving numerically the variable-order 

fractional differential equations using operational matrices of Bernstein 

polynomials. 

The proposed approach will transform the variable-order fractional 

differential equations into the product of some matrices which can be 

considered as a linear system of algebraic equations, after solving the 

resulting system the numerical solution can be obtained.    

The third objective is to find the numerical solution of multiterm 

variable-order fractional differential equations using operational matrices of 

Bernstein polynomials, also the proposed method will transform the multiterm 

variable-order fractional differential equations into the product of matrices in 

other words into a system of linear algebraic equations, and the numerical 

solution will be reached after solving the resulting system.  

 



I 

 

Introduction 

 

The expression of fractional calculus is more than 300 years old. It is a 

generalization of the ordinary differentiation and integration to non-integer 

(arbitrary) order. The subject is as old as the calculus of differentiation and 

return to times when Leibniz, Gauss, and Newton invented this kind of 

calculation. 

In a letter to L’Hospital in 1695 Leibniz raised the following question 

’’Can the meaning of derivatives with integer order be generalized to 

derivatives with non-integer orders??” The story goes that L’Hospital was 

somewhat curious about that question and answered by another question to 

Leibniz. “What if the order will be 1/2?" Leibniz in a letter dated September 

30, 1695 answered: “It will lead to a paradox, from which one day useful 

consequences will be drawn”, [Miller,1993]. 

The question raised by Leibniz for a fractional derivative was an ongoing 

topic in the last 300 years.  

Several mathematicians contributed to this subject through the years, 

people like Liouville, Riemann, and Weyl made major contributions to the 

theory of fractional calculus. The story of the fractional calculus persistent 

with contributions from Fourier, Abel, Leibniz, Grünwald, and Letnikov 

[Gorenflo,2008].  

Nowadays, the fractional calculus attracts many scientists and engineers, 

there are several applications of this mathematical phenomenon in mechanics, 

physics, chemistry, control theory and so on [Caponetto,2010], [Magin, 

2006], [Oldham,1974] and [Podlubny,1999].  
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Fractional differential equations are generalized of classical integer order 

ones which are obtained by replacing integer order derivatives by fractional 

ones. 

Their advantages comparing which integer order differential equations 

are the capability of simulating natural physical process and dynamic system 

more accurately [Chen,2007]. 

Most fractional order differential equations do not have exact solutions, 

so approximate and numerical techniques must to used [Mohammed,2016]. 

Several numerical and approximate methods to solve fractional order 

differential equations have been given such as Adomian decomposition 

method [Momani,2006], variational iteration method [Sweilam,2007], 

homotopy analysis method [Tan,2008], homotopy perturbation method 

[Khader,2012], collocation method [Bhrawy,2013] and [Bhrawy,2014], 

wavelet method [Heydari,2014]], finite element method [Ma,2014] and 

spectral tau method [Bhrawy,2015]. 

However, several numbers of algorithms for solving fractional-order 

differential equations have been investigated. Suarez [Suarez, 1997] used the 

eigenvector expansion method to find the solution of motion containing 

fractional derivative. 

Podlubny [Podlubny,1999] used the Laplace transform method to solve 

fractional differential equations numerically with Riemann-Lioville 

derivatives definition as well as the fractional partial differential equations 

with constant coefficients, Meerscharet and Tadjeran [Meerscharet,2006] 

proposed the finite difference method to find the numerical solution of two-

sided space fractional partial differential equations. Momani [Momani,2007] 

used a numerical algorithm to solve the fractional convection-diffusion 

equation nonlinear source term. Odibat and Momani [Odibat,2009] used the 
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variation iteration method to exhaust fractional partial differential equations 

in fluid mechanics. 

Jafari and Seifi [Jafari,2009] solved a system of nonlinear fractional 

differential equations using homotopy analysis method. Wu [Wu,2009] 

derived a wavelet operational method to solve fractional differential equations 

numerically. Chen and Wu [Chen Y,2010] used wavelet method to find the 

numerical solution for the class of fractional convection-diffusion equation 

with variable coefficients. Geng [Geng,2011] suggested wavelet method for 

solving nonlinear partial differential equations of fractional order. Guo 

[Guo,2013] used the fractional variation homotopy perturbation iteration 

method to solve a fractional diffusion equation.    

Recently, more and more researchers are finding that numerous 

important dynamical problems exhibit fractional order behavior which may 

vary with space and time. This fact illustrates that variable order calculus 

provides an effective mathematical scope for the description of complex 

dynamical problems. The concept of a variable order operator is a much more 

recent expansion, which is a new orientation in science. 

Different authors have proposed several definitions of variable order 

differential operators, each of these with a specific meaning to suit desired 

goals. The variable order operator definitions recently proposed in the science 

include Riemann-Liouville definition, Caputo definition, Marchaud 

definition, Coimbra definition and Grünwald definition [Lerenzo,2007].  

Since the kernel of variable order operators is very complex for having a 

variable-exponent, the numerical solutions of variable order fractional 

differential equations are highly difficult to obtain, and have not attracted 

much attention. Thus, the development of numerical techniques to solve 

variable order fractional differential equations has not taken off [Liu,2016].  
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There are slight references arisen on discussion of variable order 

fractional differential equation. In several emerging, most authors adopt 

different methods to deduce an approximate scheme. For example, Coimbra 

[Coimbra,2003],  employed a consistent approximation with first-order 

accurate for the solution of variable order differential equations.  

Soon et al. [Soon,2005] proposed a second-order Runge-Kutta method 

which is consisting at an explicit Euler predictor step followed by an implicit 

Euler corrector step to numerically integrate the variable order differential 

equation. 

Lin et al. [Lin,2009] studied the stability and the convergence of an 

explicit finite-difference approximation for the variable-order fractional 

diffusion equation with a nonlinear source term. Zhuang et al. [Zhuang,2009] 

obtained explicit and implicit Euler approximations for the fractional 

advection–diffusion nonlinear equation of variable-order. Aiming a variable-

order anomalous sub diffusion equation, Chen et al. [Chen,2010] employed 

two numerical schemes one fourth order spatial accuracy and with first order 

temporal precision, the other with fourth order spatial accuracy and second 

order temporal accuracy.  

Operational matrices recently were adapted for solving several kinds of 

fractional differential equations. The use of numerical techniques in 

conjunction with operational matrices in some orthogonal polynomials, for 

the solution of fractional differential equations on finite and infinite intervals, 

produced highly accurate solutions for such equations [Bhrawy,2015]. 

Bhrawy [Bhrawy,2015] discusses spectral techniques based on 

operational matrices of fractional derivatives and integrals for solving several 

kinds of linear and nonlinear of fractional differential equations.  

