
 

Abstract 
 

 
Planar noninvertible maps have been studied recently by several 

authors such as Mira , Gardini , Cathala. Much of their work has been 
concentrated  on analyzing some examples and making some conclusions 
on the properties of the maps . 

 
Our concern in this work is to study planar noninvertible 

continuously differentiable maps 22: ℜ→ℜT , we have proved two new 
theorems that are concerned with nonempty unbounded critical sets, and 
we have given two conjectures : one characterizes the attractor of the map 
T  when the critical set is parabola, and the other characterizes periodic 
points of the map T  when the critical set is a line or a hyperbola. 

 
We have studied some properties of such kind of maps in particular 

absorbing areas, invariant areas of such maps, and we have mentioned 
some of the known results of the subject and have given proofs of some 
of the results that have appeared in literature without a proof . Moreover 
we have studied some examples that show certain phenomena on 
absorbing areas . 

 
In our work , we have made use of the Matlab version 6.1 software 

to solve the discussed examples . 
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في هذا البحث تم تناول تطبيقات المستوي الغير قابلة للانعكاس والتي درست من قبل 
الذين تضمن عملهم بناء بعض الامثلة   Gardini, Mira،Cathalaالعديد من الباحثين 

  .تهم عليها مع بعض الصفات اواعطاء استنتاج
  

لتي تكون مستمرة قابلة ة للانعكاس واقابلتناولنا تطبيقات المستوي الغير هذا في بحثنا 
للاشتقاق  و بصورة خاصة المساحات الماصة و المساحات اللامتغيرة  كما تم اعطاء بعض 
النتائج التي تخص الموضوع والتي ظهرت بدون برهان لذلك تم اعطاء برهان لها مع اخذ بعض 

مبرهنتين جديدتين التي تخص الامثلة التوضيحية  لتطبيق هذه المفاهيم وكذلك تم برهان 
لاولى تخص جاذب التطبيق ا :كما نقترح مظنونتين. المجموعة الحرجة الغير خالية و المقيدة 

عندما تكون مجموعة النقاط الحرجة على شكل قطع مكافىء والثانية تخص النقاط الدورية 
   .للتطبيق عندما تكون مجموعة النقاط الحرجة مستقيماً او قطع زائد 

 

  .المعطاة  لةفي حل الامث Matlab v.6.1عملنا استخدمنا برنامج  في
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Appendix  

 
The Inverse Function Theorem: [11, p.172] 

Let 22: ℜ→ℜT . Suppose  00 =)(T  and ))(( 0TJ  is an invertible matrix. 
Then there exists a neighborhood U   of  0  and a ∞C  map 2ℜ→UG :  such 
that XXGT =)(o  for all UX ∈ . 
That is, if the Jacobaian matrix of T   is invertible at 0 , then there exists a 
local inverse for T .  
 
Definition*: 
Let ),( dX  be a metric space and let XS ⊂  and 0≥ε . Then the neighborhood 
of S  of radius ε   is the set: 

εε <∈= ),(:{)( sxdXxSN  for some }Ss ∈ . 

 
Definition: [22, p.159] 
  Let 22: ℜ→ℜT  be a map and let p  be a fixed point of T  with     
eigenvalues  λ  and µ   such that 1<λ   and 1>µ   , then p  is called a saddle 
point. 
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Chapter one 

“Preliminaries” 
 

Introduction: 
 

It is always useful to derive some consequences from a few bits of 
information. We start with the definition of a dynamical system. Let K  be ℜ   or 
Ζ . A dynamical system Φ  on space X  is a continuous map XXK →×Φ :  
satisfying. xx =Φ ) ,0(  for all Xx ∈  and ),()),(,( xsrxrs += ΦΦΦ , for all 

KsrXx ∈∈ ,, .  
If ℜ=K  then Φ  will be called a flow (continuous dynamical system). If ZK =  
then the dynamical system will be described as discrete. 
One can always construct a discrete dynamical system by iterating a given 
homeomorphism XXf →:  in the following manner XXZ →×Φ :  is 
determined by  
             )(),( xfxn n=Φ   if  Zn ∈  
Where 

4434421
oLoo

timesn

n ffff
−

=  is defined as the n th iteration of f  and 

444 3444 21
oLoo

timesn

n ffff
−

−−−− = 111   if 0>n  and If =0 . One often studies iteration for 0≥n  

when f  is not a homeomorphism.   
The purpose of this chapter is to recall several of the basic definitions from the 
dynamical systems. 
Throughout this work, we shall focus our study on continuously differentiable 
maps, and discrete systems, moreover, our maps are from 22 ℜ→ℜ  (i.e. planar 
maps).  
 
1.1 Definitions and Notation 

In this work, we shall need few notation: Let XXT →: , the rank-r image 
of x   is the image 
   xTx r

r =  
r  is positive integer. Similarly, x  is one of the rankr−  preimages of rx .  
If nX ℜ= , then the map XXT →:  will be called diffeomorphism, if it is 
continuously differentiable function of x , and if 1−T  exists, unique and 
continuously differentiable (in this case T  is invertible) in the domain of 
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definition of T . When T  is such that 1−T  may be multi-valued, or may not exist, 
then T  will be called a noninvertible map. 
Example(1.1.1): 

Consider the one dimensional map T , i.e. ℜ→ℜ:T  which is given by: 
  λ−=′ 2xx  
Where λ  is a parameter and 1−T  is given by: 
  λ+′±= xx  
So the rank-one preimage of a point x′  is double- value for λ−>′x , and is not 
real for λ−<′x . 
 

A periodic point of period k  is a point x  which in the domain of T  such 
that xxT k =)(  and in addition )(),......,(),(, 12 xTxTxTx k − are distinct .The orbit of 

Xx ∈  is the set }0:)({ ≥kxT k . If x  is a periodic point of  period k , then the orbit 
of x  which is  

    )}(),......,(),(,{ 12 xTxTxTx k −  
will be a periodic orbit and is called a −k cycle.    
If  1=k , then x  will be called a fixed point of  T . Every point of a −k cycle is a 
fixed point of kT  . 

A periodic point of period k  will be attracting if all the eigenvalues of the 
Jacobian matrix of kT  at the periodic point have their modului  less than one, 
and if at least one of the eigenvalues is larger than one in modulus, the cycle is 
repulsive [22, p.146]. 

A periodic point of period k  is expanding if all the eigenvalues of 
Jacobian matrix of kT  at the period point are larger than one in modulus, and 
there exists a neighborhood U  of the periodic point such that the absolute 
values of the eigenvalues are larger than one, for any x  belonging to U , this is 
in case all the eigenvalue are real [29, p.4]. 

If some of the eigenvalues of the Jacobian matrix of kT  are complex at 
the periodic point then a periodic point will be stable (attracting) if all the 
eigenvalues have negative real parts otherwise it is unstable(repeller)[33,p.109].  

 
A fixed point x  is called a snap-back repeller, or SBR if (a) it is expanding and 
(b) if in the neighborhood )(xU  there exists a point q  such that xqT m =)(  for 
some positive integer m [29, p.109]. 
 
Example (1.1.2):  

Consider the  map 22: ℜ→ℜT  defined by    
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xy

T

xyx

=′

−−=′

           

:

22           2

  

1−T  is given by  

                 

)(5.01           

:

            
1

yxy

T

yx

′+′−±=

′=
−  

So, T  is noninvertible and has two fixed points )1,1(1 −−=p  and )32,32(2 =p . 
)(TJ  has two eigenvalues 3606.212,1 ±=λ  at the fixed point 1p , therefore 1p  is a 

repulsive fixed point since 12,1 >λ , where J  is the Jacobian matrix of T and 

there is a )( 1pU ε , where 2.0=ε  such that for any )( 1pUx ε∈ we have 12,1 >λ , 

therefore 1p  is an expanding fixed point.  

While )(TJ  has two complex eigenvalues i
3

20

3

2
2,1 ±−=λ  at fixed point 2p , 

since the real parts of eigenvalues are negative therefore 2p  is a stable  
(attracting )fixed point . 
Let T  be a −p  dimensional noninvertible map, defined in pℜ . 

 
Definition (1.1.1): [29, p.13 ]  
 A nonempty set A  is said to be invariant by T  if AAT =)( . The set A   is a 
backward invariant by T  if AAT =− )(1 , where 1−T  represents all the rank-one 
preimages of T . 
 
Definition (1.1.2):[29, p.18 ]  

A closed invariant set A  is an attracting set if an arbitrary small 
neighborhood U  of A  exists such that UUT ⊂)(  and AxT n →)( , when ∞→n , 
for any Ux ∈ . An attractor is an attracting set which is topologically transitive, 
i.e. if for any two open sets AVU ⊂, , a positive integer k  exists such that 

φ≠∩VUT k )( , or equivalently a point  Ap ∈  exists the orbit (iterated sequence) 
of which is dense in A . In this case T  is called a transitive map. 
 
Definition (1.1.3):[30]  

The basin of attraction )(AD  (or simply the basin) of an attracting setA  is 
the set of all the points x  such that    AyyxT n ∈→   ,)(  when ∞→n . 
 
Definition (1.1.4):[15 ]  
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Let T  be a −p  dimensional map, and ∗p  a repulsive fixed point, and U  
be a neighborhood of ∗p . The local unstable set )( ∗pW u

l  of ∗p  in U , and the 
global unstable set of ∗p , )( ∗pW u ,are given by: 
 { }n ,    )(:)( ∀∈→∈∈= ∗−

−
∗ UxandpxTxUxpW -n

n
n

u
l  

{ }∗−
−

∗ →∈ℜ∈= pxTxxpW n
n

pu )(:)(  
 

It can be shown that ))(()(
0

∗

≥

∗ = pWTpW
n

u
l

nu U . 

In fact let )( ∗∈ pWx u  i.e. px ℜ∈  and there is a sequence of preimages of x  say 
{ }∞

=− 1nnx  that converges to ∗p  i.e. ε<− ∗
− px n  where ε  can be any small real 

number greater than zero. 
Since px ℜ∈ , then there is point )( ∗∈ pWp u

l  such that x  is the successive image 
of p  i.e. there is Nn ∈  such that xpT n =)(  so ))((

0

∗

≥

∈ pWTx
n

u
l

nU  

This implies ))(()(
0

∗

≥

∗ ⊆ pWTpW
n

u
l

nu U . 

Let ))((
0

∗

≥

∈ pWTx
n

u
l

nU  i.e. there is Nn ∈  such that ))(( ∗∈ pWTx n
l

n  

So, x  is the n th successive image of the point p  which belongs to the 
neighborhood U  of ∗p  and has a sequence of preimage which converges to ∗p . 
This implies px ℜ∈   and )( ∗∈ pWx u ,  so )())((

0

∗∗

≥

⊆ pWpWT u

n

u
l

nU  

))(()(
0

∗

≥

∗ =∴ pWTpW
n

u
l

nu U . 

The following proposition gives some of the properties of the unstable set that 
appeared in [29, p.15] without a proof, we give a proof. 
   
Proposition (1.1.1):  
(P1) )())(( ∗∗ = pWpWT uu  i.e. it is invariant set. 
(P2)  For any mapT , )())((1 ∗∗− ⊇ pWpWT uu . 
Note that if T  is noninvertible,  then  )( ∗pW u  may not be backward invariant.  
(P3) Let )( ∗pV  be a neighborhood of ∗p . For any )( ∗∈ pWx u  an integer N  
exists (which depends on x ) such that a rank-N  perimage Nx−  of x  belongs to 
V  and a sequence of preimages of Nx−  exists which belongs to V  and converges 
to ∗p .  
Proof: 
(P1)  { }∗−

−
∗ →∈ℜ∈= pxTxxTpWT n

n
pu )(:))((  

                        { })())(()(:)( ∗−
− →∈ℜ∈= pTxTTxTxT n

n
p  
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                        { }∗+−

+− →∈ℜ∈= pxTxxT n
n

p )(:)( 1
1  

                         )( ∗= pW u  
 
(P2)   )))((())((

0

11 ∗

≥

−∗− = pWTTpWT u
l

n

n

u U  

                           )))(((1

0

∗−

≥
= pWTT u

l
n

n
U  

                           )())(())((
0

1

0

∗∗

≥

∗−

≥
=⊇= pWpWTpWT uu

l
n

n

u
l

n

n
UU   

(P3) Let )( ∗pV  be a neighborhood of ∗p . Let )( ∗∈ pWx u . Then from definition 
of )( ∗pW u  there exists a sequence of preimages Nx−  such that { } ∗

− → px n  
i.e.{ } )( ∗

− ∈ pVx n .♦ 
 
Remark (1.1.1):[29, p.15] 

)( ∗pW u  is a connected, self intersection that may occur (so that it may not 
be a manifold). If it is smooth then it may be called a local manifold. When T  is 
invertible the global set is also a manifold while when T  is noninvertible then 
the global set may not be a manifold. A self intersection of )( ∗pW u  is allowed. 
 
Definition (1.1.5):[15 ]  

Let ∗p  be a fixed point of T  which may be attracting or repulsive. The 
local stable set of ∗p  in a neighborhood U , and the global stable set )( ∗pW s

l , 
)( ∗pW s  are given by: 

{ }nUxandpxTxUxpW n
n

n
s

l ∀∈→=∈= ∗∗   , )(,)( , 
 { }∗∗ →=ℜ∈= pxTxxpW n

n
ps )(,)( . 

 
Also, it can be shown that ))(()(

0

∗

≥

−∗ = pWTpW
n

s
l

ns U as we have proved previously. 

The following proposition gives some of the properties of the stable sets, it has   
appeared in [29, p.16] without a proof, we give a proof. 
 
Proposition (1.1.2):  
(P1) )())((1 ∗∗− = pWpWT ss . 
(P2) )())(( ∗∗ ⊆= pWpWT ss . 
(P3) Let )( ∗pV  be a neighborhood of ∗p . For any )( ∗∈ pWx s  an integer N  
exists (which depends on x  ) such that a rankN−  image Nx  of x  belongs to V  
and converge to ∗p . 
Proof:- 
(P1) { }∗−∗− →=ℜ∈= pxTxxTpWT n

n
ps )(:))(( 11  
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                            )( ∗= pW s  
 
(P2) )))((())((

0

∗−

≥

∗ = pWTTpWT s
l

n

n

s U  

                          ))((1

0

∗+−

≥
= pWT s

l
n

n
U   

                          ))((
0

∗−

≥
⊆ pWT s

l
n

n
U  

(P3)  Let )( ∗pV  be a neighborhood of ∗p . Let )( ∗∈ pWx s  then from the 
definition of )( ∗pW s  there exists a sequence of images { }nx such that { } ∗→ pxn  
i.e.  { } )( ∗⊂ pVxn  and ∗∗ =→ ppTxT n )()(  therefore the image of { }nx  belongs to 
V . ♦ 
 
Remark (1.1.2): 
(1) )( ∗pW s  may be a connected manifold, or the union of disjoint connected 
components, also )( ∗pW s  may be smooth so that it is called a local manifold, 
and self intersections cannot occur. 
(2) When T  is noninvertible, then there exists point in )( ∗pW s  say x  such that 

∗= pxT m )(  for a suitable integerm . If T  is a noninvertible two-dimensional map, 
)( ∗pW s  may be non-connected and made up of infinitely many closed curves. 

And this property also holds for higher dimensions. 
(3) In invertible maps, an expanding fixed point has no stable sets, while in  
a noninvertible map when ∗p  is expanding the local stable set of ∗p  consist of 

∗p  itself, and the global stable set is given by all the preimages (of any rank) of 
this point: Ul

0

).()(
≥

∗−∗ =
n

ns pTpW In this case property (2) works for all the points 

of the stable set, i.e. )(  ∗∈∀ pWx s  an integer )(xm  exists such that ∗= pxT xm )()( . 
 
Definition (1.1.6):[29, p.17] 

A point q  is said to be homoclinic to a repulsive (or expanding )fixed 
point ∗p  (or homoclinic of ∗p  ) if )()( ∗∗ ∩∈ pWpWq su . 
 
Definition (1.1.7):[29, p.18] 
   A point q  is said to be heteroclinic from the repulsive (or expanding )fixed 
point  ∗p  to the repulsive fixed point ∗r ,  if )()( ∗∗ ∩∈ rWpWq su . 
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1.2 Two Dimensional Noninvertible Maps: Properties of Critical 
Curves 

This section examines a class of continuously differentiable two-
dimensional noninvertible maps (endomorphism). 
We shall start by giving the definition of the critical curve LC (from Ligne 
Critique in French), this concept was first introduced in 1964 by Mira [5&15]. 
 
