
ABSTRACT ---------------------------------------------------  

 
One of the aims of study the fuzzy set theory is to develop the 

methodology of the formulations and the solutions of problems that are too 

complicated or ill-defined to be acceptable to analysis by conventioal 

techniques. Therefore, fuzziness could be considered as a type of imprecision 

that steams from a grouping of elements into classes that do not have exact 

defined boundaries. Such classes, introduced by Zadeh L. A., in 1965 as a tool 

used to describe the ambiguity, vagueness and ambivalence in the 

mathematical models. 

 This thesis have three objectives. The first objective is to study fuzzy 

sets theory and presenting the proof of some well known results in this theory 

which are either not proof previously or the proofs are not given in details. 

The second objective is to study and proof the existence and uniqueness 

theorem of fuzzy differential equations using Schauder fuzzy fixed point 

theorem. The third objective is to give an initial introduction of the subject of 

Boundary Value Problems of Fuzzy Differential Equations which had not 

been introduced previously, as well as, some methods of solution of such type 

of problems. 
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 Additional theoretical concepts in fuzzy set theory could be discussed 

concerning fuzzy mapping, differentiation and integration of fuzzy function, 

etc.; and therefore are presented in this chapter for completeness. 

In section one, three types of fuzzy function, had been discussed with 

some basic properties of such type of functions. In section two, fuzzy 

mapping with some related properties and propositions are given. In section 

three, differentiation of fuzzy function using two approaches had been 

discussed, which are the differentiation of crisp function on a fuzzy point and 

differentiation of fuzzifying function at a non-fuzzy point.  

Finally, in section four two types of fuzzy integration have been 

discussed,  which are integration of real valued fuzzy function over closed 

interval and integration of crisp real valued function over fuzzy interval since 

of it’s important in the existence and uniqueness theorem of fuzzy differential  

equations. 

 

 

 

 

 

THEROTICAL RESULTS 

        IN FUZZY SETS 
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2.1 FUZZY FUNCTIONS [DUBOIS, 1980]  

           The term “fuzzy function” must be understood in several ways 

according to where fuzziness occurs. We start first with the first type: 

 

2.1.1 Function with Fuzzy Constraint: 

Let X and Y be two universal sets and let f be a classical function            

f: X→  Y maps from a fuzzy domain A
~

 in X into a fuzzy range B
~

 in Y then f  

is a function with fuzzy constraint if for all x∈ X,    ( )( ) ( )B Af x xµ µ≥% % . 

 
Example(2.1): 

Let X =Y = R, and consider two fuzzy sets: 

)}8.0,2(),5.0,1{(
~ =A  and )}9.0,4(),7.0,2{(

~ =B   

and a function xxfy 2)( ==  for all x X∈ . It is clear that the function f 

satisfies the condition   ( ( )) ( )B Af x xµ µ≥% % , for all Xx∈ . 

 
2.1.2 Fuzzy Extension Function: 

    This type of fuzzy functions propagates the ambiguity of the 

independent variables to dependent variables, when f is a crisp function from 

X onto Y. Let A
~

 be a fuzzy subset of X, then )
~

(
~

AfB =  is a fuzzy subset of Y 

with membership function defined by: 

 

1

1

( )

1

sup ( ), ( )

( )

0, ( )

A
x f y

B

x if f y

y

if f y

µ

µ

−

−

∈

−

 ≠ ∅

= 
 = ∅


%

%  

 where f 1− (y) is the inverse image of y. 
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Example (2.2):   

Consider the universal sets RYX ==  and consider a crisp 

function 2)( xxf = , with the domain given by the fuzzy set: 

    A
~

 = {(-2, 0.9), (-1, 0.6), (0, 0.7), (1, 0.8), (2, 0.5)}, 

 The independent variable x has an ambiguity and the fuzziness which is 

propagated to the fuzzy set B
~

, then we can obtain B
~

, as: 

 B
~

= {(4, 0.9), (0, 0.7), (1, 0.8)}. 

 
2.1.3  Single Fuzzifying Function : 

     Fuzzifying function from X onto Y is a mapping from X into the fuzzy 

power set  )(
~

YP (or XI ), i.e., )(
~

:
~

YPXF → , that is to say the fuzzifying 

function is a mapping from an ordinary domain to a fuzzy set of range, 

Fuzzifying function and fuzzy relations coincides with each other in the 

mathematical manner. So, fuzzifying function can be interpreted as a fuzzy 

relation R
~

 defined as follows: 

),()( ~
)(

~ yxy
Rxf

µµ = , where ( )y F x= % , YXyx ×∈∀ ),( . 

 
2.1.4 Fuzzy Bunch  Function: 

          Fuzzifying bunch of crisp functions from X onto Y is defined with fuzzy 

set of crisp function: 

         { }( , ( )| : , :  is the set of natural numbersi i iff f f f X Y i N Nµ= → ∈%
% . 

where ( )if fµ %  is the membership function of the crisp function if . 

 
Example (2.3):  

           X = {1, 2, 3}, { })5.0,(),7.0,(),4.0,(
~

321 ffff =  

 where xxfxxfxxf −=== 1)(,)(,)( 3
2

21 .   
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2.2 FUZZY MAPPINGS  

        A fuzzy mapping is a generalization of the concept of a classical 

mapping which can be understood as follows: 

 

Definition (2.1)[Dubois, 1982]: 

        A fuzzy mapping f
~

 from a crisp set U onto a set V is a mapping from U 

to the power set of non-empty subsets V, namely P
~

(V) − { ∅ }.  

In other words, to each element u ∈ U corresponds a fuzzy set f
~

(u) defined 

on V, whose membership function is 
)(

~
uf

µ , and f
~

(u) is non-empty. 

 
       Other definitions of fuzzy mappings are given also in literatures, namely: 

- An ordinary mapping f from U to V with a fuzzy domain A
~

 and a fuzzy 

range B
~

 such that )(~ f
A

µ  ≤ )(~ f
B

µ . 

- An ordinary mapping f from P
~

(U) to P
~

(V). In other words, it is a 

mapping with the fuzzy argument which maps on fuzzy subset of V.  

- A fuzzy set F
~

 of UV , i.e., a fuzzy set of ordinary mapping from U to V 

each mapping f: U → V is assigned a membership grade )(~ f
F

µ . 

 

Proposition(2.1)[Dubois, 1982]: 

        A fuzzy mapping is strictly equivalent to a fuzzy relation R
~

 such that  

        ,, VvUu ∈∃∈∀   0),(~ =vu
R

µ . 

Proof:  See [Dubois, 1982].  � 
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Remarks (2.1): 

1. As a converse of proposition (2.1), a fuzzy relation can be viewed as a 

fuzzy mapping if  ,.)(~ u
R

µ  determines a nonempty fuzzy set )(
~

uf . 

2. Fuzzy mappings and fuzzy relations have different points of view on 

the same mathematical notion. 

3. Fuzzy set of mappings (FSM’s, for short) are not equivalent to fuzzy 

mapping. Indeed, a natural way of assigning membership grades µ(u,v) 

to possible images v∈V of u∈ U , given an FSM F, is to define     

µ(u,v) = µF(f) whenever v = f(u). Note that µ(u,v) is not uniquely 

defined since there may exist  f, g: U → V, f ≠ g, such that                     

v = f(u) = g(u) and µF(f) ≠ µF(g). 

      We may address the converse problem, namely, it is possible to 

represent a fuzzy mapping in terms of the FSM’s. 

      For the first case, there is at least one natural way of deriving an 

FSM from a fuzzy mapping. 

Starting from the fuzzy mapping VUf →:
~

 for any ]1,0[∈α . We can 

define an ordinary multimapping fα as follows:  

           { }( )( ) | ( )f uf u v v Vα µ α= ≥ ⊆% , for all .Uu∈  

fα  is the α- cut of f
~

. 

Also, fα  can be viewed as a crisp subset of UV , i.e., a set of mappings  

         { }: | , ( ) ( )f f U V u U f u f uα α= → ∀ ∈ ∈  

             { }( ): | inf ( ( ))f uu U
f U V f uµ α

∈
= → ≥% . 

fα  is the α–cut of an FSM generated by fα , denoted )
~

( fγ , such that  
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          ( ) ( )( ) inf ( ( ))f f uu U
f f uγµ µ

∈
=% % , ∀ f …………………………………..(2.1) 

 

Example(2.4) [Najeib S,W., 2002]: 

       Let X = {2, 3, 4,…,25}, a fuzzy mapping f
~

maps the elements in X to 

the power fuzzy set ( )P X% in the following manner. 

        )2(
~
f  = {(2,0.3),(3,0.5),(4,1),(5,0.5),(6,0.3),(9,0.2)} 

        )3(
~
f  = {(3,0.3),(5,0.5),(7,1),(9,0.5),(14,0.3),(16,0.2)} 

        )4(
~
f  = {(4,0.3),(8,0.5),(12,1),(16,0.5),(20,0.3),(25,0.2)} 

Now, given a function f1(x) = 2x, 

        

( ){ }
( ) ( ) ( ){ }
( ) ( ) ( ){ }

{ }

1( ) ( )

1 1 1(2) (3) (4)

(2) (3) (4)

( ) inf ( ) |

inf (2) , (3) , (4)

inf 4 , 6 , 8

inf 1,0,0.5 0

f f x

f f f

f f f

f f x x X

f f f

γµ µ

µ µ µ

µ µ µ

= ∈

=

=

= =

% %

% % %

% % %

 

  For f2(x) = x2 , we have 

          

( ){ }
( ) ( ) ( ){ }
( ) ( ) ( ){ }

2( ) ( )

2 2 2(2) (3) (4)

(2) (3) (4)

( ) inf ( ) |

inf (2) , (3) , (4)

inf 4 , 9 , 16

f f x

f f f

f f f

f f x x X

f f f

γµ µ

µ µ µ

µ µ µ

= ∈

=

=

% %

% % %

% % %

  

          { } 5.05.0,5.0,1inf ==  

   So, { })5.0,(),0,()
~

( 21 fff =γ , where f1(x)= 2x and f2(x) = x2 .  
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      Now, to the second case which is the converse of the above 

construction which is also can be made as expressed in the following 

definition. 

 

Definition(2.2) [Najeib S.W., 2002]: 

       Given a fuzzy set of mappings )
~

( fγ  with ]1,0[:
)

~
(

→X

f
Iγµ , we can 

construct a fuzzy mapping : ( )f X P X→% %  such that )(
~

xf is a fuzzy set 

with membership function defined as follows : 

        )(
)(

~ y
xf

µ = 1

1
( )

( )

1

sup ( ), ( )

0, ( )

f
x f y

f when f y

when f y

γµ
−

−

∈
−

 ≠ ∅


 = ∅

 ..................... (2.2) 

 

Example(2.5) [Najeib S.W., 2002]:    

       In the case of crisp functions  f1, f2, f3, and f4, and let X= {1,2,3}. The 

fuzzy set of mappings will be, for example: 

        { })3.0,(),7.0,(),5.0,(),2.0,()
~

( 4321 fffff =γ  

where 

        f1(x) = x, f2(x) = x2  , f3(x) = ex , f4(x) = x +1. 

Then the image at x = 1, is: 

       






 == )()(sup)(

)
~

()1(
~ xfyfy

ff γµµ  

The possible values of y is {f1(1), f2(1), f3(1), f4(1)} = {1,1,e,2} 

        






= )(),(sup)( 2)

~
(1)

~
(

,
)1(

~

21

ffy
ff

ff
f γγ µµµ  

                       5.0}5.0,2.0{sup
21,

==
ff

 

http://cbs.wondershare.com/go.php?pid=1140&m=db


Chapter Two                                                                                           Theoretical Results in Fuzzy Sets  

 28

7.0)(
)1(

~ =e
f

µ , 3.0)2(
)1(

~ =
f

µ  

So the fuzzy set  )1(
~
f  = {(1,0.5),(2,0.3),(e,0.7)} 

Similarly 

          )2(
~
f = {(2,0.2),(4,0.5),(e2 ,0.7),(3,0.3)} 

          )3(
~
f = {(3,0.2),(9,0.5),(e3 ,0.7),(4,0.3)}. 

Hence: 

          















 ∈== )}
~

(),()(sup{),()(
~

)
~

(
ffxfyfxfxf

f
γµγ ,  for all x∈X. 

 

Lemma (2.1) [Dubois, 1982]: 

 γ(f ̃⊕  g̃) ⊇  γ(f)̃ ⊕  γ(g̃) where f ̃and g̃ are fuzzy mappings : U → P̃(R). 

Proof:  We have  

          ( ) ( )f gγ γµ ⊕ (h(u)) = 
( ) ( ) ( )

sup
h u f u g u= +

 min { inf
u U∈

µf(̃u)(f(u)), inf
u U∈

µg̃(u)(g(u))} 

                                  = 
, : ( ) ( ) ( )

sup
f g h u f u g u= +

inf
u U∈

 min { µf(̃u)(f(u)), µg̃(u)(g(u)) } 

                                  inf
u U∈

≤
, : ( ) ( ) ( )

sup
f g h u f u g u= +

 min ( µf(̃u)(f(u)), µg̃(u)(g(u)) ), 

and since for any mapping  φ:A×B→R. 

          infx  supy
  φ(x,y) ≥ supx infy φ(x,y), 

hence, 

        )()( gf γγµ ⊕ (h(u)) ≤ ( )( )inf ( ( ))f g u
u U

h uγµ ⊕
∈

  

                                ( )( ) ( ).f g u h uγµ ⊕≤ % %
  � 
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 2.3 FUZZY DIFFERENTIATION [DUBOIS, 1982] 

 The fuzzy differentiation depends on the type of the considered function 

in section (2.1), i.e., differentiation of non-fuzzy function over fuzzy interval 

and that of fuzzifying function at non-fuzzy points, may be considered as a 

type of fuzzy differentiation. 

 

2.3.1 Differentiation of Crisp Function on Fuzzy Points: 

By the extension principle, differentiation )
~

(Af ′ of a non-fuzzy function 

f  at fuzzy point 0
~x  [Dubois, 1982b] is defined as: 

0( )( )f x yµ ′ %  = 
0( )
( )x

f x y
Max xµ
′ =

%  

     The next example illustrate the above definition: 
 

Example (2.6): 

Let f(x) = x3 and suppose the fuzzy point is given by: 

       A
~

 = {(−1, 0.4), (0, 1), (1, 0.6)} 

then    f ′(x) = 3x2 and therefore: 

 f ′( A
~

) = {(3, 0.4), (0, 1), (3, 0.6) 

    = {(3, 0.6), ((0, 1)} 

 

2.3.2 Differentiation of Fuzzifying Function Over a Set of Non-Fuzzy 

Points: 

For all x belongs to the ordinary domain D, we will define the 

differentiation of fuzzifying function f
~

 at a non-fuzzy point. Let any α-cut of  

f
~

 be differentiable for an arbitrary x in D, we define differentiation 

( ) )(
~

0xdxfd at an ordinary point x0 as: 
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( ) 0/ ( )( )
df dx x

pµ %  = 
( ) 0/ ( )

( )f
df dx x p

Max f
α

αµ
=

%
%

%  

    The next example illustrates the above definition: 

  

Example (2.7): 

Consider the fuzzifying function: 

f
~

 ={( f1, 0.4), (f2, 0.7), (f3, 0.4)} 

where 1 2,f f  and 3f  are crisp functions defined by:  

f1(x) = x, f2(x) = x2 and f3(x) = x3 + 1 

Then 1 2( ) 1, ( ) 2f x f x x′ ′= = and 2
3 ( ) 3f x x′ = . 

