Chapter Four Chapter four

4-1 The biological activity

The biological activity of some prepared compound have been taken to evaluate there activity, some of these compound have high bioactivity on some bacteria while the same compounds don't have any effect on other bacteria.

The agar plates were surface inoculated uniformly from the broth culture of the tested microorganisms. In the solidified medium suitably spaced apart holes were made all 6mm in diameter. These holes were filled with 100μ l of the prepared compounds (1mg of the compound dissolved in 1ml of DMSO solvent), DMSO was used as a solvent. These plates were incubated at $37C^{\circ}$ for 24h for the bacteria.

4-1-1 Staphylococcus aurous

It is gram positive cluster form bacteria cause soft tissue infection as well as toxic shock syndrome and scalded skin syndrome it found to be causative agent to pneumonia , meningitis, boils, arthritis and chronic bone infection.²⁰²

4-1-2 Pseudomonas aeruginosa

It is gram negative rod bactirea it is major cause of hospital acquired ,infaction can occur at many site and can lead to urinary tract infections ,sepsis , pneumonia , pharyngitis, and wounda infection ⁽²⁰⁴⁾

4-1-3 E.coli

E. coli O157:H7 is one of hundreds of strains of the gram negative bacterium *Escherichia coli*. Although most strains are harmless, this strain produces a powerful toxin that can cause severe illness. *E. coli* O157:H7 has been found in the intestines of healthy cattle, deer, goats, and sheep

biological activity

Chapter Four 4-14 Streptococcus

Streptococcus is a genus gram positive bacteria belong to the phylum firmicutes and lactic acid bacteria group occurs along a single axis they

In this work, the antibacterial test was performed according to the disc diffusion method. Compounds (11A,11B,12C,12D,7A,8B) were assayed for their antimicrobial activity *in vitro* against four strains of Gram negative and positive bacteria listed as follow

Chapter Four

biological activity

Staphylococcus

Pseudomonas

Chapter Four

biological activity

Streptococcus.

Table (4-1) the biological activity of some prepared compounds

Compound	In figure	Streptococcus	Staphylococcus	E.coli	Pseudomonas
No	_	_			
12A	1	+++	+++	+	+
12B	2	+++	+++	-	-
11C	3	+++	+++	+	-
11D	4	+	+++	++	+
7A	5	++	++	++	+
8B	6	+	+	+	+

biological activity

Chapter Four

Note :

= No inhibition = inactive
= (5-10) mm = slightly active
= (11-20) mm = moderately active
= more than 20mm = highly active

From the structure the compounds 12A,12Bshow high activity against Strepto and Staphylococcus because hey contain free NH2 group while little effect on E.colic and Pseudomonas

9A has high activity on staphylococcus

12C has little effect on all of the bacteria

4-2 The enzymatic activity

In this work we evaluate the effect of some prepared compounds on the ureas enzyme because of it's cheapness and some prepared compound have amidic bond .

Ureas

Ureas is nickel dependant enzyme which hydrolysis the urea to ammonium carbonate which converted to ammonia and carbonic acid then the carbonic acid convert to CO_2 and H_2O . as shown in the below figure .

Figure (4-1) the effect of ureas on urea

Chapter Four 4-2-1 The procedure ⁽²⁰⁵⁾

In this work a comparison between the blank and the prepared sample have been taken which depend on randox kit as shown in the below table

			Bank	Standard		Sample	
	Sample					10 µl	
	Standard			10µ1			
	Working Reagent	t R1	1ml	1ml		1ml	
Shaken for 3 min at 37° C or 5min at 20-25 ° C							
	Working reagent	R2	200 µl	200 µl		200 µl	

Then shaken for 3 min then continue the volume to 5 ml then measure the absorption at 600nm then relationship between urea concentration and absorption.

Some of the prepared compound don't have any effect on urease while some of the have little effect .

A	Comp.	
0.01	2A1	1
0.01	2B1	2
0.0085	2C1	3
0.0083	3C1	4
0.0076	3D1	5
0.0069	3B1	6
0.0062	3C1	7
0.01	3A1	8
0.0097	4A	9
0.0088	4B	10
0.0061	4C	11
0.0095	4D	12

figure (4-2) show relationship between absorbance and compounds

Contains

Chapter one

1.1	Pyrimidines	1
1.1.1	Synthesis of pyrimidines	2
1.1.2	Uses of pyrimidine	13
1.2	Pyrazines	14
1.2.1	Occurrence of pyrazine	15
1.2.2	Synthesis of pyrazine	16
1.2.3	The use of pyrazines	21
1.3	Thiazolidine and thiazolidinone	22
1.3.1	Synthesis of thiazolidinone and Thiazolidine	22
1.3.2	The uses of thiazolidinone and Thiazolidine	26
1.4	Oxazoline and oxazolidine	28
1.4.1	Synthesis of Oxazoline and oxazolidine	29
1.4.2	The uses of Oxazoline and oxazolidine	32
1.5	Pyrazoles	33
1.5.1	Synthesis of Pyrazoles	34
1.5.2	The use of Pyrazoles	36
1.6	Azide	37
1.6.1	Heterocyclic compounds contain azides	37

1.7	Acetylenic compounds	40
1.7.1	Acetylenic compounds contain heterocyclic rings	40
1.8	Schiff bases	42
1.8.1	Preparation of Schiff bases	42
1.8.2	The uses of Schiff bases	46
1.9	Mannich bases	47
1.9.1	Preparation of Mannich bases	48
1.9.2	The uses of Mannich bases	52
1.10	Thiazole	53
1,10.1	Synthesis of thiazole	54
1.10.2	The uses of thiazole	58
1.11	Oxazole	59
1.11.1	preparation of oxazole	60
1.11.2	the uses of oxazole	64

Chapter two Experimental part

2.1	Chemicals	65
2.2	Apparatus	66
2.3	Synthesis of the compounds	6^
2.3.1	Synthesis of Schiff bases	6^
2.3.2	Synthesis of thiazolidinone	6٩
2.3.3	Synthesis of Imidazolidine	٧.

2.3.4	Synthesis 1,3-oxazepine-4,7-dione	71
2.3.5	Synthesis of urea derivatives	7۲
2.3.6	Synthesis of thiourea derivatives	7٣
2.3.7	Synthesis of Oxazoline derivatives	7٤
2.3.8	Synthesis of Oxazolidinone	7°
2.3.9	Synthesis of Thiazoline derivatives	7٦
2.3.10	Synthesis of Thiazolidinone	77
2.3.11	Synthesis of 2-chloro-N-(hetero-2-yl)acetamide	7^
2.3.12	Synthesis of oxazole derivatives	7٩
2.3.13	Synthesis of thiazole derivatives	٨.
2.3.14	Synthesis of thiosemicarbazide derivatives	81
2.3.15	Synthesis of azide derivatives	87
2.3.16	Synthesis of carbamodithioate	8۳
2.3.17	Synthesis of Acetylenic compounds	8٤
2.3.1	Synthesis of formamide derivatives	80
2.3.1^	Synthesis of hydrazonoformamide	87
2.3.19	Synthesis of N-(4-biphenyl-4-yl-1,3-dithiol-2-yl)pyrimidin-2-	71
	amine	

Chapter three results and discussion

3.1	Synthesis of Schiff bases	АА
3.2	Synthesis of thiazolidinone	10۲
3.3	Synthesis of Imidazolidine	10^
3.4	Synthesis 1,3-oxazepine-4,7-dione	119
3.5	Synthesis of urea derivatives	12٤
3.6	Synthesis of thiourea derivatives	17.
3.7	Synthesis of Oxazolidinone	137
3.8	Synthesis of Thiazoline derivatives	151
3.9	Synthesis of Thiazolidinone	145
3.10	Synthesis of 2-chloro-N-(hetero-2-yl)acetamide	107
3.11	Synthesis of oxazole derivatives	15 ^v
3.12	Synthesis of thiazole derivatives	17٣
3.13	Synthesis of thiosemicarbazide derivatives	169
3.14	Synthesis of azide derivatives	1۷۳
3.15	Synthesis of carbamodithioate	17^
3.16	Synthesis of Acetylenic compounds	1۸۲
3.17	Synthesis of formamide derivatives	184

3.18	Synthesis of hydrazonoformamide	198
3.19	Synthesis of N-(4-biphenyl-4-yl-1,3-dithiol-2-yl)pyrimidin-2-	197
	amine	
Chapter	r four the biological activity	
4-1	Biological activity	200
4-1-1	Staphylococcus aurous	200
4-1-2	Pseudomonas aeruginosa	200
4-1-3	E.coli	200
4-14	Streptococcus	201
4-2	The enzymatic activity	204
4-2-1	The procedure	205

Chapter two Experimental part

2.1 Chemicals

Table (2-1) shows all the utilized chemicals in the experimental course of the thesis. Table (2-1) Chemicals and their manufacturer

Chemicals	purity	Supplied from
2-Aminopyrimidine	99%	Merck
4-Aminoantipyrine	99%	Readel-dehean
2-Aminopyrazine	99%	Merck
Benzene	Analar	BDH
Carbon disulfide	Analar	BDH
Chloroacetylchloride	Analar	Fluka
Diethyl ether	Analar	BDH
N,N-diethylaminobenzaldehyde	99%	Merck
Ethyl chloroacetate	99%	BDH
Ethanol absolute	99.9%	Readel-dehean
Ethyl acetate	Analar	BDH
Formaldehyde	65%	BDH
Formic acid	99%	BDH
Hydrazine hydrate	99%	BDH
o-Hydroxybenzaldehyde	99%	Fluka
Isoneazide	99%	Merck
Mercapto acetic aced	99%	BDH
p-Methyl benzaldehyde	99%	Readel-dehean
Maleic anhydride	99%	BDH
p-Ntirobenzaldehyde	99%	Merck
p-Phenylphenacylbromide	99%	Fluka

Chemicals	Purity	Supplied from
Potassium hydroxide	99%	BDH
Phenyl isothiocyanate	99%	Fluka
Phenyl isocyanate	99%	Fluka
Propargyl bromide	99%	Aldrich
Sodium azide	99%	BDH
Terahydrofurane	Analar	Readel-dehean
Thiourea	99%	BDH
Thiosemicarbazide	99%	BDH
Triethylamine	99%	BDH
Urea	99%	BDH

2-2 Apparatus

1-Melting points were recorded on a hot stage electorthermal digital

melting point apparatus and were uncorrected.

2. Infrared spectra were recorded on Shimadzu FTIR-8300 spectrometer

as potassium bromide disc. al-Nahrine university

3. Infrared spectra were recorded on Shimadzu FTIR-8400 spectrometer

as potassium bromide disc. Kufa university

4-. ¹H-NMR spectra were recorded on a Fourier transform Bruker spectrometer operating at 300 MHz in deuterrated DMSO with tetramethylsilane as internal standard in DMSO- d⁶. Measurements were made at the AL-ALbayt university

5- ¹³C-NMR spectra were recorded on a Fourier transform Bruker

spectrometer operating at 75MHz in detoured chloroform. Measurements were made at the AL-ALbayt university.

6. Thin layer chromatography (TLC) was carried out using Fertigfollen precoated sheets type Polygram SilG, and the plates were developed with iodine vapor.

2-3 Synthesis of compounds

2-3-1 Preparation of Schiff base for heterocyclic amines(1)

A mixture of heterocyclic amine (0.01mole) with aromatic aldehyde (0.01mole) in 15 ml of absolute ethanol were refluxed for appropriate time then cooled to the room temperature the produced precipitates were filtrated and washed with ethanol The end of reaction is detected by TLC by using appropriate mixtures of solvent physical properties of the prepared compounds are shown in table 2-1

Hetero= 2-aminopyrimidine, 2- aminopyrazine , isoiazide , 4-aminoantipyrine

experimental part

Table 2-1 some physical properties of Schiff bases (A₁-D₂)

Comp No.	Yield%	Solvents	M.P ⁰ c
1A ₁	95	THF-Ethanol	230-232
1A ₂	98	THF-Ethanol	360
1B ₁	75	Benzene- Ethanol	180-182
1B ₂	72	Benzene- Ethanol	205-207
1C ₁	77	Benzene- Ethanol	200-202
1C ₂	75	Benzene- Ethanol	199-201
1D ₁	88	Benzene- Ethanol	222-224
1D ₂	38	Benzene- Ethanol	144-146

2-3-2 -Preparation of 2-aryl-3-(hetero-2-yl)thiazolidin-4one (2)¹⁹⁶

A (0.001)mole of 2-mercptoacetic acid was added dropwise to (0.001) mole of Schiff base in 20 ml of dry benzene, the mixture was refluxed for 24 h then the solvent was evaporated and the precipitate was recrystallized from ethyl acetate and benzene.