Definition (1.2.1): [28]  
  Let T  be a noninvertible map of 2ℜ  into itself defined by: 

  
),(                      

:        

),(                      

yxgy

T

yxfx

=′

=′
                                              (1.2.1) 

Where f  and g  are continuously differentiable functions. The curve 1−LC  is 
defined to be the set of points at which the Jacobian of f and g  vanish i.e. the 
set of critical points of the map T . Then the successive forward iteratesiLC , 

,...2,1,0=i , LCLC =0  are called critical curves of rank 1+i . 
 
Note that the concept of critical curve is a generalization of the concept of a 
critical point for one dimensional map. 
The rank-one critical curve LC  and the curve 1−LC  may be made up of several 
branches with respect to the inverse map 1−T , the plane can be considered to be 
made up of N  sheets joining at the branches of  the first rank critical curve LC  
which bound regions where the number of first rank preimages is constant , N  
being the maximum number of such preimages (N  will be called the map 
degree). Then every sheet is associated with a well defined first rank preimage, 
which leads to a foliation of the plane directly related to fundamental properties 
of the map [29, p.114]. 
 
Remark(1.2.1): If T is invertible, then it is diffiemorphism which implies 

0)( ≠TJ , so T  has no critical points. 
 
 
1.2.1 Types of Noninvertible Maps with Critical Curves, their Symbolic 
Representation  
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It is convenient to classify noninvertible maps according to the number of 
solutions of the inverse map for all possible points 2ℜ∈X , and the relative 
arrangement of regions with different numbers of preimages. We have observed 
that LC  divide the plane into open regions )( 2

i
i

i ZZ U=ℜ , the points that have i  

distinct preimges of rank one. One can classify the maps into types depending 
on the number of regions and the number of preimages [28]. We shall try to 
mention some of these types: 

1- )( 20 ZZ −  map: LC  is made up of only one branch separating 2ℜ  
into regions, one is 0Z  with no preimage, the other 2Z  with two 
first rank preimages. 

2- )( 131 ZZZ −− map: LC  consists of two branches separating 2ℜ  into 
three regions, one 3Z  with three first rank preimages, and two 1Z  
non connected regions, on both sides of 3Z , with only one first rank 
preimage. 

3- Maps of type )( 420 ZZZ −− , … or more complex types that are 
generated by regions having a higher number of rank-one 
preimages, the branches of LC  separating these regions. 

 
There are other complex kinds of maps that are related to the presence of one 

or more cusp points (cusp point is a point whose three first rank preimages 
coincide) on the critical curve LC , the symbolic representation of maps, may be 
refined by introducing the symbols “< ”, and “> ” for the presence of such a 
point, some of these maps are: 

1. )( 31 ZZ < map: the curve LC  has a cusp point corresponding to a 
“cape” of 3Z  “penetrating” into 1Z . 

2. )( 31 >< ZZ map: LC  is a closed curve with two cusps, forming a 
“lip” shape. 

3. )( 420 ZZZ <<− map: the curve LC presents two cusps forming a 
dovetail figure. In this configuration, each cusp is a “cape” of 4Z  
“penetrating” into 2Z  with a dovetail shape.  

 
Figure (1.2.1) illustrates the above types of  maps. 
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              (a)                                                   (b) 
 
 
 
 
 
 
 
 
 
        
            (c)                                         (d)                                        (e) 
 
 
Fig(1.2.1) (a) )( 20 ZZ − map  LCZZ =20 I  (b) )( 131 ZZZ −− map, LLLC ′∪= , 

LZZ =∩ 31 , LZZ ′=∩ 13   ; (c) )( 31 ZZ < map; LLLC ′∪=  cusp point LLc ′∩=≡ ; 
(d) )( 31 >< ZZ map; LLLC ′∪= , LZZ =∩ 31  , ccLL ′=′∩ ,  ; 

(e) )( 420 ZZZ <<− map , LLLLC ′′∪′∪= ,  LLc ′∩= , LLc ′′∩=′ . 
 
 

Note: In this work we have restricted the attention to the maps of type )( 20 ZZ −  
unless otherwise stated. 
 

 
1.2.2 Characterization of the Different Determinations of the 
Inverse Map  
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We can define different inverses in each region iZ ,  with 0>i (for 0=i , 
there is no inverse)[28]. Let jiR ,  be the range of one of the inverses of T  defined 

in iZ , ij ,...,2,1= ,  then the corresponding inverse is: 

            
11,1

1
1

1
1,1

,
1

,

       ,   

:

RRTT

RZT jiiji

≡≡

→
−−

−

 

Where  iZ , jiR , are the closures of iZ , jiR ,  respectively  

The s' , jiR  are disjoint open regions bounded by arcs of 1−LC (the curve of rank- 
one merging preimages), since T  possesses more than two first rank inverses, 
the rank-one preimages of LC  consist of points at which the Jacobian of T  does 
not vanish, these points are called extra preimages, i.e. 

11
1 )( −−

− ∪= CLLCLCT  , where 1−CL  the extra set 
Now, Let us have a little closer look at the extra set 1−CL . Consider a branch 
LCL ∈  separating the two regions pZ , and 2+pZ , 0>p . Then 2+p   inverses, 

)(1
,2 LT jP

−
+ , 2,...,2,1 += pj  are defined in region 2+pZ . Similarly p  inverses, 

)(1
, LT jP

− , pj ,...,2,1=  , are defined in pZ . If Lx ∈  , let 1+p , 2+p   are two of a first 

rank preimages of x  merge into 1−L , LLT =− )( 1  and  )(1
1 LTL −

− ⊂ . Thus 1−L is 
given by: 

  1
1

2,2
1

1,2  )( −
−

++
−

++ == LLTT pPpp  

The other first rank preimages, those given by )(1
, LT jP

− , pj ,...,2,1= , belong to the 

to the extra set 1−CL , and are given by 
       .,...,2,1,             )()( 1

,1 pjLTL jPj == −
−  

 
Remark(1.2.2):- 
We have noticed that by the inverse function theorem the inverses of T  are 
continuously differentiable in the interior of their domains of definition, i.e. in 
each region iZ . Moreover, 1−LC  separates the plane into regions, inside which 
the Jacobian of T  has a constant sign.  

   
Example (1.2.1): Let T be defined by  

  
0 ,                                 

:

         

2

2

≠=′

−−=′

bxy

T

xbyax

 

T  is noninvertible and has type )( 20 ZZ − .  
T has two inverses   
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0 ,                       )(          

:

          

1

≠′−′−=

′±=
−

bbxyay

T

yx

  

The curve 1−LC  is given by the equation 0=x  and  the critical curve LC  is given 
by 0=y . So 1−LC  divides the plane 2ℜ  into two regions 1R  with 0>x  and 2R  
with .0<x  Also, the curve LC divides the plane 2ℜ  into two regions: 0Z  
satisfying 0<y  where each point has no preimage, and 2Z  satisfying 

0>y where each point has two first rank preimages. We can define different 
inverses in region 2Z , so let 2,12

1
1,2 : RZT →−  be defined by  

                       

b

xya
y

yx

′−′−=′

′−=
 

and 2,22
1
2,2 : RZT →−  is  defined by  

                       

b

xya
y

yx

′−′−=′

′=
 

For particular case when 1=a , 1=b , T  has two fixed points )1,1(1 −=p  and 

)
4

1
,

2

1
(2 =p . Then  

      1,2
1
1,2 )1,1()1,1( RT ∈−=−− , 2,2

1
2,2 )1,1()1,1( RT ∈−=−−  

Also, 1,2
1
1,2 )

4

1
,

2

1
()

4

1
,

2

1
( RT ∈−=− , 2,2

1
2,2 )

4

1
,

2

1
()

4

1
,

2

1
( RT ∈=−  

 
Remark (1.2.3): 

1- The preimages of 0, ≥kLCk , which are points of )(1
kLCT −  not 

belonging to )(1
1 LCTLC k

k
−

− =  are called extra preimages. 
2- When all the inverses of T  are defined, their closed range jiR ,  give 

a finite cover of the plane 2ℜ  with closed sets having disjoint 
interiors. 

i.e. ji

i

ji
R ,

10

2

=>
=ℜ UU . 

 
1.2.3 Critical Set of A power of T  
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The critical set )( mTEC of mT ( EC comes from ensemble critique in 
French) 1>m , is the locus of points ),( yxX =  having at least two coincident 
preimages )(xT m− . 
The following proposition can be found in [17] 

 
Proposition (1.2.1): 
 Let T  be continuously differentiable map. 
(1) If T  is a map without a 0Z  region, the critical set )( mTEC , 1>m  is 
given by: 

         LCLCLCTEC i

m

i

m ≡∪=
−

= 0

1

0
   ,)(                                            (1.2.1) 

A critical curve iLC  belonging to )( mTEC , separates the −),( yx  plane locally 
into two regions, one with points having p  preimages of rank m , the other with 
points having q  preimages of rank m , 0≥p , 0≥q . In the general case 

. ,...2,1  ,2 =+= hhpq  
(2) when  a 0Z  region exists, the critical set )( mTEC , 1>m  is given by: 

 )()()( 21 m
mm

m
m LCTLCTLCTEC −−− ∪∪∪= L       (1.2.2) 

where  
)(  ),( 2

1
31

1
2 −

−
−−

−
− == LCTLCLCTLC etc. 

(3) In both cases (1), (2), )(1
mTEC−  is defined by  

m
m LCLCLCTEC −−−− ∪∪∪= L211 )(  

 
Proof:- Can be found in [17]. 
 
For understanding (1.2.2) contents consider the map 2T . Let 11 LCX ∈ .  Then at 
least one inverse 1−

iT  of T  exists such that LCXTX i ∈= − )( 1
1

0 , 0X  having two 
merging first  preimages  11

11
21

11
1 )()( −

−−−− ∈= LCXTTXTT ii oo .            
i.e )( 2

1 TECX ∈  because at least two rank one preimages of 2T  are merging, and 
)( 2

1 TECLC ⊂ . Now, Let LCP ∈ , 
       1

1
2

1
11 )()( −

−−
− ∈== LCPTPTP .  

Thus if 011 ZLCP ∩∈ −− , then )( 2TECP ∉  . 
If 011 ZLCP ∩∉ −− , then at least one inverse is defined in 1−P . When qZP ∈−1 ,  it 

has q  distinct inverse 1−
iT , qi ,...,2,1= , with 

     )()( 1
2

11
1

1
,2 PTTPTTP iii

−−−−
− == oo  , qi ,...,2,1=  

then  )( 2TECP ∈  and q  pairs of merging rank one preimages are defined in P . 
From this it follows that: 
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1- The existence of more than one pair of merging first rank 
preimages is a generic case for maps 1  , >kT k ,  

2- The inverses of the mapkT  can be obtained by composition 
of the basic inverses of T . 

 
Let T  be a map with φ≠∩− 01 ZLC  and:  
            )(\ 011

)(
1 ZLCLCLC a ∩= −−−       

which in the case of a )( 20 ZZ −  map becomes 21
)(

1 ZLCLC a ∩= −− . 
So one has (fig (1.2.2)):  
 )(

1
2 )( aLCLCTEC ∪=  , )( )(

1
)( aa LCTLC −=  

When 0Z does not exists we have LCLCTEC ∪= 1
2 )( . 

Remarking that ))(\( 011
1

2 ZLCLCTLC ∩= −−
−

− , then 21
2

1 )( −−− ∪= LCLCTEC                    
Note that : 
               12 )( −− = LCLCT  if  φ=∩− 01 ZLC  
and 12

)(
1 )( −−− ⊂= LCLCTLC a  if  φ≠∩− 01 ZLC . 

 
Note:-In figure (1.2.2), T is a )( 20 ZZ − map and then 2T is a )( 420 ZZZ −−  map. 
 
 
 
 
                                                                                                 
 
 
 
                  
                (a)                                                            (b) 
 
 
fig(1.2.2) iZ  regions for : (a) mapT  & (b) map 2T , LCLCa ∩= −10 , )( 01 aTa =  , 

)( 0
1

1 aTa −
− = , 21

2
1 )( −−− ∪= LCLCTEC . 

 
 
 
 
Consequence: 
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 If φ≠0Z  and φ≠∩− 01 ZLC , )( mTEC  contains wholly only 1−mLC  and all the 
remaining critical curves LCLCm  ,,2 K−  are only partially contained in 1−mLC , due 
to their points belonging to 01 ZLC ∩− . 

 
 
1.2.4 Foliation of the Plane 

Since the plane is divided by the critical curve LC  into distinct 
regions kZ , these regions are considered as the superposition of k sheets, each of 
them is associated with a given first rank preimage. We call this a foliation. 
Two such sheets may be connected in pairs by folds (the fold “projects” on one 
of the segments of the critical curve). Three sheets may join at a singular critical 
point, a cusp point at all the junction of two fold segments, which has three 
coincident first rank preimages [28]. 

Furthermore, it may occur that m sheets, 0>m  (m  is odd integer) 
communicate at a singular critical point having m coincident first rank 
preimages. 

The plane foliation may change; when a parameter is vanished, i.e. a map 
of a given type may turn into a map of another type as it passes through a 
foliation bifurcation. 

Now, we shall give an example and an associated figure which illustrate 
this situation, this example of type )( 20 ZZ − map whereLC  separates the plane 
into two open regions 0Z  and 2Z  such that LCZZ =∩ 20 , 2

20 ℜ=∪ ZZ . 1−LC  
separates the plane into two regions 1R  and 2R , φ=∩ 21 RR , 121 −=∩ LCRR , 

2
21 ℜ=∪ RR . Two distinct inverses are defined in2Z  (fig 1.2.3) 

            
22

1
2

12
1

1

:

:

RZT

RZT

→

→
−

−
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Fig. (1.2.3) Relation between the foliation (i.e. the two sheets) of a 

)( 20 ZZ − map, the inverses determination 1
2

1
1   , −− TT  of 1−T  and the regions 1R , 2R  

with 1,2i  ,: 2
1 =→−

ii RZT . 
 
 
 
Example (1.2.2): [28 ] 
 Let T  be a map defined by :  

       

),(,          1.05.0           

:

           

2 yxXxyxxy

T

yx

=++=′

=′

λ
 

 
T  is continuously differentiable. 1−LC  is the straight line given by 

0 2.05.0 =++ yx λ  andLC  is the parabola 04.0)5.0( 2 =++ yxλ . The parametric 
equation of )(1 LCTLC =  is  

   
4.0/)5.0(( 1.0 5.0

4.0/)5.0(
22

2

tttty

tx

λλ

λ

+−+=

+−=
  

The inverse map )(1 XT −  is characterized by: 
 

                               
[ ]

xy

yxxx

′=






 ′+′+±′−−= 2.04.0)5.0(5.0 2

1
2λλ

   

 
Let 1R , 2R  be two open regions such that 211 RRLC ∩=− . For every 2ZX ∈ , 
Let 1

1
1 )( RXT ∈− , 2

1
2 )( RXT ∈− be the two determinations of )(1 XT − , i.e. the two 

first rank preimages of X . If  LCX ∈  then 1
1

2
1

1 )()( −
−− ∈= LCxTxT  with: 

 

                      

[ ]

xy

T

yxxx

′=







 ′+′++′−−=

−

            

:

2.04.0)5.0(5.0            

1
1

2

1
2λλ

  

 
 and 
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[ ]

xy

T

yxxx

′=







 ′+′+−′−−=

−

            

:

2.04.0)5.0(5.0            

1
2

2

1
2λλ

   

 
The critical curve LC  of rank one separates the plane into the region 

04.0)5.0( 2 <++ yxλ , each point of which has no preimages (region 0Z ),and the 
region 04.0)5.0( 2 >++ yxλ , each point of which has first rank preimages (region 

2Z ) . 

1.3 Chaos in Dynamical Systems 
 

The study of orbits (periodicity, density, etc.) contributes to the 
knowledge of the behavior of the system. Systems with complicated behavior 
are usually called chaotic .Chaos is defined in several different ways through  
literature. In 1976 [22, p.91], Li and Yorke introduced the notion of chaos for a 
continuous map from I into itself, where I is a compact real interval. In Yorks 
paper, the term chaos appeared for the first time. In [11] , Devany defined the 
chaotic map as follows XXT →:  is said to be chaotic if it is transitive , its 
periodic points are dense and it has sensitivity with respect to the initial 
conditions where X is any metric space. Gulick called the map chaotic if it is 
sensitive to initial conditions. 
 
Definition (1.3.1): [34, p.21] 
  Let  X  be a metric space , d  the distance on X  and  XXT →:  has a 
sensitive dependence on initial conditions if there exists 0>δ  such that, for any 

Xx ∈  and any neighborhood U  of  x  there exists Uy ∈  and 0≥n  such that 
δ>))(),(( yTxTd nn .  