Differentiation of this fuzzifying function at x0 = 0.5 is obtained to be as: 

1 (0.5) 1f ′ = , when α = 0.4 

2 (0.5) 1f ′ = , when α = 0.7 

3 (0.5) 0.75f ′ = , when α = 0.4. 

Hence: 

)(
~

0x
dx

fd
 = max {(1, 0.4), (1, 0.7), (0.75, 0.4)} 

= {(1, 0.7),(0.75, 0.4)}. 

 

       Another type of fuzzy differentiation which is called the L- R type could 

be used also in differentiating fuzzy functions (for more details, see, e.g., 

[Dubois, 1982]). 
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2.3.3 Algebraic Properties of Differentiation  

As in non-fuzzy differentiation so many properties are given and proved 

successfully. Therefore, similarly several algebraic properties undertaking 

fuzzy differentiation could be given. The proofs will be given here for the 

sake of completeness. 

We start first with the following theorem:  

Theorem (2.1 ): 

The extended sum ⊕ of the derivatives of the real valued functions f and 

g at the fuzzy point 0x%  is defined by: 

f ′( 0
~x ) ⊕ g′( 0

~x ) ⊇ (f ′ + g′)( 0
~x ) 

Proof: See [Dubois, 1982].  � 

 

The equality, in the last theorem, holds also which is equipped if certain 

conditions are given on f ′ and g′, as it is illustrated in the next theorem, which 

is also called the necessary condition for the other direction of theorem (2.1). 

 

Theorem (2.2): 

If f ′ and g′ are continuous and both non-decreasing (or non-increasing), 

then: 

f ′( 0
~x ) ⊕ g′( 0

~x ) = (f ′ + g′)( 0
~x ) 

 
Proof: See [Dubois, 1982].  � 

 

       The next theorem illustrates the differentiation of product of two 

functions, which is given in [Dubois, 1982] and other literatures without proof 
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(to the best of our knowledge); which will be presented here for 

completeness:  

Theorem (2.3): 

1. If f and g are crisp functions from X to Y and 0
~x  is a fuzzy point in X then: 

        (fg)′( 0
~x ) = (f′g + fg′)( 0

~x ) ⊆ [f ′( 0
~x )  g( 0

~x )] ⊕ [f( 0
~x )   g′( 0

~x )]. 

2. If f, g, f ′ and g′ are continuous, f and g are both positive, and f ′ and g′ are 

both non-decreasing (f, g are negative and f ′, g′ are non decreasing), then: 

        (fg)′( 0
~x ) = [f ′( 0

~x )   g( 0
~x )] ⊕ [f( 0

~x )   g′( 0
~x )] 

Proof: 

1. According to the properties of fuzzy set, we must prove that: 

        ( ) [ ] [ ]0 0 0 00
( ) ( ) ( ) ( )( )

( ) ( ),f x g x f x g xf g x
y y y Yµ µ′ ′ ′⊕≤ ∀ ∈

% % % % %
.  

Now, using the extension principle to the right hand side, one can get: 

[ ] [ ] 0 00 0 0 0( ) ( ) ( ) ( )
, : ( ) ( ) ( ) ( )

( ) sup min sup ( ), sup ( )x xf x g x f x g x
u v y u v u f s g s v f t g t

y s tµ µ µ′ ′⊕
′ ′= + = =

  =  
  

% %% % % % 

                                                 

{ }0 0
, : ( ) ( ) ( ) ( )

sup min ( ), ( )x x
s t y f s g s f t g t

s tµ µ
′ ′= +

= % % ..(2.3) 

Also, using the extension principle to the left hand side, one can get: 

{ }0 0 0 0( ) ( ) [ ]( )
: ( ) ( ) ( ) ( )

( ) ( ) sup min ( ), ( )f g x f g fg x x x
x y f x g x f x g x

y y x xµ µ µ µ′ ′ ′+
′ ′= +

= =% % % %

                                                   
0

: ( ) ( ) ( ) ( )
sup ( )x

x y f x g x f x g x
xµ

′ ′= +
= % ……....(2.4) 

 

Now, from equations (2.3) and (2.4), we have: 
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0
: ( ) ( ) ( ) ( )

sup ( )x
x y f x g x f x g x

xµ
′ ′= +

% ≤ { }0 0
, : ( ) ( ) ( ) ( )

sup min ( ), ( )x x
s t y f s g s f t g t

s tµ µ
′ ′= +

% %  

Since 0x%  is a fuzzy point which has a supremum value therefore, 

      (fg)′( 0
~x ) = (f ′g + fg′)( 0

~x ) ⊆ [f ′( 0
~x )   g( 0

~x )] ⊕ [f( 0
~x )   g′( 0

~x )]. 

 

2. Since f ′ and g′ are continuous on [a, b] and both non decreasing in            

[a, b], then: 

∀ s, ∀ t > s, ∃ x ∈ [s,t] ⊆ [a,b], such that: 

f ′(x) g(x) + f  ́(x) g′(x) = f ′(s) g(s) + f(t) g′(t). 

Hence in particular: 

f ′(x) g(x) + f(x) g′(x) ≤ f ′(s) g(s) + f(t) g′(t) 

taking x = s, we have: 

 f ′(s) g(s) +f(s) g′(s) ≤ f ′(s) g(s) +f(t) g′(t) ≤  f ′(t) g(t) + f(t)g′(t) 

from the convexity of 0x% . 

)(
0

~ xxµ  ≥ min { )(
0

~ sxµ , )(
0

~ txµ } 

Hence: 

[ ] [ ]0 0 0 0( ) ( ) ( ) ( ) ( )f x g x f x g x yµ ′ ′ ′⊕ =
% % % 

 

                              0 0
, : ( ) ( ) ( ) ( )

sup min sup ( ), sup ( )x x
u v y u v u f s g s v f t g t

s tµ µ
′ ′= + = =

  
 
  

% %  

     
0 0

: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
sup min sup ( ), sup ( )x x

x y f x g x f x g x u f x g x v f x g x
x xµ µ

′ ′ ′ ′= + = =

  =  
  

% %
,  x = s = t. 

                                    = 
0

: ( ) ( ) ( ) ( )
sup ( )x

x y f x g x f x g x
xµ

′ ′= +
% . 
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Therefore;  

 [ ] [ ]0 0 0 0( ) ( ) ( ) ( ) ( )f x g x f x g x yµ ′ ′ ′⊕ =
% % %  0

: ( ) ( ) ( ) ( )
sup ( )x

x y f x g x f x g x
xµ

′ ′= +
% . 

But; 

)(sup)()(
000

~
)().()().(:

)~](..[)~().( yyy x
xgxfxgxfyx

xgfgfxgf µµµ
′+′=

′+′′ ==  

Then: 

        0 0 0 0 0( ) ( ) [ ( ) ( )] [ ( ) ( )].f g x f x g x f x g x′ ′ ′= ⊕% % % % %    �     

 

2.4 FUZZY INTEGRATION  

       The fuzzy integration is one of the most important part of the analysis of 

fuzzy set theory. Quite different suggestions have been made to define fuzzy 

integrals, so there are three types of fuzzy integration which are: 

1. Integration of real fuzzy function over crisp closed interval. 

2. Integration of real function over fuzzy interval. 

3. Integration of real fuzzy function over fuzzy interval. 

        The first two of the above three types will be discussed next: 

 

2.4.1 Integration of Real Fuzzy Function over Crisp Closed Interval 

         [Dubois,   1982] 

We shall now consider a fuzzy function  f% , which shall be integrated 

over the crisp interval [a,b]. 
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Definition(2.3): 

             Let f
~

: X →F
~

(R), the integral of f
~

over X = [a,b] denoted by        

∫
X

dttf )(
~

 is defined levelwise, as follows:   

             ( ) ( )
X X

f t dt f t dtα
α

 
= 

 
 
∫ ∫% , for all   0 ≤ α ≤ 1         

                                 ( ) , ( )
X X

f t dt f t dt
α α− +

 
=  
 
 
∫ ∫ .………………………(2.5) 

 

Remark (2.2): 

   If the fuzzy integration over the interval X=[a,b] is reversed from b to a 

it is easily seen that : 

       .
b a

X a b

f f f= = −∫ ∫ ∫% % %  

where  ∫−
b

a

f
~

 has for a membership function  
∫−
a

b

f
~

µ (u) = 
∫
b

a

f
~

µ  (-u) . 

 

       Following, some properties of the integration of fuzzy function over crisp 

interval which are given in [Dubois, 1982]. 

 1. ( )
X X X

f g f g
   

⊕ ⊇ ⊕   
   
   

∫ ∫ ∫% %% % , where f ̃and g̃ are real fuzzy functions from 

    the closed interval X to R, with bounded support. 

2. Under the commutativity condition for 
X
∫ and ⊕ , 
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   ( )
X X X

f g f g
   

⊕ = ⊕   
   
   

∫ ∫ ∫% %% % ……………………………………………..(2.6) 

 

Example(2.8): 

       Consider the bunch fuzzy function given in (2.1.4), by: 

f ̃ = {(f1, 0.4), (f2, 0.7), (f3, 0.4)}  

where 

f1(x) = x,  f2(x) = x
2
,  f3(x) = x+1  

and to integrate this bunch function over [1,2], we perform this as follows: 

i) Integration at  α = 0.7, then     

        f = f2(x) = x
2 
 

     and hence 

    Iα(1,2) = dxx∫
2

1

2 = 
2

1

3

3

1


x  = 
3

7 . 

Hence, the integration result is with possibility 0.7, is given by:  

    Ĩ0.7(1,2) = {(
3

7 , 0.7)}. 

ii) Integration at α  = 0.4, there are two functions  

f
+ 
= f1(x) = x and f 

- 
= f3(x) = x+1, then for  

       I +
α (1,2) = ∫

2

1

xdx = 
2

1

2

2

1


x = 
2

3 . 

      and 
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       Iα − (1,2) = 
2

1

2
2

1 2

1
)1( 

+=+∫ xxdxx = 
2

5  

The integration results are with possibility 0.4. Then, 

    Ĩ0.4(1,2) = {(
2

3 , 0.4),( 
2

5 , 0.4)}. 

       Finally, we have the total integration.  

       Ĩ(1,2) = {(
3

7 , 0.7), (
2

3 , 0.4),( 
2

5 , 0.4)}   

 

2.4.2 Integration of a (Crisp) Real Valued Function Over a Fuzzy Interval                

[Klir, G. J., 2000] 

A fuzzy domain D
~

 of the real line R is assumed to be bounded by two 

normalized convex fuzzy sets. The membership function of each are )(~ xaµ  

and )(~ x
b

µ  respectively, where )(~ xaµ  and )(~ x
b

µ  can be interpreted as the 

degree (of confidence) to which x can be considered a lower or upper bounds 

of D
~

. If 0a  and 0b  are the lower/upper limits of the supports of a~ or b
~

, then 

a0 or b0 are related to each other by 0a  = Inf S(a~) ≤ Sup S(b
~

) = 0b . 

1

0

D

a~ b
~

R0a
0b            

Fig.(2.6) Fuzzily bounded interval. 
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Definition (2.4)[Klir, G. J., 2000]: 

Let f be a real valued function which is integrable in the interval J = [a0, 

b0], then according to the extension principle the membership function of the 

fuzzy integral ∫
D

f
~

 is given by: 

{ })(),()( ~~

:,
~

yxMinSupz
ba

fzJyx

f y

x

D

µµµ
∫

∫
=∈

= . 

Some Properties of The Integration of Crisp Function over Fuzzy Interval 

[Klir, G. J., 2000]: 

         1. Let f be any function  f : D → R, which is integrable on D, then: 

              ∫
D

f  =  F(b̃) Θ F(ã). 

where Θ denotes the extended subtraction. 

        2. Let f and g be any two functions f, g : I → R, which are 

integrable on I, then: 

∫ +
b

a

gf
~

~

)(  ⊆ ∫
b

a

f
~

~

 ⊕ ∫
b

a

g
~

~

 

where ⊆  denotes the usual fuzzy set inclusion (
BA

BA ~~
~~ µµ ≤⇔⊆ ) and ⊕ 

denotes the extended addition. 

         3. If f, g : I →R+ or f, g : I → R−, then: 

∫ +
b

a

gf
~

~

)(  = ∫
b

a

f
~

~

 ⊕ ∫
b

a

g
~

~

 

The following examples illustrate fuzzy integration and its properties:  
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Example (2.9): 

Let: 

a~ = {(4, 0.8), (5, 1), (6, 0.4)} 

b
~

 = {(6, 0.7), (7, 1), (8, 0.2)} 

and, f(x) = 2, x ∈ [a0, b0] = [4, 8] 

The problem is to find the fuzzy integration of f(x) over J = [4, 8]. The 

following table illustrate these results.   

 

Table (2.1) 

Integration of  f(x)=2, over an interval (a,b) with membership function 

(a, b) 2a2bdx2
b

a

−=∫  Min { (a)µa~ , (b)µb
~ } 

(4, 6) 4 0.7 

(4, 7) 6 0.8 

(4, 8) 8 0.2 

(5, 6) 2 0.7 

(5, 7) 4 1.0 

(5, 8) 6 0.2 

(6, 6) 0 0.4 

(6, 7) 2 0.4 

(6, 8) 4 0.2 

 

 

and by using the definition (2.4), then: 

∫
D

f
~

 = {(0, 0.4), (4, 0.7), (4, 1), (6, 0.8), (8, 0.2)}. 
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Example (2.10): 

Let: 

f(x) = 2x − 3, g(x) = −2x + 5 

and 

a~ = {(1, 0.8), (2, 1), (3, 0.4)} 

b
~

 = {(3, 0.7), (4, 1), (5, 0.3)} 

so: 

∫
b

a

dxxf )(  = x2 − 3x ).3()3( 22 aabb
b

a
−−−=  

∫
b

a

dxxg )(  = −x2 + 5x ).5()5( 22 aabb
b

a
+−−+−=  

( )∫ +
b

a

dxxgxf )()(  = 2x ).22( ab
b

a
−=  

Then: 

∫
b

a

f
~

~

 = {(0, 0.4), (2, 0.7), (4, 0.4), (6, 1), (10, 0.3), (12, 0.3)} 

∫
b

a

g
~

~

 = {(−6, 0.3), (−4, 0.3), (−2, 1), (0, 0.8), (2, 0.7)} 

        ∫
b

a

f
~

~

 ⊕ ∫
b

a

g
~

~

 = {(−6, 0.3), (−4, 0.3), (−2, 0.4), (0, 0.7), (2, 0.7), (4, 1), (6,     

0.8), (8, 0.7), (10, 0.3), (12, 0.3), (14, 0.3)} 

∫ +
b

a

gf
~

~

)(  = {(0, 0.4), (2, 0.7), (4, 1), (6, 0.8), (8, 0.3)} 

and it is clear that: 

∫
b

a

f
~

~

 ⊕ ∫
b

a

g
~

~

 ⊇ ∫
b

a

f
~

~

 + ∫
b

a

g
~

~

. 
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 Fuzzy differential equations with initial or boundary conditions are of 

great importance in applied mathematics, which have some difficulties in 

their solution. Henceforth, this chapter deals first with the statement and proof 

of the existence and uniqueness theorem of fuzzy differential equations using 

Schauder fuzzy fixed point theorem, which is represented in section (3.2). 

