ABSTRAGT

In this thesis the gamma distribution is considdogdhe reason of it's
appearance in many statistical fields of applicegidcSome mathematical and
statistical properties of the distribution are eoted and unified. Moments
and higher moments are illustrated and two methadsstimation for the

distribution parameters are discussed theorstiaad assessed practically.

A new proposed method of approximation to the cuatne
distribution function is derived and it showed firealy a high performance

in comparison with four well known methods of appnoation.

Finally five procedure for generating random vasafrom gamma
distribution are discussed and their efficiencies @ompared theoretically
and practically by Monte-Carlo simulation.
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CHAPTER

THE GAMMA DISTRIBUTION

1.1INTRODUCTION

Gamma distribution is one of the important classésontinuous
distribution, and it is useful for modeling timegtlween events such as
reliability and queuing studies [37]. The gammatribsition uses in the

problem of modeling atmospheric aerosol (such as had fog) [7].

Gamma distribution has an important applicationtha study of life
time models, such as stops of a machine, failurébreakdowns of an
equipment (e.g. Personal computer), air or roaddants, coal mining
disasters, telephone call, etc., are examplesadf suents the occur in a real
time and have properties exported for gamma cage #8d also the gamma
distribution has been found to fit the precipitataistribution quite well [16].
Another useful use of gamma distn. is capable oflehng a variety of
different probability density functions and hazérdctions[9].

In hydrology [30] the gamma distn. has the advaataighaving only
positive values since hydrological variables sushranfall and runoff are
always positive. More detailed information abouingaa distn. can be found
in [5], [42]. The following literature review appeace the useful of the

gamma distn. in many applied fields.

Greenwood and Durand (1960) [11] presented appietioms for

estimating the maximum likelihood parameters far gamma distribution.
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Mooley and Crutcher (1968) [32] investigated thenber of years of
record needed to stabilize the gamma parameterstudy of rainfall in India.

Shenton land Bowman (1970) [39] discuss some ptiegesf Thom's

estimators for gamma distribution.

Bridges and Haan (1972) [4] developed a techniquevaluating the
reliability of precipitation estimates, where heegent tables for the
probabilities of the errors of various magnitudeprecipitation estimate as a

function of record length.

A.Marazzi, C. Ruffieux (1995) [2] discussed the lempentation (the
numerical computation) for estimation and detertnomaof some measures

such as bhias, variance which characterize thebriloligion.

David W. Coit and Tongdan Jin (2000) [9] considee tmaximum
likelihood estimation of the parameters of gammetrdiiution for reliability

data with missing failure data (censored data).

Hafzulla Aksoy (2000) [12] used the 2-parameter galistribution

in a mounts of daily rainfall data and the ascamsiarve of the hydrograph.

J. Belmont and M.Canela (2004) [20] presented glsimproposal for
classification the pollen types, based on the shagmameter of gamma
distribution, which could reduce the study of theetpollen data of network

to three selected types.

This thesis involves three chapters. In chapter weegave some
basic concepts of gamma distn. Moments and higleenents properties of
the distn. are illustrated. Some related theoremngern the distn. are proved.
Two methods of parameters estimation namely monmmethod and
maximum likelihood are discussed theoretically @sdessed practically by
Monte-Carlo simulation. Where as in chapter twogawe a full discussion

for the approximation to the c.d.f of gamma disty five numerical methods
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namely Trapezoidal Rule, Simpson Rule, Guass-Quadr&ule, Proposition
Rule and Hit or Miss Monte-Carlo Rule, where theragimation results and

compared inclusively and exclusively with the résdilchi-square distn. table.

Finally in chapter three we discuss five procedumsgenerating
random variates from gamma distn. One procedureerdkp on the
independent sum theorem, and the other procedemsnd on Acceptance-
Rejection method. Efficiencies of the method arewdated theoretically and

assessed by Monte-Carlo simulation.

1.2 SOME BASIC CONCEPTSOF GAMMA DISTRIBUTION

1.2.1 Definition: [17]

A continuous r.v. X is said to have gamma distidout denoted by
X~G(a, B) if X has p.d.f

1

(a)p®

=0, e.w, wherext > 0,>0 and

D(G—le-X/B, 0 < X <00

fOa.p) =

Ma) = j t%* " dt is known as gamma function.
0

To verify that the Eq.(1.1) is valid p.d.f, we natieat f(x) > O,

[ x O (0, ) and the integra_[ f(x) dx is unity. Viz

— X e*® dx

Let|= j f(x) dx =

5 I'

O —3

Sety= % or equivalently x= By by with dx= 3dy
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So

1
F(a

J y*tevdy = T (a) =1
0

1
r(a)
whena = 1, the exponential distribution arise as a spaxaak of the gamma

distribution and the p.d.f of (1.1) becomes

f(XB)_[3 e ®  0<x<w

=0, e.w.
Also a special case of gamma distribution that plap extremely

important role in both theoretical and appliedistats when the r.v X~Gg ,2)

and the p.d.f of (1.2) in this case is

( ) — X2 e 2 0 < x <o
r(x)2>

=0 ,e.w.

f(x) =

where r is positive integer

The r.v X that has p.d.f of Eq.(1.3) is said to éashi-square
distribution with r degrees of freedom and dendcbgdx~x2(r). The gamma
distribution depends on two parameterand3 which are often referred to as

shape and scale parameters.

By varying the values af and3, a wide range of distribution shape
can be generated. The professional MATHCAD, 200pmuter software is

used to give a graphical representation of gammeﬁ'{'pf.whena IS an integer
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Figures (1) and (2) show respectively some pfoif fixed o andp
varying and for fixedp and a varing. Both figures show that the curve
increasing to locate its maximum and then decrgasirhave the x-axis as an
asymptote. Furthermore there is a sever skewnagghticasa or [3 increasing
except wherd = 1 where the exponential distribution arise asexisih case of

gamma distribution.

1.2.2 The Cumulative Distribution Function:

The gamma c.d.f is known by the following incompleggamma

function

-W

F(x) = Pr(X oL 1.4
(X)= Pr(X< x)= jW‘“ (1.4)

More discussion is given in chapter two about saveuggested
procedures for approximating the integral side qpfagion (1.4). Most books

of mathematical statistics [17] involve a specifable for special case of
gamma distribution know as chi-square distributidrena = > andB =2 as

shown in table (1).
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Table (1) The chi-square distribution.
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1.2.3 Formulation of Gamma Distribution:
To introduce the gamma distribution, we consideuge as a waiting
time distribution where the interest in the numlmdr events occurring

randomly in time according to Poisson process wathstant ratéd which can

be described as follows:-

If the number of events occurring during time £x) is independent
of the number occurring during time (0, x), ther tbrocess satisfied the

following postulates
(i) Pr [no events during (4x)] = 1 AAX + u@Ax).
(i) Pr [one event during (OX)] = AAX + u@x)
(i) Pr [two or more events during (Ax)] = u(Ax).

where ufAx) be any function ofAx such that

Lim u@x)
Mx -0 AX

It has been shown [31] that if Y is a r.pnesenting the number of events

=0

occurring in fixed time (0, x], then Y has Poissbstribution with p.d.f

Pr(Y=y)= M,y=0, 1,2
=0,ew.;A>0
Now, suppose that our interest in the waiting tidkefrom the
occurrence of one event until r further events has@irred. Then the c.d.f of
Xwhen x >0 is given by
F(X)=Pr(X<x)=1-Pr(X > x)

=1-Pr[(r— 1) or fewer events occur during time (0, x]]

r-1 r-1 4,—AX y
=1-Y Pr(Y= y)=1—2¢ ...................................... (1.6)
y=0 y=0 y:
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Equation (1.6) is interesting in showing that tleengna c.d.f can be
expressed as a cumulative sum of Poisson probebilibue to [40] the p.d.f
of X is

_ - +yAe () y'l}
y=0 y

_ Aze o Zye Mo

16 (Ax)y LMY
/] __ 7
Z y ; (y-D)!
e ™ ()\ X)r_1 AT
=A————"— = XTHEM X > 0o, (1.7)

(r=2' 1 (r)

=0, e.w.

Which is as given by equation (1.1) with=r andf =% the p.d.f.

given by (1.7) is a special mumber of the gammailfaaf distributions and
Is sometimes referred to as a special Erlangianilalision after the Swedish

scientist who used the distribution in early stsddé& queuing problems.

1.3MOMENTSAND HIGHER MOMENTS PROPERTIES OF
GAMMA DISTRIBUTION

Moments are set of constants used for measuringstaibdtion

properties and under certain circumstances thegifgpde distribution. The
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moments of r.v. X (or distn.) are defined in terwis the mathematical

expectation of certain power of X when they extslr instance
=E(X") is called the ¥ moment of X about the origin and

=E[(X )] is called the't central moment of X. That is

D x'f(x), Xis discrete r.v.

= E(Xr) =
jxrf(x)dx, X is continuous r.\

X

and
Z(x -W)'f(x), Xis discrete r.v.

=E[(X -] =
_[(x K f(x)dx, Xis continuous r.\

X
Provided the sum or integral converges abdglutéhe generating
functions reflect certain properties of the digitibn, they could be used to
generate moments. Sometimes they are definitiordistebutions, and also

have a particular usefulness in connection withssafrindependent, r.¥’

First, we shall consider a function of a reedlled the moment generating

function, denoted by M(t), which can be used toegate moments of r.v X.

For continuous r.v X, the m.g.f is defined by

M(t) = E(&") = I e™f(x)dx, provided the integral converge absolutely.

