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ABSTRACT 
 

 
Fractional Calculus is a branch of mathematical analysis that satisfies 

the possibility of considering the power of the differential operator as a real 

number. Several different families of fractional derivatives (such as, 

Riemann–Liouville, Caputo, Hadamard and others) are developed. 

 
In this work, we are investigate the applications of the Laplace 

transform to construct the solution of homogenous and nonhomogeneous 

linear differential equations having multi–arbitrary fractional order 

derivatives involving the Riemann–Liouville fractional derivatives with 

constant coefficients in terms of special function called “Mittage–Leffler 

Function” by using Laplace transform formula for such special function and 

their derivatives. 

 
Several examples are solved to demonstrate our constructed solutions 

formulas. 
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PREFACE 
 
 
Arbitrary order’s (real and complex number) derivatives and integrals 

are called generalized differentiation and integration or generalized 

differentiation for the sake of convenience. This generalized differentiation 

is commonly called as “Fractional Calculus” [14]. 

 

Although this subject can claim to be well upwards of 200 years old, 

and its foundations have been securely in place for more than a century, the 

first book – length account of the field did not appear until 1974, when 

Oldham and Spanier [16] published “The Fractional Calculus” [22]. This 

book provides brief, yet important, accounts of the history, definitions, 

properties, and some applications of the fractional calculus. 

 

Many found, using their own notation and methodology, definitions 

that fit the concept of a fractional (non–integer) order integral or derivative, 

but the most famous of these definitions that have been popularized in the 

world of fractional calculus are the Riemann–Liouville and Grunwald–

Letnikov definitions [16]. 

 

The importance and popularity of fractional calculus has been gained 

during the past three decades or so, due mainly to its demonstrated 

applications in many field of science and engineering, including fluid flow, 

diffusive transport theory, electrical networks, electromagnetic theory, and 

electrochemistry [22]. Also, applications of fractional calculus may be found 

in mechanical engineering and finance [8]. In signal processing Loverro [9] 
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used a fractional order transfer function to provide a good prediction for the 

reaction of a certain algorithm planner where the input of this algorithm is a 

signal. 

 

Moreover, classical calculus may be considered as a field of 

applications of fractional calculus [16] and [15], introducing a novel class of 

functions which have certain properties [6], have been made by means of 

fractional calculus. 

 

Furthermore, fractional calculus has been used to solve some classes 

of differential, integro–differential equations and diffusion problems [16]. 

An application in probability was given in [21]. 

 

In this work, we constructing the solution of homogenous and 

nonhomogeneous linear fractional order differential equations with constant 

coefficients involving the Riemann–Liouville fractional derivatives 

 

This work is organized as follows: 

 

Chapter one provides some basic definitions and properties from such 

topics of Mathematical Analysis as functional spaces, special functions, 

integral transforms, generalized functions, and so on. The extensive 

modern–day usages of such special functions as the classical Mittag–Leffler 

functions. Moreover, this chapter contains the definitions and some 

potentially useful properties of Riemann–Liouville fractional derivatives. 
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In chapter two we investigate the applications of the Laplace integral 

transform with a view to constructing the solutions of homogeneous linear 

fractional order differential equations involving the Riemann–Liouville 

fractional derivatives with constant coefficients including some examples to 

demonstrate our constructed solutions formula.  

 

In chapter three we investigate the applications of the Laplace integral 

transform with a view to constructing the solutions of nonhomogeneous 

linear fractional order differential equations involving the Riemann–

Liouville fractional derivatives with constant coefficients including some 

examples to demonstrate our constructed solutions formula. 

 

Finally, conclusions and future work have been presented. 
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Chapter One 
 

PRELIMINARIES 
 
 

The main purpose of this chapter is to make this work as self–contained as 
possible. So we shall give some definitions and properties from such Topics of Analysis 
as functional spaces, special functions, and integral transforms. 

 
 

1.1 Space of Absolutely Continuous Functions: 
 

In this section we present definitions of space of absolutely continuous that will 
be needed later. More detailed information may be found in [7], [18] and [13].  
 

Let ],[ ba  be a finite interval and let )(xf  be a functions which called absolutely 
continuous on ],[ ba , if for any 0>ε  there exists a 0>δ  such that for any finite set of 
pairwise nonintersecting intervals nkbaba kk ,...,3,2,1  ],,[],[ =⊂ , such that 

δ<−∑
=

n

k
kk ab

1
)( , the inequality ε<−∑

=

n

k
kk afbf

1
)()(  holds. The space of these 

functions is denoted by ],[ baAC . It is known in [7] that ],[ baAC  coincides with the 
space of primitives of Lebesgue summable functions: 

 

∫+=⇔∈
x

a
dttcxfbaACf )()(],[ ϕ  (1.1.1) 

 

and therefore an absolutely continuous function )(xf  has a summable derivative 
)()( xxf ϕ=′  almost everywhere on ],[ ba . Thus (1.1.1) yields 

 
)()( xfx ′=ϕ   and   )(afc =  
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For ,...}3,2,1{=∈ Nn  we denote by ],[ baAC n  the space of complex–valued 
functions )(xf  which have continuous derivatives up of order 1−n  on ],[ ba  such that 

],[)1( baACf n ∈− : 
 

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ =∈→= −

dx
dDbaACfDandCbafbaAC nn ],[)(],[:],[ 1

 

C  being the set of complex numbers. In particular, ],[],[1 baACbaAC = . 

 

Lemma 1.1: [18] 
 

The space ],[ baAC n  consists of those and only those functions )(xf  which can 
be represented in the form 

∑
−

=
+ −+=

1

0
)())(()(

n

k

k
k

n
a axcxIxf ϕ   (1.1.2) 

where )1,...,1,0( −= nkck  are arbitrary constants, and 
 

∫ −
+ −

−
=

x

a

nn
a dtttx

n
xI )()(

)!1(
1))(( 1ϕϕ  (1.1.3) 

 

It follows from (1.1.2) that 
 

)1,...,2,1,0(
!

)(),()(
)(

)( −=== nk
k

afcxfx
k

k
nϕ  
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1.2 The Gamma Function and Related Special Functions: 

 

In this section we present the definitions and some properties of the Euler Gamma 
function and of some special functions connected with this function. More detailed 
information may be found in [5] and [1]. 
 

The Euler gamma function )(zΓ  is defined by the so-called Euler integral of the 
second kind:  

)0)(Re()(
0

1 >=Γ ∫
∞

−− zdtetz tz  (1.2.1) 

 

where )log()1(1 tzz et −− = . This integral is convergent for all complex )0)(Re( >∈ zCz . 
 

