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Abstract

The main theme of this thesis is oriented about three objects:

The first objective is to study the basic concepts of fractional calculus

and variable-order fractional differential equations.

The second objective is about solving numerically the variable-order
fractional differential equations using operational matrices of Bernstein

polynomials.

The proposed approach will transform the variable-order fractional
differential equations into the product of some matrices which can be
considered as a linear system of algebraic equations, after solving the

resulting system the numerical solution can be obtained.

The third objective is to find the numerical solution of multiterm
variable-order fractional differential equations using operational matrices of
Bernstein polynomials, also the proposed method will transform the multiterm
variable-order fractional differential equations into the product of matrices in
other words into a system of linear algebraic equations, and the numerical

solution will be reached after solving the resulting system.



Introduction

The expression of fractional calculus is more than 300 years old. It is a
generalization of the ordinary differentiation and integration to non-integer
(arbitrary) order. The subject is as old as the calculus of differentiation and
return to times when Leibniz, Gauss, and Newton invented this kind of

calculation.

In a letter to L Hospital in 1695 Leibniz raised the following question
’Can the meaning of derivatives with integer order be generalized to
derivatives with non-integer orders??” The story goes that L’Hospital was
somewhat curious about that question and answered by another question to
Leibniz. “What if the order will be 1/2?" Leibniz in a letter dated September
30, 1695 answered: “It will lead to a paradox, from which one day useful

consequences will be drawn”, [Miller,1993].

The question raised by Leibniz for a fractional derivative was an ongoing

topic in the last 300 years.

Several mathematicians contributed to this subject through the years,
people like Liouville, Riemann, and Weyl made major contributions to the
theory of fractional calculus. The story of the fractional calculus persistent
with contributions from Fourier, Abel, Leibniz, Grinwald, and Letnikov
[Gorenflo,2008].

Nowadays, the fractional calculus attracts many scientists and engineers,
there are several applications of this mathematical phenomenon in mechanics,
physics, chemistry, control theory and so on [Caponetto,2010], [Magin,
2006], [Oldham,1974] and [Podlubny,1999].
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Fractional differential equations are generalized of classical integer order
ones which are obtained by replacing integer order derivatives by fractional

ones.

Their advantages comparing which integer order differential equations
are the capability of simulating natural physical process and dynamic system

more accurately [Chen,2007].

Most fractional order differential equations do not have exact solutions,

so approximate and numerical techniques must to used [Mohammed,2016].

Several numerical and approximate methods to solve fractional order
differential equations have been given such as Adomian decomposition
method [Momani,2006], variational iteration method [Sweilam,2007],
homotopy analysis method [Tan,2008], homotopy perturbation method
[Khader,2012], collocation method [Bhrawy,2013] and [Bhrawy,2014],
wavelet method [Heydari,2014]], finite element method [Ma,2014] and
spectral tau method [Bhrawy,2015].

However, several numbers of algorithms for solving fractional-order
differential equations have been investigated. Suarez [Suarez, 1997] used the
eigenvector expansion method to find the solution of motion containing

fractional derivative.

Podlubny [Podlubny,1999] used the Laplace transform method to solve
fractional differential equations numerically with Riemann-Lioville
derivatives definition as well as the fractional partial differential equations
with constant coefficients, Meerscharet and Tadjeran [Meerscharet,2006]
proposed the finite difference method to find the numerical solution of two-
sided space fractional partial differential equations. Momani [Momani,2007]
used a numerical algorithm to solve the fractional convection-diffusion

equation nonlinear source term. Odibat and Momani [Odibat,2009] used the

17



Introduction

variation iteration method to exhaust fractional partial differential equations

in fluid mechanics.

Jafari and Seifi [Jafari,2009] solved a system of nonlinear fractional
differential equations using homotopy analysis method. Wu [Wu,2009]
derived a wavelet operational method to solve fractional differential equations
numerically. Chen and Wu [Chen Y,2010] used wavelet method to find the
numerical solution for the class of fractional convection-diffusion equation
with variable coefficients. Geng [Geng,2011] suggested wavelet method for
solving nonlinear partial differential equations of fractional order. Guo
[Guo,2013] used the fractional variation homotopy perturbation iteration

method to solve a fractional diffusion equation.

Recently, more and more researchers are finding that numerous
important dynamical problems exhibit fractional order behavior which may
vary with space and time. This fact illustrates that variable order calculus
provides an effective mathematical scope for the description of complex
dynamical problems. The concept of a variable order operator is a much more

recent expansion, which is a new orientation in science.

Different authors have proposed several definitions of variable order
differential operators, each of these with a specific meaning to suit desired
goals. The variable order operator definitions recently proposed in the science
include Riemann-Liouville definition, Caputo definition, Marchaud
definition, Coimbra definition and Griinwald definition [Lerenzo,2007].

Since the kernel of variable order operators is very complex for having a
variable-exponent, the numerical solutions of variable order fractional
differential equations are highly difficult to obtain, and have not attracted
much attention. Thus, the development of numerical techniques to solve

variable order fractional differential equations has not taken off [Liu,2016].
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Introduction

There are slight references arisen on discussion of variable order
fractional differential equation. In several emerging, most authors adopt
different methods to deduce an approximate scheme. For example, Coimbra
[Coimbra,2003], employed a consistent approximation with first-order

accurate for the solution of variable order differential equations.

Soon et al. [Soon,2005] proposed a second-order Runge-Kutta method
which is consisting at an explicit Euler predictor step followed by an implicit
Euler corrector step to numerically integrate the variable order differential

equation.

Lin et al. [Lin,2009] studied the stability and the convergence of an
explicit finite-difference approximation for the variable-order fractional
diffusion equation with a nonlinear source term. Zhuang et al. [Zhuang,2009]
obtained explicit and implicit Euler approximations for the fractional
advection—diffusion nonlinear equation of variable-order. Aiming a variable-
order anomalous sub diffusion equation, Chen et al. [Chen,2010] employed
two numerical schemes one fourth order spatial accuracy and with first order
temporal precision, the other with fourth order spatial accuracy and second

order temporal accuracy.

Operational matrices recently were adapted for solving several kinds of
fractional differential equations. The use of numerical techniques in
conjunction with operational matrices in some orthogonal polynomials, for
the solution of fractional differential equations on finite and infinite intervals,
produced highly accurate solutions for such equations [Bhrawy,2015].

Bhrawy [Bhrawy,2015] discusses spectral techniques based on
operational matrices of fractional derivatives and integrals for solving several

kinds of linear and nonlinear of fractional differential equations.

The operational matrices of fractional derivatives and integrals, for

several polynomials on bounded domains, such as the Legendre, Chebyshev,

Iv
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Jacobi and Bernstein polynomials uses them with different spectral techniques
for solving the aforementioned equations on bounded domains. The
operational matrices of fractional derivatives and integrals are as well
presented for orthogonal Laguerre and modified generalized Laguerre

polynomials [Bhrawy,2015].

In this thesis the operational matrices of Bernstein polynomials will be
used to solve variable-order and multiterm variable-order fractional

differential equations.

Bernstein polynomials play a prominent role in various areas of
mathematics, these polynomials have extremely been used in the solution of
integral equations, differential equations and approximation theory
[Doha,2011], [Maleknejad,2011].