When r.v X~G @, ) with p.d.f given by (1.1), we have
—X

M(t) = j eX T yaleB gy

()B

9 La-gtyx
= j 1 —x“ L dx
0

10
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set y= (1 - t) x implies dy= (1 — Bt)dx

T 1 y )7 4 L dy
M(t) = a( j e’ I——
OF(O()B 1-t

R

. Tl G R
where the integral| ———v® e P dy is unit
o P
Hence
MO =B, E€ 5 (1.8)

The theory of mathematical analysis show that Kigtence of M(t) for t <%

Implies that the derivatives of M(t) of all ordexsist at t= 0.

Thus the f moment of X about the origin is

d"M(t)
dt’

=a(a + 1)@ +2) ... @ +r=1)p(1 - B
= Br|_| (a +i)

o+r)
r(a)

The following useful recurrence relation betweer tff central

W, =E (X) = beo, r=1,2,3,.....

_I
—

BT r=1, 2, ot oo (1.9)

moment and moments about origin is given by Keaddl Stuart [23].

W, =E[(X -pn)7] = Zr:(—l)i (:)uiu}_i .......................................... (1.10)

i=0

11
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(i) Mean

E(X) = u =/, is called the mean of r.v X. It is a measure oftd

tendency. Use of equation (1.9) witk 4, we have

(i) Variance

Var(X) = 02=E[(X—u)2] is called the variance of r.v X. It is a

measure of dispersion. Use of equation (1.10) natl2.

(ii) Coefficient of Variation

The variational coefficient of r.v X is definday the ratiog. It is a
M

measure of dispersion. It is independent of scaasurement and denoted by

V. For gamma case

Jop_

V=0 o O o e (1.13)
U

which is independent of the scale parampter

(iv) Coefficient of Skewness

A =“—33 is called the coefficient of skewness.

It is a measure of the departure of the fraquecurve from symmetry. If

y; =0, the curve is not skeweg, > 0, the curve is positively skewed, and

y;< 0, the curve is negatively skewed [34]. Use afagmpn (1.10) with = 3,

we have Uy = E[(X -p)’] =2ap® Thus:

12
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3 _
i 20([33 S 200 72 e (1.14)
Ck
(v) Coefficient of Kurtosis
Y, =“—‘2‘—3 is called the coefficient of kurtosis. It is a rmaee of the
M2

degree of flattening of the frequency curvey}f=0, the curve is called
mesokurtic, ify, > 0, the curve is called leptokurtic, andyif < O, the curve

is called platykurtic [34] .
Use of equation (1.10) with = 4, we havep, =E[(X —u)4] =
3o (a +2)B*. Thus
_3a(o+2)p’
Y2 = 22 -
(ap?)

(vi) Mode

A mode of a distribution is the value x of r.v Xathmaximize the

p.d.f f(x). For continuous distributions, the modes a solution o@ =0
X

d?f (x)

dx? <0.

and

The mode is a measure of location. Also we tioé the mode may not

exist or we may have more than one mode.

For gamma case with p.d.f of (1.1), the logarithfif(x) is
Lnf(x) =-Lnr (a) -BLna +(a —1)Lnx —%

dLnf(x) _a-1_1
dx X B

13



Chapter One The Gammistribution

For maximum

dunf(x) o a-1_1_g
dx X B
XZ (0 =D)B, 0021 e (1.19)
(vii) Median

A median of a distribution is defined to be thewsk of r.v X such

that F(xX)= Pr(X< x) = % The median is measure of location.

For gamma case, the c.d.f given by equation (vd)have

o
2

O =y X

=
Q
(DI—‘
i)
o
=
~
H
N
o
N’

where the right hand side of Eq. (1.20) is the mplete gamma function.

1.4 SOME RELATED THEOREM
1.4.1 Independent Sum Theorem

If X1, X5, ..., Xyis a r.s of size n from ExPJ. Then the r.v
n
Y =) X;~G(np).
i=1

Proof:

Using m.g.f technique, the m.g.f for each r.v~Exp@) is
-1
My (t) =(L~Bt)

n
Let My (t) be the m.g.fof r.w =>"X;
i

14
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My (t)=E(e¥)=E etzlx :E(Detxij

1

:IjE(etx) |—||\/|X |j1—[3t— (-9

=1

which show that Y has m.g.f of G(8).

1.4.2 Gamma—Beta Theorem:
If X and Y are two independent rivwith X~Be(a,1-a) and

Y~Exp(B), then the r.v Z XY~G(a, p)

Proof:

The joint p.d.fof Xand Y is
-y

1 x®(1-x)"eP,0<x<1,0<y

f(X’Y)zﬁr(m)r(l—q)

=0, e.w.

with the transformation Z XY, we set W=Y.

The function z= xy, w = y define one-to-one transformation that

maps the space A{(X, y) : 0 <x <1, 0 <y <o} onto the space B {(z, w) :

0 < z < w <o} with inversexzi, w =y and the Jacobian of this
w

transformation is

oX OX
3= 0(0y) _loz ow
o(z,w) |9y 9y
0z Ow
1 -z

= —] _ 1

=|lw wz| =—

o 1| W

15
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Then joint p.d.f of rvV Z and W is

gz.w)= 1wl

- Br(a)#(l—a)(%)a_l(l_wzj_a e_ngl

-W

= 1 2" Hw-2)" ef 0<z<w<w

Br(a)r(1-o)

=0, e.w.

The marginal p.d.fof Zis

701 ® . w
gl(z)z\_/[g(z,w)dwz BF(G)F(l-O()W:Z (w- 2)* & dv
Lett=w-z= dt=dw
201 0 “t4z
= —a 4 B
91(2) Br(a)r(l—a)-c[t e dt

a-1. B pl-a -
z°efp 1 {00158 gt

Br(a) -([F(l—a)Bl’“L

—-Z

= 2 %eP  0<z<w

(a)p”

=0, e.w.

That is Z~G(, B).

16
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1.5 POINT ESTIMATION

Point estimation is concerned with inference abth& unknown
parameters of a distribution from a sample. It ptes a single value for each

unknown parameter.

1.5.1 Definition:

Any statistic whose value are used to estimatelttk@own parameter

0 for some function 0@ sayt(0) is called point estimator.
Point estimation admits two problems:

First, developing methods of obtaining a statisti®se values could
be used to estimate the unknown parameters ofistibdtion, such statistics

are called point estimators.

Second, selecting criteria and technique to obgaibest estimator

among possible estimators.

1.5.2Methods of Finding Estimators:

Many techniques have been proposed in the litezatwf finding
estimators for the distn. parameters such as manerdaximum likelihood,
minimum chi-square, minimum distance, least squaméd, Bayesian method.
These methods provide a single value for each umknparameter of the

distribution

For gamma case we shall discuss two methods theatlyi and

practically the method of moments and the maximikelihood method.

17
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1.5.2.1 Moments Method:

Let Xy, X5, ..., X, be a r.s of size n from a distribution whose p.d.f
f(x; 8), 8 = (64, 62, ..., 6y) is a vector of unknown parameters, |liet= E(Xr)

n
be the ¥ moment about origin of the population akig =EZX{ be the
Nz

moment about origin of the sample. The method afhetts can be described

follows:

Since, we have k unknown parameters, equate
g to M, athé .That is
=M, at Qzé, r=1,2,..,k

For these k equations, we find a unique soluticmé{oéz,...,ék and
we say thatér(r=1,2,...,k] is an estimate oB, obtained by method of
Moments and the corresponding statisﬁp Is the method of moments

estimator ofo, .

Now, to estimatex and3 by method of moments we let; XX,, .

X, be ar.s. of size n from @ () is taken.
Since G(, () distribution involve two unknown parameters

We sety, =M, ata=a ,B=p ,r=1,.2
r=1implies
14 _
W = E(X) =ap, M1=HZXi =X
i=1

r=2implies

18
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, 1
Wy =E(X®) =ap?+aB? M, :_inz
N3
_ n—182+$<2
n
where:

n —
s? =i{2xf —nxz}
113

n

r=21impliesyy=M; at a=a ,p= B,Weobtain

r=2 impliesp, =M, ata =a ,B=PR , we obtain

................................................... (1.22)
n
Solving equations (1.21) and (1.22), we get
X2 (n-1)S?
a= and B=2 e 1.23

-1 p="= (1.23)
are respectively the estimatesooandB obtained by method of moments and
the corresponding estimators aFe— (-1S 1)82

(n-1)S° nX

Our conclusion about these estimators are
(i) Both estimators are functions Bfand S.

(i) The joint distribution of the estimators can netfbund easily because the

dependency existence among these estimators
A 1
(i) For knownp,a ~G(na,—)
n

B

(iv) For knowna [3 G(na,—
na

19
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Definition (Likelihood function):

The likelihood function of a r.s XX,,...,X, of size n from a

distribution having p.d.f (@) where® = (8,, 6,, ..., 6, is a vector of

unknown parameters is defined to be the joint mfithe n r.v’ X, X,,..., X,

which is considered as a function@®fand denoted by 1§, x), that is

L=L(80 =100 8) =[], 9).
=1

1.5.2.2 Maximum Liklihood Method

Let L(B,x) be the likelihood function of a r.s;XX,,..., X, of size n
from a distribution whose p.dff(x;0), 6=(04, 6,, ..., 6¢) is a vector of

unknown parameters Let:
0=u(x)
= (U (%), Up (X)), -, U (X)),
be a vector function of the observations (X;,X,...,X,)

If @ have the value 06 which maximizesL(@,x) thené is the

m./.e of 8 and the corresponding statis(:ﬂ:is the M.L.E of@ we note that

() Many likelihood function satisfy the condition ththe m./.e is a solution
of the likelihood eg

00 T

r

(i) Since L@, x) and In L@ , x) have their maximum at the same value of
0 so sometimes it is easier to find the maximumhef lbgarithm of the

likelihood.