The Gamma function satisfies the recurrence relation 
 

)0)(Re()()1( >Γ=+Γ zzzz  (1.2.2) 
 

It is obtained from (1.2.1) by integration by parts. Using this relation, the Euler gamma 
function is extended to the half–plane  0)Re( ≤z  by 
 

,...})2,1,0{;;)(Re(
)(

)()( 0 −−=∉∈−>
+Γ

=Γ −ZzNnnz
z

nzz
n

 (1.2.3) 

 

Here nz)(  is defined for complex Cz∈  and non–negative integer 
,...}3,2,1{=∈ Nn  by 

 

1)( 0 =z        and      )1)...(2)(1()( −+++= nzzzzz n  (1.2.4) 
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Equations (1.2.2) and (1.2.4) yield 
 

,...})2,1,0{(!)1()1( 0 =∈==+Γ Nnnn n  

 

with l0!= . 

 

It follows from (1.2.3) that the gamma function is analytic everywhere in the 
complex plane C  except at ,...2,1,0 −−=z , where )(zΓ  has simple poles.  

 

The beta function is defined by the Euler integral of the first kind [1]: 

 

)0)Re(;0)(Re()1(),(
1

0

11 >>−= ∫ −− wzdtttwz wzβ   

 
This function is connected with the gamma functions by the relation 
 

 

),(
)(
)()(),( −∉

+Γ
ΓΓ

= Zwz
wz
wzwzβ  

 

The binomial coefficients are defined for C∈α  and Nn∈  by the formula 
 

 
 

!
)1)...(2)(1(,1

0 n
n

n
+−−−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ αααααα
 (1.2.5) 
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In particular, when )( 0Nmm ∈=α , we have 
 

 

);(
)!(!

!
0 nmNn

nmn
m

n
m

≥∈
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 

 
and 

)0;(0 0 nmNn
n
m

<≤∈=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 

 

If }0{\,...}3,2,1{ 0
−− =−−−=∉ ZZα , (1.2.5) is represented via the gamma 

function by 
 

);(
)1(!

)1(
0NnC

nnn
∈∈

+−Γ
+Γ

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
α

α
αα

 

 

 

Such a relation can be extended from 0Nn∈  to arbitrary complex C∈β  by 
 

);,(
)1()1(

)1( −∉∈
+Γ+−Γ

+Γ
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ZC αβα

ββα
α

β
α

 

 

The incomplete gamma functions ),( wzγ  and ),( wzΓ  are defined for Cwz ∈,  
by [1] 

)0)(Re(),(
0

1 >= ∫ −− zdtetwz
w

tzγ  

and 

∫
∞

−−=Γ
w

tz dtetwz 1),(  

respectively. The following relation is evident: 
 

)0)(Re(),(),()()0,(),( >Γ−=Γ=Γ=∞ zwzwzzzz γγ  
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1.3 Classical Mittag–Leffler  Functions: [4] 

 

In this section we present the definitions and some properties of two classical 
Mittag–Leffler functions.  
 

The function )(zEα  defined by 
 

)0)Re(;(
)1 (

)(
0

>∈
+Γ

= ∑
∞

=
α

αα Cz
k

zzE
k

k
 (1.3.1) 

 

where (.)Γ  is the Gamma function.  
 

This equation is known as the Mittag–Leffler function [12]. We present some 
properties of this function. In particular, when 1=α  and 2=α , we have 
 

zezE =)(1     and     )cosh()(2 zzE =  
 

When Nn∈=α , the following differentiation formulas hold for the function 
)( n

n zE λ : 
 

)()()( CzEzE
dz
d n

n
n

nn

n
∈= λλλλ  (1.3.2) 

 

and 

⎟
⎠

⎞
⎜
⎝

⎛−
=⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
+

−
nnn

n

nn
n

n

n

z
E

zz
Ez

dz
d λλλ

1
1 )1(

      );0( Cz ∈≠ λ  (1.3.3)  
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The Mittag–Leffler function )(, zE βα , generalizing the one in (1.3.1), is defined 
by 

 

)0)Re(;,(
) (

)(
0

, >∈
+Γ

= ∑
∞

=
αβ

βαβα Cz
k
zzE

k

k
 (1.3.4) 

 
When 1=β , )(, zE βα  coincides with the Mittag–Leffler function (1.3.1): 
 

)0)Re(;()()(1, >∈= ααα CzzEzE  

 

Like the Mittag–Leffler function )(zEα , )(, zE βα  is satisfies the following 
differentiation formulas generalized those in (1.3.2) and (1.3.3): 
 

 

( )[ ] ( ) );(,
1

,
1 CNnzEzzEz

dz
d n

nn
nn

nn

n
∈∈= −

−−− λλλ β
β

β
β  

 
and 

 

);;0()1(
,, CNnz

z
E

zz
Ez

dz
d

nnn

n

nn
n

n

n
∈∈≠⎟

⎠

⎞
⎜
⎝

⎛−
=⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
+

− λλλλ
βββ

β  

 

Now, we present some properties of special functions defined in terms of the 
Mittag–Leffler )(, zE αα  

 

We consider a function defined for }0{\Cz∈  and C∈λα ,  in terms of the 
Mittag–Leffler function (1.3.1) by 

 

 

)0)(Re()( >αλ α
α zE  (1.3.5) 
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The following differentiation formulas hold for this function with respect to z : 
 

 ( )[ ] ( )α
α

α
α λλ zEzzE

z n
n

n

n

−
−=

∂
∂

1,  (1.3.6)  

 
and with respect to λ : 
 

( )[ ] ( )α
αα

αα
α λλ

λ
zEznzE n

n
n

n

n
1

1,! +
+=

∂
∂

 (1.3.7) 

 
where )( α

α λzE  is the generalized Mittag–Leffler function which is denoted by 
 

)0)Re(;,,;(
!) (

)()(
0

, >∈∈
+Γ

= ∑
∞

=
αβα

βαβα CpCz
kk

zpzE
k

k
kp
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1.4 Riemann–Liouville Fractional Derivatives: [18] 

 

In this section we give the definitions and some properties of the Riemann–
Liouville fractional derivatives on a finite interval of the real line. 
 

Let ],[ ba=Ω  be a finite interval on the real axis R . The Riemann–Liouville 
fractional derivatives yDa

α
+  and yDb

α
−  of order C∈α  )0)(Re( ≥α  are defined by  

 

∫ +−+
−−Γ

=
x

a
nn

n

a
tx

dtty
dx
d

n
xyD 1)(

)(
)(

1))(( α
α

α
 (1.4.1) 

 
);1)][Re(( axn >+= α  

 

and 

∫ +−−
−−Γ

−
=

b

x
nn

n

b xt
dtty

dx
d

n
xyD 1)(

)(
)(

1))(( α
α

α
 (1.4.2) 

 
);1)][Re(( bxn <+= α   

 

respectively, where )][Re(α  means the integral part of )Re(α . These derivatives are 
called the left–sided and the right–sided fractional derivatives. In particular, when 

0Nn∈=α , then 
 

 

);())(())(( 00 xyxyDxyD ba == −+      and  
 

)())(( )( xyxyD nn
a =+  )()1())(( )( xyxyD nnn

b −=−  )( Nn∈  
 

where )()( xy n  is the usual derivative of )(xy  of order n .  
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If 1)Re(0 << α , then equations (1.4.1) and (1.4.2) becomes 
 