 
Example (1.3.1): [11, p. 52] 
Let [ ] [ ]1,01,0: →B  be the baker map given by  

         




≤<−
≤≤

=
15.0             12

5.00                  2
)(

xforx

xforx
xB  

Notice that 
3

1
)

3

1
(       

3

2
)

3

1
( 2 == BandB , so that the iterates of 

3

1  alternate between 

3

2
      

3

1
and   . To compare the iterates of 

3

1  and 0.333 we make the following 

table (where we use3-place approximations for the iterates of 0.333). 
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Iterates 1            2         3          4          5         6           7         8          9          10 
1/3 2/3        1/3      2/3       1/3       2/3      1/3        2/3      1/3       2/3       1/3 
0.333 0.666   0.332   0.664   0.328   0.656   0.312   0.624   0.248   0.496   0.992 
 
Take 5.0=δ , 10=n , so  

                       δ>−=
3

1
992.0))

3

1
(),333.0(( nn BBd  . 

 Thus,   B  has a sensitive dependence to initial condition on [0, 1]. 
 
 
We shall discuss in chapter three the chaotic area for a two-dimensional map. 
 
Example (1.3.2): [11, p.50] 
Let f  be a continuous map from unit circle 1S , into itself  i.e.  11: SSf → , given 
by θθ 2)( =f . We shall use the definition of transitive map. Let U  be any small 
open arc in 1S , there is Ν∈k  such that )(Uf k  covers all of 1S , in particular, 

)(Uf k  intersects any other open arc V in 1S . This implies  φ≠VUf k I)(  , thusf   
is transitive. 
 
Theorem (1.3.1): [22, p.96] 
Suppose that  J  is a closed subset of JJfm →ℜ :, and .Then f  is transitive if 
and only if there is anx  on J   whose orbit is dense inJ .   
Proof: See [22, p.97]. 
 
   Now, we shall turn to the main theme of this section, the notion of a chaotic 
dynamical system. There are many possible definitions of chaos in a dynamical 
system. We shall recall some of them and start by Gulick’s definition before we 
give its definition; we need to mention the following:  
 
Definition (1.3.2): [22, p.87] 

Let J  be a bounded interval, and JJf →:  is continuously differential 
onJ . Fix x  in J  , let )(xλ  be defined by )()(ln

1
)( lim xf

n
x n

n

′=
∞→

λ provided that 

the limit exists, )(xλ is called the Lyapunov exponent of f  at x  . If )(xλ  is 
independent of x  whenever  )(xλ  is defined, then the common value of )(xλ  is 
denoted byλ , and is the Lyapunov exponent off .  
 
Definition (1.3.3): [22, p.90]  
 A map f is chaotic if it satisfies at least one of the following conditions:  
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(1) f  has a positive Laypunov exponent at each point in its domain 
that is not eventually periodic .or 

(2) f  has sensitive dependence on initial conditions on its domain.  
 

Also, Gulick defined strongly chaotic maps as follows: 
 
Definition (1.3.4): [22, p.101] 
A map f  on an intervalJ  is strongly chaotic if  

(1)  f  is chaotic ( in the sense of Gulick ). 
(2) f  has a dense set of periodic points . 
(3) f  is transitive . 

Now, we see another definition of chaos given by Devany . 
 
Definition (1.3.5): [11, p.50] 

Let J  be a subset of ℜ  , JJf →:  is said to be chaotic on J  if f  has  
a sensitive dependence on initial conditions, f  is transitive and periodic points 
of f  are dense in J . 
By the comments above, f  is chaotic equivalence to strongly chaotic in the 
sense of Gulick. 
 
Definition (1.3.6): [22, p.104] 

Let A  and B  be closed sets in 2ℜ  and let AAf →:  and BBg →:  be two 
maps, f  and g  are said to be topological conjugate if there exists a 
homoeomorphism BAh →:  such that hgfh oo = . The homeomorphism h  is 
called a topological conjagacy. In this case, we write gf h≈ . 

 
Maps which are topological conjugate are completely equivalent in terms 

of their dynamics. For example, if f  is topological conjugate to g  via h  and p  
is a fixed point forf  , then )( ph  will be a fixed point for g  .  
 
The next result implies that the periodic points are inherited through 
conjugacy:- 
 
Theorem (1.3.2): [22, p.106] 
Let gf h≈ then  

(1) hgfh nn oo =   for  ,...2,1=n .  
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(2) If x  is a periodic point for f  of period n , then )(xh  is a periodic  
    point of g  of  period n .  
(3) If f has a dense set of periodic points, so does g . 

Proof:- 
 hgfh oo = . For the purpose of an induction proof, let us assume that 

hgfh nn oo 11 −− = . Then 
hghggfhgfhgffhfh nnnnnn oooooooooo ===== −−−− )()()()( 1111 , so that  

hgfh nn oo =   for  ,...2,1=n . By induction , (1) is proved . 
To proved (2), assume x  is a periodic point of period n  for f . That, is 

xxf n =)( , (1) implies that )())(()()()( xhxfhxhofxohgxhg nnnn ====o . 
Consequently )(xh  is a periodic point for g  of period n .  

Finally, the image )(Kh  of a dense set K  of periodic point of f  contains 
only periodic points of g  by (2), and is dense in the range of g  by the definition 
of homeomorphism. ♦ 
  
The next result shows that transitivity is inherited through conjugacy.  
 
Theorem (1.3.3): [22, p.107] 
Let gf h≈ , if f  is transitive then g  is transitive, too.  
 
Proof: -  

By theorem (1.3.1), a map is transitive if and only if it has a dense orbit. 
Suppose that the orbit of x  for f  is dense in the domainA . We shall show the 
orbit of )(xh  for g  is dense in B . Let U  be a nonempty open subset of B , 
because h  is homeomorphism, it follows that )(1 Uh− is an open set of A . Since 
the orbit of x  is dense in A , there is a positive integer in such that )(xf n  is in 

)(1 Uh− , so )(xh  is in UUhh =− ))(( 1 . By (1) of theorem (1.3.2): 
))(()()())(( xhgxohgxhofxfh nnnn === . Therefore, ))(( xhg n is in U . Since U  is an 

arbitrary open interval inB , then we have succeeded in proving that the orbit of 
)(xh  for g  is dense in B , so that by theorem (1.3.1), g  is transitive. ♦ 

 
1.4 Planar Quadratic Maps 
 

Our goal in this section is to give a brief description of the dynamics of 
planar quadratic maps that have nonempty critical set whatever (bounded or 
not).  
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Definition (1.4.1): [13] 
A planar quadratic map is a map T  that has the form: 

)),(),,((),( 21 yxtyxtyxT =                                                         (1.4.1)    
Where  ayaxayaxyaxayxt +++++= 43

2
21

2
01 ),(  

           bybxbybxybxbyxt +++++= 43
2

21
2

02 ),(    
    and where saba i

',,  and sbi
'  are real constants. 

   
The critical set or singular set )(TJ  of a planar quadratic map (1.4.1) is the set: 

{ }0))((det(:)( 2 =ℜ∈= xTJxTJ  
 Clearly the critical set )(TJ  is a real planar algebraic curve of order not greater 
than two. This set may be bounded or not, we can show it is bounded when the 
following conditions are satisfied: 

12210110a  )1( babababa −=−  (We get circle) or 

12210110a  )1( babababb −≠−   (We get ellipse)  
0a  )2( 0220 =− bab  

0C-BA  )3( 22 ≥+ , where
4

A  3113
0440

baba
baba

−
+−= , 

4
B  4114

3223

baba
baba

−
−−=  

and 3443C  baba −=  
When one of the above conditions is not satisfied, the critical set is unbounded. 
 
Remark (1.4.1): 
 The critical set )(TJ  is empty when ))(det( TJ  is constant i.e. when condition (1) 
is satisfied and equals zero, condition (2) is satisfied and 0== BA  and 0≠C . 

Now, we shall characterize maps with bounded critical set and maps with 
an unbounded critical set. So let 

{ )(:1 TJT=ℑ  is bounded and nonempty     } 
{ )(:2 TJT=ℑ  is unbounded and nonempty } 

When the critical set is bounded it can easily be shown that it is only  an empty 
set, a point or an ellipse. Each map in 1ℑ or in 2ℑ can be brought into the 
standard form via an affine coordinate change, the standard form of a map 
which is in 1ℑ , 2ℑ  respectively are  

),(),( 1
2

1
2 bxybayxyaxyxT ++−+=                                                    (1.4.2a) 

),(),( 313
2

1
2 bxbxybaxayxyaxyxT ++++++=                                    (1.4.2b) 

And  
),(),( 141

2
0 bxybayaxyaxayxT ++++= , with   01 ≠b                           (1.4.3a)        

),(),( 43
2

2
2

043
2

2
2

0 bybxbybxbayaxayaxayxT ++++++++=             (1.4.3b) 
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Remark (1.4.2): 
1- The critical set of the standard form (1.4.2a) is a point, while the form 
(1.4.2b) gives a critical set as an ellipse.  
2- The critical set of the standard form (1.4.3a) is a parabola, while the form 
(1.4.3b) gives a critical set as a hyperbola or a straight line (we get a line in case 

0a  0220 =− bab ). 
 3- The standard form is not unique. For example, 

 )3,2(),(  &  ),(),( 22
2

22
1 xyyxyxyxTxyyxyxT −+=−−= are two maps in 1ℑ and 1T  is 

affine conjugate to 2T  via the affine conjugacy  )
3

1
-

3

2
,

3

2

3

1
(),( yxyxyxh −−= . 

Also,  ),(),(  &  ),(),( 2
2

2
1 bxayyyxTbxyaxyxT −−=++= are two maps in 2ℑ which 

are conjugate via )-,(),( yaxxyxh −−= . 
 
1.4.1 Some Properties of Planar Quadratic Maps 
 

In this section we shall state and prove some basic properties of planar 
quadratic maps. Also we shall give evidence that support us to conjecture that 
any map in 1ℑ  has infinitely many periodic points and for any map in 2ℑ , if the 
critical set is a parabola then the map will have an attractor . On the other hand 
if the critical set is a straight line or hyperbola then the map will have a periodic 
points. 
The degree-2 terms in a planar quadratic map play an important role as can be 
seen in the next lemma. But first, let us make the following definition. 
 
Definition (1.4.2): [32] 
Let T  be a quadratic map defined by (1.4.1), then the mappingG , consisting of 
the quadratic terms of  T ,  is called the initial form of T . i.e.  
 )  , (),( 2

21
2

0
2

21
2

0 ybxybxbyaxyaxayxG ++++= . 
 
Lemma (1.4.1):[32] 
Let T  be a quadratic map given by (1.4.1). If the origin is not in the image of 
the unit circle under the mappingG , the initial form of T , there is a positive real 

number K  such that ),(2),( yxyxT >  whenever Kyxyx >+= 22),( . Hence, 

infinity is an attracting.  
Proof:- 
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 Write ][0,2   ,sin ,cos πθθθ ∈== ryrx , then the assumption on the image of the 
unit circle under the mappingG , implies that 0)sin,(cosinf

]2,0[
>=

∈
δθθ

πθ
G . Hence 

we have, 
 

r

ba
bbaarr

babbaarr

baybxbyaxayxG

bybxbayaxayxGyxT

),(
)sincos,sincos((             

),()sincos,sincos(             

),(),(),(             

),(),(),(

4343

4343
2

4343

4343

−++−≥

−++−≥

−++−≥

++++−≥

θθθθδ

θθθθδ  

 
Since 0>δ , we can choose 0>K  large enough such that 

[ ] ][0,2  ,2)),()sincos,sincos(( 4343 πθθθθθδ ∈∀>−++− KbabbaaK . With such  a 

),(2),(  , yxyxTK >  whenever Kyx >),(  .♦ 

 
It is also straightforward to verify that maps either in 1ℑ or in 2ℑ  have the 
property stated in the above lemma. Thus the only interesting dynamics of 
T occur on the set TB , where  

{ ,)(: xOxBT =  forward orbit of x  under T  is bounded}. 
Since properties of set TB when T  is in 1ℑ are studied in [32], we shall give some 
properties of these without proof and then we shall try to look for these 
properties in a map which is in 2ℑ . But first, let us recall the following 
definition. 
 
Definition (1.4.3): [29, p.20] 
A setΛ  is said to have a Cantor−like structure if: 
1-Λ is closed and invariant under T , i.e. Λ=Λ)(T , 
2- { }  VV, s ,V  , s , ssss2 φφ =∩∀≠=Σ∈=Λ ′VV

s
s U for ss ′≠ . 

3- if sVx ∈ , then  )()( sVxT σ∈ . 

Where 2Σ denotes the space of semi−infinite sequences on two symbols, 
{ }1or  0 ...),( 3212 ===Σ isssss and σ denotes the shift map on 2Σ  : if  ...)( 321 ssss =  

then ...)()( 432 ssss =σ . 
 
Notice that condition (2) in the above definition says that the element of Λ can 
be considered as a collection of subsets which can be put into one−to−one 
correspondence with the elements of the space2Σ . Condition (3) says that the 



 Chapter1:Preliminaries                                                                                                            27 
 
  
   
action of T on Λ is similar to that of the shift map. In particular, if each sV  
consists of a single point then Λ is the usual Cantor set of points, and the 
restriction of T  on Λ is conjugate to the shift map on2Σ .  
All properties of 2Σ can be found in [11]. 
With the notion of Cantor−like structure, we shall give two theorems that 
characterize the nature of the set TB  in case  T  belongs to 1ℑ . 

 
Theorem (1.4.1): [32] 
Let T  be a map in 1ℑ  with the standard form (1.4.2a). For any fixed 1a and 1b   if 

),( ba   is large enough then TB  has a Cantor−like structure. 

Proof: See [32]. 
 
Conjecture (1.4.1): [32] 
Let T  be a map in 1ℑ  with the standard form (1.4.2a). For any fixed 1a and 1b   if 

),( ba   is small enough then T  has infinitely many periodic points. Numerical 

evidence suggests that it may not be dense in TB∂  . 

 
Theorem (1.4.2): [32] 
Let T  be a map in 1ℑ  with the standard form (1.4.2b). For any fixed 1a , 3a , 1b  

and 3b ,  if ),( ba   is large enough then TB  has a Cantor−like structure. 

Proof: See [32]. 
 
Conjecture (1.4.2): [32] 
Let T  be a map in 1ℑ  with the standard form (1.4.2b). For any fixed 1a and 1b   if 

),( ba  and ),( 33 ba   are small enough, and the basin of the attracting periodic 

point near the origin is simply connected, and if the forward critical orbits )(JO  
tend to the attracting periodic point, then we conclude that  T  has infinitely 
many periodic points on the basin boundary.  
 
The set TB  is nonempty and bounded since it contains all accumulation points of 
the sequence of a preimage of any point that belongs to it i.e. accumulation 
points of the set )(

1
pT n

n

−

≥
U   , wherep  is a point in TB . 

 
Also TB  is invariant i.e. TT BBT =)( . 
 In fact let )( TBTx ∈ , then there is TBp ∈  such that )( pTx = . Since  TBp ∈  , 
therefore it has a bounded forward orbit, which implies that there exists 0>M  
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such that nMp n ∀<   ,  , i.e. { }∞
=1n

np  is a bounded orbit of p , i.e. { }∞
=1)( n

npT  is a 

bounded orbit of x  therefore, FBx ∈  i.e. TT BBT ⊆)( . 
Let TBx ∈ ; this implies that x  has a bounded orbit under T  and 

{ } { }0),(1 , ≥=≥ nxTnx nn . Also, we conclude that { }1),( ≥nxT n  is a bounded orbit, 
but this is an orbit of  )(xT  , so )( TBTx ∈ ; this implies that )( TT BTB ⊆  

)( TT BTB ⊆∴ , i.e. TB  is invariant under T . 
 
Next, the following theorems give us the nature of TB when T  is in 2ℑ  and has 
the standard form (1.4.3a) or (1.4.3b). The following results are similar to 
(1.4.1) or (1.4.2) except that the set of critical points is not bounded. The result 
is new to the best of our knowledge. 
 
Theorem (1.4.3):  
Let T  be a map in 2ℑ  with the standard form (1.4.3a). For any fixed 0a , 1a , 4a  

and 1b   if ),( ba   is large enough then TB  has a Cantor−like structure. 

 
Proof:- 
 We claim that if ),( ba  is large enough then ),(),( baKba >  where 

{ KKK ba :0inf),( >=  satisfies the property in lemma (1.4.1) }. 

