
Acknowledgment

First of all great thanks are due to Allah who helped me

and gave me the ability to achieve this research from the first to

the last step.

I would like to express my deep gratitude and sincere

thanks to my supervisor Dr. Abeer M. Yousif for guidance,

assistance and encouragement during the course of this project.

Grateful thanks for Dr. Loay E. George the Head of

Department of Computer Science of Baghdad University for the

continuous support during the period of my studies.

Deep gratitude and special thanks to my family: my parent,

brothers, and Husband for their encouragements and

supporting to succeed in doing this work.

Deep thanks to Dr. Haitham Abdul Lateef and Dr. Ban

Nadeem Thannoon for their support, interest and generosity.

Special thanks to all my friends for giving me advises.

Sarah

 i

Appendix A
RIFF WAVE (.WAV) File Format

A.1. Waveform Audio File Format (WAVE):

The canonical WAVE format starts with the RIFF header:

Offset Field name Length Contents

0
"RIFF" file
description

header
4 bytes Contains the letters "RIFF" in ASCII

4 Size of file 4 bytes

The file size which is less the size of the
"RIFF" description (4 bytes) and the size of
file description (4 bytes).this is usually: file

size-8

8
"WAVE"

description
header

4 bytes Contains the letters "WAVE"

Next to the RIFF header comes first chunk 'fmt chunk' which describes the

sample format:

Offset Field name Length Contents
12 "fmt" id 4 bytes Contains the letters "fmt "

16 Size of file 4 bytes

The size of the WAVE type format (2bytes)
+ number of channels (2bytes) + sample

rate (4 bytes) + Byterate (4bytes) + Block
alignment (2bytes) + Bitspersample (2

bytes). This is usually 16

20 Audio Format 2 bytes
Type of WAVE format. if 1=PCM (Pulse

Code Modulation), values other than 1
indicate some form of compression

22
Number of
Channels

2 bytes Channels :mono=1, stereo=2

24 SampleRate 4 bytes Sample per Second e.g.8000, 44100

28 ByteRate 4 bytes
Byte per Second or ==SampleRate*number

of channels*bitspersample/8

32 BlockAlign 2 bytes
Block alignment: the number of bytes for

one sample including all channels.
Or ==number of channels*bitspersample/8

34 BitsPerSample 2 bytes Bits per sample 8 bits=8, 16 bits=16, etc.

 ii

Finally, the data chunk contains the sample data:

Offset
Field
name Length Contents

 36
"data"

description
header

4 bytes Contains the letters "data"

40
Size of

data chunk
4 bytes

Number of bytes of data is included in the
data section == number of samples * number
of channels * bitspersample/8

44 Data
Unspecified
data buffer

The actual sound data

A.2 Data Packing for PCM WAVE Files:

In single channel WAVE files, samples are stored consecutively. For stereo

WAVE files, channel 0 represents the left channel and channel 1 represents the

right channel. In multiple channel WAVE files, samples are interleaved. The

following diagrams show the data packing for some common WAVE file

formats.

Data packing for 8-bit mono PCM:

Data packing for 8-bit stereo PCM:

Sample1 Sample2

Channel 0

(left)

Channel 1

(right)

Channel 0

(left)

Channel 1

(right)

Data packing for 16-bit mono PCM:

Sample1 Sample2 Sample3 Sample4

Channel 0 Channel 0 Channel 0 Channel 0

Sample1 Sample2

Channel 0

Low-order byte

Channel 1

High-order byte

Channel 0

Low-order byte

Channel 1

High-order byte

 iii

Data packing for 16-bit stereo PCM:

Sample1

Channel 0

(left)

Channel 0

(left)

Channel 1

(right)

Channel 1

(right)

Low-order byte High-order byte Low-order byte High-order byte

A.3 Data Format of the Samples:

Each audio sample is contained in an integer i. The size of i is the smallest

number of bytes required to contain the specified sample size. The least

significant byte is stored first. The data format and maximum and minimum

values for PCM waveform samples of various sizes are shown in the following

table:

Sample Size Data Format Maximum Value Minimum Value

One to eight bits Unsigned integer 255 0

Nine or more bits Signed integer 32767 -32768

Appendix

 الملخص

�ت ا����� ھ� ���ر ا���� ��	�����ت ا�
���� وا
��� ا�
	��� ا����������أو !� �� ا

و .��5$�4 �ت ا��$3 �2م 0	�نھ� ������ت����.- �ي، !	& ا�	*� ا�()'�& ا�%$#� أ �	�

�4�
� و0> �2ة وا����;: ا�	(��دة،�7�� ا�	�����ت ا����6 و �(� ا����6ا�
�< �)==�ت

).SSS(ا�)(��-

���م ھ@ه ا�����6 2),n(� -��6ط�����) ��
ا�
�< أ �اع �& @ي ��($6 �ع، وا��6�5-و �ا�

!� 	�ذج �)==�� ��ف ���� .ا�
��� ا��6ي (k,n) ��م �ع �Dص �&و ا���6- ا�)(��-

5 >�H I#%5 ا��6ي J�	4& 4&ا�K%�ر	�2د ا�n، 4& وأيK%�ر	4& �& ا��Lأن � ا &#	�K6)%�

4�. ش�ء �& ا�(�P6ع اي�	%�ر4K& ا 	#&(�!�& ، وإ� 	�J �6يا� �2Nدة 5��ء	�� ��ا�)=�

�H6)�	ا� I
� �%#�� ز��دة �.H >�
 . ا�� &� �4��)��U�(درP-0	�ن إ�S �P T ا�

�4& �& �(#�ن ا�	�(6ح ا��	�ذج�Hة و: و�H64�%)ه ا��Hوو W!ل 2$�ره ، (6�4'ا��Dد�و�#�ن ا

�	�H6� 6- .�& ا�
�< nھ� ا����4H �!Z& أن) .WAV(�& �ع �Yت �45 �ت 2&

��I 2& ط��6 إ6Pاءذ�W و�(
��. 6�4'ا�U]: وا�(: ��H6(4&2$6 ا�(64�%�.S4 ا� 0]:

�[DCT ، \4$ ا�	(�=> ا�(�م��%]Quantization)(،I4 ا��4 '6�4� Run Length) =�لا�

Encoding) ،و I��
�IH6ا� �������4ا�(4^6Shifting Coding) (.�)� &4H �! ل��
ا�

����4، و (Diffusing)ا�	�����ت وا�2ده ��ز�> ��ا^�*� %6 & طT��6 ا�(64�% �22

�)�4< ���د�ت �(���4 (Generate Random Coefficients) 2%�ا;�4 ����7ت

����4 �2د � ا�(�ا�� T�2)Generate Share Functions (%�ر�H-K< ا� �)4n &�

>�
 .ا�

� اD($�ر� و))MSEا���)� I]� `=(: 	����564_ ا�، وذ�W ��5()�ام ا�(=� ا�	�(�H6 أداء

� ا�()�ام ا�)=` ���ل ���4س) PSNR(�7ش�ره ا�@روةو ا��0�Uء �$�)� &4H �! �$�

�	#�� �& �%.�- (�;Z (4.� ا�D($�رو�K \ .ا���K :[Uءة ���4س) CR(ا� U]�ط 34H

 b04- و��5ت وا�Y�0]: ا����7ت و��H�� � -��5 >�H T�2�U�(- 2& ا����7ت ا

 &4)�H 2*� �& اي�P6)��5 ا� -P�	�� ع�)��وT�2 در�4P -Pه �Pا �& ا���0ح 2�� ا

 .2%�ا;4-

ر�� ا���اق��

 وزارة ا������ ا����� و ا���� ا�����

��� ا�������

���� ا���
م

م ا���
ب�! �"#

 �����دام���
 ����ر ا
�وت ا
 ا
���ط� ��و�ل ا
��ب ���م

 �
 ر��
 ����� ا������ /��
�� ا��
�	� ا����م

�	� �� ���م ا�����ب����
()ء �� ��&�%�ت #	" !��دة ا�

"%* ��

 البغدادي ساره سعد علي

) ٢٠٠٣ بكالوريوس (

 إ%�اف

رة ا) ��ذة�� ا�(

 ي يـوســفــعبـيــر متـ

 ١٤٣٥ جمادي الثاني ٢٠١٤ نيسان

Chapter Five Conclusions and Suggested Future Work

65

Conclusions and Suggested Future Work

5.1 Conclusions

In the previous chapters, sharing audio files using discrete cosine

transform were established and its performance was tested. Various tests

were performed to study the effects of the involved coding parameters on

performance.