Therefore, this chapter consists, the solution of fuzzy linear initial value 

problem, and modifying the approach to solve the non-homogenous and 

nonlinear fuzzy initial value problems. 

 Also, this chapter consists of an introduction to other types of fuzzy 

differential equations with boundary conditions which is solved by using the 

shooting method to solve numerically boundary value problems. 

 

3.1 FUZZY DIFFERENTIAL EQUATIONS 

 Most dynamical real life problems could be formulated as a 

mathematical model, in which most of them are formulated either as system 

of ordinary or partial differential equations, especially in mathematical 

physics. Therefore, studies could be oriented toward two directions. The first 

direction is the evaluation of the solution and modifying methods to find such 

SOLUTION OF FUZZY 

DIFFERENTIAL 

EQUATIONS 
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solution. While the second orientation is to study the stability of solutions 

without evaluating this solution explicitly. 

 In connection with these studies of differential equations a new field 

appeared recently in the late of 20-th century, which is the so called fuzzy 

differential equations.   

Consider the fuzzy differential equations:  

( ) ( , )y t f t y′ = , 0 0( )y t y%  , t D∀ ∈ ……………………………….(3.1) 

Where 0 0,t y%  are given, It’s clear that the solution will depend on the fuzzy 

initial and hence the solution y(t) will be fuzzy and also f  is a given function. 

 Before studying the solution of fuzzy differential equations, we will 

first study the existence and uniqueness theorem of fuzzy differential 

equations. 

 First, recalling the following two definitions in fuzzy set theory.      

 
Definition (3.1) [Al-Hamaiwand S.M., 2001]:  

For every mapping YXT →: , then the fuzzy mapping * *:T X Y→  is 

defined as follows: 

 { }1( ) sup ( ) | ( )AT A w w T xµ −= ∈%
%   

where A
~

 is a fuzzy set and ( )T w x= . If *X  and *Y  are fuzzy Banach spaces, 

then T is called fuzzy operator. 

Also, if 1 2 1 2( ) ( ) ( )T c A c B c T A c T B+ = +% %% % , , XA B I∀ ∈% %  and Rcc ∈21,  or C, 

then T%  is called linear operator. 

 

Definition (3.2)[Najeib S.W., 2002]: 

A fuzzy function )(:
~

RFXF →  is called levelwise continuous at Xt ∈0  

if the mapping Fα  is continuous at 0tt =  with respect to the Hausdorff metric 

HD on F(R) for all ]1,0[∈α . 
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3.2 THE EXISTENCE AND UNIQUNESS THEOREM OF 

FUZZY DIFFERENTIAL EQUATIONS USING 

SCHAUDER FUZZY FIXED POINT THEOREM 

  In this section, the existence and uniqueness theorem of fuzzy 

differential equations is considered using Schauder fuzzy fixed point theorem. 

The proof of the theorem is given by transforming the fuzzy differential 

equation to an alternative Volterra fuzzy integral equation and then satisfying 

the conditions of the Schauder fuzzy fixed point theorem. 

   First, recall the fuzzy version of Schauder fixed point. 

 
Theorem (3.1) (Schauder Fuzzy Fixed Point Theorem) [Al-Hamaiwand 

S.M., 2001]: 

 Let XI  be a non-empty, closed, bounded and convex fuzzy subset of a 

fuzzy Banach space B, and suppose that : X XT I I→  is a compact fuzzy 

operator, then T
~

 has a fuzzy fixed point.  

 
 The following definitions and remarks permit us to establish the 

existence of the solution of the fuzzy initial value problems by proving the 

existence of a solution of the fuzzy integral equation. This is important, 

because integrals are in general easier to estimate than derivatives, also 

integral equations could carry iterations rather than differentiation. 

 
Definition(3.3) [Park and Han, 1999]: 

A mapping y : I → En is a solution to the problem ( ) ( , ( )),y t f t y t′ =  

0 0( ) ,y t y% , if it is levelwise continuous and satisfy the integral equation: 

 

0

0( ) ( , ( )) ,
t

t

y t y f s y s ds= + ∫% 0[ , ]t t t∀ ∈ ………………………………(3.2) 
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Definition (3.4) [Park and Han, 1999]: 

A function [f]α which satisfies an inequality of the form  

d([f(t, x2)]
α, [f(t, x1)]

α) ≤ Ld([x2]
α, [x1]

α) ………………………..(3.3) 

for all (t, x1), (t, x2) in a region D is said to satisfy a Lipschitz condition to 

[ ]f α on D, where d represent the Hausdorff distance  

 
Remark (3.1) [Park and Han, 1999]: 

 Define δ  to be the smaller of the two positive numbers of a and M
b , 

then the fuzzy integral equation (3.2) is defined on the interval  

 { }0:I t t tδ δ= − ≤   

and on this interval 0 0( )y t y M t t b− ≤ − ≤%  ………….…………..…….(3.4) 

 
Theorem (3.2) (The Existence Theorem): 

 Consider the fuzzy differential equation  

 ( ) ( , )y t f t y′ = , 0 0( )y t y%  , 0t t T≤ ≤ , T is fixed…………………….(3.5) 

and suppose A%  be an open fuzzy subset of [ ( ), ]nD R C R S Rα+≡ × × , where   

{ }αµα <∈= )~,~(:)( 0
* yydRS n  and : nf A R→%  be levelwise continuous and 

bounded function for any 0( , ( ))t y t A∈ % , then there exist a solution to (3.5) 

which passes through 0( , )t y .  

Proof: 

 The proof is based on Schauder fuzzy fixed point theorem (3.1). First of 

all, in order to fix our symbols, define the following sets: 

 { : 0 }TI t R t T= ∈ ≤ ≤  and { : 1 }B Cβ ψ ψ β= ∈ ≤ +% % . 

and suppose that f is bounded function at 0t , that is, there exist  +∈ RM , 

such that:  
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 0( , )f t y M≤ ……………………………………………………..… (3.6) 

Since f  is levelwise continues, then there exist 0, >βδ , such that:  

 0( , )f t t y Mψ+ + ≤% , where ( , ) Tt I Bβψ ∈ ×%  ……………………... (3.7) 

  Now, since our proof depends on the Schauder fuzzy fixed point 

theorem, then it sufficient to prove that XI  is a non empty, closed, bounded, 

and convex fuzzy subset of a fuzzy Banach space B and then the fuzzy 

operator : X XT I I→%  is a compact fuzzy operator. 

Another set which will be constructed that contains all fuzzy subsets, such 

that, for any * *, Rα β ∈  let:  

{ }* *
* * *

( , ) ( ) [ ( ), ]; (0) 0, ( ) ,
nA t C R S R t B t I

β α
α β ζ α ζ ζ+= ∈ × ∈ ∈% % %  

 Let ϕ~ be another fuzzy function satisfying *( ) [ ( ), ]nt C R S Rϕ α+∈ ×%  

Such that *0 0 0(0) ( ), ( ) ( ),t t t t t I
α

ϕ ϕ ϕ ϕ= + = ∈% % % %  

Suppose that we have chosen ββ <* , and  

 *
* * *

0( ) ( ) , ,t t t t I M
α

ϕ ϕ β β α β+ − ≤ − ∈ ≤% %  …………...………… (3.8) 

Hence 

 0 0( ) ( ) ( ) ( ) ( ) ( )t t t t t t t tζ ϕ ϕ ζ ϕ ϕ+ + − ≤ + + −% %% % % %  

         * * 1β β β β β≤ + − = < +  

Now, using (3.7) we have 

 ( ) *
* *

0 0, ( ) ( ) , , ( , )f t t t t t M t I A
α

ζ ϕ ζ α β+ + + ≤ ∈ ∈% %% . 

Now, we will define a fuzzy operatorT
~

, as follows: 

 * * * *: ( , ) [ ( ), ] ( , )nT A C R S R Aα β α α β+→ × ⊆% . 

and 
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*0
0

( , ( )) ,

( ( ))

0 , 0

t

y f s s ds if t I

T t

if t

α
ζ

ζ


+ ∈


= 
 =




∫ %%

%%  

Since the fuzzy fixed points of T
~

 in * *( , )A α β  is a solution to the fuzzy 

differential equation with the following constraint: 

 0 0( ) ( ) ( )y t t t t tζ ϕ+ = + +% % . 

 Now, to prove that * *( , )A α β  is a closed, bounded and convex fuzzy 

subset of *[ ( ), ]nC R S Rα+ × . 

It is clear that * *( , )A α β  is closed and bounded fuzzy set (by construction). 

To prove that * *( , )A α β  is a convex set of fuzzy sets. 

 Let * *
1 2( ), ( ) ( , )t t Aζ ζ α β∈% % , then 

 *
1 [ ( ), ]nC R S Rζ α+∈ ×% , *1 1(0) 0, ( )t B

β
ζ ζ ∈% % . 

       *
2 [ ( ), ]nC R S Rζ α+∈ ×% , *2 2(0) 0, ( )t B

β
ζ ζ ∈% % . 

To prove  

 * *
1 2( ) ( ) (1 ) ( ) ( , )t t t Aζ λζ λ ζ α β∗ = + − ∈% % % . 

i.e., to prove ( )tζ ∗ ∈% *[ ( ), ]nC R S Rα+ × , *(0) 0, ( )t B
β

ζ ζ∗ ∗ ∈% % . 

Now, since *
1 2( ), ( ) [ ( ), ]nt t C R S Rζ ζ α+∈ ×% %  and since the linear combination 

of levelwise continuous functions are also levelwise continuous, hence: 

 *( ) [ ( ), ]nt C R S Rζ α∗ +∈ ×% . 

and also  

 1 2(0) (0) (1 ) (0)ζ λζ λ ζ∗ = + −% % %  

          .0 (1 ).0 0λ λ= + − = . 

http://cbs.wondershare.com/go.php?pid=1140&m=db


Chapter Three                                                                            Solution of Fuzzy Differential Equations                                     

 47

Moreover, to prove that * *( ) ( , )t Aζ α β∗ ∈%  i.e., to prove *( ) 1tζ β∗ ≤ +%  

 1 2( ) ( ) (1 ) ( )t t tζ λζ λ ζ∗ = + −% % %  

   1 2 1 2( ) (1 ) ( ) ( ) 1 ( )t t t tλζ λ ζ λ ζ λ ζ≤ + − = + −% % % %  

                     * * * *(1 ) 1λβ λ β β β≤ + − = < + . 

So, * *
1 2( ) ( ) (1 ) ( ) ( , )t t t Aζ λζ λ ζ α β∗ = + − ∈% % %  

Hence, * *( , )A α β is a convex set. 

 Now, since the composition of two levelwise continuous functions is 

levelwise continuous, hence ( ( ))T tζ%%  is also levelwise continuous and since 

( (0)) 0T ζ%%   then   ( ( ))T tζ ∈%% *[ ( ), ]nC R S Rα+ × . 

Now, to prove *( ( ))T t B
β

ζ ∈%% ; we have: 

 0
0

( ( )) ( ) ( , ( ))
t

T t y t f s s dsζ ζ= + ∫% %% %  

                

0
0

0

* *

( ) ( , ( ))

1 ( , ( ))

1

1 1

t

t

y t f s s ds

f s s ds

Mt

M

ζ

ζ

α β

≤ +

≤ +

≤ +

≤ + ≤ +

∫

∫

%%

%  

Hence,  *( ( ))T t B
β

ζ ∈%% , i.e.,  * *( ( )) ( , )T t Aζ α β∈%% . 

Now, to prove T
~

 is levelwise continuous on ),( ** βαA . 

Let *1,t t I
α

∈  such that 1t t δ− < , then:   

 
1

1 0 0
0 0

( ( )) ( ( )) ( )
tt

T t T t y t f ds y f dsζ ζ− = + − −∫ ∫% %% % % %  
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1

1 1 1

0

0

1 1( )

t

t

t t t

t t t

f ds f ds

f ds f ds Mds

M t t M t t ε

= +

= ≤ ≤

= − ≤ − ≤

∫ ∫

∫ ∫ ∫  

If )(1 εδε =<−
M

tt . 

Hence, )),((
~ ** βαAT  is contained in a compact subset of ]),([ * nRSRC α×+ . 

Now, let { }kζ%  be a sequence in * *( , )A α β  such that { }kζ ζ→% % , since f  is 

levelwise continuous on a compact set, then f is uniformly continuous on a 

compact subset of it’s domain. Hence:  

 0 0 0 0( , ( ) ( )) ( , ( ) ( ))
k

f t t t t t f t t t t tζ ζµ ϕ µ ϕ+ + + → + + +% %% % , *T
t I∀ ∈  

and the convergence is uniformly in *t I
α

∈  

Hence, ( ( ))kT tζ%%  is convergent uniformly for every t . 

i.e., the sequence ( ( ))kT tζ%%  convergent to a point * * *( , )x A α β∈ . 

i.e., T%  is a pointwise convergent in * *( , )A α β . 

i.e., T%  is levelwise continuous and maps compactly, the closed bounded and 

convex subset of * *( , )A α β  into a subset of it, i.e., * * * *: ( , ) ( , )T A Aα β α β→%  

is compact  

Hence using Schauder fuzzy fixed point theorem, T
~

 has a fixed point which 

shows that the fuzzy fixed point *x  is the desired solution of the fuzzy 

differential equation.    ■ 

 
 Under the same conditions of the last theorem additional considerations 

are given in order to guarantee the uniqueness of the solutions as it is seen in 

the next theorem: 
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Theorem (3.3) (The Uniqueness Theorem): 

 Let A%  be an open fuzzy subset of *[ ( ), ]nR C R S Rα+× ×  and suppose 

that : nf A R→%  be levelwise continuous and )~,( ϕtf  be Lipschitzian with 

respect to ϕ~ in every compact fuzzy subset of A%  with Lipschitz constant K. 

If 0( , )x Aϕ ∈ %% , then the fuzzy differential equation (3.1) has a unique solution  

passes through )~,( 0 ϕx  where * 1KT < . 

Proof: 

Consider TI  and Bβ  which are defined as in theorem (3.1), and let 

( ), ( )x t y t  be any two functions related to the solution of the fuzzy differential 

equation on  ]),([ * nRSR α×+  with 0 0( ) ( ) ( )x x t y xϕ= =% , hence: 

 

0 0

( ) ( ) ( , ( )) ( , ( ))
t t

t t

x t y t f s x s ds f s y s ds− = −∫ ∫  

          

0

0

0

[ ( , ( )) ( , ( ))]

( , ( )) ( , ( ))

( ) ( )

t

t

t

t

t

t

f s x s f s y s ds

f s x s f s y s ds

K x s y s ds

= −

≤ −

≤ −

∫

∫

∫

 

          
0 0

*

1 1
sup ( ) ( ) sup ( ) ( )

x s x s
KT x s y s x s y s ε

≤ ≤ ≤ ≤
≤ − < − <  

We can choose *T  small as necessary to insure that 1* <αK , for all *t I
α

∈ .  