20
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In such case, then/.e @ of 8 which maximizes L@, x) may be

given the solution of the likelihood €q

ONL®X) 5 ot 9= r=1,2,...k
96, S

For gamma case

Let X;, X5, ..., X, be a r.s. of size n from &( 3) where the

distribution p.d.f is given by (1.1). The likelihddunction is
L(a,B,x) =f(x,a,B)

- f(x;, a,B)

=1
B S
_DF(O()BO‘Xi lep

LnL =-nLn[ T (a)]-naLnB+(a —1)Zn: Lnx, —%Zn: X
i1 El

oLnL _ s
" —ny(a) - nLnB + ; LNX = 0o, (1.24)
where
d
W(0) = G LT (0) o (1.25)
oLnL na 1
R L UL e D 1.26
B 0O E L (20
oLnL oLnL _ A
We set 5 0 and B - ta=a,p=0,
we have:

21
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—an(ﬁ)—nLnﬁ+Zn: LNX = 0t (1.27)

i=1

and

~ n n
—ng+i2‘xi =0=mi =712>g
B P23 Bz

This implies that:

Analytic solution forad can not be found from Eg. (1.29). In such

case numerical method is needed for, finding amaqimate value fold and

A~

B.

In practice, we choose Newton-Raphson method wldah be

described by the formula

51026, ((‘;‘()) ..................................................................... (1.30)
we set
(&) = Lni—g(@) —LiX +%iLn)l<:O
and
() == - Y()

where(a)and'(d) are the digamma and trigamma are tabulated. I&tabl
of Y(&) andy’'(a) are not available, excellent approximation [1],if8given
by

A N . 1 1
~ —_ —_ . T |
Y(a)=Lna - (2a 3+1 ~)

22
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where:

W(@) =% ...................................................................... (1.31)

(@) = (G —% +%)—1 ........................................................... (1.32)

In order to esses the results of the theoretic@aton practically
for the two methods given by (1.5.2.1) and (1.5,2 use theorem (1.4.1)
for observing random sample of size=r6(1)10(2)20 from G{, = 1) and
the run size 20 is used. Table (A-2) of Appendigifes the values of the
estimation methods. Comparison between the two edstlof estimation is
made by using the measure of the mean squareasrdothe results are given
in table (A-3).

Table (A-2) The estimation values fa and B

(7.0950,0.9281)

(6.5341,0.9236)

(7.7950,0.9454)

(7.2086,0.8747)

(8.9067,0.9241)

(7.4543, 1.3001)

(9.5340,0.9651)

(9.6331,0.5699)

(10.4594,1.0337)

(10.3425,1.0104)

(12.3094,1.0483)

(11.0386,1.1692)

(13.9410,1.0309)

(14.2693,0.9191)

(18.0570,0.9048)

(18.0538,0.9485)

(17.5400,1.1230)

(18.3712,0.9658)

(20.6581,1.0079)

23
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3.2865

3.6438

Table (A-3) Mean Square Error

3.4167

3.4396

5.4746 5.5794 8.3198 9.3263
6.7206 8.7993 4.2503 7.2376
8.6000 8.9825 8.5414 8.8706
14.7845 15.0317 10.8968 11.1170
15.7106 16.5951 18.6491 18.6542
15.3273 16.5296 5.8164 13.5831
12.8150 12.8768 20.9762 14.9359
19.3429 19.3572 7.0787 15.5042
13.6652 13.6631 14.8213 1.0939

24



CHAPTER

GENERATING RANDOM VERTIGES FROM GAMMA
DISTRIBUTION

3.1 INTRODUCTION

The first step in studying a certain problem undensideration is
building a mathematical model, the next step isvdeg a solution from this
model. The solution may be obtained analyticalljpemerically. The analytic
solution is usually obtained directly from it's rhammatical representation in
the form of the formula, while a numerical solutios generally an
approximate solution obtained as a result of stuligin of numerical values
for the variables and parameters of the model. Manyerical methods are
iterative, that is, each successive step in thatisol uses the results from the
previous step, such as Newton-Raphson method famoaimating the roots
of a non-linear equation. Two special types of niicaé methods are
simulation and Monte Carlo designed for a solutadndeterministic and

stochastic problems.

Simulation “in a wide scene” is defined as nunedriechnique for
conducting experiments on a digital computer, whisiolve certain types of
mathematical and logical models that describe tywtesn behavior over
extended periods of time, for examples, simulatogball game, supersonic

jet flight, a telephone communication system, adwitunnel, a large scale
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military battle (to evaluate defensive or offemsiweapon system), or a

maintenance operations (to evaluate the optimaldizrepair crews).

Simulation is often viewed as a “ Method of Lass&¢’ to be used
when everything else has failed, software buildirmgpnd technical
developments have made simulation one of the madely used and

accepted tools for designer in system analysisopedational research.

Simulation “in a narrow sence” (also called stoticasimulation) is
defined as experimenting with the model over tinteincludes sampling
stochastic varieties from probability distributioBecause sampling from a
particular distribution involve the use of randonumbers, stochastic

simulation sometimes called Monte Carlo Simulation.

Historically, the Monte Carlo method was consideasda technique
using random or pseudorandom numbers for solutibm onodel. These
random numbers are essentially independent randanables uniformly

distributed over unit interval [0, 1].

Actually there are arithmetic codes available amgoter center
(0 to 9) occurs with approximately equal probapifiimagine flips of a fair

ten-side die”. Such codes are called random nuigéeerators.

In the beginning of the 3Bcentury the Monte Carlo was used to

examine the Boltzmann equation.

In 1908 the famous statistician Gosset (studerd$ tise Monte Carlo

method for estimating the correlation coefficiantis t-distribution, [13].

One of the earliest problems connected with MoragldCmethod is
the famous Buffon’s needle problem, who found trabpbility of a needle of

length L thrown randomly onto a floor composed afghlel planks of width
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D>LisP= % which can be estimated as the ratio of the nurmabthrows

hitting the crack to the total number of throws.

A. N. Kolmogororv (1931) apply Monte Carlo methoddashowed
the relationship between Markov stochastic processel certain Integro-

differential equations, [14].

In 1948 S.Ulam used Monte Carlo method for estiomtof the
eigenvalues of Schrodinger equation, [15].

The terms “Monte Carlo” was introduced by Von Neamand Ulam
during World War Il, as a code word for secret watk.os Alamos, it was
suggested by the gambling casinos at the city afit®l@€arlo in Monaco. The
Monte Carlo method was then applied to problenated|to the atomic bomb
[3] where the work involve direct simulation of laetor concerned with
random neutron diffusion in fissionable materiaho8&ly thereafter Monte
Carlo method were used to evaluate complex muledsional integrals,
solution of certain differential and integral etjaas stochastic problems,
deterministic problems if they have the same formgbression as some
stochastic process, evaluating parameters of quegsetworks, sampling
random varieties from probability distributions, darmanalyzing complex
problems. A useful reference related to Monte Cantoulation is given by
Rubinstein [38] and Norman [33].

3.2 RANDOM NUMBER GENERATION

Many techniques for generating random numbers gitadlicomputer
by Monte Carlo method and simulation have been estgd tested and used
in recent years. Some of these methods are basednolom phenomena,

others on deterministic recurrence procedures.
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Initially manual methods were used to generate gquesace of
numbers such as coin flipping, dice rolling, caitlffing, and roulette
wheels, but these methods were to slow for genesal moreover the

generated sequence not reproduced.

Shortly following with the computer aid it becomesgible to obtain
random numbers. In 1951 Von Neumann [41] suggdsts mid-square
method using the arithmetic operations of a compiies idea is to take the
square of the preceding random number and entnactmiddle digits. For

instance, suppose we wish to generate 4-digits stsnb
1- Choose any 4-digit number, say 5232.
2- Square it, we have 27373824.
3- The next 4-digit number is the middle 4-digifstep2, that is, 3738.
4- Repeat the process.

Von Neumann’'s method proved slow and awkward fatistical
analysis, furthermore the sequences tend to cicl@mnd once a zero is
encountered the sequence terminates. One methagkredrating random
numbers on a digital computer is published in 18$IRAND Corporation
[35], the method consists of preparing a well kndelole of a million digits
and storing it in the memory of the computer. Theaamtage of this method is
reproducibility and it's disadvantage is its ladkspeed and risk of exhausting
the table.

It is noted in the literature that the random nuralgenerated by any
method is good one if the random numbers are umlfordistributed,
statistically independent, reproducible, fast, esglires minimum capacity in

the computer memory.

The congruential methods for generating pseudorantgiembers are

designed specifically to satisfy as many of thesgiirements as possible.
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These methods produce a nonrandom sequence of raiadzording
to some recursive formula based on calculatingd#selues modulo of some
integer m of a linear transformation Although thesecesses are completely
deterministic, Knuth in 1969 [25] show that the rnars generated by such

sequence appear to be uniformly distributed arttsstally independent.