We first estimate the number ),( baK . Let G  be the initial form of T  and 

write ][0,2   ,sin ,cos πθθθ ∈== ryrx , then  

             

),()0,sin(             

),()0,(),(             

),(),(),(

4
2

4

4

baarr

bayayxG

bayayxGyxT

−−≥

−−≥

+−≥

θδ
 

Where )sin,(cosinf
]2,0[

θθδ
πθ

G
∈

= . Note that δ is independent of a and  b  . Also note 

that if 
            2)),(4),0)sin(a(2 ,0)sin(a(2 2

44 δδθθ bar ++++≥  

 
 then  

             

2),()0,sin( 4
2 rbaarr ≥−− θδ  

Hence   
             2)),(4),0)sin(a(2 ,0)sin(a(2 ),(

2
44 baKba ≥++++ δδθθ  
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by definition of ),( baK  .Hence if ),( ba  is large enough, ),( baK  is at most of order 

2
1

),( ba ,  therefore ),(),( baKba >  if ),( ba is sufficiently large. 

        Now choose a circle Γ centered at the origin with a radius between ),( baK  

and ),( ba . Let D  be the disk bounded by the circle Γ .Since )(1 DT −  consists of 

two disjoint areas inside D , therefore the set )(
1

DTB n

n
T

−

≥
= I is nonempty and has 

a Cantor−like structure. ♦ 
 
From the numerical evidences that we obtained, can make the following 
conjecture: 
 
Conjecture (1.4.3):  
Let T  be a map in 2ℑ  with the standard form (1.4.3a). For any fixed 0a , 1a , 

4a and 1b   with 10 ba = and small value of b , and not small  value of a , T  has 
attractor in the region { }   5.19.2  &    45.545.5:),( ≤≤−≤≤−= yxyxR . Moreover, 
the iterates of each point in R  will converge to )2267.1,8488.1(=p . 
 
Theorem (1.4.4): 
Let T  be a map in 2ℑ  with the standard form (1.4.3b). For any fixed 0a , 2a , 3a , 

4a , 0b , 2b , 3b and 4b   if ),( ba   is large enough then TB  has a Cantor−like 

structure. 
 
Proof:  
The idea of this proof is the same as theorem (1.4.3), the difference is only for 

choice of r , in this case we shall choose   

            2)),(4))sinbcosb,sinacos(a(2         

)sinbcosb,sinacos(a(2

2
4343

4343

δδθθθθ

θϑθθ

ba

r

+++++

+++≥
. ♦ 

 
Conjecture (1.4.4): 
Let T  be a map with a standard form (1.4.3b). For some values of saba i

',,  and 
sbi

' , that give critical set as a line and the basin of the sink near the origin then 
we shall conclude that T has an attractor and  periodic points on the basin 
boundary.     
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Chapter two 

“Absorbing Areas and Invariant Areas of Two 

Dimensional Noninvertible Maps” 
    

In this chapter, we shall study the structure of an absorbing areas and 
invariant areas generated by a noninvertible map of the plane. Here the 
term”area” only refers to a closed and bounded set not related to some measure. 

The notion of absorbing was introduced at first by Gumowski & Mira in 
1977, was developed by Kawakami & Kobayashi in 1979 and by Baraugola in 
1982, 1985 [4& 29]. 

 
2.1 Definitions and General Properties 

We shall start this section by definition of an absorbing area, and then we 
shall give some properties of this area and of an invariant areas, we shall give 
some properties and important results on a )( 20 ZZ − map. 

 
Definition (2.1.1):[24] 

An area 2ℜ⊂′d  is called an absorbing area of non-mixed type if it satisfies: 
(i) ddT ′⊆′)(  i.e. it is either invariant, or strictly mapped into itself, 
(ii)  A neighborhood )(dU ′ exists such that )())(( dUdUT ′⊆′ , and any point 

ddUx ′′∈ \)(  has a finite rank image in the interior of d ′ , 
(iii)  The boundary d ′∂   is made up of a finite number of segments of 

critical curves kLCLCLC  ,, , 1 K . 
 
From definition (2.1.1) we can conclude that an absorbing area d ′  is implicitly 
associated with the existence of an attracting set belonging to d ′ . 
 
Definition (2.1.2):[29, p.187] 
An area 2~ ℜ⊆′d  is said to be absorbing of mixed type if it satisfies:  

(i) ddT
~

)
~

( ′⊆′ ,  
(ii) d

~′  is attracting, a neighborhood )
~

(dU ′  exists such that )
~

())
~

(( dUdUT ′⊆′ , 
and almost all the points ddUx

~
\)

~
( ′′∈  have a finite rank image in the interior 

of d
~′ , 

(iii) The boundary d
~′∂  is made up of segments of critical curves 

and segments of the unstable set uW  of a saddle fixed point, or a 
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saddle cycle (periodic point), or even segments of several an stable 
sets associated with different cycles. 

The notion of a mixed absorbing areas was first introducing by Borugola & 
Cathala in 1992. In definition (2.1.2), almost all points in ddU

~
\)

~
( ′′   have a finite 

rank image in the interior of d
~′  means any point ddUx

~
\)

~
( ′′∈   has a finite rank 

image in the interior of d~′  except the point x  of the external segments of the 
stable sets sW  of the saddle points tend toward the boundary saddle point by 
infinite iteration. 

 
Let s  be a non-mixed area )(d ′ , or a mixed area )

~
(d ′ . If s  is non invariant 

absorbing area ssT ⊆)( ,  then an invariant set can be obtained as: 

(a) either an integer k  exists such that I
k

j

j sTS
0

)(
=

=  is an invariant absorbing 

area. 
or (b) I

0

)(
≥

=
j

j sTS  is a closed invariant absorbing set . 

 
Definition (2.1.3):[19] 

 A mixed (non mixed)chaotic area d  is an invariant mixed (non mixed) 
absorbing area with chaotic dynamics in the whole area d . 

 
Let T  be a )( 20 ZZ − map of the plane. For such continuously differentiable maps 
T  it is recalled that the critical curve LC  separates the plane in two regions 0Z  
and 2Z  such that LCZZ =∩ 20 ,  2

20 ℜ=∪ ZZ . Like LC  the curve 1−LC  separates 
the plane in two open regions 1R , 2R  such that  φ=∩ 21 RR , 121 −=∩ LCRR , 

2
21 ℜ=∪ RR . For every point 2ZX ∈ , let 1

1
1 )( RXT ∈− ,  2

1
2 )( RXT ∈−  be the two 

first rank preimages of X . 
Before we give some properties of a )( 20 ZZ − map, we shall give two basic 
propositions which are preparatory of these properties. 
 
Proposition (2.1.1):[29, p.208] 

Let A  be  a closed subset of the plane. Then the points internal to A  
which can be mapped on the boundary of )(AT  belongs to 1−∩ LCA . 
Proof: 
  Let p  be an interior point of A , 1−∉ LCp . Since p  is an interior point, 
there exists a neighborhood U  of p  such that ApU ⊂)( , by the inverse mapping 
theorem we assume )(: UTUT →  is one-one, U  is open then )()( ATUT ⊂  is 
open i.e. )( pT  is interior point of )(UT .♦ 
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Remark (2.1.1): 
  If φ=∩ −1LCA , then )()( ATAT ∂=∂ , i.e. only points of the boundary of A  
are mapped on the boundary of )(AT . 

 
Proposition (2.1.2):[29, p.208] 

 Let A  be a closed subset of the plane. If A∂  is made up of points of critical 
segments, then also )(AT∂  is made up of points of critical segments 
Proof: 

Let )(ATz ∂∈ . Then z  is an image of a point belonging either to the 
boundary ofA  or to the interior of A . 
If z  is an image of a point belonging toA∂ , then z  belongs to a critical curve (as 
the image of critical points are critical points). If z  is an image of a point 
belonging to the interior of A , then from prop. (2.1.1), z  is the image of a point 
belonging to 1−LC , thus z  belongs to )(ATLC ∂∩  . ♦ 

 
Remark (2.1.2): 
  The segments of the unstable set of a cycle are mapped by T  into 
segments of the same unstable set. 
The following proposition is a consequence of prop.(2.1.2) with remark (2.1.2). 
It appeared in[29, p.208] without a proof, we shall give a  proof. 

 
Proposition (2.1.3): 

 Let s  be an absorbing area, mixed or not. Then also )(sT  is an absorbing 
area of the same type as s . 
Proof:  

Let s  be non-mixed absorbing area. To show )(sT  is a non-mixed 
absorbing area. 
 Since s  is an absorbing area, )()())(( 2 sTsTsTT ⊆=   and a neighborhood ))(( sTU  
exists such that  ))(()))((( sTUsTUT ⊆ . 
 Let )(\))(( sTsTUx ∈ , to show x  has a finite rank image in the interior of )(sT . 
x  is an image of a point in ssU \)(  i.e. ssUp \)(   ∈∃  such that )( pTx = , since s  
is an absorbing area, then there exists an integer k  such that spT k ∈)( , hence 

spTpTTxT kkk ∈== + )())(()( 1  
i.e. x  has finite rank image in the interior of )(sT . 
By using prop. (2.1.2) the boundary of )(sT  is made up of a finite number of 
segments of critical curves. 
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A similar proof can be used to prove the other case. ♦ 
 

The following interesting proposition is stated in [30] without proof, we shall 
give a proof. 

 
Proposition (2.1.4):Let T be a )( 20 ZZ − map 

(1) { }2
1

21
1

1
1

2 )(  ,)()( RXTRXTXTZX ∈∈=⇒∈ −−− , 
(2) 1

1
2

1
1 )()( −

−− ∈=⇒∈ LCXTXTLCX , 
(3) 1      , )( 20 ≥∈⇒∈ nZXTZX n , 
(4) 22 )( ZZT ⊂ . 

Proof:  
(1) Follows directly from the definition of )( 20 ZZ − map. 
(2) We know )( 1−= LCTLC  and 1

1 )( −
− ⊇ LCLCT .  

Since we have two determination of the inverse map 1
1
−T , 1

2
−T  and each 

inverse is defined in different region 1R , 2R  respectively then 

1
1

2
1

1 )()( −
−− ∈= LCXTXT  where LCX ∈  . 

(3) Let 0ZX ∈ ,  1     ),(1 ≥= nXTX n  
Then X  is a preimage of rankn−  of 1X  .Since each point in 0Z  has no 
preimage therefore 1X  can not belong to 0Z  and thus 21 ZX ∈ .  
(4) Let 2ZX ∈ , )(1 XTX = .  
Recall that X  is a preimage of rank1−  of 1X  and then 1X  must belong to 2Z  
because the plane consists of two regions0Z , 2Z  each point  in 0Z  has no 
preimage, while 2Z contains all points having two distinct preimages.♦ 
 

The following proposition gives a way of  constructing  an absorbing area if it 
exists when 2R  contains a repulsive focus. 

 
Proposition (2.1.5):[29, p.212] 

If 0∆  is a closed subset of 2R , bounded by critical curves segments and 
segments of 1−LC , then: 

(1) U
k

i

iT
1

0 )(
=

∆=∆  is bounded by critical curves segments 1  ≥∀ k ; 

(2) )(∆nT  is bounded by critical curves segments 1  ≥∀ n . 
 Proof: 
(1) For 1 =k , )( 0∆=∆ T  
 We know that no internal point of 0∆  belongs to 1−LC , )()( 00 ∆∂=∆∂ TT . 
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Thus, ∆∂ consists of arcs of critical curves i.e. (1) is holds since )( 0∆∂ iT  made 

up of arcs of critical curves (from prop. (2.1.2)) for all i , U
k

i

iT
1

0 )(
=

∆∂⊂∆∂  , it 

follows that ∆∂  is made up of arcs of critical curves, therefore (1) holds for all 
1 ≥k .  

Proof of (2) follows immediately from (1) and  prop. (2.1.2).  
 
Another proof we shall use induction to prove (1) First we will prove by 
induction if  0∆  is  a closed set bounded by critical curves, then )( 0∆nT  is 
bounded by critical curves. 
For 1=n  the statement is true by prop.(2.1.2), suppose the statement is true for 

1≥n  i.e. if 0∆  is closed bounded by critical curve then )( 0∆nT is bounded by 
critical curves  
Now, to show )( 0

1 ∆+nT  is bounded by critical curves, since )( 0∆nT  is bounded 
by critical curves, then by prop.(2.1.2) ))(( 0∆nTT  is bounded by critical curves. 

)( 0∆∴ nT  is bounded by critical curve 0  ≥∀ n .  
Now,  for 1=k , )( 0∆=∆ T  is bounded by critical curves as show above. 

For 1>k , U
k

i

iT
1

0 )(
=

∆∂⊂∆∂ . Hence by prop.(2.1.2) ∆∂  consists of arcs of critical 

curves. ♦ 
 

Corollary(2.1.1):[16] 
 Let 0∆  be a bounded area whose boundary consist of arcs of critical lines 

and U
k

i

i
k T

0
0 )(

=

∆=∆ . If there exists an integer m  such that mmT ∆⊆∆ )( , then m∆ is 

an absorbing area. 
Proof: 
From the assumptions it follows that k∆∂  consists of arcs of critical segments 
because this is true for 0∆∂ , and the consequents of critical segments are critical 
segments ; moreover , there exists a basin of attraction D  of k∆ ,  as the points 
belonging to )(\ kk T ∆∆ have antecedents outside k∆ .♦ 

 
It is possible to restrict the analysis of asymptotic behaviors of a sequence of 
images with increasing rank, to the points of an absorbing region. This is shown 
by the next proposition which is stated in [29, p.213] without proof, we shall 
give a proof. 
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Proposition (2.1.6):[Elimination process] 

Consider a )( 20 ZZ −  map then 
(1) either )()( 22

1 ZTZT k ⊂+  for any 0>k , which permits to define 
                      )( 2

0
ZTV k

k>
= I ; 

(2) or there exists a finite j  such that )()( 22
1 ZTZT jj =+ which permits to 

define  
)( 2ZTV j

j = . 

In both cases V and jV  are invariant absorbing regions. The boundary of each of 

V and jV  is made up of a finite number of critical curve segments 

 
Proof: 

Case (1) to show VVT ⊆)(  
   ))(()( 2

0
ZTTVT k

k >
= I  

                                )(T    )( 2
k

0k
2

1

0
ZZT k

k >

+

>
⊆= II  

i.e. V  is an invariant region. 
From prop. (2.1.2) V  is bounded by segments of critical curves. 

                                                                                         
Case (2)  ))(()( 2ZTTVT j

j =     
                              )( 2

1 ZT j+=  
                              j

j VZT == )( 2  
i.e. jV is an invariant region, by prop. (2.1.2), jV∂  is made up of segments of 
critical curves. 

 
 

2.2 Properties of Absorbing Areas & of Invariant Areas  
 

In this section we shall study some of the properties of absorbing and 
invariant areas for a )( 20 ZZ − maps.  The following proposition give some of the 
properties of the absorbing area s  of either non mixed type, or mixed type, 
invariant, or non invariant it appeared in [29, p.220] without a proof, we shall  
give a proof. 
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Proposition(2.2.1): 
Let s  be an absorbing area for a )( 20 ZZ − map T . If φ≠0Z  then φ=∩ 0Zs . 

 
Proof:  

It is known that each point in region 0Z  has no preimage, from the 
definition of s  each point in s   has a finite rank preimages therefore there is no 
common point between s  and 0Z  i.e. φ=∩ 0Zs .♦ 

 
Proposition (2.2.2):[17] 

 Let T  be as before, and let  SST =)( then  
(1) any point Sp ∈  has at least one infinite sequence of preimages in 

S ; 
(2) any point Sp ∉  has all its preimages of rank ,,2,1 K  out of S . 

Proof:- The proof  is immediate.  
 

Let A  be a closed subset of the plane. A  can be simply connected set, or 
a multiply connected one, a non-connected one, invariant or not, absorbing or 
not,  mixed or not. 
If φ=∩ −1LCA , then the restriction AT  of T  is a map with a unique local inverse 
in A . Thus, to characterize properties due to the non uniqueness of the inverse 
of T  in A , it will be assumed φ≠∩ −1LCA . 
 
Definition (2.2.1) :[4] 
  The largest subset of 1−∩ LCA  mapped by T  on the boundary of )(AT , is 
denoted by 1−g ,  i.e. ALCg ∩⊆ −− 11 , thus LCATgTg ∩∂⊆= − )()( 1 . 
 

The above definition is constructive, because from the set 1−∩ LCA  the 
points not mapped on the boundary of )(AT  are eliminated, i.e. the points 
mapped in the interior of )(AT . We shall refer to g  as “arcg ” whichever is its 
structure. 
The following result appeared in [29, p.222] . 