Table 2-2 Some physical properties of compound thiazolidinone(2A-2D)

Comp No.	Yield%	Solvent	M.P ⁰ c
2A	49	Benzene-ethylacetate	128-130
2B	36	Benzene-ethylacetate	145-147
2C	28	Benzene-ethylacetate	165-167
2D	41	Benzene-ethylacetate	129-131

2-3-3 Preparation of 2-aryl-3-(hetero-2-yl)imidazolidin-4-one (3)

a mixture of Schiff base (0.001)mol and glycine (0.001)mole in 20 ml THF was refluxed for 24 h then it cold to room temperature then the precipitate was filtrated and recrystallized from ethanol and THF 25/75.

Comp No.	Yield%	Solvent	M.P ⁰ c
3A ₁	44	THF-	188-190
		Ethanol	
3A ₂	40	THF-	147-149
		Ethanol	
3B.	31	THF-	205-207
501	51	Ethanol	203-207
3Ba	36	THF-	116-118
502	50	Ethanol	110 110
3C1	25	THF-	200-202
501	25	Ethanol	200 202
30.	33	THF-	131 133
\mathbf{JC}_2	55	Ethanol	151-155
3D	30	THF-	226 228
SD_1	37	Ethanol	220-220
2D	26	THF-	212 214
$5D_2$	$3D_2$ 36		212-214

Table 2-3 Some physical properties of Imidazolidinone (3A₁-3D₂)

2-3-4 Preparation of 2-aryl-3-hetero-2-yl-2,3-dihydro-1,3-oxazepine-4,7-dione $(4)^{(197)}$

A mixture of (0.001) mole of Schiff base and (0.001) mole of malic anhydride in 20 ml of THF was refluxed for 24 h then the solvent evaporated and then the formed precipitate was recrystallized from appropriate solvents

Table 2-4show the physical properties of oxazipene(4A-4D)

Comp No.	Yield%	Solvents	M.P ⁰ c
4A	39	Benzene-Ethanol	208-210
4B	22	Benzene-Ethanol	209-211
4C	25	Benzene-Ethanol	158-160
4D	34	Benzene-Ethanol	203-205

2-3-5 Preparation of N-phenyl-N'-hetero-2-ylurea (5)

A (0,001) mole of the aromatic amine was dissolved in 20 ml of absolute ethanol then added (0.001) mole of phenylisocynate then the mixture was refluxed for 3h then the formed precipitate was filtrated and washed with ethanol and recrystallized from ethanol and benzene the yield percents and physical properties are shown in the flowing table (2-5)

Table 2-5 some physical properties of urea derivative (5A-5D)

hetero	2-aminopyrimidine	4-aminoantipyrine	Isoniazide	2-aminopyrazine
MW	214	322	256	214
Yield %	77	88	85	80
m.p ⁰ c	250-252	207-209	188-186	200-202

2-3-6 Preparation of N-phenyl-N'-hetero-2-ylthiolurea(6)

A (0,001) mole of appropriate heterocyclic amine was dissolved in 20 ml of absolute ethanol then added (0.001) mole of phenylisothiocynate then the mixture was refluxed for 2 h then the formed precipitate was filtrated and washed with ethanol and recrystallized the yield percents and physical properties are shown in the flowing table (2-6)

Table 2-6 some physical properties of thiourea(6A-6D)

hetero	2-aminopyrimidine	4-aminoantipyrine	Isoniazide	2-aminopyrazine
MW	230	348	272	230
TT! 110/		0.0	.	
Yield %	68	90	74	53
m.p ⁰ c	99-101	266-268	125-127	114-116
1			1	

2-3-7 preparation of 3-phenyl-2-(hetero-2-ylamino)-1,3oxazolidin-4-one(7)

A mixture of (0.001)mole of urea derivatives dissolved in 20ml of ethanol then added (0.001)mole of Ethylchloroacetate drop wise with stirring then refluxed for 4h then the product precipitate filtrated and recrystallized from ethanol the physical properties are shown in the table(2-7)

Table 2-7 Some physical properties of oxazolidinone(7A-7D)

Hetero	2-aminopyrimidine	4-aminoantipyrine	Isoniazide	2-aminopyrazine
MW	271	379	312	271
Yield %	30	44	37	47
m.p ^o c	188-190	300	237-239	310-312

2-3-8 Preparation of 3-phenyl-2-(hetero-2-ylamino)-1,3-oxazolidin-4-one(8)

A mixture of(0.001) of thiourea derivatives dissolving in 20ml of ethanol then added (0.001)mole of ethylchloroacetate drop wise with string then refluxeded for 4h then the product precipitate filtrated and recrystallized from ethanol the physical properties are shown in the table

Table 2-8 some physical properties of thiazolidinone (8A-8D)

Hetero	2-aminopyrimidine	4-aminoantipyrine	Isoniazide	2-aminopyrazine
MW	287	395	328	287
Yield %	29	45	41	32
m.p ^o c	290 decomp	230-232	167-169	288-290

2-3-9 N-(4-(naphthalen-2-yl)-3-phenyl-2,3dihydrothiazol-2-yl)hetero-2-amine(9)⁽¹⁹⁸⁾

A mixture of thiourea derivatives (0.01)mole and p-phenyl phenacyl bromide (0.01)mole in 20ml of ethanol was refluxed for 3h the produce precipitate filtrated and recrystallized from ethanol the physical properties are shown I the table (2-9)

Table 2-9 some physi	cal properties of	f thiazoline deriva	atives(9A-9D)
----------------------	-------------------	---------------------	---------------

Hetero	2-aminopyrimidine	4-aminoantipyrine	Isoniazide	2-aminopyrazine
MW	350	463	392	350
Yield %	37	45	42	33
m.p	290 decomp	350-352	284-286	174-146

2-3- 10 Preparation of 2-chloro-N-(hetero-2-yl)acetamide(10)

A(0.01)mol of appropriate heterocyclic amine in dry benzene with stirring in ice bath then cholroacetylchloride (0.01) mole was added deropwise then string at room temperature for appropriate time the produced precipitate was filtrated and washed with benzene and recrystallized from benzene and methanol (60:40) the physical properties are shown in table(2-10)

Table 2-10 some physical properties of acetamide derivatives (10A-10D)

Hetero	2-aminopyrimidine	4-aminoantipyrine	Isoniazide	2-aminopyrazine
MW	172	280	214	172
Vield %	88	02	95	72
TICIU /0	00	92	95	12
m.p ⁰ c	146-148	149-151	268-270	206-208

experimental part

2-3-11 Preparation of N5-(hetero-2-yl)oxazole-2,5diamine (11)⁽¹⁹⁹⁾

A mixture of (0.001) mole of urea and (0.001) of compound 7 was refluxed for 4h in absolute ethanol then the mixture was cooled to room temperature then the produced precipitate was filtrated and recrystallized from ethanol and benzene the physical properties are shown in the following table (2-11)

Table 2-11 some physical properties of oxazole (11A-11D)

Hetero	2-aminopyrimidine	4-aminoantipyrine	Isoniazide	2-aminopyrazine
MW	197	305	238	197
Vield %	80	85	66	78
	00	05	00	70
m.p ^o c	205-207	126-128	169-171	160-162 decompos
m.p ⁰ c	205-207	126-128	169-171	160-162 decompos

2-12-preparation of N5-(hetero-2-yl)thiazole-2,5-diamine(12)⁽¹⁹⁹⁾

A mixture of (0.001) of thiourea and (0.001) of compound 7 was refluxed for 4h in absolute ethanol then the mixture was cooled at room temperature then the precipitate was filtrated and recrystallized from ethanol and benzene the physical properties are

Table 2-12 some physical properties of Thiazole derivatives (12A-12D)

Hetero	2-aminopyrimidine	4-aminoantipyrine	Isoniazide	2-aminopyrazine
MW	717	320	253	212
TT! ! ! ! !		~~		
Yield %	78	87	69	76
m.p	300-302	146-148	157-159	360

2-13 preparation of 1-(2-oxo-2-(pyrimidin-2-ylamino) ethyl) thiosemicarbazide (13)

A mixture of (0.001)mole of thiosemicarbazide and (0.001)mole of compound 7 was refluxed for 4h in absolute ethanol then the mixture was cooled to room temperature then the precipitate was filtrated and recrystallized from ethanol the physical properties are shown in the table

Table 2-13 show the physical properties of thiosemicarbazide derivatives (13A-13D)

Hetero	2-aminopyrimidine	4-aminoantipyrine	Isoiazide	2-aminopyrazine
MW	226	334	267	226
Viold %	50	71	66	52
1 leiu %	50	/1	00	55
m.p ^o c	188-190	201-203	194-196	150-152
-				

۸١

experimental part

2-14 - preparation of preparation of 2-azido-N-(hetero-2yl)acetamide (14)

A mixture of(0.001) mole sodium azide and (0.001)mole of compound 7 in 20 ml of absolute ethanol was refluxed for 3 h then the produced precipitate filtrated and recrystallized from ethanol.

Table 2-14 some physical properties of azide derivatives (14A-14D)

Hetero	2-aminopyrimidine	4-aminoantipyrine	Isoniazide	2-aminopyrazine
MW	215	323	257	215
Vield %	65	82	71	68
Ticlu /0	05	02	/1	00
m.p ⁰ c	88-90	144-146	195-197	200-202

2-15 Preparation of potassium hetero-2-ylcarbamodithioate(15)⁽²⁰⁰⁾

A mixture of suitable heterocyclic amine 0.01 mole, carbons disulfide 0.01 mole and 0.01 mole of sodium metal was refluxed for 5h then cooled to room temperature then the formed precipitate was filtrated

Table 2-15 some physical properties of dithiocarbamate derivatives (15A-14C)

Hetero	2-aminopyrimidine	4-aminoantipyrine	2-aminopyrazine
MW	170	277	170
Vield %	53	76	55
	55	70	55
m.p ^o c	82-84	160-162	98-100

2-16 Preparation of N-prop-2-ynylhetero-2-amine(16)⁽²⁰¹⁾

To a mixture of (0.001)mole of hetero amine and (0,001) mole of KOH in absolute ethanol (0,001)mole of propargyl bromide was added dropwise and then refluxed for 3h then cooled to room temperature then filtrated and the filtrate poured into cold water the precipitate was filtrated and recrystallized from ethanol and benzene.

Table 2-16 some	physical	properties	of acetylenic	compounds	(16A-16C)
-----------------	----------	------------	---------------	-----------	-----------

Hetero	2-aminopyrimidine	Isoneazide	2-aminopyrazine
MW	133	175	133
Yield %	33	28	30
m.p	350- decomp	360decomp	300-302

2-17 - Preparation of hetero formamide derivatives $(17)^{202}$

A mixture of heterocyclic amine (0.01) mole and formic acid (0.01) mole was refluxed for 2h then the excess of formic acid was evaporated and the product was recrystallized from appropriate solvent.

Table 2-17 some physical properties of formamide (17A-17D)

Hetero	2-aminopyrimidine	4-aminoantipyrine	Isoneazide	2-aminopyrazine
MW	138	246	179	138
Yield %	66	80	72	60
m.p ^o c	168-170	145- 147	162-164	241-243

2-18 N'-phenyl-N-hetero-2-ylhydrazonoformamide(18)⁽²⁰⁰⁾

A mixture of (0.001) mole of compound 18 and phenyl hydrazine (0.001) mole in 20ml ethanol was refluxed for 5h then cooled to room temperature the formed precipitate was filtrated and recrystallized from ethanol and benzene.

