Abstract

Planar noninvertible maps have been studied recently by severa
authors such as Mira, Gardini , Cathala. Much of their work has been
concentrated on analyzing some examples and making some conclusions
on the properties of the maps .

Our concern in this work is to study planar noninvertible
continuously differentiable maps T7:0° - 0%, we have proved two new
theorems that are concerned with nonempty unbounded critical sets, and
we have given two conjectures : one characterizes the attractor of the map
T when the critical set is parabola, and the other characterizes periodic
points of the map T when the critical set isaline or a hyperbola.

We have studied some properties of such kind of mapsin particular
absorbing areas, invariant areas of such maps, and we have mentioned
some of the known results of the subject and have given proofs of some
of the results that have appeared in literature without a proof . Moreover
we have studied some examples that show certain phenomena on
absorbing areas .

In our work , we have made use of the Matlab version 6.1 software
to solve the discussed examples .
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Appendix 76

Apperndix

The Inverse Function Theorem: [11, p.172]

Let T:0% - O°%. SupposeT(0) =0 and J(T(0)) is an invertible matrix.
Then there exists a neighborhood of 0 and ac* map G:U - 0% such
thatToG(X)=X forallx OuU.

That is, if the Jacobaian matrix of is invertible ato, then there exists a
local inverse forTt .

Definition*:

Let (X,d) be a metric space and Istd X ands >0. Then the neighborhood
of s of radiuse is the set:

N, (S) ={xOX :d(x,5) <& for somesOS}.

Definition: [22, p.159]

Let T:0° -~ 0% be a map and lep be a fixed point ofT with
eigenvaluesi andu such thati|<1 and|y4 >1 , thenp is called a saddle
point.

* Al-Sa’idi N., “On the Mulit-Fuzzy Fractal Spac@h.D. thesis, Al-Nahrain
University, 2002.
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Chapter1: Preliminaries 5

Chapter ore

“Crelirmmaries”

I ntroduction:

It is always useful to derive some consequences feo few bits of
information. We start with the definition of a dyneal system. Lek beO or
Z. A dynamical systen® on spacex is a continuous mapgb:KxX - X
satisfying. ®(0,x)=x for all xOX and PP, x)=P(r +s,x), for all
xtX,r,sOK .

If K=0 then® will be called a flow (continuous dynamical sysjeth K =z
then the dynamical system will be described agelisc
One can always construct a discrete dynamical sysie iterating a given
homeomorphism f:X - X in the following manner ®:zxX - X is
determined by
d(n,x)=f"(x) if nOZ
Where f"=fofo...of is defined as thenth iteration of f and
e T

f"=f"of"o...of* if n>0 and f° =1. One often studies iteration far=0

n-times
when f is not a homeomorphism.
The purpose of this chapter is to recall severdahefbasic definitions from the
dynamical systems.
Throughout this work, we shall focus our study emt;muously differentiable
maps, and discrete systems, moreover, our mapscane]? - 0° (i.e. planar
maps).

1.1 Definitions and Notation

In this work, we shall need few notation: LletX - X, the rank-r image
of x is the image

X, =T"X

r IS positive integer. Similarlyx is one of the rankr preimages ok, .
If X=0", then the mapr:X - X will be called diffeomorphism, if it is
continuously differentiable function ok, and if T™ exists, unique and
continuously differentiable (in this case is invertible) in the domain of
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definition of T. WhenT is such thatr * may be multi-valued, or may not exist,
thenT will be called a noninvertible map.
Example(1.1.1):
Consider the one dimensional ntapi.e. T:0 - 0O which is given by:
X' =x>-A
Where A is a parameter ant™ is given by:
X=X + A
So the rank-one preimage of a poitis double- value foi' >-4, and is not
real forx' <-A.

A periodic point of periock is a pointx which in the domain of such
that T*(x) =x and in additionx,T(x),T2(x),......,T**(x)are distinct .The orbit of
xO X is the se{T*(x):k=0}. If x is a periodic point of period, then the orbit
of x which is

{X,T(X),T2(X),......, T x)}
will be a periodic orbit and is calledka-cycle.
If k=1, thenx will be called a fixed point ofT . Every point of ak-cycle is a
fixed point of T* .

A periodic point of periock will be attracting if all the eigenvalues of the
Jacobian matrix off* at the periodic point have their modului lessntioae,
and if at least one of the eigenvalues is largen thne in modulus, the cycle is
repulsive [22, p.146].

A periodic point of periodk is expanding if all the eigenvalues of
Jacobian matrix off* at the period point are larger than one in modudunsl
there exists a neighborhoad of the periodic point such that the absolute
values of the eigenvalues are larger than onearigrx belonging tou , this is
in case all the eigenvalue are real [29, p.4].

If some of the eigenvalues of the Jacobian matfix‘oare complex at
the periodic point then a periodic point will bealde (attracting) if all the
eigenvalues have negative real parts otherwiseuihstable(repeller)[33,p.109].

A fixed point x is called a snap-back repeller, or SBR if (a¥ iexpanding and
(b) if in the neighborhood) (x) there exists a poing such thatt™(q) = x for
some positive integan[29, p.109].

Example (1.1.2):
Consider the map:0? - 0% defined by
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X'=2-2y?-X
T:
y' =X
T is given by
x=y'
T

y =21-05(x +Y')
So, T is noninvertible and has two fixed poings=(-1-1) and p, = (23,2/3).
J(T) has two eigenvalues , =1+ 2.3606 at the fixed pointp,, thereforep, is a
repulsive fixed point sincq-ﬂm| >1, where J is the Jacobian matrix of and

there is au,(p,), wheres =02 such that for any0OU, (p,)we have|i,,|>1,
thereforep, is an expanding fixed point.

-2 4J/20.

While J(T) has two complex eigenvalues, =?iTI at fixed point p,,

since the real parts of eigenvalues are negatiesefitre p, is a stable
(attracting )fixed point .
Let T be ap- dimensional noninvertible map, defineddr.

Definition (1.1.1): [29, p.13]

A nonempty set is said to be invariant by if T(A)=A. The setA isa
backward invariant byr if T7(A) = A, whereT™ represents all the rank-one
preimages off .

Definition (1.1.2):[29, p.18 ]

A closed invariant setA is an attracting set if an arbitrary small
neighborhoody of A exists such thatU)oOu andT"(x) - A, whenn - o,
for any xOU . An attractor is an attracting set which is togidally transitive,
l.e. if for any two open sets,v O A, a positive integetk exists such that
TK(U)nV # @, Or equivalently a pointpd A exists the orbit (iterated sequence)
of which is dense im. In this caser is called a transitive map.

Definition (1.1.3):[30]
The basin of attractiom(A) (or simply the basin) of an attracting seis
the set of all the points such that T"(x) - y, yOA whenn - .

Definition (1.1.4):[15]
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Let T be ap- dimensional map, an@” a repulsive fixed point, and
be a neighborhood op”. The local unstable s&t'(p”) of p” in U, and the
global unstable set gi”, w"(p"),are given by:

W' (p") ={xDU X, OT™"(X) - p~and X, DU,Dn}

W (p") ={x00°P:x, 0T™"(%) - p}

It can be shown that* (p") = JT"W"(p")).

n=0

In fact let xOwW"(p") i.e. xO0O® and there is a sequence of preimages say
{x,.};, that converges tq" i.e. |x,-p’<s wheree can be any small real
number greater than zero.

SincexOO", then there is poinpOW"(p"”) such thatx is the successive image
of p i.e. there i;mON such thatr"(p) = x soxO( JT"W"(p")

This impliesw* (p™) O [ JT"W"(p") . _

Let xO JT"W"(p") i.e. there i;mON such thatkOT"(W"(p"))

n=0

So, x is the nth successive image of the poipt which belongs to the
neighborhoods of p” and has a sequence of preimage which converggs to
This impliesx00O? andxOwW"(p"), solJT"W"(p") OW"(p")
n=0
Ow!(p%) =JT"W"(p").
n=0

The following proposition gives some of the propertof the unstable set that
appeared in [29, p.15] without a proof, we give@gp.

Proposition (1.1.1):
(P1) Tw"(p”) =wW"(p"”) I.e. itis invariant set.
(P2) For any map, T*(W"(p") OW"(p").
Note that if T is noninvertible, thenw"(p”) may not be backward invariant.
(P3) Let v(p") be a neighborhood op”. For any xOw"(p”) an integerN
exists (which depends o) such that a rank¢ perimagex_, of x belongs to
Vv and a sequence of preimagesqf exists which belongs t¢ and converges
top".
Proof:
(P1) TW'(p")=T{xOO?:x,0T"(x) - p}

={T() 00 :T,) OT(T™"(x) - T(p}
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={T(X)DDp X, OT (X)) - pD}

=W"(p")

—n+1

(P2) T‘l(W“(pD))=T‘1(nLZJOT”(VV|”(pD)))
= nLZJOT‘l(T”(V\/l“(IOD)))
= QOT”_l(VV.”(pD)) O nL>J0T“(V\/.”(|OD)) =W*(p")
(P3) Let v(p") be né neighborhood_qiim. Let xOW"(p”). Then from definition

of w'(p") there exists a sequence of preimages such that{x,} - p”
i.edx_ }Ov(p").e

Remark (1.1.1):[29, p.15]
W'(p") is a connected, self intersection that may ocsaoitifat it may not

be a manifold). If it is smooth then it may be edlha local manifold. Whem is
invertible the global set is also a manifold whitben T is noninvertible then
the global set may not be a manifold. A self irdeton ofw" (p") is allowed.

Definition (1.1.5):[15]

Let p” be a fixed point off which may be attracting or repulsive. The
local stable set ob” in a neighborhoods , and the global stable set*(p"),
ws(p") are given by:

We(p") ={x0U,x, =T"(x) -~ p"and x, OU, On},

wWe(p") ={XDD",Xn =T"(X) - pD}.

Also, it can be shown thav*(p") = JT™"W?(p"))as we have proved previously.

n=0

The following proposition gives some of the proextof the stable sets, it has
appeared in [29, p.16] without a proof, we give@gpb.

Proposition (1.1.2):

(P1) T W2 (p") =wW*(p").

(P2) TWw=*(p") O=W*(p").

(P3) Let v(p") be a neighborhood op”. For any xOw?*(p”) an integerN
exists (which depends on) such that a rankn image x,, of x belongs tov
and converge t@".

Proof:-

(P1) T W*(p") =TH{x0D0":x, =T"(x) - p’}
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=W*(p")

(P2) TW*(p") =T(nL2JOT‘”(VV|S(pD)))

- anJOT—ml(VVIS(pD))

O nLEJOT_”(VVF(IOD))
(P3) Let v(p”) be a neighborhood op". Let xOw*(p"”) then from the
definition of ws(p”) there exists a sequence of imagegsuch that{x } - p"”
i.e. {x}oOv(p?) andT(x)) - T(p") = p” therefore the image dk } belongs to
V. e

Remark (1.1.2):
(1) w(p”) may be a connected manifold, or the union of didjaonnected

components, alsav®(p”) may be smooth so that it is called a local madijfol

and self intersections cannot occur.

(2) WhenT is noninvertible, then there exists pointviri(p”) say x such that
T™(x) = p” for a suitable integer. If T is a noninvertible two-dimensional map,
ws(p”) may be non-connected and made up of infinitely ynelosed curves.
And this property also holds for higher dimensions.

(3) In invertible maps, an expanding fixed point hasstable sets, while in
a noninvertible map whep” is expanding the local stable set @f consist of

p” itself, and the global stable set is given bytladl preimages (of any rank) of
this point:w?(p") = JT™(p").In this case property (2) works for all the points

n=0

of the stable set, i.el xOwW*(p") an integem(x) exists such that ™™ (x) = p".

Definition (1.1.6):[29, p.17]
A point g is said to be homoclinic to a repulsive (or expagdfixed
point p” (or homoclinic ofp” ) if qOW"(p") nW=(p").

Definition (1.1.7):[29, p.18]
A point q is said to be heteroclinic from the repulsive éapanding )fixed
point p" to the repulsive fixed point”, if qOW"(p"”) nW*(r").
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1.2 Two Dimensional Noninvertible Maps. Properties of Critical
Curves

This section examines a class of continuously diffeable two-
dimensional noninvertible maps (endomorphism).
We shall start by giving the definition of the @@l curve LC (from Ligne
Critique in French), this concept was first introdd in 1964 by Mira [5&15].

Definition (1.2.1): [28]
Let T be a noninvertible map af? into itself defined by:
X =f(xy)
T: (Lp.

y' =9g(xy)
Where f and g are continuously differentiable functions. ThewauLC_, is
defined to be the set of points at which the Jaooloif f and g vanish i.e. the
set of critical points of the map. Then the successive forward iterates

i=012..., LC, =LC are called critical curves of ranlk1.

Note that the concept of critical curve is a gelmaton of the concept of a
critical point for one dimensional map.

The rank-one critical curveCc and the curve.C_, may be made up of several
branches with respect to the inverse map the plane can be considered to be
made up ofN sheets joining at the branches of the first remtical curveLC
which bound regions where the number of first rardkimages is constanty
being the maximum number of such preimagas Will be called the map
degree). Then every sheet is associated with adeéhed first rank preimage,
which leads to a foliation of the plane directated to fundamental properties
of the map [29, p.114].

Remark(1.2.1): If Tis invertible, then it is diffiemorphism which imes
J(T)#0, soT has no critical points.

1.2.1 Types of Noninvertible Maps with Critical Curves, their Symbolic
Representation
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It is convenient to classify noninvertible maps @ding to the number of
solutions of the inverse map for all possible irtO0?, and the relative
arrangement of regions with different numbers @ipages. We have observed
that LC divide the plane into open regiang0? =Uz,), the points that have

distinct preimges of rank one. One can classifyrtfags into types depending
on the number of regions and the number of preisga8]. We shall try to
mention some of these types:
1- (z,-2,) map: LC is made up of only one branch separating
into regions, one iz, with no preimage, the othex, with two
first rank preimages.
2- (z,-2,-z,)map: LC consists of two branches separating into
three regions, on&, with three first rank preimages, and tQ
non connected regions, on both sideg gfwith only one first rank
preimage.
3- Maps of typ&z,-z,-z,), ... or more complex types that are

generated by regions having a higher number of -carek
preimages, the branchesiaf separating these regions.

There are other complex kinds of maps that areaet® the presence of one
or more cusp points (cusp point is a point whoseetHirst rank preimages
coincide) on the critical curvec, the symbolic representation of maps, may be
refined by introducing the symbols®, and “>” for the presence of such a
point, some of these maps are:
1. (z,<z,)map: the curveLC has a cusp point corresponding to a
“cape” of z, “penetrating” int, .

2. (Z,<zZ,>)map: LC is a closed curve with two cusps, forming a
“lip” shape.

3. (z,-2,<<z,)map: the curveLC presents two cusps forming a
dovetall figure. In this configuration, each cuspai “cape” ofz,
“penetrating” intoz, with a dovetail shape.