 
Proposition (2.2.3): 
  Let T  be a )( 20 ZZ −  map, and A  be a closed subset of the plane. Then 

LCATLCATLCAT ∩∂=∩=∩ − )()()( 1  
Proof: 

LCATLCAT ∩∂=∩ )()( is immediate. 
Let 1−∩∈ LCAp , then LCATpT ∩∈ )()(  is obvious .i.e. LCATLCAT ∩⊆∩ − )()( 1 . 
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Let LCATp ∩∈ )(1  then 1p  is the image of at least one point of A , but it is also a 
point of LC , thus it has only two coincident rank-one preimages in a point 
belonging to 1−LC . Thus )(1 pTp = , where 1−∩∈ LCAp , i.e. 

)()( 1−∩⊆∩ LCATLCAT  
LCATLCAT ∩=∩∴ − )()( 1  ♦ 

 
Remark (2.2.1):  

(1) Proposition (2.2.3) when applied to a closed invariant set A , it follows 
that LCAg ∩∂=  is bounded by a finite number of critical segments, and g  is 
called generating arc of A∂ . 
(2) From prop. (2.1.1) we can deduce that the preimages of boundary points 
of )(AT  not belonging tog , are boundary points of A . because no interior 
points of A  can be mapped on the boundary of )(AT  in points not belonging 
to LC . Thus another proposition can be stated (it appeared in [29, p.223] 
without proof ),  we shall give a proof.  
 

Proposition (2.2.4):  
let A  be a closed and gATp \)(∂∈  then all the rank-one preimages of p  

in A  must belong to A∂ . 
Proof: 

 Let gATp \)(∂∈ , then LCp ∉  {since LCATgTg ∩∂⊆= − )()( 1  } 
So 11

11 )()( −−
−− ∪=∉ CLLCLCTpT  and hence ApT ∉− )(1 , i.e. )(1 pT −  is not an 

interior point of A . 
Thus by prop. (2.1.1) all rank-one preimages of p  in A  belong to A∂  i.e. 

ApT ∂⊆− )(1 .♦ 
 

  We remark that propositions (2.2.3)-(2.2.4) hold for any closed area A  
and for any invariant area with a finite boundary or not, absorbing or not, mixed 
or not. 
The next proposition may be used to characterize more explicitly the boundary 
point of an invariant area S  which appeared in [15] without proof, we shall give 
a proof. 

 
Proposition (2.2.5): 
       Let S  be a closed set, SST =)(  , and Sp ∂∈  then  

(1) either a finite k  , 0≥k  exists such that k
k LCgTp ⊂∈ )( ; 

(2) or SSpT n ∂⊂∩− )( , 0  ≥∀ n . 
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Proof:  
Let Sp ∂∈  then either LCp ∈ or LCp ∉ . 
(1) If LCp ∈  then SLCp ∂∩∈  i.e. gp ∈  since g  is generating arc of S∂  

{remark (2.2.1)}, then there exists a finite integer k  such that 
k

k LCgTp ⊂∈ )(  if  LCp ∉ , the proof  follows by prop.(2.2.4).  
(2) The proof follows directly from prop.(2.2.2). ♦ 
 
The next proposition justifies the fact that g  (or equivalently 1−g ) is called 

“generated arc”. It appeared in [29, p.224] without proof, we shall give the 
proof . 

 
Proposition (2.2.6):  

Let S  be a closed area with finite boundary, SST =)(  and SLk ∂∈  a 
segment of critical curve kLC , 0≥k . Then its critical preimages 

gLLLLk ⊆=− 011   , , ,K  also belong to the boundary S∂ . 
Proof:  

We know LCSLCSTgTg ∩∂=∩∂⊆= − )()( 1  i.e. g  belongs to the boundary 
S∂ . The critical preimages 11  , , LLk K−  belong to  the boundary S∂  by 

prop.(2.1.1). 
 
Remark (2.2.2):[29, p.224]   

When we apply prop.(2.2.6) to a non mixed invariant area S  with a finite 

boundary an integer M  exists such that UU
M

i

i
M

i

i gTgTS
0

1
1

0

)()(
=

−
+

=

=⊂∂ , where )(gT i  

is a critical segment that belongs to iLC . when we applying this proposition to a 
mixed invariant area (i.e. its boundary is made up of a finite number of critical 
segments and segments of saddle unstable set) a finite integer M  exists such 

that all the critical segments on S∂  belong to UU
M

i

i
M

i

i gTgT
0

1
1

0

)()(
=

−
+

=

= , while a 

segment of S∂  belonging to some saddle unstable  set uW  has at least infinite 
sequence of its preimages on uW  belonging to the boundary of S  which 
converge toward a saddle cycle.  
 

The extra preimages of the critical segments 01  , , , LLLk K (i.e. non critical 
preimages of critical segments) on the boundary of S  cannot belong to the 
interior of S . Moreover when S  is a non-mixed area, the extra preimages 
cannot belong to the boundary of S ,  thus the extra preimages of such segment 



Chapter2:Absorbing areas & invariant areas of two dimensional noninvertible maps                                    39 

must be out of S , except at most isolated points on S∂  which may be critical 
points. The following example illustrates this situation. 

 
Example(2.2.1 ):[29, p.192] 

Consider a map, predator prey model of two species  
 ayxbxex −−=′ )1.1(  
 )1( ayexy −−=′  

with [ ] 16.115.0
−−−= beba , theoretical studies of which can be found in [24]. 

The curve 1−LC  is defined by 0=x or aye
b

x
10= , the critical curve LC  separates 

the ),( yx plane into two regions 0Z  and 2Z  and whose equations is: 
 [ ] bbxby )1.0ln(110 −−=  

when 63.2=b , a self intersection of 1LC  occurs at a point 1h . The qualitative 
figure (2.2.1) represents the above situation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.(2.2.1) L  segment of extra preimages, L  segment of critical curve, 1−L  
segment of preimages. L  are two non-connected segments belonging to 0Z  not 
belong to the boundary of S  (the two segments of 1LCS ∩∂   drawn with thicker 
lines), 000 hhaLLC ′= UUI . 
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Proposition (2.2.7):[29, p.242 ]  

Let S  be an invariant area with a finite boundary. Then S∂   is not be an 
invariant.  
Proof: 

 Let Sp ∂∈  so gq ∈∃    such that )(qTp M=  {from remark (2.2.2)} 
)()( 1 qTpT M +=  which is in S  i.e. )()( STpT ∂∉  

SST ∂≠∂∴ )( .♦ 
 

 
2.3 Construction of Absorbing Areas & of Invariant Areas 

 
We studied in the previous section some properties of absorbing areas 

and invariant areas. In this section we shall study the construction of absorbing 
areas, invariant areas from bounded areas whose boundaries are made up of 
segments of the critical curves with finite rank.  
Our goal of this section is to give an algorithms for constructions of absorbing 
areas, invariant areas for a noninvertible map of type a )( 20 ZZ − or equivalent to 
such maps. This  algorithm is described in [19, 29; p.191 & 35]. 
 

 
2.3.1 Construction Algorithm of  Absorbing Areas 

 
The structure of this algorithm depends on the use of the critical curves to 

obtain closed bounded regions (will be denoted by ∆ ) whose boundary consists 
of segments of critical curves NiLCi  ,,2 ,1 ,0  , K= ( N is finite integer), the such 
area is an absorbing . 

First we suppose that the first rank critical curve LC  and the curve 1−LC  
of merging preimages are made up of only one branch, these two curves having 
only one point of intersection say 0a .  When these two curves intersection in 
more than one point, one of the them plays the rule of 0a . 
We will adopt the following notation: 

A segment of curve will be represented by ) ( βα  where α  , β  are the two 
endpoints. The point na  represents the n th iterate of 0a  i.e. )( 0aTa n

n = . 
 

Now, we are ready to describe the algorithm of construction as: 
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Let N   be the first integer 0> , such that the segment )( 1+NN aa of NLC  ( NLC  
critical curve of rank N− ) intersects 1−LC  at a point say 0b , i.e. 

110 )( −+ ∩∈ LCaab NN  . 
Then, define a simply connected area ∆  bounded by  

 )...( 11211 baaaab NN +=∆∂  
where  
 )( 11ab  is a segment of LC , i.e. LCab ⊂)( 11  , 
 )( 21aa  is a segment of 1LC ,  i.e. 121 )( LCaa ⊂ , 
 . 
 . 
 . 
 )( 1+NN aa  is a segment of NLC  , i.e. NNN LCaa ⊂+ )( 1   
 )( 11baN +  is a segment of 1+NLC ,  i.e. 111 )( ++ ⊂ NN LCba   

 )(),( 101 −== ii aTabTb   
so, we get ∆  is an absorbing areas. 
 
Algorithm (2.3.1) may not work for certain examples, and it dose not include all 
possible cases of absorbing areas with a finite boundary ( i.e. boundary made up 
of a finite number of critical segments ) i.e. it may happen this is not absorbing 
area , that will be seen in the illustrative examples. 
 
Remark (2.3.1):  

1- If there are more than one point of intersection between the segment 
)( 1+NN aa  and 1−LC  we choose the point 0b  that is farthest from 0a  . 

2- When the above algorithm work, then we distinguish two possible cases 
for 1b : 

(i) LCaab ⊂∉ )( 101  or equivalently 1010 )( −− ⊂∉ LCaab . 
(ii) LCaab ⊂∈ )( 101  or equivalently 1010 )( −− ⊂∈ LCaab  . 
 
Let T  be a map of type a )( 20 ZZ − , recall that 1−LC  divides the plane 2ℜ  

into two open regions 21   , RR  such that φ=∩ 21  RR , 121  −=∩ LCRR , 2
21  ℜ=∪ RR . 

Let ϕ  be a fixed point of T  with 2R∈ϕ . LCLCa ∩∈ −10 . Then one of the 
following cases is possible: 

(1) None of the successive images of the segment )( 10aa  intersect 

1−LC  . 
In this case we can obtain an absorbing area as follows: 
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In this situation one of the two inverse map 1
2
−T  gives rise to a rank–m  preimage 

)( 1+−− mmaa  of )( 10aa  which intersects 1−LC  a first time at the point say 0h   
fig.(2.3.1a). 
Necessarily )()( 1000 aaha ⊃ , thus )()()( 1000 aaThahaT i

ii
i ⊃=  for 0>i ,  so ii LCh ∈  ,  

11 −− ∈ LChm  and LChm ∈  fig.(2.3.1b). Now applying construction algorithm 
(2.3.1) to obtain an absorbing area ∆  boundary by the closed curve  

221 )...( Rhaaah mmm ⊂=∆∂  where )( 1ahm  is a segment of critical curve LC , 

mmm LCha ⊂)( , iii LCaa ⊂+ )( 1 ,  1,...,2,1 −= mi . 
Figure (2.3.1) illustrate this situation. 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
Fig.(2.3.1)  Non of the successive image of the segment  )( 10aa  intersect 1−LC . 

 
 
 
 

(2) One of the images of )( 10aa  has a non transverse contact (order 
one, or order zero ) with 1−LC . 
In this case, let 110 )( −+ ∩= LCaab NN  be the non transverse contact point. An 
absorbing area ∆  is defined as in the construction algorithm and the boundary 

∆∂  is 211211 )...( Rbaaaab NN ⊂=∆∂ +  with  01 bLC =∩∆∂ − . 
(3) An image of )( 10aa  has a transverse intersection with 1−LC   . Let N    be the 
least integer such that )( 1+NN aa  intersects 1−LC  .let 110 )( −+ ∩∈ LCaab NN  be the 
intersection point farthest from 0a  .So we apply the construction algorithm to 
obtain absorbing area , the two possible situation appear in remark (2.3.1) may 
occur . 
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2.3.2 Determination of  Invariant  Areas 
 

Recall that when we apply the construction algorithm to construct an 
absorbing area ∆  the two possible situation that appear in the remark (2.3.1) 
occur : 
(i) LCaab ⊂∉ )( 101 , or equivalently 1010 )( −− ⊂∉ LCaab . 
(ii) LCaab ⊂∈ )( 101 , or equivalently 1100 )( −⊂∈ LCaab . 
 

The two situation are different because in case (i) ∆⊇∆)(T  while in case (ii) 
∆⊂∆)(T , or )(∆T  is not comparable with ∆ . i.e. )(∆T  is neither include in ∆   

nor includes ∆  . In both cases (i) and (ii) ,∆  may be absorbing ,or not. 
 
In fact, in the case (i) ∆∂  Intersects  LC   in two points 0b  and 0a ,  
i.e. ∆∩= −100 )( LCab  and  )()( 0100 aaab −⊃ . Then under application of T  the whole 
boundary  ∆∂  is construct again  and new parts may only come from 

101 )()( δδ ==∩∆ TRT , thus if  ∆⊂∩∆ )( 1RT  then the area ∆  is invariant , 
∆=∆)(T  as in fig.(2.3.2a), while if )( 1RT ∩∆  is not include in ∆ , ∆⊃∆)(T  

fig.(2.3.2b), in this case )()(1 ∆⊇∆+ mm TT ,  0  ≥∀ m . Thus, either a finite integer 
M  exists such that )()(1 ∆=∆+ MM TT ,  so we get )(∆=′′ MTd  is invariant areas, or 
a  finite M  does not exist , in which case we define  
 
                     )(1 ∆=′ ∞

=∞
j

j TUd                                             (2.3.1)                          

 
the area  ∞′d  may be bounded or not. when it is bounded, it may be absorbing or 
not, and generally this situation denote a bifurcation resulting from the contact 
of the area boundary with its basin boundary [17, 20 &21]. 
 
In case (ii) ∆∂  intersects 1−LC  in two points 0b and 0c , where )( 000 abc ∈   i.e. 

)()( 0000 abcb ⊂  so that the boundary of ∆  include the segment )( 11ab , while 
)()()( 1111 abcbLCT ⊂=∩∆ ,  from which it appears  that ∆⊇∆)(T  is not possible . 

It follows that either ∆⊂∆)(T  fig.(2.3.2c) or )(∆T  is not comparable with ∆  
fig.(2.3.2d). 
When ∆⊂∆)(T  then )()(1 ∆⊆∆+ mm TT , 0≥m , so that either a finite integer M  
exists such that )(∆=′′ MTd  is invariant or a finite M  does not exists, in which 
case we define  
                  )(1 ∆=′ ∞

=∞
j

j Td I                                                              (2.3.2) 
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Since each area )(∆kT  , 0≥k  is absorbing , then  ∞′d  is bounded and absorbing.                                                    

Case (ii) is more complex when )(∆T  is not comparable with ∆  . In the simplest 
case a finite M  exists such that )(∆=′′ MTd  is invariant . However it may occur 
that a finite M  does not exist,  this situation is more complex, it is possible to 
define  
    )(1 ∆= ∞

=∞
j

j TUA                                (2.3.3) 
this area may be bounded or not. If it is bounded, it may be invariant or not . 
When it is not invariant , if there exist k  such that  )()(1 ∞∞= = ATAT kjk

jI , then 

this intersection is an invariant area. If there is no such k  then )(1 ∞
∞

= AT j
jI  is an 

invariant.  
 
 
 
 
 
 
 
 
 
 
 
 

(a) 
 
 
 

 
 
 
 
 
 
 
 
 
 

(b) 
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(c) 
 
 
 
 
 
 
 
 
 
 
 
 

(d) 
 
Fig(2.3.2) An absorbing area constructed by algorithm (2.3.1) (a): )( 101 aab ∉ , 

∆=∆)(T , (b) )( 101 aab ∉ , ∆⊃∆)(T , (c) )( 101 aab ∈ , ∆⊂∆)(T , (d) )( 101 aab ∈ , )(∆T  is 
not comparable with ∆ . 
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2.4 Bifurcation 
The term bifurcation generally refers to something “ splitting a point “ 

with general a system involving a parameter, it refers to change in the character 
of the solution as the parameter is changed continuously . 
At the beginning of this section we shall give the definition of bifurcation 
followed by some types of bifurcation that be interest in our work , illustrative 
example will be given in chapter three . 
 
Definition (2.4.1):[ 23 ] 
Consider the system kn

nn xxfx ℜ∈ℜ∈=+ λλ ,);(1                  (2.4.1) 
 one is especially concerned how the phase portrait of (2.4.1) changes as λ  
varies. A value 0λ  where there is a basic structural change in this phase portrait 
is called a bifurcation point. 
 
2.4.1 Some Types of Bifurcation  
 
1-contad bifurcations: [17, 20& 25]  

This basic bifurcation results from the contact of a basin boundary with a 
critical curve segment not belonging to a chaotic area boundary, also it occurs 
when a critical curve belonging to a chaotic area boundary. Such a bifurcation 
leads either to the chaotic area destruction, or to sudden  and important 
modification of this area. Even if S  is an absorbing area, the contact bifurcation  
may occur. 
 