The main goal of this work is to reduce the size of the shares for the

purposes of saving storage media and to speed up transmit via low

bandwidth network besides guaranteeing security at low complexity.

In the following points some remarks related to the behavior and

performance of the suggested Share Audio Cryptography Using DCT

transform is indicated and some derived conclusions are presented too:

1. The security of proposed system is acquired by several layers

which add more strength. At the first layer, the attacker should

guess secret coefficients, a1 and a2, for each share at share

reconstruction phase, which made recovery secret data is time

consuming for him (i.e. computationally secure method). At the

second layer, is the use of diffuser to prune the existing bits

significance in compressed data makes shares unbiased toward

local significance; this will avoid the occurrence of localization

problem.

2. If any block or blocks of one share is corrupted, we still can

fully recover the whole secret file from other shares.

Chapter Five

Chapter Five Conclusions and Suggested Future Work

65

3. Spatial correlation property of the secret audio is eliminated

when compression is performed.

4. Since the linear function is unique to a specific share, even

minor changes to that share result in a dramatically different

function, thereby alerting a user to potential tampering.

5. The size of shares are significantly less than the size of the

secret file.

6. Table (4.9) shows Best Results the PSNR values of the

reconstructed secret audio range from 40.2457 to 39.9813 dB

with high MSE values.

7. Better CR without high MSE were not enough to get best PSNR

values as can be seen in comparison between table (4.9) and

(4.10).

5.2 Suggested Future Work

The following suggestions are recommended for future work:

1. The proposed system could be implemented on image or video

instead of audio wave file.

2. Instead of using wave file, other audio formats could be used in the

future.

3. In Share Process Instead of (2,n) scheme make it (k,n) scheme

where k<n, this will lead to make number of random coefficients

will be change according to k, where needed number of

coefficients and functions will be the same as k, in order to retrieve

the original file by k authorized subsets.

Experimental Results and System Evaluation Chapter Four

49

Experimental Results and System Evaluation

4.1 Introduction

This chapter is devoted to present definition for the proposed

scheme with simple example and discuss the results of the conducted

tests to test the performance of the established system. The test was

conducted on wave files with 1 channel and 16 bits per sample.

4.2 Mathematical Definition for the Proposed SSS (2,n)

The Goal is to distribute a Secret Compressed File (F) into n shares

{Share1, Share2, …., Sharen} in such a way that:

– Knowledge of any 2 shares makes secret file easily

computable.

– None of the shares appear to reveal information about the

secret file

– Shares size will be smaller than the secret file.

Each Sharen is encoding of F using the linear function

Sn = vj a1n + vj-1 a2n .

a1n and a2n are Random Coefficients linearly independent.

j = 1, 2, …, m.

m is the size of compressed file.

n is the number of shares.

v represent bytes of compressed file.

Chapter Four

Experimental Results and System Evaluation Chapter Four

50

Share n items will be : { v1a1n + v2 a2n , v3a1n + v4 a2n , v5a1n + v6 a2n ,

v7a1n + v8 a2n , … , vma1n + v m-1 a2n }.

4.3 Sharing Example

 We will take wave file (F) of size 15 MB as an example to

illustrate the mechanism of the proposed scheme (2,n) for shares

generation and n is the number of shares.

In the proposed scheme the wave file will be compressed first.

After Compression diffusion will be made for the compressed file F to

prune the significance of the transformed bits by reversing the bits for

each byte.