The operational matrices for Bernstein polynomials are introduced in
order to solve different types of differential equations among them
[Maleknejad,2012] used the operational matrices for Bernstein polynomials
for solve nonlinear Volterra-Fredholm-Hammerstein integral equations,
[Hashemizadeh,2013] have been used operational matrices of Bernstein
polynomials for solving physiology problems, [Bataineh,2016] have been
used operational matrices of Bernstein polynomials for solving high order

delay differential equations.
This thesis consists of three chapters.

In chapter one which is entitled basic concepts of fractional calculus we

discuss the following concepts:

Gamma and Beta functions, fractional order integrations, fractional order

derivatives finally variable order fractional derivatives and integrations.
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Chapter two handles the numerical solution of variable-order linear
fractional differential equations using Bernstein polynomials operational

matrices

Chapter three is about the numerical solution of the multiterm variable-
order linear fractional differential equations using Bernstein polynomials

operational matrices.

It is remarkable to notice that all the computer programs or calculations

have been made by using Mathcad 14.

VI



Chapter One

Basic Concepts of Fractional Calculus

1.1 Introduction:

This chapter consists of seven sections, in section 1.2 Gamma and Beta
function were given, in section 1.3 some definitions of fractional order
integration are presented, in section 1.4 some definitions of fractional order
derivatives are given, in section 1.5 the definition of Mittag-Leffler function
will be given, while in section 1.6 two analytical methods for solving
differential equations of fractional order are introduced, finally in section 1.7

we present some definitions of variable order fractional derivatives.

1.2 The Gamma and Beta Functions, [Oldham,1974]:

The complete gamma function /{x) plays an important role in the theory
of fractional calculus. A comprehensive definition of /{x) is that provided by

Euler limit:

. NINX
[(x):r\!inoo(x(x+1)(x+2)...(x+N)]'x >0 (L)

But the integral transform definition given by:
Ix) = [y**eVdy,x > 0 ..(1.2)
0

is often more useful, although it is restricted to positive value of x. An

integration by parts applied to eq.(1.2) leads to the recurrence relationship:

Ix + 1) =xIx) ...(1.3)
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This is the most important property of gamma function. The same result is a
simple consequence of eqation (1.1), since /(1) =1, this recurrence shows

that for positive integer n:
I'(n+1)=nl{(n)
=n/ ...(1.4)

The following are the most important properties of the gamma function:

N F(l ):(—4)”n!\/;

—-n
2 (2n)!

2. F(%+nj:—(2n)!\/;

4"n!

—mcsc(zx)

3. (=)= I(x+1)

Nh-1
4. I(nx) = zl{ﬂ} HF(X+%j,ne N*

N [ V27 | k=0
Note Gamma function is also defined for R\{0,—-1,—-2,-3, ...}

A function that is closely related to the gamma function is the complete
beta function S(p,q). For positive value of the two parameters p and g; the

function is defined by the beta integral:
; 1 1
A(p.a)=[yP(1-y) " dy, pg>0 .(1.5)
0

which is also known as the Euler’s integral of the first kind. If either p or g is
nonpositive, the integral diverges otherwise A(p,q) is defined by the

relationship:

I'(p)(q) ...(1.6)

plpa)="2 2



Chapter One Basic Concepts of Fractional Calculus

where p and g > 0.

Both beta and gamma functions have “incomplete” analogues. The

incomplete beta function of argument x is defined by the integral:
f 1 1
Be(p.a)=[yPH(1-y)" " dy (1)
0

and the incomplete gamma function of argument x is defined by:

C_X (j‘yx—le—y dy
I'(x)

y(cx) =

x

— A—X 0
= e 20T grerD ..(1.8)

7*(c,X) is a finite single-valued analytic function of x and c.

1.3 Fractional Integration:

There are many literatures introduce different definitions of fractional

integrations, among them:
1. Riemann-Liouville integral, [Oldham,1974]:

The generalization to non-integer o of Riemann-Liouville integral can be

written for suitable function f(x), x eR; as:

I“f(x):%f(x—s)a—lf(s)ds,a>o ...(1.9)
0

and I°f (x) = f(x) is the identity operator.
The properties of the operator I* can be founded in [Podlbuny,1999]
for g >0, >0, as follows:

1. I%IBf(x) = I**F f(x) }

2. I9Pf(x) = IP1%f(x) ...(1.10)
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2. Weyl fractional integral, [Oldham,1974]:

The left hand fractional order integral of order o > 0 of a given function

f is defined as:

a 1 ¢ fy)
1%F(X) = d (111
(x) F(a)_{o(x—y)l‘“ y (1.11)

and the right fractional order integral of order o > 0 of a given function f is

given by:

p 1% f(y)
12f(x) = F(a){(y—x)l‘“

3. Abel-Riemann fractional integral, [Mittal,2008]:

The Abel-Riemann fractional integral of any order « > 0, for a function

f(x) with x € R* is defined as:

1%, f (x)= %T(X—r)“‘lf(r)dr, x> 0,a>0 .(1.12)
0

19, = I (Identity operator)
The Abel-Riemann integral possess the semigroup property:

1815 = 1%F Forall o, 20 ...(1.13)

1.4 Fractional Derivatives:

Many literatures discussed and presented fractional derivatives of certain
functions, therefore in this section, some definitions of fractional derivatives

are presented:
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1. Riemann-Liouville fractional derivatives, [Oldham,1974],
[Nishimoto,1983].

Among the most important formulae used in fractional calculus is the
Riemann-Liouville formula. For a given function f(x), V x € [a,b]; the left
and right hand Riemann-Liouville fractional derivatives of order a > 0 where

m is a natural number, are given by:

a _ 1 "rf()
D2, F(x) = F(m—a)dxmi(x—t)“‘m” (1.14)
m m b
DZ f(x) = (1) d fit) ...(1.15)

F(m—a)dxm X(X_t)a—m+1
where m—1 <a<m, m eN.

2. The Abel-Riemann fractional derivative, [Mittal,2008]:

The Abel-Riemann fractional derivative of order « > 0 is defined as the

inverse of the corresponding A-R fractional integral, i.e.,
Dirlir =1 ...(1.16)

For positive integer m, such that m-1 < a < m, where | is the identity

operator.