The congruential methods [27] are based on a fuedaah
congruence relationship, which may be formulated as

Ximp=(@XG+c)(modm), EL, 2, ..., M (3.1)
where a is a multiplier, c is the increment, anasrthe modulus (a, ¢, m are
non-negative integers), (mod m) means that equéddr) can be written as:

ax; +c
m

Xi+1 = aX, +C— m|:

where [Z] is the largest positive integer in z.

Given an initial starting value Xwith fixed values of a, ¢, and m,
then equation (3.2) yields congruence relationgmpdulo m) for any value
I of the sequence {X The sequence { X} will repeat itself in at most m

steps and will be therefore periodic. For example,

Let a= c=x, = 3, and m= 5, then the sequence obtained from the
recursive formula
Xiy =(BX; +3)(mod5) is X;=3, 2,4,0, 3, ...

The random numbers on the unit interval [0, 1] lbarobtained by:

It follow’s from equation (3.3) that € m, [J i, this inequality mean
that the period of the generator can not exceedthat is, the sequence X
contains at most m distinct numbers. So m musthmsen as large as
possible to ensure. A sufficiently large sequentéistinct numbers in the

cycle.
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It is noted in the literature [18], [26], [29] thgbod statistical results

can be achieved from a computer by choosir@a1, c= 1, and n= 2°°.

3.3 RANDOM VARIETIES GENERATION
Two well-known methods for generating random vagetform

continuous distribution, namely the inverse tramsfo method and

acceptance-rejection method.

3.3.1 The Inverse Transform Method:
Recall the properties of the c.d.f
Pr(X<x) =F(x) of r.v. X
(i) O<F(Xx) <1,
(i) F(-o) =0, Feo) = 1.
(i)  F(x) is non-decreasing function of x.
(iv) F(x) is continuous function to the right at each x.

The inverse transform method is based on the fatigwheorem:

Theorem (3.1) [26]:

The r.v. U= F(X) ~ U(0, 1) if and only if the r.v X F_l(U) has c.d.f.
Pr(X < x) = F(X).
Proof:

= Consider the r.v U=F(X) ~U (0, 1) then the c.d.flis

O,u<0
G(x)=Pr(Us u)=9 u,x « .
Lu=1

Pr(X< x) = Pr(F* (U)< x)= Pr(Us F(X)F F(x
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O conversely, consider the r.v X has c.d.f EBr(X<x)
G(u)=Pr(U< u)= Pr(F(Xkg u
=Pr[X < F*(u)]
=FF (u)]=u
The IT algorithm describe the necessary steps émerating r.v by

Inverse Transform Method

1- Generate U from U (0, 1).
2- SetX =F (V).
3- Deliver X as a r.v. generated from the p.dx).f(

We note that, this method is valid when the cl(xX) exists in a form

for which the corresponding inverse transform carsdved analytically.

3.3.2 The Acceptance-Rejection Method [41]:

This method consists of sampling a r.v from an appate distn and

subjecting it to a test to determine whether orinwill be acceptable for use.

To carry out the method, the p.d.f. f(x) of the gexted r.v X

represented as

f(x) = ch(x)g(x) , where &1, h(x) is also p.d.f. and 0 < g(X)1.Then
we generate two r.v.’s U and Y from U (0, 1) arfg) mespectively and test to

see whether or not the inequalitysg (Y) hold:-
1- If the inequality hold, then accept=¥YX as a r.v generated from f(x)
2- If the inequality violated, then reject the p@; Y) and try again

The theory behind this method is based on theviatig theorem.
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Theorem (3.2) [38]:

Let the p.d.f. of r.v X represented as f (x) =c)hg¥x) where = 1,
h(x) as also p.d.f., and 0<g (X)1. Let U and Y be distributed U(0, 1) and h(y)
respectively thePr] Y = x | U< g(Y)] = f(x)

Proof:

PI[Y =x | U< g(Y)] = Pr[ljj’:gfi’)ﬁ“] .............................. (3.1)

_ PriY =x,U<g(Y)]
IPr[Y =x,U < g(Y)]dx

Using Bayes theorem [21], we have:

Pr(U< g(Y)|Y=x)Pr(Y= x)

PrlY =x|U<g(Y)]=
jPr[ U< g(Y)| Y= Pr(Y= x)dx

SincePr[U< g(y)| Y= x]=Pr[U< g(x)]= g(x) andPr(Y = x) = h(x). Then:

oy ¢ (U< vy 90N _ gOOh(x)
r[ X| <g()’)] jg(x)h(x)dx jmdx

C

X

g(x)h(x)

=cg(x)h(x)= f(x)

Ol

Q.E.D.

The efficiency of Acceptance- Rejection is detemdinby the

inequality

U < g(Y), where the efficiency Pr [U< g(Y)] = %
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Since the trials are independent, the probabifitsuccess in each trial iglgl.
c

If N is a random variable represent the numbermriafst before a successful
pair (U, Y), then N has geometric distribution wiRtd.f.

PN=n]=p@ pj™,n=1,23..
=0 , €.W.

and the expected number of trials is

E(N)=1=c
P

The AR-Algorithm describes the necessary steps @femating

random varieties by Acceptance-Rejection method.

AR-Algorithm:

1- Generate U from U(O, 1).
2- Generate Y from h(y).

3- If U< g(Y), deliver (we accept) ¥ X as a random variates generated from
f(x).

4- Go to step (1).

5- Stop.

Remark:

For Acceptance-Rejection method to be of practioéérest, the

following conditions must be satisfied

(1) It should be easy to generate a r.v. from h(x)

(2) The efficiency (probability) of the procedu%eshould be large, that is c

should close to one.
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lllustration of the Acceptance-Rejection Method el®ose & 1 such
that

f(x) <ch(x) =q@(x), say.

The problem then is to find the functigXx) and the function

h(x) = 1 @(x) from which the random variable can be easily gerdra
c

3.4 GENERATING RANDOM VARIATESFROM GAMMA
DISTRIBUTION

3.4.1 G1-Procedure:

This procedure is the most common use for gengratandom
variates from gamma distn. Whem is an integer, which utilize the
independent sum theorem as discussed in chapteseci®on (1.4.1). That is,

if a sample x X, ..., % of sizea from Exp@) is given, then the r.v

(o
Y=Z:Xi ~G(a, B). Generating independent exponential random \exiaf
=

sizea can be mode as ifitJ(0,1) then—-BIn U, ~ExpB), i=1,2,...,a

Then G1-algorithm describe the necessary steps gtaerating

gamma variates by this method

G1-Algorithm:

Step 1: Readp.
Step 2: Generate Y U,, ..., Uy from U(0,1).

Step 3: Set X=—BInU,,i=1,2, ...q.
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a
Step 4: SetY =) X;.

i=L
Step 5: Deliver Y as a random variate generated frono (3.

Step 6: Stop.

A computer program is made in appendix (Cl) foregating a
sample of sizea from gamma distn. written in Pascal language use
Microcomputer Pentium IV, CPU speed 1.7 GHz, whien 10(10)100 and
the run size 10 is taken. The average time is d for each gamma

sample and the result is tabulated in table (8).

Table (8) The average time with different a-samples.
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Fig(6) graph to show the linear tends between the average time and

values of a.

Figure (6) show the graphical of the average tigerest the size.

The figure (6) show that there is a linear trandbaghthe observations. To
find the best fitted line:

We utilize the least square method for estimatimg parameters of
linear equation(3.3) where we consider the errbokebservations {§ have

Zero mean, same variance, and uncorrelated. Viz

n

SetQ=Zn:Q2=Z(I; -a-tm, )2
=]

i=1

0Q :
a—a = _lell(tl —a— kD(I)

0Q _ N (4 ae b
5 - ZiZ:1:CJ(I(tI a- ;)

we set
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a_Q,a_Q:o at a:é,bzAt, we get
da db

Zn:tizn:ai —nzn:cxiq
b=z izl i=1
n 2 n
[Zaij -n> af
i=1 i=1

n n n
3460
i=1

5=

n

3.4.2 G2-Procedure:

Johnk, M.D. [22] suggested a technique based on nzaBeta
theorem given in section (1.4.2) of chapter onegimerating random variates
from G (@, B) when O <a < 1. His procedure dependent on generating two
r.v.’s, the first generated with probability from Be(@,1 — a) and the other

from Exp@) from which the G, [3) can be generated. Johnk algorithm can

be described as follows:

1- Readn andf3

2- With probabilitya generated X frorBe(a, 1 - a)
3- Generate r.v. Y from Ex)

4- Compute z xy

5- Deliver z as a r.v generated from & 8)

The efficiency of Johnk algorithm depends on thkieafa and it

reaches to optimum when= 1.
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Our technique is also based on the Gamma-Beta &hmedout the
generation fronBe(@,1 — a), 0 <a < 1, is based on the acceptance-rejection

method as follows:
Consider a r.v. XBe(@, 1 - a)where the distn. p.d.f.

1
(a)r(1-a)

=0,ew;0<a<l

f(x)=r x%1-x)",0< x<1

1 a-1 -
RO A

As we describe in sec (3.3.2) that the acceptameetion method is

based on writing this p.d.f. as:
f(x) =ch(x)g(x)

we take:
h(x)=a.x*,0< x<1

=0,e.w

and
g(x)=(1-a)(1- x) ", where0< g(x)< 1
The c.d.f of the p.d.f. h(x) is
0,x<0
H(x) =<x%,0< x<1
1,x=>1

Setu; =H(X)= u; = xX* = x= uf{‘
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For r.v Y~Exp@) the c.d.fis

0,y<0

-y
Ho(y)={1-eP ,0< y<o
ly=o0

-y -y

setu,=H,(y)=1-ef = ef =+ y= y

— =Inu,

y =-BInu,

The G2-algorithm describe the steps for generatinffom G @, B),

O<ac<1.