)(
)(

)(
)1(

1))(( ax
tx
dtty

dx
dxyD

x

a
a >

−−Γ
= ∫+ α

α
α

 (1.4.3) 

and 

)(
)(

)(
)1(

1))(( bx
xt
dtty

dx
dxyD

b

x
b <

−−Γ
−

= ∫− α
α

α
 (1.4.4) 

 

The Riemann–Liouville fractional derivatives (1.4.1) and (1.4.2), defined on a 
finite interval ],[ ba  of the real line R , are naturally extended to the half–axis +R . The 
fractional differentiation construction, corresponding to those in (1.4.1) and (1.4.2), are 
defined by 
 

  ∫ +−+
−−Γ

=
x

nn

n

tx
dtty

dx
d

n
xyD

0
1)(

)(
)(

1))(( α
α

α
 (1.4.5) 

 

and 
 

∫
∞

+−−
−−Γ

−
=

x
nn

n

xt
dtty

dx
d

n
xyD 1)(

)(
)(

1))(( α
α

α
 (1.4.6) 

 

 

with 1)][Re( += αn ; 0)Re( ≥α ; 0>x . 

 

The above expressions for yDα
+  and yDα

−  are called the Riemann–Liouville left–
sided and right–sided fractional derivatives on the half–axis +R . In particular, when 

0Nn∈=α , then 
 

);())(())(( 00 xyxyDxyD == −+       
 

)())(( )( xyxyD nn =+   )()1())(( )( xyxyD nnn −=−  )( Nn∈  
 

where )()( xy n  is the usual derivative of )(xy  of order n . 
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If 1)Re(0 << α  and 0>x , then equations (1.4.5) and (1.4.6) becomes 
 

∫
−−Γ

=+

x

tx
dtty

dx
dxyD

0 )(
)(

)1(
1))(( α

α
α

 (1.4.7) 

 
and 
 

∫
∞

−
−−Γ

−=
x xt

dtty
dx
dxyD α

α
α )(

)(
)1(

1))((    (1.4.8) 
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1.5 Laplace Transform: 

 

In this section we present the definitions and some properties of one–dimensional 
Laplace transform. More detailed information may be found in [19], [3], [2] and [20] 
(for the one–dimensional case). 

 
1.5.1 Usual Laplace Transform: 

 

The Laplace transform of a function f  of a real variable ),0( ∞=∈ +Rt  is 
defined by 
 

)()( )(s) (
0

Csdttfef st ∈= ∫
∞

−L  (1.5.1) 

        )()( lim
0

sFdttfe
b

st
b

== ∫ −

∞→
 

 

whenever the limit exists (as a finite number). When it does, the integral (1.5.1) is said 
to be converge. If the limit does not exist, the integral (1.5.1) is said to be diverge and 
there is no Laplace transform defined for f .  
 

Now, we want to consider the inverse problem, given a function )(sF , we want 
to find the function )(tf  whose Laplace transform is )(sF . We introduce the notation  
 

 

)()))((( 1 tftsF- =L  (1.5.2) 

 

to denote such a function )(tf , and it is called the inverse Laplace transform of F . 
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The direct and inverse Laplace transforms are inverse to each other: 
 

ϕϕ =LL 1-   and   gg =−1LL  
 

Now, we present some simple properties of the Laplace transform 
 

[ ] )())(()( )( NkssstD kk ∈= ϕϕ  L L  (1.5.3) 
 

)()( )]( [)1())(  ( NksttsD kkk ∈−= ϕϕ  LL  
 

The convolution operator of two functions )(th  and )(tϕ , given on +R , is 
defined for +∈Rt  by the integral 
 

∫ −=∗=∗
t

dxxxththh
0

)()())(( ϕϕϕ  (1.5.4) 

 
which has the commutative property 
 

 
hh ∗=∗ ϕϕ  (1.5.5) 

 
 

The Laplace transform of the convolution ϕ∗h  is given by  
 

))()()(()))(( ( sshsh ϕϕ LLL =∗  (1.5.6) 
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1.5.2 Laplace Transform for Fractional Ordinary Differential 
Equations: [18] 

 

In this section we present the Laplace transform of the Riemann–Liouville 
fractional derivatives yDα

+  in (1.4.5). 
 
 
 Lemma 1.2: [18] 
 

Let 0)Re( >α  and ],0[;1)][Re( bACyn n∈+= α  for any 0>b . Also let the 
following estimate  

 

 )0()( 0 >>≤ btBety tq  (1.5.7) 
 
 
hold, for constants 0>B  and 00 >q , and if )1,...,2,1,0(0)0()( −== nky k  then the 
relation 
 

))(())( ( syssyD  LL αα =+  (1.5.8) 
 
 
is valid for 0)Re( qs > . 
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Remark 1.1: [18] 
 

If ],0[)(;1)][Re(,0)Re( bACxyn n∈+=> αα , for any 0>b , the condition 
in (1.5.6) is satisfied and there exist the finite limits 

   
 

[ ])(lim
0

xyID nk

x
α−

+
+→

  and  [ ] 0)(lim =−
+

∞→
xyID nk

x
α  

 
)1,...,2,1,0;/( −== nkdxdD  

where )( yI n α−
+  is defined in (1.1.3). 

 

Then from (1.4.7) and 
 

)()0)(())( ()( )]([
1

0

1 NkDsssstD
k

j

jjkk ∈−= ∑
−

=

−− ϕϕϕ α L L  

 

we derive a relation, more general than that in (1.5.8), of the form  
 

 

)0)(())(())((
1

0

1 +−= ∑
−

=

−
+

−−
+ yIDssyssyD

n

k

nkkn ααα  L L  (1.5.9) 

 

 
( )0)Re( qs >  

 
 
In particular, when 1)Re(0 << α  and ],0[)( bACxy ∈  for any 0>b , then 
 

 

)0)(())(())(( 1 +−= −
++ yIsyssyD ααα  L L  (1.5.10) 
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Putting 1== βp  in  
 

[ ] p

p
pβ

s
sstEt

)(
)(  )(  

 

,
1

λ
λ α

βα
α

βα −
=

−
−L   

 

where 0)Re( >s , 0)Re( >β , C∈λ , and 1<−αλs  and taking 

)()()( ,
1

, CzzEzE ∈= βαβα and )0)Re(;()()(1, >∈= ααα CzzEzE  into account we 
obtain the Laplace transform of the function (1.3.5): 
 

[ ]
λ

λ α

α
α

α
−

=
−

s
sstE

1
)(  )( L  (1.5.11) 

 

 )1 and , ,0)(Re( <∈> −αλλ sCs  

 

and differentiating (1.5.11) n  times with respect to λ  leads to the relation 
 

)(
)(

!)(  )( 1

1
Nn

s
snstEt nn

n
n ∈

−
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

+

−

λ
λ

λ α

α
α

α
α L  (1.5.12) 

 

Next we consider a function, more general than that in (1.3.5), defined by 
 

 