Table 2-18 some physical properties of Schiff bases of phenyl hydrazine (18A-18D)

Hetero	2-aminopyrimidine	4-aminoantipyrine	Isoneazide	2-aminopyrazine
MW	213	321	255	213
X ² 110/		74	70	C 1
Yield %	44	/4	58	51
m.p ⁰ c	222-224	255-257	210-212	171-173

experimental part

2-19 Preparation of N-(4-biphenyl-4-yl-1,3-dithiol-2-yl)pyrimidin-2-amine ⁽²⁰³⁾

A mixture of (0.001) mole of dithiocarbamate salt (xanthate) and (0.001)mole p-phenylphenacyl bromide in 20ml ethanol was refluxed for 3 h then cooled at room temperature then the precipitate filtrated and recrystallized from appropriate solvents .

m.p 132yield % 43M.W 347

۸٧

Chapter one Introduction

1-1 Pyrimidines¹

Pyrimidines also known as m-daizine, is the parent substance of large group of heterocyclic compounds which has attracted much attention for a longtime. these compounds which belong to this group where known as breakdown products of uric acid at a very early date of the history of organic chemistry , but systematic study of this ring system began with work pinner. who first applied the name pyrmidine to the unsubstantiated parent body.

Pyrimidine derivatives play an important role in many biological processes the ring being present in nucleic acid, several vitamin coenzymes, uric acid and other purine.

Many drugs (barbituric acid derivatives) and chemotherapeutic agents (Sulfadiazine) contain pyrimidine ring.

Pyrimidine can be regarded as cyclic amidine and the chemical behavior of its derivatives is dominated by this fact.

According to X-ray diffraction studies pyrimidine exist as distorted hexagon.

Fig. 1-1 Bond parameters of Pyrimidines(bond lengths in pm, bond angles in degrees)

Introduction

Chapter one 1-1-1 Synthesis of pyrimidines¹

Pyrimidine is a colorless liquid with characteristic pyridine like odor it has been have prepare by the reduction of di or tri chloropyrimidines. It dose not normally serve as starting point for the prepareation of substituted pyrimidines.

There are three methods for the prepareation of pyrimidine according to the fundamental nature of the fragments which combine together to form pyrimidine nucleus.

The three basic types of the synthesis are:-

Type 1⁽²⁾.

The commonest pyrimidine syntheses are belonging to type 1. the stylization usually involves a double condensation with elimination of water, alcohol or hydrogen halide between amino and carbonyl, carboxyl ester and acyl chloride or enol ether. or condensation by addition of amino group to cyano groups or to polarized double bonds with out an elimination reaction .

Urea condensed with malonic acid in the presence of phosphoryl chloride and obtain barbituric acid ⁽³⁾

Then malonic ester is used instead of malonic acid in the presence of sodium alkaloid as catalyst.

The applications of this process especially with ester of dialkyl malonate are the prepareation of barbiturate drugs⁽⁴⁾
Chapter one Introduction β -ketoesters ⁽⁵⁾ and there enol ⁽⁶⁾ form are suitable for condensation with urea to form 4-methyluracil(pyrimidine derivatives).

An important example is the prepareation of uracil from urea and formylacetic acid (have prepare in situ by the action of sulfuric acid on malonic acid ⁽⁷⁾.

Acetonedicarboxylic acid (have prepare from citric acid) reacts with urea similarly.⁽⁸⁾

Chapter one Introduction **Mitchell et al** ⁽⁹⁾ have shown that the synthesis of oriotic acid (uracil – 4- carboxylic acid) from urea and oxaloacetic ester her the initial product is hydenton which rearranged to the pyrimidine only when treated with alkali

The condensation of $\beta\text{-diketone}$ with urea is analogous to these of keto ester $^{(10)}$

The alkali catalyzed addition of amino to cyano group is convenient cyclization Process for example the prepareation of 4-amino-2, 6-dihydroxypyrimidine from cyanoacetylurea. ⁽¹¹⁾

Another method of cylization is the additions of the amino group to the polarized double bond for example the production of dihydro uracil from urea and unsaturated acid and their ester⁽¹²⁾

Folkers and johanson⁽¹³⁾ have been have prepare dihydropyrimidines from urea, aldehyde and acetoacetic ester

Introduction Substituted of O-alkyl urea or phenylsimecarbazide lead to 2-alkoxy or 1-anilino pyrimidine respectively (14),(15)

Thiourea and guanidine undergo all cyclization reaction of urea but with great easer. For example methylthiourea reacts with ethyl γ - bromoacetoacetate to yield pyrimidine derivatives in the presence of alkali. (16)

Pyrimidine can be have prepare from amidines because it is consider as cyclic amidine ⁽¹⁷⁾

Chapter one Introduction Mohamed.et,al ⁽¹⁸⁾have prepare Cyclohepteno[1,2-d]pyrimidine-2-thiones by heating 2,7-bis(arylmethylene)cycloheptanones with thiourea in ethanoilc potassium hydroxide .

Chia et,al ⁽¹⁹⁾have prepare two pyrimidine analogues of the herbicide atrazine test there herbicidal activity they found that they have specific activity

4-chloro-2-(ethylamino)-6-(2-propylamino)pyrimidin

Type 2⁽²⁰⁾

This method required amino ethylene intermediate which may be obtained from the corresponding ethoxy methylene compounds with ammonia but it can also result from reaction of imino ether or amidine with reactive methylene compounds $.^{(21)}$ (22)

Introduction

 β -Amino acids and β -amino ketones may be employed to obtain dihydropyrimidine closer being effected with acetyl chloride, HCl.acetic anhydride in the presence of ammonia.⁽²³⁾

Type 3

The insertion of a single carbon atom between nitrogen of 1,3 diamines to obtain hydrogenated pyrimidine may be achieved by a number of conventional process, for instance treatment with diethyl carbonate⁽²⁴⁾, phosgene⁽²⁵⁾ oraldehyde ⁽²⁶⁾ The amide derived from carboxylic acid also can be cyclized to terahydropyrimidine

The amide of β -amio acid may be converted into 4-hydroxy 5,6dihydropyrimidine with derivatives of carbonic acid .⁽²⁷⁾

Malonic ester or malonyl chloride with malonamide yield 4,6dihydroxy-2- methyl pyrimidine ⁽²⁸⁾ remfry, with hypobromate or permanganate, methylene asparagine undergoes an oxidative cyclization followed by dehydrogenation yielding Pyrimidines ⁽²⁹⁾

Introduction

Malonamide and its derivatives were used for synthesis of both reduced and unreduced pyrimidine thus babituric acid derivatives are produced from malonamide with dialkyl carbonates.⁽³⁰⁾

Unclassified methods

A few pyrimidine syntheses which do not fall into any three main types and they are not important , malic diamide is converted by sodiumhypochlorate into uracil ^{(31) (32)}

 β -urido acid derivatives on heating with HCl give mixture of dihydropyrimidine Pyrimidines ⁽³³⁾

Mathes. and Swedish ⁽³⁴⁾ have prepare Pyrimidine derivatives from mesityloxide ammoniumthiocyanate and primary amine

Chapter one Introduction Koppe⁽³⁵⁾ et,al have prepare 2-amino-6-purinethiol as antitumor compounds

Yueh-⁽³⁶⁾ isolate three new Pyrimidines from aerial parts of Heterostemma brownie one of them

Alejandro et,al ⁽³⁷⁾have prepare some azolo pyrimidines, the method involve reaction of N-protected bromomethylazoles and tosylmehylisocyanide derivatives in non hydrous media

benzo[4,5]imidazo-[1,2-c]pyrimidine

Chapter one Introduction **Gibson et,al** ⁽³⁸⁾have prepare pyrimidine derivatives which have inhibition on gunosine triphosphate cyclohydrolase1

Ghndi et,al ⁽³⁹⁾have prepare the below compound from urea derivatives and formaldehyde

Kochergi ⁽⁴⁰⁾. have prepare the below compound from 2aminopyrimidine and 1,2-dibromoethane

Introduction

Bose et,al ⁽⁴¹⁾ have prepare pyrimidine derivatives by reaction of aldehyde ,urea derivatives and acetoacetic ester in the presence of $CeCl_3$ 7 H_2O as catalyst

San et,al ⁽⁴²⁾have prepare some substitutes pyrimidine as anti HIV

[1-[2',5'-bis-O-(tert-butyldimethylsilyl)-beta-D-ribofuranosyl]thymine]

1-1-2 Uses of Pyrimidines

Pyrimidines and their derivatives are well known for their potential biological activity such as fungicide, algaecide and as antibiotic⁽⁴³⁾

Compound	Structure	Activity	Ref.
2,4 diaminopyrimidine	NH2 N N NH2	Anitifolate	44
5-isopropyl-2- [(methylthiomethyl)thio]-6- (benzyl)-pyrimidin-4-(1H)- one	S S S S S S S S S S S S S S S S S S S	Anti-Human Immunodefic iency Virus Activity	45
Dithiouracil	S NH S NH S S S	Anti - leukemia	46
4-chloro-2- (ethylamino)-6-(2- propylamino)pyrimidine		Herbicidal	47
Nitrofurylvinylpyrido [2,3-d] pyrimidine		Antibacterial	48

Chapter one 1-2Pyrazines⁽⁴⁹⁾

Pyrazine is have prepare first by laurant in 1844 but the systematic study of this series of compounds was initiated by victor Meyers who found that the reduction of nitrosated ketons result in the formation of oxygen – free bases instead of α -amino ketons

It is now known that this transformation may be represented as followed.

The formation of Pyrazine from α -amino ketons require loss of hydrogen as well as water it was found that considerably higher yield were obtained when oxidizing agents were added to the reaction mixture after the condensation had been allowed to take place.

Gabrial demonstrate the intermediate is formation of dihydropyrazine by the isolation of these compounds under anaerobic conditions and subsequent oxidation to the corresponding Pyrazine

Introduction

Chapter one 1-2-1Occurrence

Pyrazine have not been found in any quantity in natural product from various prepareations of fused oil small amount of 2, 5-dimethyl tetramethyl and trimethyl Pyrazine have been isolated ⁽⁴⁹⁾

It is probable that these compound result from the cyclization of decomposition products of protein in the fermentation mixture

There are two interest derivatives of Pyrazine product by the mold aspergillus flavus one of these flavocal 3,6-diisobutyl-2-hydroxypyrazine and the other is aspergillic acid which is bactericidal antibiotic .⁽⁵⁰⁾

Among the more complex compound containing Pyrazine nucleus are the pteridines based on pyrimido [4, 5-b] pyrazine ring system which are the most widespread and most important of the naturally occurring derivatives of pyrazine.⁽⁵¹⁾

pteridine

1-2-2 Synthesis of pyrazine

The classical method for prepareation of prazines including the self – condensation of α -amino carbonyl compounds but the product is low for example aminoacetaldehyde which formed from ammonation of bromoacetaldehyde hydrolysis to give pyrazine.

Pyrazine obtained by an indirect method by the decarboxylation of pyrazine carboxylic acid ^{(52),(53)}

The most efficient method for the synthesis of pyrazine was that of wolf and Marburg from the acetal of iminodiacetaldehyde when this compound is treated with HCl the acetal linkages are cleavage and 2,6-

dihydroxymorpholine is formed which reacts with hydroxylamine to yield pyrazine .

Chapter one Introduction Pyrazine have been have prepare directly in 78% from acetal when the latter is treated with hydroxylamine hydrochloride the disadvantage of this method that starting material are not accessible compounds.

Takuya et,al ⁽⁵⁴⁾have prepare some alkyl pyrazine derivatives from diketones and diamines which form dihydropyrazine and reducting the product by metal oxide MnO_2 this method gave 80% of pyrazine

Bobek and Bloch⁽⁵⁵⁾ have prepare some pyrazine derivatives which have biological activity and as pyrimidine analogs

1,2-dihydro-2-oxopyrazine

James and Edward ⁽⁵⁶⁾have prepare N-Amidino-3aminopyrazinecarhoxamide4-Oxides which acts as diuretic these compounds were have prepare by the reaction of the corresponding pyrazine ester with guanidine

Introduction

Lainne et,al ⁽⁵⁷⁾have prepare some pyrazine derivatives from reaction of pyrazoic acid and 4-acetoxybenzyl alcohol they found that they have excellent activity against Mycobacterium avium

Chi-Kuen ⁽⁵⁸⁾have prepare pyrazine from L-serine and L-threonine the formed pyrazine is indentied by GC\MS It was found that pyrazine, methylpyrazine, ethylpyrazine, 2-ethyl-6-methylpyrazine, and 2,6diethylpyrazine were formed from serine, whereas 2,5-dimethylpyrazine, 2,6-dimethylpyrazine, trimethylpyrazine, 2-ethyl-3,6-dimethylpyrazine, and 2-ethyl-3,5-dimethylpyrazine were formed from threonine.