2- Bifurcation of non smoothness points on boundaries of invariant 
areas:[29, p.231 ] 
Consider a smooth mapT , area called ∆  constructed by the algorithm (2.3.1), 
and there is an integer m  such that )(∆= mTS  is an invariant area with 

φ≠∩ −1LCS , being finite i.e. S∂  made up of a finite number of critical 
segments. Let gSp \∂∈  the non smoothness of S∂  may correspond to one of the 
following cases: 
 
Case 1: Before and after the bifurcation the contact  between S∂  and )( ST ∂  on 
LC  at an  endpoint of the generating segment g  is smooth. At the bifurcation  
the contact on LC  in not smooth, due to cusp point of 1LC . 
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Case 2: A point of non smoothness of the S  boundary may also born when a 
self intersection of a critical arc KL occur, at KLp ∈  , a point p  is called a 
double point of KL . 
Case 3: A point of non smoothness of the S  boundary may also created at p  
when two critical segments of different ranks are intersect i.e. 

jkLCLCp jk ≠∩∈   , , p  is called an angular point . 

 
When the boundary of  S  is smooth at p ,  p  is said to be an ordinary point of  

S∂ . 
 
Also, there is other types of bifurcations when the nature (stability) of a fixed 
point changes as some controls  parameter change. The following definitions 
show these types. 
  
Definition (2.4.2):[29, p.63 ] 
Let T  be a noninvertible map depending on a parameter λ . A SBR bifurcation 
value of a fixed point is a value ∗λ  of the parameter λ , such that ∗< λλ  for 
(respectively ∗> λλ  ) the fixed point is expanding but not SBR; for ∗> λλ   
(respectively ∗< λλ  ) the fixed point is a SBR. 
 
Definition(2.4.3):[ 14 ] 
A homoclinic bifurcation ( or homoclinic explosion ) of a fixed point ∗p  occur 
for a parameter value ∗= λλ , if crossing the value ∗λ  infinitely many homoclinic 
points of  ∗p  appear ( or disappear ). 
 
 
2.5 Multiply Connected (non mixed ) Invariant Absorbing Areas . 
Bifurcation of Annular Absorbing Area. 
  
This section is concerned with the characterization of multiply connected 
invariant areas with holes surrounding a repulsive node or focus. 
Let T  be a )( 20 zz −  map and d ′′  be a connected non mixed invariant absorbing 
area with finite boundary such that φ≠∩′′ −1LCd . Let ϕ  be an expanding fixed 
point of T . 2R∈ϕ ,  so ϕϕ =− )(1

2T  and 1
1

1 )( RT ∈= −
− ϕϕ  

Define  

10 Rd ∩′′=δ  and  N

N

n

n
a Td δδδδ ∪∪∪==′

=

....)( 210
1
U           (2.5.1) 
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where N  is the least integer such that )()( 0
1

0

1

1

δδ UU
N

n

n
N

n

n TT
=

+

=

⊆  or equivalently 

U
N

n
nN

1
1

=
+ ⊂ δδ where )( 0δδ n

n T=  such a finite N  exists because d ′′  is assumed to 

have a finite boundary . 
So, there are three cases that may be distinguished : 
(i) aa ddT ′⊂′ )(  
(ii) dddT aa ′′⊂′=′ )(  
(iii) dddT aa ′′=′=′ )(  
When case (i) or (ii) occur , then the set defined by addW ′′′= \  
  is nonempty. W  is called the hole surrounding the repulsive fixed point ϕ  and 

adWd ′∪=′′ [9 & 29, p.277]. 
The external boundary aed ′∂  of ad ′  is defined as the boundary of d ′′ ,  

dd ae ′′∂=′∂ and he internal boundary aid ′∂  of  WdddW aeaai ∂=′∂′∂=′∂   \: . 
From the definition of ad ′  ,one has: 
                    add ′∉⇔∉⇔′′∉ −−− 1011 ϕδϕϕ . 
Here, we will characterize the bifurcation  which leads to the transition between 
situation (i) and (ii) (given by props.(2.5.1)) and the transition between the 
situation (ii) and (iii) (given by props.(2.5.2)). But  before we give these 
propositions we need the following definition: 
 
Definition(2.5.1):[1, 10 &36] 
An annular absorbing area is an absorbing area of annular shape, that is a 
simply area deprived of the point of a hole in it is interior. 
 
Proposition (2.5.1):[29, p.281] 
Consider ad ′  defined as is (2.5.1) and addW ′′′= \  . 

aa ddT ′⊂′ )(  iff  φ≠∩ −1LCW  . 
Proof:- 
If φ≠∩ −1LCW  , then  1RW ∩   belongs to 0δ  but not to 1Rda ∩′  . 
It follows that  the generating segment of d ′′ , 1−∩′′ LCd , is wider than 1−∩′ LCda  

which implies )()( 11 −− ∩′⊃∩′′ LCdTLCdT a , 
 i.e. LCdTLCd a ∩′⊃∩′′ )(][ .  

Observing that by the construction LCdLCLCd a ∩′=∩=∩′′ 1δ , therefore  
LCdTLCd aa ∩′⊃∩′ )()(  , which means aa ddT ′⊂′ )(  . 
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Let aa ddT ′⊂′ )(  , assume that φ=∩ −1LCW  , then 11 −− ∩′=∩′ LCdLCd a  

i.e. the generating segment of d ′′  belongs to ad ′  . Then the external  boundary of 

ad ′  cannot be reduced, so that aa ddT ′=′ )(  which is contradicts  the assumption . 
So φ≠∩ −1LCW  . ♦ 
 
Recall: 1

1
1 )( ℜ∈= −

− ϕϕ T  .The transition from situation (i) ( annular invariant area 

ad ′  ) to (ii) ( simply  connected area d ′′  ) is characterized by the following 
proposition. 
 
Proposition (2.5.2):[29, p.285] 
A hole W  containing ϕ exists d ′′∉⇔ −1ϕ . Or equivalently a hole W  containing 
ϕ  does not exist d ′′∈⇔ −1ϕ  . 
Proof: 
 Let d ′′∈−1ϕ , then 01 δϕ ∈−  and iδϕ ∈  for Ni ,....,2,1=  , which means no hole 

surrounding ϕ  can exist; φ=W and dd a ′′=′∈ϕ  . C! 
 Let W  does not exist, then ϕ  must belong to some region iδ  for 0≥i  and this 
can occur only if 01 δϕ ∈−  i.e d ′′∈−1ϕ .♦ 
 
When W  exist, its points satisfy the following property stating that both the rank 
–one preimages of W  are out of ad ′  .  
 
Proposition(2.5.3):[29, p.286] 
Let φ≠W  be a hole. Then  
(i) φ=′∩−

adWT )(1 ; 
(ii) WWT ∩ℜ⊂−

2
1

2 )( ; 
(iii) φ=∩− WWT )(1

2  . 
 
Proof: 
 (i) Let  Wp ∈  then  
                            .)(  ,)(  ),()()( 2

1
21

1
1

1
2

1
1

1 RpTRpTpTpTpT ∈∈∪= −−−−−  . 
If  adpT ′∈− )(1

1   then  .)( aa ddTp ′⊂′∈  
Also if   adpT ′∈− )(1

2   then .)( aa ddTp ′⊂′∈  . 
i.e. adp ′∈   which is contradicts the assumption  
None of the preimages of p belong to ad ′ . Thus (i) is proved. 
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(ii) Let Wp ∈  and considering )(1
2 pT − .  

Suppose WRpT ∩∉−
2

1
2 )(  , so )(1

2 WT −  must contain ϕ . Let η  be a continuous 
path contained in  W , connecting  ϕ  to p  i.e. φη =′∩ ad  .    
Then )(1

2 η−T  is a continuous path, connecting )(1
2 ϕ−T  and )(1

2 pT − , since 
WT ∈=− ϕϕ)(1

2  and 2
1

2 )( RpT ∈−  out of ad ′  (thus out of d ′′  ), therefore )(1
2 η−T  must 

intersect ad ′ , i.e. η  must intersect ad ′  which is contradicts the assumption . Thus 
(ii) is proved. 
(iii) is proved similarly as (ii).  

)(1
1 WT −  must contain 1−ϕ ( external to d ′′  ) , which implies that )(1

1 WT −  cannot 
belong to 1RW ∩ , and thus must be in 1R  out of d ′′ . ♦ 
 
Remark(2.5.1): 

1- From properties (i) and (ii) in propos.(2.5.3) we can conclude that 
φ=′′∩− dwT )(1

1 .  
2- The global unstable set of ϕ  can be defined by  

U
0

)()(
≥

=
n

nu UTW ϕ  

     And the global  stable set of ϕ  is U
0

)()(
≥

−=
n

ns TW ϕϕ       

where U  is a neighborhood of ϕ  . 
 

The following propositions gives some properties of W . 
   
Proposition(2.5.4):[17 &19] 
        I

0

1
2 )()(

≥

−=⇔⊂
n

u WTWW ϕϕ  

Proof:- 
If )(ϕuWW ⊂ , then any point p  of W  must have at least a sequence of 
preimages tending toward ϕ  . 
From propos.(2.5.3) only the successive  application of 1

2
−T  give this property. 

The converse is obvious. ♦ 
 
Proposition(2.5.5):[17 & 19] 
Let )(ϕuWW ⊂ . Then no cycle, except ϕ  , can belong to W  . 
Proof:- 
 The proof is immediate consequence of propos.(2.5.4). ♦ 
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Proposition(2.5.6):[17 & 19] 
Let φ≠W  . Then no homoclinc orbit of ϕ  can exist. 
 
Proof:-  
The unstable set of ϕ  , U

0

)()(
≥

=
n

nu UTW ϕ  necessarily  belongs to d ′′ . 

The stable set of ϕ  consists of 1−ϕ , external to d ′′  ( by props.(2.5.2)), and all the 
preimages of 1−ϕ , also external to d ′′  ( by invariance of d ′′  ). 
Then when W  exists, dW u ′′⊆)(ϕ  while φϕϕ =′′∩ dW s ]\)([  so that 

φϕϕϕ =∩ \)]()([ su WW . ♦ 
 
The following proposition appeared in [29, p.288] without proof, we shall give 
the proof. 
 
Proposition(2.5.7): 
Let )(ϕuWd =′′  . Then the bifurcation d∂∈−1ϕ  which causes the disappearance 
of a hole W surrounding ϕ  , is the SBR bifurcation of ϕ . 
 
 Proof:- 
The boundary of d ′′  is made up of a finite number of critical  segments 
belonging to the image of generating segments dLCg ′′∂∩= −− 11 . At the 
bifurcation d ′′∂∈−1ϕ  implies 1−ϕ  is a critical point. Thus 1−ϕ  has a finite rank 
preimage (say q ) belonging to 1−g , i.e. 1)( −= ϕqT i  for integer i  , ϕ=+ )(1 qT i . At 
least one infinite sequence of preimages of q  exist in d ′′   
( since d ′′  is invariant )and if a sequence of preimages of q  exist , tending 
toward ϕ , then a homoclinic orbit exist, i.e. )()(1 ϕϕϕ su WW ∩∈−  . ♦ 
 
We will introduce the notion of area of branching points to distinguish the 
sequence of preimages in d ′′  related to a given point of d ′′  in the following 
definition. 
 
Definition(2.5.2):[29, p.288] 
Let S  be an invariant area generated by a )( 20 zz −  map. The area of branching  
point δ  is the subset of S  made up of points having both the rank- one 
preimages distinct in S  , that is  
 )()( 1

2
1

1 qTqTSq −− ≠⇔∈  both belongs to S  . 
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 Remark(2.5.1): 
  From definition (2.5.2) we see that : 

1- )]([)]([ 21 RSTRST ∩∩∩=δ  and 1δδ ∈  , where ),( 01 δδ T=  with 10 RS ∩=δ  

defined as in (2.5.1). 
 
2-   If δ\, dqdS ′′∈′′=  ,then only )(1

1 qT −  or )(1
2 qT −  belongs to d ′′ . In particular 

if δδ \1∈q  , then only dqT ′′∈− )(1
1 otherwise dqT ′′∈− )(1

2 .            
3- SRST ∩⊂−

2
1

2 )(              (2.5.2) 
 

Proposition(2.5.8):[ 29, p.289] 
).()( 112

1
2 RSTSRST ∩==⇔∩⊂− δδ  

 
Proof:- 
Assume that SRST ∩⊂−

2
1

2 )(  , then any point of 1δ  (which are the only points of 
S  having 1

1
−T  in S  ) also has 1

2
−T  in S  , thus 1δδ =  . 

Assume that 1δδ =  . The invariant area S  is such that )....( 1 NW δδδ ∪∪∪= , 
where W  may be empty or not. It was already proved that , if W  is not empty, 
then  WRWT ∪⊂−

2
1

2 )( . By assumption ST ⊂− )( 1
1

2 δ  and thus  21
1

2 )( RST ∩⊂− δ  . 
Consider  NiT i ,...,2,1),(1

2 =− δ . Writing , )()( 1121 RTRT iii ∩∪∩= −− δδδ . 
Thus, 
 ))((    )()( 1

1
221

1
2 RTTRT iii ∩∪∩= −

−
− δδδ , 

if )()( 221 RSRi ∩⊂∩−δ  not empty and if 111 )( δδ ⊂∩− RT i  not empty, so that 
SRRTT i ∩⊂∩−

−
211

1
2 ))(( δ . Thus )()( 2

1
2 SRT i ∩⊂− δ . ♦ 

 
The following proposition shows that such a bifurcation is the SBR bifurcation  
of ϕ  with less effort required.  
 
Proposition(2.5.9):[29, P.290 ] 
Let d ′′  be invariant absorbing area  
                  ϕ→−

− )( 1
1

2 gT  as ∞→n                      (2.5.3) 
Then the bifurcation d ′′∂∈−1ϕ  is the SBR homoclinic bifurcation of ϕ  . 
 
Proof:- 
Since, d ′′∂∈−1ϕ  therefore a finite rank preimage of ϕ  belongs to dLCg ′′∩= −− 11 , 

1)( −= ϕqT k , for integer 0>k and by assumption 1−ϕ  has a sequence of preimages 
in d ′′  which converge toward ϕ . Thus 1−ϕ  which belongs to the unstable set of 
ϕ , also belongs to the unstable set of ϕ  . ♦ 
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The property (2.5.3) is not sufficient to conclude that )(ϕuWd =′′  . The 

following proposition gives sufficient conditions for )(ϕuWd =′′ . 
 
Proposition(2.5.10): [29,p.291 ] 
Let d ′′  be an invariant area which satisfies(2.5.2). Then  
             (2.5.3) holds )(

0
2 dT

n

n ′′=⇔
≥

−
Iϕ . 

 
Proof:- 
If  ),(

0
2 dT

n

n ′′=
≥

−
Iϕ  then  ϕ→−

− )( 12 gT n   is obvious . We prove now the converse. 

Denote 2ℜ∩′′= dB . By assumption (2.5.2) holds, thus BdT ⊂′′− )(1
2 . T  is 

uniquely invertible in  B   by 1
2
−T  and has  BdT ⊂′′− )(1

2  
               and )()( 1

2
1

2 BTBT ∂=∂ −−  . 
By successive iterations of 12

−T  a sequence of embedded areas are obtained , 
                 0  , )()( 2

)1(
2 ≥∀⊂ −+− nBTBT nn  the boundaries of which satisfy   

))(()( 2
1

2
)1(

2 BTTBT nn −−+− ∂=∂   . 
The critical segments of the boundary of B  having necessarily a finite rank 
preimage by 1

2
−T  on 1−g  embedded areas with boundaries made up of points 

belonging  to some )( 12 −gT K  are got , and such points converge toward ϕ  under 
1

2
−T   by assumption , thus  I 0 2 )(

≥
−=

n

n BTϕ  . ♦ 

 
 
 



Chapter 3:Illustartive examples           54 

 

Chapter three 

“Illustrative Examples” 

 
As we observed in the introduction, much of the work in the field of 

dynamics of planar maps, is done on particular examples, and then observing 
certain phenomena. For example see [١٠, 16, 18 & 20].  
In this chapter, several examples will be considered to illustrate the concepts 
defined in the first two chapters, and some observation will be made on the 
dynamics of the maps, particularly on the absorbing areas. 

Recall that algorithm (2.3.1) does not guarantee that a closed area 
∆ will be constructed is absorbing therefore we shall verify that a closed area  
∆  is an absorbing area by satisfying the conditions of the definition of 
absorbing area numerically and if we succeed in doing that, we shall try to 
apply what has previously been mentioned in the preceding chapters, (i.e. 
chaotic area, invariant area, bifurcation types). 

It is worth nothing that results presented here were essentially obtained 
via a numerical method, but guided by fundamental considerations stated in 
chapter two and using the critical curve tool. 

In all examples we shall use Matlab version 6.1 Software for 
numerical computations and for plotting figures. 