)0)Re(;,,};0{\()(,
1 >∈∈− αλβαλ α

βα
β CCzzEz  (1.5.13) 
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The following relations, analogous to those in (1.3.6), (1.3.7), (1.5.11) and 
(1.5.12), are valid for the function in (1.5.13), )( Nn∈ :  
 

[ ] )()( ,
1

,
1 α

βα
βα

βα
β λλ zEzzEz

z n
n

n

n

−
−−− =

∂
∂

 (1.5.14) 

  

[ ] )(!)( 1
,

1
,

1 α
βαα

βαα
βα

β λλ
λ

zEznzEz n
n

n
n

n
+

+
−+− =

∂
∂

 (1.5.15) 

 

[ ]
λ

λ α

βα
α

βα
β

−
=

−
−

s
sstEt )( )( ,

1 L  (1.5.16) 

 

)1;;0)(Re( <∈> −αλλ sCs  

  

1,
1

)(
!)()( +

−
−+

−
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

nn

n
n

s
snstEt
λ

λ
λ α

βα
α

βα
βαL  (1.5.17) 

 

)1( <−αλs  
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Chapter Two  
 

INTEGRAL TRANSFORM METHOD FOR THE SOLUTIONS 
TO HOMOGENEOUS FRACTIONAL ORDER DIFFRENTIAL 

EQUATIONS WITH CONSTANT COEFFICIENTS 
 

The present chapter is devoted to the application of Laplace integral transform 
to construct the solutions to linear and homogeneous fractional order differential 
equations involving the Riemann–Liouville fractional derivatives with constant 
coefficients of the form 

 
 

0)())(( 0
1

=+∑
=

+ xyAxyDA
m

k
k

kα  (2.1) 

 

)...0;;0( 321 mNmx αααα <<<<<∈>  
 
with the Riemann–Liouville fractional derivatives ),...,3,2,1( mkyD k =+

α , given by 
(1.4.5). Here RAk ∈  ),...,2,1,0( mk =  are real constants, and, generally speaking, we 
can take 1=mA . We give the conditions when the solutions  

)(),...,(),(),( 321 xyxyxyxy l  of the equation (2.1) with )(1 Nlll m ∈≤=<− αα  
will be linearly independent, and when these linearly independent solutions form the 
fundamental system of solutions, which (by analogy with the ordinary case) is 
defined by 
 
 

);,...,3,2,1,(0)0)(( jkljkyD j
k ≠==−

+
α  

 
 

),...,3,2,1(1)0)(( lkyD k
k ==−

+
α    (2.2) 
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The Laplace transform method is based on the relation (1.5.9) which, in   
accordance with (1.4.5), is equivalent to the following one: 
 

∑
=

−
+ −=

l

j

j
j sdsxyssyD

1

1)( )])([())( (  LL αα  (2.3) 

 
);1( Nlll ∈≤<− α  

 
 

),...,3,2,1()0)(( ljyDd j
j == −

+
α  (2.4) 

 

Now, we give three theorems for finding the solutions of equation (2.1) in case 
2,1 == mm  and Nm∈  

 

The idea of these proves based on the implemented of Laplace Transform 
Method. 
 

The Laplace transform was used by [17], [11] and [16] to solve simple and 
special cases of fractional order differential equations. 



Chapter Two     Integral Transform Method for the Solutions to Homogeneous 
Fractional Order Differential Equations with Constant Coefficients 

 

 
 

20

First we derive the solutions to equation (2.1) with 1=m  in the form 
 

);;1;0(0)())(( RNlllxxyxyD ∈∈≤<−>=−+ λαλα   (2.5) 
 
in terms of the Mittag–leffler functions (1.3.4). There holds the following statement.                  

 

Theorem 2.1:  
 

Let )(1 Nlll ∈≤<− α  and R∈λ . Then the functions 

 

),...,3,2,1()()( 1, ljxExxy j
j

j == −+
− α

αα
α λ  

 

yield the fundamental system of solutions to equation (2.5). 

 

Proof:  
 

Applying the Laplace transform formula to equation (2.5)  

 

0))(())(( =−+ xyxyD λα  L L  
 
From (2.3) we have 
  

0)( )()( )(
1

1 =−− ∑
=

− sysdsys
l

j

j
j  L L λα  
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Therefore, we have  
 

∑
=

−

−
=

l

j

j

j s
sdsy

1

1
))((

λαL   (2.6) 

 

where ),...,3,2,1( ljd j =  are given by (2.4). Formula (1.5.16) with j−+= 1αβ  
yields  

 

[ ] )1 ()(  )(
1

1, <
−

= −
−

−+
− α

α
α

αα
α λ

λ
λ s

s
sstEt

j

j
j L  

 

Thus from (2.7), we derive the following solution to equation (2.5): 
 

)()()()( 1,
1

α
αα

α λxExxyxydxy j
j

jj
l

j
j −+

−

=
== ∑  

 

It is easily verified that the functions )(xy j  are solutions to equation (2.5) 

 

[ ] ),...,3,2,1()()( )(( 1,1, ljxExxtEtD j
j

j
j == −+

−
−+

−
+

α
αα

αα
αα

αα λλλ
 

and, moreover, 
 

∑
∞

=

−+−
+ −++Γ

=
0

 
)1 (

))((
n

jkn
n

j
k x

jkn
xyD αα

α
λ

 (2.8) 

 

It follows from (2.8) that 

 
);,...,3,2,1,(0)0)(( jkljkyD j

k >==−
+
α  

 (2.9) 

),...,3,2,1(1)0)(( lkyD k
k ==−

+
α  
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If jk < , then  

∑
∞

=

−+−
+ −++Γ

=
1

 
)1 (

))((
n

jkn
n

j
k x

jkn
xyD αα

α
λ

 

 

∑
∞

=

−++
+

−+++Γ
=

0

 
1

)1 (n

jkn
n

x
jkn

αα
αα
λ

 (2.10) 

 

 

and since 01 >−+≥−+ ljk αα  for any ljk ...,3,2,1, = . The following relations 
hold 
 

 
);,...,3,2,1,(0)0)(( jkljkyD j

k <==−
+
α  (2.11) 

 

By (2.9) and (2.11) the result of this theorem follows from (2.2).  

 
 

A Special Case of Theorem (2.1):  
 

The equation 

);10;0(0)( ))(( RxxyxyD ∈≤<>=−+ λαλα  
 

has its solution given by 
 

)()( ,
1 α

αα
α λxExxy −=  

while the equation 
 

);21;0(0)( ))(( RxxyxyD ∈≤<>=−+ λαλα  
 
has the fundamental system of solutions given by  
 

)()( ,
1

1
α

αα
α λxExxy −= ,  )()( 1,

2
2

α
αα

α λxExxy −
−=  
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Example 2.1:  
 

The equation 
 

);;0(0)( ))(( 2/1 RNlxxyxyDl ∈∈>=−−
+ λλ  

 
has the fundamental system of solutions given by 
 

),...,3,2,1()()( 2/1
2/1,2/1

2/1 ljxExxy l
jll

jl
j == −

+−−
−− λ  

 

Example 2.2:  
 

The following ordinary differential equation of order Nl ∈  
 

)0(0)( )()( >=− xxyxy l λ  

 

has the fundamental system of solutions given by 
 

 

),...,3,2,1()()( 1, ljxExxy l
jll

jl
j == −+

− λ  
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Next we derive the solutions to equation (2.1) with 2=m  of the form 
 

0)( ))(())(( =−− ++ xyxyDxyD μλ βα  (2.12) 
 

)0;;1;0( >>∈≤<−> βαα Nlllx  
 
with R∈μλ , . 
 