Hana et,al ⁽⁵⁹⁾have prepare A series of pyrazines by reacting diazoketoesters with amino acid amides in the presence of rhodium octanoate as catalyst The pyrazine-6-ones were further derivatized by N-alkylation or by conversion to the arylpyrazines using sequential bromination.

Introduction

Frédéric et,al ⁶⁰ preared some pyrazine alkaloids from chloropyrazine

Douglass et,al ⁽⁶¹⁾have prepare pyrazines from reaction of epoxides and

1,2 aminoalcohol the product (aminodiols) oxidized then condensed with hydroxyl amine.

William et al (⁶²)have prepare some pyrazine derivatives by condensation of 2,3- epoxybutanal with 2-aminopyrazine

Hideki and Satoru (⁶³⁾have prepare some alkoxy-, (alkylthio)phenoxy-, and (phenylthio) Pyrazines derivatives

Introduction

Mikail et,al ⁽⁶⁴⁾have prepare some Pyridines and pyrazines substituted with 1,2,4-oxadiazole-5-ones, 1,2,4-oxadiazole-5-thiones, and 1,3,4oxathiazoline-2-ones were synthesized and tested against Mycobacterium tuberculosis.

Douglass te,al ⁽⁶⁵⁾ have prepare pyrazine derivatives by the reaction of epoxides with 1,2-amino alcohols delivered the amino diols. The product amino diols were then oxidized under Swern conditions⁻

Francisco ,et,al ⁽⁶⁶⁾tetrasubstituted pyrazines containing two phosphonate groups in positions 2 and 5 and trisubstituted pyrazines containing a phosphonate or a phosphine oxide group in position 2 are obtained by thermal treatment of 2*H*-azirine-2-phosphonates and phosphine oxides **6**. These pyrazines can also be have prepare from ^{β}ketoxime tosylates or from oxime derived from phosphine oxide ⁻

1-2-3 The uses	of py	razine
----------------	-------	--------

Name	structure	Use	Ref.
3-amino-2-methyl-8- (phenylmethoxy) imidazo[1,2-a] pyrazine	N NH2	Antiulcer Agent	67
N-(3- bromophenyl)pyrazine -2-carboxamide	N NH Br	antimycobacte rial activity; antifungal	68
N-[3-(2,2-dicyano-1- methylethenyl)phenyl] pyrazine-2- carboxamide	N CONH N 5 H ₃ C CN	Antimicrobial and Leuconostoc mesenteroides growth inhibition activity	69

1-3 Thiazolidine & thiazolidinone (72)

Thiazolidines and thiozolidinones are five member ring heterocyclic compounds contain sulfur and nitrogen atoms and three carbon atoms these compounds are not aromatic they have the below structure

1-3-1Synthesis of thiazolidinone & thiozolidinone

The best method of prepareation of thiazaolidinone by he reaction of mercaptoacetic acid with imines (Schiff bases) $^{(73),(74)}$

Ram and Singh ⁽⁷⁵⁾ have prepare some thiazolidinone derivatives by reaction of 2-amino-4-arylthiazole with potassium thiocyanate these compounds show anti fungal activity

i and ii KSCN,acetone boile 3h (iii) DMF 150-160 (iv) ArCHO pyridine xylene 160-150°c 3h
Milind, and Frank⁽⁷⁶⁾ have prepare 5'-Methylspiro[3*H*-indole-3,2'thiazolidine]-2,4'(1*H*)-diones by the cyclocondensation of thiolactic acid with isatin-3-imines

D Chiarino et,al ⁽⁷⁷⁾ have prepare Number of-substituted-4thiazolidin carboxylic acid derivatives by cyclocondensation of L-cysteine or its esters with various aldehydes, with anti- inflammatory properties

Norbert et,al ⁽⁷⁸⁾ have prepare 3,4-disubstituted-4-methoxy-2iminothiazolidines from α -chloromethyl and α -bromomethyl ketimines by condensation with thiourea

2-Imino-4-methoxythiazolidine

Nuket et,al ⁽⁷⁹⁾have prepare alkyl and aryl substituted furothiazolidine derivatives by the reaction of Wittig reagent with benzylidene derivatives of 4-thiazolidinones obtained from aldimines and thioglicolic acid

Pellegrini et,al ⁽⁸⁰⁾ have prepare Dimethyl thiazolidine-2,4dicarboxylate and 3-aminoacetylthiazolidine-4-carboxylate

Mateja et,al ⁽⁸¹⁾ have prepare some new polysubstituted 3thiocarbamoylthiazolidines by the reaction between 2-(2-

methoxyphenyl)iminothiazolidine and sulfamoylphenyl isothiocyanates

Introduction

Prashantha et,al ⁽⁸²⁾ have prepare novel microwave induced method for the synthesis of 5-benzylidene-thiazolidine-2,4-dione and benzylidene-2-thioxothiazolidine-4-one under solvent free conditions

Aamer and Masood ⁽⁸³⁾ have prepare some new 2-(4-

methylbenzoylimino)-3-aryl-4-methyl-1,3-thiazolines by the cyclization of 1-(4-methylbenzoyl)-3-arylthioureas with acetone in the presence of bromine and triethylamine

Yoshinobu et,al ⁽⁸⁴⁾ have prepare thiazoline compounds by the reaction of allylbenzthioamide with chloramines T and iodine

Sayeed, et,al ⁽⁸⁵⁾ have prepare 2-[2-Carboxymethylthio-2-(4chlorophenyl)ethyl]-2-(4- chlorophenyl)-4-thiazolidinone p, p'dichlorochalcone using thioglycollic acid in the presence of ammonium carbonate Chapter one Introduction **Tumul et,al** ⁽⁸⁶⁾ have prepare some thiazolidinone by the reaction of amines with cyclic ketones and mercapto acetic acids

1-3-2 The uses of Thiazolidinone

Over the years, 4-thiazolidinones have enjoyed a prominent place in heterocyclic chemistry largely due to the wide-ranging biological activity demonstrated by this class of compounds ⁽⁸⁷⁾

Toshio, et,al have prepare some fluorinated thiazolidinone derivatives which used in prepareation of momofloro β -lactams (⁸⁸⁾

Thiazolidinones are used as Cardio protective Drugs ⁽⁸⁹⁾ HIV-1 Integrase Inhibitors ⁽⁹⁰⁾ antileukemia drugs ⁽⁹¹⁾

Spiro[indoline-3,2'-thiazolidine]-2,4'-dione

Anti leukemia

Chapter one Introduction Bernard et,al ⁽⁹²⁾ have prepare series of new 2-substituted thiazolidine

-4-carboxamide derivatives which have potentially useful immunological properties, they synthesized in a stereoselective manner by coupling 2-substituted thiazolidine-4-carboxylic acids with amines or amino esters

The uses of Thiazoline and Thiazolidine

1-4 Oxazolines and oxazolidines (98)

Oxazoline and oxazolidine are class of heterocyclic compound contain oxygen and nitrogen atoms they are not aromatic 4,5-Dihydrooxazole was previously known as A2-oxazoline or 2-oxazoline. It follows from microwave spectra that the ring is planar as in below structure

Introduction

When they contain carbonyl group in the ring they named oxazlinone and oxazolidinone

oxazolidinone

oxazolinone

1-4-1 Synthesis of oxazolidine and Oxazoline and their derivatives

Andrew J. Phillips et,al⁽⁹⁹⁾ have preparee A mild and highly efficient cyclization of -hydroxy amides to oxazolines using DAST and Deoxo-Fluor reagents. A one-pot protocol for the synthesis of oxazoles from -hydroxy amides is also presented.

M. J. Aaglawe et,al ⁽¹⁰⁰⁾have prepare A series of oxazolone derivatives have been synthesized as a potential antibacterial agent by the condensation of aryloxy acetyl-amino-acetic acid with aldehyde in presence of ethanol, acetic anhydride and sodium acetate .

Introduction

Chapter one

G.Madhusudhan et,al ⁽¹⁰¹⁾ Ethyl -4-substitutedphenyl-2-oxo-1,3oxazolidine-5- carboxylates have been synthesized stereoselectivelyfrom *N*-Boc- β -amino alcohols by *O*-tosylation followed by S_N2 cyclization.

all the compounds have prepare are tested for their antibacterialactivity *in vitro* against S. aureus, E.faecalis and E.faecium.

V Padmavathi et,al ⁽¹⁰²⁾A new class of 2-oxazolines have been have prepare from N-(2-chloroethyl) sulfonamides by base promoted cyclization with NaH in tetrahydrofurane

Introduction

Cicily & Agrawal⁽¹⁰³⁾ have prepare new ring system of 1,3disubstituted-5a-hydropyrrolo[2,3-d]quinazolino [3,2-e]pyrimidin-6(5H)ones has been from 4-chloropyrrolo[2,3-d] pyrimidines which are have prepare using phase transfer catalysts.

Shigeo et,al ⁽¹⁰⁴⁾ have prepare some oxazolidine derivatives from serinol derivatives

Nobuya et,al ⁽¹⁰⁵⁾ have prepare oxazolidine by the Cycloaddition of chiral cyclic ketones such as (–)-menthone, (+)-nopinone, and (+)camphenilone to nitrosoketene generated by thermolysis of 5hydroxyimino-2,2-dimethyl-1,3-dioxane-4,6-dione gave the Chapter one Introduction corresponding chiral spiro 3-oxazolin-5-one 3-oxides (chiral cyclic

Name Structure Use Ref. nitrones).

G Madhusudhan et,al ⁽¹⁰⁶⁾ have prepare new convergent and short approach for oxazolidinone class of antibacterial agents by condensing 3-chloro-2-((phenoxycarbonyl)oxy) propyl azide with arylamine followed by reductive acetylation. This one pot approach for N-aryl-5azidomethyl- 2-oxazolidinone could provide access for rapid prepareation of various oxazolidinone analogues

N-phenyl-5-azidomethyl- 2-oxazolidinone

1-4-2 The use of Oxazoline and oxazolidines

1-5 Pyrazoles⁽¹¹²⁾

Chapter one Introduction Pyrazoles are 1,2 –diazoles and they considered as azapyrroles the shape of these molecules illustrated below

The pyrazole molecule is planar. Bond lengths and bond angles have been calculated from microwave spectra . Consistent with the structural formula, the bond between atoms 3 and 4 is the longest

Pyrazole shows the following UV and NMR

Pyrazoles have an important role in the life they are bioactive compounds and they used as U.V stabilizer ⁽¹¹³⁾ in prepareation of ion selective electrode ⁽¹¹⁴⁾ and inhibitor of some enzymes ^{(115),(116)}

1-5-1 prepareation of pyrazoles

Dumitraşcu et,al ⁽¹¹⁷⁾ have prepare new halogenated pyrazoles by 1,3-dipolar cycloaddition reaction of several halogenated sydnones with dimethyl acetylenedicarboxylate .

Said et,al ⁽¹¹⁸⁾ have prepare 4-aminopyrazoles by the reaction of 3-Oxo-2-arylhydrazononitriles with chloroacetonitrile, ethyl chloroacetate, and with phenacyl chloride .

Chapter one Introduction Hadiétou et,al ⁽¹¹⁹⁾ have prepare some pyrazole derivatives by the reaction of acetylenic compounds with diphenylnitrilamine

Albert et,al (¹²⁰⁾ have prepare new tricyclic fused pyrazolines by the reaction of 3- arylidenechromanones and 3-arylidene-1- thiochromanones with hydrazine in hot acetic acid or propionic acid solution.

Bratenko1, and. Vovk ⁽¹²¹⁾ have prepare 1-aryl-3- benzoyl-4carboxypyrazoles by the cyclization of 1-phenylpropane-1,2-dione monoarylhydrazones under Vilsmeier-Haack conditions gave1-aryl-3benzoyl-4-formylpyrazoles which were converted by using potassium permanganate in aqueous pyridine medium

Chapter one .1-5-2The use of pyrazoles

name	Structures	Use	R
			ef
Diethyl pyrazole		Amphiphilic	1
dicarboxylate		Receptor for	22
	N H O	Dopamine and	
		Amphetamines	
3-(3-phenyl-1H-		antimicrobial	123
indol-2-yl)-1H-			
pyrazole-4-			
carbaldehyde			
4-(4-ethyl-1,5-		Potential	104
diphenyl-1H- pyrazol-3-		Estrogen	124
yl)phenol		Receptor	
	H ₃ C	Ligands	
6 amino 14	0	Applogue of	125
pyrazolo[4,3-		Guanine	123
c]pyridin-4(5H)-	HN	Juanne	
one	H ₂ N H		

1-6 Azides(126)

Azide are compounds contain three adjacent nitrogen atoms the simplest example for the azides are sodium azide and phenyl azide .