(Dirlir “Var = Dar (g “Iar) = Darlagr =1

i.e.,
m X
UEnTr e
- X X—7
Dirf (%)= i : (1.17)
— f(x), a=m
v (x)
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3. Caputo fractional derivative, [Caputo,1967], [Minadri,19971:

In the late sixties of the last century, an alternative definition of

fractional derivatives was introduced by Caputo. Caputo and Minadri used
this definition in their work on the theory of viscoelasticity. According to

Caputo’s definition:
CDX“ =[MeDM form—-1<a<m

which means that:

X (m)
! I () dr, m-1l<a<m
Ch o F(m_a)o(x_f)()Hl—m
SIORI I
— f(x), a=m
dx

For the Caputo derivative, we have:

i.  °DZC =0, (cis a constant)
0, forjeNU{0}andj < [a]

T Cna,j — . _
- D x —F;SEL) xI7% forjeNU{0}andj = [a]

.(1.18)

We utilize the ceiling function [a] to denote the smallest integer greater than

or equal to a.
The basic properties of the Caputo fractional derivative are:

1. Caputo introduced an alternative definition, which has the preference of
defining integer order initial conditions for fractional order differential

equations.

m-1 Xk
2. 1% °DEfF(x) = f(x) — Y, 109(07) =
k=0 k!
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3. Caputo’s fractional differentiation is linear operator, similar to integer

order differentiation:

"Dy [Af (%) +1g(x)]=2°Dy f(x) +1°Dy g(x)

4. Griinwald fractional derivatives, [Oldham,1974]:

The Grinwald derivatives of any integer order to any function, can take

the form:

X -
weren 1 (Nj () [, . X
D f(x)_lll_Lngo () E,—F(Hl)f(x ij ...(1.19)

1.5 Mittag-Leffler functions [Oldham,1974]:

In this section, the definition and some properties of two classical Mittag-

Leffler functions are presented. We start with the function:

kZF(vk+1) Z€C Re(v) >0

Which is known as the Mittag-Leffler function, and as an example when
v=1landv = 2:

E,(z) = e#and E,(z) = cosh(2)
While when v =n € N, the following differentiation formula hold for the
function E,,(Az™):

n
(%) E,(Az") = AE,(Az"),n€N; 1 € C

and

(i)n [Zn_lEn (i)] =g, (Zin) ,z+0;,nEN; 1€ C

dz zn Zn+1

7
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Also, when v=% (n € N{1}), the function Ei(z) has the following

representation:

Ei(z) = %" [1+nfoze (Zn 1t( )>dt] n € N{1}

A two-parameter function of the Mittag-Leffler type is defined by the series

expansion:

k
E,,(z) = z;:;or(%m, v>0, y>0 ...(1.20)

It follows from the definition (1.20) that:

zk o ZzK Z

E1,1(Z) = Z?:om = Zk:OE =e

E1a(@) = X0y = S = S
12(2) = Lie=0 G2y = 2k=0 0D ©

E e z @ ko eZ-z-1
1,3(Z) - Zk:o T'(k+3) _Zk=0 (k+2)! - 72

and in general:

Eypm(2z) = —m— 1{9 — 2k= 027(.}

1.6 Analytic Methods for Solving Fractional Order Differential
Equations, [Oldham,1974]:

In the present section, some analytical methods are presented for solving

fractional order differential equations, and among such method:

1.6.1 The Inverse Operator Method:

Consider the fractional order differential equation:

-F ...(1.21)
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(2

) ) d® . ) .
where f is an unknown function and — isa fractional order derivative of

dx
-a
Riemann-Liouville sense, hence upon taking the inverse operator v to the
X
both sides of eq.(1.21) gives:
d“F
f= ...(1.22
dx™ ¢ (1.22)

additional terms must be added to eq.(1.22), which are:

1 x® L cx%72, L, T
and hence:
d % d¢ N _ _
f—d _ad—af :C_I_Xa 1+C2Xa 2+...+mea m
X X

where ¢4, ¢y, ..., ¢, @re an arbitrary constants to be determined from the initial

conditionsand m -1 < a <m.

Thus:

_ _ _ d“ d¢ d™
foex =X — e M= —— f = ——
dx™* dx dx

Hence, the most general solution of eq.(1.21) is given by:

dx™ ¢

a—m

f= F 40X 146X 2 .. 4+CpX

wherem -1< o <m.

As an illustration, we shall consider the following example:

Example (1.1):

Consider the fractional order differential equation:
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d3/2
> F(x)= X° ...(1.23)
-3/2
Applylng > to the both sides of eq.(1.23), we get:
d-3/2y5 B
f(X)=—=77% +epx? 4 opx 2

1.6.2 Laplace Transform Method:

In this section, we shall seek a transform of dmf/dxm for all m and

differintegrable f, i.e., we wish to relate:
am 0 amf
L{dx—rfl} = J, exp(—sx) ——dx

to the Laplace transform £ {f} of the differintegrable function. Let us first

recall the well-known transforms of integer-order derivatives:
L{d f}—smL{f} St smoko1 S (0) m=123,.
and multiple integrals:

L{Z nfl} = S™LUY, M = 0,=1,=2, e oo o (1.24)

and note that both formulae are embraced by:

m—-k—1
{0 = smaif) - 3y SHEIO) 0, 41,22, . ...(1.25)

dxm dxm-— k-1 "’

Also, formula (1.25), can be generalized to include noninteger m by the

simple extension:

m—k—
c{E0 = sme{fy - 3psd s S LD .(1.26)

dxm dmkl

where n is the integer such that n—1 < m < n. The sum is empty vanishes

when m <0.

10



Chapter One Basic Concepts of Fractional Calculus

In proving (1.26), we first consider m < 0, so that the Riemann-Liouville
definition:

d™f 1 % f
J (y)

- dy,m<0
dxm r(_m)o [X_y]m+1 y

May be adopted and upon direct application of the convolution theorem:
L{fy file =LAy} = LIfi} L{f)
Then gives:

L{Z:ZL} = F(_lm) LOYMYLUFY = S™LUFY, <O oo (1.27)

So that equation (1.24) generalized unchanged for negative m.

For noninteger positive m, we use the result, [Oldham,1974]:

d™f ] d"[d™ g
dx™ | dx"| dx™™"

where n is the integer such that n—1 <m <n.

Now, on application of the formula (1.25), we find that:
dmf _ ﬂ dm—nf
L {dx_m} =L {dx” [dxm‘n]}

= "L {dm_nf e Yarrl an [dm_nf | © .(1.28)

dxm-n dxn—k—1|gxm—-n

The difference m—n being negative, the first right-hand term may be
evaluated by use of (1.28).since m—n< 0,the composition rule may be applied

to the terms within the summation. The result:
m m—-k—1
S =smpfpy - st L2 0<m#12,.

dxm dxm—k-1 "’

Follows from these two operations and is seen to be incorporated in (1.26).

11
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The transformation (1.26) is a very simple generalization of the classical
formula for the Laplace transform of the derivative or integral of f. No similar

generalization exists, however, for the classical formulae, [Oldham,1974]:

— d—lL d~ 1
L{xf}z ds—{lf Yo - {f}( )
dL
d™"L
L{[—x]"f} = dsﬁf a2

As a final result of this section we shall establish the useful formula:

m

£lexp(—k) —— [fe¥]} = [s + kI™L{f)

As an illustration, we consider the following example:

Example (1.2), [Abdulkhalik,2008]:

Consider the semi differential equation:

df d*/2f
dx ' dx1/?

—2f = . (1.29)

By using Laplace transformation

d1/2
SF(s) — f(0) +/sF(s) ——7zf(0)—2F(s) =0
And after making use of the equations (1.25) and (1.27), we get:

/
oo

s+vs—2  [Vs—1][Vs+2]

where c is a constant. A partial fraction decomposition gives:

A B
3[Vs-1] 3[Vs+2]

which upon Laplace inversion produces

flx) = g [\/% + exp(x) erfc(—\/E)] — % L/% — 2 exp(4x) erfc(Z\/E)]

F(s) =

12
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= %[2 exp(4x) erfc(2vx) + exp(x) erfc(—vx)]

As the solution of the semi differential equation.