Hence *( ) ( ),x t y t t I
α

= ∀ ∈ . 

This completes the proof of the theorem.     � 
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3.3 SOLUTION OF LINEAR HOMOGENOUS FUZZY SYSTEM 

[PEARSON D.W., 1997]   

Consider the following fuzzy differential equation 

  0( ), (0)x f x x x′ = %  

where the structure of the equation is known, represented by a given vector 

field f, but the model parameters on the initial value 0
~x  are not known exactly 

and the initial condition is a fuzzy number. 

 
3.3.1 Solution of Fuzzy Differential Equations [Pearson D.W., 1997]: 

 In this subsection, we shall study, as a survey, a method for solving 

linear system of fuzzy differential equations. 

 Consider the problem of solving the fuzzy linear homogenous 

differential equation:  

0, (0)x Ax x x′ = % …………………………………….…….………...(3.9) 

where x  ∈ Rn, A is n n×  matrix and 0x%  is the initial condition which is 

described by a vector made up of n-fuzzy numbers.  

A fuzzy number 0x% , can be prescribed easily by its α-level sets, as: 

[ 0x ]α = {s : 0x%  (s) ≥ α}, 0≤α ≤ 1. 

Due to the properties of the so defined fuzzy numbers, corresponds to an 

interval for each given value of α: 

[ 0x ]α = [ 00,x x ] 

where 0x  and 0x  represents the lower and upper bounds of the fuzzy number 

0x% . 

Suppose that each element of the vector x in (3.9) at time t is a fuzzy 

number, where: 
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( )kx t  = [ ( )kx tα , ( )kx tα ], k = 1, 2,…,n ………………………………....(3.10) 

it is shown that the evolution of the system (3.9) can be described by 2n-

differential equations for the end points of the intervals, this is for each given 

time instant t and value of α. These equations for the end points of the 

intervals are: 

)(txk

α&  = Min{ ∑
=

n

j

j
kjua

1

 : ui ∈ [ )(txi
α , )(tx i

α ]} 

   ………………...(3.11) 

)(txk
α
&  = Max {∑

=

n

j

j
kjua

1

 : ui ∈ [ )(txi
α , )(tx i

α ]} 

with initial conditions )0(kxα  = 0

kxα , )0(kxα  = 0
kxα . 

The vector in (3.9) is linear, then equation (3.11) could be written as: 

( )kx tα′  = 
1

n
j

kj
j

a u
=
∑ ………………………………………………….(3.12) 

where: 

uj = 
( ), 0

( ), 0

j
kj

j
kj

x t if a

x t if a

α

α

 ≥


<

 

and  

( )kx tα′  = 
1

n
j

kj
j

a u
=
∑  ………………………………………………………..(3.13) 

where: 

uj = 
( ), 0

( ), 0

j
kj

j
kj

x t if a

x t if a

α

α

 ≥


<
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This means, for example, for any [0,1]α ∈  and k = 1, 2, 3, (i.e., 3×3 

system), then six differential equations will be obtained where two of them 

are for each k and each α  related to one of end points, in other words: 

( )kx tα  = [ ( )kx tα , ( )kx tα ] = 

1 1

2 2

3 3

( ) ( )

( ) ( )

( ) ( )

x t x t

x t x t

x t x t

αα

αα

αα

 
 
 
 
 
 

 

The method for solving directly linear fuzzy system is meaningless; therefore 

an introduction of the representation of the fuzzy system using complex 

numbers is necessary     

        In order to solve the fuzzy system of differential equations: 

0, (0)x Ax x x′ = %  

the utility of complex numbers will be used. 

 Recall that, there are two equations of the type (3.12) and (3.13) which 

could easily be written out explicitly. 

Now, define new complex variables as follows: 

kzα  = ( )kx tα  + i ( )kx tα  ……………………………………………...(3.14) 

and the two operations carried on the complex numbers as: 

       (a) Identity operation which is given by e, such that: 

e kzα  = kzα  ……………………………………………………….(3.15) 

       (b) The operator g corresponding to a flip about the diagonal in the 

complex plane, i.e. 

g( kzα ) = g( ( )kx tα  + i ( )kx tα ) = ( )kx tα  + i ( )kx tα  ………………...(3.16) 

where g2 = e and gk = e if k is even and gk = g if k is odd, and therefore:  
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(ug) kzα  = (gu) kzα  for u ∈ R  ……………………………………(3.17) 

Using (3.14), (3.15) and (3.16), yields: 

kzα  = ( )kx tα  + i ( )kx tα  

and hence:  

kzα′  = ( )kx tα′  + i ( )kx tα′  

but ( )kx tα′  = 
1

n
j

kj
j

a u
=
∑  and  i ( )kx tα′  = i 

1

n
j

kj
j

a u
=
∑ . Then: 

( )kx tα′  + i ( )kx tα′  = 
1

n
j

kj
j

a u
=
∑ + i 

1

n
j

kj
j

a u
=
∑  

Hence: 

kzα′  = akj(u
j + i uj) 

= 






<+

≥+

0),(

0),(

kj
kk

kj

kj
kk

kj

aifxixa

aifxixa

αα

αα
 

= 






<

≥

0),(

0,

kj
k

kj

kj
k

kj

aifgza

aifza

α

α
 

Now, using equation (3.17), whenever: 

kzα′  = 






<

≥

0,

0,

kj
k

kj

kj
k

kj

aifzga

aifza

α

α
 

and in order to simplify the last formula, let: 

bij = 




<

≥

0,

0,

ijij

ijij

aifga

aifea
 ……………………………………………(3.18) 
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then:  

        kzα′  = 






<

≥

0,

0,

kj
k

ij

kj
k

ij

aifzb

aifzb

α

α
 

or in matrix form: 

kzα′  = B kzα  

with initial condition zα(0) = zα0.  

Now, x Ax′ = , which has the solution x = ceAt and since x(0) = x0, then 

x(t) = x0 e
At. Similarly:  

zα(t) = zα0 e
Bt …………………………...…………………………...(3.19) 

but since the problem is to evaluate the exponential of the matrix B, then 

certain elements are multiplied by the flip operators (e and g, where bij = eaij 

if aij ≥ 0 and bij = gaij if aij < 0). This can be achieved for small values of t 

writing the matrix B as the sum of two matrices, one of which is multiplied by 

the operator e and the other by g, for example: 

B = eC + gD 

and for small t, we have: 

exp(tB)zα0 = exp(t(eC + gD))zα0 

= exp(teC) exp(tgD) zα0 + O(t) 

where O(t) is a function of t, such that O(t)/t = 0 as t → 0. The first part 

exp(teC) is simply the standard matrix exponential, because e is the identity 

operator. For the second part exp(tgD), noting that gk = e if k is even and  

gk = g if it is odd and then proceed to calculate the formal power series of  

exp (tgD) as follows: 
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exp(tgD)z0 = 
2 3

2 2 3 3 ...
2! 3!

t t
I tgD g D g D
 

+ + + +  
 

z0 

= 
2

2 2 ...
2!

t
I g D
 

+ +  
 

z0 + 
3

3 3 ...
3!

t
tgD g D
 

+ + +  
 

z0 

= 







++ ...

!2
2

2

D
t

I z0 + 







+++ ...

!3
3

3

D
t

tD gz0 

= cosh(tD)z0 + sinh(tD)gz0 

Hence: 

zα0(t) = exp(tC)(cosh(tD)zα0 + sinh(tD)gzα0) 

Let ϕ(t) =exp(tC)cosh(tD) and ψ(t) = exp(tC)sinh(tD). Then: 

kzα  = ϕkj(t)
jz 0α  + ψkj(t)g

jz 0α  

but kzα  = )(txk
α  + i )(txk

α , one get: 

)(txk
α  + i )(txk

α  = ϕkj(t)
jz 0α  + ψkj(t)

jz 0α  

                                  = ϕkj(t)( )(0 tx j
α  + i )(0 tx j

α ) + ψkj(t)( 0( )jx tα  + i )(0 tx j
α ) 

Therefore: 

0 0

0 0

1

1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

n
k j j

kj kj
j

n
jjk

kj kj
j

x t t x t t x t

x t t x t t x t

α α α

α α α

ϕ ψ

ϕ ψ

=

=


= + 





= +



∑

∑

  ……………………...……(3.20)  
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Example(3.1) [Pearson D.W.,1997]: 

Consider the linear system x Ax′ = , where A = 








−
−

20

11
 with initial 

values to be x1(0) about 1 and x2(0) about −1, which are fuzzy numbers and 

using the membership functions defined by setting, for example, 

)(1
0 sx  = 2

0, 0

2 , 0 2

0, 2

s

s s s

s

<


− ≤ <
 >


 

and 

)(2
0 sx  = 2

0, 2

2 , 2 0

0, 0

s

s s s

s

< −


− − − ≤ <
 >


 

Thus, for α ∈ [0, 1], we can represent the initial conditions as: 

[ 1
0x ]α = [ 1

0α
x , 1

0α
x ] = [1 − α−1 , 1 + α−1 ] 

[ 2
0x ]α = [ 2

0α
x , 2

0α
x ] = [−1 − α−1 , −1 + α−1 ] 

The approximate solution given by equation (3.20), which takes the form: 

        

∑

∑

=

=

+=

+=

n

j

j
kj

j
kj

k

n

j

j
kj

j
kj

k

txttxttx

txttxttx

1

1

)()()()()(

)()()()()(

00

00

ααα

ααα

ψϕ

ψϕ
 

So, if we let for simplicity 

a = 1 − α−1  ,  b = 1 + α−1 ,c = −1 − α−1 , d = −1 + α−1  

Then the approximate solution could be evaluated as follows: 

To find B, recall that bij = eaij if aij ≥ 0 and bij = gaij if aij < 0, then  
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a11 = −1 implies that b11 = g(−1) = −i, a12 =1 ≥ 0 implies b12 = e(1) =1 and so 

on. B = 11 12

21 22

ga ea

ea ga

 
 
 

 = 
1

0 2

i

i

− 
 − 

 and we can write the matrix B as the sum 

of two matrices, the first matrix is multiplied by the operator e and the other is 

multiplied by g, hence: 

B = 








−
−

i

i

20

1
  

= 








00

10
 + 









−
−

20

01
 

= e 








00

10
 + g 









−
−

20

01
= eC + gD 

It is easy to find Cte , which is Cte = 








10

1 t
, and 

cosh(tD) = 
















+++

+++

...
3
2

210

0...
!4!2

1

42

42

tt

tt

 

Therefore: 

)(tϕ = Cte cosh(tD) 

 = 
















+++

++++++

...
3
2

210

...
3
2

2...
!4!2

1

42

53
42

tt

ttt
tt

 

Similarly, one can find sinh(tD), which takes the form: 

Sinh(tD) = 
















−−−

−−−

...
3
4

20

0...
!3

3

3

tt

t
t
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Hence: 

ψ(t) = Cte sinh(tD) 

= 
















−−−

−−−−−−

...
3
4

20

...
3
4

2...
!3

3

42
3

tt

tt
t

t
 

Now, letting t = 0.2, we have: 

)2.0(ϕ  = 








08166.10

216213.0020066.1
 

ψ(0.2) = 








−
−−

410606.00

082133.0201333.0
 

and therefore the approximate solution of equation (3.20) is given by : 

1
αx (0.2) = 1.020066a + 0.216231c − 0.201333b − 0.082133d 

1
αx (0.2) = 1.020066b + 0.216213d − 0.201333a − 0.082133c 

2
αx (0.2) = 1.0810666c − 0.410666d 

2
αx (0.2) = −0.4106666c + 1.080666d 

For example, if α = 0.1, then 

1
1.0x (0.2) = −0.7570682, 1

1.0x (0.2) = 2.126394 

2
1.0x (0.2) = −2.085526 and  21.0x (0.2) = 0.744773 

and so on for any value of ]1,0[∈α . 

 
Remarks(3.2):  

 1- In order to check the accuracy of the results, a comparison have been 

made between the crisp solution and the approximate solution of a fuzzy 
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system at 1=α , in which this comparison will be given in the following 

graph: 

 

0

0.5

1

1.5

2

2.5

3

3.5

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

 

Fig (3.1) Compare between the first solution of the system (the crisp solution 

and the fuzzy solution with α=1). 

 
 

 
-3

-2.5

-2

-1.5

-1

-0.5

0

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

 

Fig (3.2) Compare between the second solution of the system (the crisp 

solution and the fuzzy solution with α=1). 

…..    Crisp  
___    Approximate 

…..    Crisp  
___    Approximate 
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2-  The next two figures presents the membership functions for the 

solutions x1 and x2 at t = 0.2 for each 0 1α≤ ≤  with step size 0.1. 

-1.00 0.00 1.00 2.00 3.00

0.00

0.20

0.40

0.60

0.80

1.00α=

 
 

Fig (3.3) represents the upper and lower solution of 1x  at t = 0.2 at each 
0 1α≤ ≤  with step size 0.1. 

 
 

-3.00 -2.00 -1.00 0.00 1.00

0.00

0.20

0.40

0.60

0.80

1.00α=

 

Fig (3.4) represents the upper and lower solutions of 2x  at t = 0.2 at each 
0 1α≤ ≤  with step size 0.1. 
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3.4 SOLUTION OF NON-HOMOGENOUS AND NONLINEAR 

SYSTEM OF FUZZY DIFFERENTIAL EQUATIONS 

The last approach followed in section (3.3) is so difficult to modify for 

solving non-homogenous fuzzy systems. 

Therefore, new approaches are given in this section for solving non-

homogenous fuzzy differential equations. The approximate methods followed 

in this section are: 

1- The method of successive approximation for solving non-

homogenous fuzzy systems. 

2- The method of linearization for solving nonlinear and non-

homogenous fuzzy systems.    

 
3.4.1 The Method of Successive Approximation for Solving Fuzzy   

Differential equations 

 Consider the fuzzy differential equation (homogenous or non-

homogenous). 

 0 0( , ), ( )y f t y y t y′ = %% % % %  ……..………………………………….(3.21) 

where )~,(
~

ytf  takes the form )()(~),(
~

thtytxK + , and the derivative y′~ , the 

function f
~

, the initial condition 0
~y  and the solution )(~ ty are assumed to be 

fuzzy while the parameter t  is considered to be crisp. where )(th  represent 

the non-homogenous term. 

 Now, according to definition (3.3), then equation (3.21) is equivalent to 

the  fuzzy integral equation (3.2). The problem now is to solve the fuzzy 

integral equation (3.2), and recalling the solution of this problem had been 

discussed by  [Najieb S.W., 2002]. 

Now, the method of successive approximations for solving fuzzy 

integral equations is to consider the fuzzy integral equation: 
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 0
0

( ) ( , ) ( ) ( )
t

y t y K t x y x h x dx = + + ∫ %%% % %  …………………………….. (3.22) 

where ( )( ) ( ( ), )i iy t y t α=% ,  ( )( , ) ( ( , ), )i iK t x K t x α=% , i=1,2,…,n. Then:  

( ) ( ) ( )( ) ( )0( ( ), ) ( ( , ), ) ( ( ), ) ( ( ), )
t

i i i i i i i i
o

y t y K t x y x h x dxα α α α= + +∫%   

Implies 

 ( ) 0
0

( ), ( , ) ( ) ( ) ,
t

i i i i i iy t y K t x y x h x dxα α
 

= + + 
 
 

∫ %%% % ………………….. (3.23) 

Which implies that ]1,0[∈∀ iα .  