Sodium azide is being well used as an antiseptic (preservative)b in biochemical researches and as a material for synthesis of organic compounds It can be also used as a pesticide (herbicide), disinfectant for soil and antiseptic for lumbers there had been no regulation for its use in spite of its high toxicity

azide can used in the synthesis of primary amines ⁽¹²⁷⁾ can used used as inhibitor of some enzymes ⁽¹²⁸⁾

1-6-1 Heterocyclic compound contain azide

Hassner ***et,al**⁽¹²⁹⁾ have prepare di-triazidomethane by the methyl iodide was converted into methyl azide, methylene bromide and methylene chloride

into diazido methane, and bromoform into triazido methane⁻

Chapter one Introduction **Dovlatyan et,al** ⁽¹³⁰⁾have prepare some azide derivatives by the diazotization of the hydrazide derivatives

3,4-dimethyl-2-thioxothiazoline-5-carboxylic acid azide

Thomas et,al, ⁽¹³¹⁾have prepare some selenium azide compounds

azido-2-((dimethylamino)methyl)benzeneselenol

Ramesh and Sreenivasulu⁽¹³²⁾ have prepare 2-Methyl-1,8naphthyridine-3-carb**azide** from ethyl 2-methyl-1,8-naphthyridine-3carboxylate by the diazotization of hydrazide derivatives or be the reaction of acid chloride with sodium azide. The **azide** on heating with different alcohols including benzyl alcohols underwent Curtius rearrangement to furnish 2-methyl-1,8-naphthyridine-3-carbamic acid esters
Introduction

R=alkyl benzyl

Alan et,al ⁽¹³³⁾have prepare acyl azides from the corresponding Nacyl benzotriazoles NO⁺ equivalents typically employed to synthesize these compounds from acid chlorides and hydrazides, respectively

Qi and Yitzhak ⁽¹³⁴⁾have prepare aromatic azides from the corresponding amines using triflyl azide under mild conditions

Viktor et,al ⁽¹³⁵⁾Azidoiodinanes can be have prepare from the appropriate benziodoxoles and trimethylsilyl azide in the form of stable

Philip, et,al ⁽¹³⁶⁾ have prepare N-azido-N-methylpyridin-4-amine by the reaction of N,N-dimethypyridine and triisopropylsilyl(TIPS) enol ethers

1-7 Acetylenic compounds⁽¹³⁷⁾

Acetylenic compounds are compounds contain triple carbon carbon triple bonds the reactivity of these compounds come from the triple bond and the terminal acetylenic hydrogen

1-7-1 Acetylenic compounds contain heterocyclic rings

Acetylenic compounds play important intermediate in prepareation of natural product ⁽¹³⁸⁾

John , et,al ⁽¹³⁹⁾ have prepare 4-(1-alkynyl)-2(5H)-furanones coupling of terminal acetylenes with b-tetronic acid bromide

Nakhmanovich et,al ⁽¹⁴⁰⁾ have prepare 1,1-dimethyl-1-(2-propyn-1-yl)-2-benzoylhydrazinium bromide by the reaction of 1-benzoyl-2,2-dimethylhydrazines with propargyl bromide .

1,1-dimethyl-1-(2-propyn-1-yl)-2-benzoylhydrazinium bromide

Introduction

Lijian et,al⁽¹⁴¹⁾ have prepare (Pyridonyl-1)propargyl malonate by the reaction of pyridine with propargyl bromide then the product react with diethyl malonate .

Tkachenko et,al ⁽¹⁴²⁾ have prepare 1- and 2-propargyl indazole by the reaction of indazole with propargyl bromide, the ratio of 1-propargyl indazole is increased in the presence of potassium hydroxide

Martín- et,al ⁽¹⁴³⁾have prepare propargyl imidazole by the prpargylation of imidazole using some magnesium oxides as catalysts under microwave irradiation was carried out with a high activity and without solvent

1-8 Schiff bases

Schiff bases are compounds which prepare by the reaction of aldehyde or ketone with primary amines always aromatic amines

Schiff bases exhibit good antimicrobial activity and pharmacological applications. These compounds show good fungicidal activity¹⁴⁴ and antiviral¹⁴⁵, antimicrobial¹⁴⁶ and anti inflammatory activities and play as antioxidant ¹⁴⁷, anticancer. ¹⁴⁸, antibacterial ¹⁴⁹ antifungal ¹⁵⁰ and herbicidal ¹⁵¹

1-8-1 prepareation of Schiff bases

Regina Lozytska⁽¹⁵²⁾ have prepare series of new Schiff bases containing pyridine skeleton has been synthesized by reaction of an appropriate aldehyde with 2,6-dimethyl-3,5- pyridinedicarboxhydrazide.

Chapter one Introduction **V. Ravichandra et,al**⁽¹⁵³⁾ have have prepare Schiff base by the reaction of isatine with phenyl hydrazine

Ina Bolz ,et,al ⁽¹⁵⁴⁾ have synthesized and characterized of novel Schiff bases with multiple binding sites for supramolecular assemblies For this purpose 1,3- dimethyl- and 1-butyl-5- aminobarbituric acid are condensed with para-nitro- and para-N,N-dimethylaminocinnamaldehyde respectively.

$$R^1 = R^2 = H$$

 $R^1 = R^2 = CH_3$
 $R^1 = H, R^2 = n - C_4H_9$

Mahnaz, and Ali⁽¹⁵⁵⁾ have prepare three new poly Schiff bases by polycondensation of diethylenetriamine, 1,2-diaminopropane and odiaminobenzene with dihydrobenzofuro [2,3-b] benzofuran-2,9dicarbaldehyde .

Hamid et,al ⁽¹⁵⁶⁾ have prepare five novel Schiff bases have been have prepare from *o*-formylphenoxyacetic acid and a series of aminothiazoles to form a number of potentially biologically active compounds

Almudena et,al ⁽¹⁵⁷⁾have prepare ,new Schiff bases by reacting 3-hydroxy-4-pyridinecarboxaldehyde with various amines.

Tudor Rosu ⁽¹⁵⁸⁾ have prepare of Cu(II) complexes derived from Schiff base ligands obtained by the condensation of 2-hydroxybenzaldehyde or terephtalic aldehyde with 4-aminoantipyrine

Introduction

Chapter one 1-8-2 The use of Schiff bases

Name	Structure	Uses	Ref.
N'-(1-ethyl-2,3- dihydro-2-oxo-1H-3- indolyliden)-4- pyridinecarboxylic acid hydrazide		Antitubercular	159
(E)-4- (benzylideneamino)- 2,3-dimethyl-1-phenyl- 1,2-dihydropyrazol-5- one	CH ₃ N N O	Antibacterial	160
N-((1E)-{3-methoxy- 5-[(E)- phenyldiazenyl]phenyl }methylene)-N- phenylamine	CH ₃	Antibacterial	161
(Z)-N-(pyridin-2- ylmethylene)-4- (trifluoromethyl)benze namine	CF ₃	anti-inflammatory	162
(2-{(2,6- Dichlorophenyl)-[2- oxo-3-(4- sulfamoylphenylimino) -2,3-dihydroindol-1-yl- methyl] amino}phenyl)acetic acid.		antifungal	163

Introduction

Chapter one 1-9 Mannich bases ⁽¹⁶⁴⁾

In the Mannich reaction, formaldehyde (or sometimes another aldehyde) is condensed with ammonia, in the form of its salt, and a compound containing an active hydrogen. this can formally be considered as an addition of ammonia to give H2NCH2OH, followed by a nucleophilic substitution. Instead of ammonia, the reaction can be carried out with salts of primary or secondary amines or with amides, in which cases the product is substituted on the nitrogen with R, R2, and RCO, respectively The imines can be generated in situ, and the reaction of a ketone, formaldehyde, and diethylamine with microwave irradiation gave the Mannich product, a b-amino ketone The product is referred to as a Mannich base

$$\begin{array}{c} O \\ H^{-1}C \\ H^{-1$$

The Mannich base can react further in three ways. If it is a primary or secondary amine, it may condense with one or two additional molecules of aldehyde and active compound, for example

If the active hydrogen compound has two or three active hydrogens, the Mannich base may condense with one or two additional molecules of aldehyde and ammonia or amine, for example

Introduction

Another further reaction consists of condensation of the Mannich base with excess formaldehyde:

1-9-1 prepareation of Mannich bases derivatives

FERNANDEZ and JEANNE M. ⁽¹⁶⁵⁾ have prepare Mannich bases of 2-naphthol by reacting 0.01 molar quantities of 2-naphthol, formalin, and the secondary amine in 10 ml. of dioxane for 24 hours at room temperature

COKER AND FIELDS ⁽¹⁶⁶⁾ have prepare some Mannich bases by treatment of 1,3-Diacetylhydantoin with aqueous formaldehyde and either piperidine or morpholine was found to yield crystalline Mannich bases in excellent yield

Introduction

Abdel Hafez et,al ⁽¹⁶⁷⁾have prepare Mannich bases by the reaction of visnaginone 5-acetyl-6-hydroxy-4-methoxybenzo[b]furan with piperidine and benzylamine in the presence of formalin.

Mogilaiah & Sakram ⁽¹⁶⁸⁾ have prepare some Mannich bases be the reaction of Aminomethylation of of with formaldehyde and cyclic secondary amines furnishes(2-oxo-3-phenyl-2*H*-[1,8]naphthyridin-1-yl)acetic acid(1-aminomethyl-2-oxo-1,2-dihydroindol-ylidene)hydrazides

Chapter one Introduction Juliusz and Jarosław ⁽¹⁶⁹⁾ have prepare a N-Mannich bases such as benzimidazoles 1a and 1c by chloromethylalkyl ether afforded two products 2 and 3

El-masry et,al ⁽¹⁷⁰⁾ pepared mnnich bases for 3-(2-methylbenzimidazol-1-yl)propanoic acid hydrazide which react with CS2/KOH to gave oxadiazole which underwent Mannich reaction to give the below compound.

Chapter one Introduction Nofal et,al ⁽¹⁷¹⁾allowed oxazine derivative to undergo a Mannich reaction using different secondary amines, namely diethyl amine, piperidine and/or methylpiprazine in the presence of paraformaldehyde to give the

Name		Str	ructure		Uses	Ref.
	 ~ 1	_		 1		• •

corresponding 8-bromo-7-methyl-3-substituted 9H-pyrano-1,4-oxazine-2,9-

dione Mannich bases

Chapter one		Introduction		
5-chloro-7-(2- ethylbutyl)quinoli	HONN	Antiamebic	172	
8-Chloro-5-	o	Analgesic	173	
methoxy-2- morpholinomethyl		&Tranquilize		
-tetralone				
Ethyl [2,3-		Diuretic	174	
(aminomethyl)-4-				
hydroxybenzoyl]p				
nenoxyjacetate	n ₂ n			
2- [[4-(7-	F	Antipsychotics	175	
piperazinyl]methy				
1]-5-(4-				
fluorophenyl)pyrr ole				
8-chloro-3,4-	0	Analgesic	176	
dihydro-5-				
pyrrolidinomethyl				
naphthalene	 CI			

1-9-2 The uses of Mannich bases

1-10 Thiazole (177)

Introduction

Thiazole (1,3-thiazole) possesses a pyridine-like N-atom and an S-atom as present in thiophene.

The univalent radical is known as thiazolyl. The thiazole molecule is planar and the C-S bond length is 171.3 pm, similar to that in thiophene as below

A comparison with the bond lengths of oxazole (see Fig. 5.9, p 123) leads to the conclusion that the delocalization of the ^"-electrons in thiazole is greater. Thus, the aromaticity of thiazole is greater than that of oxazole. The ionization potential is 9.50 eV and its dipole moment 1.61 D. UV and NMR data are listed in the following table:

1-10-1 Synthesis of thiazole

Thiazole have prepare by the some method

Introduction

The cyclocondensation of or-halocarbonyl compounds with thioamides (Hantzsch synthesis) offers considerable scope

The HANTZSCH synthesis involves three intermediate steps. In the first, the halogen atom of the α -halo aldehyde or a-halo ketone is nucleophilically substituted. The resulting S-alkyliminium salt 2 undergoes a proton transfer (2 -> 3); cyclization produces a salt of a 4-hydroxy-4,5-dihydrothiazole 4 which is converted into a 2,5-disubstituted thiazole 1 in protic solvents by an acid-catalysed elimination of water.