 
3.1 Examples of Absorbing Areas  
 

In this section we shall give some examples that illustrate some 
phenomena on absorbing areas. 

 
Example (3.1.1): Consider the map T   defined by  
              

2

2

              

:

              

xy

T

xbyax

=′

−−=′
                   , with 0≠b                                (3.1.1) 

 
       It is easily seen that T  is not invertible. T  has two fixed points ),( yx  
where ybax )1( +−= , 2)1(2)1)1(41)1(2( +++±++= bbabay .Since T  is real 
map, it must have real fixed points. Thus x  and y  are real  if   )1(41 +−≥ ba  
and 1−≠b . 
The curve 1−LC  is given by 0=x , the equation of the critical curve LC  is 
given by 0=y  . Recall that LC  divides the plane into two regions: 0Z  
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satisfies 0<y  where each point has no preimages and 2Z  with 0>y  where 
each point has two first rank preimages. 1−LC  divides the plane into two 
regions 1R , 2R . 1R  is the region 0<x ,  2R with 0>x . 
  

Now we shall take some values of the parameters a  and b  to study the 
dynamical behavior of the map (3.1.1). 

 
For  1=a , 1=b  , the fixed points of  T  are : 
 )1,1(1 −=p  with eigenvalues 73051.21 =λ  and 73051.02 −=λ , therefore 1p  is a 
repulsive fixed point. 

)
4

1
,

2

1
(2 =p  with eigenvalues 

2

31
2,1

i±−=λ , since the eigenvalues have 

negative real parts then 2p  is stable fixed point . Notice that 11 Rp ∈   and 

22 Rp ∈ . 
Now, we shall apply algorithm (2.3.1) with )0,0(0 =a . We look for 

integer N  such that NLC  intersects 1−LC  ,  so we shall find that 

110 −∩∈ LCLCb  i.e. 1=N , )1,0(0 =b  and LCLCb ∩∈= 21 )0,0( . We construct the 
closed area ∆  whose boundary )( 1211 baab=∆∂ . Before we represent ∆  in a 
figure let us compute the equations of 1LC  and 2LC .  
The equation of LC  is 0=y , by substituting this in map (3.1.1) we get :  
   
           yax −=    which the equation is of 1LC . 
 
Now, to compute the equation of  2LC  , substitute equation of 1LC  in map 
(3.1.1) we get : 
                        yybabax −±−=    

 
which is the equation of 2LC . So in fig.(3.1.1) the closed area ∆  is 

shown. This area d ′=∆  is an absorbing area since it satisfies the conditions 
of the definition of an absorbing area ( non mixed ). In fact, by construction  

∆∂  consists of  critical curves of finite rank, numerical computations shows 
that the successive iterates of any points which either belong to ∆   or to 

∆∆ \)(U , enter ∆  after a finite number of iteration and can not get away after 
entering. Also we notice that if we take any point in ∆ , the successive 
iterates of this point will bifurcate into three subsequences, each of them 
converges to vertex of the region ∆  (represented in a fig.(3.1.1) by a thicker 
line , with point )5.0,5.0(=p ). 
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We notice that from fig.(3.1.1) )( 101 aab ∈ . Moreover, 01 ab =  in this 

case  either ∆⊆∆)(T  or ∆  is not comparable with )(∆T . We have seen that 
∆∂  intersects 1−LC  in two points 0b  and 2a i.e. { }201  , abLC =∩∆∂ − , so that ∆∂  

includes the segment )( 11ab  and ∆⊂∆)(T , therefore )()(1 ∆⊆∆+ mm TT , 0  ≥∀ m  
and we have fuond 4  =M  which satisfies )()( 1 ∆=∆ +MM TT . So )(∆=′′ MTd  is 
the invariant absorbing area as shown in fig.(3.1.2).  
Also, we note T  has −3 cycle { }211  , , aab . d ′  is a chaotic area in the sense of 
Gulick since T  is sensitive to initial condition on  d ′ . 
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-1
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0

0.5

1

1.5
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LC-1 

LC 

LC1 
LC2 

ao 

bo 

a1 

d'

P1 

. 

 
 
Fig.(3.1.1) d ′ absorbing area of the map (3.1.1) with 1=a , 1=b . 

Fixed points: )1,1(1 −=p , )
4

1
,

2

1
(2 =p , )0,0(10 == ba , )0,1(1 =a & )1,0(02 == ba  
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thicker line is the orbit of the point )5.0,5.0(=p  which lies on the boundary. 
 
 
 
 
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2
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0.7

0.8

0.9

1

d" 

 
 
Fig.(3.1.2) )(∆=′′ MTd  invariant absorbing areas of the map(3.1.1) with 1=a , 

1=b . 
 
 

 
 
Now, we shall take other values of the parameters a  and b , to see the 

dynamics of the map (3.1.1), we shall take 1=a , 2=b . 
)589197293.0,767591879.0(1 −=p  and )188580484.0,434258445.0(1 =p  are two 

fixed points of T . Numerical computations show that 1p , is an expanding 
fixed point while 2p  is a stable fixed point. Again  applying algorithm (2.3.1) 
produces a closed area as shown in fig.(3.1.3) and a numerical  simulation 
shows that this area is absorbing d ′=∆ . 

 In such a case the situation )( 101 aab ∉  occurs, then we note that  
∆∩1R  is the region whose boundary is 1201 baab   and ∆⊂∆∩ )( 1RT  then  

dT ′′=∆=∆)(  is invariant. 
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T  has −2 cycle { }qp   , where )1,0(=p , )0,1(−=q . 
 
 
 

-4 -3 -2 -1 0 1 2
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0

0.5

1

1.5
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LC1 
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LC 
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d' 

R1 R2 

Z2 

Zo 

 
 
Fig.(3.1.3) The  absorbing area d ′ for the map (3.1.1) with 1=a , 2=b , 

)0,0(0 =a , )0,1(1 =a , )1,0(02 == ba  & )0,1(1 =b  . 
 
 
 

Again we shall take another value of a  and b , for example 1−=a , 
10−=b , we have noticed  that the shape of a closed region constructed by 

algorithm(2.3.1) is not changed, but φ=∩∆ 2R  shown in fig.(3.1.4).  
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Fig.(3.1.4) Map (3.1.1) with 1−=a , 10−=b .  
 
 
 

Apply algorithm (2.3.1) again for the map(3.1.1) with 1=a , 5.0−=b , 
we get a closed bounded area  whose boundary )( 1211 baab=∆∂  as is shown in 
fig.(3.1.5). T  has two fixed points  )535898384.0 ,732050807.0(1 =p  and 

)464101615.7 ,732050808.2(1 −=p , both 1p  and  2p  do not belong to ∆ . It can 
easily be shown that 1p  is an unstable fixed point, 2p  is an expanding fixed 
point. Numerical computations show that this area is not absorbing. 
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Fig.(3.1.5) d ′ closed bounded area which is not absorbing area for the map 
(3.1.1) with  1=a , 5.0−=b , )0,0(0 =a , )0,1(1 =a , )1,0(02 == ba  & )0,5.1(1 =b  . 
 
 
 
Example (3.1.2): Consider the map T  defined by  

    
1                

:

              2

+=′

+=′

axy

T

xyx

    , with 0≠a       (3.1.2)           

T  is continuously differentiable and noninvertible map whose inverses are  

                    

a

y
xy

T

a

y
x

1
             

:

1
              

1

−′
−′±=

−′
=

−  

T  has a fixed point  )0 ,
1

(
a

− . The curve 1−LC  is given by 0=y  which divides 

the plane 2ℜ  into two regions 1R  with 0<y , 2R  with 0>y , the equation  of 
the critical curve LC  is 1+= axy . LC  separates the plane 2ℜ  into two 
regions: 0Z  with 1+< axy , 2Z  with  1+> axy . The point of intersection of 

1−LC  and LC  is )0 ,
1

(0 a
a

−= . 
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When algorithm (2.3.1) is applied, we shall  get a point  )0 ,
1

(0 a
a −=  

i.e. an absorbing area is just the point  )0 ,
1

(0 a
a −=  as is shown in 

figure(3.1.6). 
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LC-1 
ao=(-1,0) 

 
Fig.(3.1.6) the map (3.1.2) with 1=a , )0 ,1(0 −=a . 
 
 
 
 
 
From figure(3.1.6) we note that there are two closed regions: one is bounded 
by segments of critical curves LC and 1LC , the other is bounded by segments 
of critical curves LC , 1LC  and 2LC . Numerical computations show that both 
regions are not absorbing. 
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Example(3.1.3): Consider a noninvertible map T  defined by 

  
xy

T

xbyax

=′

−−=′

            

:

            22

  , with 0≠b         (3.1.3)                 

T  has inverses given by  

                        

b

xya
y

T

yx

′−′−±=

′=
−

             

:

              
1                              

T  has two fixed points ),( xx  where 
)1(

)1(411

+
++±−

=
ba

ba
x , if  1

4

1 −−≥
a

b , 0≠a  

and  1−≠b . 
The curve 1−LC  is given by 0=y  and the equation of the critical curve LC  is 

2yax −= , so the point of intersection of 1−LC  and LC  is  )0 ,(0 aa = . Recall 
that LC  divides the plane 2ℜ  into two regions: 0Z  satisfying 2yax −>  where 
each point has no preimages, and 2Z  with  2yax −<  where each point has 
two first rank preimages. 1−LC  divides the plane into two regions 1R , 2R . 1R  is 
the region 0<y , 2R  with 0>y . 
 

For 1=a , 4.1=b  numerical computation shows that T  has two fixed 
points : )469951.0 ,469951.0(1 =p  and )886618.0 ,886618.0(2 −=p . )( 1pJ  has 
eigenvalues i 0464.146995.02,1 ±−=λ , thus 1p  is an attracting fixed point, while 

)( 2pJ  has eigenvalues 695.21 =λ , 9213.01 =λ , thus 2p  is a saddle fixed point. 
Now, we shall try to find an absorbing area by applying algorithm 

(2.3.1) with )0 ,1(0 =a , again we shall look for integer N  such that NLC  
intersects 1−LC  ,  so we find 1=N , 110 )1 ,4.0( −∩∈−= LCLCb  and 

LCLCbTb ∩∈== 201 )4.0- ,84.0()( , we construct a closed area ∆  whose 
boundary )( 1211 baab=∆∂ . To represent this area graphically let us compute the 
equations of  1LC  and 2LC  . 
The equation is of  1LC : 2ybyabax −+−= . 

The equation of  2LC  : 
42

2
222

3 b
yababybyabab

b
ax +−−±−++−−= . 

For the particular case ( 1=a , 4.1=b ), the equation of 1LC , 2LC  respectively : 
                       24.14.0 yyx −+−=  
                      yyyx −±−+= 09.096.14.1188.0 2  

 Next, fig.(3.1.7) represents the closed ∆ , this area is absorbing since  
it satisfies the conditions of absorbing as is suggested by numerical 
computations of iterates of any points which either belongs to ∆   or to 

∆∆ \)(U . 
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Fig(3.1.7) Map (3.1.3) with  4.1,1 == ba , the absorbing area  ∆=′d . 

 
 
 
We need to find an integer M    such that  )(∆MT  is invariant , from 

fig. (3.1.7) we notice that )( 101 aab ∉  i.e ),( 010 aab −∉  , therefore ∆∂  intersect 

1−LC  at two points 00 ,ac , )0 ,776.0(0 =c . We notice that ∆∩= 10 Rδ ,   
 ∆⊆)( 0δT  , therefore ∆=∆)(T  i.e 0  =M  . & dd ′′=′=∆  is the invariant 
absorbing area .  
Also numerical computations show that there is a cycle of period  6−  inside  
region d ′ , also we notice that it has an attractor, and any point inside d ′   has 
an orbit lies on the triangles, for example if we take the iterates of a point 

∆∈= )3,.2(.p , we see that the orbits of { }∞
=1n

np  lie on the triangles , when we 
apply the conditions of chaos , we find in this region  T  is sensitive to initial 
conditions, therefore ∆  is a chaotic area in the sense of Gulick  
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Fig(3.1.8) map(3.1.3) with 4.1  ,2 == ba . 
 
 
Now , we shall take the other values of the parameters ba &  , to see the 
dynamics of the map (3.1.3).   For 4.1,2 == ba  , a closed area constructed by 
algorithm (2.3.1) is shown by fig (3.1.8) whose boundary )( 1121 abaa=∆∂  . 
The two fixed points )145.1,145.1(  , )728.0,728.0( 21 −−== pp  are stable, saddle 
fixed points respectively, with  1=N , )0,2(0 =a , )0,8.0(0 −=b , )8.0,36.1(1 −=b   

)2,2(1 −=a ,  & )2,6.7(2 −−=a . 
 
Example (3.1.4): Consider the map T  defined by  

2             

:

             

xby

T

yaxx

+=′

+=′
                                       (3.1.4) 

T  has two fixed points ),( yx  where 2)4)1(1( 2 baax −−±−=  and 

xay )1( −= , if    12 +≥ ba   and 0≥b . 

1−LC  is  defined by 0=x  and LC  by  by = . 
T   is a noninvertible map whose inverses are  

        

byaxy

T

byx

−′′=

−′±=
−

m             

:

             
1      
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For 7.0=a  and 82.0−=b  , T has two fixed points : )32036.0,06788.1(1 =p  & 
)32036.0,76788.0(2 −−=p   

)( 1pJ  has eigenvalues 8775.11 =λ , 152749.12 −=λ  therefore 1p  is an 
expanding fixed point  while 2p  is an unstable fixed point since )( 2pJ  has 

eigenvalues 
2

3776.27.0
2,1

i±=λ .  

Moreover, 1p  is not a SBR since there is no q  such that 1)( pqT k =  , for some 
integer k . 

2

4)1(1 2 baa
x

−−±−
=  

 
Fig (3.1.9) represents the invariant absorbing area constructed by algorithm 
(2.3.1) )(4 ∆=′′ Td , this region includes an annular chaotic area aa dd ′′⊂  
according to (2.5.1). The area d ′′  satisfies the properties (2.5.2) and (2.5.3) , 

The unstable set )( 1pW u  of 1p  is such that WdpW a
u ∪=)( 1 . 
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 Fig.(3.1.9) Map (3.1.4) with 7.0=a , 82.0−=b  invariant area obtained 
by algorithm (2.3.1) includes  annular chaotic area aa dd ′′⊂ . 
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3.2 Examples of Symmetric Maps 
 
 In this section we shall give examples that show the relation between 

the dynamics of a two-dimensional map and a certain associated one-
dimensional map. 

  
Example (3.2.1):- Consider a map T  defined by  

            
2

2

              

:

              

ybxay

T

xbyax

−−=′

−−=′
                            (3.2.1) 

First we shall establish symmetric properties in the dynamics of T  and 
identify its fixed points. The eigenvalues of the Jacobian matrix of T , )(TJ  
evaluated at these points, are determined via classical analysis. Also, the 
critical curve 1−LC  will be evaluated. 
 
Symmetry 
Let 22: ℜ→ℜρ  be defined by  
       ),(),( xyyx =ρ  
  ρ  is the reflection through the diagonal { } 2),( ℜ⊂= xxD  
  T  is symmetric, i.e. TT oo ρρ =  in fact,  
let 2) ,( xbyayxf ab −−= . Then 

       

),(),(                  

)),( ),,((                  

)),( ),,((                  

)),((),(

yxTxyT

yxfxyf

xyfyxf

yxTyxT

abab

abab

ρ

ρ
ρρ

o

o

==
=
=
=

   

Thus,  T  commutes with ρ . Also, T  we have some properties such as:  
(i) The diagonal D  is invariant,  i.e. DDT =)( . 
(ii) If p  is a fixed point of  T , so is )(pρ . 
(iii) If { }  , Nipi ∈ is an orbit of T , so is  { }  ),( Nipi ∈ρ . 
If we restrict the map to the one invariant diagonal D , we have on 
dimensional map, say    
   2)( xbxaxg ab −−=  
For its graph, note that xbxg ab 2)( −−=′  and 02)( <−=′′ xg ab . Thus the local 

maximum ( called a critical point of rank 0−  of abg ) exists at 
21

b
c

−=−  , and 

the critical point of abg  of rank 1−  is the point )( 1−= cgc ab , and the critical 
points of abg of  rank )1( +− i  for 1≥i  are the forward images ( or iterates ) 

)()( 1
1 cgcgc i

ab
i
abi == −
+ . 



Chapter 3:Illustartive examples           67 

The fixed points of )(xg ab  i.e. solutions of the equation 2xbxax −−= are 

2

4)1()1( 2

1

abb
p

++++−
= and 

2

4)1()1( 2

2

abb
p

++−+−
=  with 0<a  and 

14 −−> ab . 