The operational matrices of fractional derivatives and integrals, for 

several polynomials on bounded domains, such as the Legendre, Chebyshev, 
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Jacobi and Bernstein polynomials uses them with different spectral techniques 

for solving the aforementioned equations on bounded domains. The 

operational matrices of fractional derivatives and integrals are as well 

presented for orthogonal Laguerre and modified generalized Laguerre 

polynomials [Bhrawy,2015].  

In this thesis the operational matrices of Bernstein polynomials will be 

used to solve variable-order and multiterm variable-order fractional 

differential equations.     

Bernstein polynomials play a prominent role in various areas of 

mathematics, these polynomials have extremely been used in the solution of 

integral equations, differential equations and approximation theory 

[Doha,2011], [Maleknejad,2011].  

The operational matrices for Bernstein polynomials are introduced in 

order to solve different types of differential equations among them 

[Maleknejad,2012] used the operational matrices for Bernstein polynomials 

for solve nonlinear Volterra-Fredholm-Hammerstein integral equations, 

[Hashemizadeh,2013] have been used operational matrices of Bernstein 

polynomials for solving physiology problems, [Bataineh,2016] have been 

used operational matrices of Bernstein polynomials for solving high order 

delay differential equations. 

This thesis consists of three chapters. 

In chapter one which is entitled basic concepts of fractional calculus we 

discuss the following concepts: 

Gamma and Beta functions, fractional order integrations, fractional order 

derivatives finally variable order fractional derivatives and integrations.   
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Chapter two handles the numerical solution of variable-order linear 

fractional differential equations using Bernstein polynomials operational 

matrices  

Chapter three is about the numerical solution of the multiterm variable-

order linear fractional differential equations using Bernstein polynomials 

operational matrices.  

It is remarkable to notice that all the computer programs or calculations 

have been made by using Mathcad 14.  



1 

 

Chapter One 

 

Basic Concepts of Fractional Calculus 

1.1 Introduction: 

This chapter consists of seven sections, in section 1.2 Gamma and Beta 

function were given, in section 1.3 some definitions of fractional order  

integration are presented, in section 1.4 some definitions of fractional order 

derivatives are given, in section 1.5 the definition of Mittag-Leffler function 

will be given, while in section 1.6 two analytical methods for solving 

differential equations of fractional order are introduced, finally in section 1.7 

we present some definitions of variable order fractional derivatives.  

1.2 The Gamma and Beta Functions, [Oldham,1974]: 

The complete gamma function      plays an important role in the theory 

of fractional calculus. A comprehensive definition of      is that provided by 

Euler limit: 

      


 
     

x

N

N ! N
lim

x( x 1)( x 2 )...( x N )
,       …(1.1) 

But the integral transform definition given by: 

      


 


x 1 y

0

y e dy ,       …(1.2) 

is often more useful, although it is restricted to positive value of  . An 

integration by parts applied to eq.(1.2) leads to the recurrence relationship: 

                …(1.3) 
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This is the most important property of gamma function. The same result is a 

simple consequence of eqation (1.1), since        , this recurrence shows 

that for positive integer n: 

 (n + 1)  n (n) 

 n! …(1.4) 

The following are the most important properties of the gamma function: 

1. 
 

  
 

n1 ( 4 ) n!
n

2 ( 2n )!


  

2. 
 

  
 

n

1 ( 2n )!
n

2 4 n!


  

3. 


 


csc( x )
( x )

( x 1)

 
 

 
 

4.  (nx)  




   
  

  


n n 1

k 0

2 nx k
x

n n2


 


,      

Note Gamma function is also defined for                  

A function that is closely related to the gamma function is the complete 

beta function (p,q). For positive value of the two parameters p and q; the 

function is defined by the beta integral: 

  
1

p 1 q 1

0

( p,q ) y (1 y ) dy , p, q > 0 …(1.5) 

which is also known as the Euler’s integral of the first kind. If either p or q is 

nonpositive, the integral diverges otherwise (p,q) is defined by the 

relationship: 




( p ) ( q )
( p,q )

( p q )

  


 
 …(1.6) 
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where p and q > 0. 

Both beta and gamma functions have “incomplete” analogues. The 

incomplete beta function of argument x is defined by the integral: 

  
x

p 1 q 1
x

0

( p,q ) y (1 y ) dy  …(1.7) 

and the incomplete gamma function of argument x is defined by: 

*(c,x)  
x c

x 1 y

0

c
y e dy

( x ) 


 

  

    ∑
  

        

 
     …(1.8) 

*(c,x) is a finite single-valued analytic function of x and c. 

1.3 Fractional Integration: 

There are many literatures introduce different definitions of fractional 

integrations, among them: 

1. Riemann-Liouville integral, [Oldham,1974]: 

The generalization to non-integer α of Riemann-Liouville integral can be 

written for suitable function f(x), x  ; as: 

        
x

1

0

1
( x s ) f ( s )ds

( )



 
  α > 0 …(1.9) 

and             is the identity operator. 

The properties of the operator    can be founded in [Podlbuny,1999] 

for    0,  > 0, as follows: 

                     

                     
 }   …(1.10) 
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2. Weyl fractional integral, [Oldham,1974]: 

The left hand fractional order integral of order α > 0 of a given function 

f is defined as: 

 xI f ( x )
  


 

x

1

1 f ( y )
dy

( ) ( x y )  
 …(1.11) 

and the right fractional order integral of order α > 0 of a given function f is 

given by: 

 xI f ( x )   



 1
x

1 f ( y )
dy

( ) ( y x )  
 

3. Abel-Riemann fractional integral, [Mittal,2008]: 

The Abel-Riemann fractional integral of any order  > 0, for a function 

f(x) with x     is defined as: 

   
      

x
1

0

1
( x ) f ( )d

( )

  
 

,      ,  > 0 …(1.12) 

   
    (Identity operator) 

The Abel-Riemann integral possess the semigroup property: 

   
    

 
    

   
 For all ,   0 …(1.13) 

 

1.4 Fractional Derivatives: 

Many literatures discussed and presented fractional derivatives of certain 

functions, therefore in this section, some definitions of fractional derivatives 

are presented: 

 



Chapter One                                                                   Basic Concepts of Fractional Calculus 

5 

 

1. Riemann-Liouville fractional derivatives, [Oldham,1974], 

[Nishimoto,1983]: 

Among the most important formulae used in fractional calculus is the 

Riemann-Liouville formula. For a given function f(x),  x  [a,b]; the left 

and right hand Riemann-Liouville fractional derivatives of order α > 0 where 

m is a natural number, are given by: 

x aD f ( x )   
  


m x

m m 1
a

1 d f ( t )
dt

( m ) dx ( x t ) 
 …(1.14) 

x bD f ( x )   
 



 


m m b

m m 1
x

( 1) d f ( t )
dt

( m ) dx ( x t ) 
 …(1.15) 

where m    < α  m, m  .  