G2-Algorithm:

Stepl: Readq, f3

Step2: Generate Wfrom U(0, 1)

Step3: SetY =-fBInU,

Step4: Generate U and drom U(0O, 1)

Step5: Set X = U5

Stepé: If U>g(x)=(1-a)(1- x) ", go to step(4)
Step7: Set Z= XY

Step8 Deliver Z as a r.v generated fromdG(3)

Step9 Stop
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The efficiency of the method i(ls:z a(l-a)r(a)r(1-a)

Table (9) compute the true and simulated efficiesi¢or different

configuration ofa, 0 <a < 1.

A computer program is made in Appendix (C2) for pomation the
values of ¢ whemt = 0.1(0.2)0.9 with run size of 100 is taken andrémsults
are displayed in table (9) together with values af given by Eq.(3.4).

Table (9) Values of c with different a-samples using G2-procedure.

Simul .effec. Theo. effec.

3.4.3 G3-Procedure:

This procedure uses the acceptance-rejection méshagnerating

random variates from Gx( 1) when 0 <a < 1.

Where we write the p.d.f.

f(x) =ix°“1e‘X,o< T (3.5)
r(a)
=0,ew ,0<a<l1
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as f(x)= ch(x)g(x) where 21, h(x) is also p.d.f. and 0<g&d as described in

section(3.3.2).

The theory behind this representation can be destias follows:

a-1
4 X~ ,0<x<1
x% e Xs{

e ¥ 1< x<oo
Then:
%x“ Lo<x<1
a
) =X X <g(x)=1 7 e (3.6)
r(a) 1
——e 7,1< X< o
r(a)
ch(x)=¢(x), implies:
j ch(x)dx= j o( X) dx
0 0
1 r T
c=——| | x*tdx+ e"xdx]
a7l
which leads
1 1 1
e s s I 3.7
¢ F(a)(a+ej (3.7)
Since
a-1
O<x<1
141)’
h(x)=m= (°‘ e) ............................................ (3.8)
e_X
T ;,1<X<m
a e

From Egs (3.5) and (3.6), we have
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The c.d.f of the p.d.f. h(x) is
0,x<0

X
j h(t)dt,0< x< 1

H(X) =+ ) )
j h(t)dt+ j h(t)dt,1< x< o
1

1,x=00

G

For 0<x<1= H(x)= =
(x) §+1J. O‘(i"'%)
1|7 [ e’
Forl< x<eo= H(x)=-—— [ t*"dt+ = F
¥ [j I ] o
Therefore:
0,x<0
XG
m,0<xsl
H(X) =5 L
1- 1e 1,:]_< X< 00
a e
1’)(:00
yG
For0<y<1 SetUZ:H(y)juz (; l—)
o e
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P -1
_ a a
Syel[eg e o

So:

and

G-3 algorithm described the necessary steps foergéng random

variates from G{, 1) when 0« <1.

G-3 Algorithm:

Stepl: Reada

Step2: Generate Yand U from U(0,1)

-1 %
Step3: If U, < (1+%) setY =K1+%ju2}

else setY =-In Kl +}ju2}
a e
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eY,0<y<1
Step4: If U;<g(y)= 1
yo ,1<y<o

deliver Y= X as r.v generated from 1)

Step5: otherwise go to step 2

Step6: Stop.
Note:

If a r.v. from G, ), O<a<1 is required we add the statement X
to G3-algorithm

The theoretical efficiency and the number of triafsG3-algorithm

are respectively

E—Mandczé-'-%
141 7 o)

A computer program is made in Appendix (C3 and Gdy
computation the values of ¢ wharn=0.1(0.2)0.9 with run size of 100 is taken
and the results are displayed in tables (10) ah) ttigether with values of c

as given by Eq.(3.7).

Table (10) Values of ¢ with different a-samples using G3-procedure.,

Simul .effec.
g(y)=ev
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Table (11) Values of c with different a-samples using G3-procedure.

Simul. effec.
g(y)=yot

Theo. effec.

3.4.4 G4-Procedure Fishman Procedure [10]

This procedure utilizes the acceptance-rejectionthatk for

generating r.v from @(, 1) where the p.d.f.

1

()

=0,ewa =1

f(x) = XA o™ 0 X< 00 1o, 3.10)

by making use of inequalities

X X
—<eA‘ ande>1
a

Using the acceptance-rejection method we write &xth(x)g(x)

where &1, h(x) is also p.d.f., and 0<g(%)1.
The theory behind this representation can be de=stias follows:

Since

X X X X
—<eA‘ ande>1—> —< e%*
a ae

:>x<0(ee%‘
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—x0e (ae)a_l(e%‘ja_l =(ad* & &%

= x4l <(ag"™ e/a

1 o-1.—x 1 a-1 =
:>f(x)=l_(o()x e <(p(x)=l_(o()(0(e) eS8 (3.11)
ch(x)=g( x) implies Tch(x)dx= oo(p(x)dx
0 0
C_F(cx J(;(O(e) e’/ o dx
_aaea—l
c= I’(a) ........................................................................... (3.12)

h(x) :Q ......................................................................... (3.13)
by using the above Eqgs.(3.11) and (3.10) we get
f(x) _Xx%" ()
g(x): (KX) = ad—leﬂ—l
also
X
H(x) = j h(t)dt
0
X -t -t
= Ilea dt=—ea |
7,
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—X
Setu, =1-e®
e/iz1-u,= y,

X
—Lnu, = x=-Lnu,
a

The G4-algorithm describe the steps for generatmmgrom G @, 1)

whena > 1.

G4-Algorithm:

Stepl: Reada
Step2: Generate Yand Y from U (0, 1)
Step3: SetY =-alnU,

1
o-1 y(l aj

Step4: If U, <g(y)=Z———— then deliver Y= X
a- e

Step5: Otherwise go to step2

Step6: Stop

The theoretical efficiency and the number of triafsG4-algorithm

o o-1
F(oq andc=2%
a%e?? r(a)

-
are respectively- =
Cc

A computer program is made in Appendix (C5) for pomation the
values of ¢ whem = 1.1(0.2)1.9 with run size of 100 is taken andridmults

are displayed in table (12) together with valuescds given by equation
(3.12)
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Table (12) Values of c with different a-samples using G4-procedure.

Theo. efficiency | Simul. efficiency Averageerror

0.18312

3.4.5 G5-Procedure Gamma Procedure;

This procedure due to Cheng [6] which describesrmgargeneration
G(a,l) fora > 1.

Which utilize the acceptance-rejection method

f(x) =ix°“le"x, 0< X<

()

=0, e.w.

f(x) =ch(x)g(x)

A1
Whereh(x)zMz, 0< Xx<o0
(6+x*)

=0, ew
_ 40
AT (a)€”
a-A a2 €7
g(x)=x""(0+x") I

where6=a*, andA = (20 - 1)/
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T _ -8
H(x)—{h(t)dt—e+e)\

X
0

sl
6+x" 0 0+Xx

Setu, = H(X)=> uzz){l—e O A}:>ﬁ=1— O
+ X

04y} = A oA Bu,
B Bu, A

G5-Algorithm:

Stepl: Reada

Step2: Seth = (20 —1)2, 8=’

Step3: Generate Yand U from U(O, 1)

Step4: v=)\ln{ Yy }andx=ae"

)

_ 2 'Y
Steps: If x2g(y) =y (0+y) i

Step6: Go to step 3

Step7/: Stop
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The theoretical efficiency and the number of triafsG5-algorithm

are respectively:

1_AM(@e . 4ac
c  4oo AT (0)ex

A computer program is made in Appendix (C6) for pomation the
values of ¢ whem = 1.1(0.2)1.9 with run size of 100 is taken andridmults
are displayed in table (13) together with valuescas given by equation
(3.14).

Table (13) Values of c with different a-samples using G5-procedure,

Theo. efficiency | Simul. efficiency Average error
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CHAPTER

2

APPROXIMATION TO THE C.D.F OF GAMMA
DISTRIBUTION

2.1INTRODUCTION
The importance of good numerical integration sclemseevident.

There are many deterministic quadrature formulas & found throughout
the literature for computation of ordinary integralith well behaved
integrands. It is often more convenient to computeh integrals by Monte-
Carlo method, which, although less accurate thamveational quadrature
formulas, but is much simpler to use. In this chapive consider five
numerical procedures namely Trapezoidal Rule, Somp&ule, Guass-
Quadrature Rule, Proposition Rule and Hit or Misenk-Carlo Rule for

approximating the gamma c.d.f of equation (1.4)
Tl
F(x) = j N SO (2.1)
[ (a

In order to obtain the efficiencies of the five pedures we take

a= % B = 2, in order to make comparison with a well-knowablé (1) of

chi-square distribution. Furthermore, if r is evéirenl (a) =(a -1)! and if r

is odd, we use the relation:

F(a +1j 1358 Y wherer(lj =/mt [31].
2 20 2
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Chapter Two Approximation to the C.D.F of Gamma Distribution

2.2 APPROXIMATION BY TRAPEZOIDAL RULE [19]

Trapezoidal method is used for approximating tteaamder a curve
by series of trapezoids. It has been shown theathtithat using an infinite
number of trapezoids give perfect accuracy, buhdmg of error will give us

problems.
The trapezoidal rule procedure can be illustratetbBows:

Suppose we wish to approximate the integral

b
I =_[f(x)dx, by using trapezoidal rule .............ccoooeeeeiinnnnnnn. (2.2)
a

We divide the interval from a to b into n equaltpass shown in

figure (3), where the boundaries of the trapezai@sy, X, ..., X,

f(x) A
f(x)

______ / F\\/ ik

DM

a=xp X1 Xz Xj-

[
X

>
[ Xn=b X
Figure (3) Integration by the trapezoidal rule.