 α -Aminonitriles react with CS₂, COS, salts or esters of dithiocarboxylic acids and with isothiocyanates, under mild conditions, to give 2,4-disubstituted 5-aminothiazoles 8 (Cook-Heilbron synthesis), e.g

 $\label{eq:a-(Acylamino)ketones react with P_4S_{10} yielding thiazoles (Gabriel synthesis$

David R et,al ⁽¹⁷⁸⁾have prepare thiazole derivatives by wittig reaction by using phosphoniun salt as intermediate

K. Darrell ⁽¹⁷⁹⁾have prepare series of new 2-amino- or 2-allylamino-4-arylsubstituted thiazoles from the corresponding α -brominated acetophenones via reaction of the latter with thiourea or allylthiourea in HCCl3:C2H5OH(abs) in a one-pot sequence

Chapter one Introduction Gregory et ,al ⁽¹⁸⁰⁾ used 1,3-Dichloropropene (a mixture of cis and trans isomers) to synthesize thiazole derivatives by starting its reaction with sodium thiocyanate to give 3-chloro-2- Propenylthiocyanate This mixture of cis and trans isomers of isothiocyanate on chlorination gave 2-chloro-5- chloromethylthiazole

.Dzurilla et,al ⁽¹⁸¹⁾have prepare a new method for the synthesis of camalexin based on the reaction of 1-(tert-butoxycarbonyl)indole-3-carboxaldehyde with methyl Lcysteinate hydrochloride, followed by oxidation and decarboxylation

a) 1:2 methanol/benzene, (C₂H₅)₃N, 25°C, 3 h. (85%); b) MnO₂, benzene/pyridine, 55°C, 1.5 h., (44%); c) CH₃ONa, methanol, 25°C, 20 min.(59%); d) NaOH, NaHCO₃, 25°C, 2 h., (12%).

Chapter one 1-10-2 The use of thiazole

Introduction

186

Chapter one **1-11 Oxazole** (187)

Introduction

Oxazole (1,3-Oxazole) contains an O-atom bonded as in furan, and also a pyridine-like N-atom The univalent radical is known as oxazolyl. The oxazole molecule is planar and its structure can be represented by a distorted pentagon

The differences in the bond lengths, especially between the bonds N/C-2 and N/C-4 indicate that the delocalization of the ^-electrons is affected by the heteroatoms. As in the case of furan, the structural formula with two ; π -bonds is a good representation of the electronic structure of the molecule . The ionization energy of oxazole is 9.83 eV and its dipole moment is 1.5 D. The UV absorption and chemical shifts in the NMR spectra are as follows:

Introduction

Chapter one 1-11-1 prepareation of oxazole

:

a-Acylamino ketones, esters or -amides are cyclodehydrated by H2SÜ4 or polyphosphoric acid to give oxazoles *(Robinson-Gabriel synthesis):*

 α -Acyloxy ketones , obtainable from a-halo ketones and salts of carboxylic acids, form oxazoles on treatment with ammonia

 α -Halo and α -hydroxy ketones condense with acid amides via an Oalkylation to give oxazoles(*Blümlein-Lewy synthesis*). Formamide yields oxazoles unsubstituted in the 2-position, urea yields 2- aminooxazoles:

Introduction

Oxazole syntheses employing isocyanides as starting materials are of considerable prepareative value. In the *van Leusen synthesis*, tosylmethyl isocyanide (TosMIC) reacts with aldehydes under base catalysis, e.g. in the presence of K2CO3. The primary products are 4,5-dihydro-1,3-oxazoles **12**, which are converted into oxazoles by elimination of sulfinic acid

α-Diazocarbonyl compounds undergo addition to nitriles with elimination of N2 in the presence of LEWIS acids or transition metal compounds [Cu(II), Pd(II), especially Rh(n)] as catalysts to give oxazoles This reaction is likely to proceed via intermediate formation of nitrile ylides 15 and their electrocyclic ring closure as 1,5-dipoles yielding the oxazole system

Vyatsheslav et, al⁽¹⁸⁸⁾ have prepare oxazole derivatives by adding Isonicotinoyl chloride to an ice-cooled 2-aminoethanone solution in DMF then the resulting mixture Amidoketone was heated for 15 min to 170-180

Josif et,al ⁽¹⁸⁹⁾ have prepare oxazole derivatives by Acylaminoacylation of aromatic hydrocarbons (benzene, toluene, *meta*-xylene, mesitylene) with2-[4-benzenesulfonyl-(4-halophenyl)]-5-oxazolones in the presence of anhydrous aluminum chloride leads to 2-aza-1,4-diones **5** which cyclize under the action of phosphorus oxychloride yielding the corresponding 2-[4-(4halobenzenesulphonyl)-phenyl]-5-aryloxazoles

Alexander et,al ⁽¹⁹⁰⁾ have prepare oxazole derivatives by dissolveding N-Phenacyl-2-pyridone in concentrated sulfuric acid and kept for 20-25 hours. Then 71% perchloric acid (2.5 mL, 25 mmol) was carefully added to the mixture and after stirring 10-15 min

Povstyanoi ⁽¹⁹¹⁾ obtained oxazole derivatives in 76% yield by heating ketone with sodium benzoate in DMF at reflux for 2 h.

Christopher et,al ⁽¹⁹²⁾ have prepare the below compound by the rhodium(I1) catalysed addition of diazocarbonyl compounds to nitriles,

Introduction

Chapter one The uses of oxazole

Name	Structure	Uses	Ref.
4-(3-(3-(oxazol-5- yl)phenoxy)propyl)-1H-imidazole		selective histamine H - receptor antagonists	193
Madumvcin	H O Madumvcin I	Antimicrobial	194
7-bromo-2- mercapto-6- methyl-8H- chromeno[8,7- d]oxazol-8-one	CH ₃ Br O HS	antibacterial	195

Republic of Iraq Ministry of higher education and scientific research Al-Nahrine university College of science Department of Chemistry

Synthesis and Characterization of New Heterocyclic Compounds Derived from Some Heterocyclic Amines and Evaluating of Biological Activity of Some Compounds

A Thesis submitted to the College of Science Al-Nahrin University in partial fulfillment of the requirements for the *Degree of Doctor of Philosophy in Chemistry*

> By Ahmed Thamer Salem

B. sc. Baghdad university 2000M. sc Baghdad university 2003

2008

1429

Ar

Chapter three Result & Discussion 3-1 Schiff bases preparation

hetro H_2 + A_r \rightarrow hetro hetro

The Schiff bases are prepared by the reaction of the heterocyclic amines with different aromatic aldehyde in absolute ethanol in the presence of glacial acetic acid as catalyst the products were characterized by the TLC and by the FTIR spectrum which show by the stretching vibration the absorption of the doublet of NH₂ of the amine in the region 3450-and3220 cm⁻¹ for symmetric and asymmetric stretching vibration respectively and the disappearance of C=O band of the aldehydes in 1660-1740 cm⁻¹ and appearance of the stretching vibration of C=N bond in region 1580-1630 cm⁻¹

Results and discussion

The proposed mechanism for this reaction

Table (3-1) IR spectrum data for schiff bases

Comp No.	Fig. No.	v C-H aromatic	v C=N schiff	υ C=C	NO ₂	C=H aromatic OOP
$1A_1$	3-5	3070	1606	1583-1483	1542-1367	821
$1A_2$	3-6	3090	1600	1598-1437		813
$1B_1$	3-7	3100	1599	1570-1490	1558-1330	854
1 B ₂	3-8	3120	1600	1590-1440		800
$1C_1$	3-9	3120	1600	1580-1450	1530-1350	800
$1C_2$	3-10	3120	1620	1580-1480		825
1 D ₁	3-11	3120	1600	1560-1430	1540-1365	810
1D ₂	3-12	3080	1610	1580-1470		840

Results and discussion

Figure (3-1) FTIR of 4-aminoantipyrine (A 0)

Chapter three **Results and discussion** 128 1174.6 1250.0 1353.9 649.0 1475.4 1562.2 1500.0 1750.0 59. NH_2 Ν 4000.0 3500.0 ---- Testscan Shim 83. Nulley 15.0 20.0 10.0 30.0 25.0 40.0 35.0 MT%

Figure(3-2) FTIR spectrum of 2-aminopyrimidine (B 0)

Results and discussion

Figure (3-3) FTIR spectrum of 2-aminopyrazine (C 0)

Figur(3-4) FTIR spectrumum of isoneazide (d 0)

 $\label{eq:Figure (3-5)} FTIR \ spectrum \ of \ compound \ (1A_1) \\ (Z)-4-(4-(diethylamino)benzylideneamino)-2,3-dimethyl-1-phenyl-1,2-dihydropyrazol-5-one$

Results and discussion

Figure (3-6) FTIR spectrum of compound (1A₂)

(Z)-4-(4-nitrobenzylideneamino)-2,3-dimethyl-1-phenyl-1,2-dihydropyrazol-5-one

Figure (3-7) FTIR spectrum of compound (1B₁) (Z)-N-(4-nitrobenzylidene)pyrimidin-2-amine

Results and discussion

Figure (3-8) FTIR spectrum of compound (1B₂)

(Z)-N-(4-nitrobenzylidene)pyrimidin-2-amine

Figure (3-9) FTIR spectrum of compound (1C₁)

(Z)-N-(4-(diethylamino)benzylidene)pyrazin-2-amine

Results and discussion

Figure (3-10) FTIR spectrum of compound (1C₂)

(Z)-N-(4-nitrobenzylidene)pyrazin-2-amine

Results and discussion

Figure (3-11) FTIR spectrum of compound (1D₁)

(Z)-N'-(4-(diethylamino)benzylidene)isonicotinohydrazide

Figure (3-12) FTIR spectrum of compound (1D₂) (Z)-N'-(4-nitrobenzylidene)isonicotinohydrazide

3-2 2-aryl-3-(hetero-2-yl)thiazolidin-4-one

Thazolidinone derivatives prepared by the reaction of Schiff bases and mercaptocetic acid in dry benzene the products were identified by the FTIR spectrum by the appearance of carbonyl group of the thiozolidinone in 1660 cm⁻¹ and disappearance of the C=N group in 1600cm⁻¹ and the disappearance of O-H broad band stretching vibration at 3500-3000cm⁻¹ of mercaptocetic acid The proposed mechanism of this reaction

Results and discussion

Compound No	C=H aromatic	C=O	C=C aromatic	CH ₂
3A	3100	1691	1602-1452	2925-2850
3B	3100	1682	1600-1448	2918-2804
3C	3100	1700	1600-1450	2930-2800
3D	3100	1690	1580-1440	2940-2840

Table (3-2) the stretching vibration of thiazolidinone

Results and discussion

Figure (3-13) FTIR spectrum of compound (2A)

2-[4-(diethylamino)phenyl]-3antipyrin-2-yl-1,3-thiazolidin-4-one

oFigure (3-14) FTIR spectrum of compound (2B) 2-[4-(diethylamino)phenyl]-3-pyrimidin-2-yl-1,3-thiazolidin-4-one

Results and discussion

Figure (3-15) FTIR spectrum of compound (2C)

2-[4-(diethylamino)phenyl]-3-pyrazin-2-yl-1,3-thiazolidin-4-one

Results and discussion

Figure (3-16) FTIR spectrum of compound (2D)

 $N-\{2-[4-(diethylamino)phenyl]-4-oxo-1,3-thiazolidin-3-yl\} isonicotinamide$

Chapter threeResults and discussion3-32-aryl-3-(hetero-2-yl)imidazolidin-4-one

Imidazolidine derivatives prepared by the heating of Schiff bases derivatives with glycine(α -amino acetic acid) in THF the product were identified by the FTIR spectrum which show the appearance of NH vibration in 3320 cm⁻¹ and the disappearance of C=N band in 1600cm⁻¹.

The product s are also identified by the HNMR the duplet (7.9)ppm for Ha and Hb protons at appears duplet at 8.8ppm Hc proton appear singlet at 2.45ppm while He,Hd appeared at 6.2,6.5 ppm respectively .