Theorem 2.2:  
 

Let αβα <<∈≤<− 0;;1 Nlll  and R∈μλ , . Then equation (2.12) is 
solvable and the functional system 
 

)(
!

)( 1,
0

 βα
αββα

αα λ
λ

μ −
−++−

∞

=

−+∑
∂
∂

= xEx
n

xy jn
n

n

n
jn

n

j  (2.13) 

 
),...,3,2,1( lj =  

 
are its solutions. 

 

In particular, the equation 
 

0))(())(( =− ++ xyDxyD βα λ  (2.14) 
 

)0;;1;0( >>∈≤<−> βαα Nlllx  
 
has its solution given by 
 

),...,3,2,1()()( 1, ljxExxy j
j

j == −
−+−

− βα
αβα

α λ  (2.15) 
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If βα ≥+− 1l , then )(xy j  in (2.13) and (2.15) are linearly independent 
solutions to equations (2.12) and (2.14), respectively. In particular, for βα >+− 1l  
they yield the fundamental system of solutions. 
 

Proof:  
 

Let );(1 lmNmmm ≤∈≤<− β . Applying the Laplace transform to 
(2.12) and using (2.3) as in (2.7), we obtain 
 

∑
=

−

−−
=

l

j

j

j ss
sdsy

1

1
))((

μλ βαL  (2.16) 

 
where, for all  lmmmj ,...,3,2,1 +++=  

 

)0)(()0)(( yDyDd jj
j

−
+

−
+ += βα  

 
and for all mj ,...,3,2,1=  
 

)0)(( yDd j
j

−
+= α  

 

For Cs∈  and 1<
−−

−

λ
μ
βα

β

s
s , using [9], we have 

 

( )∑
∞

=
+−

−−

−

−

−

−
=

⎟
⎠
⎞⎜

⎝
⎛ −−

=
−−

−

−
0

1 1

1
)(

1
n

n

nn

s
s s

s
s

s
ss λ

μ
λμλ βα

ββ

λ
μβα

β

βα
βα

β  (2.17) 

 

and hence (2.16) has the following representation: 
 

( )
∑∑
∞

=
+−

−−−

= −
=

0
1

1

1
))((

n
n

nj
nl

j
j

s
sdsy

λ
μ βα

ββ
 L  (2.18) 
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Using (1.5.17), with α  replaced by βα −  and β  by jn −++ 1βα , for 

Cs∈  and 1<−αβλs , we have 
 

( ) ( ) 1

)1 ()(

1

 1

+−

−++−−

+−

−−−

−
=

− n

jn

n

nj

s
s

s
s

λλ βα

βαβα

βα

ββ
 

 

)( )(
!

1
1,

 stEt
n jnn

n
jn

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

= −
−++−

−+ βα
βαβα

αα λ
λ

 L  (2.19) 

 
From (2.18) and (2.19) we derive the solution to equation (2.12) 
 

)()(
1

xydxy j
l

j
j∑

=
=  (2.20) 

 
where  ),...,3,2,1()( ljxy j =  are given by (2.13). It is readily verified that these 
functions are solutions to equation (2.12), which proves the first assertion of 
Theorem 2.2. 
 

For lkj ,...,3,2,1, = , the direct evaluation yields  
 

)(
!

))(( 1,
0

 βα
ββα

αα λ
λ

μ −
−++−

∞

=

−+−
+ ∑

∂
∂

= xEx
n

xyD jkn
n

n

n
jkn

n

j
k  (2.21) 

 

It follows from (2.21) that the relations in (2.9) hold for jk ≥ . If jk < , then, 
we rewrite (2.21) as follows: 

∑
∞

=

−+−+−
+

−
+ +

−+++−Γ
=

0

)(
1

]1)1)([(
))((

q

jkq
q

j
k x

jkq
xyD βαβαα

βα
λ

 

 

)()()(
! 211,

1
xIxIxEx

n jknn

n

n

jkn
n

+=
∂
∂ −

−++−

∞

=

−+∑ βα
ββα

α λ
λ

μ
 (2.22) 
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If βα ≥+− 1l , then 01)( ≥−+−≥−+−+− ljkq βαβαβα  for any 
lkj ,...,3,2,1, =  and 0Nq∈ . Thus );,...,3,2,1,(0)(lim 10

jklkjxI
x

<==
+→

 except 

for the case βα =+− 1l  with 1=k  and lj = , for which λ=
+→

)(lim 10
xI

x
. 

Moreover, since 01 >−+≥−+ ljkn αα  for any lkj ,...,3,2,1, =  and Nn∈ , then 
);,...,3,2,1,(0)(lim 20

jkljkxI
x

<==
+→

. Thus (2.22) yields the relation (2.11) for 

any solution )(xy j  in (2.13), except for the case βα =+− 1l  with 1=k  and 
lj = , for which 

λα =−
+ )0)(( 1

lyD   (2.23) 
 

It follows from (2.9), (2.11) and (2.23) that )(xy j  in (2.13) are linearly 
independent solutions to the equation (2.12). 
 

If βα >+− 1l , then the relations (2.2) are valid, and hence )(xy j  in (2.13) 
yield the fundamental system of solutions to equation (2.12). 

  
 
A Special Case of Theorem (2.2):  

 

The equation 
 

0)( ))(())(( =−− ++ xyxyDxyD μλ βα  ),;10;0( Rx ∈≤<<> μλαβ  
 

has its solution given by 
 

)(
!

)( ,
0

1 
1

βα
αββα

αα λ
λ

μ −
+−

∞

=

−+∑
∂
∂

= xEx
n

xy n
n

n

n
n

n
 (2.24) 

 

In particular, 
 

)()( ,
1

1
βα

αβα
α λ −

−
−= xExxy  (2.25) 

 

is the solution to the following equation: 
 

0))(())(( =− ++ xyDxyD βα λ  );10;0( Rx ∈≤<<> λαβ  
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Another Special Case of Theorem (2.2):  
 

The equation 
 

0)( ))(())(( =−− ++ xyxyDxyD μλ βα   (2.26) 
 

),;0;21;0( Rx ∈<<≤<> μλαβα  

 

has two solutions )(1 xy , given by (2.24), and 
 

)(
!