 [ ]0
0

( ) ( , ) ( ) ( )
t

i i i iy t y K t x y x h x dx= + +∫ ,    ni ,...,2,1=∀  …………. (3.24) 

Now we can apply the method of successive approximations for equation 

(3.21), so we have  

 ( 1) ( )
0

0

( ) ( , ) ( ) ( )
t

m m
i ii iy t y K t x y x h x dx+  + +

 ∫ %% % % , ni ,...,2,1=∀  …….(3.25) 

and for each ]1,0[∈iα . 

 
Example(3.2) 

   To solve the non-homogenous fuzzy differential equation  

 )(
~

)(~),(
~

)~,(
~~ thtyxtkytfy +==′  where  

 )}0.1),,((),4.0),,({(),(
~

21 xtkxtkxtk =   

 )}0.1),((),4.0),({()(
~

21 ththth =  

and, txtk 2
1

1 ),( = , 1),(2 =xtk ,  tth 2
1

1 )( =  and 1)(2 =th . 

Applying equation (3.25), we get for 4.0=α   

 ( 1) ( )
0 1 11 1

0

( ) ( , ) ( ) ( )
t

m my t y K t x y x h x dx+  + +
 ∫ %% % %  
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 ( 1) ( )1 1
1 12 2

0

( ) 1 ( )
t

m my t xy x x dx+  + +
 ∫% %  ………………….………(3.26) 

Since, 1)()0(

1 =ty  then from equation (3.25) we obtain: 

 ∫ +=++=
t t

dxxxty
0

2

2
1

2
1)1(

1 2
1][1)(  

and hence:  

 ∫ ++=+++=
t tt

dxx
t

xty
0

42

2
1

2

2
1)2(

1 42
1])

2
1([1)(  

 ∫ +++=++++=
t ttt

dxx
tt

xty
0

642

2
1

42

2
1)3(

1 1682
1])

42
1([1)(  

 
2 4 6 2 4 6 8

(4) 1 1
1 2 2

0

( ) 1 [ (1 ) ] 1
2 8 16 2 8 32 64

t t t t t t t t
y t x x dx= + + + + + = + + + +∫  

                  
Continuing in this process for further iterations we obtain: 

 
2 4 6 8

1( ) 1 ...
2 8 32 64

t t t t
y t = + + + + +    

which is the Maclurian series of cosh(t). 

Now, for 1=α , we have:   

  ( 1) ( )
0 2 22 2

0

( ) ( , ) ( ) ( )
t

m my t y K t x y x h x dx+  + +
 ∫ %% % %  

  ( 1) ( )
2 2

0

( ) 1 1. ( ) 1
t

m my t y x dx+  + +
 ∫% %  

and similarly: 

  [ ](1)
2

0

( ) 1 (1).(1) 1 1 2 .
t

y t dx t+ + = +∫%   

  [ ](2) 2
2

0

( ) 1 (1).(1 2 ) 1 1 2 .
t

y t t dx t t+ + + = + +∫%   

M
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3

(3) 2 2
2

0

( ) 1 (1).(1 2 ) 1 1 2 .
3

t t
y t t t dx t t + + + + = + + +

 ∫%   

                       . 
                       . 
                       . 

if we continue in this process we get 2( )y t  also as  

  
3

2
2( ) 1 2 ...

3

t
y t t t= + + + +   

                    1 2( 1)te= + −  

So the solution of the fuzzy integral equation (which is equivalent to 

the solution of the fuzzy differential equation) is given by: 

 )}.0.1),1(21(),4.0),{(cosh()(~ −+= tetty   

 

3.4.2 Linearization Technique for Solving Non-Linear and Non-

Homogenous Fuzzy System of Differential Equations 

In order to solve fuzzy differential equations, nonlinear and non-

homogenous the method of linearization is proposed to solve such type of 

problems. 

The solution of fuzzy differential equations in this subsection deals with 

ordinary differential equations with fuzzy initial values. 

The linearization approach depends on transforming the non-linear 

fuzzy system to a linear fuzzy system and then using the method of parametric 

equations (see section 3.3) to solve the resulting system. 

 Similar approach can be used to solve non-homogenous system of 

fuzzy differential equations. 

 The solution of fuzzy differential equations are also compared with the 

exact solution of ordinary differential equations, i.e., with crisp initial values 

when 1=α . 
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3.4.2.1 Linearization Theorem of Non-Linear and Non-Homogenous Fuzzy    

Differential Equations 

Suppose that the non-linear fuzzy system given by: 

 ( , ),y f x y′ =  0 0( )y x y%  

where f  is a given function which is assumed to be differentiable, 0x  is fixed 

and 0y%  is given fuzzy number which can be rewritten as: 

 ( ),y Ay g y′ +  0 0( )y x y%  ……………………….……………(3.27) 

or  

 

1 11 1 12 2 1 1 1 2

2 21 1 22 2 2 2 1 2

1 1 2 2 1 2

... ( , ,..., )

... ( , ,..., )

.

.

... ( , ,..., )

n n n

n n n

n n n nn n n n

y a y a y a y g y y y

y a y a y a y g y y y

y a y a y a y g y y y

′ = + + + +
′ = + + + +

′ = + + + +

 

where 
0

0
y

g
Lim

y→
= , and A is the Jacobian matrix evaluated at the equilibrium 

point. Then the linear system   

y Ay′ = , 0 0( )y x y%  ………………………………….…………..(3.28) 

is said to be the linearization (or the linearized system) of (3.27) at the 

equilibrium point. 

The systematic approach of obtaining the linearization is by utilizing 

Taylor series expansion of a function ),...,,( 21 nxxxf  in some neighborhood of 

a point ),...,,( 21 nηηη  is given by:    

),...,,()(),...,,()(),...,,(),...,,( 21

2

2221

1

112121 nnnn x

f
x

x

f
xfxxxf ηηηηηηηηηηη

∂
∂−+

∂
∂−+=

    ).,...,,(),...,,()(... 2121 nn

n

nn xxxr
x

f
x +

∂
∂−++ ηηηη  

where r is the reminder function satisfying  

 1 2

0

( , ,..., )
0n

r

r x x x
Lim

→
=
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where 2 2 2
1 1 2 2( ) ( ) ... ( )n nx x xη η η= − + − + + −  

therefore, if ),...,,( 21 nηηη  is a fixed points of the system  1 2( , ,..., )ny f x x x′ = , 

then the linearized system is given by Y AY′ = , where  

 

1 2 1 2

1 1 1

1 2

2 2 2

1 2

1 2 ( , ,..., ) ( , ,..., )

...

...

. . ... .

...

n n

n

n

n n n

n x x x

f f f

x x x

f f f

x x xA

f f f

x x x η η η=

∂ ∂ ∂ 
 ∂ ∂ ∂
 

∂ ∂ ∂ 
 ∂ ∂ ∂=
 
 
 ∂ ∂ ∂ 

∂ ∂ ∂  

 

The following examples illustrate the above discussion. 

 
Example(3.3) 

 To solve the non-linear fuzzy system 

1 2
1 2 1

2 1 1 2 2

, (0) 1

, (0) 1.

y yy e y y

y y y y y

+′ = −

′ = − + −

%

%

 

Hence, the Jacobian at the critical point (-1,1): 

1 0

0 1

J

 
 =  
 − 

 

Therefore, the linearized fuzzy system is given by: 

     
1

2

1 0

0 1

y

y

y

   
   ′ =    
   −   

,        1 2(0) 1, (0) 1.y y −% %   

Now, using the method discussed in section (3.3), to solve the linear 

homogenous fuzzy system 

B = 








− i0

01
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= e 








00

01
 + g 









−10

00
= eC + gD 

Hence, 

      eCt = 








10

0te
 and  cosh(tD) = 









)cosh(0

01

t
 

Therefore: 

)(tϕ = eCt cosh(tD) = 








)cosh(0

0

t

et

 

Similarly: 

Sinh(tD)= 








− )sinh(0

00

t
  

and hence: 

ψ(t) = eCtsinh(tD) 

= 








− )sinh(0

00

t
 

Now, letting t = 0.2, we have: 

)2.0(ϕ  = 








02.10

002.1
 and  ψ(0.2) = 









− 2.00

00
 

and therefore the approximate solution is given by: 

1

α
y (0.2) = (1.22)a , 1

αy (0.2) = (1.22)b , 2

α
y (0.2) = (1.02)c +  (-0.2)d 

and   2

αy (0.2) = (- 0.2)c + (1.02)d 

where  a = 1 − α−1  ,  b = 1 + α−1 , c = −1 − α−1 , d = −1 + α−1 . 
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Remark(3.3) 

Now, To check the accuracy of the solution of the non-linear fuzzy 

system. We must find the solution of the non-linaer crisp system by letting 

1=α . Letting 1=α  gives   
2

1

2

1

1

1

1

1
)(,)( ytyyty == , and hence 

 1 2(0.2) 1.22, (0.2) 0.82y y= = −  

Solving the crisp system using Euler method, gives: 

 1(0.2) 1.31y = ,  2(0.2) 0.86y = −  

 

Example (3.4): 

 To solve the following non-homogenous fuzzy system using 

linearization technique,  

  2
1 1 23y y y t′ = − +   , 1(0) 1y %            0t ≥  

  2 1 22 4 cosy y y t′ = − + +  , 2(0) 1y − %  

 The Jacobian matrix at 2 2(2 1.5cos , 0.5cos )t t t t+ +  at t =0 is given by: 

 








−
−

=



















∂
∂

∂
∂

∂
∂

∂
∂

=
42

31

2

2

1

2

2

1

1

1

y

f

y

f
y

f

y

f

J   

So, we get the following homogenous fuzzy system 

 
















−
−

=
2

1

42

31

y

y
y& , 1 21, 1.y y −% %   

So, if we let for simplicity  

 αα −−== 111

0
aY  , αα −+== 11

1

0 bY  

 αα −−−== 112

0
cY  , αα −+−== 11

2

0 dY  

Now, Proceeding similarly as in example (3.3), we have: 
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−
−

+







=









−
−

=
02

30

40

01

42

31

i

i

i

i
B  

          
1 0 0 3

,
0 4 2 0

C D
−   

= =   −   
 

and therefore,     

 

2 43
2

2 3 4 5 651
2

(1 3 ) 0
( )

0 1 4 11 12 6 12

te t t
t

t t t t t t
ϕ

 + +
 =
 + + + + + + 

 

Also, 

 








−−−−−
−−

=
01683282

)33(0
)(

5432

3

ttttt

tte
t

t

ψ  

In special, for 0t =  we have: 

 
1 0

(0)
0 1

ϕ  
=  
 

   and  
0 0

(0)
0 0

ψ  
=  
 

 

Now, by equation's (3.20), the approximate solution for the linearized 

system at is given by: 

11

22

(0) , (0)

(0) , (0)

Y a Y b

Y c Y d

αα

αα

= =

= =
 

Also, for 1t = we have: 

 
14.951 0

(1)
0 71.5

ϕ  
=  
 

  and 
0 16.31

(1)
66 0

ψ
− 

=  
 

 

Also, by equation (3.20) we get:  

1

1

2

2

(1) (14.951) ( 16.31)

(1) (14.951) ( 16.31)

(1) (71.5) (66)

(1) (71.5) (66)

Y a d

Y b c

Y c b

Y d a

α

α

α

α

= + −

= + −

= +

= +
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Remark (3.4): 

The solution of the non-homogenous fuzzy system (which is the 

linearized to the homogenous system) could be checked and compared with 

the exact non-homogenous crisp system; 

Suppose 1=α   for the solution of the non-homogenous fuzzy system, 

we have 

 1

2

(0) 1
(0)

(0) 1

Y
Y

Y

   
= =   −  

,    1

2

(1) 31.261
(1)

(1) 5.5

Y
Y

Y

   
= =   −  

 

Then the exact solution of the non-homogenous crisp system is: 

1

2

(0) 1
(0)

(0) 1

Y
Y

Y

   
= =   −  

,   1

2

(1) 31.332
(1)

(1) 5.467

Y
Y

Y

   
= =   −  

 

We notice that the difference is negligible. 

  

3.5 THE NUMERICAL SOLUTION OF FUZZY BOUNDARY VALUE 

PROBLEMS   

In this section we shall study in details the solution of boundary value 

problems of fuzzy differential equations (linear, non-linear, homogenous and 

non-homogenous) using the shooting method with some illustrative examples, 

where the crisp solution for these examples is compared with the solution of 

the boundary value problem of crisp differential equations. 

 

3.5.1 Boundary Value Problems of Fuzzy Differential Equations:  

 The boundary value problems whose equations are given with fuzzy 

initial conditions given at two or more points. When the fuzzy initial 

conditions are given at two points then the problem is called (a two point 

fuzzy boundary value problems).  

We consider differential equations of order two with boundary fuzzy 

conditions at a and b. 
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The general problem of the second order is given by:  

 ( , , ),y f t y y′′ ′=  .a t b≤ ≤ ………………………….………………(3.29) 

with boundary conditions  

 1- ( ) ,y a α%  ( )y b β% . 

 2- ( ) ,y a α′ %  ( )y b β′ % . 

 3- ( ) ,y a α%  ( )y b β′ %  

 4- 0 1( ) ( ) ,a y a a y a α′+ %   0 1( ) ( )b y b b y b β′+ % . 

where 0 0 1 1, , ,a b a b are given constants and ,α β%%  are fuzzy numbers. 

When f  is linear in y and y′  then we get a fuzzy boundary problem of 

order two, The general form of a linear second order fuzzy boundary value 

problem: 

 ( ) ( ) ( )y P t y q t y r t′′ ′= + + . 

With boundary conditions given by 1,2,3, or 4 above. 

 
Remarks (3.5): 

1- We shall consider linear or non-linear second order boundary value 

problems with fuzzy boundary conditions of type (1) only. 

2- A unique solution of the problem is assumed to be exist. 

   
3.5.2 The Shooting Method for Solving Boundary Value Problems: 

 Consider the second order boundary value problems 

 ( ) ( ) ( )y P t y q t y r t′′ ′= + +  ,  a t b< <  

          ( ) ,y a α%    ( )y b β% . 

Consider the homogenous problem 

 (1) ( ) ( )u p t u q t u′′ ′= +   with ( ) 0, ( ) 1u a u a′% %  . 