C¹³NMR show singlate at 167.5 for C=O ,150 and 140 for C=N and at 122.3 (C-H) the aromatic carbon appear at 127 and 133 ppm.

the proposed mechanism of this reaction

Results and discussion

Comp	CH ₂	v N- H	v C=O	C=C aromatic
$3A_1$	2933-2846	3228	1708	1593-1448
3A ₂	2925-2848	3396	1705	1580-1434
3B ₁	2925-2830	3419	1687	1581-1398
3B ₂	29302840	3398	1709	1600-1440
3C ₁	2940-2850	3280	1680	1580-1440
3C ₂	2950-2830	3200	1700	1580-1440
3D ₁	2830-2960	3200	1670	1590-1410
3D ₂	2940-2860	3280	1700	1580-1400

Table (3-3) the IR spectral data of imidazolidine derivatives $(3A_1-3D_2)$

Figure (3-18) the $C^{13}NMR$ spectra of compound $3B_1$

Results and discussion

Figure (3-19) FTIR spectrum of compound (3A₁) 1,5-dimethyl-4-[2-(diethyl amino)-5-oxoimidazolidin-1-yl]-2-phenyl-1,2dihydro-3H-pyrazol-3-one

Figure (3-20) FTIR spectrum of compound (3A $_2$) 1,5-dimethyl-4-[2-(4-nitrophenyl)-5-oxoimidazolidin-1-yl]-2-phenyl-1,2-dihydro-3H-pyrazol-3-one .

Figure (3-21) FTIR spectrum of compound (3B₁) 2-[4-(diethylamino)phenyl]-3-pyrimidin-2-ylimidazolidin-4-one

Figure (3-22) FTIR spectrum of compound (3B₂) 2-(4-nitrophenyl)-3-pyrimidin-2-ylimidazolidin-4-one

Results and discussion

Figure (3-23) FTIR spectrum of compound (3C₁) 2-[4-(diethylamino)phenyl]-3-pyrazin-2-ylimidazolidin-4-one

Figure (3-24) FTIR spectrum of compound (3C₂) 2-(4-nitrophenyl)-3-pyrazin-2-ylimidazolidin-4-one

Figure (3-25) FTIR spectrum of compound (3D₁) N-{2-[4-(diethylamino)phenyl]-5-oxoimidazolidin-1-yl}isonicotinamide

Figure (4-26) FTIR spectrum of compound (3D₂) N-[2-(4-nitrophenyl)-5-oxoimidazolidin-1-yl]isonicotinamide

Results and discussion

3-4 preparation of 2-aryl-3-hetero-2-yl-2,3-dihydro-1,3oxazepine-4,7-dione (4)

Oxazipene derivatives were prepared by the refluxing of Schiff bases with maleic anhydride in dry benzene for 24h the product identified by the FTIR spectrum which show the appearance of C=O stretching vibration of the oxazipene at 1750-1700cm⁻¹ and disappearance of C=N stretching vibration band at 1630-1580cm⁻¹ the proposed mechanism of this reaction

Results and discussion

Figure (3-27) the FTIR of compound (4A) (Z)-2-(4-(diethylamino)phenyl)-3-(2,3-dimethyl-5-oxo-1-phenyl-2,5-dihydro-1Hpyrazol-4-yl)-2,3-dihydro-1,3-oxazepine-4,7-dione

Results and discussion

Figure (3-28) the FTIR of compound (4B) (Z)-2-(4-(diethylamino)phenyl)-3-(pyrimidin-2-yl)-2,3-dihydro-1,3-oxazepine-4,7-dione

Results and discussion

Figure (3-29) the FTIR of compound (4C) (Z)-2-(4-(diethylamino)phenyl)-3-(pyrazin-2-yl)-2,3-dihydro-1,3-oxazepine-4,7-dione

Figure (3-30) the FTIR spectrum of compound (4D) (Z)-N-(2-(4-(ethyl(methyl)amino)phenyl)-4,7-dioxo-1,3-oxazepin-3(2H,4H,7H)yl)isonicotinamide

Chapter threeResults and discussion3-5 preparation 1-phenyl-3-(hetero-2-yl)urea.

Urea derivatives were prepared by the reaction of hetero amines and phenyl isocyanate the products were identified by the FTIR spectra which show the appearance of the stretching vibration of amidic carbonyl group in 1720-1645 cm⁻¹, disappearance of NH₂ stretching vibration in 3450-3120cm⁻¹ and appearance of CH aromatic in 3010-3080cm⁻¹ .the proposed mechanism of this reaction

Results and discussion

Comp No.	O-H enolic	ν N- Η	v C-H aromatic	v C=O urea	C=C aromatic	C=H aromatic OOP
5A	3200	3180-3139	3120	1700	1556-1448	804
5B	3300	3180-3280	3100	1690	1580-1440	840
5C	3300	320-3140	3000	1701	1590-1410	860
5D	3300	3320-3200	3110	1750	1590-1400	800

Table (3-5) the IR spectral data of urea derivatives compounds (5A-5D)

Results and discussion

Figure (3-31) FTIR spectrum of compound (5A)

1-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)-3-phenylurea

figure (3-32)FTIR spectrum of(5B)1-phenyl-3-pyrimidin-2-ylurea

Results and discussion

Figure (3-33) FTIR spectrum of (5C)

1-phenyl-3-pyrimidin-2-ylurea

Figure (3-34) FTIR spectrum of (5D) 2-isonicotinoyl-N-phenylhydrazinecarboxamide

Chapter threeResults and discussion3-6 preparation of 1-phenyl-3-(hetero-2-yl)thiourea

Thiourea derivatives prepared by the reaction of phenylisothiocyanate with heteroamines in absolute ethanol the products identified by the FTIR by the disappearance of stretching vibrations NH_2 band in 3450-3320 cm⁻¹ and the appearance of new band of C=S stretching vibration band in 1100-1250cm⁻¹ moreover other stretching vibration bands were also occurred at (3450-3320) cm⁻¹ for NH stretching vibration and appearance of CH aromatic in 3010-3080cm⁻¹ and appearance of OOP bending band of p-substituted benzene

The proposed mechanism

enol form

Results and discussion

Comp No.	S-H	ν N- Η	ν C-H aromatic	v C=S	C=H aromatic OOP
6A	2650	3250-3200	3120	1180	800
6B	2670	3240-3180	3100	1160	850
6C	2600	3220-3200	3120	1200	840
6D	2640	3280-3240	3100	1160	820

Table (3-6) the IR spectral data of thiourea derivatives (6A-6D)

Figure

(3-35) FTIR spectrum of (6A) 1-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)-3phenylthiourea

Results and discussion

Figure (3-37)FTIR spectrum of(61-phenyl-3-pyrazin-2-ylthiourea

Figure (3-38)FTIR spectrum of
(6D)2-isonicotinoyl-N-phenylhydrazinecarbothioamide

Chapter threeResults and discussion3-7 preparation of 3-phenyl-2-(hetero-2-ylamino)-1,3-oxazolidin-4-one

Oxazolidinone derivatives were prepared by heating mixture of urea derivatives with ethylchloroacetate in absolute ethanol the product identified by the FTIR which show the disappearance of carbonyl stretching vibration band of the ester at 1740 cm⁻¹ and the disappearance of one NH of urea at 3400-3200cm⁻¹ and appearance of C=N band of the ring at 1600cm⁻¹

Results and discussion

 Table (3-7) IR spectral data of thiazolidinones (7A-7C)

Compound No.	О-Н	CH ₂	υ C=O	υ C=N
7A	3200	2920-2860	1680	1600
7B	3200	2940-2860	1720	1600
7C	3400-3200	2930-2850	1740	1580

Figure (3-39) FTIR spectrum of compound (7D) 2-[(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)amino]-3phenyl-1,3-oxazolidin-4-one (7A)

Results and discussion Chapter three

Figure (3-40) FTIR spectrum of 3-phenyl-2-(pyrimidin-2-ylamino)-1,3oxazolidin-4-one (7B)

Chapter three **Results and discussion** Ph

Figure (3-41) FTIR spectrum of phenyl-2-(pyrazin-2-ylamino)-1,3-oxazolidin-4-one (7C)

Chapter threeResults and discussion3-8-Peparation 3-phenyl-2-(hetero-2-ylamino)-1,3-oxazolidin-4-one(8)

Oxazolidinone derivatives prepared by the reaction of thiourea derivatives and ethylchloroacetate in absolute ethanol the product identified by FTIR by the disappearance of C=O of the ester in 1740 cm⁻¹ and the appearance of amidic C=O band at 1640cm-1

Table (3-9) the IR spectral	data of	foxazolidinone	(9B-9C)
-----------------------------	---------	----------------	---------

Compound No	SH	C=O	C=N
9B	2700	1700	1600
9C	2680	1690	1580

Figure (3-40) FTIR spectrum of compound 9B 3-phenyl-2-(pyrimidin-2-ylamino)-1,3-thiazolidin-4-one

Figure (3-41) FTIR spectrum of compound 9C 3-phenyl-2-(pyrazin-2-ylamino)-1,3-thiazolidin-4-one

Chapter threeResults and discussion3-9- N-(4-(naphthalen-2-yl)-3-phenyl-2,3-dihydrothiazol-2-yl)hetero-2-amine

Thiazoline derivatives prepared by the reaction of thiourea derivatives with p-phenylphenacy bromide in absolute ethanol the products identified by FTIR by the disappearance of C=O and C=S bands of the haloketone and thiourea in 1740cm⁻¹ and 1200cm⁻¹ respectively and the appearance of CH olifenic in 3010 cm⁻¹

H NMR singlate at (8-8.9) for f,g,h,i and j protons and singlet at 6.5 ppm for olifenic proton (i)

Aromatic proton appear at (7.2-7.7)ppm

CNMR show singlate at 134 for C=N and singlate at 127,128.128.9 ppm are attribute to aromatic carbon

Compound No	Fig.	C=N
8A	3-36	1640
8B	3-37	1640
8C	3-38	1640
8D	3-39	1640

Figure (3-36) FTIR spectrum of compound (8A) 4-(4-(biphenyl-4-yl)-3-phenyl-2,3-dihydrothiazol-2-ylamino)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one

Results and discussion

Figure (3-37) FTIR spectrum of compound (8B) (Z)-N-(4-(biphenyl-4-yl)-3-phenylthiazol-2(3H)-ylidene)pyrimidin-2-amine

Figure (3-38) FTIR spectrum of compound (8C) (Z)-N-(4-(biphenyl-4-yl)-3-phenylthiazol-2(3H)-ylidene)pyrimidin-2 amine

- The NMR spectrums of compound 8C

Chapter three **Results and discussion** Р NН

Figure (3-39) the FTIR of compound (8D)

Chapter threeResults and discussion3-10 preparation of 2-chloro-N-(hetero-2-yl)acetamide(10)

These compounds were prepared by the reaction of approparate heterocyclic amine with chloroacetylchloride in dry benzene the products identified by FTIR which show the disappearance of the starching NH_2 double band at 3450-3320cm⁻¹, appearance of C=O band of the amide at 1680 cm⁻¹, appearance of CH₂ band at 2980-and 2870 cm⁻¹, the formation of CH₂ straching vibration at 2980-2870cm⁻¹ and the appearance of C-Cl bond at 740cm⁻¹ the mechanism of this reaction is tetrahedral formation intermediate

Table 3-10 the IR spectera	l data of ace	tamide derivatives
----------------------------	---------------	--------------------

Compound No	Fig No.	C=O	N-H
10A	3-42	1693	3143
10B	3-43	1700	3280
10C	3-44	1700	3400
10D	3-45	1720	3300

Results and discussion

Figure (3-42) FTIR spectrum of compound (10A) 2-chloro-N-(2,3-dimethyl-5-oxo-1-phenyl-2,5-dihydro-1H-pyrazol-4yl)acetamide

Chapter three **Results and discussion**

Figure (3-44) FTIR spectrum of compound (10C) 2-chloro-N-pyrazin-2-ylacetamide

Figure (3-43) FTIR spectrum of compound (10B 2-chloro-N-pyrimidin-2-ylacetamide

Figure (3-45) FTIR spectrum of compound (10D) N'-(2-chloroacetyl)isonicotinohydrazide