Figure (1.2.1) illustrates the above types of maps
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(€) (d) (€)

Fig(1.2.1) (a)(z,-z,)map z,Nz,=LC (b) (z,-z,-z,)map, LC=LOL’,

Z,nZ,=L,Z,nZ =L ;(C)(Z,<Z,)ymap;LC=LOL" cusp point=c=LnL';

(d) (z,<z,>»map;LC=LOL', Z,nZ,=L,LnL" =cc ;
(e)(z,-Z,<<z,)map ,LC=LOL'OL", c=LnL',c'=LnL".

Note: In this work we have restricted the attention t® mmaps of typgz, -z,)
unless otherwise stated.

1.2.2 Characterization of the Different Determinations of the
Inverse Map
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We can define different inverses in each region with i >0(for i =0,
there is no inverse)[28]. L&t ; be the range of one of the inverseg adefined
inz,, j=12...i, then the corresponding inverse is:

T, :Z - R,
T.=T,", Ry=R
Where Z,, R are the closures of ,R ; respectively
Ther ; 's are disjoint open regions bounded by arcs ©f (the curve of rank-

one merging preimages), sintTepossesses more than two first rank inverses,
the rank-one preimages o€ consist of points at which the Jacobiarrofloes
not vanish, these points are called extra preimages
T*(LC)=LC,OLC, ,whereLC, the extra set

Now, Let us have a little closer look at the exdeaLC_,. Consider a branch
LOLC separating the two regiors,, andz ,,, p>0. Then p+2 inverses,
Tor; (L), j=12..p+2 are defined in regionz . Similarly p inverses,
Toi(L),j=12..p ,aredefined i . If xOL , let p+1, p+2 are two of a first
rank preimages ok merge inta_, T(L,)=L and L, 0OT™L). ThusL,is
given by:

Tp_-l:-LZ,p+1 = TP_J}Z,p+2 (L) = I-—l

The other first rank preimages, those givertpy(L), j=12...,p, belong to the
to the extra seL.C_,, and are given by
(L), =Te5 (L) i =12,...,p.

Remark(1.2.2):-

We have noticed that by the inverse function theotke inverses off are
continuously differentiable in the interior of thelomains of definition, i.e. in
each regionz,. Moreover, LC_, separates the plane into regions, inside which

the Jacobian of has a constant sign.

Example (1.2.1): Let T be defined by
x'=a-by-x*
T:
y' =x? bz0
T is noninvertible and has typg, -z,).
T has two inverses
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CEN
T

y=(a-y'-x)/b ,b#0
The curveLC, is given by the equatior=0 and the critical curveC is given
by y=0. So LC_, divides the planel?® into two regionsR, with x>0 and R,
with x<o0. Also, the curveLcdivides the planed? into two regions:Zz,
satisfying y<0 where each point has no preimage, amg satisfying
y>0where each point has two first rank preimages. \Afe define different
inverses in regiorz,, so letT,; :Z, » R, be defined by

x=—Jy
. a_ yr _Xr

Y b
andT,;:Z, - R,, is defined by

x=y
,_a-y-x
y=ay=x
For particular case whea=1,b=1, T has two fixed pointsp, =(-11) and

11
=(=,~). Then

P, (2 4)

Tz_ll(—l,l)=(—l,1)D§21,T (1) =@ 1)D 2,2

2,11 1 1 2,11 11 _=
AISO T211 2 4) ( )DR21’ Tz,g E’Z) (E’Z)DRZ’Z
Remark (1.2.3):

1- The preimages of.C, k=0, which are points off*(LC,) not
belonging toLC,_ , =T**(LC) are called extra preimages.

2- When all the inverses af are defined, their closed range give
a finite cover of the plane1® with closed sets having disjoint
interiors.

e.0?=U Uﬁi,j.

i>0j=1

1.2.3 Critical Set of A power of T
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The critical setec(T™) of T"(ECcomes from ensemble critique in
French) m>1, is the locus of pointx =(x,y) having at least two coincident
preimagesr ™(x).

The following proposition can be found in [17]

Proposition (1.2.1):
Let T be continuously differentiable map.
(1) If T is a map without &, region, the critical SeEC(T™), m>1 is
given by:
EC(T™) = ELQ , LC,=LC (1.2.1)
A critical curve LC, belonging toEC(T™), separates théx,y) - plane locally
into two regions, one with points havingpreimages of rankn, the other with
points having q preimages of rankm, p=0, g=0. In the general case
g=p+2h,h=122...
(2) when az, region exists, the critical s&C(T™), m>1 is given by:
EC(T™)=LC, ,0T™(LC_)O---O0T™(LC_,) (1.2.2)
where
LC_, =T™*(LC,), LC_, =T™*(LC_,)etc.
(3) In both cases (1), (2EC_,(T™) is defined by
EC,(T™)=LC,0OLC_,O--0LC_,

Proof:- Can be found in [17].

For understanding (1.2.2) contents consider the niajet X, OLC,. Then at
least one invers&™ of T exists such tha, =T*(X,)0LC, X, having two
merging first preimages, T, *(X,) =T, o T *(X,) OLC,,.
l.e X, EC(T?) because at least two rank one preimages’ aire merging, and
LC, ODEC(T?). Now, LetPOLC,
P,=T,%(P)=T,(P)0LC,,.

Thusif P,0LC, nZ,, thenPOEC(T?) .
If P,OLC,nZ,, then at least one inverse is definedrPin WhenpP, 0Oz, it
hasq distinct inverser™, i =12,...,q, with

P, =Ti_1 °T1_1(P) =Ti_1 °T2_1(P) ,1=12,...9
then POEC(T?) and g pairs of merging rank one preimages are defined.in
From this it follows that:
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1- The existence of more than one pair of merging fiagk
preimages is a generic case for mapsk >1,

2- The inverses of the map can be obtained by composition
of the basic inverses af.

Let T be a map with.C_, n Z, # ¢ and:
LC® =LC,\(LC, n Z,)

which in the case of &, -z,) map becomesC® =LC_ n Z,.
So one has (fig (1.2.2)):

EC(T?)=LC,OLC® , LC® =T(LC®)
When z,does not exists we haec(T?) =LC, OLC.
Remarking that.C_, =T™*(LC_, \(LC_, n Z,)), thenEC_(T?)=LC_ OLC,,
Note that :

T(LC,)=LC,if LC,nZ,=¢

andLC® =T(LC_,)OLC, if LC nZ,#g.

Note:-In figure (1.2.2),Tis a(z, -Z,) map and therr?is a(z, -z, -z,) map.

(@) (b)

fig(1.2.2) z, regions for : (&) map & (b) mapr?,a, =LC_, nLC, a =T(a,) ,
a,=T7"(a,),EC_(T?)=LC,OLC,.

Consequence:
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If z,#¢9 and LC_, nZ, #¢@, EC(T™) contains wholly onlyLC , and all the
remaining critical curvesC__,,...,LC are only partially contained inC__,, due
to their points belonging tac_ n z,.

m-171

1.2.4 Faliation of the Plane
Since the plane is divided by the critical cune&€ into distinct
regionsZ, , these regions are considered as the superposttiogheets, each of

them is associated with a given first rank preimaye call this a foliation.
Two such sheets may be connected in pairs by {tiésfold “projects” on one
of the segments of the critical curve). Three sha®y join at a singular critical
point, a cusp point at all the junction of two faddgments, which has three
coincident first rank preimages [28].

Furthermore, it may occur that m sheets>0 (m is odd integer)
communicate at a singular critical point having mincident first rank
preimages.

The plane foliation may change; when a parameteansshed, i.e. a map
of a given type may turn into a map of another tgseit passes through a
foliation bifurcation.

Now, we shall give an example and an associategedigvhich illustrate
this situation, this example of typ€, -z,) map whereC separates the plane

into two open regiong, and z, such thatz,nz,=LC, z,02,=0%. LC,
separates the plane into two regioRsand R,, RnR,=¢, RnR,=LC_,
R OR, =07. Two distinct inverses are definedzin(fig 1.2.3)

T":Z, - R

T,":Z, - R,
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Fig. (1.2.3) Relation between the foliation (i.nettwo sheets) of a
(Z, -Z,) map, the inverses determinationt, T,* of T™ and the region® , R,

with T™":Z, - R,i=1.2.

Example (1.2.2): [28 ]
Let T be a map defined by :

T:
y' = 05x+ 0.1x* + Axy X =(X,Y)

T is continuously differentiable.LC_, is the straight line given by
05+02x+Ay=0 andLC is the parabola(05+Ax)* + 04y=0. The parametric
equation ofLC, =T(LC) is

x=-(05+At) /04

y=05t+ 0.1t* — At (05+ At)* /04
The inverse map *(X) is characterized by:

1
X = {— 05- X £[(05+Ax)? + 04y[2 } /0.2
y=x
Let R, R, be two open regions such that, =R n R,. For everyxoz,,

Let " (X)OR, T,*(X)OR,be the two determinations af*(Xx), i.e. the two
first rank preimages ok . If X OLC thenT*(x) =T,*(x) OLC_, with:

1
X = {— 05-Ax"+ [(O.5+)Ix')2 + O.4y']5 }/0.2

and
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1
X = {— 05-Ax' - [(0.5+ AX)? + 0,4y']5 }/0.2

T,h:
y=x

The critical curveLC of rank one separates the plane into the region
(05+Ax)* + 04y <0, each point of which has no preimages (regighand the

region (05+ Ax)* + 04y >0, each point of which has first rank preimagesineg
z,) .
1.3 Chaosin Dynamical Systems

The study of orbits (periodicity, density, etc.) nbgdbutes to the
knowledge of the behavior of the system. Systenth womplicated behavior
are usually called chaotic .Chaos is defined iresgvdifferent ways through
literature. In 1976 [22, p.91], Li and Yorke intiozed the notion of chaos for a
continuous map from | into itself, where | is a quaut real interval. In Yorks
paper, the term chaos appeared for the first tim¢ll] , Devany defined the
chaotic map as followg : X - X is said to be chaotic if it is transitive , its
periodic points are dense and it has sensitivitth wespect to the initial
conditions wherex is any metric space. Gulick called the map chaibticis
sensitive to initial conditions.

Definition (1.3.1): [34, p.21]

Let X be a metric spaced the distance orx and T:X - X has a
sensitive dependence on initial conditions if thexestso >0 such that, for any
xOX and any neighborhood of x there existsyOu and n>=0 such that

d(T" (9, T"(y))>9.

Example (1.3.1): [11, p. 52]
Let B :[01] - [01] be the baker map given by
2X for 0<x<05
B(x) =
{Zx—l for 05<x<1

Notice thatB(%) =§ and BZ(%) =%, so that the iterates (331 alternate between

% and % . To compare the iterates éf and 0.333 we make the following

table (where we use3-place approximations fortérates of 0.333).
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Iterates| 1 2 3 4 5 6 7 8 9 10

1/3 2/3 1/3  2/3 1/3 23  1/3 2/3 1/3 32/ 1K

0.333 | 0.666 0.332 0.664 0.328 0.656 0.31B824 0.248 0.496 0.992

Takes =05, n=10, SO

d(B" (0333,5“(%)) :‘0992—:13 >3 .

Thus,B has a sensitive dependence to initial conditiofOpd].

We shall discuss in chapter three the chaotic farea two-dimensional map.

Example (1.3.2): [11, p.50]

Let f be a continuous map from unit circt, into itself i.e. f :S' - S, given
by f (8) =26. We shall use the definition of transitive mapt Ue be any small
open arc irs', there iskON such that“U) covers all ofs', in particular,
f¥(U) intersects any other open aréens'. This implies f*U)NV # ¢ , thusf
Is transitive.

Theorem (1.3.1): [22, p.96]
Suppose thatJ is a closed subset of", f : J - Jand .Thenf is transitive if

and only if there is anon J whose orbit is dense Jn
Proof: See [22, p.97].

Now, we shall turn to the main theme of thistieec the notion of a chaotic
dynamical system. There are many possible defistaf chaos in a dynamical
system. We shall recall some of them and start bjckss definition before we
give its definition; we need to mention the followi

Definition (1.3.2): [22, p.87]
Let J be a bounded interval, and:J - J is continuously differential
onJ. Fix x in J , let A(x) be defined by; ) = |im lm‘(fn)l(x)‘provided that
n

n- e

the limit exists, A(x)is called the Lyapunov exponent of at x . If A(x) is
independent ok whenever A(x) is defined, then the common value qk) is
denoted by, and is the Lyapunov exponentfaf

Definition (1.3.3): [22, p.90]
A map fis chaotic if it satisfies at least ondlw following conditions:
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(1) f has a positive Laypunov exponent at each poirnisidomain

that is not eventually periodic .or
(2) f has sensitive dependence on initial conditiongsodomain.

Also, Gulick defined strongly chaotic maps as fato

Definition (1.3.4): [22, p.101]
A map f on an interval is strongly chaotic if
(1) f is chaaotic (in the sense of Gulick ).
(2) f has a dense set of periodic points .
(3) f is transitive .
Now, we see another definition of chaos given byddy .

Definition (1.3.5): [11, p.50]

Let J be a subset ofi , f:J - J is said to be chaotic on if f has
a sensitive dependence on initial conditionsis transitive and periodic points
of f are dense in.
By the comments above, is chaotic equivalence to strongly chaotic in the
sense of Gulick.

Definition (1.3.6): [22, p.104]

Let A and B be closed sets in* and letf: A~ A andg:B - B be two
maps, f and g are said to be topological conjugate if there texia
homoeomorphismh: A . B such thath. f =goh. The homeomorphisnn is
called a topological conjagacy. In this case, wievir=, g.

Maps which are topological conjugate are complegglyivalent in terms
of their dynamics. For example, if is topological conjugate tg via h and p

Is a fixed point forf , thenh(p) will be a fixed point forg .

The next result implies that the periodic pointse anherited through
conjugacy:-

Theorem (1.3.2): [22, p.106]
Let f =, gthen

(1)) hof"=g"oh forn=12....
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(2) If x is a periodic point forf of period n, then h(x) is a periodic
point ofg of periodn.
(3) If f has a dense set of periodic points, so dpes

Proof: -
ho f =goh. For the purpose of an induction proof, let usiassthat

ho f"* =g"*oh. Then
ho f"=(ho f)o f"  =(goh)o f" =go(ho f")=go(g"toh)=g"oh, SO that
hof"=g"oh forn=12.... By induction, (1) is proved .
To proved (2), assume is a periodic point of perioch for f. That, is
f"(x)=x, (1) implies that g"oh(x)=(g"oh)x=(hof")x=h(f"(x))=h(x).
Consequentlyn(x) is a periodic point fory of periodn.

Finally, the imagen(K) of a dense set of periodic point off contains
only periodic points ofy by (2), and is dense in the rangegoby the definition
of homeomorphisme

The next result shows that transitivity is inhatitarough conjugacy.