2. The Abel-Riemann fractional derivative, [Mittal,2008]: 

The Abel-Riemann fractional derivative of order  > 0 is defined as the 

inverse of the corresponding A-R fractional integral, i.e.,  

   
    

    …(1.16) 

For positive integer m, such that m1 <   m, where I is the identity 

operator. 

    
    

       
     

     
      

      
    

     

i.e., 

   
      

 


  

 







m x

m 1 m
a

m

m

1 d f ( )
d , m 1 m

( m ) dx ( x )

d
f ( x ), m

dx




 

  



 …(1.17) 
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3. Caputo fractional derivative, [Caputo,1967], [Minadri,1997]: 

In the late sixties of the last century, an alternative definition of 

fractional derivatives was introduced by Caputo. Caputo and Minadri used 

this definition in their work on the theory of viscoelasticity. According to 

Caputo’s definition: 

c
xD          , for m  1 <   m 

which means that: 

c
xD 

      
 


  

 







( m )x

1 m
0

m

m

1 f ( )
d , m 1 m

( m ) ( x )

d
f ( x ), m

dx




 

  



 

For the Caputo derivative, we have: 

i.    
      (c is a constant)  

ii.    
    {

                                          < ⌈ ⌉
      

        
                           ⌈ ⌉   

 …(1.18) 

We utilize the ceiling function ⌈ ⌉ to denote the smallest integer greater than 

or equal to  . 

The basic properties of the Caputo fractional derivative are: 

1. Caputo introduced an alternative definition, which has the preference of 

defining integer order initial conditions for fractional order differential 

equations. 

2.      
           







km 1

( k )

k 0

x
f (0 )

k !
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3. Caputo’s fractional differentiation is linear operator, similar to integer 

order differentiation: 

c
xD [     +       ]   c

xD       +   c xD       

 

4. Grünwald fractional derivatives, [Oldham,1974]: 

The Grünwald derivatives of any integer order to any function, can take 

the form: 

D
f(x)  





 

  
         

    
  


N 1

N j 0

x

( j ) xN
Lim f x j

( ) ( j 1) N



 

   
 …(1.19) 

1.5 Mittag-Leffler functions [Oldham,1974]: 

 In this section, the definition and some properties of two classical Mittag-

Leffler functions are presented. We start with the function: 

   ∑
  

       
                    

 

   

 

Which is known as the Mittag-Leffler function, and as an example when 

    and    : 

         and                 

While when      , the following differentiation formula hold for the 

function      
    

(
 

  
)
 
     

         
              

and 

(
 

  
)
 
[      (

 

  )]  
     

    
  (

 

  )                  
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Also, when   
 

 
           the function    

 

    has the following 

representation:  

  

 

       
[   ∫     

(∑
    

 (
 

 
)

   
   )  

 

 
]             

A two-parameter function of the Mittag-Leffler type is defined by the series 

expansion: 

        ∑
  

       
               

     …(1.20) 

It follows from the definition (1.20) that: 

        ∑
  

      
  

   ∑
  

  
    

     

        ∑
  

      
  

   ∑
  

      
 

    

 

 
     

        ∑
  

      
  

   ∑
  

      
 

      

  
 
     

and in general: 

        
 

    { 
  ∑

  

  

   
   }  

1.6 Analytic Methods for Solving Fractional Order Differential 

Equations, [Oldham,1974]: 

In the present section, some analytical methods are presented for solving 

fractional order differential equations, and among such method: 

1.6.1 The Inverse Operator Method: 

Consider the fractional order differential equation: 

d f

dx




  F …(1.21) 
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where f is an unknown function and 
d

dx




 is a fractional order derivative of 

Riemann-Liouville sense, hence upon taking the inverse operator 




d

dx




 to the 

both sides of eq.(1.21) gives: 

f  




d F

dx




      …(1.22) 

additional terms must be added to eq.(1.22), which are: 

   
      

             

and hence: 

1 2
1 2 ...


  


     m

m

d d
f f c x c x c x

dx dx

 
  

 
 

where            are an arbitrary constants to be determined from the initial 

conditions and       <     . 

Thus: 


  


    1 2 m

1 2 m

d d
f c x c x ... c x f

dx dx

 
  

 






d
F

dx




 

Hence, the most general solution of eq.(1.21) is given by: 


  


    1 2 m

1 2 m

d
f F c x c x ... c x

dx


  


 

where m  1 <    m. 

As an illustration, we shall consider the following example: 

Example (1.1): 

Consider the fractional order differential equation: 
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3 / 2
5

3 / 2

d
f ( x ) x

dx
  …(1.23) 

Applying 
3 / 2

3 / 2

d

dx




 to the both sides of eq.(1.23), we get: 

3 / 2 5
1 / 2 1 / 2

1 23 / 2

d x
f ( x ) c x c x

dx





    

1.6.2 Laplace Transform Method: 

In this section, we shall seek a transform of m md f dx  for all m and 

differintegrable f, i.e., we wish to relate: 

 {
   

   }  ∫          
 

 

   

   
    

to the Laplace transform   {f} of the differintegrable function. Let us first 

recall the well-known transforms of integer-order derivatives: 

 {
   

   }         ∑          

   
                    

     

and multiple integrals: 

 {
   

   }                          .................................... …(1.24) 

and note that both formulae are embraced by: 

 {
   

   }         ∑             

       
    

                      …(1.25) 

Also, formula (1.25), can be generalized to include noninteger m by the 

simple extension: 

 {
   

   }         ∑             

       
     

     .............................. …(1.26) 

where n is the integer such that n1 < m  n. The sum is empty vanishes 

when m  0.  
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In proving (1.26), we first consider m < 0, so that the Riemann-Liouville 

definition: 

m x

m m 1
0

d f 1 f ( y )
dy

( m )dx [ x y ] 


 


 
, m < 0  

May be adopted and upon direct application of the convolution theorem: 

 {∫               
 

 
}               

Then gives: 

 {
   

   }  
 

     
                     <    .................. …(1.27) 

So that equation (1.24) generalized unchanged for negative m. 

For noninteger positive m, we use the result, [Oldham,1974]: 

m n m n

m n m n

d f d d f

dx dx dx





   
   

   
 

where n is the integer such that n1 < m  n.  