Chapter threeResults and discussion3-11 Preparation of N5-(hetero-2-yl)oxazole-2,5-diamine(11)

Oxazole derivatives were prepared by the reaction of chloroacetamide with urea in absolute ethanol the product identified by FTIR by the disappearance of amidic carbonyl band of urea at 1640cm-1 and the C=O band of the amide at 1690 cm-1 and appearance of C=N band of the ring at 1600 cm-1 and appearance of C-O band at 1100 cm-1

Table (3-11) the IR spectruml data of oxazole derivatives (11A-11C)

Compound No.	Y NH ₂	υNH	υ C=N oxazol	υ C-O
11A	3280-3320	3180	1610	1100
11B	3274-3300	3160	1612	1083
11C	3300-3400	3100	1620	1000

Results and discussion

Chapter three

The proposed mechanism of this reaction

Figure (3-46) FTIR spectrum of compound 11B N5-pyrimidin-2-yl-1,3-oxazole-2,5-diamine

Figure (3-47) FTIR spectrum of compound (11C) N5-pyrazin-2-yl-1,3-oxazole-2,5-diamine

Figure (3-45) FTIR spectrum of compound 11A

4-[(2-amino-1,3-oxazol-5-yl)amino]-1,5-dimethyl-2-phenyl-1,2-dihydro-3Hpyrazol-3-one

The NMR spectrums of compound 11A

Chapter threeResults and discussion3-12 preparation of N5-(hetero-2-yl)thiazole-2,5-diamine(12)

Thiazole derivatives were prepared by the reaction of chloroacetamide derivatives with thiourea in absolute ethanol the product identified by FTIR which show the disappearance of C=O band of the acetamide at 1690cm⁻¹ and appearance of C=N band at 1620 cm⁻¹

Table (3-12) the IR specteral data os thiazole derivatives (12A-12C)

Compound No.	υ NH ₂	υNH	υ C=N thiazol	C-H olifene
12A	3379-3274	3127	1612	3103
12B	3320-3240	3180	1610	3100
12C	3400-3280	3180	1630	3100

Figure (3-46) FTIR spectrum of compound (12A) 4-[(2-amino-1,3-thiazol-5-yl)amino]-1,5-dimethyl-2-phenyl-1,2-dihydro-3Hpyrazol-3-one

Results and discussion

Figure (3-47) the FTIR of compound (12C) N5-(pyrimidin-2-yl)thiazole-2,5-diamine

Figure (3-48) FTIR spectrum of compound (12B) N5-(pyrazin-2-yl)thiazole-2,5-diamine

Thiosemicarbazide derivatives prepared by reaction of thiosemicarbazide with chloroacetamide derivatives the product identified by FTIR by the appearance of NH_2 band symmetric & asymmetric at 3450-3320cm⁻¹ and appearance of C=S band at 1200cm⁻¹ and the tutamaric SH stretching band at 2600-2500cm⁻¹. The proposed mechanism of this this reaction is neucluphelic reaction.

Table (3-13) the IR specteral data of thiosemicarbazide derivatives (13A-13D)

Compound No.	υ NH ₂	υ C=O simecarbazide	υ C=S	υS-H
13A	3380-3213	1682	1205	2650
13B	3400-3320	1660	1180	2600
13C	3400-3300	1660	1180	2600
13D	3400-3320	1650	1220	2650

Figure (3-49) FTIR spectrum of compound (13A) 2-[2-(aminocarbonothioyl)hydrazino]-N-(1,5-dimethyl-3-oxo-2-phenyl-2,3dihydro-1H-pyrazol-4-yl)acetamide

Figure (3-50) FTIR spectrum of compound (13B) 2-[2-(aminocarbonothioyl)hydrazino]-N-pyrimidin-2-ylacetamide

Figure (3-51) the FTIR spectrum of compound (13C) 2-[2-(aminocarbonothioyl)hydrazino]-N-pyrazin-2-ylacetamide

Figure (3-52) FTIR spectrum of compound (13D) 2-[2-(2-isonicotinoylhydrazino)-2-oxoethyl]hydrazinecarbothioamide

Chapter threeResults and discussion3-14 preparation of 2-azido-N-(hetero-2-yl)acetamide(14)

Azide compounds were prepared by the reaction of chloroacetamide with sodium azide in absolute ethanol the product identified by FTIR which show the appearance of azide stretching band at 2130-2200 cm⁻¹

The proposed mechanism of this reaction is

Table (3-14) IR spectruml data of azide derivatives(14A-14D)

Compound No	υ N ₃ strch.	υ C=C aromatic	υ ΝΗ	υ C=O
14A	2098	1533-1431	3205	1697
14B	2114	1515-1439	3382	1681
14C	2108	1537-1458	3408	1660
14D	2090	1520-1440	3200	1650

Figure (3-53) FTIR spectrum of compound (14A) 2-azido-N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4yl)acetamide

Figure (3-54) FTIR spectrum of compound (14B) 2-azido-N-pyrimidin-2-ylacetamide

Figure (3-55) FTIR spectrum of compound (14C) 2-azido-N-pyrazin-2-ylacetamide

Results and discussion

Figure (3-56) FTIR spectrum of compound (14D) N'-(2-azidoacetyl)isonicotinohydrazide

Chapter threeResults and discussion3-15 preparation of potassium hetero-2-ylcarbamodithioate(15)

Carbodithionate compounds prepared by the reaction of the heteroamines with carbon disulfide in presence of alkali the product identified by disappearance of NH₂ scratching at 3450-3320cm-1 and appearance of C=S band at 1200cm⁻¹. The proposed mechanism of this reaction is

Table (3-15) the IR specteral data of dithiocarbamate (15A-15)

Compound No	υN-H	υC=N ring	υC=C aromatic	vC=S
15A	3220	1610	1560-1420	1220
15B	3240	1600	1570-1450	1220
15C	3280	1600	1520-1473	1220

Figure (3-57) FTIR spectrum of compound (15A) potassium (1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4yl)dithiocarbamate

Results and discussion

Figure (3-58) FTIR spectrum of compound (16B) potassium pyrimidin-2-yldithiocarbamate

Figur (3-59) the FTIR of compound (15C) potassium isoniazid-2-yldithiocarbamate

Chapter threeResults and discussion3-16 Preparation of N-prop-2-ynylhetero-2-amine(16)

Actylenic compounds prepare red by the reaction of propargyl bromide with hetero amines in presence of alkali (trimethyl amine or KOH) the products identified by FTIR by the appearance of actylenic(C-C) stretching band at 2200-2100cm⁻¹ and disappearance of NH₂ stretching band at 3450-3320 cm-1 and appearance of C-H acetylenic at 3330-3310cm⁻¹.

The mechanism of this reaction is SN^2

Table (3-16) the IR specteral dataof acetylinic compound(16B-16D)

Compound No	C-H acetylenic	C-C acetylenic	N-H
16B	3300	2100	3190
16C	3320	2080	3180
16D	3280	2120	3200

Results and discussion

Figure (3-59) FTIR spectrum of compound (16B) N-pyrimidin-2-ylbut-3-ynamide

Figure (3-60) FTIR spectrum of compound (16C) N-pyrazin-2-ylbut-3-ynamide

Figure (3-61) FTIR spectrum of compound (16D) N'-but-3-ynoylisonicotinohydrazide

Chapter threeResults and discussion3-17 preparation ofhetero-2-yl formamide(17)

formamide derivatives prepared by the reaction of hetero amine with formic acid the product identified by the TLC and FTIR spectrum by the appearance of the amidic carbonyl at 1675-1790 cm⁻¹ and disappearance of NH_2 double band at 3450- 3320 cm⁻¹ and the disappearance of O- H stretching vibration at 3500-3200 as broad band of the formic acid .the proposed mechanism for this reaction is

Table (3-17) IR spectruml data of formamide derivatives (17A-17D)

Compound No.	υ C=O str.cm ⁻¹	vC=C aromatic	υNH	υ CH formic
17 A	1680	1500-1400	3190	2780-2840
17 B	1690	1541-1408	3200	2800-2820
17 C	1680	1560-1420	3180	2780-2840
17D	1675	1520-1410	3200	2780-2820

Figure (3-62) FTIR spectrum of (17A) N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)formamide

Results and discussion

Figure (3-63) FTIR spectrum of 17B N-pyrimidin-2-ylforamide

Figure (3-64) FTIR spectrum of 17C N-pyrazin-2-ylfroamide

Results and discussion Chapter three 0 NH -NH 0=

Hydrazine formamide derivatives are prepared by the reaction of phenyl hydrazine with formamide derivatives in absolute ethanol the product identified by the FTIR spectrum by the disappearance of the C=O of the formic at 1700cm⁻¹ and the appearance of C=N stretching band at 1600cm⁻¹ The proposed mechanism for this reaction

Ar= hetero NHTable (3-18) the IR spectrum data of hydrazine formamides(18A-18D)

Compound No.	$v C=N str.cm^{-1}$	υ NH starching	υ CH hydazide
18 A	1600	3300	2780
18 B	1643	3200	2800
18 C	1639	3180	2780
18D	1604	3200	2780

Figure (3-66) the FTIR of compound (18A) (E)-N-(2,3-dimethyl-5-oxo-1-phenyl-2,5-dihydro-1H-pyrazol-4-yl)-N'-(phenylamino)formamidine

Figure (3-67) IR spectrum of compound (18B) (E)-N'-phenyl-N-(pyrimidin-2-yl)formohydrazonamide

Figure (3-68) IR spectrum of compound (18C) (E)-N'-phenyl-N-(pyrazin-2-yl)formohydrazonamide

Figure (3-69) IR spectrum of compound (18D) (E)-N'-phenyl-N-(isoneazid-2-yl)formohydrazonamide

1,3 Dithiolane derivatives were prepared by the reaction of the dithiocarbamate (xanthate) derivatives with α -halo carbonyl compounds the product was identified by TLC and the FTIR HNMR and C¹³NMR spectrum by the disappearance carbonyl band and the disappearance of C=S band at 1200-1100 cm⁻¹ and disappearance of carbonyl band of halo carbonyl at 1680cm⁻¹

The proposed mechanism for this reaction is

Figure (3-70)The C13 NMR of compound 19C N-(4-biphenyl-4-yl-1,3-dithiol-2-yl)pyrazin-2-amine

Figure (3-71)The H NMR spectrum of compound 19C N-(4-biphenyl-4-yl-1,3-dithiol-2-yl)pyrazin-2-amine

Figure (3-72) the IR spectrum of N-(4-biphenyl-4-yl-1,3-dithiol-2-yl)pyrazin-2amine

Summary

- preparation of thiazolidene-4-none (2), imidazolidine-4-ones (3), and oxazepine-4,7-diones (4) from schiff bases (1) by reaction with 2mercaptoacetic acid, glycine and malic anhydride respectively.
- 2- preparation of 1-phenyl-3-hetero-2-yl urea and thiourea from reaction of hetero amines with phenylisocyanate and phenylisothiocyanate respectively.
- 3- preparation of 1,3-oxazolidine -4-one (7) ,3-phenyl-2,3-dihydrothiazol-2-yl hetero amines (8) and 1,3 –oxazolidine-4-one (9) from the reaction of urea or thiourea derivatives (5,6) with ethylchloroacetate ,p-phenylphenacyl bromide respectively.
- 4- Preparation of 2-chloro N-(hetero-2-yl)acetamide (10) from reaction of heterocyclic amines with α-chloroacetyl chloride .
- 5- Preparation of oxazole-2,5- diamines(11) Thiazole-2,5-diamine (12), thiosemicarbazide (13) ,and acetazide derivatives (14) from the reaction of compound (10) with urea ,thiourea ,thiosemicarbazide and sodium azide respectively.
- 6- Preparation of carbamadithionate (15) ,hetero-2-aminoacetylene derivatives , and formide derivatives from the reaction of hetero amines with CS_2 ,propargyl bromide and formic acid respectively .
- 7- Preparation of hydrazinoformamide (18) from reaction of heteroformamide (17) with phenyl hydrazine .
- 8- Preparation of dithiolene (19) by the reaction of carbamadithionate (15) with p-phenyl phenacyl bromide .
- 9- All prepared compounds are elucidated by some spectroscopic methods (FTIR,H NMR ,C¹³ NMR).
- 10- The biological activity of some prepared compounds are evaluated

All reactions are shown in the following schemes

Scheme one

Scheme two