Theorem (1.3.3): [22, p.107]
Letf =, g, if f is transitive thery is transitive, too.

Proof: -

By theorem (1.3.1), a map is transitive if and oihly has a dense orbit.
Suppose that the orbit of for f is dense in the domain We shall show the
orbit of h(x) for g is dense inB. Let U be a nonempty open subset ®f
becauseh is homeomorphism, it follows that*U)is an open set ofA. Since
the orbit of x is dense inA, there is a positive integer in such thatx) is in
h™U), so h(x) Is in h(h*U)=u. By (1) of theorem (1.3.2):
h(f "(x)) = (hof ")x=(g"oh)x=g"(h(x)) . Therefore,g"(h(x))is in U . Sinceu is an
arbitrary open interval iR, then we have succeeded in proving that the ofbit
h(x) for g is dense irB, so that by theorem (1.3.19, is transitive ¢

1.4 Planar Quadratic Maps

Our goal in this section is to give a brief desiwoip of the dynamics of
planar quadratic maps that have nonempty critiedlvwghatever (bounded or
not).
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Definition (1.4.1): [13]
A planar quadratic map is a mapthat has the form:
T(xY) =t y).t, (X Y)) (1.4.1)
Where t,(x,y) =a,x* +axy+a,y* +a,x+a,y+a
t,(x y) =bX* +bxy +b,y? +bx+b,y +b
and wherea,b,as andb’s are real constants.

The critical set or singular se{T) of a planar quadratic map (1.4.1) is the set:
J(T) ={x00?: det@(T (%) = 0}

Clearly the critical set(T) is a real planar algebraic curve of order not igrea

than two. This set may be bounded or not, we caw shis bounded when the

following conditions are satisfied:

() ab, —ab, =ab, —ab, (We get circle) or

(b)ab —ab, #ab, —ab (We get ellipse)

(2) ab, —ab, =0

(3 A2+B%-C20, where A =a,b, —a,b, +@, B=ab,-ab, —M

and C=ay, -a,b,

When one of the above conditions is not satistieel critical set is unbounded.

Remark (1.4.1):

The critical sety(T) is empty wherdet(T)) is constant i.e. when condition (1)

is satisfied and equals zero, condition (2) issfiatl andA=B=0 andC #0.
Now, we shall characterize maps with bounded aliset and maps with

an unbounded critical set. So let

0, ={T: J(T) is bounded and nonempty }

0, ={T: J(T) is unbounded and nonemptly

When the critical set is bounded it can easily i@ that it is only an empty

set, a point or an ellipse. Each map fnor in 0,can be brought into the

standard form via an affine coordinate change, stamdard form of a map

which is in0,, O, respectively are

T(x,y) = (X* +axy - y* +abxy +b) (1.4.2a)
T(xy) =(x* +a,xy+y* +a,x+a,b,xy+b,x+b) (1.4.2b)
And

T(x,y) = (8,x* +axy+a,y+abxy+h), with b #0 (1.4.3a)

T(x Y) =(a,x* +a,y* +a,x+a,y+a,byx* +b,y* +b,x+b,y +b) (1.4.3b)
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Remark (1.4.2):

1- The critical set of the standard form (1.4.2&)ai point, while the form

(1.4.2b) gives a critical set as an ellipse.

2- The critical set of the standard form (1.4.3apiparabola, while the form

(1.4.3b) gives a critical set as a hyperbola draght line (we get a line in case
agb, —a,b, =0).

3- The standard form is not unique. For example,

T, (% Y) = (x> = y2,-xy) & T,(x ) = (x? +~+/2xy - y? 3xy) are two maps irm,andT, is

affine conjugate ta, via the affine conjugacyh(x, y) = (%x—g y,g x-% y).

Also, T,(x,y) =(ax+y,x* +b) & T,(x,y) =(y,ay - x* —b) are two maps i, which

are conjugate via(x, y) = (-x,—ax-y) .

1.4.1 Some Properties of Planar Quadratic Maps

In this section we shall state and prove some b@asiperties of planar
quadratic maps. Also we shall give evidence thapstt us to conjecture that
any map i, has infinitely many periodic points and for anypma 0,, if the
critical set is a parabola then the map will haneatiractor . On the other hand
if the critical set is a straight line or hyperbtthen the map will have a periodic
points.

The degree-2 terms in a planar quadratic map playnaortant role as can be
seen in the next lemma. But first, let us makefoliewing definition.

Definition (1.4.2): [32]
Let T be a quadratic map defined by (1.4.1), then thppn@G , consisting of
the quadratic terms of , is called the initial form of . i.e.

G(x,y) = (a,x* +axy +a,y’* , byx* +bxy +b,y?).

Lemma (1.4.1):[32]

Let T be a quadratic map given by (1.4.1). If the origimot in the image of
the unit circle under the mappiag the initial form of T, there is a positive real
number K such that|T(x,y)|>2(x,y) whenever|(x,y)=+x*+y? >K. Hence,
infinity is an attracting.

Proof:-
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Writex =rcosd,y =rsind, 80[0,21], then the assumption on the image of the
unit circle under the mappimgg, implies thagmi[lgl; ]|G(cosH,sin<9)|:5>0. Hence

we have,

T(xY)| 2|G(x y)| ~|(asx +a,y +a,b,x+ b,y +b)
2|G(x, y)| -|(a;x +a,y,b,x +D,y) -|(a,b)|
2120 -r|(a, cosd +a, sing,b, cosd +b, sind)| -|(a,b)|

s | - |@b)
> 1(rd-|(a, cosd +a, sind, b, cosd + b, sing) —

Sinces >0, we can choos& >0 large enough such that
(KS~|(a; cosd + a, sind, b, cosd +b,siné)| - (a,b) /K ) > 2, 06 D[0,277. With such a
K, [T(x y)| > 2(x y)| whenever|(x,y)|>K .4

It is also straightforward to verify that maps eithn 0O,0r inO, have the
property stated in the above lemma. Thus the omigresting dynamics of
T occur on the seB, , where

B, ={x:0(x), forward orbit ofx underT is bounded}.

Since properties of s& whenT is in 00, are studied in [32], we shall give some
properties of these without proof and then we skl to look for these
properties in a map which is im,. But first, let us recall the following

definition.

Definition (1.4.3): [29, p.20]
A setA is said to have a Cantdike structure if:
1-Ais closed and invariant under, i.e.T(A) = A,

2-A={v, ,sO05,}=UV,, V., 2p,0s,V.nV, =pfor szs.

3-ifxOv,, then T(x) OV, .

Wherez,denotes the space of seinffinite sequences on two symbols,
5, ={s=(ss,s,...),s = Oorl}and o denotes the shift map an, : if s=(sgs,s,...)
theno(s) =(s,s:5,...)-

Notice that condition (2) in the above definiticays that the element @gfcan
be considered as a collection of subsets which bmrput into oneto—one
correspondence with the elements of the spac€ondition (3) says that the
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action of Ton Ais similar to that of the shift map. In particulaf,eachv,

consists of a single point thenis the usual Cantor set of points, and the
restriction of T on Ais conjugate to the shift map bn

All properties ofsz,can be found in [11].

With the notion of Cantetlike structure, we shall give two theorems that
characterize the nature of the getin case T belongs tal, .

Theorem (1.4.1): [32]
Let T be a map i, with the standard form (1.4.2a). For any fixedndb, if
((a,b)| is large enough theB, has a Cantetike structure.

Proof: See [32].

Conjecture (1.4.1): [32]
Let T be a map inJ, with the standard form (1.4.2a). For any fixedndb, if
l(a,b) is small enough them has infinitely many periodic points. Numerical

evidence suggests that it may not be dengg,in

Theorem (1.4.2): [32]

Let T be a map inJ, with the standard form (1.4.2b). For any fixed a,, b,
andb,, if |(ab)| is large enough theB, has a Cantetike structure.

Proof: See [32].

Conjecture (1.4.2): [32]
Let T be a map i, with the standard form (1.4.2b). For any fixeénd b, if
|(a,b) and |(a,,b;)] are small enough, and the basin of the attraqtiegpdic

point near the origin is simply connected, andhd forward critical orbitsD(J)

tend to the attracting periodic point, then we dode that T has infinitely
many periodic points on the basin boundary.

The setB, is nonempty and bounded since it contains all medation points of
the sequence of a preimage of any point that bslaagt i.e. accumulation
points of the sety T™"(p) , wherep is a point irs; .

nx1

Also B, is invariant i.eT(B;) = B, .
In fact let xOT(B,), then there isp0B, such thatx=T(p). Since p0OB, ,
therefore it has a bounded forward orbit, which lisgpthat there exists1 >0
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such that/p"|<M , On, i.e. {p"}>, is a bounded orbit op, i.e. {T(p")}, is a
bounded orbit of therefore,xOB, i.e. T(B,) 0 B, .

LetxOB,; this implies thatx has a bounded orbit under and
{x".n=14={T"(9,n=0}. Also, we conclude thd"(x),n=1 is a bounded orbit,
but this is an orbit ofT(x) , SOxOT(B,); this implies that, OT(B;)

OB, OT(B,), i.e. B, is invariant underr .

Next, the following theorems give us the natureBpivhen T is in0, and has

the standard form (1.4.3a) or (1.4.3b). The folloyviresults are similar to
(1.4.1) or (1.4.2) except that the set of critijgaints is not bounded. The result
is new to the best of our knowledge.

Theorem (1.4.3):
Let T be a map ind, with the standard form (1.4.3a). For any fixed a ,a,

andb, if |(a,b) is large enough theB, has a Cantetike structure.

Proof: -
We claim that if |@b) is large enough then|(ab)>K,, Wwhere

Kay =inf{K >0:K satisfies the property in lemma (1.4.})
We first estimate the number, . Let G be the initial form of T and
writex =rcosd,y =rsind, 60[0,2n], then
T(xy) 2|G(x,y)| -|(a,y +a,b)|
2|G(x, y)| - |(a,y.0)| —|(a,b)|
>r?0-r|(a,sing,0)-|(a,b)|

Whered:mi[romg ]|G(cost9,sin0)|. Note thatois independent odand b . Also note

that if
r = (2+|(a,sing,0) + \/(2 +|(a,sing,0))* + 4(a, b)|5)/25

then
r’d-rl(a, sind,0)|-|(a,b)| = 2r

Hence
(2+|(a,sing,0) + \/(2 +|(a,sin6,0))* + 4|(a, b)|5)/25 > Kap
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by definition of K ,, .Hence if|(a,b)| is large enoughK,, is at most of order

|(a,b)|y2, thereforg(a,b) > K ,,, if |(a b)|is sufficiently large.

Now choose a circlecentered at the origin with a radius between,
and|(a,b)|. Let D be the disk bounded by the cirateSinceT (D) consists of
two disjoint areas inside, therefore the ses. =nr>]lT‘”(D) is nonempty and has

a Cantorlike structure ¢

From the numerical evidences that we obtained, weake the following
conjecture:

Conjecture (1.4.3):
Let T be a map ind, with the standard form (1.4.3a). For any fixed a,,

a,and b, with a, =b,and small value ob, and not small value of, T has
attractor in the regionR={(xy): -545< x< 545 & -29<y<15 }. Moreover,
the iterates of each point i will converge top = (1.84881.2267).

Theorem (1.4.4):
Let T be a map ind, with the standard form (1.4.3b). For any fixed a,, a,,

a,, by, b,, band b, if |(ab) is large enough them, has a Cantetike
structure.

Proof:

The idea of this proof is the same as theorem3),.the difference is only for
choice ofr, in this case we shall choose

r > (2+|(a;cosd +a,sind,b,cosd + b,sing)|

+ \/(2 +|(a;cos8 +a,sind,b,cosd + b,sind)|) + 4(a, b)|5)/25

Conjecture (1.4.4):
Let T be a map with a standard form (1.4.3b). For soalaeeg ofa,b,as and

b's, that give critical set as a line and the basithefsink near the origin then

we shall conclude thathas an attractor and periodic points on the basin
boundary.
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Chapter two
“Pbsorbing Areas and /mvariant Areas of 7Two

Dymensional Nownvertible Haps”

In this chapter, we shall study the structure ofaémsorbing areas and
invariant areas generated by a noninvertible mapthef plane. Here the
term”area” only refers to a closed and boundeaasetelated to some measure.

The notion of absorbing was introduced at firstGayymowski & Mira in
1977, was developed by Kawakami & Kobayashi in 18i8 by Baraugola in
1982, 1985 [4& 29].

2.1 Definitions and General Properties

We shall start this section by definition of an@iéng area, and then we
shall give some properties of this area and ofnaariant areas, we shall give
some properties and important results ¢, az,) map.

Definition (2.1.1):[24]
An aread' 0 0% is called an absorbing arearain-mixed type if it satisfies:
() T@)Od' ie.itis either invariant, or strictly mappedantself,
(i) A neighborhoodu (d") exists such thatU(d')) DU (d'), and any point
xOU(d)\d' has a finite rank image in the interior &f,
(i)  The boundaryad’ is made up of a finite number of segments of
critical curvesLC,LC,,...,LC,.

From definition (2.1.1) we can conclude that anocalbisg aread’ is implicitly
associated with the existence of an attractingpsleinging tod'.

Definition (2.1.2):[29, p.187]

An aread’ 002 is said to be absorbing of mixed type if it sagisf
(i) T Od,
(i) d' is attracting, a neighborhoad(d’) exists such tharu ') Du(d"),
and almost all the pointsJuU(d’)\d’ have a finite rank image in the interior
of d',
(i) The boundaryad’ is made up of segments of critical curves
and segments of the unstable get of a saddle fixed point, or a



Chapter2: Absorbing areas & invariant areas of two dimensional noninvertible maps 31

saddle cycle (periodic point), or even segmentsevtral an stable

sets associated with different cycles.
The notion of a mixed absorbing areas was firgocicing by Borugola &
Cathala in 1992. In definition (2.1.2), almostg@dints inu(d’)\d' have a finite
rank image in the interior o’ means any poinkOU(d")\d’" has a finite rank
image in the interior ofi’ except the poink of the external segments of the

stable setav® of the saddle points tend toward the boundary Isagdint by
infinite iteration.

Let s be a non-mixed are@’), or a mixed aregd’). If s is non invariant
absorbing ared(s) O0's, then an invariant set can be obtained as:

k
(a)either an integek exists such thas=(T!(s) is an invariant absorbing

j=0
area.
or (b) S=("\T'(s) is a closed invariant absorbing set .

j=0

Definition (2.1.3):[19]
A mixed (non mixed)chaotic are# is an invariant mixed (non mixed)
absorbing area with chaotic dynamics in the whodaa .

Let T be a(z,-z,) map of the plane. For such continuously differdsiganaps
T it is recalled that the critical curveC separates the plane in two regians
and z, such thatz,nz,=LC, z,02,=0°. Like LC the curveLC_, separates
the plane in two open regiorR, R, such that RnR,=¢, RnR,=LC_,
R OR,=0%. For every pointxdz,, let ,%(X)OR, T,"(X)OR, be the two
first rank preimages oX .