Consider the non homogenous problem 

 (2) ( ) ( ) ( )v p t v q t v r t′′ ′= + +  with ( ) , ( ) 0v a v aα ′ %%  . 
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Then the solution can be obtained using the previous discussed methods 

which are given by: 

 
1 1

1 1

( ) ( ) ( )

( ) ( ) ( )

y t v t u t

y t v t u t

λ

λ

= +

= +
 

where 

 11

11

( ) ( )
,

( ) ( )

v b v b

u b u b

β βλ λ− −= =  

 
Example (3.5): 

To solve the homogenous fuzzy boundary value problem using the 

shooting method, where 

 yy −=′′ ,      (0) 1, (1) 1y y −% %      , [0,1]t ∈  

or in matrix form 

1 1

2 2

0 1

1 0

y y

y y

′     
     =     

′     −     

,     (0) 1, (1) 1y y −% %   

Consider the first problem: 

1 1

2 2

0 1

1 0

u u

u u

′     
     =     

′     −     

,   1 2(0) 0, (0) 1u u% %  , [0,1]t ∈  

Now, applying the method of parametric representation mentioned in earlier, 

one will find the solution to be as follows: 

Hence at t =1 

  

11

22

(1) , (1)

(1) , (1)

U a c b U b d a

U c b U d a

αα

αα

= + − = + −

= − = −
 

Where  α−−= 1a  ,   α−= 1b , α−−= 11c , α−+= 11d  
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Now, consider now the second problem 

1 1

2 2

0 1

1 0

v v

v v

′     
     =     

′     −     

,   1 2(0) 1, (0) 0v v% %  , [0,1]t ∈  

and for 1t =  

         

11

22

(1) , (1)

(1) , (1)

V a c b V b d a

V c b V d a

αα

αα

= + − = + −

= − = −
      

where α−−= 11a , α−+= 11b , α−−= 1c , α−= 1d  

Now,  

 

1

1

1

1

( ) 1 ( )

( ) ( )

( ) 1 ( )

( )( )

V b a c b

U b a c b

V b b d a

b d aU b

β
λ

βλ

− − − + −= =
+ −

− − − + −= =
+ −

 

 

The general solution of fuzzy boundary value problem using the shooting 

method is given by: 

11 11( ) ( ) ( ), ( ) ( ) ( )Y t V t U t Y t V t U tλ λ= + = + . 

 

We can check the results by comparing with the crisp solution at 1α = , and 

for t = 1, we have 

1 1(1) (1) (1) 0.9992Y V Uλ= + = − ,      11(1) (1) (1) 0.9992Y V Uλ= + = −  

Where the crisp solution at t = 1 is: (1) 1Y = − . 

 

Also, we could make a good comparison between the crisp solution and fuzzy  

solution with 1α = in the next figure: 
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Fig (3.5) A comparison between the crisp solution and fuzzy solution at 1α =  

 
Example (3.6): 

To solve the non-homogenous fuzzy boundary value problems 

2y y t′′ = + , (0) 1y % , (0.4) 1.1y % , [0,0.4]t ∈  

using the shooting method. This problem has the exact crisp solution     

3 1
2 2

( ) 2t ty t e e t−= − −  

Now, the homogenous problem uu =′′ , (0) 0u % , (0) 1u′ %

 














=








′
′

2

1

2

1

01

10

u

u

u

u
, 1(0) 0u % , 2(0) 1u % , [0,0.4]t ∈  

 
So, the desired system is linear homogenous system of fuzzy initial value 

problem, and upon carrying out similar calculations in solving fuzzy 

differential equations, whenever for t = 0.4      

      

11

22

(0.4) (1.08) (0.41) , (0.4) (1.08) (0.41)

(0.4) (0.41) (1.08) , (0.4) (0.41) (1.08)

U a c U b d

U a c U b d

αα

αα

= + = +

= + = +
 

where  α−−= 1a , α−= 1b , α−−= 11c , α−+= 11d  
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Also the non-homogenous problem: 

 2v v t′′ = + , (0) 1v % , (0) 0v′ %  

or in matrix form 

 1 1 2 1

2 2 1 2

0 1 0

21 0 2

v v v f

v v v t ft

′          = + = =          ′ +          
 

with 1(0) 1v % , 2(0) 0v % , [0,0.4]t ∈  

So, the desired non-homogenous system of differential equations with 

fuzzy initial conditions could also be solved.  

Solving the non-homogenous system using the linearization method. 

  1 1

2 2

0 1 0

1 0 2

v v

v v t

′      = +      ′       
, 1(0) 1v % , 2(0) 0v % , [0,0.4]t ∈  

and applying the method of linearization one could get the following results. 

for 4.0=t  

     

11

22

(0.4) (1.08) (0.41) , (0.4) (1.08) (0.41)

(0.4) (0.41) (1.08) , (0.4) (0.41) (1.08)

V a c V b d

V a c V b d

αα

αα

= + = +

= + = +
 

where α−−= 11a , α−+= 11b , α−−= 1c  , α−= 1d  

Now, to find the value of  λ  and λ : 

1 1

11

( ) 1.103 (1.08 0.41 ) ( ) 1.103 (1.08 0.41 )
,

( ) (1.08 0.41 ) 1.08 0.41( )

B V b a c B V b b d

U b a c b dU b
λ λ

− − + − − += = = =
+ +

 

Hence, the general solution of fuzzy boundary value problem using shooting 

method is given by: 

1 1( ) ( ) ( )Y t V t U tλ= +  

11( ) ( ) ( )Y t V t U tλ= +  

and at 0.4t b= =  with 1α = , then 

1 1(0.4) (0.4) (0.4)Y V Uλ= + = 1.103 
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11(0.4) (0.4) (0.4) 1.103Y V Uλ= + =  

Clearly, ( )y t  and ( )y t are equal only when 1=α and when t b= . 

 Also, we can make a comparison between the crisp solution and the 

fuzzy solution with 1α = , by the following figure: 

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

 
 

Fig (3.6) A comparison of results of example (3.6) 
 
 

Example (3.7): 

To solve the nonlinear fuzzy boundary value problem using the shooting 

method, where: 

 2y yy′′ ′= ,      2(0) 1, ( ) 1y y π− −% %      , 2[0, ]t π∈  

Hence the linearized system evaluated at (1/2, 0) is given by: 

1 1

2 2

0 1

0 1

y y

y y

′     
     =     

′          

,     2(0) 1, ( ) 1y y π− −% %   

Now, consider the first problem: 

1 1

2 2

0 1

0 1

u u

u u

′     
     =     

′          

,   1 2(0) 0, (0) 1u u% %  , 2[0, ]t π∈  

http://cbs.wondershare.com/go.php?pid=1140&m=db


Chapter Three                                                                            Solution of Fuzzy Differential Equations                                     

 77

and upon applying the method of parametric representation mentioned earlier, 

one will find the solution to be as follows: 

Hence at 2t π=  

  

11
2 2

22
2 2

( ) (3.811) , ( ) (3.811)

( ) (4.811) , ( ) (4.811)

U a c U b d

U c U d

π παα

π παα

= + = +

= =
 

Where  α−−= 1a  ,   α−= 1b , α−−= 11c , α−+= 11d  

 
Now, consider now the second problem 

1 1

2 2

0 1

0 1

v v

v v

′     
     =     

′          

,   1 2(0) 1, (0) 0v v− % %  , 2[0, ]t π∈  

and for 2t π=  

         

11
2 2

22
2 2

( ) (3.811) , ( ) (3.811)

( ) (4.811) , ( ) (4.811)

V a c V b d

V c V d

π παα

π παα

= + = +

= =
      

where 1 1a α= − − − , 1 1b α= − + − , α−−= 1c , α−= 1d  

Now,  

1

1

1

1

( ) 1 ( (3.811) )

( ) ( (3.811) )

( ) 1 ( (3.811) )

( (3.811) )( )

V b a c

U b a c

V b b d

b dU b

β
λ

βλ

− − += =
+

− − += =
+

 

 
The general solution of FBVP using the shooting method is given by: 

11 11( ) ( ) ( ), ( ) ( ) ( )Y t V t U t Y t V t U tλ λ= + = +  

We can check the results by comparing with the crisp solution at 1α = , and 

for 2t π= , we have 

1 12 2 2( ) ( ) ( ) 1Y V Uπ π πλ= + = − ,      112 2 2( ) ( ) ( ) 1Y V Uπ π πλ= + = −  
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Where the crisp solution at t = 2
π  is:  2( ) 1Y π = − . 

 
Also, we could make a good comparison between the crisp solution and fuzzy  

solution with 1α =  in the next figure: 

 

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.5 1 1.5 2

 

Fig (3.7) A comparison between crisp and fuzzy solution with 1α = .  
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 Additional theoretical concepts in fuzzy set theory could be discussed 

concerning fuzzy mapping, differentiation and integration of fuzzy function, 

etc.; and therefore are presented in this chapter for completeness. 

In section one, three types of fuzzy function, had been discussed with 

some basic properties of such type of functions. In section two, fuzzy 

mapping with some related properties and propositions are given. In section 

three, differentiation of fuzzy function using two approaches had been 

discussed, which are the differentiation of crisp function on a fuzzy point and 

differentiation of fuzzifying function at a non-fuzzy point.  

Finally, in section four two types of fuzzy integration have been 

discussed,  which are integration of real valued fuzzy function over closed 

interval and integration of crisp real valued function over fuzzy interval since 

of it’s important in the existence and uniqueness theorem of fuzzy differential  

equations. 

 

 

 

 

 

THEROTICAL RESULTS 

        IN FUZZY SETS 
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2.1 FUZZY FUNCTIONS [DUBOIS, 1980]  

           The term “fuzzy function” must be understood in several ways 

according to where fuzziness occurs. We start first with the first type: 

 

2.1.1 Function with Fuzzy Constraint: 

Let X and Y be two universal sets and let f be a classical function            

f: X→  Y maps from a fuzzy domain A
~

 in X into a fuzzy range B
~

 in Y then f  

is a function with fuzzy constraint if for all x∈ X,    ( )( ) ( )B Af x xµ µ≥% % . 

 
Example(2.1): 

Let X =Y = R, and consider two fuzzy sets: 

)}8.0,2(),5.0,1{(
~ =A  and )}9.0,4(),7.0,2{(

~ =B   

and a function xxfy 2)( ==  for all x X∈ . It is clear that the function f 

satisfies the condition   ( ( )) ( )B Af x xµ µ≥% % , for all Xx∈ . 

 
2.1.2 Fuzzy Extension Function: 

    This type of fuzzy functions propagates the ambiguity of the 

independent variables to dependent variables, when f is a crisp function from 

X onto Y. Let A
~

 be a fuzzy subset of X, then )
~

(
~

AfB =  is a fuzzy subset of Y 

with membership function defined by: 

 

1

1

( )

1

sup ( ), ( )

( )

0, ( )

A
x f y

B

x if f y

y

if f y

µ

µ

−

−

∈

−

 ≠ ∅

= 
 = ∅


%

%  

 where f 1− (y) is the inverse image of y. 
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Example (2.2):   

Consider the universal sets RYX ==  and consider a crisp 

function 2)( xxf = , with the domain given by the fuzzy set: 

    A
~

 = {(-2, 0.9), (-1, 0.6), (0, 0.7), (1, 0.8), (2, 0.5)}, 

 The independent variable x has an ambiguity and the fuzziness which is 

propagated to the fuzzy set B
~

, then we can obtain B
~

, as: 

 B
~

= {(4, 0.9), (0, 0.7), (1, 0.8)}. 

 
2.1.3  Single Fuzzifying Function : 

     Fuzzifying function from X onto Y is a mapping from X into the fuzzy 

power set  )(
~

YP (or XI ), i.e., )(
~

:
~

YPXF → , that is to say the fuzzifying 

function is a mapping from an ordinary domain to a fuzzy set of range, 

Fuzzifying function and fuzzy relations coincides with each other in the 

mathematical manner. So, fuzzifying function can be interpreted as a fuzzy 

relation R
~

 defined as follows: 

),()( ~
)(

~ yxy
Rxf

µµ = , where ( )y F x= % , YXyx ×∈∀ ),( . 

 
2.1.4 Fuzzy Bunch  Function: 

          Fuzzifying bunch of crisp functions from X onto Y is defined with fuzzy 

set of crisp function: 

         { }( , ( )| : , :  is the set of natural numbersi i iff f f f X Y i N Nµ= → ∈%
% . 

where ( )if fµ %  is the membership function of the crisp function if . 

 
Example (2.3):  

           X = {1, 2, 3}, { })5.0,(),7.0,(),4.0,(
~

321 ffff =  

 where xxfxxfxxf −=== 1)(,)(,)( 3
2

21 .   
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2.2 FUZZY MAPPINGS  

        A fuzzy mapping is a generalization of the concept of a classical 

mapping which can be understood as follows: 

 

Definition (2.1)[Dubois, 1982]: 

        A fuzzy mapping f
~

 from a crisp set U onto a set V is a mapping from U 

to the power set of non-empty subsets V, namely P
~

(V) − { ∅ }.  

In other words, to each element u ∈ U corresponds a fuzzy set f
~

(u) defined 

on V, whose membership function is 
)(

~
uf

µ , and f
~

(u) is non-empty. 

 
       Other definitions of fuzzy mappings are given also in literatures, namely: 

- An ordinary mapping f from U to V with a fuzzy domain A
~

 and a fuzzy 

range B
~

 such that )(~ f
A

µ  ≤ )(~ f
B

µ . 

- An ordinary mapping f from P
~

(U) to P
~

(V). In other words, it is a 

mapping with the fuzzy argument which maps on fuzzy subset of V.  

- A fuzzy set F
~

 of UV , i.e., a fuzzy set of ordinary mapping from U to V 

each mapping f: U → V is assigned a membership grade )(~ f
F

µ . 

 

Proposition(2.1)[Dubois, 1982]: 

        A fuzzy mapping is strictly equivalent to a fuzzy relation R
~

 such that  

        ,, VvUu ∈∃∈∀   0),(~ =vu
R

µ . 

Proof:  See [Dubois, 1982].  � 
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Remarks (2.1): 

1. As a converse of proposition (2.1), a fuzzy relation can be viewed as a 

fuzzy mapping if  ,.)(~ u
R

µ  determines a nonempty fuzzy set )(
~

uf . 

2. Fuzzy mappings and fuzzy relations have different points of view on 

the same mathematical notion. 

3. Fuzzy set of mappings (FSM’s, for short) are not equivalent to fuzzy 

mapping. Indeed, a natural way of assigning membership grades µ(u,v) 

to possible images v∈V of u∈ U , given an FSM F, is to define     

µ(u,v) = µF(f) whenever v = f(u). Note that µ(u,v) is not uniquely 

defined since there may exist  f, g: U → V, f ≠ g, such that                     

v = f(u) = g(u) and µF(f) ≠ µF(g). 

      We may address the converse problem, namely, it is possible to 

represent a fuzzy mapping in terms of the FSM’s. 

      For the first case, there is at least one natural way of deriving an 

FSM from a fuzzy mapping. 

Starting from the fuzzy mapping VUf →:
~

 for any ]1,0[∈α . We can 

define an ordinary multimapping fα as follows:  

           { }( )( ) | ( )f uf u v v Vα µ α= ≥ ⊆% , for all .Uu∈  

fα  is the α- cut of f
~

. 

Also, fα  can be viewed as a crisp subset of UV , i.e., a set of mappings  

         { }: | , ( ) ( )f f U V u U f u f uα α= → ∀ ∈ ∈  

             { }( ): | inf ( ( ))f uu U
f U V f uµ α

∈
= → ≥% . 

fα  is the α–cut of an FSM generated by fα , denoted )
~

( fγ , such that  
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          ( ) ( )( ) inf ( ( ))f f uu U
f f uγµ µ

∈
=% % , ∀ f …………………………………..(2.1) 

 

Example(2.4) [Najeib S,W., 2002]: 

       Let X = {2, 3, 4,…,25}, a fuzzy mapping f
~

maps the elements in X to 

the power fuzzy set ( )P X% in the following manner. 