Now, on application of the formula (1.25), we find that: 

 {
   

   }   {
  

   
[
     

     
]}  

      {
     

     }  ∑         

       
   
   [

     

     
]      …(1.28) 

The difference mn being negative, the first right-hand term may be 

evaluated by use of (1.28).since mn<   the composition rule may be applied 

to the terms within the summation. The result: 

 {
   

   }         ∑             

       
   
              <          

Follows from these two operations and is seen to be incorporated in (1.26).  
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The transformation (1.26) is a very simple generalization of the classical 

formula for the Laplace transform of the derivative or integral of f. No similar 

generalization exists, however, for the classical formulae, [Oldham,1974]: 

 {
  

 
}  

       

    
    

       

    
    

       
     

  
 

  [  ]    
      

   
         

As a final result of this section we shall establish the useful formula: 

 {        
  

   
[    ]}  [   ]      

As an illustration, we consider the following example: 

Example (1.2), [Abdulkhalik,2008]: 

Consider the semi differential equation: 

  

  
 

   ⁄  

    ⁄
                                                                                                

By using Laplace transformation 

           √      
   ⁄

    ⁄
              

And after making use of the equations (1.25) and (1.27), we get: 

     
     

   ⁄  

    ⁄
   

  √   
 

 

[√   ][√   ]
  

where c is a constant. A partial fraction decomposition gives: 

     
 

 [√   ]
 

 

 [√   ]
  

which upon Laplace inversion produces 

     
 

 
[

 

√  
             √  ]  

 

 
[

 

√  
               √  ]  
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[            ( √ )              √  ]     

As the solution of the semi differential equation. 

 

1.7 Variable Order Fractional Derivatives for Functions of One Variable 

[Dina,2015]: 

Our goal in this section is to consider fractional derivatives of variable 

order, with α depending on time. In fact, some phenomena at physics are 

better described when the order of the fractional operator is not constant, for 

example, in the discussion process in an inhomogeneous or heterogeneous 

medium. Or processes where changes at the environment modify the dynamic 

of the particle [Chechkin,2005], [Santamaria,2006], [Sun,2009]. 

 

1.7.1 Variable order Caputo fractional derivatives:  

Motivated by the above considerations, we introduce three types for 

Caputo fractional derivatives. The order of the derivative is considered as a 

function α(t) by taking values on the open interval (0,1). To start, we define 

two different kinds of Riemann-Liouville fractional derivatives. 

 

Definition 1.1, [Dina,2015] (Riemann–Liouville fractional derivatives of 

order α(t)-types I and II): 

Given a function u : [a, b]  R, 

1. The type I left Riemann-Liouville fractional derivative of order α(t) is 

defined by: 

  
    

     
 

         

 

  
∫                 

 

    

2. The type I right Riemann-Liouville fractional derivative of order α(t) is 

defined by 
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∫                 

 

    

3. The type II left Riemann-Liouville fractional derivative of order α(t) is 

defined by 

  
    

     
 

  
(

 

         
∫                 

 

 
)   

4. The type II right Riemann-Liouville fractional derivative of order α(t) is 

defined by 

  
    

     
 

  
(

  

         
∫                 

 

 
)   

The Caputo derivatives are given using the previous Riemann–Liouville 

fractional derivatives as follows: 

 

Definition 1.2, [Dina,2015] (Caputo fractional derivatives of order α(t)-

types I, II and III): 

Given a function u : [a, b]  R 

1. The type I left Caputo derivative of order α(t) is defined by: 

  
 

 
    

        
    

(         )  

  
 

         

 

  
∫           [         ]  

 

 
  

2. The type I right Caputo derivative of order α(t) is defined by: 

  
 

 
    

        
    

(         )  

  
  

         

 

  
∫           [         ]  

 

 
  

3. The type II left Caputo derivative of order α(t) is defined by: 

  
 

 
    

        
    

(         )  
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(

 

         
∫           [         ]  

 

 
)  

4. The type II right Caputo derivative of order α(t) is defined by: 

  
 

 
    

        
    

(         )  

  
 

  
(

  

         
∫           [         ]  

 

 
)  

5. The type III left Caputo derivative of order α(t) is defined by 

  
 

 
    

     
 

         
∫                  

 

 
  

6. The type III right Caputo derivative of order α(t) is defined by: 

  
 

 
    

     
  

         
∫                  

 

 
   

 

Remark 1.1, [Jinsheng,2014]: 

From the definition (1.2)(5), we can get the following formula   <

       : 

        {
                                                       

      

           
                                            

 …(1.30) 

 

Remark 1.2: 

In contrast with the case when α is a constant, definitions of different 

types do not coincide. 
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Chapter Two 

 

Numerical Solution for Variable Order Fractional 

Differential Equations Using Bernstein 

Polynomials 

 

2.1 Introduction: 

This chapter consists of six sections, section 2.2 is oriented about the 

definition of Bernstein polynomials and their properties, in section 2.3 a 

matrix representation for the Bernstein polynomials is given, in section 2.4 

function approximation using Bernstein polynomials and its operational 

matrices are presented, section 2.5 focused on the numerical solution of 

variable-order fractional differential equation using Bernstein operational 

matrices, finally in section 2.6 some illustrative examples are given.  

 

2.2 Bernstein polynomials [Korovkin,2001]: 

In the mathematical field for numerical analysis ‘a Bernstein 

polynomial’ named after Sergei Natanovich Bernstein, is a polynomial in the 

Bernstein form, that is a linear combination of Bernstein basis polynomials. 

Polynomials in Bernstein form were first used by Bernstein in a 

constructive proof for the Stone-Weierstrass approximation theorem. 

Definition2.1, [Korovkin,2001]: 

The n + 1 Bernstein basis polynomials of degree n are defined as: 

        (
 
 
)             ,              

 

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Sergei_Natanovich_Bernstein
https://en.wikipedia.org/wiki/Polynomial
https://en.wikipedia.org/wiki/Linear_combination
https://en.wikipedia.org/wiki/Stone%E2%80%93Weierstrass_theorem
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Where (
 
 
) is a binomial coefficient. 

The Bernstein basis polynomials of degree n form a basis at the vector 

space Πn of polynomials of degree at most n. 

A linear combination of Bernstein basis polynomials: 

      ∑          
 
     

      is called a Bernstein polynomial or polynomial in Bernstein form of 

degree n.  

The coefficients    are called Bernstein coefficients or Bézier 

coefficients. 

2.2.1 Properties of Bernstein Polynomials: 

The Bernstein basis polynomials have the following properties: 

1-          , if     or     . 

2-              and              , where   is the Kronecker delta function 

given by: 

      {
               
               

  

3-         has a root with multiplicity   at a point x  0. 

4-         has a root with multiplicity (n  i) at a point x  1. 

5-                  [   ].  

6-                    . 