Before we give some properties ofza-z,) map, we shall give two basic
propositions which are preparatory of these progert

Proposition (2.1.1):[29, p.208]

Let A be a closed subset of the plane. Then the paitgsnal to A
which can be mapped on the boundary of) belongs t&An LC,.
Proof:

Let p be an interior point ofa, pOLC_. Since p is an interior point,
there exists a neighborhoad of p such thau(p) O A, by the inverse mapping
theorem we assumg&:U - T(U) IS one-one,u is open thenT(U)OT(A) is
open i.e.T(p) is interior point ofT(U) .
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Remark (2.1.1):
If AnLC, =g, thendT(A) =T(0A), i.e. only points of the boundary @f

are mapped on the boundaryTgh,) .

Proposition (2.1.2):[29, p.208]
Let A be a closed subset of the planedAfis made up of points of critical
segments, then also(A) is made up of points of critical segments
Proof:
Let zOoT(A). Then z is an image of a point belonging either to the

boundary ol or to the interior ofA.

If z is an image of a point belongingota thenz belongs to a critical curve (as
the image of critical points are critical point$hz is an image of a point
belonging to the interior oA, then from prop. (2.1.1) is the image of a point
belonging toLC_,, thusz belongs taC naT(A) . ¢

Remark (2.1.2):

The segments of the unstable set of a cycle arepedapy T into
segments of the same unstable set.
The following proposition is a consequence of pf@QA.2) with remark (2.1.2).
It appeared in[29, p.208] without a proof, we sigale a proof.

Proposition (2.1.3):

Let s be an absorbing area, mixed or not. Then @(spis an absorbing
area of the same type as
Proof:

Let s be non-mixed absorbing area. To shays) is a non-mixed

absorbing area.

Sinces is an absorbing are@(T(s)) =T?(s) I T(s) and a neighborhood(T(s))
exists such thatr (U (T(s))) DU(T(9)).

Let xOU(T(s))\T(s), to showx has a finite rank image in the interior o) .

x Is an image of a point ib(s)\s i.e. C pdU(9)\s such thatx=T(p), sinces

is an absorbing area, then there exists an integeich thatr*(p) Os, hence

T () =T*(T(p)) =T**(p)Us

I.e. x has finite rank image in the interior 0fs).

By using prop. (2.1.2) the boundary ©fs) is made up of a finite number of
segments of critical curves.
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A similar proof can be used to prove the other case

The following interesting proposition is stated[80] without proof, we shall
give a proof.

Proposition (2.1.4):Let T be a(z,-2,) map
(1) X0z, = THX)={T,Y(X)OR, T,(X)OR},
(2) XOLC=>T,(X)=T,(X)0OLC,,
3) XO0z,=T"(X)OZ,, n=1,
(4) T(Z,)0Z,.
Proof:
(1) Follows directly from the definition afz, - z,) map.
(2) We knowLC =T(LC,) andT*(LC)O LC,,.
Since we have two determination of the inverse map T,* and each
inverse is defined in different regionR, R, respectively then
T(X)=T,(X)OLC_, wherex OLC .
(3) LetxDOz,, X,=T"(X), n=1
Then X is a preimage of rankn of X, .Since each point irz, has no
preimage therefore, can not belong t@, and thux, 0z, .
(4) Let xOZz,, X, =T(X).
Recall thatx is a preimage of rankl of X, and thenx, must belong taz,
because the plane consists of two regmns, each point inz, has no
preimage, whilez, contains all points having two distinct preimages.

The following proposition gives a way of constingt an absorbing area if it
exists whenr, contains a repulsive focus.

Proposition (2.1.5):[29, p.212]
If A, is a closed subset at,, bounded by critical curves segments and
segments ot.C_, then:
k
(1) a={JT'(8,) is bounded by critical curves segmentg >1;
i=1
(2) T"(»)is bounded by critical curves segmenta>1.
Proof:
(1) Fork=1, A=T(4,)
We know that no internal point @, belongs taC_, oT(a,) =T(94,) .
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Thus, aa consists of arcs of critical curves i.e. (1) isdsbkincedT'(a,) made

k
up of arcs of critical curves (from prop. (2.1.8) all i, oA 0| JoT'(4,) , it
i=1
follows thatoa is made up of arcs of critical curves, therefdre(olds for all
k>1.

Proof of (2) follows immediately from (1) and prd@.1.2).

Another proofwe shall use induction to prove (1) First we willope by
induction if A, is a closed set bounded by critical curves, thme@,) is
bounded by critical curves.

For n=1 the statement is true by prop.(2.1.2), suppossstdtement is true for
n>1 i.e. if A, is closed bounded by critical curve thena,)is bounded by
critical curves

Now, to showT"(4,) is bounded by critical curves, sinTé(a,) is bounded
by critical curves, then by prop.(2.1.2JT"(4,)) is bounded by critical curves.
OT"(4,) is bounded by critical curve n>0.

Now, fork=1, A=T(4,) is bounded by critical curves as show above.

k
For k>1, oa O JoT'(4,). Hence by prop.(2.1.29a consists of arcs of critical
i=1

curves.¢

Corollary(2.1.1):[16]
Let A, be a bounded area whose boundary consist of ar#ioél lines

k

anda, = JT'(a,). If there exists an integen such thatt(a,)0A,, thena is
i=0

an absorbing area.

Proof:

From the assumptions it follows that, consists of arcs of critical segments
because this is true fan,, and the consequents of critical segments arnearit
segments ; moreover , there exists a basin ofcatraD of A,, as the points
belonging toA, \T(A,) have antecedents outside.+

It is possible to restrict the analysis of asymiptbehaviors of a sequence of
images with increasing rank, to the points of asoating region. This is shown
by the next proposition which is stated in [29,18Pwithout proof, we shall
give a proof.
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Proposition (2.1.6):[Elimination process]
Consider az,-z,) map then
(1) eitherT**(Z,) 0T(Z,) for anyk >0, which permits to define
V=NT"Z,);
(2) or there exists a finitej such thatT'*(z,)=T'(Z,)which permits to
define
VvV, =T(Z,).
In both case¥ andv, are invariant absorbing regions. The boundaryacheof
v andyv; is made up of a finite number of critical curvgsents

Proof:
Case (1) to showT(v) OV

T(V) =T(kQOTk(Zz))
= ﬂTk+l(Zz) 0N Tk(zz)
k>0 k>0
l.e.V is an invariant region.
From prop. (2.1.2y is bounded by segments of critical curves

Case(2) T(V)=T(T'(Z,)
=T"(Z,)
=T(Z,) =V,
i.e. V,is an invariant region, by prop. (2.1.3), is made up of segments of
critical curves.

2.2 Properties of Absorbing Areas & of Invariant Areas

In this section we shall study some of the propsertf absorbing and
invariant areas for@, -z,) maps. The following proposition give some of the
properties of the absorbing areaof either non mixed type, or mixed type,
invariant, or non invariant it appeared in [29,28Pwithout a proof, we shall
give a proof.
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Proposition(2.2.1):
Let s be an absorbing area fofzg-z,) mapT. If Z, # ¢ thensn zZ, = ¢.

Proof:

It is known that each point in region, has no preimage, from the
definition of < each point ins has a finite rank preimages therefore there is no
common point between andz, i.e. sn Z, =¢.¢

Proposition (2.2.2):[17]
Let T be as before, and let(s) = Sthen
(1) any point pOS has at least one infinite sequence of preimages in
S;
(2) any pointpOs has all its preimages of rank,..., out of S.
Proof:- The proof is immediate.

Let A be a closed subset of the plamecan be simply connected set, or
a multiply connected one, a non-connected one rieavaor not, absorbing or
not, mixed or not.
If An LC, = ¢, then the restrictiom|A of T is a map with a unique local inverse

in A. Thus, to characterize properties due to the mogueness of the inverse
of T in A, it will be assumedn LC, # ¢.

Definition (2.2.1) :[4]
The largest subset afn LC_, mapped byr on the boundary of (4), is
denoted by ,, i.e.g, OLC, n A, thusg=T(g,) 0dT(A) n LC.

The above definition is constructive, because ftbm setAn LC, the
points not mapped on the boundary Tfa) are eliminated, i.e. the points
mapped in the interior of (A). We shall refer tag as “aray” whichever is its

structure.
The following result appeared in [29, p.222] .

Proposition (2.2.3):
Let T be gz,-z,) map, andA be a closed subset of the plane. Then
T(AnLC,)=T(A) nLC=0T(A) N LC
Proof:
T(A) n LC =dT(A) n LCis immediate.
Let pOANnLC,, thenT(p)OT(A) n LC is obvious .i.eT(AnLC,)OT(A)n LC.
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Let p, 0T(A)n LC then p, is the image of at least one pointafbut it is also a
point of LC, thus it has only two coincident rank-one preinsage a point
belonging to LC,. Thus p,=T(p), where pOAnLC,, I.e.

T(ANnLCOT(ANLC,)

OT(AnLC,)=T(A) nLC ¢

Remark (2.2.1):
(1) Proposition (2.2.3) when applied to a closedhrrant setA, it follows
that g =0An LC is bounded by a finite number of critical segmeatsl g is
called generating arc @h.
(2) From prop. (2.1.1) we can deduce that the mges of boundary points
of T(A) not belonging tg, are boundary points of. because no interior
points of A can be mapped on the boundaryrof) in points not belonging
to LC. Thus another proposition can be stated (it agokear [29, p.223]
without proof ), we shall give a proof.

Proposition (2.2.4):

let A be a closed ang0aT(A)\ g then all the rank-one preimages pf
in A must belong t@A.
Proof:

Let pdoT(A)\g, thenpOLC {since g=T(g,) 0dT(A) nLC }

So T*(p)OT™LC)=LC,OLC, and henceT *(p)OA, i.e. T*(p) IS not an
interior point of A.
Thus by prop. (2.1.1) all rank-one preimagespofin A belong toodA i.e.
T(p) D0A.¢

We remark that propositions (2.2.3)-(2.2.4) hfad any closed area
and for any invariant area with a finite boundaryot, absorbing or not, mixed
or not.

The next proposition may be used to characterize= ragplicitly the boundary
point of an invariant area which appeared in [15] without proof, we shallaiv
a proof.

Proposition (2.2.5):
Lets be a closed ser,(S)=S , and pdos then
(1) either a finitek , k>0 exists such thapOT*(g) O LC, ;

(2)or T™"(p)n SOAS, 0 n=0.
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Proof:
Let pOos then eitherpOLCor pOLC.
(1) If pOLC then pOLCnaS i.e. pg sSince g is generating arc 08S
{remark (2.2.1)}, then there exists a finite integé such that
pOT*(g) O LC, if pOLC, the proof follows by prop.(2.2.4).

(2) The proof follows directly from prop.(2.2.2.

The next proposition justifies the fact thgt(or equivalently_,) is called
“generated arc”. It appeared in [29, p.224] withpubof, we shall give the
proof .

Proposition (2.2.6):

Let S be a closed area with finite boundamyS)=S and L, 0dS a
segment of critical curvelLC,, k=0. Then its critical preimages
Le.....L, L, =L 0Og also belong to the boundasg.

Proof:

We knowg =T(g,) 0dT(S)n LC=8Sn LC i.e. g belongs to the boundary
0S. The critical preimagesL,_,...,L, belong to the boundarys by
prop.(2.1.1).

Remark (2.2.2):[29, p.224]
When we apply prop.(2.2.6) to a non mixed invaremeias with a finite

M M
boundary an integem exists such thaasO( JT'(g) = JT"*(g,,), whereT'(g)

i=0 i=0
Is a critical segment that belongsuto, . when we applying this proposition to a
mixed invariant area (i.e. its boundary is madetip finite number of critical
segments and segments of saddle unstable setiteaifitegerm exists such

M M
that all the critical segments a3 belong to| JT'(g) =T (g9.,), while a
i=0 i=0
segment ofds belonging to some saddle unstable weéthas at least infinite
sequence of its preimages am' belonging to the boundary of which

converge toward a saddle cycle.

The extra preimages of the critical segments..,L,, L, (i.e. non critical
preimages of critical segments) on the boundarysaannot belong to the
interior of S. Moreover whens is a non-mixed area, the extra preimages
cannot belong to the boundary 8f thus the extra preimages of such segment
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must be out ofs, except at most isolated points aa which may be critical
points. The following example illustrates this siion.

Example(2.2.1):[29, p.192]
Consider a map, predator prey model of two species
X' - Xeb (1-.1x)-ay
y =x(l-¢e?¥)
with a= 0.15b[1—e‘-6b]'1, theoretical studies of which can be found in [24]
The curva.C, is defined byx=0o0r xz%)eay, the critical curveLC separates

the (x,y)plane into two regiong, and z, and whose equations is:

y =1db-1-In(0.1bx)]/b
when b= 263, a self intersection of.C, occurs at a point,. The qualitative
figure (2.2.1) represents the above situation.

Fig.(2.2.1) L segment of extra preimages, segment of critical curvel

segment of preimages. are two non-connected segments belonging,toot
belong to the boundary & (the two segments @iSn LC, drawn with thicker
lines), LCNL =a,Uh, Uh,.
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Proposition (2.2.7):[29, p.242 ]
Let S be an invariant area with a finite boundary. Tlen is not be an
invariant.
Proof:
Let pOddS so C qOg such that p=TY(q) {from remark (2.2.2)}
T(p)=T"*(q) whichisinsS i.e. T(p)OT(dS)
OT(S) # 0S.4

2.3 Construction of Absorbing Areas & of Invariant Areas

We studied in the previous section some propedfeabsorbing areas
and invariant areas. In this section we shall stindyconstruction of absorbing
areas, invariant areas from bounded areas whosedhoas are made up of
segments of the critical curves with finite rank.

Our goal of this section is to give an algorithras ¢onstructions of absorbing
areas, invariant areas for a noninvertible mapypé taz, - z,) or equivalent to

such maps. This algorithm is described in [19,2991 & 35].

2.3.1 Construction Algorithm of Absorbing Areas

The structure of this algorithm depends on theafigke critical curves to
obtain closed bounded regions (will be denotedabyhose boundary consists
of segments of critical curves,,i= 012...,N(Nis finite integer), the such
area is an absorbing .

First we suppose that the first rank critical cun@ and the curveC
of merging preimages are made up of only one brahelse two curves having
only one point of intersection say. When these two curves intersection in
more than one point, one of the them plays thealits.

We will adopt the following notation:

A segment of curve will be represented @y3) wherea , g are the two

endpoints. The poind, represents theth iterate ofa, i.e. a, =T"(a,) .