        )2(
~
f  = {(2,0.3),(3,0.5),(4,1),(5,0.5),(6,0.3),(9,0.2)} 

        )3(
~
f  = {(3,0.3),(5,0.5),(7,1),(9,0.5),(14,0.3),(16,0.2)} 

        )4(
~
f  = {(4,0.3),(8,0.5),(12,1),(16,0.5),(20,0.3),(25,0.2)} 

Now, given a function f1(x) = 2x, 

        

( ){ }
( ) ( ) ( ){ }
( ) ( ) ( ){ }

{ }

1( ) ( )

1 1 1(2) (3) (4)

(2) (3) (4)

( ) inf ( ) |

inf (2) , (3) , (4)

inf 4 , 6 , 8

inf 1,0,0.5 0

f f x

f f f

f f f

f f x x X

f f f

γµ µ

µ µ µ

µ µ µ

= ∈

=

=

= =

% %

% % %

% % %

 

  For f2(x) = x2 , we have 

          

( ){ }
( ) ( ) ( ){ }
( ) ( ) ( ){ }

2( ) ( )

2 2 2(2) (3) (4)

(2) (3) (4)

( ) inf ( ) |

inf (2) , (3) , (4)

inf 4 , 9 , 16

f f x

f f f

f f f

f f x x X

f f f

γµ µ

µ µ µ

µ µ µ

= ∈

=

=

% %

% % %

% % %

  

          { } 5.05.0,5.0,1inf ==  

   So, { })5.0,(),0,()
~

( 21 fff =γ , where f1(x)= 2x and f2(x) = x2 .  
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      Now, to the second case which is the converse of the above 

construction which is also can be made as expressed in the following 

definition. 

 

Definition(2.2) [Najeib S.W., 2002]: 

       Given a fuzzy set of mappings )
~

( fγ  with ]1,0[:
)

~
(

→X

f
Iγµ , we can 

construct a fuzzy mapping : ( )f X P X→% %  such that )(
~

xf is a fuzzy set 

with membership function defined as follows : 

        )(
)(

~ y
xf

µ = 1

1
( )

( )

1

sup ( ), ( )

0, ( )

f
x f y

f when f y

when f y

γµ
−

−

∈
−

 ≠ ∅


 = ∅

 ..................... (2.2) 

 

Example(2.5) [Najeib S.W., 2002]:    

       In the case of crisp functions  f1, f2, f3, and f4, and let X= {1,2,3}. The 

fuzzy set of mappings will be, for example: 

        { })3.0,(),7.0,(),5.0,(),2.0,()
~

( 4321 fffff =γ  

where 

        f1(x) = x, f2(x) = x2  , f3(x) = ex , f4(x) = x +1. 

Then the image at x = 1, is: 

       






 == )()(sup)(

)
~

()1(
~ xfyfy

ff γµµ  

The possible values of y is {f1(1), f2(1), f3(1), f4(1)} = {1,1,e,2} 

        






= )(),(sup)( 2)

~
(1)

~
(

,
)1(

~

21

ffy
ff

ff
f γγ µµµ  

                       5.0}5.0,2.0{sup
21,

==
ff
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7.0)(
)1(

~ =e
f

µ , 3.0)2(
)1(

~ =
f

µ  

So the fuzzy set  )1(
~
f  = {(1,0.5),(2,0.3),(e,0.7)} 

Similarly 

          )2(
~
f = {(2,0.2),(4,0.5),(e2 ,0.7),(3,0.3)} 

          )3(
~
f = {(3,0.2),(9,0.5),(e3 ,0.7),(4,0.3)}. 

Hence: 

          















 ∈== )}
~

(),()(sup{),()(
~

)
~

(
ffxfyfxfxf

f
γµγ ,  for all x∈X. 

 

Lemma (2.1) [Dubois, 1982]: 

 γ(f ̃⊕  g̃) ⊇  γ(f)̃ ⊕  γ(g̃) where f ̃and g̃ are fuzzy mappings : U → P̃(R). 

Proof:  We have  

          ( ) ( )f gγ γµ ⊕ (h(u)) = 
( ) ( ) ( )

sup
h u f u g u= +

 min { inf
u U∈

µf(̃u)(f(u)), inf
u U∈

µg̃(u)(g(u))} 

                                  = 
, : ( ) ( ) ( )

sup
f g h u f u g u= +

inf
u U∈

 min { µf(̃u)(f(u)), µg̃(u)(g(u)) } 

                                  inf
u U∈

≤
, : ( ) ( ) ( )

sup
f g h u f u g u= +

 min ( µf(̃u)(f(u)), µg̃(u)(g(u)) ), 

and since for any mapping  φ:A×B→R. 

          infx  supy
  φ(x,y) ≥ supx infy φ(x,y), 

hence, 

        )()( gf γγµ ⊕ (h(u)) ≤ ( )( )inf ( ( ))f g u
u U

h uγµ ⊕
∈

  

                                ( )( ) ( ).f g u h uγµ ⊕≤ % %
  � 
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 2.3 FUZZY DIFFERENTIATION [DUBOIS, 1982] 

 The fuzzy differentiation depends on the type of the considered function 

in section (2.1), i.e., differentiation of non-fuzzy function over fuzzy interval 

and that of fuzzifying function at non-fuzzy points, may be considered as a 

type of fuzzy differentiation. 

 

2.3.1 Differentiation of Crisp Function on Fuzzy Points: 

By the extension principle, differentiation )
~

(Af ′ of a non-fuzzy function 

f  at fuzzy point 0
~x  [Dubois, 1982b] is defined as: 

0( )( )f x yµ ′ %  = 
0( )
( )x

f x y
Max xµ
′ =

%  

     The next example illustrate the above definition: 
 

Example (2.6): 

Let f(x) = x3 and suppose the fuzzy point is given by: 

       A
~

 = {(−1, 0.4), (0, 1), (1, 0.6)} 

then    f ′(x) = 3x2 and therefore: 

 f ′( A
~

) = {(3, 0.4), (0, 1), (3, 0.6) 

    = {(3, 0.6), ((0, 1)} 

 

2.3.2 Differentiation of Fuzzifying Function Over a Set of Non-Fuzzy 

Points: 

For all x belongs to the ordinary domain D, we will define the 

differentiation of fuzzifying function f
~

 at a non-fuzzy point. Let any α-cut of  

f
~

 be differentiable for an arbitrary x in D, we define differentiation 

( ) )(
~

0xdxfd at an ordinary point x0 as: 
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( ) 0/ ( )( )
df dx x

pµ %  = 
( ) 0/ ( )

( )f
df dx x p

Max f
α

αµ
=

%
%

%  

    The next example illustrates the above definition: 

  

Example (2.7): 

Consider the fuzzifying function: 

f
~

 ={( f1, 0.4), (f2, 0.7), (f3, 0.4)} 

where 1 2,f f  and 3f  are crisp functions defined by:  

f1(x) = x, f2(x) = x2 and f3(x) = x3 + 1 

Then 1 2( ) 1, ( ) 2f x f x x′ ′= = and 2
3 ( ) 3f x x′ = . 

Differentiation of this fuzzifying function at x0 = 0.5 is obtained to be as: 

1 (0.5) 1f ′ = , when α = 0.4 

2 (0.5) 1f ′ = , when α = 0.7 

3 (0.5) 0.75f ′ = , when α = 0.4. 

Hence: 

)(
~

0x
dx

fd
 = max {(1, 0.4), (1, 0.7), (0.75, 0.4)} 

= {(1, 0.7),(0.75, 0.4)}. 

 

       Another type of fuzzy differentiation which is called the L- R type could 

be used also in differentiating fuzzy functions (for more details, see, e.g., 

[Dubois, 1982]). 
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2.3.3 Algebraic Properties of Differentiation  

As in non-fuzzy differentiation so many properties are given and proved 

successfully. Therefore, similarly several algebraic properties undertaking 

fuzzy differentiation could be given. The proofs will be given here for the 

sake of completeness. 

We start first with the following theorem:  

Theorem (2.1 ): 

The extended sum ⊕ of the derivatives of the real valued functions f and 

g at the fuzzy point 0x%  is defined by: 

f ′( 0
~x ) ⊕ g′( 0

~x ) ⊇ (f ′ + g′)( 0
~x ) 

Proof: See [Dubois, 1982].  � 

 

The equality, in the last theorem, holds also which is equipped if certain 

conditions are given on f ′ and g′, as it is illustrated in the next theorem, which 

is also called the necessary condition for the other direction of theorem (2.1). 

 

Theorem (2.2): 

If f ′ and g′ are continuous and both non-decreasing (or non-increasing), 

then: 

f ′( 0
~x ) ⊕ g′( 0

~x ) = (f ′ + g′)( 0
~x ) 

 
Proof: See [Dubois, 1982].  � 

 

       The next theorem illustrates the differentiation of product of two 

functions, which is given in [Dubois, 1982] and other literatures without proof 
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(to the best of our knowledge); which will be presented here for 

completeness:  

Theorem (2.3): 

1. If f and g are crisp functions from X to Y and 0
~x  is a fuzzy point in X then: 

        (fg)′( 0
~x ) = (f′g + fg′)( 0

~x ) ⊆ [f ′( 0
~x )  g( 0

~x )] ⊕ [f( 0
~x )   g′( 0

~x )]. 

2. If f, g, f ′ and g′ are continuous, f and g are both positive, and f ′ and g′ are 

both non-decreasing (f, g are negative and f ′, g′ are non decreasing), then: 

        (fg)′( 0
~x ) = [f ′( 0

~x )   g( 0
~x )] ⊕ [f( 0

~x )   g′( 0
~x )] 

Proof: 

1. According to the properties of fuzzy set, we must prove that: 

        ( ) [ ] [ ]0 0 0 00
( ) ( ) ( ) ( )( )

( ) ( ),f x g x f x g xf g x
y y y Yµ µ′ ′ ′⊕≤ ∀ ∈

% % % % %
.  

Now, using the extension principle to the right hand side, one can get: 

[ ] [ ] 0 00 0 0 0( ) ( ) ( ) ( )
, : ( ) ( ) ( ) ( )

( ) sup min sup ( ), sup ( )x xf x g x f x g x
u v y u v u f s g s v f t g t

y s tµ µ µ′ ′⊕
′ ′= + = =

  =  
  

% %% % % % 

                                                 

{ }0 0
, : ( ) ( ) ( ) ( )

sup min ( ), ( )x x
s t y f s g s f t g t

s tµ µ
′ ′= +

= % % ..(2.3) 

Also, using the extension principle to the left hand side, one can get: 

{ }0 0 0 0( ) ( ) [ ]( )
: ( ) ( ) ( ) ( )

( ) ( ) sup min ( ), ( )f g x f g fg x x x
x y f x g x f x g x

y y x xµ µ µ µ′ ′ ′+
′ ′= +

= =% % % %

                                                   
0

: ( ) ( ) ( ) ( )
sup ( )x

x y f x g x f x g x
xµ

′ ′= +
= % ……....(2.4) 

 

Now, from equations (2.3) and (2.4), we have: 
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0
: ( ) ( ) ( ) ( )

sup ( )x
x y f x g x f x g x

xµ
′ ′= +

% ≤ { }0 0
, : ( ) ( ) ( ) ( )

sup min ( ), ( )x x
s t y f s g s f t g t

s tµ µ
′ ′= +

% %  

Since 0x%  is a fuzzy point which has a supremum value therefore, 

      (fg)′( 0
~x ) = (f ′g + fg′)( 0

~x ) ⊆ [f ′( 0
~x )   g( 0

~x )] ⊕ [f( 0
~x )   g′( 0

~x )]. 

 

2. Since f ′ and g′ are continuous on [a, b] and both non decreasing in            

[a, b], then: 

∀ s, ∀ t > s, ∃ x ∈ [s,t] ⊆ [a,b], such that: 

f ′(x) g(x) + f  ́(x) g′(x) = f ′(s) g(s) + f(t) g′(t). 

Hence in particular: 

f ′(x) g(x) + f(x) g′(x) ≤ f ′(s) g(s) + f(t) g′(t) 

taking x = s, we have: 

 f ′(s) g(s) +f(s) g′(s) ≤ f ′(s) g(s) +f(t) g′(t) ≤  f ′(t) g(t) + f(t)g′(t) 

from the convexity of 0x% . 

)(
0

~ xxµ  ≥ min { )(
0

~ sxµ , )(
0

~ txµ } 

Hence: 

[ ] [ ]0 0 0 0( ) ( ) ( ) ( ) ( )f x g x f x g x yµ ′ ′ ′⊕ =
% % % 

 

                              0 0
, : ( ) ( ) ( ) ( )

sup min sup ( ), sup ( )x x
u v y u v u f s g s v f t g t

s tµ µ
′ ′= + = =

  
 
  

% %  

     
0 0

: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
sup min sup ( ), sup ( )x x

x y f x g x f x g x u f x g x v f x g x
x xµ µ

′ ′ ′ ′= + = =

  =  
  

% %
,  x = s = t. 

                                    = 
0

: ( ) ( ) ( ) ( )
sup ( )x

x y f x g x f x g x
xµ

′ ′= +
% . 
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Therefore;  

 [ ] [ ]0 0 0 0( ) ( ) ( ) ( ) ( )f x g x f x g x yµ ′ ′ ′⊕ =
% % %  0

: ( ) ( ) ( ) ( )
sup ( )x

x y f x g x f x g x
xµ

′ ′= +
% . 

But; 

)(sup)()(
000

~
)().()().(:

)~](..[)~().( yyy x
xgxfxgxfyx

xgfgfxgf µµµ
′+′=

′+′′ ==  

Then: 

        0 0 0 0 0( ) ( ) [ ( ) ( )] [ ( ) ( )].f g x f x g x f x g x′ ′ ′= ⊕% % % % %    �     

 

2.4 FUZZY INTEGRATION  

       The fuzzy integration is one of the most important part of the analysis of 

fuzzy set theory. Quite different suggestions have been made to define fuzzy 

integrals, so there are three types of fuzzy integration which are: 

1. Integration of real fuzzy function over crisp closed interval. 

2. Integration of real function over fuzzy interval. 

3. Integration of real fuzzy function over fuzzy interval. 

        The first two of the above three types will be discussed next: 

 

2.4.1 Integration of Real Fuzzy Function over Crisp Closed Interval 

         [Dubois,   1982] 

We shall now consider a fuzzy function  f% , which shall be integrated 

over the crisp interval [a,b]. 
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Definition(2.3): 

             Let f
~

: X →F
~

(R), the integral of f
~

over X = [a,b] denoted by        

∫
X

dttf )(
~

 is defined levelwise, as follows:   

             ( ) ( )
X X

f t dt f t dtα
α

 
= 

 
 
∫ ∫% , for all   0 ≤ α ≤ 1         

                                 ( ) , ( )
X X

f t dt f t dt
α α− +

 
=  
 
 
∫ ∫ .………………………(2.5) 

 

Remark (2.2): 

   If the fuzzy integration over the interval X=[a,b] is reversed from b to a 

it is easily seen that : 

       .
b a

X a b

f f f= = −∫ ∫ ∫% % %  

where  ∫−
b

a

f
~

 has for a membership function  
∫−
a

b

f
~

µ (u) = 
∫
b

a

f
~

µ  (-u) . 