7- The derivative can be written as a combination of two polynomials of 

lower degree: 

    
      (                     )  

8- The integral is constant for a given n 

https://en.wikipedia.org/wiki/Binomial_coefficient
https://en.wikipedia.org/wiki/Basis_(linear_algebra)
https://en.wikipedia.org/wiki/Vector_space
https://en.wikipedia.org/wiki/Vector_space
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∫           
 

   
           

 

 
  

9- If      then         has a unique local maximum of the interval [0,1] at 

  
 

 

.
. This maximum takes the value: 

             (
 
 
)  

10- The Bernstein basis polynomials of degree n form a partition of unity: 

∑         ∑ (
 
 
)                         

   
 
     

11- By taking the first derivative of       , where      , it can show 

that: 

∑             
     

12- The second derivative of        where       can be used to show  

∑              
 
              

13- A Bernstein polynomial can always be written as a linear combination 

for polynomials of higher degree: 

          
   

 
        

   

 
           

Remark 2.1 [Kenneth,2000]: 

1-  Bernstein polynomials of degree 1 are: 

B0,1(t) = 1−t, B1,1(t) = t  

And can be plotted for 0 ≤ t ≤ 1 as: 
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2- Bernstein polynomials of degree 2 are: 

B0,2(t) = (1 − t)
2
 

B1,2(t) = 2t(1 − t) 

B2,2(t) = t
2
  

And can be plotted for 0 ≤ t ≤ 1, as: 

 

3- Bernstein polynomials of degree 3 are: 

B0,3(t) = (1 − t)
3
 

B1,3(t) = 3t(1 − t)
2
 

B2,3(t) = 3t
2
(1 − t) 

B3,3(t) = t
3
 

1 t

t

t

1 t( )
2

t
2

2t 1 t( )

t
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And can be plotted for 0 ≤ t ≤ 1, as: 

 

 

2.2.2 A Recursive Definition of the Bernstein Polynomials, 

[Kenneth,2000]: 

The Bernstein polynomials of degree n can be defined by blending 

together two Bernstein polynomials of degree n  1. That is, the i
th

 n
th
-degree 

Bernstein polynomial can be written as: 

                                           

To show this, we need only use the definition of the Bernstein 

polynomials and some simple algebra: 

                                    (
   

 
)              

 (
   
   

)                     

 (
   

 
)            (

   
   

)              

 [(
   

 
)  (

   
   

)]             

 (
 
 
)             

           

1 t( )
3

t
3

3 t 1 t( )
2

3t
2

1 t( )

t



Chapter Two                         Numerical Solution for Variable Order Fractional Differential  

                                                  Equations Using Bernstein polynomials 

21 

2.3 A Matrix Representation for the Bernstein Polynomials, 

[Kenneth,2000]: 

In many applications, a matrix formulation for the Bernstein polynomials 

is useful. These are straightforward to develop if one only looks on a linear 

combination in terms of dot products. Given a polynomial written as a linear 

combination of the Bernstein basis functions: 

                                     …(2.1) 

It is easy to write this as a dot product of two vectors: 

     [                        ] [

  
  
 
  

] …(2.2) 

     [         ]

[
 
 
 
 
              

                 

    

 
    

    

 
    

    

 
    

 
 
 

  
 

    ]
 
 
 
 

[

  
  
 
  

] …(2.3) 

where the      are the coefficients of the power basis that are used to 

determine the respective Bernstein polynomials. We note that the matrix in 

this case is lower triangular. 

In the quadratic case (n  2), the Bernstein polynomial is: 

     [    ] [
   
    
    

] [

  
  
  

]  

and in the cubic case (n  3), the Bernstein polynomial is: 

     [      ] [

       
         
 
 

  
 

 
  

 
 

] [

  
  
  
  

]  

Now, we define: 
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     [                         ]
  …(2.4) 

or in matrix form: 

             …(2.5) 

where 

  

[
 
 
 
 
 
     ( 

 
)                ( 

 
)(   

 
)              ( 

 
)(   

   
)

                                 ( 
 
)(   

 
)             ( 

 
)(   

   
)

                                                                           
                                                            ( 

 
)  

  ]
 
 
 
 
 

     

and 

      [           ]   

Clearly:  

               ...(2.6) 

 

2.4 Function Approximation using Bernstein Polynomials 

[Saadatmandi,2013]: 

A function               can be expressed in terms of the Bernstein 

polynomials basis. In practice only the first (n + 1) terms of Bernstein 

polynomials are considered. Hence:  

     ∑                  
     …(2.7)  

where   [          ]
  and      [                         ]

 . Then we 

have: 

              …(2.8) 

where H is an             matrix, which is called the dual matrix of 

    . 
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  ∫              
 

 
 ∫ (      )(      )

 
  

 

 
  

  (∫        
      

 

 
)    

      … (2.9)   

where Q is a Hilbert matrix given by: 

Q=

[
 
 
 
 
  

 

 
 

 

   
 

 

 

 
 

 

   

 
 

   

 
 

   

 
 

 
 

    ]
 
 
 
 
 

  …(2.10) 

Then: 

   ∫               
 

 
                 

     has derived explicit representations: 

        ∑             
 
               

For the dual basis functions, defined by the coefficients: 

     
       

(
 
 )(

 
 
)
∑       

         
   (

     
   

) (
   
   

) (
     
   

) (
   
   

)  

 ...(2.11) 

for              

2.4.1 Operational Matrix of        Based on Bernstein Polynomials, 

[Saadatmandi,2013]: 

The derivative of the vector      can be expressed by: 

 

  
               

where      is the             operational matrix of derivative and 

 

  
              

 

  
[      ]   

 

  
[           ]                
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where: 

     

[
 
 
 
 
 
   
   
 
 
 
 

 
 
 
 

 
 
 
 

    

     
     
 
 
 
 

    
    
     
    

  

]
 
 
 
 
 

  …(2.13) 

By using eq.(2.12), it is clear that: 

  

   
                   

Where     and the superscript, in     , denotes matrix powers. Thus: 

                      …(2.14) 

Theorem 2.1, [Saadatmandi,2013]: 

Let      be Bernstein vector defined in (2.4) and also suppose    , 

then: 

                  

where      is the             operational matrix of fractional derivative 

of order q in caputo sense and is defined as follows: 

     

[
 
 
 
 
 
∑       

 
  ⌈ ⌉ ∑       

 
  ⌈ ⌉  ∑       

 
  ⌈ ⌉

   
∑       

 
  ⌈ ⌉

 
∑       

 
  ⌈ ⌉

∑       
 
  ⌈ ⌉

 
∑       

 
  ⌈ ⌉

 ∑       
 
  ⌈ ⌉

 
 ∑       

 
  ⌈ ⌉ ]

 
 
 
 
 

  

Here        is given by: 

              (
 
 
) (

   
   

)
      

        
∑         

 
     …(2.15) 

where      is given in eq.(2.11) and: 
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    ∑         
   (

 
 
) (

   
   

)
 

       
  

Proof: 

Using the linearity property of      

  (               )     
          

        

and the equation: 

        ∑         
   (

 
 
) (

   
   

)                    

we have: 

          ∑         
   (

 
 
) (

   
   

)        

 ∑        

 

  ⌈ ⌉

(
 
 
) (

   
   

)
      

        
                   

 …(2.16) 

Now, approximate      by Bernstein polynomials, we have: 

               ∑            
 
    …(2.17) 

where : 

     ∫       

 
          ∑     ∫       

 
         

 
     

 ∑     ∑         
   (

 
 
) (

   
   

)∫         

 
   

     

 ∑     ∑         
   (

 
 
) (

   
   

)
 

       

 
     

 ∑         
 
     

Employing equations (2.16) and (2.17), we get: 

          ∑ ∑         
   

 
  ⌈ ⌉ (

 
 
) (

   
   

)
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  ∑ (∑       
 
  ⌈ ⌉ ) 

            …(2.18) 

where        is given in eq. (2.15). Rewrite eq. (2.18) as a vector form, we have 

for all          : 

          [∑       
 
  ⌈ ⌉ ∑       

 
  ⌈ ⌉  ∑       

 
  ⌈ ⌉ ]      

2.4.2 Operational Matrix of           Based on Bernstein Polynomials: 

In order to transform both integer and fractional order differential 

operators into matrix forms.  