Now, we are ready to describe the algorithm of troe§on as:
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Let N be the first integer 0, such that the segmeii, a,,,)of LC, (LC,
critical curve of rankN) intersects LC, at a point say b, i.e.
b, O(ayay,,) N LC, .
Then, define a simply connected aredounded by
0A = (ba,a,..ayay.b)
where
(b,a) is a segment ofC, i.e. (b,a)0LC ,
(a,a,) Is a segment ofC,, i.e.(aa,) OLC,,

(a,a,.,) iIs a segment ofC, , i.e. (a,a,,,) O LC,
(ay.qb;) is @ segment ofC,.,, i.e.(ay.0)0LC,,
b, =T(by). & =T(a)

S0, we gefa is an absorbing areas.

Algorithm (2.3.1) may not work for certain examplaad it dose not include all
possible cases of absorbing areas with a finitentary ( i.e. boundary made up
of a finite number of critical segments ) i.e. iayrhappen this is not absorbing
area , that will be seen in the illustrative exasspl

Remark (2.3.1):
1- If there are more than one point of intersecti@iween the segment
(aya,,,) andLC_ we choose the poing, that is farthest frona, .

2- When the above algorithm work, then we distisguwo possible cases
for b, :

(i) b,0(a,a,) O LC or equivalentlyb, O(aa,) O LC,,.

(i) b, O(a,a) OLC or equivalentlyn, O(a_a,) OLC, .

Let T be a map of type(d, -z,), recall thatLC_, divides the planel?
into two open region®, R, such thatR nR, =¢, RinR,=LC,, R OR, =02,
Let ¢ be a fixed point ofT with ¢0OR,. a,0LC_, nLC. Then one of the
following cases is possible:

(1)None of the successive images of the segngenf) intersect

LC,, .

In this case we can obtain an absorbing area lasvil
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In this situation one of the two inverse ngp gives rise to a ranks preimage
(a_,a.,.,) Of (a,a) which intersectsLC, a first time at the point say,
fig.(2.3.1a).

Necessarily(a,h,) O (a,a,), thusT'(a,h,) =(ah) O0T'(a,a) fori>0, soh OLC, ,
h_,0LC, and h OLC fig.(2.3.1b). Now applying construction algorithm

(2.3.1) to obtain an absorbing arem boundary by the closed curve
oA =(h,aa,..a,h,) 0R, where (h,a) IS a segment of critical curvecC,

(a,h,)dLC,, (aa,)0LC, i=22..m-1.
Figure (2.3.1) illustrate this situation.

Fig.(2.3.1) Non of the successive image of ther®d (a,a,) intersectLC .

(2) One of the images ak,a,) has a non transverse contact (order

one, or order zero ) withC .

In this case, letb, =(a,a,.,) n LC, be the non transverse contact point. An
absorbing area is defined as in the construction algorithm are bloundary
A is 0A = (ba,a,..aya,,,0) O R: With dAn LC, =h,.

(3) An image of(a,a,) has a transverse intersection with, . Let N be the
least integer such thgt,a,.,) intersectsLC, .let b,0(a,a,,,) n LC, be the
intersection point farthest fror, .So we apply the construction algorithm to

obtain absorbing area , the two possible situaimpear in remark (2.3.1) may
occur .
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2.3.2 Determination of Invariant Areas

Recall that when we apply the construction algarmitto construct an
absorbing area\ the two possible situation that appear in the r&nfa.3.1)
occur :

(i) b,0(a,a,) O LC, or equivalentlyb, O(a_a,) O LC,.
(i) b,0O(a,a,) OLC, or equivalentlyb, O(a,a,) O LC,.

The two situation are different because in casa @) 0A while in case (ii)
T(A)OA, or T(A) is not comparable witla. i.e. T(A) is neither include im
nor includesA . In both cases (i) and (iip, may be absorbing ,or not.

In fact, in the case (9A IntersectsLC in two pointsh, anda,,

l.e. (b,a,) =LC_, nA and (b,a,) O (a,a,). Then under application af the whole
boundary 4A is construct again and new parts may only conwan fr
TANR)=T() =0, thus if T(AnR)OA then the arear is invariant |,
T(A)=A as in fig.(2.3.2a), while iff(An R) is not include inA, T(a)OA
fig.(2.3.2b), in this case™!(A) OT™(A), O m=0. Thus, either a finite integer
M exists such thatV*(a)=T" (A), so we ged”"=T"(A) is invariant areas, or
a finite M does not exist , in which case we define

d, =ULT () (2.3.1)

the aread!, may be bounded or not. when it is bounded, it bb@absorbing or

not, and generally this situation denote a bifuoratesulting from the contact
of the area boundary with its basin boundary [D7&21].

In case (ii)oA intersectsLC, in two pointsb,and c,, wherec,O(b,a,) I.e.
(b,c,) O (b,a,) SO that the boundary of include the segmentba,), while
T(A) n LC =(bc,) O (ba,), from which it appears thata) O A is not possible .
It follows that eitherT(a) O A fig.(2.3.2¢) orT(A) is not comparable with
fig.(2.3.2d).
When T(aA)OA thenT™(A)OT™(A), m=0, so that either a finite integew
exists such thati"=T" (a) is invariant or a finiteM does not exists, in which
case we define

d, =N5,T' (D) (2.3.2)
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Since each areg(a) , k=0 is absorbing , thend!, is bounded and absorbing.
Case (ii) is more complex whara) is not comparable with . In the simplest
case a finitev exists such thad” =T" (a) is invariant . However it may occur

that a finiteM does not exist, this situation is more compleis possible to
define

A, =UT!(D) (2.3.3)
this area may be bounded or not. If it is boundteday be invariant or not .
When it is not invariant , if there exigtsuch thatN’_ T'(A,) =T*(A.), then
this intersection is an invariant area. If theraossuchk thenn’_, T!(A,) is an
invariant.

0 —

&
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(d)

Fig(2.3.2) An absorbing area constructed by algori(2.3.1) (a):b, 0(a,a,),
T(8) =4, (b) b, O(aa,),T(2) 04, (¢) b O(aa,), T(A) T4, (d) b U(aa),T(A) is
not comparable with .
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2.4 Bifurcation

The term bifurcation generally refers to somethingplitting a point “
with general a system involving a parameter, ireto change in the character
of the solution as the parameter is changed cooisly .
At the beginning of this section we shall give tihefinition of bifurcation
followed by some types of bifurcation that be is&rin our work , illustrative
example will be given in chapter three .

Definition (2.4.1):[ 23]

Consider the system,, = f,(x,);x00",A00* (2.4.1)

one is especially concerned how the phase poufajR.4.1) changes as
varies. A valuel, where there is a basic structural change in thase portrait

is called a bifurcation point.
2.4.1 Some Types of Bifurcation

1-contad bifurcations: [17, 20& 25]

This basic bifurcation results from the contacaddasin boundary with a
critical curve segment not belonging to a chaoteaaoundary, also it occurs
when a critical curve belonging to a chaotic areardary. Such a bifurcation
leads either to the chaotic area destruction, osudden and important
modification of this area. Even § is an absorbing area, the contact bifurcation
may occur.

2- Bifurcation of non smoothness points on boundaries of invariant
areas.[29, p.231]

Consider a smooth map area calledr constructed by the algorithm (2.3.1),
and there is an integem such thats=T"(A) is an invariant area with
SnLC, #¢, being finite i.e.dS made up of a finite number of critical
segments. Lep0aS\ g the non smoothness a6 may correspond to one of the
following cases:

Case 1. Before and after the bifurcation the contact leetmoes and T(dS) on
LC at an endpoint of the generating segmgns smooth. At the bifurcation
the contact on.C in not smooth, due to cusp pointiat,.
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Case 2: A point of non smoothness of tl&e boundary may also born when a
self intersection of a critical arc, occur, atp0L, , a point p is called a
double point ofL, .

Case 3: A point of non smoothness of tl& boundary may also created at
when two critical segments of different ranks aretensect i.e.
pOLC, nLC,, k# |, p is called an angular point .

When the boundary ofs is smooth atp, p is said to be an ordinary point of
0S.

Also, there is other types of bifurcations when tlag¢ure (stability) of a fixed
point changes as some controls parameter chargefollowing definitions
show these types.

Definition (2.4.2):[29, p.63 ]

Let T be a noninvertible map depending on a parametek SBR bifurcation
value of a fixed point is a valug” of the parameten, such thati <A” for

(respectively A > A" ) the fixed point is expanding but not SBR; far A”

(respectivelys < A7) the fixed point is a SBR.

Definition(2.4.3):[ 14 ]

A homoclinic bifurcation ( or homoclinic explosigrof a fixed pointp" occur
for a parameter valug = A, if crossing the valu@” infinitely many homoclinic
points of p"” appear ( or disappear ).

2.5 Multiply Connected (non mixed ) Invariant Absorbing Areas .
Bifurcation of Annular Absorbing Area.

This section is concerned with the characterizatodbnmultiply connected
invariant areas with holes surrounding a repulsivee or focus.
Let T be a(z,-z,) map andd” be a connected non mixed invariant absorbing

area with finite boundary such thatn LC_ # ¢. Let ¢ be an expanding fixed
pointof T. p0OR,, SOT, (¢)=¢ andg_, =T (#)UR
Define

5,=d"nR: and d;:LNJT“(JO):dlDJZD....D N (2.5.1)

n=1
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N+1 N
where N is the least integer such thdT"(5,) O(JT"(5,) or equivalently
n=1

n=1

N
oy O Jo, where s, =7"(5,) such a finiteN exists because” is assumed to

n=1

have a finite boundary .
So, there are three cases that may be distinguished
(i) T(dy) Od,
(ii) T(d))=d. Od"
(i) T(d.)=d. =d"
When case (i) or (ii) occur , then the set defibgdv =d"\d!

is nonemptyw is called the hole surrounding the repulsive fipetht ¢ and
d"=w0d.[9 & 29, p.277].
The external boundary d, of d. is defined as the boundary aof",
0.d. =od"and he internal bounda®yd, of wW:9,d. =dd;\a.d. = oW.
From the definition ofd. ,one has:

¢,0d" = 9,09, - ¢,0d,.

Here, we will characterize the bifurcation whielads to the transition between
situation (i) and (ii) (given by props.(2.5.1)) atite transition between the

situation (ii) and (iii) (given by props.(2.5.2)But before we give these
propositions we need the following definition:

Definition(2.5.1):[1, 10 & 36]
An annular absorbing area is an absorbing areanot@ilar shape, that is a
simply area deprived of the point of a hole irsitnterior.

Proposition (2.5.1):[29, p.281]
Considerd, defined as is (2.5.1) ansl =d"\d,, .
T)Od, iff wnlLC,#g.
Proof:-
If WnLC,#¢,thenwn R belongs taj, but nottod. nR .
It follows that the generating segmentddf, d" n LC_,, is wider thand, n LC_
which impliesT(d" n LC_) OT(d, n LC,),
i.e.[d"nLC10OT(d.)n LC.
Observing that by the constructiod"nLC=J,nLC=d.nLC, therefore
(d. nLC)OT(d.) n LC , which meang(d.) Od. .
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Let T(d,)Od, , assume thaw n LC_, =¢ , thend, n LC_ =d' n LC_,

I.e. the generating segmentd@f belongs tod, . Then the external boundary of
d. cannot be reduced, so thgtl.) = d. which is contradicts the assumption .
SOWNLC ¢ .+

Recall: ¢_, =T7(¢) 00, .The transition from situation (i) ( annular iniaart area
d. ) to (ii) ( simply connected ared’ ) is characterized by the following
proposition.

Proposition (2.5.2):[29, p.285]

A hole w containingg exists - ¢_, 0d". Or equivalently a holgv containing
¢ does not exist- ¢_, 0d" .

Proof:

Let ¢, 0d", theng_ 09, and ¢ O for i=12...,N , which means no hole
surroundingg can existw =¢andgOd. =d" . Cl

Let w does not exist, them must belong to some regiah for i =0 and this
can occur only ifp_ 05, i.e ¢_ 0O0d" .

Whenw exist, its points satisfy the following propertating that both the rank
—one preimages off are out ofd! .

Proposition(2.5.3):[29, p.286]
Let w#¢ be a hole. Then
(i) T W)nd, =¢;

(i) T, "W)OO,nW;

(i) T,"W)nW=9p.

Proof:
(i) Let pOw then

THP) =T (P UT, (p), T(PMOR, T, () UR,. .
If T,%(p)0d. then pOT(d.)Od..
Also if T,%(p)0d. thenpOT(d.) Od...
l.e. pOd. which is contradicts the assumption
None of the preimages qfbelong tod.. Thus (i) is proved.
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(i) Let pOw and considering,*(p).

SupposeT,*(p)0R, nW , SO T, (W) must containg. Let » be a continuous
path contained inw, connectingg to p i.e.nnd. =¢ .

Then T,%(7) is a continuous path, connecting*(¢) and T,*(p), Since

T, (¢) =¢0OW andT,*(p)OR, out of d. (thus out ofd" ), thereforeT,*(/7) must
intersectd., i.e. » must intersecti, which is contradicts the assumption . Thus
(i) is proved.

(iit) is proved similarly as (ii).

T,'(W) must containg_ ( external tod” ) , which implies thatr,*(w) cannot
belong tow n R, and thus must be iR, out of d". ¢

Remark(2.5.1):
1- From properties (i) and (ii) in propos.(2.5.3) wancconclude that
T '(w)nd" =g.

2- The global unstable set @f can be defined by
W (g)=JT"()

n=0

And the global stable set gfis w*(g) = JT™"(¢)

n=0

whereu is a neighborhood aof .
The following propositions gives some propertiesvof

Proposition(2.5.4):[17 & 19]
WOW!(9) « ¢ =T, (W)

n=0

Proof:-
If woOw'(¢), then any pointp of W must have at least a sequence of

preimages tending towaugl .
From propos.(2.5.3) only the successive applinatibT,* give this property.
The converse is obvious.

Proposition(2.5.5):[17 & 19]
Let w OW"(¢). Then no cycle, except , can belong tav .

Proof:-
The proof is immediate consequence of propos4R.&.
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Proposition(2.5.6):[17 & 19]
Let W # ¢ . Then no homoclinc orbit af can exist.

Proof:-
The unstable set af , W“(¢) = JT"(U) necessarily belongs i .

n=0

The stable set op consists ofg_,, external tod” ( by props.(2.5.2)), and all the
preimages of_,, also external ta" ( by invariance ot" ).
Then when w exists, W'(¢) 0d" while [W3(@)\g¢]nd"=¢ so that

W (@) nW3(P)]\ g = . ¢

The following proposition appeared in [29, p.288lheut proof, we shall give
the proof.

Proposition(2.5.7):
Let d"=w"(¢) . Then the bifurcatiop_, 0od which causes the disappearance
of a holew surroundingg , is the SBR bifurcation of .