1.7 Variable Order Fractional Derivatives for Functions of One Variable

[Dina,2015]:

Our goal in this section is to consider fractional derivatives of variable

order, with a depending on time. In fact, some phenomena at physics are
better described when the order of the fractional operator is not constant, for
example, in the discussion process in an inhomogeneous or heterogeneous
medium. Or processes where changes at the environment modify the dynamic
of the particle [Chechkin,2005], [Santamaria,2006], [Sun,2009].

1.7.1 Variable order Caputo fractional derivatives:

Motivated by the above considerations, we introduce three types for
Caputo fractional derivatives. The order of the derivative is considered as a
function a(z) by taking values on the open interval (0,1). To start, we define

two different kinds of Riemann-Liouville fractional derivatives.

Definition 1.1, [Dina,2015] (Riemann-Liouville fractional derivatives of
order a(t)-types | and I1):

Given a function u : [a, b] —> R,

1. The type | left Riemann-Liouville fractional derivative of order a(z) is
defined by:

1 a
r(1-a(t)) dt

DEOu(t) = [t =)~ *Ou(r)dr

2. The type | right Riemann-Liouville fractional derivative of order o(z) is
defined by

13
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tD“(t)u(t) = f (t — t)"*Oy(r)dr

r(i- a(t)) dt

3. The type Il left Riemann-Liouville fractional derivative of order a(z) is
defined by

a(t) u(t) = dt(

fi(t = )™ Ou(r)dr)

r(l—a(t))“a

4. The type Il right Riemann-Liouville fractional derivative of order a(t) is
defined by

DEOy () = dt( f(r—t)_“(t)u(r)dr)

r(i- a(t))

The Caputo derivatives are given using the previous Riemann—Liouville

fractional derivatives as follows:

Definition 1.2, [Dina,2015] (Caputo fractional derivatives of order a(t)-
types I, 1l and 111):

Given a function u : [a, b] —>R

1. The type I left Caputo derivative of order a(t) is defined by:

DFOu(t) = (DFP (u(t) — u(a))

= 1t = D™ Ou(r) — u(@)]dr

r(1 a(t)) dt

2. The type | right Caputo derivative of order a(t) is defined by:

D2 Out) = DFO(ult) — ub))

— ®) _
ra- a(t)) dtf (r — )" P[u(r) —u(b)]dr
3. The type Il left Caputo derivative of order a(?) is defined by:

D Ou(t) = DO (u(t) — u(a))

14
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d -—
= dt (F(l_l()l(t)) f;(t - T) () [U,(T) - u(a)]dr)
4. The type Il right Caputo derivative of order a(?) is defined by:

DfOut) = DFO(ult) — ub))

= (r(1 a(t))f (t = )" *Ofu(z) - u(b)]dr)

5. The type I11 left Caputo derivative of order a(?) is defined by

cpna®) _ 1 Eer — y—a(t)y,’
DS u(e) F(1_0£(t))fa(t 1)~y (t)dt

6. The type Il right Caputo derivative of order a(?) is defined by:

DOy (t) =

ra- a(t))f T-0" " (D)dz

Remark 1.1, [Jinsheng,2014]:

From the definition (1.2)(5), we can get the following formula (0 <
a(t) < 1):
0 B =

a()B —
DUOXP =1 1+ goa@ B=123..
r(B+1-a(t)

...(1.30)

Remark 1.2:

In contrast with the case when a is a constant, definitions of different

types do not coincide.

15



Chapter Two

Numerical Solution for Variable Order Fractional
Differential Equations Using Bernstein
Polynomials

2.1 Introduction:

This chapter consists of six sections, section 2.2 is oriented about the
definition of Bernstein polynomials and their properties, in section 2.3 a
matrix representation for the Bernstein polynomials is given, in section 2.4
function approximation using Bernstein polynomials and its operational
matrices are presented, section 2.5 focused on the numerical solution of
variable-order fractional differential equation using Bernstein operational

matrices, finally in section 2.6 some illustrative examples are given.

2.2 Bernstein polynomials [Korovkin,2001]:

In the mathematical field for numerical analysis ‘a Bernstein
polynomial’ named after Sergei Natanovich Bernstein, is a polynomial in the

Bernstein form, that is a linear combination of Bernstein basis polynomials.

Polynomials in Bernstein form were first used by Bernstein in a

constructive proof for the Stone-Weierstrass approximation theorem.

Definition2.1, [Korovkin,2001]:

The n + 1 Bernstein basis polynomials of degree n are defined as:
Bin() = (7)x'(1 =" ,i=012,..,n
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Where (?) is a binomial coefficient.

The Bernstein basis polynomials of degree n form a basis at the vector

space II,, of polynomials of degree at most n.
A linear combination of Bernstein basis polynomials:
Bn(x) = ?=0 CiBi,n(x)

is called a Bernstein polynomial or polynomial in Bernstein form of

degree n.

The coefficients ¢; are called Bernstein coefficients or Bezier

coefficients.

2.2.1 Properties of Bernstein Polynomials:

The Bernstein basis polynomials have the following properties:

1- Bip,(x)=0,ifi<Oor i >n.
2- B; ,(0) = ;¢ and B; ,(1) = &;, , where § is the Kronecker delta function
given by:

5 _{1, ifi=n
tn 0, ifi#n

3- B;,(x) has a root with multiplicity i at a point x =0.

4- B; »(x) has a root with multiplicity (n —1i) at a point x =1.
5- Bin(x) =0 forx € [0,1].
6- Bi,n(1 —x) = Bn—i,n(x)-
7- The derivative can be written as a combination of two polynomials of
lower degree:
Bin(x) =1 (Bioyno1 () = Binoa (x))
8- The integral is constant for a given n

17
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1 1 .
fO Bi'n(X)dX = E’Vl = 0,1, e, n

9- If n # 0, then B; ,,(x) has a unique local maximum of the interval [0,1] at

X = % This maximum takes the value:

i‘n " (n — i)™ (n)

l

10- The Bernstein basis polynomials of degree n form a partition of unity:

i=o Bin (%) = Xiso (Tll) xXi(l=—x0)"i=(x+(1-x)"=1

11- By taking the first derivative of (x + y)™", where y = 1 — x, it can show
that:

i=0iBin(x) = nx
12- The second derivative of (x + y)™ where y = 1 — x can be used to show
i=1i(i = 1)B;(x) = n(n — Dx?