Firstly, the following equation can be easily obtained for the first order 

differential operator: 

By equations (2.5) and (2.12): 

 

  
                   

By combining (2.7) with (2.12), the following result is obtained:  

 

  
     

 

  
[      ]     

  
                     …(2.19) 

Secondly, using (1.30) the following equation can be obtained for the variable 

order fractional differential operator: 

  
    

       
    

[      ]  

    
    

[           ]   

            …(2.20) 

where: 

     

[
 
 
 
 
 
   

 
    

         
       

 
 
 

 
 
 

    

         
      

 
 

     

  

 
 
 
 

 
 
 

      

           
      

]
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 …(2.21) 

By combining (2.7) with (2.20), the following result is obtained: 

  
    

       
    

[      ]  

      
    

      

               …(2.22) 

 

2.5 Bernstein Operational Matrix of Variable Order Fractional 

Derivative for Solving variable Order Fractional Differential 

Equations: 

In this section the Bernstein polynomials and it is operational matrices 

are used to solve the variable order fractional differential equation: 

   
    

        
                              …(2.23) 

where        [   ] is known,        [   ] is the unknown function which 

we want to approximate,        and    are all constants.  

In order to solve eq. (2.23), we set the approximate solution of equation 

(2.23) to be: 

     ∑          
 
             …(2.24) 

Where    [          ]
  and      [                         ]

 . 

Operating   
    

 to the both sides of eq. (2.24) and by using equation 

(2.22), thus we have: 

  
    

         
    

                  …(2.25) 

Substituting eqs. (2.24) and (2.25) into eq. (2.23), then it can be written 

in the following form: 
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            …(2.26) 

           

Consequently, by calculating the values of   and   on [0,1], using 

   
    

      
, for          , therefore we get the following system of 

algebraic equations: 

                
                  

              …(2.27) 

           

One can obtain the unknown c by solving a system of algebraic 

equations given by (2.27) and by substituting into eq. (2.24), the desired 

solution is obtained.  

 

2.6 Illustrative Examples: 

In this section, two illustrative examples are presented and we compare 

the numerical solution for variable order fractional differential equations that 

we have been obtained by using Bernstein polynomials with the analytical 

solution and with the existing methods such as [Chen,2015] in order to 

illustrate the efficiency and simplicity of the proposed method. 

Example 2.1: 

Consider the following linear variable order fractional differential 

equation: 

  
    

                 [   ]  …(2.28) 

        

Where: 

        ,       
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The exact solution of this equation is given by              . 

We suppose the approximate solution of equation (2.28), for n=3 to be: 

     ∑          
 
             …(2.29) 

where: 

   [           ]
   

and 

     [                               ]
   

and  

                     

                     

                 

            

By applying the proposed method given in section 2.5 eq. (2.28) can be 

transformed into the following equation: 

                         …(2.30) 

          

Where: 

     

[
 
 
 
 
                              

 
    

         
                                  

 
 

 
 

    

         
      

 

   
    

         
      

]
 
 
 
 

  

and 
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  [

          
        
 
 

 
 
 

 
    
     

]  

and by taking    
    

  
, for           we get a system of algebraic 

equations in terms of c as follows: 

                                      …(2.31) 

          

Solving the obtained system, one can get the unknown  

  [                   ]  and by substituting into eq. (2.29) hence the 

approximate solution of eq. (2.28) is reached.  

Table 2.1 represent the approximate solution of example (2.1) using the 

proposed method compared with the exact solution. 

 Table 2.1  

Comparison between the exact solution with the proposed method. 

t Exact solution The proposed method 

0.2 4.808 4.808 

0.4 4.664 4.664 

0.6 4.616 4.616 

0.8 4.712 4.711 

1 5 5 
 

Figure 2.1 represent a comparison between the analytical and the 

numerical solution of example (2.1) 
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Figure 2.1: The analytical and the numerical solution of example 2.1. 

 

Example 2.2: 

Consider the following linear variable order fractional differential 

equation: 

  
    

                         [   ]      …(2.32) 

        

where       
     

 
         (

 (      )

 (      )
 

 (      )

 (      )
)            . 

The exact solution of this equation is given by u(t)  5(1 + t)
2
. 

We suppose the approximate solution of equation (2.32), for n  3 to be: 

     ∑          
 
             …(2.33) 

where: 

     [                               ]
   

   [           ]
   

0 0.5 1 1.5
4.5

5

5.5

6

ex ti 

u ti 

ti
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and  

                     

                    

                 

            

By applying the proposed method given in section 2.5 eq. (2.32) can be 

transformed into the following equation: 

                                          …(2.34) 

          

where: 

     

[
 
 
 
 
                              

 
    

         
                                  

 
 

 
 

    

         
      

 

   
    

         
      

]
 
 
 
 

  

     [

    
    
 
 

 
 

 
 

 
 

]  

and 

  [

          
        
 
 

 
 
 

 
    
     

]  

and by taking    
    

  
  for          ; we get a system of algebraic 

equations in terms of c as follows: 

                                                        

 …(2.35) 
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Solving the obtained system, one can get the unknown 

  [                 ]  and by substituting c into eq. (2.33) hence the 

approximate solution of eq. (2.32) is reached. 

Table 2.2 represent the approximate solution of example (2.2) using the 

proposed method compared with the method of [Chen,2015] and the exact 

solution. 

Table 2.2 

Comparison between the exact solution with the proposed method and the 

method [Chen,2015]. 

t Exact solution The proposed method Method [Chen,2015] 

0.2 7.2 7.2 7.2 

0.4 9.8 9.8 9.8 

0.6 12.8 12.8 12.8 

0.8 16.2 16.201 16.2 

1 20 20 20 
 

Figure 2.2 represent a comparison between the analytical and the 

numerical solution of example (2.2). 