Proof: -

The boundary ofd" is made up of a finite number of critical segnsent
belonging to the image of generating segmepgts=LC_ nadd". At the
bifurcation ¢_ 0ad" implies ¢_, is a critical point. Thug_, has a finite rank
preimage (sayy) belonging tog_,, i.e. T'(q) = ¢_, for integeri , T (q)=¢. At
least one infinite sequence of preimages af exist Iin d"

( since d” is invariant )and if a sequence of preimagesqoéxist , tending
toward ¢, then a homoclinic orbit exist, i.@., OW"(g) nW*(g) . ¢

We will introduce the notion of area of branchinginis to distinguish the
sequence of preimages i related to a given point od” in the following
definition.

Definition(2.5.2):[29, p.288]
Let S be an invariant area generated b§za-z,) map. The area of branching
point & is the subset ofS made up of points having both the rank- one
preimages distinct irs , that is

qO0S < T,7(q) #T,*(q) both belongs t .
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Remark(2.5.1):
From definition (2.5.2) we see that :

1- 5=[T(Sn R)]n[T(Sn R,)] and o009, , where 9, =T(J, ), with J, =Sn Ri
defined as in (2.5.1).

2- If s=d",q0d"\J ,then onlyT,*(q) or T,*(q) belongs tad". In particular
if q0o,\d , then onlyT,™(q) Od" otherwiseT,*(q)0d".
3- T,%(S) OR:nS (2.5.2)

Proposition(2.5.8):[ 29, p.289]
T,(S)0R:NS < 3=3, =T(Sn Ru).

Proof:-
Assume thatr;*(S) 0 R. n S , then any point o, (which are the only points of
S havingT,* in s ) also hasr,;* in s, thusd =g, .
Assume thato =g, . The invariant ares is such thats=w 0 (s,0...04,),
wherew may be empty or not. It was already proved thaw is not empty,
then T,*(w) O R, OW. By assumptiort,*(3,) 0 S and thusT,*(5,) DSn R: .
Consider 1,%(5,),i =12,...,N. Writing , 6 =T(J_,nR,)OT(5, nR).
Thus,

T,%(4)=(04nR) 0T, (T(S nR)),
if (5,nR)O(SNR,) not empty and ifT(5_, nR)OJ not empty, so that
MG, nR)OR NS. ThusT,*(5)0(R,n S). ¢

The following proposition shows that such a bifuima is the SBR bifurcation
of ¢ with less effort required.

Proposition(2.5.9):[29, P.290 |
Let d” be invariant absorbing area
T,%(g,) - ¢ asn - (2.5.3)
Then the bifurcatiop_, 0ad" is the SBR homoclinic bifurcation @f .

Proof:-
Since,¢_, 0ad" therefore a finite rank preimage g¢fbelongs tog, =LC_ nd",

T*(q) =¢_,, for integerk >0and by assumptiog_, has a sequence of preimages
in d" which converge towarg . Thus¢_, which belongs to the unstable set of
¢, also belongs to the unstable sepofe
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The property (2.5.3) is not sufficient to conclutieat d"=w"(¢) . The
following proposition gives sufficient conditionsrfd” =w"(¢).

Proposition(2.5.10): [29,p.291 ]
Let d” be an invariant area which satisfies(2.5.2). Then
(2.5.3) holds- ¢ =(T,"(d").

n=0

Proof:-
If ¢=T,"(d"), then T,"(g,) - ¢ is obvious . We prove now the converse.

n=0

Denote B=d"nd,. By assumption (2.5.2) holds, thug*(d")OB. T is
uniquely invertible inB by T,* and hasT,*(d") O B
andT,*(B) =T,*(dB) .
By successive iterations of* a sequence of embedded areas are obtained ,
T,"Y(B)OT,"(B), On=0 the boundaries of which satisfy
o1, ™ (B) =T,*(dT,"(B)) .
The critical segments of the boundary ®fhaving necessarily a finite rank
preimage byT,* on g, embedded areas with boundaries made up of points
belonging to some&)(g_) are got , and such points converge towardnder
T,* by assumption , thug =("_T,"(B) . ¢
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Chapter three
“Nustrative Examples”

As we observed in the introduction, much of the work in the field of
dynamics of planar maps, is done on particular examples, and then observing
certain phenomena. For example see[) +, 16, 18 & 20].

In this chapter, several examples will be considered to illustrate the concepts
defined in the first two chapters, and some observation will be made on the
dynamics of the maps, particularly on the absorbing areas.

Recall that algorithm (2.3.1) does not guarantee that a closed area
Awill be constructed is absorbing therefore we shall verify that a closed area
A is an absorbing area by satisfying the conditions of the definition of
absorbing area numerically and if we succeed in doing that, we shall try to
apply what has previously been mentioned in the preceding chapters, (i.e.
chaotic area, invariant area, bifurcation types).

It is worth nothing that results presented here were essentially obtained
via a numerical method, but guided by fundamental considerations stated in
chapter two and using the critical curvetool.

In al examples we shall use Matlab version 6.1 Software for
numerical computations and for plotting figures.

3.1 Examples of Absorbing Areas

In this section we shall give some examples that illustrate some
phenomena on absorbing areas.

Example (3.1.1): Consider themap T defined by

X' =a-by-x?
T: , With bz 0 (3.1.1)

y' =x°
It is easily seen that T is not invertible. T has two fixed points (x,y)
where x=a-(b+1)y, y=(2a(b+1)+1+./4a(b+1)+1)/2(b+1)2.Since T is red
map, it must have real fixed points. Thus x and y arerea if a=-12/4(b+1)

and bz -1.
The curve LC_, is given by x=0, the equation of the critical curve LC is

given byy=0 . Recal that LC divides the plane into two regions. Z,
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satisfies y <0 where each point has no preimages andz, with y>0 where
each point has two first rank preimages. LC_, divides the plane into two
regions R, R,. R istheregion x<0, R,with x>0.

Now we shall take some values of the parameters a and b to study the
dynamical behavior of the map (3.1.1).

For a=1, b=1,thefixed pointsof T are:
p, =(-11) with eigenvalues A, =2.73051 and A, =-0.73051, therefore p, isa

repulsive fixed point.

, since the eigenvalues have

—1+4/3i
2

p2=(%,%) with eigenvalues A, =

negative rea parts then p, is stable fixed point . Notice that p,0R and

P, UR;.
Now, we shall apply algorithm (2.3.1) with a, =(0,0). We look for
integer N such that LC, intersects LC, , so we shall find that

b, OLC, n LC_ i.e. N=1, b, =(0,)) and b, =(0,0)0LC, n LC. We construct the
closed area A whose boundary aA = (b,a,a,b,). Before we represent A in a
figure let us compute the equations of LC, and LC,.

The equation of LC is y=0, by substituting thisin map (3.1.1) we get :

x=a-y whichtheequationisof LC,.

Now, to compute the equation of LC, , substitute equation of LC, in map
(3.1.1) weget :
x=a-ab+b/y-y

which is the equation of LC,. So in fig.(3.1.1) the closed area A is
shown. Thisarea A=d’' is an absorbing area since it satisfies the conditions
of the definition of an absorbing area ( non mixed ). In fact, by construction
oA congists of critical curves of finite rank, numerical computations shows
that the successive iterates of any points which either belong to A or to
U()\A, enter A after afinite number of iteration and can not get away after
entering. Also we notice that if we take any point in A, the successive
iterates of this point will bifurcate into three subsequences, each of them
converges to vertex of the region A (represented in afig.(3.1.1) by athicker
line, with point p=(0.5,0.5)).
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We notice that from fig.(3.1.1) b, O(a,a). Moreover, b =a, in this
case either T(A)JA or A is not comparable with T(a). We have seen that
0A intersects LC_, in two points b, and a,i.e. A n LC_, ={b,,a,}, S0 that oA
includes the segment (ba,) and T(A) O A, therefore T™(A)OT™(A), O m=0
and we have fuond M =4 which satisfies T (A) =T""*(A). So d"=T"(4) is
the invariant absorbing area as shown in fig.(3.1.2).

Also, we note T has 3-cycle {b,a,,a,}. d' is achaotic area in the sense of
Gulick since T issenditiveto initial conditionon d'.

AN
AN
« LC-1
15 AN 1
P1 AN
1 \ N |
bo —"h. d
" N LC1
LC2 AN
0.5t / i S A |
e i} LAl c
0 ekt %ﬁ%{ y
ao/ \
0.5 N 7
AN
_1 | | | | | |
2 15 1 0.5 0 0.5 1 15 2

Fig.(3.1.1) d'absorbing area of the map (3.1.1) with a=1, b=1.
Fixed points: p, = (13, p, =(5.5), & =b, =(00), & = (10)& a, =b, =(0
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thicker lineisthe orbit of the point p =(0.5,0.5) which lies on the boundary.

0.9+ \
0.8F AN

0.7} NS
0.6 \\ 4"
0.5+ AN

0.4}
\ .

0.3 \ ™~

0.2+ / ™~ o

0.1’ — \\

—
L — — ! ! ! ! ! ! LN

l
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig.(3.1.2) d"=T"(4) invariant absorbing areas of the map(3.1.1) with a=1,
b=1.

Now, we shall take other values of the parameters a and b, to see the
dynamics of the map (3.1.1), we shal take a=1, b=2,.
p, = (-0.767591879,0.589197293) and p, = (0.434258445,0.188580484) are two
fixed points of T. Numerical computations show that p,, is an expanding
fixed point while p, isastable fixed point. Again applying agorithm (2.3.1)
produces a closed area as shown in fig.(3.1.3) and a numerical simulation
shows that thisareais absorbing A=d’.

In such a case the situation b, O(a,a,) occurs, then we note that
R nA is the region whose boundary is bajab and T(R nA)OA then

T(A)=A=d" isinvariant.
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T has 2-cycle {p, qjwhere p=(021), q=(-10).

\
R1 \ . el R
15 \ -
LC2 \
1 L -
AN bo=a2 A7 LC1
0.5 o AN ]
22 o A
0 ~
Zo / / 3_1 ‘\\ al
LC ao \
0.5 .
\
-1 | | | |
4 3 2 1 0 1 2

Fig.(3.1.3) The absorbing area d'for the map (3.1.1) with a=1, b=2,
a, =(00), a =(10), a, =b, =(01) & b, =(10) .

Again we shal take another value of a and b, for example a=-1,
b=-10, we have noticed that the shape of a closed region constructed by
algorithm(2.3.1) is not changed, but A n R, = ¢ shown in fig.(3.1.4).
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15 ‘ ‘ ‘ ‘
\ R1 R2
1 - AN /a2 K .
05 LC 1/'\ \ S LC2 ]
2 N N B l o
o / /\ f
Z0
- al=bl ao=bo
AN
-0.5F \\ 8
AN
35 2 15 1 05 0 0.5

Fig.(3.1.4) Map (3.1.1) with a=-1, b=-10.

Apply algorithm (2.3.1) again for the map(3.1.1) with a=1, b=-05,
we get a closed bounded area whose boundary A = (b,a,a,b) asis shownin
fig.(3.1.5). T has two fixed points p, =(0.732050807,0.535898384) and
p, = (-2.732050808, 7.464101615) , both p, and p, do not belong to A. It can
easily be shown that p, is an unstable fixed point, p, is an expanding fixed
point. Numerical computations show that this areais not absorbing.
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2 T T T
. R1 . R2
N LC1 .
15} \/ |
N Lc2
\\ \\\
1 ‘>\\ \\ _
bo=a2 N
\\\ 1 \\
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0 / — ‘/b
Zo0 ao al N
AN
0.5} ~N 1
I DE— RO .
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Fig.(3.1.5) d’' closed bounded area which is not absorbing area for the map
(3.1.1) with a=1, b=-05, a,=(0,0), a, =(10), a, =b, =(01) & b, = (1.50) .

Example (3.1.2): Consider themap T defined by

X! - y2 + X
T: ,withazo (3.1.2)
y =ax+1
T iscontinuoudly differentiable and noninvertible map whose inverses are
x=7 ~1
a
T
y=%/[x - y -1
a

T has afixed point (_?1,0). The curve LC_, isgiven by y=0 which divides

the plane 02 into two regions R, with y<0, R, with y>0, the equation of
the critical curve LC is y=ax+1. LC separates the plane 0% into two
regions. z, with y<ax+1, Z, with y>ax+1. The point of intersection of

LC., and LC is a, :(‘?1,0).
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When agorithm (2.3.1) is applied, we shall get apoint a, = (—%, 0)

i.e. an absorbing area is just the point a0=(—§,0) as is shown in
figure(3.1.6).

2.5¢ LC2 i
LC1

15} / |

LC2
0.5+ / ao=(-1,0) /// 7

-0.5 ‘ -

e ‘\Z
-1.5+ / LC \\\\ u

Fig.(3.1.6) themap (3.1.2) with a=1, a, =(-10).

From figure(3.1.6) we note that there are two closed regions: one is bounded
by segments of critical curves LC and LC,, the other is bounded by segments

of critical curves LC, LC, and LC,. Numerical computations show that both
regions are not absorbing.
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Example(3.1.3): Consider anoninvertible map T defined by
X' =a—by* - x?
T: , With b#0 (3.1.3)
y' =X
T hasinverses given by
x=y'

a_y'_X'
=+ |—
A
-1

T has two fixed points (x,x) where x = ‘“Val(;fi‘)(b”) if b2221-1,a%0

T

and b=z -1.

The curve LC_, isgiven by y=0 and the equation of the critical curve LC is
x=a-y?, S0 the point of intersection of LC, and LC is a, =(a,0). Recal
that LC dividesthe plane O? into two regions. z, satisfying x> a-y* where
each point has no preimages, and z, with x<a-y* where each point has
two first rank preimages. LC_, divides the plane into two regionsk ,R,. R, iS
theregion y<0, R, with y>0.

For a=1, b=1.4 numerical computation shows that T has two fixed
points : p, =(0.469951 0.469951) and p, =(-0.886618,0.886618). J(p,) has

eigenvalues A, , = -0.46995+1.0464i , thus p, is an attracting fixed point, while
J(p,) haseigenvalues A, =2.695, A, =0.9213, thus p, isasaddle fixed point.

Now, we shall try to find an absorbing area by applying agorithm
(2.3.1) with a, =(1,0), again we shal look for integer N such that LC,

intersects LC, so we find N=1, b,=(-04)0LC,nLC, and
b, =T(b,) =(0.84,-04)0LC, n LC, we construct a closed area A whose
boundary oA = (ba,a,b,) . To represent this area graphically let us compute the
equationsof LC, and LC, .

The equationisof LC,:x=a-ab+by-y’.

3 2
The equation of LC, : x:a—%—ab+ab2+by-y2¢b2\/a_ab_y+%_

For the particular case (a=1, b=1.4), the equation of LC,, LC, respectively :
x=-0.4+14y-y?

x=0.188+1.4y - y* +1.96,/0.09 -y
Next, fig.(3.1.7) represents the closed A, this area is absorbing since
it satisfies the conditions of absorbing as is suggested by numerica
computations of iterates of any points which either belongs to A or to
U(A)\A.
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Fig(3.1.7) Map (3.1.3) with a=1,b=1.4 , the absorbing area d’

We need to find an integer M such that TV () isinvariant , from
fig. (3.1.7) we notice that b, O(a,a,) 1. b,0(a,,a,) , therefore oA intersect
LC, a two points c,a,, c,=(0.776,00. We notice that &, =RinA,
T(J,)OA , therefore T(A)=A i.e M =0 . & A=d' =d" is the invariant

absorbing area..