)( 1,
0

2 
2

βα
αββα

αα λ
λ

μ −
−+−

∞

=

−+∑
∂
∂

= xEx
n

xy n
n

n

n
n

n
 

 

In particular, the equation 
 

0))(())(( =− ++ xyDxyD βα λ   (2.27) 
 

);0;21;0( Rx ∈<<≤<> λαβα     
 
has two solutions )(1 xy , given by (2.25), and 
 

)()( 1,
2

2
βα

αβα
α λ −

−−
−= xExxy  

 

If 1+≥ βα , then the above functions )(1 xy  and )(2 xy  are linearly 
independent solutions to the equation (2.26) and (2.27), respectively. In particular, 
for 1+> βα  these functions provide the fundamental system of solutions. 
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Example 2.3:  
 

The equation 
 

0)( ))(()( =−−′ + xyxyDxy μλ β ),;10;0( Rx ∈<<> μλβ  
 

has its solution given by 
 

)(
!

)( 1
1,1

0

β
β λ

λ
μ −

+−

∞

=
∑

∂
∂

= xEx
n

xy n
n

n

n
n

n
 

 

In particular, 
 

)(
!
)()( 2/1

1,2/1
0

xE
n
xxy n

n
n

nn
λ

λ
μ

+

∞

=
∑

∂
∂

=  

 

is the solution to the equation 
 

0)( ))(()( 2/1 =−−′ + xyxyDxy μλ     ),;0( Rx ∈> μλ  
 

Example 2.4:  
 

The equation 
 

0)( ))(()( =−−′′ + xyxyDxy μλ β      ),;20;0( Rx ∈<<> μλβ  
 

has its two solutions given by 

)(
!

)( 2
2,2

0

12
1

β
ββ λ

λ
μ −

+−

∞

=

+∑
∂
∂

= xEx
n

xy n
n

n

n
n

n
 

 

)(
!

)( 2
1,2

0

2
2

β
ββ λ

λ
μ −

+−

∞

=
∑

∂
∂

= xEx
n

xy n
n

n

n
n

n
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These solutions are linearly independent when 1≤β  and form the 
fundamental system of solutions when 1<β . 

In particular, the equation 
 

0)( ))(()( 2/1 =−−′′ + xyxyDxy μλ           ),;0( Rx ∈> μλ  
 

has the fundamental system of solutions given by 
 

)(
!

)( 2/3
2)2/1(,2/3

0

12
1 xEx

n
xy n

n
n

n
n

n
λ

λ
μ

+

∞

=

+∑
∂
∂

=  

 

)(
!

)( 2/3
1)2/1(,2/3

0

2
2 xEx

n
xy n

n
n

n
n

n
λ

λ
μ

+

∞

=
∑

∂
∂

=  

 

Example 2.5:  
 

The following ordinary differential equation of order Nl ∈  

 

),;;;0(0)( )()( )()( RlmNmxxyxyxy ml ∈<∈>=−− μλμλ
 
 

has l  solutions given by 
 

),...,3,2,1()(
!

)( 1,
0

ljxEx
n

xy ml
jlmnml

n
n

n
jlnl

n

j =
∂
∂

= −
−++−

∞

=

−+∑ λ
λ

μ
 

 

when 1=m , these solutions are linearly independent. 
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In particular, the following ordinary second order differential equation 
 

0)()( )( =−′−′′ xyxyxy μλ           ),;0( Rx ∈> μλ  
 

has two linearly independent solutions given by 
 

)(
!

)( 2,1
0

12
1 xEx

n
xy n

n
n

n
n

n
λ

λ
μ

+

∞

=

+∑
∂
∂

=  

 

)(
!

)( 1,1
0

2
2 xEx

n
xy n

n
n

n
n

n
λ

λ
μ

+

∞

=
∑

∂
∂

=  
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Finally, we find the solutions to equation (2.1) with any Nm∈  in the form                    
 

)0(0))(())(())((
0

>=−− ∑
=

+++ xxyDAxyDxyD
m

k
k

kαβα λ  (2.28) 

),...,,,,;...0( 210210 RAAAA mm ∈<<<<<<= λαβαααα  

 

Theorem 2.3:  
 

Let Nm∈ , )(1 Nlll ∈≤<− α  and let β  and mαααα ,...,,, 321  be such that 
0... 0121 =>>>>>>> −− αααααβα mmm , and let RAAAA m ∈,...,,,, 210λ . Then 

equation (2.28) is solvable and the functional system 

 

∑ ∏∑
∞

= ==+
⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

0 00...
)(

!!...
1)(

0n

m

v

k
v

mnkk
j

v

m

A
kk

xy  

 

)(
0

0

)(1,

)()(
βα

αβαβα

αβαβα
λ

λ
−

−+−+−

−+−+−

∑

∑

=

=

∂
∂

⋅ xEx m

v
vv

m

v
vv

kjn

nkjn
 (2.29) 

 

with lj ,...,3,2,1= , are its solutions. The inner sum is taken over all 
0320 ,...,,, Nkkkk m ∈ such that nkkkk m =++++ ...210 . 

 

If βα ≥+− 1l , then )(xy j  in (2.29) are linearly independent solutions to 
equation (2.28) . In particular, for βα >+− 1l  they provide the fundamental 
system of solutions. 
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Proof:  
 

Let kkkmm llll ≤<−≤<− ++ αβ 1,1 11  ),...,3,2,1( mk =  
)...0( 1321 lllll m ≤≤≤≤≤≤ + . Applying the Laplace transform to (2.28) and using 

(2.3) as in (2.16), we obtain 

 

∑
∑=

=

−

−−
=

l

j
m

k
k

j

j
ksAss

sdsy
1

0

1
))((

αβα λ
L  (2.30) 

 

where 

 

),...,3,2,1()0)(()0)(()0)(( 1
1

ljyDAyDyDd jm

k
k

jj
j

k =−−= −
+

=

−
+

−
+ ∑ αβα λ

 

)...,...,2,1()0)(()0)(()0)(( 211
2

llljyDAyDyDd jm

k
k

jj
j

k ++=−−= −
+

=

−
+

−
+ ∑ αβα λ

 

)...,3,2,1()0)(()0)(( 1+
−

+
−

+ +++=−= mmmm
jj

j lllljyDyDd βα λ
 

),...,3,2,1()0)(( 111 lllljyDd mmm
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here )(0 nmA
n
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k >=∑

=
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According to (1.5.17), just as in (2.19), for Cs∈  and 1 <−αβλ s , we have 
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From (2.30), (2.31) and (2.32) we obtain the solution to equation (2.28) in the 
form (2.20), where ),...,3,2,1()( ljxy j =  are given by (2.29). It is easily verified 
that these functions are solutions to (2.28), and thus the first assertion of the 
Theorem 2.3 is proved.  