13- A Bernstein polynomial can always be written as a linear combination

for polynomials of higher degree:
Bin-1(%) = = Bin(x) + = Biy1 n(x)

Remark 2.1 [Kenneth,2000]:

1- Bernstein polynomials of degree 1 are:
BO,l(U = ]_f, Bl,l(t) =t

And can be plotted for 0 <z <1 as:
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2- Bernstein polynomials of degree 2 are:
Boa(t) = (1 - UZ
Bi2(2) = 2t(1 — 1)
B,,(t) =t

And can be plotted for 0 <z <1, as:

I I I I

2t-(1-t)

3- Bernstein polynomials of degree 3 are:
Bos(t) = (1 - 1)°
Bua(t) = 31(1 = 1)°
B,s(t) = 3t%(1 — ¢)

B3’3(t) = t3

19
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And can be plotted for 0 <¢ <1, as:

2.2.2 A Recursive Definition of the Bernstein Polynomials,

[Kenneth,2000]:

The Bernstein polynomials of degree n can be defined by blending

together two Bernstein polynomials of degree n — 1. That is, the i n"-degree

Bernstein polynomial can be written as:

Bin(t) = (1 —

To show this, we need only use the definition of the Bernstein

t)Bipn_1(t) + tBi_q1pn_1(t)

polynomials and some simple algebra:

(1 = OBipa(® + tBiyna® = -0 ("7

(n

-7+ Gy

=( )t (1-t)n
= Bi,n(t)

)t(l tyll+(

t (’;‘: 1) t-1(1 — ¢

1

)] ti(l _ t)n—i

20

)n—l—i +

)n—l—(i—l)

)t (1—t)"



Chapter Two Numerical Solution for Variable Order Fractional Differential
Equations Using Bernstein polynomials

2.3 A Matrix Representation for the Bernstein Polynomials,
| Kenneth,2000 | :

In many applications, a matrix formulation for the Bernstein polynomials

is useful. These are straightforward to develop if one only looks on a linear
combination in terms of dot products. Given a polynomial written as a linear

combination of the Bernstein basis functions:
B(t) - COBO,Tl(t) + ClBl,n(t) + °°c + Can'n(t) .(21)

It is easy to write this as a dot product of two vectors:

Co
C
B(t) = [Bon(t) Bin(t) - Bun(0)] 51 ...(2.2)
Cn
_bo,o 0 0 0 7 c
bl,O b1,1 0 0 C(l)
B(®)=1[1 t t*.. t*l{byo ba1 bz -~ 0 |f: ...(2.3)
: : : e : Ch
-bn,O bn,l bn,z bn,n-

where the b;; are the coefficients of the power basis that are used to
determine the respective Bernstein polynomials. We note that the matrix in

this case is lower triangular.

In the quadratic case (n = 2), the Bernstein polynomial is:
1 0 0][%

B)=1[1 ¢ ¢]]{-2 2 O|la
1 -2 11l

and in the cubic case (n = 3), the Bernstein polynomial is:

1 0 0 07[¢
-3 3 0 of|a

— 2 3
B =M t ¢ 3|5 5 3 OHCZ
1 3 =3 1lle

Now, we define:
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®(t) = [Bon(t), Bin(t), o) Bpn(D)]" ...(2.4)
or in matrix form:

d(t) = AT, (t) ...(2.5)
where

(D) D) - EDE)GI)]
0 DR - CDOGT

A = . .
0 0 - D)
and
T,(t) = [1,t,t%, .., t"]T
Clearly:

T, (t) = A-10(t) .(2.6)

2.4 Function Approximation using Bernstein Polynomials
| Saadatmandi,2013 | :

A function u(t) € L?(0,1) can be expressed in terms of the Bernstein

polynomials basis. In practice only the first (n + 1) terms of Bernstein

polynomials are considered. Hence:
u(t) = Yo ciBin(t) = cTd(t) ..(2.7)

where ¢ = [cy ¢y . cy]” and @(t) = [By,(t), Byn(t), ..., Byn ()]". Then we

have:
c = H (u, ®(t)) ...(2.8)

where H is an (n+ 1) X (n + 1) matrix, which is called the dual matrix of
d(t).
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H=[lo@dT(0)dt = [ (AT,(0))(AT,(®)) dt

=4 ( fol Tn(t)TnT(t)dt) AT
= AQAT .. (2.9

where Q is a Hilbert matrix given by:

- 1 1
1 _ —_
2 n+1
1 1 1
Q=] 2 3 n+2 ...(2.10)
1 1 1
ln+1 n+2 " 2n+1d
Then:

¢ = [, u®)d()dt, i=01,..,n
d; ,, has derived explicit representations:
d]’n(t) = 7}’(l=0 )l'j,kBk,n(t)' ] = 0,1, e, n

For the dual basis functions, defined by the coefficients:

(IR GminG k) - (Tl+i+1)<n_i) n+i+1\/n-—i
Ak = T Qi=o (2i+1) n—j n—j ( n—k )(n—k)

()G

(2.11)

forj,k=01,..,n.

2.4.1 Operational Matrix of D9¢(t) Based on Bernstein Polynomials,
[Saadatmandi,2013]:
The derivative of the vector ®(t) can be expressed by:
L o(t) = DD d(¢)
dt
where DM is the (n + 1) x (n + 1) operational matrix of derivative and
2 (t) = DDOD(L) = < [AT, ()] = A [1,,t2, .., t"]" = ADWA  ®(t)

23



Chapter Two Numerical Solution for Variable Order Fractional Differential
Equations Using Bernstein polynomials

..(2.12)
where:
0 0 0 0 0
1 0 0 0 0
D(l)zg (2) (3) 8 8 ...(2.13)
o 00 n ol

By using eq.(2.12), it is clear that:
= (1) = (D) o(t)
Where n € N and the superscript, in D™, denotes matrix powers. Thus:
D™ = (DN, n=1,2,.. ...(2.14)

Theorem 2.1, [Saadatmandi,2013]:

Let @(t) be Bernstein vector defined in (2.4) and also suppose q > 0,
then:

Did(t) = D@d(t)

where D@ is the (n + 1) x (n + 1) operational matrix of fractional derivative

of order g in caputo sense and is defined as follows:

Y711 @0j0  Lj=jq1 @01 Zj=[q] Pojn]
D@ =Y 1 @ijo  Di=[q1@ij1 = Xj=[q] Dijn
. . " . n:

Do [q1 @njo  Lj=iq1@nj1 - Zj=[q] Pnjn

Here w; ;; is given by:

_ (N — 1\ T(G+1)
a”Jl"(_l)]l(i)(j-—i)rqapq)zz=ozﬁk“hf -.(2.15)

where 4, is given in eq.(2.11) and:
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g = Z2 0 () (32 )i

Proof:

Using the linearity property of D4
Dq(c1f1(t) + szz(t)) = ¢, Df(t) + ¢, DI f,(¢)

and the equation:

Bun(® = S () (F2)) 0 i=0m

we have:

DB, (1) = T (-1) () (7: : ) DI(t)

n .

= —1y-i(" (”_i)_r(”rl)_ -4, =
Z]( 1) (l) P o e L S AR
J=14q

...(2.16)
Now, approximate t/~9 by Bernstein polynomials, we have:
/79 = Y guy jByn (t) ..(2.17)
where :

1 i 1 -
Uj = f() t/~1 dl,n(t)dt = 22=0 Al,k fO /=1 Bk,n(t)dt

= Shoo e B (-0 () (D) fy ot ae

= Zﬂ:o Al,k Z?:k(_l)s_k (Z) (n : ]lz) 1

S j—q+s+1
— n
= Yk=0 Al,k:uk,j

Employing equations (2.16) and (2.17), we get:

M\ (m—1\ rg+1
DBy (t) = Xjofq Xizo(—1) l(i)(j—i>r<j+]—1—)q>”l'fBl'"(t)
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= Yo (Xjoiq @i 1) Bia(®) ..-(2.18)

where w; ;; is given in eq. (2.15). Rewrite eq. (2.18) as a vector form, we have

foralli =0,1, ..., n:
DBin(t) = [Ejoiq@ijo  Ziciq1@ija " Lj=lq1 Yijn]P(E)

2.4.2 Operational Matrix of D9® & (t) Based on Bernstein Polynomials:

In order to transform both integer and fractional order differential

operators into matrix forms.