Also numerical computations show that there is a cycle of period -6 inside
region d', also we notice that it has an attractor, and any point inside d’ has
an orbit lies on the triangles, for example if we take the iterates of a point

p=(2.3)0A, we see that the orbits of {p“}:’:1 lie on the triangles , when we
apply the conditions of chaos, wefind in thisregion T issensitivetoinitial

conditions, therefore A is achaotic areain the sense of Gulick
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Fig(3.1.8) map(3.1.3) with a=2, b=1.4.

Now , we shall take the other values of the parameters a& b , to seethe
dynamics of themap (3.1.3). For a=2,b=1.4 , aclosed area constructed by

algorithm (2.3.1) is shown by fig (3.1.8) whose boundary A = (a,a,ba,) .
The two fixed points p, =(0.728,0.728), p, = (-1.145,-1.145) are stable, saddle
fixed points respectively, with N =1, a, =(2,0),b, =(-0.8,0) ,b, = (1.36,-0.8)
a=(-22, & a,=(-76,-2).

Example (3.1.4): Consider the map T defined by

X =ax+y

T: (3.1.4)

y =b+x°
T has two fixed points (xy) Where x=(-a.(a-1)>-4b)/2 and
y=@1-a)x,if a=2J/b+1 and b=0.
LC_, is defined by x=0and LC by y=b.
T isanoninvertible map whose inverses are

X=%,y -b
y=XFay -b

T
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For a=0.7 and b=-0.82 , T has two fixed points : p, =(1.06788,0.32036) &
p, = (—0.76788,—0.32036)

J(p,) has eigenvalues A, =1.8775, A, =-1.152749 therefore p, is an
expanding fixed point while p, is an unstable fixed point since J(p,) has
0.7 + 2.3776i

—

Moreover, p, isnot a SBR since thereisno q such that T*(q) = p, , for some
integer k.

« 1-a+.(a-1)%-4b

2

eigenvalues A, =

Fig (3.1.9) represents the invariant absorbing area constructed by algorithm
(2.3.1) d"=T*(4), this region includes an annular chaotic area d, Od!

according to (2.5.1). The area d" satisfies the properties (2.5.2) and (2.5.3) ,
The unstable set W (p,) of p, issuchthat wW“(p,)=d, OW.

2.5+
/ .
2 L
LC
1.5} A
LC2 _—
1 L
LC4
0.5+
7 Ql
Or 02
LC1 '
0.5 722
Z0 .RC
1 L
| | | | | | | | |

Fig.(3.1.9) Map (3.1.4) with a=0.7, b=-0.82 invariant area obtained
by algorithm (2.3.1) includes annular chaoticarea d, O d!.
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3.2 Examples of Symmetric Maps

In this section we shall give examples that show the relation between
the dynamics of a two-dimensional map and a certain associated one-
dimensional map.

Example (3.2.1):- Consider amap T defined by

x' =a—by-x?

T: (3.21)

y' =a-bx-y?
First we shall establish symmetric properties in the dynamics of T and
identify its fixed points. The eigenvalues of the Jacobian matrix of T, J(T)
evaluated at these points, are determined via classical analysis. Also, the
critical curve LC_, will be evaluated.

Symmetry
Let p:0° - O° bedefined by

P Y) = (Y, %)
o isthereflection through the diagonal D ={(x,x)} 0 0°
T issymmetric,i.e. To p=poT infact,
let f(x,y)=a-by-x*. Then
pPoT(xy)=p(T(xY))
= p(fH (X% Y), (Y, %)
= (f (¥, %), f (X, ¥))
=T(y,x) =Tep(xy)
Thus, T commuteswith p. Also, T we have some properties such as.
(i) Thediagonal D isinvariant, i.e. T(D)=D.
(ii) If pisafixed pointof T,sois o(p).
(i) If {p,iON}isan orbit of T, sois {p(p),iON}.
If we restrict the map to the one invariant diagonal D, we have on
dimensional map, say
0, (X) =a—bx—x?
For its graph, note that g, (x)=-b-2x and g’ (x)=-2<0. Thus the loca

maximum ( called a critical point of rank-0 of g, ) existsat c_, :_—Zb , and

the critical point of g, of rank-1 is the point c=g,/(c,), and the critical
points of g, of rank-(i+1) for i>1 are the forward images ( or iterates )

i+1

C =94 (c4) = g(c).
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The fixed points of g (x) i.e. solutions of the equation x=a-bx-x*are

plz‘(b”l)*\l;b*l) t4a and p, :_(b+1)_V§b+1) +4a with a<0 and
b>+-4a-1.
About the multipliers, note that |g;b(pl)|=‘1—,/(b+1)2 +4a‘<1 ,1If a<1 and

b<2Jl-a-1, but we have a<0 i.e. p, is an attracting fixed point if
b<2Jl-a-1, and p, is arepeling fixed point if b>2J1-a-1, therefore
b=2y1-a-1isabifurcation point.

Since |g.,(p,)| :‘1+w/(b+1)2 +4a‘ >1, then p, isarepelling fixed point.

Fixed pointof T
T possesses four fixed points. From discussion of g, above it follows that
P=(p,p,) and P,=(p,,p,) ae two fixed points of T on D. We shal
determine now the fixed points(x”,y”) with x"# y" by direct computation.
From the definition of T ( putting X' =x and y =y) we shall get the
following system:

x=a—-by-x*

y=a—bx-y?
weget P, =(x",y") and P, =(y",x"”) where
oo+ --3’+2D+1r4a s ~(b+1)+v-30? +2b+1+4a

2 2

. with

-3b%+2b+1
azf-

Eigenvalues of J(T) at the fixed points:

The Jacobian matrix of T is:
J(T)z(—Zx —bj
-b -2y
(1) At the fixed point B, =(p,, p,) We have

ITP)) = b+1-,/(b+1)?* +4a -b
' -b b+1-+/(b+1)? +4a

The eigenvalues of J(T)are

A, =—(b+1) +4/(b+1)? +4a x|y

Clearly A,, arered , then the stability of P, depends on the value of b.
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(2) At the fixed points P,=(p,,p,), the egenvaues of J(T) are

A, ==(b+1) —+/(b+1)* +4ax|o

A, arerea , again the stability of P, depends on thevalueof b.

(3 At the fixed point P, the eigenvaues of J(T) ae
A, =-2(b+1) £+b? +80+1-4a
Since J(T) hasreal eigenvaluesif b>=+4a+15-4 and -3.75<a<0.

(4) At the fixed point P, we shall have:
Since T is symmetric with respect to « then the dynamicsof T at P, islike
the dynamics of T a P, therefore P, has a real eigenvaue if

b>+4a+15-4 and -3.75<a<0.

Critical curve

Themap T defined in (3.2.1) is clearly a map with a nonunique inverse. The
critical curve LC of T is the image of the locus of points in which the
Jacobian Jof T vanishes,i.e. LC=T(LC_) where LC_ isthecurve:

2

V=T
LC_, is a hyperbola of two branches. Let LC_ =LC_,0LC_, where LC_,
shows the upper branch (for x>0 and y>0) and LC_,denotes the lower

branch as shown in figure (3.2.1). It follows that the critical curve of rank -1,
LC, consists of two branches, say LC =LC, OLC, where LC, =T(LC_,)and

LC, =T(LC_,,). The two branches of LC, and LC are symmetric with

respect to D . The qualitative shape of LC is shown in fig.(3.2.1). LC
separates the plane into three open regions, named z,, z, and z,, locus of

points having 0,2 and 4distinct preimages of rank -1 respectively.
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Fig(3.2.1)The qualitative shape of LC_, =LC_,OLC_, and LC=LC, OLC,.

Example (3.2.2):- Consider the map T defined by
X' = by + x?
T:
y' =bx+y?

As in previous example we can show that T is symmetric and satisfies
properties (i , ii and iii ) that appeared in example (3.2.1) and if werestrict T
to theinvariant diagonal D, we shall get a one dimensional map:

g,(X) =bx+x?

g, hasfixed points p, =0 and p, =1-b.
|95 (p,)| =|b|, therefore p, is an attracting fixed point if b <1.
95 (p,)| =[2-b, therefore p,isan attracting fixed point if 1<b<3.

T hasfour fixed points:
P, =(00), P,=(-b+1-b+1, P, =(x",y") and P, =(y",x")
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where x" with 1-2b-3b? > 0.

_b+1-v1-2b-3p° yo= b+1++1-2b-3b?
2 . 2

As, we have mentioned in the previous example we can discuss the stability
of each fixed points easily by simple computation.

3.3 Other Examples
In this section we shall give examples that illustrate the nature of the critical
Set.

Example (3.3.1):

Consider astandard form(1.4.3a) that appeared in chapter one

T(x,y) = (aX* +axy+a,y+abxy+b) ; b #0

Recall that T has nonempty unbounded critical set which is a parabola
Now, by using different values of the coefficient a,, a,, a,,b,, a and b, we
findfor a=3, a,=b =01, a, =a,=-1and b=1, T hasbounded trgectory
and we find the region R={(x,y):-545<x<545 -29<y<15 such that
any pointsin R has an attractor A" = (1.848,1.2267).

Also, if we take two points say: p, =(-5.4887968245303,1) and
p, = (-5.4887968245304,1), we shall see that for n>10, T"(p,) will converge
to A” while T"(p,) convergeto infinity.

Example(3.3.2):- Consider a standard form(1.4.3b) that appeared in chapter
one

T(xy) = (aox2 + azy2 taxX; tay+a, box2 + bzy2 +b,x+b,y+b) ;

Recall that T has a nonempty unbounded critical set which is either line or
hyperbola .

In particular, let a,=-1,a,=-2,a,=a,=0, a=0.1, b,=h,=b,=b=0, and
b, =1. we see that the iterate of any point which belongs to the region
D ={(x,y):-0.25< x<0.25.05< y< 0.5} converges to the point (0.0805,0.0805)
asisshowninfig (3.3.1) .
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0.1

0.09 - -

0.08 - -

0.07 - f

0.06 - f

0.05+ f

0.04 - B

0.03 B

0.02 - B

0.01+ f

0
0.07 0.075 0.08 0.085 0.09 0.095 0.1

Fig(3.3.1) Map (3.3.2) the orbit of the point (0.,0) & (0.0805,0.0805) is the
attractor.
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3.4 Conclusions & Recommendations

1-

We have seen in example (3.1.1) that if algorithm (2.3.1) succeeds to
find an absorbing area d', the iterate of any pointsin d' bifurcate into
three subsequences each one convergesto avertex of d' . And thereis
no point of non-smoothness in the boundary of d' .

In example (3.1.2), the point of intersection of LC_, & LC is a fixed
point (—i,O) , therefore an absorbing areaisjust a point (—§,0) :

If we try to find a closed area bounded by segments of critical curves,
we shall find two closed areas: one bounded by segments of critical
curves LC, & LC, , the other is bounded by segments of critical curves

LC,LC, & LC, but both areas are not absorbing .

In example (3.1.3), we find an absorbing area d' for some values of
the parameters a and b , and each point in such area has an orbit
inside d' which liesin triangular shape .

Algorithm (2.3.1) may fail to find an absorbing area , therefore we
suggest that one should examine the map, before we apply the
algorithm by finding the successive image of a, =LC_, n LC , if such
iterates converge then the closed area obtained by (2.3.1) is absorbing .

Our recommendations are;

Much of the work on the subject have concentrated on investigating

properties of particular examples and trying to make general observations so
we suggest the work to be more theoretical.
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Introduction 1

/mtroduction .

Dynamical systems as a mathematical discipline gbask to
Poincare’, who developed a qualitative approagbratlems that arose from
celestial mechanics.

The subject has expanded considerably in scopehaadiundergone
some fundamental progress in the last three decdaekay, it stands at
crossroads of several areas of mathematics, imgudnalysis, geometry,
topology and mathematical physics. It is generadigarded as a study of
iteration of maps, or of time evaluation of diffet@l equation.

The basic goal of a dynamical system is to the ®extor asymptotic
behavior of an iteration process. If this processaidifferential equation
whose independent variable is time, then the thedhattempts to predicate
the ultimate behavior of solution of the equatiareither the distant future
(t - ) or the distant pagt - —«). If the process is a discrete process such

as the iteration of a function, then the theoryl Wdpes to understand the
eventual behavior of the pointgT(x),T*(x),...,T"(x) as n becomes large.
That a dynamical system asks the some what noematical sounding
question: where do points go and what do they klenvthey get there ?
Function which determine dynamical systems are aeddled mappings, or
maps [ 11 ].

The complex dynamical behavior of solutions of @as mathematical
models has been an object of study for a numbgearfs . Point — mappings
or recurrence, are especially of interest becabsy appear as natural
descriptions of evolutionary phenomena in physics,
ecology, biology and control systems [9, 27& 29].

A complex dynamical behavior called “ chaos” issetved in
mathematical models expressed in the form of recges with a non-unique
inverse. The chaotic solution of such second -ong@nt —mapping is
located in bounded areas. All the attractive lisets of an endomorphism
( noninvertible map ), whatever the nature maydbe located in phase plane
designated by absorbing areas[2, 15& 32] .

Critical curves appear as the natural — two dinmmadi a
generalization of the notion of critical point of ane-dimensional
noninvertible map, they permit to define the edsémiotions of absorbing
area , and chaotic area [ 15&24]. Roughly speakimgbsorbing ared is a
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region bounded by critical curves segments of dimank, such that the
successive images of all points of a neighborhogdtl) enter intod’ and

cannot get away after entering, after a finite nembf iterations [38].
A chaotic area is an invariant absorbing area pthets of which give rise to
iterated sequences (orbits ) having the propertysaisitivity to initial

conditions.

The role of critical curves also is fundamentaltie definition of
bifurcation leading either to the destruction ,tora sudden and important
modification of absorbing areas .

Recently an extended notion of absorbing areagteharea, that of
mixed absorbing area, mixed chaotic area wasdaotted by Barugola &
Cathala in 1992. These last areas differ from thre mixed ones by the fact
that their boundaries are made up of the unionridtal curves segments,
and segment of the unstable set of a saddle fixack,por a saddle cycle
(periodic point ), or even segment of several Wistgets associated with
different cycles. With respect to a ‘simple’ (nonxed) absorbing, or
chaotic area, these are such that successive imafgalsnost all points of a
neighborhood enter into the area and can notwayaafter entering, after a
finite number of iterations. The successive imagethe points, which do
not enter into the area, are those one of the agments of the stable set of
saddle points on the area boundary .