 

For lkj ,...,3,2,1, =  , the direct evaluation leads to the following equations: 
 

+
∂
∂

= −
−+−

−−
+ )())(( 1,

βα
βα

α λ
λ

xExxyD jkn

n
jk

j
k   

 

∑
=

−+−+−∞

= ==+
∑ ∏∑ ⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
m

v
vv

v

m

kjkn

n

m

v

k
v

mnkk
xA

kk
0

0

)()(

1 00...
 )(

!!...
1 αββα

 

 
 

)(

0
)(1,

βα

αββα
λ

λ
−

−+−+− ∑
=

∂
∂

⋅ xE m

v
vv kjkn

n
 (2.33) 

 

with lj ,...,3,2,1= . If jk ≥ , then the last formula yields the relations in (2.9). If 
jk < , then, the first term in the right – hand side of (2.33) takes the form 
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If βα ≥+− 1l , then for any jk < , we have  01 ≥−+−≥−+− ljk βαβα  

and 01)()(
0

>−+−≥∑ −+−+−
=

lkjkn
m

v
vv βααββα  for any  0Nn∈ . Then from 

(2.33) and (2.34), we derive (2.11), except for the case βα =+− 1l  with 1=k  and 
lj = , for which the relation (2.23) holds. it follows from (2.9), (2.11) and (2.23) that 

the functions  )(xy j   in (2.29) are linearly independent solutions to equation (2.28). 
When βα >+− 1l , then the relations in (2.2) are valid, and thus )(xy j  in (2.29) yield 
the fundamental system of solutions to the equation (2.28).  

  
 

A Special Case of Theorem (2.3): 

 

If Nl∈  and RAAAA l ∈,...,,,, 210λ , then the following ordinary differential 
equation of order l  
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Example 2.6:  
 

The equation 
 

 

0)( ))(())(())(( =−−− +++ xyxyDxyDxyD μδλ γβα  (2.35)  
 

with )(1 Nlll ∈≤<− α   and αβγ <<<0 , has l  solutions given by 
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),...,3,2,1( lj =  

 

If βα ≥+− 1l , then the functions )(xy j  in (2.36) are linearly independent 
solutions to equation (2.35). In particular, for βα >+− 1l  these functions provide 
the fundamental system of solutions. 

 

Example 2.7:  
 

The ordinary differential equation of order Nl ∈  
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Chapter Three 
 
 

INTEGRAL TRANSFORM METHOD FOR THE SOLUTIONS 
TO NONHOMOGENEOUS FRACTIONAL ORDER 
DIFFRENTIAL EQUATIONS WITH CONSTANT 

COEFFICIENTS 
 

 

The present chapter is to present a scheme for solving the fractional 
nonhomogeneous differential equation with constant coefficients of the form  

 

)0()()())((
1

0 >=+∑
=

+ xxfxyAxyDA
m

k
k

kα  (3.1) 

 
with RAAAANm mm ∈<<<<∈ ,...,,,);Re(...)Re()Re(0; 21021 ααα , and 
involving the Riemann–Liouville fractional derivatives ),...,3,2,1( mkyD k =+

α , given 
by (1.4.5). By (1.5.10), for suitable functions y , the Laplace transform (2.1) of yDα

+  
is given by 
 

))(())(( syssyD  L L αα =+  (3.2) 
 
 

Taking the Laplace transform of (3.1) and taking (3.2) into account, we have 
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Using the inverse Laplace transform 1-L  given by (1.5.2), from here we obtain a 
particular solution to the equation (3.1) in the form 
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 (3.3) 

 

 

Miller [11] introduced a fractional analog of the Green function )(xGα  defined, 
via the inverse Laplace transform (1.5.2), by 

 

∑
=

− +=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
=

m

k

k
k AsAsPx

sP
xG

1
0

1 )(),(
)(

1)(   L αα   (3.4) 

 
 

represented a particular solution to the nonhomogeneous equation (3.1) in the form of 
the convolution of  )( xGα  and  )(xf : 
 

 ∫ −=
x

dttftxGxy
0

)()()( α        

 
and proved that this formula yields a unique solution )(xy  to the equation (3.1) with 
the following initial conditions: 
 

     0)0(...)0()0()0( )1( ===′′=′= −myyyy    
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In Chapter 2 we applied the Laplace transform method to derive the solutions to 
the homogeneous equation (2.1) with the Riemann–Liouville fractional derivatives 
(1.4.1). Here we use this approach to find particular solutions to the corresponding 
nonhomogeneous equations. 
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with real RAk ∈  )....,2.1,0( mk =  and a given function )(xf  on +R . Our arguments 
are based on a scheme for deducing a particular solution (3.3) to equation (3.5), 
presented in Chapter 2. Using the Laplace convolution formula (1.4.6). 
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just as in (3.4) we can introduce the Laplace fractional analog of the Green function as 
follows [10]. 
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and express a particular solution (3.3) of equation (3.5)  in the form of the Laplace 
convolution of )(,...,,, 321

xG
nαααα  and )(xf  

 

∫ −=
x

dttftxGxy
n

0
,...,,, )()()(

321 αααα  (3.7) 

 
 
Generally speaking, we can consider equation (3.5) with 1=mA .  

 

Now, we give three theorems for finding the solutions of equation (3.1) in case 
2,1 == mm  and Nm∈  

 

The idea of these proves based on the implemented of the Green Function. 
 

The Green function was used by [10] to solve nonhomogeneous fractional order 
differential equations. 
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First we derive a particular solution to equation (3.5) with 1=m  in the form 
 

 

)0;0()()())(( >>=−+ αλα xxfxyxyD   (3.8) 

 

in terms of the Mittag–Leffler function (1.3.4). 

 

Theorem 3.1:  
 

Let R∈> λα ,0  and let )(xf  be a given function defined on +R . Then 
equation (3.8) is solvable, and its particular solution has the form 
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Proof:  
 

Its clear that equation (3.8) can be obtained from equation (3.5) in case if we 
take λαα −==== 011 ,1,,1 AAm , and equation (3.6) takes the form 
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By (1.5.16) with αβ = , we have 
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and thus (3.7), with )()(...,,, 321
xGxG

m ααααα = , yields (3.9). 

  

 

Example 3.1:  
 

The equation 
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has a particular solution given by 
 

dttftxEtxxy l
ll

x
l )( ])([)()( 2/1

2/1,2/1
0

2/3 −
−−

− −−= ∫ λ  

 



 Chapter Three Integral Transform Method for the Solutions to Nonhomogeneous 
Fractional Order Differential Equations with Constant Coefficients 

 

 44

Example 3.2:  
 

The following ordinary differential equation of order Nl ∈  
 

)0()()( )()( >=− xxfxyxy l λ  

 

has a particular solution given by 
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Next we derive a particular solution to equation (3.5) with 2=m  of the form 

 

)()( ))(())(( xfxyxyDxyD =−− ++ μλ βα       )0;0( >>> βαx  (3.10) 

 

Theorem 3.2:  
 

Let 0>> βα , R∈μλ ,  and let )(xf  be a given function defined on +R . Then 
equation (3.10) is solvable, and its particular solution has the form 
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In particular, the equation  
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has a particular solution given by 
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Proof:    
 

Its clear that equation (3.10) can be obtained from equation (3.5) in case if we 
take 2=m , μλβααα −=−==== 01210 ,,1,, AAA , and equation (3.6) is given by  
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and hence (3.15) takes the following form: 
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Thus the result in (3.11) follows from (3.7) with )()( ,...,,, 321
xGxG

n βααααα = . 
(3.11) with 0=μ  yields (3.14). Note that, in the limiting case 0=β , the solution  
(3.14) of equation (3.13) coincides with the solution (3.9) of equation (3.8). 