 

       Following, some properties of the integration of fuzzy function over crisp 

interval which are given in [Dubois, 1982]. 

 1. ( )
X X X

f g f g
   

⊕ ⊇ ⊕   
   
   

∫ ∫ ∫% %% % , where f ̃and g̃ are real fuzzy functions from 

    the closed interval X to R, with bounded support. 

2. Under the commutativity condition for 
X
∫ and ⊕ , 
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   ( )
X X X

f g f g
   

⊕ = ⊕   
   
   

∫ ∫ ∫% %% % ……………………………………………..(2.6) 

 

Example(2.8): 

       Consider the bunch fuzzy function given in (2.1.4), by: 

f ̃ = {(f1, 0.4), (f2, 0.7), (f3, 0.4)}  

where 

f1(x) = x,  f2(x) = x
2
,  f3(x) = x+1  

and to integrate this bunch function over [1,2], we perform this as follows: 

i) Integration at  α = 0.7, then     

        f = f2(x) = x
2 
 

     and hence 

    Iα(1,2) = dxx∫
2

1

2 = 
2

1

3

3

1


x  = 
3

7 . 

Hence, the integration result is with possibility 0.7, is given by:  

    Ĩ0.7(1,2) = {(
3

7 , 0.7)}. 

ii) Integration at α  = 0.4, there are two functions  

f
+ 
= f1(x) = x and f 

- 
= f3(x) = x+1, then for  

       I +
α (1,2) = ∫

2

1

xdx = 
2

1

2

2

1


x = 
2

3 . 

      and 
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       Iα − (1,2) = 
2

1

2
2

1 2

1
)1( 

+=+∫ xxdxx = 
2

5  

The integration results are with possibility 0.4. Then, 

    Ĩ0.4(1,2) = {(
2

3 , 0.4),( 
2

5 , 0.4)}. 

       Finally, we have the total integration.  

       Ĩ(1,2) = {(
3

7 , 0.7), (
2

3 , 0.4),( 
2

5 , 0.4)}   

 

2.4.2 Integration of a (Crisp) Real Valued Function Over a Fuzzy Interval                

[Klir, G. J., 2000] 

A fuzzy domain D
~

 of the real line R is assumed to be bounded by two 

normalized convex fuzzy sets. The membership function of each are )(~ xaµ  

and )(~ x
b

µ  respectively, where )(~ xaµ  and )(~ x
b

µ  can be interpreted as the 

degree (of confidence) to which x can be considered a lower or upper bounds 

of D
~

. If 0a  and 0b  are the lower/upper limits of the supports of a~ or b
~

, then 

a0 or b0 are related to each other by 0a  = Inf S(a~) ≤ Sup S(b
~

) = 0b . 

1

0

D

a~ b
~

R0a
0b            

Fig.(2.6) Fuzzily bounded interval. 
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Definition (2.4)[Klir, G. J., 2000]: 

Let f be a real valued function which is integrable in the interval J = [a0, 

b0], then according to the extension principle the membership function of the 

fuzzy integral ∫
D

f
~

 is given by: 

{ })(),()( ~~

:,
~

yxMinSupz
ba

fzJyx

f y

x

D

µµµ
∫

∫
=∈

= . 

Some Properties of The Integration of Crisp Function over Fuzzy Interval 

[Klir, G. J., 2000]: 

         1. Let f be any function  f : D → R, which is integrable on D, then: 

              ∫
D

f  =  F(b̃) Θ F(ã). 

where Θ denotes the extended subtraction. 

        2. Let f and g be any two functions f, g : I → R, which are 

integrable on I, then: 

∫ +
b

a

gf
~

~

)(  ⊆ ∫
b

a

f
~

~

 ⊕ ∫
b

a

g
~

~

 

where ⊆  denotes the usual fuzzy set inclusion (
BA

BA ~~
~~ µµ ≤⇔⊆ ) and ⊕ 

denotes the extended addition. 

         3. If f, g : I →R+ or f, g : I → R−, then: 

∫ +
b

a

gf
~

~

)(  = ∫
b

a

f
~

~

 ⊕ ∫
b

a

g
~

~

 

The following examples illustrate fuzzy integration and its properties:  
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Example (2.9): 

Let: 

a~ = {(4, 0.8), (5, 1), (6, 0.4)} 

b
~

 = {(6, 0.7), (7, 1), (8, 0.2)} 

and, f(x) = 2, x ∈ [a0, b0] = [4, 8] 

The problem is to find the fuzzy integration of f(x) over J = [4, 8]. The 

following table illustrate these results.   

 

Table (2.1) 

Integration of  f(x)=2, over an interval (a,b) with membership function 

(a, b) 2a2bdx2
b

a

−=∫  Min { (a)µa~ , (b)µb
~ } 

(4, 6) 4 0.7 

(4, 7) 6 0.8 

(4, 8) 8 0.2 

(5, 6) 2 0.7 

(5, 7) 4 1.0 

(5, 8) 6 0.2 

(6, 6) 0 0.4 

(6, 7) 2 0.4 

(6, 8) 4 0.2 

 

 

and by using the definition (2.4), then: 

∫
D

f
~

 = {(0, 0.4), (4, 0.7), (4, 1), (6, 0.8), (8, 0.2)}. 
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Example (2.10): 

Let: 

f(x) = 2x − 3, g(x) = −2x + 5 

and 

a~ = {(1, 0.8), (2, 1), (3, 0.4)} 

b
~

 = {(3, 0.7), (4, 1), (5, 0.3)} 

so: 

∫
b

a

dxxf )(  = x2 − 3x ).3()3( 22 aabb
b

a
−−−=  

∫
b

a

dxxg )(  = −x2 + 5x ).5()5( 22 aabb
b

a
+−−+−=  

( )∫ +
b

a

dxxgxf )()(  = 2x ).22( ab
b

a
−=  

Then: 

∫
b

a

f
~

~

 = {(0, 0.4), (2, 0.7), (4, 0.4), (6, 1), (10, 0.3), (12, 0.3)} 

∫
b

a

g
~

~

 = {(−6, 0.3), (−4, 0.3), (−2, 1), (0, 0.8), (2, 0.7)} 

        ∫
b

a

f
~

~

 ⊕ ∫
b

a

g
~

~

 = {(−6, 0.3), (−4, 0.3), (−2, 0.4), (0, 0.7), (2, 0.7), (4, 1), (6,     

0.8), (8, 0.7), (10, 0.3), (12, 0.3), (14, 0.3)} 

∫ +
b

a

gf
~

~

)(  = {(0, 0.4), (2, 0.7), (4, 1), (6, 0.8), (8, 0.3)} 

and it is clear that: 

∫
b

a

f
~

~

 ⊕ ∫
b

a

g
~

~

 ⊇ ∫
b

a

f
~

~

 + ∫
b

a

g
~

~

. 
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CONCLUSIONS AND RECOMMENDATIONS ------ 
 
 
  From the present work, the following conclusions are drawn: 

1. All observed examples are defined on intervals which are belong to 

R+ . 

2. Up to our knowledge boundary value problems haven’t been discussed 

before, especially methods of solution. 

3. The method of successive approximations can be used to solve those 

problems in which the fuzziness appears in the solution and the kernel 

functions as a bunch fuzzy function. 

 

  Also, we can recommend the following open problems for future work: 

1. Studying eigenvalue problems of boundary value problems of Sturm-

Liouville fuzzy differential equations, as well as, the relationship 

between the eigenvalue and the eigenvectors of such type of equations. 

2. Solving fuzzy partial differential equations with boundary conditions. 

3. Using the collocation or the finite difference method for solving fuzzy 

boundary value problems. 

4. Studying the variational formulation of fuzzy boundary value problems. 

5. Studying new types of fuzzy differential equations with fractional 

derivatives.      
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1 

INTRODUCTION ---------------------------------------------  

Every day life, we use so many properties which cannot be dealt with 

satisfactory on a simple "Yes" or "No" answers, i.e., mathematically either 

belongs or not. Such properties perhaps are best indicated by shade of gray, 

rather than by in the black or white. Assigning each individual in a set (called 

the universal set and is denoted by X) on a "Yes" or "No" values as in 

ordinary set theory, is not an adequate way for dealing with such type of 

problems [Zadeh L.A., 1965]. 

Zadeh L.A., in 1965 introduced the subject of fuzzy set theory in which 

he considered the class of objects with continuum grads of membership, such 

a set is characterized by a membership or characteristic function which 

assigns to each object from the set a grade of membership that ranging 

between 0 and 1 [Zadeh L.A., 1965], [Bellman R.E., 1964]. 

The elements of real world problems are perturbed by imperfection and 

thus there exists no elements that perfectly round, since perfect notations or 

exact concepts corresponding to the sort of things envisaged in pure 

mathematics, while inexact structures encounter us in real life problems 

[Zadeh L.A., 1965]. 

This thesis consists of three chapters. 

Chapter one entitled (Fundamental Concepts in Fuzzy Sets) consist of 

seven sections. Section one consists of basic concepts and definitions related 

to fuzzy set theory which are necessary for the completeness of this thesis. 

Section two stands for studying different methods for constructing 

membership function numerically and analytically. In section three a study to 

the extension principle is given which is necessary for extending non-fuzzy 

concepts to fuzzy logic. In section four, and because of their importance in 

solving fuzzy differential equations, we study the α - level sets, as well as, 

some of it's properties. Finally, in sections five, six and seven we study 
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convex fuzzy sets, fuzzy relations and fuzzy number, respectively, which are 

necessary for the study of initial conditions of fuzzy differential equations. 

Chapter two, entitled (Theoretical Results in Fuzzy Sets) consist of four 

sections. In section one, three types of fuzzy function have been discussed 

with some basic properties of such type of functions. In section two, we 

introduce the concept of fuzzy mapping with some related properties and 

propositions. In section three, differentiation of fuzzy function have been 

discussed with some basic algebraic properties. In section four we study the 

concept of fuzzy integration since of it's important in the existence and 

uniqueness theorem of fuzzy differential equations. 

Finally, chapter three entitled (Solution of Fuzzy Differential Equations) 

consist of five sections. In section one, we introduce the concept of fuzzy 

differential equations with some related definitions. In section two, we study 

in details the statement and proof of the existence and uniqueness theorem of 

fuzzy differential equations using Schauder fuzzy fixed point theorem. In 

section three we discuss the solution of linear homogenous fuzzy system with 

some illustrative examples. In section four we modify some approaches to 

solve the non-homogenous and nonlinear fuzzy initial value problems. In 

section five an introduction to the solution of fuzzy differential equations with 

boundary conditions is presented using the shooting method to solve 

numerically boundary value problems.                                                
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  جمهورية العراق

  والبحث العلمي وزارة التعليم العالي

  جامعة النهرين

  

ذات الشروط ة ــادلات التفاضليــول المعــحل

  ةــالضبابي ةــالحدودي-الابتدائية

  

  ر����
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  وھ� �زء �ن ��ط���ت ��ل در�� ������ر ��وم
  "� ا�ر��!��ت

  
  من قبل

  الســـاعدي  نـعمـــــــار جعـفـر محيس

  )٢٠٠٣بكالوريوس، جامعة النهرين، (

 إشراف

  فــاضــل صبحـــي فـاضــــل. د
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  ا�ھداء

ر�� ��  ا� ھ�� ا���ء ... ا� �ن أر��� � ���ذاً 

  (         ) ���در�ول � 
��� ا�����ن �آل ��ت ���د اط���ن ... ا� ا
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ــــــ      ــــــ  هُ ـ الل ــــــض مَ رِ لأَ آوَ   اتِ وَ مَالســــــآ  ورُ نُ ــــــثَـ هِ  ورِ لُ نُ
  ةٍ اجَــــــجَ ي زُ فـِــــ  احُ صـــــب ـَلمِ آ  احٌ صـــــب ـَا مِ يهَـــــفِ   ةٍ اشـــــكَ مِ كَ 
  ةٍ رَ جَ ن شـَمِـ  دُ وقـَيُ   ى ر دُ ُ◌  بُ وكَ ا كَ هَ أن كَ   ةُ اجَ جَ لز آ
 رقِ شَــ  لا  ةٍ ونــَيتُ زَ   ةٍ كَــارَ ب ـَم ــربِ لا غَ وَ   ةٍ يا  هَــيتُ زَ   ادُ كَــيَ   ةٍ ي
ي  هــدِ ورٍ يَ ى نُــلــَورٌ عَ نــ  ارٌ ســهُ نَـــمسَ م تَ و لــَلــَوَ   ئُ ضِــيُ 
  اسِ لنــلِ   الَ مثَــآلأَ   هُ للــ آ  بُ ضـرِ يَ وَ   ءُ آشـَن يَ هِ مَـورِ نُ لِ   هُ للـ آ
  يمُُ◌ لِ ئٍ عَ ل شَ كُ بِ   هٌ للـ آوَ 

          

            
  ٣٥الأية  ، سورة النور                                                                 
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  ----------------------------------------------------  �������ا
  

�����ع ����� درا�� اھ�اف ن ا�� إ  ����$* ا�$�� ( )$ �'� و �%$��� � �ھ$ �ا�#"�!  �تا��

ا��, 4-�ن ��: در�9 8" �ة �6 ا��53 � او �4. ا��$, 4-$�ن ذات ��34$2 ' $� د1 $0 وذ�$. �-$, ا����+* 

و��A. ��-6 ا��"$�ر ا�#$"�! � ��$: ا�=$� �$�ع . ا��@��?�ا��<� � � �* �3=� !��%�ق �;� ا��3�4-�ن �5"��� 

'� Bد ا��� �$6ا�����$ � ���$@�� ��� $� وا��$, �-$�ن ? =$� �$�ع  ��6 ا��اع ا�Cد�1 ا��, �4ا9=;� �;� ا�

��ت ا��<�ث �6 1"* ا�3��I زاده ?, ��م . ا���Eض���8����ب ��3���� ھAا  ١٩٦٥ھAا ا�;�ع �6 ا��

  .ا���Eض او ا�Cد�1 ?, ا�;��ذج ا����� �

  
  .�=Aه اSط�و�� �QCQ اھ�اف  

��ت ا�#"�! �  ا�=�ف اSول ھ� ���و !�ھ;� !W3 ا�;��+V ا��U=�ره ا��, ا�� ان 4-�ن ' $� درا�� ا��

� X;ھ�"�* (�Y�5 ا�: ا���Y4 ,او ا�"�اھ 6 ا�� �5!� .  

ا�#$"�! � !��$���ام �"�ھ;$� ا��Y��$� � ��3$�دSت ا����ا� $� ��9$�د وا� و!�ھ;� ا�=�ف ا�Z��, ھ� درا�� 

  .�U�ودر �;5%� ا�B���ةا �"�! �

ود�� اS!��ا+ � وا�<�����ع ?, ا��3�دSت ا��Y��� � ا�#"�! � ا�%�ء �5��� 9���ة �ا�=�ف ا�Z��] ھ�  

  .��"5� !��S�?� ا�: ا���3اض ��د �6 ط�ا+0 ا�<*ا��, �;� I�4 I��U1=� و
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