Let h =E be the width of the ith trapezoid that lies betwege,;
n

and x whose heights at the left and right side are sy f(xi_)and f(x).

The area of the ith trapezoid is:

A= D110 2) +x)]
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Chapter Two Approximation to the C.D.F of Gamma Distribution

The total area of all n trapezoids is the trapeaoagpproximation to

the integral I. That is:

| = Al + A2+... + An
g[f(x o)"‘f(xl)"' [f(X )H(X) [+ —= [f(X 2)H(Xa)+...+— [f(X n-1)H(Xn)]
g[f(x o) + f(x) + 22 100) I 2.3)

i=1

TRAPEZOIDAL RULE ALGORITHM

Stepl: Input a, b (Interval of integration) n (Numbersafbintervals)
Step2: Define f(x) (integrand)

Step3: Set h=(b—a)/n

Step4: sum=20

Step5: x=a +ih

Step6: Fori=1to n—1, sum= sum + 2f(x)

Step7: g= g(f(a) + sum + f(b))

Step8: Output g
Step9: Stop

Appendix (B1l) involve a computer program written Pascal
language using trapezoidal rule for approximatimg tintegral side of
equation (2.1). The x-values of the upper limittio¢ integral is taken from
chi-square table (1). Table (3) gives togetherapproximate and the errors

values of F(x).
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Chapter Two

Approximation to the C.D.F of Gamma Distribution

Table (3): Approximation by trapezoidal method.
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Chapter Two Approximation to the C.D.F of Gamma Distribution

2.3 APPROXIMATION BY SIMPSON RULE [28]

b
In Simpson method we try to approximafé(x) dx by a series of

a
parabolic segments hoping that parabola will mdosely much to a given

curve of f(x) than it would be straight line in ttrapezoidal method.

Simpson rule (or Simpson 1/3 rule) is given by teguation

A= g(fo + 4f, + f,) +o(IF) where A denotes the area under the graph of f(x)

: . X, =X . :

from the point ¥ to the point xandh=="—=9 n=1, 2,.... This equation
n

calculate the integral over two segments of integma Repeated application

. 1 . :
of Slmpson:—3 rule over segment pairs of segments, and summatiat the

: : : : 1
formulas over the total interval, gives the mukigegments Slmpseéq Rule:

n h n-1 n-2
A=A =_[fo+4 D1 42> F + ] +0(P) oo, (2.4)
i=1 3 i=1 i=2
i=odd i=even

See Figure (4)

1(x)

| | | | |
Xp=a X3 X2 X3 Xil Xj Xj+1 Xn=b X

Figure (4): I ntegration by the Simpson rule.
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Chapter Two Approximation to the C.D.F of Gamma Distribution

Since Simpsor% Rule fits pair of segments, the total intervalssinu

be divided into an even number of segments. Thst Summation term in
equation (2.4) sums up to odd subscripted termstlamdsecond summation

odds up to the even-subscripted terms, the orddreoérror of the multiple-

segment Simpsoé rule was reduced by one order of magnitude of)d¢r

the same reason as in the trapezoidal rule. Foe ohetails see [24], [36].

SIMPSON RULE ALGORITHM

Stepl: Input a, b (Interval of integration) n (Numbersafbintervals)
Step2: Define f(x) (Integrand)

Step3: Set h= (b-a)/n

Step4: suml1=0, sum2=0

Step5: for i=1 to n-1

Step6: x=a+i*h

Step7: If i is even thersuml= sum + 2f(x)

Elsesum2= sum2 41 f(x
h \
Step8: gzg[f(a)+sum1+ sumz f(b’

Step9: Out put g
Stepl0: Stop

Appendix (B2) involve a computer program written Pascal
language using Simpson rule for approximating tiiegral side of equation
(2.1).The x-values of the upper limit of the intalgis taken from chi-square
table (1). Table (4) gives together the approxinatd the errors values of
F(x).
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Chapter Two Approximation to the C.D.F of Gamma Distribution

Table (4): Approximation by Simpson method

w 0.01 0.025 0.05 0.95 0.975 0.99
Approx. Error Approx. Error Approx. Error Approx. Error Approx. Error Approx. Error
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Chapter Two Approximation to the C.D.F of Gamma Distribution

2.4 APPROXIMATION BY GAUSSIAN QUADRATURE
METHOD [36]

To introduce the ideas involved in Gaussian Quadeatve consider

b
the more general integrélw(x)f(x)dx where w(x) > 0 is a weight function.

a
We are interested only in the case w£x}) but different choices do play very
important roles in numerical integration and a dsston of these can be
found in [28]. The orthogonal polynomials corresgioig to this weight
function are known as the Legendre polynomials. dpatare using these
polynomials is called Gauss-Legendere quadraturesonply, Gaussian

quadrature which have the general formula

1 n
j FOOTX = D WF(X) coiiiiiiiesiessnnsnnsseneee (2.5)
el i=0

The coefficients w(i =0, 1, ..., n) could be calculated, but this is not
necessary because they, and the pointeaxe already been tabulated for a
large values of n see [19], [24]. Some of the roofsthe Legendre
polynomials and the corresponding weights are udgneed in this method
transforming the interval [a, b] in to-1, 1], by using the simple linear

transformation
T =[1/ (b — a)] (2x— a— b) which provided b > a, the Legendre

polynomials reduce to approximating

Jl-f((b—a) t+ b+ a]( b- 3

2 2

where f is any function that can be evaluated etduguired region of points.
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Chapter Two Approximation to the C.D.F of Gamma Distribution

GAUSSIAN QUADRATURE RULE ALGORITHM

Stepl: Input a, b (Interval of integration)
n (Number of nodes)
Step2: Define f(x) (integrand)

Initialize Array x(n, i) and w(n, i) for the Gaus®des and
weights, x(n, i) is the ith nonnegative node foe tBauss n-point

formula, and w(n,i) is the corresponding weight.
Step3: h = (b-a)/2
m= (a + b)/2
X = hx(n, i)
Step4: If nis odd then g= hw(n, 1)f(x)
Else g= hw(n,1)(fx + m) + f(x + m))

Step5:for i:=2 to [nTJrl}

X = hx(n, 1)
Step6: g =g + hw(n, )(fEx + m) + f(x + m))
Step7: Output g
Step8: Stop

Appendix (B3) involve a computer program written Pascal
language using Gaussian Quadrature Rule for appadiig the integral side
of equation (2.1). The x-values of the upper liofithe integral is taken from
chi-square table (1). Table (5) gives togetherapproximate and the errors

values of F(x).
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Table (5): Approximation by Gaussian quadrature method

w 0.01 0.025 0.05 0.95 0.975 0.99
Approx. Error Approx. Error Approx. Error Approx. Error Approx. Error Approx. Error
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Yeedvy | 0.0255673| 0.0005673 0.0496585 0.0003415 0.94977/@B002207| 0.9752498 0.0002498 0.9901]

AR KRR 0.0255176| 0.000517p 0.0508655 0.0008655 0.95037@B003795 0.9753059 0.0003059 0.9901%
GV EYAT [ e 0.0253851| 0.000385( 0.0497180 0.0002820 0.949871@8001206| 0.9753828 0.0003828 0.9903
e AAVAA | 0.0251819| 0.000181Pp 0.0506422 0.0006422 0.950%339005539] 0.9748683 0.0001317 0.9903¢
GeYeYEVE L e 0.0249183| 0.000081F 0.0514309 0.0014309 0.95015rB001575] 0.9749808 0.0000197 0.9903!
GeYeXTVe | e + | 0.0258340| 0.000834p 0.0520961 0.0020961 0.9498188001867| 0.9751009 0.0001009 0.9905]
GeYaTEXT | e 0.02545311] 0.000431f1 0.0506504 0.0006504 0.94951™0004801] 0.975229F7 0.00022 0.9904
GEYATYAY [ e 0.0249927| 0.0000073 0.0511323 0.0011823 0.95032BR003282| 0.9747979 0.00020 0.9903
0.0103796| 0.0003796  0.0256648 0.0006648 0.08151™0015198 0.950121F 0.0001217 0.9749600 0.00004DO901712
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Chapter Two Approximation to the C.D.F of Gamma Distribution

2.5 APPROXIMATION BY HIT OR MISSMONTE-CARLO
METHOD [38]

In this section we consider a simple techniquectonputing the one-

dimensional integral:

by Monte-Carlo method. Viz

For simplicity we assume that the integrand f(x»asinded 8f(x)<c,
asx<b LetQ={(x,y):asx<b,0<y<c} be arectangle as shown in
Figure (5).

Let (X, y) be a random vector uniformly distributexker the rectangle
Q with joint p.d.f.