  
 

Example 3.3:  
 

The equation 
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has a particular solution given by 
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In particular, the equation 
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Example 3.4:  
 

The equation 

 

)()( ))(()( xfxyxyDxy =−−′′ + μλ β      ),;20;0( Rx ∈<<> μλβ  

 

has a particular solution given by 
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Example 3.5:  
 

The following ordinary differential equation of order Nl ∈  

 

),;;;0()()( )( )( )()( RlmNmxxfxyxyxy ml ∈<∈>=−− μλμλ  

 

has a particular solution 
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is a particular solution to the equation 
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Finally, we find a particular solution to equation (3.5) with any Nm∈ . It is 
convenient to rewrite (3.5), just as (2.28) in the form 
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 (3.16) 

with αβαααα <<<<<< m...0 321  and RAAAA m ∈,...,,,, 210λ . 

 

Theorem 3.3:  
 

Let Nm∈ , 0... 0121 =>>>>>>> −− αααααβα mmm , let 
RAAAA m ∈,...,,,, 210λ , and let )(xf  be a given function defined on +R . Then 

equation (3.16) is solvable, and its particular solution has the form 
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The inner sum is taken over all 0210 ,...,,, Nkkkk m ∈  such that 
nkkkk m =++++ ...210 . 

 



 Chapter Three Integral Transform Method for the Solutions to Nonhomogeneous 
Fractional Order Differential Equations with Constant Coefficients 

 

 51

Proof:  
 

Its clear that equation (3.16) can be obtained from equation (3.5) in case if we 
take λβααα −==== −− 11 ,1,, mmmm AA ,   and   with  kA−   instead   of  kA  
for mk ,...,2,1,0= . Since 00 =α , equation (3.6) takes the form 

 

)( 1  )(

0

1
,...,,, 321

x
sAss

xG m

k
k

k
m

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
=

∑
=

−

αβα
αααα

λ
L  

 

For Cs∈  and 10 <
−−

−

=
∑

λβα

βα

s

sA k
m

k
k

, in accordance with (2.31), we have 

 

 

 

)(,...,,, 321
xG

mαααα )( 
)(

)(
!!...

1  1

)(

0 00...

1 0

0

x
s

sA
kk n

k

n

m

v

k
v

mnkk

m

v
vv

v

m ⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= +−

−−−
∞

= ==+

−
∑
=

∑ ∏∑
λβα

αββ

L

  

 (3.19) 



 Chapter Three Integral Transform Method for the Solutions to Nonhomogeneous 
Fractional Order Differential Equations with Constant Coefficients 

 

 52

Using (1.5.17) with βαα −=  and ∑
=

−+=
m

v
vv k

0
)( αβαβ  just as in (2.32), 

for Cs∈  and 1<−αβλs , we have 
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 (3.20) 
 

It follows from (3.20) that )(,...,,, 321
xG

mαααα in (3.19) is given by 
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Hence (3. 7) yields the result in (3.17)  
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A Special Case of Theorem (3.3):  
 

If Nl∈  and RAAAA l ∈,...,,,, 210λ , then the ordinary differential equation of 
order l  

)0()()()( )( )(

0

)1()( >=−− ∑
=

− xxfxyAxyxy kl

k
k

ll λ  

 

is solvable, and its particular solution has the form 
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provided that the series in (3.22) and the integral (3.21) are convergent. 
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Example 3.6:  

 

The equation 
 

)()( ))(())(())(( xfxyxyDxyDxyD =−−− +++ μδλ γβα  
 

),,;0( Rx ∈> μδλ  

 

with αβγα <<<∈≤<− 0),(11 Nll , has a particular solution given by 
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Example 3.7:  

 

The following ordinary differential equation of order Nl ∈  
 

)()( )( )( )( )()()( xfxyxyxyxy kml =−−− μδλ  
 

);,;0( lmkNkmx <<∈>  

 

with R∈μδλ ,,  has a particular solution given by 
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CONCLUSIONS  
 

 

We are obtained the solutions for ordinary multi–fractional order 

differential equations with constant coefficients for homogenous and 

nonhomogeneous fractional order differential equations making use of the 

Laplace transform formula of special function Mittage–Leffler function 

and their derivatives, by considering, simple  one term with fractional 

order differential equation, extended to two terms with different arbitrary 

fraction order derivatives, then generalized to m–terms with different 

arbitrary fraction order derivatives.  

 
 

FUTURE WORK 
 

 

We are recommended the following future works for constructing 

the explicit solutions to homogeneous and non – homogeneous: 

 

1. System of fractional order differential equations. 
 

2. Special Types of fractional order differential equations with 

variable coefficients. 
 

3. Fractional order differential equations using other integral 

transforms, such as Fourier, Mellin Integral Transforms. 
 

4. Fractional order differential equations using other definitions, such 

as Caputo, Hadamard. 
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 لاصةـالخ
  

 يـةيلالتحل اتالرياضـي أحـد فـروعهو  ذات الرتب الكسريةالتفاضل والتكامل  نابحس

وإن هنـاك عـدة أنـواع . للمعـادلات التفاضـلية رتبـةعدد حقيقي ك إعتماد إمكانيةالتي تمكن 

و كبوتـو ) Riemann–Liouville(لوفيـل  –ن المشتقات الكسـرية مثـل ريمـانمختلفة م

)Caputo ( و هادمرد)Hadamard (وغيرها قد طورت.  

  

 Laplace(تطبيقــــــات تحويــــــل لابــــــلاس تطــــــوير لقــــــد قمنــــــا بهــــــذا البحــــــث ب

Transform (حــل للمعــادلات التفاضــلية الخطيــة المتجانســة والغيــر متجانســة  ســتنباطلإ

الكســــرية ذات الرتـــب متعـــددة والتـــي تتضـــمن المشـــتقات كســـرية رتـــب تحتـــوي علـــى التـــي 

خاصــة  لدوا بدلالــة ذات المعــاملات الثابتــة) Riemann–Liouville(لوفيــل  –لريمــان

، وبإســـتخدام تحويـــل لابـــلاس Mittag–Leffler Function متـــيج لفلـــر تســـمى دالـــة

  .لهكذا دوال ومشتقاتها

  

تـــــم التــــي  الحلــــول عــــدة امثلــــة خــــلال هـــــذا البحــــث لتوضــــيح صــــيغ حــــلوقــــد تــــم 

  .أستنباطها



 
 
 

 

 
 
 

 
 

 

ب  ـادية ذات الرتـلية الإعتيـادلات التفـاضـل المعـح

ويل  ـدام تحـة بإستخـاملات الثابتـرية والمعـالكس

لاسـلاب  
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