Firstly, the following equation can be easily obtained for the first order

differential operator:

By equations (2.5) and (2.12):
= (t) = ADW A D(t)
By combining (2.7) with (2.12), the following result is obtained:
a _ 4.7 — T4 — ~TADD 4-1
dtu(t) =— [c"®(t)] =c dtCD(t) =c AD'WAT D(t) ...(2.19)

Secondly, using (1.30) the following equation can be obtained for the variable

order fractional differential operator:
DI®a(t) = DIVAT, ()]

= ADI[1,t,¢2, ..., t"T

= AGA™1d(t) ...(2.20)
where:
0 0 0 0
_Ir@ . -q@
r(z—q(t))t 0 8
G(t) = _I'®  —q@
0 0 rG-a@) " : 0
0 0 0 . T@FD  —q)
0 0 0 F(n+1—-q(t))
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...(2.21)
By combining (2.7) with (2.20), the following result is obtained:
DIPu(t) = DI o (1)]
= "IV (t)
= cTAGA 1D (t) ...(2.22)

2.5 Bernstein Operational Matrix of Variable Order Fractional
Derivative for Solving variable Order Fractional Differential
Equations:

In this section the Bernstein polynomials and it is operational matrices

are used to solve the variable order fractional differential equation:
DI Ou(®) + A’ (6) + 2u(®) = £(8), u(0) = ug -(2.23)

where f(t) € L?[0,1] is known, u(t) € L?[0,1] is the unknown function which

we want to approximate, 4,,4, and u, are all constants.

In order to solve eq. (2.23), we set the approximate solution of equation
(2.23) to be:

u(t) = Nio ciBin(t) = cTd(t) ...(2.24)
Where ¢ = [cg, ¢y, ..., ¢,]" and @(t) = [By(t), Byn(t), ..o, Bun (O]

Operating th(t) to the both sides of eq. (2.24) and by using equation
(2.22), thus we have:

Df(t)u(t) — CTDg(t)CD(t) = cTAGA™1d(t) ...(2.25)

Substituting egs. (2.24) and (2.25) into eq. (2.23), then it can be written

in the following form:
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cTAGA™ ®(t) + 1,cTADMAID(t) + A,cTd(t) = f(b) ...(2.26)
CTCD(O) = uO

Consequently, by calculating the values of ® and f on [0,1], using
2i+1

t; = D)’ for i =0,1,...,n, therefore we get the following system of

algebraic equations:
cTAGAT D (t;) + 2, cTADWATID(t) + A,cT () = f(t)  ...(2.27)
cT®(0) = u,
One can obtain the unknown c by solving a system of algebraic

equations given by (2.27) and by substituting into eq. (2.24), the desired

solution is obtained.

2.6 lllustrative Examples:

In this section, two illustrative examples are presented and we compare
the numerical solution for variable order fractional differential equations that
we have been obtained by using Bernstein polynomials with the analytical
solution and with the existing methods such as [Chen,2015] in order to

illustrate the efficiency and simplicity of the proposed method.

Example 2.1:

Consider the following linear variable order fractional differential
equation:
DIPu(t) + u(t) = f(t), t €[0,1] ...(2.28)
u(0) =5
Where:

3¢G-at)  ((1-q(®)

— 3 _
F(4—q(t)) T(2-q) +t t+5

q(t) = 2et, f(t) =
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The exact solution of this equation is given by u(t) = t3 —t + 5.
We suppose the approximate solution of equation (2.28), for n=3 to be:
u(t) = Y, ciBis(t) = cTd(t) ...(2.29)
where:
¢ = [co, ¢1, ¢z, c3]"
and
O (t) = [By3(t), B13(t), By3(t), B33(t)]"
and
Bys(t) =1—3t+3t*—¢3
B, ;(t) = 3t — 6t + 3t3
B, 3(t) = 3t* — 3t3
Bss(t) = t3

By applying the proposed method given in section 2.5 eq. (2.28) can be

transformed into the following equation:

cTAGATI®(t) + cTd(t) = f(t) ...(2.30)
cT®(0) =5
Where:
0 0 0 0
_I@ . —q®

G(t) — r(2—-q(t)) t O 0

0 0 &t—CI(t) 0

r3-q(t)) I  i-a@®
0 0 0 T(a—q(0)

and
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1 -3 3 -1
_|10 3 -6 3
A= o 0 3 -3
0 O 0 1

and by taking ¢; =2;—21, for i=0,1,..,n we get a system of algebraic
equations in terms of c as follows:
cTAGA™I®(t) + cTd(t) = f(t;), i =0,1,2,3 ...(2.31)
cT®d(0) =5
Solving the obtained system, one <can get the unknown

¢ = [5,4.667,4.333,4.999]" and by substituting into eq. (2.29) hence the

approximate solution of eq. (2.28) is reached.

Table 2.1 represent the approximate solution of example (2.1) using the

proposed method compared with the exact solution.

Table 2.1

Comparison between the exact solution with the proposed method.

t Exact solution The proposed method
0.2 4.808 4.808
0.4 4.664 4.664
0.6 4.616 4.616
0.8 4,712 4,711
1 5 5

Figure 2.1 represent a comparison between the analytical and the

numerical solution of example (2.1)
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Figure 2.1: The analytical and the numerical solution of example 2.1.

Example 2.2:

Consider the following linear variable order fractional differential

equation:

DIPu(t) — 10u'(t) + u(t) = f(t), t € [0,1] ...(2.32)

u(0) =5

(2-q(®) (1-a®)
e e )+5t2—90t—95.

t+2et
where q(t) = —=, f(t) = 10 (F(B—q(t)) a0

The exact solution of this equation is given by u(t) =5(1 + t)°.

We suppose the approximate solution of equation (2.32), for n =3 to be:
u(t) = Y, ciBis(t) = cTd(t) ...(2.33)

where:
CI)(t) = [Bo,3 (t)» 31,3 (t)» Bz,3 (t)' B3,3 (t)]T

c = [cq, €y, Ca, C3]T
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and
Bys(t) =1—3t+3t*—¢3
B, 3(t) = 3t — 6t + 3t3
B, 3(t) = 3t* — 3t3
Bss(t) =1t

By applying the proposed method given in section 2.5 eq. (2.32) can be

transformed into the following equation:

cTAGA™ ®(t) — 10cTADMWA1D(t) + cTd(t) = f(t) ...(2.34)
cT®(0) =5
where:
0 0 0 0
_I®@  —qm
G(t) — O I'(2—q(t)) t O 0
0 0 &t—CI(U 0
0 0 r3-q(®)) r'(4) £=a®
| 0 r(4—q(1))
0 0 0 O
wm_|1 0 0 0
b 0 2 0 O
0 0 3 O
and
1 -3 3 -1
_10 3 —6 3
A= 0 0 3 =3
0 0 0 1

and by taking t; =2;—;1, for i =0,1,..,n; we get a system of algebraic
equations in terms of c as follows:
cTAGA™ ®(t;) — 10cTADWA D (L) + cTd(t;) = f(t),i = 0,1,2,3
...(2.35)
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cT®(0) =5

Solving the obtained unknown
¢ = [5,8.333,13.334,20]" and by substituting ¢ into eg. (2.33) hence the

approximate solution of eq. (2.32) is reached.

system, one can get the

Table 2.2 represent the approximate solution of example (2.2) using the
proposed method compared with the method of [Chen,2015] and the exact

solution.