During the last few years the study of two-(andheig) dimensional
noninvertible maps is becoming a subject of inaregyg wider interest and
research, and some of the results mentioned haen Ilsporadically
rediscovered by other authors. It is worth noththgt many systems in
engineering, particularly in control theory andatlenics, lead to models in
the form of noninvertible maps. It is particulatlye case in some control
systems using either sampled data, or switchingne&is ,or pulse
modulation and also in some adaptive controls .gege , modeling in
economics and biology often given rise to noninbé&tmaps [3, 6& 12] .

To our knowledge , the notion of critical curves time study of
two — dimensional endomorphism was introduced 641 relation to its
role in the determination of basin boundaries byavi& Gardini [1991,
1992, 1993, 1994] has recently studied in serigsaprs global bifurcation
and invariant manifold interaction for the noniniae case , in contrast to
the corresponding invertible phenomena .In the samet Frouzzakis
(1992) discussed the formation of self — intersectoops of the unstable set
of saddle fixed point in a model of an adaptivebynirolled system ( in the
form of a two — dimensional noninvertible map ) .
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Many researchers were interested in the field afimeertible maps

due to their importance. The following are sorhthem :
- Gardini L. in [16] studied the global dynamics dméturcations of a
croeconomic model which showed the interactionsvéeh “good
market “ and “the money market “ by using theerof critical curves

- Gardini L. , Abraham R. , Record R. ,and Fourntfrunaret D. in
[19] studied the dynamics occurring in logistic mapd by use of
critical curves , absorbing and invariant areasewdgtermined inside
which global bifurcation of the attracting setsiXefl points , closed
invariant curves , cycles or chaotic attractoaketplace . The basin of
attraction of the absorbing areas are determingdther with their
bifurcation .

- Cathala J., in [10] examined chaotic areas andralgparea without
specifying the structures of the attractors thaytbontain for the map
(T:x - ax+y,y - bx+x3b=-19) also he defined some bifurcations
that modify the nature of the chaotic areas .

- Mira C. , and Narayaninsamy T. ,in [25] determingghamical
properties and bifurcations for the map

(T:Xo X2 -y +1++exy - 2xy—§ey) by using critical curves .

- Mira C., Gardini L., Fournier - Prunaret D., Kawaak H. , and
Cathala J., in [26] studied some properties of thesins of
noninvertible map(T:x - ax+y,y —» x> +b) by using the method of
critical curves , also they described differentdsrof basin bifurcation
, some of them were leading to basin boundarydfiaetion .

The aim of this thesis is to study noninvertiblanar mapsr:0* - 0?2,
in particular absorbing areas of such maps , wé gha&e some examples
that illustrate certain phenomena for such areas .

We shall try to make two conjectures:

1) When the critical set of a map.0° - 07 is a parabola, then has an

attractor

2) If the critical set of the map is a line or a hsgsa, then the map will

have periodic points .

It is important to remark that much of the work doon planar maps
concentrated on presenting certain examples andtipgi out certain
phenomena .

The work is divided into three chapters , thesgtdra are organized as
follows :

Chapter one introduces the mathematical backgrofitite main notions
and proposition on the theory of the dynamicaleyst Definition of critical
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curves and some different types of noninvertibl@snelated to their critical
curves are presented , we shall also mention ditedefinitions of chaos
and some properties of topological conjugate mAfso.we shall give the
definition and some properties of planar quadnaiéps. Moreover, we shall
prove two new theorems of planar quadratic maph witbounded critical
set that can be considered a generalization of¢heogiven in [31].

Chapter two deals with a special type of planar spa@amely(z, - z,)

maps. The chapter includes:
- Proving some properties of absorbing areas andiantaareas .
- Proving some properties ofzg - z,) maps .
- How to construct absorbing areas, invariant argagsing the critical
curves.
- Recalling some bifurcation types.

In chapter three we shall illustrate the concegdtghe two previous
chapters by applications on some noninvertible m&gosce the algorithm
construction of an absorbing areas which appearegshapter two does not
guarantee that constructed areas are absorbingfdhewe shall try to give
conjection ensuring absorbing.

Our examples in this chapter illustrate certain n@meena that are
different from the ones found in literature.



List of Symbols -

Symbols Meaning
W (p") Local unstable set of fixed point p"
W (p") Global unstable set of fixed point p”
W (p") Local stable set of fixed point p"
W*(p") Global stable set of fixed point p”
D(A) Basin of attraction
A Closed set
T Planar quadratic map
LC_,or J(T) |Critical setof T
LC, Critical curve of rank-i of themap T
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d" Connected non-mixed noninvariant absorbing area
A, Closed subset of O
d. Annular absorbing area

=

Hole




Content s

| ntroduction 1

Chapter One: Preliminaries

1.1 Definitions and notation 5

1.2 Two-dimensiona noninvertible maps. properties 11

of critical curves

1.2.1Types of noninvertible maps with critical curves, 11
their symbolic representation

1.2.2 Characterization of the different determination 13
of the inverse map

1.2.3 Critical set of power T 15

1.2.4 Foliation of the plane 18

1.3 Chaosin dynamical systems 20

1.4 Planar quadratic maps 23

1.4.1 Some properties planar quadratic maps 25

Chapter two: Absorbing areas & invariant areas of two-dimensional
noninvertible maps

2.1 Some basic definitions 30
2.2 Properties of absorbing areas & of invariant areas 35
2.3 Construction algorithm of absorbing area 40
2.3.1 Construction algorithm of absorbing area 40
2.3.2 Determination of invariant area 42
2.4 Bifurcation 46
2.5 Multiply connected (nonmixed) invariant absorbing 47

areas. bifurcation of annular absorbing area

Chapter three: Illustrative Examples

3.1 Examples of absorbing areas 54
3.2 Examples of symmetric 66
3.3 Other examples 70
3.4 Conclusion 72

References 73



Acknow [edgement

My deepest thanks for Allah for his generous by providing me the
strength me accomplish thiswork .

| would like to express my deep appreciation and gratitude to my
supervisor Dr. Adil G. Naoum whose advice will live up with me, and
thanks to him cannot be expressed in words, and Dr. Aludin N. Ahmed
for their help and encouragement during the work .

Also, | would like to express my thanks to al members and
fellowship in the Departement of Mathematics and Computer
Applications.

My deep thank is for my family and friends who encourage my
through my work .

Zainab Al-wa'li



GAY) 5 Gl Y asle Gl

Ol alal 5 (oaall )2

Oalladl daa ) & gl )

Ol QA 5 4 il alas I



References :

[1] Barugola A., Cathala J.C. & Mira C.,Ahnular Chaotic Areas,
Nonlinear Analysis TM & A. (1986) p.1223-1236.

[2] Billings L. & Curry J., ‘On Noninvertible Mappings of the Plane :
Eruption “, Chaos (1996) p.108-120 .

[3] Bischi G.I. & Gardini L., “Basin Fractalization due to Focal Points in a

Class of Triangular Maps®, International journal of bifurcation and chaos
(1997) p.1555-1577 .

[4] Bischi G.I. & Gardini L., 'Role of Invariant and Minmal Absorbing
Areas in Chaos SynchronizatidnPhysical Review (1998) p5710-5719.

[5] Bischi G.l., Gardini L. & Mira C., Plane Maps with Denominator
I:Some Generic Properti€s International journal of bifurcation and chaos
(1999) p.119-155.

[6] Bischi G.l., Gardini L. & Mira C., “New Phenomena Related to the
Presence of Focal Points in Two-dimensional Médps Annales
Mathematicae Silesianae 13, (1999), p.81-89.

[7] Bischi G.I., Mira C. & Gardini L., ‘Unbounded Sets of Attractiofy,
International journal of bifurcation and chaos (@P{.1437-1469 .

[8] Bischi G.I.,, Gardini L. & Mira C., Plane Maps with Denominator
Part:

Il Noninvertible Maps with Simple Focal PointS, International journal of
bifurcation and chaos (2003) p.2253-2277 .

[9] Cathala J.C., Bifurcation Occurring in Absorpative Chaotic Areas,
INT.J. systems SCI.,(1987) p.339-349 .

[10] Cathala J.C., Multiconnected Chaotic Areas in Second — order
Endomorphisms§, INT.J. systems SCI. (1990) p.363-387.

[11] Devany RI, An introduction to Chaotic Dynamical SystersSecond
Edition , Addision- Wesely (1989) .

[12] Dieci R., Bishi G.Il. & Gardini L., From Bi-stability to Chaotic
Oscillations in A macroeconomic Model, Chaos , Solitions & Fractals
(2001) p.805 - 822 .

[13] Friedland S. & Milnor J., Dynamical Properties of Plane Polynomial
Automorphisms’, Ergod. Th. & Dynam. Sys. (1989) p.67-99 .

[14] Foroni |. & Gardini L., “Homoclinic Bifurcation in Heterogeneous
Market Models”, Solitions & Fractals (2003) p. 743-760 .



[15] Frouzakis C., Gardini L., Keverkidis I., Milieux G., & Mira C., ‘On
Some Properties of Invariant Sets of Two-dimensibnidoninvertible
Maps', International journal of bifurcation and chad®£97) p.1167-1194 .

[16] Gardini L., ‘Some Global Bifurcation of Two-dimensional
Endomorphisms by Use of Critical Lings Nonlinear Analysis Theory ,
Methods and applications (1992) p.361-399 .

[17] Gardini L., “Absorbing Areas and Bifurcatiorfs Internal report of the
Instituto di Scienze Economiche , Universita’ ditio 1992a .

[18] Gardini L., Abraham R., Record R. & FourntiBrunarel D.,
“Adouble Logistic Map, International journal of bifurcation and chaos
(1994) p.145-176 .

[19] Gardini L. & Mira C., ‘Properties of Noninvertible Mag's Internal
note of the “Istitute di Scienze Economiche” Unsitg degli studi di
Urbino(ltalia) , (1995) .

[20] Gardini L., Cathala J.C. & Mira C.,Cbntact Bifurcation of
Absorbing and Chaotic Areas in Two-dimensional Endorphisms®, in
Iteration Theory ,W. Forg-Rob et ed.s, World Safen{1996) p.100-111 .

[21] Gardini L., ‘Some contact Bifurcations in Two-dimensional
Examples, Grazer Math. Ber. ISSN. 1016-7692 Bericht Nr.33897) p.77-
96 .

[22]Gulick D., “Encounter with Chao% Mc. Graw-Hill , Inc.1992 .

[23] Lupini R., Lenci S., Gardini L.,Bifurcation and Multistability in A
class of Two —-dimensional EndomorphisfnsNonlinear Analysis T.
M.&A. (1997) p.61-85 .

[24] Mira C., "Complex Dynamics in Two-dimensional Endomorphisms
Nonlinear Analysis, Theory, Methods and applicadi¢f980) p.1167-1187 .

[25] Mira C. and Narayaninsmy T.0Oh Behaviors of Two-dimensional
Endomorphisms : Role of the Critical Curve$ International journal of
bifurcation and chaos (1993) p.187-194 .

[26] Mira C., Gardini L., Fournier-Prunaret D., #@akami H. & Cathala
J.C., 'Basin Bifurcation of Two-dimensional NoninvertibleMaps
Fractalization of Basirf International journal of bifurcation and chaos
(1994) p.343-381 .



[27] Mira C. & Ruzy C., Fractal Agregaation of Basin Island in Two-
dimensional Quadratic Noninvertible Maps International journal of
bifurcation and chaos (1995) p.1039 - 1089 .

[28] Mira C., Jean —Pierre C. & Gilles M.Pfane Foliation of Two-
dimensional Noninvertible Map$ International journal of bifurcation and
chaos (1996) p.1439 - 1462 .

[29] Mira C., Gardini L., Barugola A. & Cathala J,CChaotic Dynamics in
Two-dimensional Noninvertible Mapgs World Scientific series on
Nonlinear science, series editor : Lean O. Chu8g}19

[30] Mira C., “Some Properties of Two-dimensional Maps not Defined
the Whole Plang in the Grazer Mathematisch Berichte (specialuéss
Proc.ECIT96) (1999) p.261-278.

[31] Mira C., Bischi G.I. & Gardini L., About A route to Fractalization of
Basin Generated by Noninvertible MafysGrazer Math. Ber. ISSN. 1016-
7692 Bericht Nr.346 (2004) p.299 - 312.

[32] Nien C., The Dynamic of Planar Quardatic Maps with Nonempty
Bounded Critical Sét International journal of bifurcation and chad$£98)
p.95-105 .

[33] Patrick E., “Nonlinear Dynamics and Chads Oxford Center for
industrial and applied mathematics ( OCIAM ) Unsigr of Oxford
http://www.maths.ox.uk/mcsharry

[34] Rao M., ‘Ordinary Differential Equation; Theory and Applicabns’,
London (1980) .

[35] Ruette S., Chaos for Continuous Interval Mapgs A survey of
relationship between the various sorts of chaosyddsite Paris-Sud, 2003,
http://www.math.u-pusd.fr/ruette/

[36] http://www.visual-chaos-org/jpx/book/jpxxintro.pchhapter 4 *
Absorbing Areas’ (2005).

[37] http://www.ronrecard.com/ptichapter5.htm.‘thapter 5 Algorithm and
Theory*, (2005) .

[38] http://en.wikipendia.org/wikifAbsorbing _Set” (2005).




Supervisors Certrfication

We certify that this thesis entitledOn Absorbing Areas of Planar
Quadratic Maps “ was prepared under our supervision at the Dayrt of
Mathematics and Computer Applications, College oifefce, Al-Nahrain
University as a partial fulfillment of the requirents of degree of Doctor of

Philosophy in Science in Mathematics .

Signature :

Advisor: Prof. Dr. Adil G. Naoum
Departement of of Mathematics
College of Science
Baghdad University

Date: 31/81/2005

Signature :

Advisor: Ass. Prof. Dr. Alaudin N. Ahmed
Department of Mathematics
& Computer Applications
College of Science
Al-Nahrain University

Date: 31/8/2005

In view of the available recommendations, | forwHnd thesis for
debate by the examining committee.

Signature :

Advisor: Ass. Prof. Dr. Akram M. Al-Abood
Department of Mathematics
& Computer Applications
College of Science
Al-Nahrain University

Date: 31/8/2005



	Microsoft Word - ABSTRA~1.pdf
	Microsoft Word - abstract.pdf
	Microsoft Word - Acknowledgement.pdf
	Microsoft Word - appendix.pdf
	Microsoft Word - arabic.pdf
	Microsoft Word - ch1.pdf
	Microsoft Word - ch2.pdf
	Microsoft Word - ch3.pdf
	Microsoft Word - committee certification.pdf
	Microsoft Word - contents.pdf
	Microsoft Word - dedicate.pdf
	Microsoft Word - english.pdf
	Microsoft Word - introduction.pdf
	Microsoft Word - List of Symbols.pdf
	Microsoft Word - refrences.pdf
	Microsoft Word - supervisors certification.pdf