1
, (x,y)OQ
g(x, y)=+<c(b-a) e (2.7)
0 , otherwise
FOXN
C .......
e Miss
HiY T )
S
0 a b X

Fig(5): Graphical representation of the Hit or Miss Monte-Carlo Method.
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Chapter Two Approximation to the C.D.F of Gamma Distribution

Let p be the probability that the random vectory(xfalls within the
area under the curve f(x), and leES(x, y) : y < f(x)}. The area under the

curve f(x) is:

b
Area S= j f(x)dx
a

b
j f (x)dx

_ areas_3 _ I
aredd c(b- a) c(b ¢

Assume that N independent random vectors ¥X), (X2, Y2), ...,

(Xn, Yn) are generated. Then the probability P can benastid by:

where N, is the number of occasions on which)f&y; i =1,2,...,N, that is,
the number of hits and N:Nis the number of misses, we score a miss if

f(x)<y,i=1,2,...,N.

It follows if P=P then from (2.8) and (2.9) the integral | can be

estimated by:

| Numplies 1= 80N (2.10)
N N

c(b-a)

In other words we estimate the integral | by sanpIN from the
distn. of Eq.(2.7), count the numbey; Nf hits and apply Eqg.(2.10).
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Chapter Two Approximation to the C.D.F of Gamma Distribution

HIT-MISSALGORITHM

Stepl: Input a, b and ¢ and gener@tej}lz'\' of 2N random number.

Step2: Arrange the random numbers into N pa(ts;, U;),(U,, Uy) ...,
(Uy,Uy) in any fashion such that each random numbeisU

used exactly once.
Step3: Set x = a+(b-a)y, calculate f(y,i=1, 2,..., N.

Stepd: Count the number of cases for which)féx cU;

Step5: Estimate k¢ (b- a)%

Appendix (B4) involve a computer program written Pascal
language using Hit or Miss Monte-Carlo Method fgpeoximating the
integral side of Eqg. (2.1). The x-values of the emppmit of the integral is
taken from chi-square table (1). Table (6) givagetber the approximate and

the errors values of F(x).
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Chapter Two Approximation to the C.D.F of Gamma Distribution

Table (6): Approximation by Hit and Miss Method.

0.025 0.05 0.95 0.975 0.99
Approx. Error Approx. Error Approx. Error Approx. Error Approx. Error

0.0226215 0.0023785 0.0452177 0.0047828110404| 0.1388596 0.7916502 0.1833498 0.7798§132100868
0.0249226] 0.0000774 0.04968[14 0.0003186 0.929996820032 | 0.9385705 0.0364295 0.9446480 .453p20
0.0250110; 0.0000110 0.0499823 0.0000177 0.9478650021341] 0.968374P 0.00662b51 0.9809966 0.009(034
0.0249594| 0.0000406 0.05003p2 0.0000822 0.9500456000455] 0.973492Pp 0.00150y1 0.9886172 0.001(4828
0.0249878 0.000012P 0.0504197 0.0004197 0.95061r0006171] 0.9745350 0.0004650 0.9898659 0.000[#341
0.0251400; 0.0001400 0.0503460 0.0003460 0.95019x@001577] 0.9745006 0.0004994 0.9899854 0.000(4646
0.0250095] 0.0000095 0.0501714 0.0001y14 0.95056B0005637| 0.974860Fy 0.0001393 0.9900839 0.000(§839
0.0250148 0.0000148 0.0498652 0.0001848 0.9498M18001252] 0.974667fy 0.0003323 0.9900207 0.000(§207
0.0249938| 0.0000062 0.0502463 0.0002463 0.9496988003062| 0.9747750 0.0002250 0.9901018 0.000[§018
0.0250939| 0.0000939 0.0499986 0.0000014 0.949891DB8001092] 0.9751024 0.0001024 0.9899478 0.000(§522
0.0251190] 0.0001190 0.0498205 0.0001y95 0.9503748003714] 0.974802p 0.00019y1 0.9898940 0.000[§060
0.0249195] 0.0000805 0.0501684 0.0001634 0.9496126003804| 0.9746754 0.0003246 0.9899211 0.000(§789
0.0250387| 0.000038F 0.04995p6 0.0000474 0.9505318005344| 0.9746882 0.0003118 0.9900129 0.000(§129
0.0250387| 0.000038F 0.0499988 0.0000012 0.9502020002091] 0.9748154 0.0001846 0.9898442 0.000[§558
0.0249721] 0.0000279 0.0499923 0.0000077 0.95009H6000565] 0.9750356 0.0000356 0.9900401 0.000(§401
0.0250580; 0.000058D0 0.04997p2 0.0000248 0.9500426000495| 0.974629p 0.00037p5 0.9899715 0.000(§285
0.0249433| 0.000056f 0.0499763 0.0000237 0.9501658001653] 0.9750093 0.0000093 0.9899443 0.000(§557
0.0250053| 0.0000053 0.05001p5 0.0000155 0.9503880003850] 0.9747664 0.0002386 0.9899532 0.000(§468
0.0250747| 0.000074f 0.0495940 0.0004060 0.94946mB005395| 0.975264 0.0002566 0.9899931 0.000(§069
0.0250087| 0.000008F 0.05125¢7 0.0012577 0.949848B001265 0.9751373 0.00013y3 0.9900599 0.000(§599
0.0252743| 0.0002743 0.05024{7 0.0002417 0.9503486003486| 0.9750726 0.0000726 0.9898756 0.000§244
0.0252748| 0.0002748 0.04916p8 0.0008842 0.94971BB002862| 0.975056p 0.0000565 0.9899920 0.000(§080
0.0251818 0.0001818 0.0502503 0.0002503 0.95031%8003154| 0.9750836 0.0000886 0.9898588 0.000[§412
0.0250110; 0.0000110 0.0490010 0.0009990 0.949842O001701] 0.975148Pp 0.0001489 0.9900136 0.000(§136
0.0247755] 0.0002245 0.0498087 0.0001963 0.9505dHR005262| 0.9746474 0.0003526 0.9899225 0.000 775
0.0244865] 0.000513p 0.0504721 0.0004721 0.9501626001626| 0.9747882 0.0002118 0.9898505 0.000 495

0.0253546] 0.0003546 0.0510204 0.0010204 0.94985K8001436) 0.9749556 0.0000444 0.9900500 0.000 500

0.0254355| 0.000435p 0.0495112 0.0004888 0.949¢020003971] 0.9751466 0.0001466 0.9900096 0.000{§096

e 0.0245433] 0.0005433 0.0498987 0.0001063 0.950068600656 | 0.9747916 0.0002087 0.9899839 0.000(§165
0.0000344 0.02532[11 0.0003252 0.0501820001899 0.9500385 0.0000385 0.9752488 0.0002488900245| 0.000012¥
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Chapter Two Approximation to the C.D.F of Gamma Distribution

2.6 APPROXIMATION BY PROPOSITION METHOD
A new approximation method proposed for the c.f8 gamma distn.

function given by Eq.(1.4) with B 2

F0) = PriXs )= (al) — | T2 At (2.11)
0

Finding bound for the integral side of Eq.(2.11necessary, so we

make the transformationzs% implies t= xs implies dt= xds Then Eq.(2.11)

becomes
XO( Jl‘ _—Xs
F(x) = 102" ge
r(a)2®
X(X
- ()2 G(X,0) crvririrrirninisnisis s (2.12)
where
1 -X
G(X,O()=js“‘le2 e (2.13)
0

u=-e?2 . dv= % s
-X S s*
du=—e? ds, v=—
2 a




Chapter Two Approximation to the C.D.F of Gamma Distribution

If we replacen by a+1,a+2,0+3, ...; we have:

—-X

e?2
G(x,a+1)= + G(x,a+2
(x,a+1)= — 2(O(H)( )
X
G(x, a+2)= -2 X G 3
X, 0+2) = + X,a +
(X042 = e A+
X
e? X
G(x,a+3)= + G(x,a +4) and soon ...
a+3 2a+3

and we conclude that

—X

. e? X . .
G(x, o+i) = -+ —G(x,a+i1+1),1=0,1,...c.cn0cn...... 2.15
o) = S 1) O ) (2.15)

Substitution of Eq.(2.15) into Eq.(2.12)

e? X e? X e? X

;X y = ox X
Fx) = M (a )(E) { a +5L+1+ 2(a+])(a+ 2" da+ 3(a+ 3 o + )3(

_ 1(5fé;%+@)+ O O .

a+l @+@+2) @+1e+2)6+3)

SR N D
Ma+1)\ 2 @+1) @E@+DE+2) @+ DD+ 2)¢+ 3)

a —X o

lef S

+1)( 2
(Xj
2 —
wherel ( el 1,2, ... and],(x,0)=1

The algorithm for approximating the incomplete gaamimtegral can

be described by the following algorithm

39



Chapter Two Approximation to the C.D.F of Gamma Distribution

PROPOSITION ALGORITHM

Stepl: Reada and x

Step2: FindlM(a + 1)
—X

(3) e?
Step3: Set s= =——,z=1,n=1,F

Ma+1)
Stepd: i =1
(3)
Step5: J= J24
a-+i

Step6: Ifi =nthenz=z+J,F1

Step7: Otherwise =i+ 1 go to step (5)

Step8: If J<0.00001, then & n+1, go to step (5)
Step9: F=sJ

Stepl0: Stop.