Table 2.2

Comparison between the exact solution with the proposed method and the

method [Chen,2015].

t Exact solution The proposed method| Method [Chen,2015]
0.2 7.2 7.2 7.2
0.4 9.8 9.8 9.8
0.6 12.8 12.8 12.8
0.8 16.2 16.201 16.2
1 20 20 20

Figure 2.2 represent a comparison between the analytical and the

numerical solution of example (2.2).
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Figure 2.2: Analytical and numerical solution of example 2.2.
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Chapter Three

Bernstein Operational Matrices for Solving
Multiterm Variable-Order Fractional Differential

Equations

3.1 Introduction:

This chapter consists of four sections, in section 3.2 operational matrices
of multiterm variable-order fractional derivative based on Bernstein
polynomials are given, section 3.3 focused on the numerical solution of
multiterm variable order fractional differential equations using Bernstein
operational matrices, finally in section 3.4 some illustrative examples are

given.

3.2 Operational Matrices of D*® @ (¢) and DFiD (1), i =

1,2, ... k; Based on Bernstein Polynomials:

Define:

®(t) = [Bon(t), Byn(t), ., By n(®)]"
and

T,(t) = [1,t,t3, ..., t"]T
Then:

d(t) = AT, (t)
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where A is given by equation (2.5).
Consider:
D*®Od(t) = D*D[AT,(t)] = AD*D[1 ¢t.. t"]T ...(3.1)

According to (1.30), we can get:

DO d(t) = A[0 %tl—a(w %tn—a(t)]r
0 i 0 w0 1 .
— 4 r(zfz)(t))t_a(t) O t .(3.2)
o 0 . o)l
= AMA™1®(t)
where:
0 i 0 . 0
= eyt 0 .(3.3)
o 0 . e

AMA™" is called the operational matrix of D*® d(t). Therefore, if we set:

u(t) = Xito CiBin(t) = ¢ @(8)

D¥Oy(t) = DO (cTd(t)) = cTD¥OD(t) = cTAMA™ I D(t) ...(3.4)
Similarly:

DA®Od(t) = DPW[AT,(t)] = ADBO[1 ¢t ... t"]T ...(3.5)
According to (1.30), we can get:

Bi(®) _ _ @ gy ... @D n-gioT
D CD(t) A[O F(Z—ﬁi(t))t F(n+1—ﬁi(t))t ]
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0 0 . 0 1
|0 Lz)t_ﬁi(t) 0 | 1
= Al TEAO) : ¢ ...3.6)
i : ©o Ty _ﬁi(f)| (
[0 0 Ft B0 -
=AN1A_1CD(t)
where:
0 0 .. 0 T
[@__4—pit)
— 7P .. 0
N =| RO : .37
; ; C_TmHD) g
0 0 w Te1—Bo) - |

AN; A~ is called the operational matrix of DPi®d(t). Thus:

DP®Oy(t) ~ Dﬁi(t)(CTq)(t)) = cTDFOP(t) = cTAN,A"1d(t) (3.8)

3.3 Bernstein Operational Matrices of Variable Order
Fractional Derivative for Solving Multiterm Variable-
Order Linear Fractional Differential Equations:

The multiterm variable-order linear fractional differential equation is

given as follows:
D*®u(t) + X%, a;()DEFOu) = f(£),0<t <1, m—1<a(t) <m,

0<Bi(t)<1..ooo.. (3.9)
uP0)=w;i=01,...,m—1

where D*®y(t) and DAi®y(t) are fractional derivative in the Caputo sense,
a;(t) are continuous functions and u; are all constants. When a(t) and

B;(t),j = 1,2,..., k; are all constants, (3.9) becomes (3.10), namely:

D*u(t) + X o q;(ODPu(®) = f(¢),0<t <1, m—1<a() <m,
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u®0)=vy;, i=01,...,m—1

In order to solve equation (3.9) we define the approximate solution of

equation (3.9) as:
u(t) = Xito CiBin(t)
= cTo(t) ..(3.11)
where ¢ = [cq, ¢y, ..., cp]" and ®(t) = [By,(t), By n(t), ..., Bun(O]"

Also, recall that:

DDy (t) = D*O(cTd(t)) = cTAMA 1D (t) ...(3.12)
Hence:
DEI®y(t) = DEIO(cTP(1)) = cTAN, A1 () ...(3.13)

Substituting equations (3.11), (3.12) and (3.13) into equation (3.9),
therefore equation (3.9) will be transformed into the following form and as

follows:
cTAMAT ' ®(t) + X5_, a; () cTAN;ATT 0 (t) = f(t) ...(3.14)
cTADWA'®(0) =v;,i =0,1,..,m—1

where D® is given by (2.14).

241 for § = 0,1, ...,n; equation
2(n+1)

By taking the collection points t; =

(3.14) become an algebraic system of equations in terms of the unknown

vector c as follows:
cTAMAT & (t) + Xy a;(t) CTAN; AT @(t) = f(t),i = 0,1,...,n

...(3.15)
cTADWA 1®(0) =y; i=01,... m—1
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The vector ¢ = [cy, ¢y, ...,¢,]T can be found by solving the resulting
algebraic system of equations. Finally, the numerical solution w(t) is obtained
by equation (3.11).

3.4 lllustrative Examples:

In this section, to test the accuracy of the proposed method, we present
some illustrative examples and we will compare the numerical solution for
multiterm variable order linear fractional differential equation using Bernstein
polynomials with the analytical solution and the method exist in [Liu,2016] in

order to show the efficiency and simplicity of the proposed method.

Example 3.1:

Consider the following linear multiterm variable order linear fractional

differential equation:

D2tu(t) + VEDU(E) + t3Dwu(t) + t1Dsu(t) + t5ut) = g(t), t € [01]

...(3.16)

u(0) =2

u'(0)=0
Where:

12—k 1 2-% £2

g(®) = _r(3 5 — Vi ( _5) t§FE3_;) 3 E 5) 4 t5(2 -5 .17
The analytic solution is given in [Liu,2016] by u(t) = 2 — g

Consider:

u(t) = Y, ciBis(t) = cTd(t) ...(3.18)

In this case n = 3, where:

c=[co 1,0 3]" and @(t) = [Bo3(t), B13(t), By 3(t), B3,3(t)]T
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and
Bys(t) =1—3t+3t*—¢3
B, 3(t) = 3t — 6t + 3t3
B, 3(t) = 3t* — 3t3
B33 (t) = t°
According to the above, thus we have:

D?'u(t) = D% (cTd(t)) = cTD* D (t)

= cTAMA™1®(t) ...(3.19)
where:
1 -3 3 -1
_10 3 -6 3
A= 0 0 3 -3
0 0 0 1
and
0 0 0 0
r'2) ,_ot
M= F(Z—Zt)t 0 0
o 0 S e 0
r(3-2t) r(4) -2t
0 0 0 r'(4-2t)
Similarly:

Dsu(t) = D5(cT (1)) = c"D5d(t)

= cTAN, A1 D(E) .(3.20)
Dru(t) = Di(cTd()) = T Did(¢)

= cTAN, A0 (¢) (321

DEu(t) = D5(cT (1)) = c"D5d(t)
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= cTAN;A™1d(t) ...(3.22)
where:
0 0 0 0
0 =& 3 g
N = r-3)
1= ra) -t 0
0 0 wtr L
r(3-7) (4) -
0 0 3 _t
0 r(4—3)
0 0 0
t
0 —& 7 o 0
N = r-;)
2= 0 0 ra) -t 0
t t
0 0 rGe-y F(4)t +77
0 G
and
0 0 0 0
re) -t
re-5
N; = ° t
0 0 SO 0,
r(3-7) r4 . —
0 0 5 N
0 F(4—3)

Substituting egs. (3.18), (3.19), (3.20), (3.21) and (3.22) into eq. (3.16), we
get:

1
cTAMA1®(t) + VtcTAN; AT D(t) + t3cTAN,A™1D(t) +

1 1
tacTAN;ATID(t) + tscTd(t) = g(t) ...(3.23)

2i+1
2(n+1)’

By taking t; =

fori = 0,1,2,3; we get a system of algebraic equations:

1
cTAMATI®(t) + \Jt;cTAN, A1 0(t) + t;3cTAN, A7 0(t;) +
1 1
tiZCTAN3A_1CD(ti) + tiECTcD(ti) = g(tl), i =0123 (324)

cTd(0) = 2
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cTADMWA1d(0) =0

where:
0O 0 0 O
w_|1 0 0 0
b 0 2 0 O
0 0 3 O

Solving the obtained system, one can get the unknown vector ¢ and as

follows:

c =[2,2.001,1.83,1.49]7
and hence the approximate solution of equation (3.16) by substituting ¢ into
equation (3.18).

Table 3.1 represent the approximate solution of example (3.1) using the
proposed method compared with the method [Liu,2016] and the exact

solution.

Table 3.1
Comparison between the exact solution with the proposed method and the

method given by [Liu,2016].

T Exact solution The proposed Method [Liu,2016]
method
0.125 1.992 1.992 1.992
0.25 1.969 1.969 1.969
0.37 1.932 1.931 1.932
0.5 1.875 1.875 1.875
0.75 1.719 1.718 1.719
1 1.5 1.499 1.5
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Figure 3.1 represent the analytical solution and the numerical solution of
equation (3.16).

2]

1.8

ext)

£

1.6]
u
.

o —
[ Rl

1.4]

Figure 3.1: Analytical and numerical solution of example 3.1.

Example 3.2:

Consider the following linear fractional differential equation:

D@u(t) + 3DDu(t) + 2D%137%u(t) + DOO>%y(t) +

S5u(t) = g(t),t € [0,1] ...(3.25)
u(0) =0
u'(0)=0
Where:
g(t) _ 1 + 3t + 2t2_0'1379 + t2—0.0159 + z

r(3-0.1379) TI'(3-0.0159) 2

The analytic solution is given in [El-Sayed,2004] by u(t) = £

2
> .

Consider:
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u(t) = Y, ciBis(t) = cTo(t) ...(3.26)
In this case n = 3, where:

¢ =[co,c1,¢z¢3]" and D(t) = [By3(t), By 3(t), By3(t), B33(t)]"
and

Bys(t) =1—3t+3t%—¢3

B;5(t) = 3t — 6t + 3t3

B, 3(t) = 3t* — 3t3

B3 3(t) = t3
According to the above, thus we have:

D@u(t) = DA (cTd(t)) = cTDPP(t) = cTADP A 1D(t) ...(3.27)

Where:
1 -3 3 -1
4=lo o 3
0 0 0 1
and
0 0 0 O
=l g8 8
0 6 0 O
Similarly:

DDu(t) = DDV (cTd(t)) = cTDVD(t) = cTADD A D(8) ...(3.28)

DO137%(¢t) = Do.1379(cT¢(t)) = cTDO1379¢(t) = CTANZA_lcb(t)
...(3.29)

D0'0159u(t) — D0.0159(CT¢(t)) — CTD0'0159CD(t) — CTAN3A_1CD(t)
...(3.30)
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where:
0O 0 0 O
W=pn=|(L 000
DP=NM=1s 2 0 0
0O 0 3 O
0 0 0 0
I'(2) ., -0.1379
N. = 0 l"(1.862)t 0 0
2~ 0 0 ') .-01379 0
r(2.862) F'(4) .-0.1379
0 0 0 r'(3.862)
and
0 0 0 0
I'(2) . -0.0159
N. = 0 F(1.984)t 0 0
3~ 0 0 '3) . -0.0159 0
'(2.984) I'(4) ,-0.0159
10 0 0 I'(3.984)

Substituting equations (3.26), (3.27), (3.28), (3.29) and (3.30) into
equation (3.25), we get:

cTAD@P A D (t) + 3cTADMWAID(t) + 2cTAN,A~ 1D (t) +
cTAN;A71D(t) + 5cTd(t) = g(¢) (3.31)

By taking t; = %,for i = 0,1,2,3 we get a system of algebraic equations:

cTAD@P AT D(t;) + 3cTADMW A d(t;) + 2cTAN, A7 & (t;) +
cTAN;A7Td(t;) + 5¢T (L) = g(t;), i = 0,1,2,3 ...(3.32)

cT®(0) =0
cTADMWA1P(0) =0
Solving the obtained system, one can get the unknown vector ¢, where:

c=[8.408 x 107* —6.625 x 107%,0.166,0.5]"
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and hence the approximate solution of equation (3.25) by substituting ¢7 into
equation (3.26).

Table 3.2 represent the approximate solution of example (3.2) using the

proposed method compared with the exact solution.

Table 3.2
Comparison between the exact solution with the proposed method
t Exact solution The proposed method
0.25 0.031 0.031
0.37 0.07 0.07
0.5 0.125 0.125
0.75 0.281 0.281
1 0.5 0.5

Figure 3.2 represent the analytical solution and the numerical solution of
equation (3.16).

0.8

0.6

ex(t;)
EUR

0.4]

0.2]

Figure 3.2: Analytical solution and numerical solution of example 3.2.
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Conclusions and Future Works

From the study, we can conclude the following:

1. Bernstein operational matrices have been proved to be powerful method
for solving linear variable-order and multiterm variable-order fractional
differential equations.

2. In this thesis, different kinds of fractional operational matrices in terms of
Bernstein polynomials are utilized to seek the numerical solution of the
variable-order and multiterm variable-order fractional differential
equations.

3. The proposed approach given in this thesis transformed the variable-order
and multiterm variable-order differential equations into the product of
some matrices which can also be viewed as the system of algebraic
equations, solving the resulting system the numerical solution can be
obtained.

4. The proposed method is simple in theory and easy in computation, so this
method has wide applications in solving the various kinds of variable-

order fractional differential equations.

For Future Works we recommend the following problems:

1. Bernstein operational matrices for solving nonlinear multiterm variable-
order partial differential equations.

2. Numerical solution of variable-order delay fractional differential
equations.

3. Numerical solution of variable-order fractional integro-differential

equations.
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