 



Chapter Two                         Numerical Solution for Variable Order Fractional Differential  

                                                  Equations Using Bernstein polynomials 

34 

 

Figure 2.2: Analytical and numerical solution of example 2.2. 
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Chapter Three 

 

Bernstein Operational Matrices for Solving 

Multiterm Variable-Order Fractional Differential 

Equations 

 

3.1 Introduction: 

This chapter consists of four sections, in section 3.2 operational matrices 

of multiterm variable-order fractional derivative based on Bernstein 

polynomials are given, section 3.3 focused on the numerical solution of 

multiterm variable order fractional differential equations using Bernstein 

operational matrices, finally in section 3.4 some illustrative examples are 

given.  

 

3.2 Operational Matrices of   ( ) ( ) and    ( ) ( ),   

       ; Based on Bernstein Polynomials: 

Define: 

 ( )       ( )     ( )       ( )    

and 

  ( )                  

Then: 

 ( )     ( )  
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where A is given by equation  (2.5). 

Consider: 

  ( ) ( )    ( )    ( )     ( )              …(3.1) 

According to (1.30), we can get: 

  ( ) ( )     
 ( )

 (   ( ))
    ( )  

 (   )

 (     ( ))
    ( )    

  

[
 
 
 
 
    

 
 ( )

 (   ( ))
   ( )   

 
 

 
 

 
 

 
 (   )

 (     ( ))
   ( )

]
 
 
 
 

[

 
 
 
  

] …(3.2) 

       ( )  

where: 

  

[
 
 
 
 
    

 
 ( )

 (   ( ))
   ( )   

 
 

 
 

 
 

 
 (   )

 (     ( ))
   ( )

]
 
 
 
 

  …(3.3) 

      is called the operational matrix of   ( ) ( ). Therefore, if we set: 

 ( )  ∑       ( ) 
       ( )   

  ( ) ( )    ( )(   ( ))      ( ) ( )          ( )  …(3.4) 

Similarly: 

   ( ) ( )     ( )    ( )      ( )              …(3.5) 

According to (1.30), we can get: 

   ( ) ( )     
 ( )

 (    ( ))
     ( )  

 (   )

 (      ( ))
     ( )    
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 ( )

 (    ( ))
    ( )   

 
 

 
 

 
 

 
 (   )

 (      ( ))
    ( )

]
 
 
 
 

[

 
 
 
  

] …(3.6) 

     
   ( )  

where:  

   

[
 
 
 
 
    

 
 ( )

 (    ( ))
    ( )   

 
 

 
 

 
 

 
 (   )

 (      ( ))
    ( )

]
 
 
 
 

  …(3.7) 

    
   is called the operational matrix of     ( ) ( ). Thus: 

   ( ) ( )     ( )(   ( ))       ( ) ( )        
   ( )  (3.8) 

 

3.3 Bernstein Operational Matrices of Variable Order 

Fractional Derivative for Solving Multiterm Variable-

Order Linear Fractional Differential Equations: 

The multiterm variable-order linear fractional differential equation is 

given as follows: 

  ( ) ( )  ∑   ( ) 
  ( ) ( )   ( ) 

               ( )      

     ( )    ……………(3.9) 

 ( )( )                   

where   ( ) ( ) and    ( ) ( ) are fractional derivative in the Caputo sense, 

  ( ) are continuous functions and     are all constants. When  ( ) and 

  ( )          ; are all constants, (3.9) becomes (3.10), namely: 

   ( )  ∑   ( ) 
   ( )   ( ) 

               ( )      

        …………….(3.10) 
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 ( )( )                  

In order to solve equation (3.9) we define the approximate solution of 

equation (3.9) as: 

 ( )  ∑       ( ) 
     

     ( )  …(3.11) 

where                 and   ( )       ( )     ( )       ( )   

Also, recall that: 

  ( ) ( )    ( )(   ( ) )          ( )  …(3.12) 

Hence: 

   ( ) ( )     ( )(   ( ))        
   ( ) …(3.13) 

Substituting equations (3.11), (3.12) and (3.13) into equation (3.9), 

therefore equation (3.9) will be transformed into the following form and as 

follows: 

        ( )  ∑   ( )
 
         

   ( )   ( ) …(3.14) 

    ( )    ( )                   

where  ( ) is given by (2.14). 

By taking the collection points    
    

 (   )
, for          ; equation 

(3.14) become an algebraic system of equations in terms of the unknown 

vector c as follows: 

        (  )  ∑   ( )
 
         

   (  )   (  )            

 …(3.15) 

    ( )    ( )                   
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The vector                 can be found by solving the resulting 

algebraic system of equations. Finally, the numerical solution  ( ) is obtained 

by equation (3.11). 

3.4 Illustrative Examples: 

In this section, to test the accuracy of the proposed method, we present 

some illustrative examples and we will compare the numerical solution for 

multiterm variable order linear fractional differential equation using Bernstein 

polynomials with the analytical solution and the method exist in [Liu,2016] in 

order to show the efficiency and simplicity of the proposed method. 

Example 3.1: 

Consider the following linear multiterm variable order linear fractional 

differential equation: 

    ( )  √  
 

  ( )   
 

  
 

  ( )   
 

  
 

  ( )   
 

  ( )   ( )          

 …(3.16) 

 ( )     

  ( )     

Where: 

 ( )   
     

 (    )
 √ 

 
  

 
 

 (  
 

 
)
  

 

 
 
  

 
 

 (  
 

 
)
  

 

 
 
  

 
 

 (  
 

 
)
  

 

 (  
  

 
)  …(3.17) 

The analytic solution is given in [Liu,2016] by  ( )    
  

 
. 

Consider: 

 ( )  ∑       ( )
 
       ( )   …(3.18) 

In this case n  3, where: 

               
              ( )       ( )     ( )     ( )     ( ) 
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and  

    ( )               

    ( )              

    ( )           

    ( )      

According to the above, thus we have: 

    ( )     (   ( ))        ( )  

          ( ) …(3.19) 

where:  

  [

          
        
 
 

 
 
 

 
    
     

]  

and  

  

[
 
 
 
 
                              

 
 ( )

 (    )
                                

 
 

 
 

 ( )

 (    )
     

       

      
 ( )

 (    )
    

]
 
 
 
 

  

Similarly: 

 
 

  ( )   
 

 (   ( ))     
 

  ( )  

        
   ( ) …(3.20) 

 
 

  ( )   
 

 (   ( ))     
 

  ( )  

        
   ( ) …(3.21) 

 
 

  ( )   
 

 (   ( ))     
 

  ( )  
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   ( ) …(3.22) 

where:  
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and 
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)
  

 

                             

 
 

 
 

 ( )

 (  
 

 
)
  

 

 

            

            
 ( )

 (  
 

 
)
  

 

 

]
 
 
 
 
 

  

Substituting eqs. (3.18), (3.19), (3.20), (3.21) and (3.22) into eq. (3.16), we 

get: 

        ( )  √       
   ( )   

 

       
   ( )    

 
 

       
   ( )   

 

    ( )   ( )  …(3.23) 

By taking    
    

 (   )
, for          ; we get a system of algebraic equations: 

        (  )  √   
     

   (  )    
 

       
   (  )   

  
 

       
   (  )    

 

    (  )   (  )            …(3.24) 

   ( )     
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    ( )    ( )     

where: 

 ( )  [

    
    
 
 

 
 

 
 

 
 

]  

Solving the obtained system, one can get the unknown vector    and as 

follows: 

                         

and hence the approximate solution of equation (3.16) by substituting c into 

equation (3.18). 