Appendix (B5) involve a computer program written Pascal
language using Proposition method for approximativegintegral side of Eq.
(2.1). The x-values of the upper limit of the ima&gs taken from chi-square
table (1). Table (7) gives together the approxinaid the errors values of
F(x).
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Chapter Two Approximation to the C.D.F of Gamma Distribution

Table (7): Approximation by Proposition method.

w 0.01 0.025 0.05 0.95 0.975 0.99
Approx. Error Approx. Error Approx. Error Approx. Error Approx. Error Approx. Error

0.0000498| 0.0252271 0.0002271 0.0504290 0.00042920499561| 0.0000439 0.9749437 0.0000%63 0.9899
0000 ¥Y0 1 0.0251776] 0.0001776 0.0501963 0.0001963 0.9499638000367| 0.9750279 0.0000279 0.98994
0o 0s Ve 10.0250341) 0.000034{L 0.05003p5 0.0000305 0.9498938001061] 0.9750181L 0.0000181 0.9897¢
0000 VVE 1 0.0249602] 0.0000398 0.0500345 0.0000345 0.95004%0000467| 0.9745370 0.0004680 0.9901
e YA | 0.0249859] 0.000014] 0.0504167 0.0004167 0.950566005668 0.9746730 0.00032y0 0.9900%
0000 Y72 | 0.0251371] 0.000137[L 0.0503412 0.0003412 0.9501338001533| 0.9745268 0.0004787 0.9899%
oYYV 1 0.0250055| 0.000005p 0.0501651 0.0001651 0.950%680005687| 0.9748836 0.0001164 0.9900%
: 0.0250098| 0.0000098 0.04985y1 0.0001429 0.94984r0001223| 0.9746961 0.0003089 0.9900]
0.0502364 0.0002864 0.9496936003054| 0.9748069 0.0001981 0.99012
0.0499869 0.0000131 0.94989m8001092] 0.975137D 0.00013y0 0.98996
0.0498069 0.0001931 0.95037M.P003712] 0.9748404 0.0001596 0.9899]
0.05014y9 0.0001479 0.94961®8003807| 0.9747156 0.0002844 0.98991
0.0499352 0.0000648 0.950532P005342| 0.9747309 0.0002691 0.9900]
0.0499794 0.0000206 0.9502020002090, 0.9748605 0.0001395 0.9898]
0.0499708 0.0000262 0.95005®%8000563] 0.975083Dp 0.00008B0 0.99006
0.0499517 0.0000483 0.9500424000494| 0.9746798 0.0003202 0.9900
0.049908 0.0000492 0.9501658001653| 0.9750616 0.0000616 0.9899]
0.04998y8 0.0000122 0.95038218003848| 0.9748215 0.0001785 0.9899%
0.0495643 0.0004357 0.94946m4005396| 0.975313p 0.0003186 0.99002
0.0512252 0.0012252 0.94987380001266| 0.975196)y 0.0001967 0.99004
0.0502074 0.0002074 0.9503485003485| 0.975134p 0.0001346 0.9899]
0.0491298 0.0008702 0.9497186002864| 0.9751208 0.0001208 0.99002
0.0502117 0.0002117 0.950316:8003153] 0.9751508 0.0001503 0.9898¢
0.0489607 0.0010893 0.949829P001703] 0.9752179 0.00021y9 0.9900%
0.0497609 0.0002891 0.9505AB0005261) 0.9747195 0.0002805 0.98996
0.0504267 0.0004267 0.9501628001625| 0.9748624 0.00013y6  0.9898
0.0509725 0.0009725 0.9498558001437| 0.9750319 0.0000319 0.99004
0.0102081] 0.0002081| 0.0249075| 0.000092p 0.0494618 0.0005382 0.9496028003972| 0.9752248 0.0002248 0.99005
0.0102501] 0.0002501| 0.0244640/ 0.000536D 0.0498419 0.0001%81 0.95045m8004503] 0.9748729 0.00012Y1 0.99002
0.0102604| 0.00026044 0.0251035 0.0001035 0.0%01350001356] 0.9502795 0.0002795 0.9751162 0.00011BA900190

OO|INO|O|BR(WIN|F

0.0249876| 0.000012
0.0250865| 0.000086
0.0251105| 0.000110
0.0249097| 0.000090
0.0250276| 0.000027
0.0250264| 0.000026

WOT|OT[ SO OT[—F [ |00 —[0)

OO OO FOTTW OO O

0.0249584| 0.000041
0.0250430] 0.000043
.+ VA | 0.0249269] 0.000073
+,++ YY) | 0.0249876] 0.000012
0.0001301| 0.0250555] 0.000055
+,++Y.A | 0.0249881] 0.000011
+,++++\YA | 0.0252521] 0.000252
+,++++Y40 | 0.0252512] 0.000251
+,+++Y4Y1 | 0.0251569] 0.000156
+,+++10YA | 0.0249847| 0.000015
+,+++\Vo | 0.0247480] 0.000252
+,++Y.) | 0.0244577| 0.000542
+,+++Y.M | 0.0253237] 0.000323
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Chapter Two Approximation to the C.D.F of Gamma Distribution

2.7 ERROR OF APPROXIMATION

In order to compare the methadho gives the minimum error of
pproximation we list the errors of all methods fn(X<x)=0.05 and 0.95
when r=1(1)10 where these errors are given in sai3d) and (B2).

Table (B1)

Error of Approximation to the c.d.f when the exat value is 0.05

0.0000345

0.0000014| 0.0000131 0.0000014| 0.0000131
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Chapter Two Approximation to the C.D.F of Gamma Distribution

Table (B2)

Error of Approximation to the c.d.f when the exact valueis 0.95

0.0000439

0.0000366

0.000455 0.0000455

0.0001196

0.0000014| 0.0000131 0.0000014| 0.0000131




CONGLUSIONS AND FUTURE WORK

CONCLUSIONS

1.

The board conclusion of the results of estimation given in table (2) as

follows:

(i) The values of the estimators given by equation (1.23) become more
accurate and tends to the true values of a and 3 as the sample size

increase.

(i1) The values of the estimators given by equation (1.30) flachaute near
the true values of a and [3 because in this method we use Newton-
Raphson approach which is based on the choose of the initial values
of starting and as expected there is also of approximation due to the
randomness. Further more the MLE depends on the non linear
eguation and the best starting point is taken from a string of points
produced by the computer. Seetable (A-2) and (A-3).

Trapezoidal rule is need more iterations relative to Simpson rule which

make the trapezoidal rule more accurate, but the inverseis not true.

Trapezoidal and Simpson rules based on using linear and quadratic

interpolation.

Simpson rule is more accurate than Trapezoidal rule because the function

in Simpson ruleis nearly quadratic on [a, b].

Gaussian integration is more efficient than the Trapezoidal and Simpson
rule because if Gauss-Quadreture formula of degree n then the error will
be (2n-1).
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Conclusions and Future Work

10.

As we mention in section (2.1) that hit and miss Monte-Carlo method is
less accurate than Quadrature formulas where the practical result shown
in table (5) make this conclusion is certain, but the accuracy of hit and

miss Monte-Carlo increase as the sample size increases.

The Proposition method gives results superior than al methods of
approximation for the c.df F(x) because this method involve a

recurrence formula which approximate the value of F(x) efficiently.

G1l-procedure is the most efficient one in comparsion with the other
procedures because this method deal with +ive integer values of a only
and it provide a linear relationship between the average time and the

sample size in evaluation of the parameters estimate.

For 0 < a < 1, the simulated and theoretical efficiency in G2-Procedure
are very close as shown in table (9), where the error is 3x107%,while in
G3-Procedure there are two cases on calculating the efficiencies as
shown tables (10) and (11)

(1) When 0 <y < 1, theresults of table (10) shown that the ssimulated and

theoretical efficiencies become close asa increasing.

(i) When 1 <y < oo, the results of table (11) show that efficiencies
become close as a decreasing and that due to the dependent of y on a.
In general G2-Procedure is more efficient than G3-Procedure for

practical use.

For a > 1, the smulated and theoretical efficiencies in G4-Procedure
decreases as a increase while in G5-Procedure the simulated efficiency
approach one as a increasing with stability of the theoretical efficiency
between 0.7 and 0.8. From table (12) and (13) results we notice the
performance of G5-Procedure is higher than G4-Procedure in view of

practical use.
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Conclusions and Future Work

FUTURE WORK

1.

The methods of approximation to the c.d.f. with two-parameters can be
extended to the c.d.f. of generalized gamma.

The procedures for generating random variates from gamma distn. can
be used as a simulated data for real applications.
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In this thesis the gamma distribution Is considered for the reason of it
appearance in many statistical fields of applications. Some mathematical and
statistical properties of the distribution. Are collected and unified. Moments
and higher moments are illustrated and two methods of estimation for the
distribution parameters are discussed theoretically and assessed practicaly.

A new method of approximation to the cumulative distn. Function is
drived and compared with four well-known method of approximation and it
shown a high performance.

Finally five procedure for generating random variates from gamma
distn. Are discussed and their efficiencies are compared theoretically and
pratically by Monte-Carlo smulation.
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r.v=random variable

r.s= random sample

Distn. =Distribution

p.d.f= Probability density function
c.d.f= Cumulative density function
m.l.e= maximum likelihood estimate
M.L.E= Maximum Likelihood Estimator
m.g.f= Moment generating function
MC= Monte-Carlo

I T=Inverse Transform
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NOTATIONS AND ABBREVIATIONS

r.v = random variable.

r.s = random sample.

Distn. = Distribution.

p.d.f = Probability density function.

c.d.f = Cumulative density function.

m.l.e = maximum likelihood estimate.
m.g.f=moment generating function
M.L.E = Maximum Likelihood Estimator.
MC = Monte-Carlo.

IT =Inverse Transform.
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