About the  multipliers, note that 14)1(1)( 2
1 <++−=′ abpg ab  , if  1<a  and 

112 −−< ab , but we have 0<a  i.e. 1p  is an attracting  fixed point if 
112 −−< ab , and 1p  is a repelling fixed point if 112 −−> ab ,  therefore 
112 −−= ab  is a bifurcation point. 

Since 14)1(1)( 2
2 >+++=′ abpg ab , then 2p  is a repelling fixed point. 

 
Fixed point of  T  
T  possesses four fixed points. From discussion of abg  above it follows that   

),( 111 ppP =  and ),( 222 ppP =  are two fixed points of T  on D . We shall 
determine now the fixed points ),( ∗∗ yx  with ∗∗ ≠ yx  by direct computation. 
From the definition of T  ( putting xx =′  and yy =′ ) we shall get the 
following system:  

            
2

2

ybxay

xbyax

−−=
−−=

 

we get ),(3
∗∗= yxP  and ),(4

∗∗= xyP  where  

2

4123)1( 2 abbb
x

+++−−+−=∗ , 
2

4123)1( 2 abbb
y

+++−++−=∗ , with 

4

123
 

2 ++−≥ bb
a . 

 
Eigenvalues  of )(TJ  at the fixed points: 
 
The Jacobian matrix of T  is : 

     








−−
−−

=
yb

bx
TJ

2

2
)(  

(1) At the fixed point ),( 111 ppP =  we have  















++−+−
−++−+=

abbb

babb
PTJ

4)1(1

4)1(1
))((

2

2

1  

The eigenvalues of )(TJ are  

babb ±++++−= 4)1()1( 2
2,1λ  

Clearly 2,1λ  are real , then the stability of 1P   depends on the value of b . 
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(2) At the fixed points ),( 222 ppP = , the eigenvalues of )(TJ  are 

babb ±++−+−= 4)1()1( 2
2,1λ  

2,1λ  are real , again the stability of  1P  depends on the value of b .   
    
      (3) At the fixed point 3P , the eigenvalues of )(TJ  are 

abbb 418)1(2 2
2,1 −++±+−=λ  

Since )(TJ  has real eigenvalues if  4154ab −+≥  and 0a3.75- ≤≤ . 
 
(4) At the fixed point 4P  we shall have : 
Since T  is symmetric with respect to ω  then the dynamics of T  at 4P  is like  
the dynamics of T  at  3P , therefore 4P  has a real eigenvalue if  

4154ab −+≥  and 0a3.75- ≤≤ . 
 
Critical curve  
 The map T  defined in (3.2.1) is clearly a map with a nonunique inverse. The 
critical  curve LC  of T  is the image of the locus of points in which the 
Jacobian  J of T  vanishes, i.e. )( 1−= LCTLC  where 1−LC  is the curve : 

       
4

2b
xy =  

1−LC  is a hyperbola of two branches. Let ba LCLCLC ,1,11 −−− ∪=  where bLC ,1−  

shows the upper branch (for 0>x  and 0>y ) and aLC ,1− denotes the lower 

branch as shown in figure (3.2.1). It follows that the critical curve of rank 1− , 
LC ,  consists of two branches, say ba LCLCLC ∪=  where )( ,1 aa LCTLC −= and 

)( ,1 bb LCTLC −= . The two branches of 1−LC  and LC  are symmetric with 

respect to D  . The qualitative shape of LC  is shown in fig.(3.2.1).  LC  
separates the plane into three open regions, named 0Z , 2Z  and 4Z ,  locus of 
points having 2 ,0  and  4 distinct preimages of rank 1−  respectively.   
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Fig(3.2.1)The qualitative shape of ba LCLCLC ,1,11 −−− ∪=  and ba LCLCLC ∪= . 

 
 
Example (3.2.2):- Consider the map T  defined by  

              
2

2

            

:

             

ybxy

T

xbyx

+=′

+=′
 

 
As in previous example we can show that T  is symmetric  and satisfies 
properties (i , ii and iii ) that appeared in example (3.2.1) and if we restrict  T  
to the invariant diagonal D , we shall get a one dimensional map: 
 
                    2)( xbxxgb +=  
 

bg  has fixed points 01 =p  and bp −= 12 . 
 bpgb =′ )( 1 , therefore 1p  is an attracting fixed point if 1<b .   

bpgb −=′ 2)( 2 , therefore 2p is an attracting fixed point if 31 << b .   

 
T  has four fixed points :  
   )0,0(1 =P , )1,1(2 +−+−= bbP , ),(3

∗∗= yxP  and ),(4
∗∗= xyP  
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where 
2

3211 2bbb
x

−−−+=∗ ,
2

3211 2bbb
y

−−++=∗  with 03b-2b-1 2 ≥ . 

As, we have mentioned in the previous example we can discuss the stability 
of each fixed points easily by simple computation.    
 
3.3 Other Examples 
In this section we shall give examples that illustrate the nature of the critical 
set. 
 
Example (3.3.1): 
Consider a standard  form(1.4.3a) that appeared in chapter one   
 ) ,(),( 141

2
0 bxybayaxyaxayxT ++++=  ; 01 ≠b  

Recall that  T   has nonempty unbounded critical set which is a parabola. 
Now, by using different values of the coefficient 0a , 1a , 4a , 1b , a  and b , we 
find for  3=a , 1.010 == ba , 141 −== aa  and 1=b ,  T   has bounded trajectory 
and we find the  region { }5.19.2  ,45.545.5:),( ≤≤−≤≤−= yxyxR   such that 
any points in R  has an attractor )2267.1 ,848.1(=∗A . 
Also, if we take two points say: )1 ,3034887968245.5(1 −=p  and 

)1 ,3044887968245.5(2 −=p , we shall see that for 10≥n , )( 1pT n  will converge 
to ∗A  while )( 2pT n  converge to infinity. 
 
 
Example(3.3.2):- Consider a standard  form(1.4.3b) that appeared in chapter 
one   
 ) ,(),( 43

2
2

2
043

2
2

2
0 bybxbybxbayaaxyaxayxT ++++++++=  ;  

Recall that T  has a nonempty unbounded critical set which is either line or 
hyperbola . 
In particular,  let  10 −=a , 22 −=a , 043 == aa , 1.0=a , 0420 ==== bbbb ,  and 

13 =b . we see that the iterate of any point which belongs to the region 
{ }5.05.0.25.025.0:),( ≤≤≤≤−= yxyxD  converges to the point )0805.0,0805.0(  

as is shown in fig (3.3.1) . 
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Fig(3.3.1) Map (3.3.2)  the orbit of the point )0,1.0(  & )0805.0,0805.0(  is the 
attractor.  
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3.4 Conclusions & Recommendations 
 

1- We have seen in example (3.1.1) that if algorithm (2.3.1) succeeds to 
find an absorbing area d ′ , the iterate of any points in d ′  bifurcate into 
three subsequences each one converges to a vertex of d ′  . And there is 
no point of non-smoothness in the boundary of d ′  . 

 
2- In example (3.1.2), the point of intersection of LCLC &1−  is a fixed 

point )0,
1

(
a

−  , therefore an absorbing area is just a point )0,
1

(
a

−  . 

If we try to find a closed area bounded by segments of critical curves, 
we shall find two closed areas: one bounded by segments of critical 
curves 21 & LCLC  , the other is bounded by segments of critical curves 

21 &, LCLCLC  but both areas are not absorbing . 
 

3- In example (3.1.3), we find an absorbing area d ′  for some values of 
the parameters a  and b  , and each point in such area has an orbit 
inside d ′  which lies in triangular shape . 

 
4-  Algorithm (2.3.1) may fail to find an absorbing area , therefore we 

suggest that one should examine the map, before we apply the 
algorithm by finding the successive image of LCLCa ∩= −10  , if such 
iterates converge then the closed area obtained by (2.3.1) is absorbing . 

 
 
Our recommendations are:  

Much of the work on the subject have concentrated on investigating 
properties of particular examples and trying to make general observations so 
we suggest the  work to be more theoretical. 
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Introduction : 

 
Dynamical systems as a mathematical discipline goes back to 

Poincare’, who developed a qualitative approach to problems that arose from 
celestial mechanics.  

 
The subject has expanded considerably in scope and has undergone 

some fundamental progress in the last three decades. Today, it stands at  
crossroads of several areas of mathematics, including analysis, geometry, 
topology and mathematical physics. It is generally regarded as a study of 
iteration of maps, or of time evaluation of differential equation. 

  
The basic goal of a dynamical system is to the eventual or asymptotic 

behavior of an iteration process. If this process is a differential equation 
whose independent variable is time, then the theory will attempts to predicate 
the ultimate behavior of solution of the equation in either the distant future 

)( ∞→t  or the distant past )( −∞→t . If the process is a discrete  process such 
as the iteration of a function, then the theory will hopes to understand the 
eventual behavior of the points )( ,),( ),( , 2 xTxTxTx n

K  as n becomes large. 
That a dynamical system  asks the some what nonmathematical sounding 
question: where do points go and what do they  do when they get there ? 
Function which determine dynamical systems are also called mappings, or 
maps [ 11 ]. 
 

The complex dynamical behavior of solutions of various mathematical 
models has been an object of study for a number of years . Point – mappings 
or recurrence, are especially of interest because they appear as natural 
descriptions of evolutionary phenomena in physics, 
ecology, biology  and  control systems [9, 27& 29]. 

 
A complex dynamical  behavior called “ chaos” is observed in 

mathematical models expressed in the form of recurrences with a non-unique 
inverse. The chaotic solution of such second -order point –mapping is 
located in bounded areas. All the attractive limit sets of an endomorphism  
( noninvertible map ), whatever the nature may be, are located in phase plane 
designated by absorbing areas[2, 15& 32] .  

 
Critical curves appear as the natural – two dimensional a 

generalization of the notion of critical point of a one-dimensional 
noninvertible map, they permit to define the essential notions of absorbing 
area , and chaotic area [ 15&24]. Roughly speaking an absorbing area d ′  is a 
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region bounded by critical curves segments of finite rank, such that the 
successive  images of all points of a neighborhood )(dU ′  enter into d ′  and 
cannot get away after entering, after a finite number of iterations [38]. 
A chaotic area is an invariant absorbing area , the points of which give rise to 
iterated sequences (orbits ) having the property of sensitivity to initial 
conditions. 

 
The role of critical curves also is fundamental in the definition of 

bifurcation leading either to the destruction , or to a sudden and important 
modification of absorbing areas .  

    
Recently an extended notion  of absorbing area, chaotic area,  that of 

mixed absorbing  area, mixed chaotic area was introduced by Barugola & 
Cathala in 1992. These last areas differ from the non mixed ones by the fact 
that their boundaries are made up of the union of critical curves segments,  
and segment of the unstable set of a saddle fixed point, or a saddle cycle 
(periodic point ), or even segment of several unstable sets associated with 
different cycles. With respect to a ‘simple’ (non mixed)  absorbing, or 
chaotic area, these are such that successive images, of almost all points of a 
neighborhood enter  into the area and can not go a way after entering, after a 
finite number of iterations. The successive images of the points, which do 
not enter into the area, are those one of the two segments of the stable set of 
saddle points on the area boundary . 

 
During the last few years the study of two-(and higher ) dimensional 

noninvertible maps is becoming a subject of increasingly wider interest and 
research, and some of the results mentioned have been sporadically 
rediscovered by other authors. It is worth nothing that many systems in 
engineering, particularly in control theory and electronics, lead to models in 
the form of noninvertible maps. It is particularly the case in some control 
systems using either sampled data, or switching elements ,or pulse 
modulation and also in some adaptive controls .Moreover , modeling in 
economics and biology often given rise to noninvertible maps [3, 6& 12] . 

 
To our knowledge , the notion of critical curves in the study of  

two – dimensional endomorphism was introduced in 1964 in relation to its 
role in the determination of basin boundaries by Mira & Gardini [1991, 
1992, 1993, 1994] has recently studied in series of papers global bifurcation 
and invariant manifold interaction for the noninvertible case , in contrast to 
the corresponding invertible phenomena .In the same spirit Frouzzakis 
(1992) discussed the formation of self – intersecting loops of the unstable set 
of saddle fixed point in a model of an adaptively controlled system ( in the 
form of a two – dimensional  noninvertible  map ) . 
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Many researchers were interested in the field of noninvertible maps 
due to their importance. The following   are some of them : 

- Gardini  L. in [16] studied the global dynamics and bifurcations of a 
croeconomic model which showed the interactions between “good 
market “ and  “ the money market “ by using the role of critical curves 
.  

- Gardini L. , Abraham R. , Record R. ,and Fourntier –Prunaret D. in 
[19] studied the dynamics occurring in logistic map and by use of 
critical curves , absorbing and invariant areas were determined inside 
which global bifurcation of the attracting sets ( fixed points , closed 
invariant curves , cycles or chaotic attractors ) take place . The basin of 
attraction of the absorbing areas are determined together with their 
bifurcation . 

- Cathala J., in [10] examined chaotic areas and absorbing area without 
specifying the structures of the attractors that they contain for the map 

)9.1,,:( 3 −=+→+→ bxbxyyaxxT  also he defined some  bifurcations 
that modify the nature of the chaotic areas .  

- Mira C. , and Narayaninsamy T. ,in [25] determined dynamical 
properties and bifurcations for the map 

)
2

5
2,:( 22 yxyyxyxxT εελ −→+++−→ by using  critical curves .   

- Mira C., Gardini L., Fournier - Prunaret D., Kawaakami H. , and  
Cathala J., in [26] studied some properties of the basins of 
noninvertible map ),:( 2 bxyyaxxT +→+→   by using the method of 
critical curves , also they described different kinds of basin bifurcation 
, some of them were leading to basin boundary fractalization . 

 
The aim of this thesis is to study noninvertible planar maps 22: ℜ→ℜT ,  

in particular absorbing areas of such maps , we shall give some examples 
that illustrate  certain phenomena for such areas .  

We shall try to make two conjectures: 
1) When the critical set of a map 22: ℜ→ℜT  is a parabola, then T  has an 

attractor  
2) If the critical set of the map is a line or a  hyperbola, then the map will 

have  periodic points . 
It is important to remark that much of the work done on planar maps   

concentrated on presenting certain examples and pointing out certain 
phenomena . 

 
The work is divided into three chapters , these chapters are organized as 

follows : 
Chapter one introduces the mathematical background of the main notions 

and proposition on the theory of the dynamical system . Definition of critical  
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curves and some different types of noninvertible maps related to their critical 
curves are presented , we shall also mention different definitions of chaos 
and some properties of topological conjugate maps .Also we shall  give the  
definition and some properties of planar quadratic maps.  Moreover, we shall 
prove two new theorems of planar quadratic maps with unbounded critical 
set that can be considered a generalization of theorems given in [31]. 
 

Chapter two deals with a special type of planar maps, namely )( 20 zz −  
maps. The chapter includes: 

- Proving some properties of absorbing areas and invariant areas . 
- Proving some properties of a )( 20 zz − maps . 
- How to construct absorbing areas, invariant areas by using the critical 

curves. 
- Recalling some bifurcation types.  

 
In chapter three we shall illustrate the concepts of the two previous 

chapters by applications on some noninvertible maps .Since the algorithm 
construction of an absorbing areas which appeared in chapter two does not 
guarantee that constructed areas are absorbing, therefore we shall try to give 
conjection ensuring absorbing. 

 
Our examples in this chapter illustrate certain phenomena that are 

different from the ones found in literature.   



 

List of Symbols : 
 

Symbols Meaning 
)( ∗pW u

l  Local unstable set of fixed point ∗p  
)( ∗pW u  Global unstable set of fixed point ∗p  

)( ∗pW s
l  Local stable set of fixed point ∗p  

)( ∗pW s  Global stable set of fixed point ∗p  
)(AD  Basin of attraction 

A  Closed set 
T  Planar quadratic map 

1−LC or )(TJ  Critical set of  T  

iLC  Critical curve of rank-i of the map T  

iLC  Extra critical curve 
)( mTEC  Critical curve of mT  

),( yxG  Initial form of the quadratic map  
TB  Set of all points x  in 2ℜ  with bounded orbits 

1ℑ  Set of maps T  with nonempty bounded critical set 

2ℑ  Set of maps T  with nonempty unbounded critical set 

d ′  Non-mixed absorbing area 
d
~′  Mixed absorbing area 
d  Chaotic area 
S  Invariant area 
∆  Closed area 
s  Mixed or non-mixed absorbing area noninvariant  

d ′′  Connected non-mixed noninvariant absorbing area 
0∆  Closed subset of 2ℜ  

ad ′  Annular absorbing area 
W  Hole 
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