Table 3.1 represent the approximate solution of example (3.1) using the 

proposed method compared with the method [Liu,2016] and the exact 

solution. 

 

Table 3.1 

Comparison between the exact solution with the proposed method and the 

method given by [Liu,2016]. 

T Exact solution 
The proposed 

method 
Method [Liu,2016] 

0.125 1.992 1.992 1.992 

0.25 1.969 1.969 1.969 

0.37 1.932 1.931 1.932 

0.5 1.875 1.875 1.875 

0.75 1.719 1.718 1.719 

1 1.5 1.499 1.5 
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Figure 3.1 represent the analytical solution and the numerical solution of 

equation (3.16). 

 

Figure 3.1: Analytical and numerical solution of example 3.1. 

 

Example 3.2: 

Consider the following linear fractional differential equation: 

 ( ) ( )    ( ) ( )           ( )          ( )    

  ( )   ( )         …(3.25) 

 ( )     

  ( )     

Where: 

 ( )       
          

 (        )
 

         

 (        )
 

   

 
  

The analytic solution is given in [El-Sayed,2004] by  ( )  
  

 
. 

Consider: 
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 ( )  ∑       ( )
 
       ( )   …(3.26) 

In this case n  3, where:  

               
              ( )       ( )     ( )     ( )     ( ) 

   

and  

    ( )               

    ( )              

    ( )           

    ( )      

According to the above, thus we have: 

 ( ) ( )   ( )(   ( ))     ( ) ( )      ( )    ( ) …(3.27) 

Where: 

  [

          
        
 
 

 
 
 

 
    
     

]  

and  

 ( )  [

    
    
 
 

 
 

 
 

 
 

]  

Similarly: 

 ( ) ( )   ( )(   ( ))     ( ) ( )      ( )    ( ) …(3.28) 

        ( )         (   ( ))            ( )        
   ( )  

 …(3.29) 

        ( )         (   ( ))            ( )        
   ( )  

 …(3.30) 
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where: 

  ( )       [
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 (     )
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 (     )
        

       

        
 ( )

 (     )
        

]
 
 
 
 

  

and 

   

[
 
 
 
 
                                         

 
 ( )

 (     )
                                               

 
 

 
 

 ( )

 (     )
        

            

            
 ( )

 (     )
        

]
 
 
 
 

  

Substituting equations (3.26), (3.27), (3.28), (3.29) and (3.30) into 

equation (3.25), we get: 

    ( )    ( )       ( )    ( )         
   ( )  

      
   ( )      ( )   ( )   (3.31) 

By taking    
    

 (   )
               we get a system of algebraic equations: 

    ( )    (  )       ( )    (  )         
   (  )     

      
   (  )      (  )   (  )           …(3.32) 

   ( )     

    ( )    ( )     

Solving the obtained system, one can get the unknown vector   , where: 
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and hence the approximate solution of equation (3.25) by substituting    into 

equation (3.26). 

Table 3.2 represent the approximate solution of example (3.2) using the 

proposed method compared with the exact solution. 

 

Table 3.2 

Comparison between the exact solution with the proposed method 

t Exact solution The proposed method 

0.25 0.031 0.031 

0.37 0.07 0.07 

0.5 0.125 0.125 

0.75 0.281 0.281 

1 0.5 0.5 

 

Figure 3.2 represent the analytical solution and the numerical solution of 

equation (3.16). 

 

Figure 3.2: Analytical solution and numerical solution of example 3.2. 
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Conclusions and Future Works 

 

From the study, we can conclude the following: 

1. Bernstein operational matrices have been proved to be powerful method 

for solving linear variable-order and multiterm variable-order fractional 

differential equations. 

2. In this thesis, different kinds of fractional operational matrices in terms of 

Bernstein polynomials are utilized to seek the numerical solution of the 

variable-order and multiterm variable-order fractional differential 

equations. 

3. The proposed approach given in this thesis transformed the variable-order 

and multiterm variable-order differential equations into the product of 

some matrices which can also be viewed as the system of algebraic 

equations, solving the resulting system the numerical solution can be 

obtained. 

4. The proposed method is simple in theory and easy in computation, so this 

method has wide applications in solving the various kinds of variable-

order fractional differential equations. 

 

For Future Works we recommend the following problems:  

1. Bernstein operational matrices for solving nonlinear multiterm variable-

order partial differential equations. 

2. Numerical solution of variable-order delay fractional differential 

equations. 

3. Numerical solution of variable-order fractional integro-differential 

equations. 
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 الملخص

 

 الغرض الرئيسي لهذه الرسالة يتمحور حول ثلاثة أهداف رئيسية:

الهدف الاول هو دراسة المبادئ الاساسية للحساب الكسري و المعادلات التفاضلية ذات 

 الرتبة الكسرية المتغيرة.

الهدف الثاني هو حل المعادلات التفاضلية ذات الرتبة الكسرية المتغيرة عدديا بأستخدام 

 مصفوفة العمليات لمتعددات حدود بيرنشتاين.

الطريقة المقترحة تعمل على تحويل المعادلات التفاضلية ذات الرتبة الكسرية المتغيرة الى 

مة من المعادلات الجبريه الخطية , حاصل ضرب مصفوفات والتي يمكن توضيحها على شكل منظو

 أيجاد الحل العددي.الحل لهذه المنظومة يمكننا من 

هدف الثالث هو أيجاد الحل العددي للمعادلات التفاضلية ذات الرتب الكسرية المتغيرة ال

المتعددة بأستخدام مصفوفة العمليات لمتعددات حدود بيرنشتاين, أيضا الطريقة المقترحة سوف 

تعمل على تحويل هذا النوع من المعادلات الى حاصل ضرب من المصفوفات بعبارة أخرى ألى 

معادلات الجبرية الخطية و بأمكاننا الوصول ألى الحل العددي عن طريق حل منظومة من ال

 المنظومة الناتجة من المعادلات الجبرية.
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جامعة النهرين –مقدمة الى كلية العلوم   

علومرو هي جزء من متطلبات نيل درجة ماجستي  

 في الرياضيات 

 

 

 من قبل

 الشيماء عبد الفتاح عمر 
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