Now the shares generation will start and for this example n=3. Tow

random coefficients and linear function will be generated for each single

share of n shares.

Each share will be generated using random coefficients (a
1
,

a

2
which

should be linearly independent) with arithmetic linear function to encode

the compressed and diffused file by handling its contents as 2 bytes (v
1
,

v
2
) at each mathematical computing process for the arithmetic function

till the end of the file.

Table (4.1) (example of wave file size before and after compression)

Compressed File Secret File Size

8.15 MB 15.0 MB File

After run the program the main menu will appear as in figure (4.1). Select

wave file for reading will be made by select Reading wave button in

figure (4.2).

Experimental Results and System Evaluation Chapter Four

51

Figure 4.1 (Main menu for the proposed scheme)

Figure 4.2 (Reading wave file button)

The figure (4.3) will appear to select wave file for reading. The

data will be loaded for one dimensional array. We can play the wave file

and view the shape of the signal as in figure (4.4).

After Reading the file the compression phase will began by press the

button in figure (4.5).

Experimental Results and System Evaluation Chapter Four

52

Figure 4.3 (Loading wave file)

Figure 4.4 (Play the wave file)

Figure 4.5 (Start (Sharing + Compression) Processing)

Experimental Results and System Evaluation Chapter Four

53

Now the proposed compression methods will be executed (DCT,

Quantization, Zeros Run Length and Shifting Code). The result will be

stream of bits and will be saved in a file.

Figure 4.6 (Saving data in file data.dat after shifting Code)

"ok" will appear as in figure 4.7 to declare that compression phase are

finished. After Compression the encoding will start with diffusion and

then the share process will start by Creating file, generating tow random

coefficients and linear function for each share.

Figure 4.7 (Sharing and compression status)

Experimental Results and System Evaluation Chapter Four

54

Table (4.2) (generation of linear functions with tow random coefficients

for each share, n=3)

Share
3

 Share
2

 Share
1

S
3
 = v

j
a

13
 + v

j+1
a

23
 S

2
 = v

j
a

12
 + v

j+1
a

22
 S

1
 = v

j
a

11
 + v

j+1
a

21
 Function

(29, 61) (43, 31) (48, 54) (a
1
,

a

2
)

Each file will represent one single share and will be filled By handling

diffused and compressed data as 2 bytes (v
1
, v

2
) at each mathematical

computing process for the arithmetic function till the end of the file. "ok"

will appear as in figure 4.7 to declare that encoding process is completed

(diffusion + sharing).

Now the size of the generated shares will be smaller than the original file

size as noticed in table (4.3).

Table (4.3) (wave file size with share size after shares generation in the

proposed scheme)

Share size Secret File Size
8.15 MB 15.0 MB File

For Re-Construction process press the button wave reconstruction in

figure (4.8) and choose any tow shares of the generated shares to start the

process. First the de-share operation will start using arithmetic functions

to produce items of the diffused and compressed data and then inverse the

diffusion. "ok" will appear as in figure 4.9 to declare that de-share

process are finished. De-Compression will start by inverse the methods

shifting code, zeros run length, Quantization and DCT. "ok" will appear

Experimental Results and System Evaluation Chapter Four

55

as in figure 4.9 to declare that reconstruction of the original file are

finished.

Figure 4.8 (Wave reconstruction button)

Figure 4.9 (Wave reconstruction status button)

Now press the button in figure 4.10 to play the reconstructed file and

listen to the wave file.

Figure 4.10 (Reading Re-Constructed wave file)

4.4 The Test Measures

Different key parameters were utilized in the literature to describe

the performance of various compression methods. In this research the

fidelity criteria (MSE and PSNR) in addition to the Compression Ratio

were used to describe the performance of the established compressed

stage at different coding conditions.

Experimental Results and System Evaluation Chapter Four

56

4.4.1 Fidelity Measures

There are several types of matching criteria, among which the

Mean Square Error (MSE) and Mean Absolute Difference (MAD) are

used most often. It is noted that the Sum of the squared Difference (SSD)

or the Sum of the Squared Error (SSE) is essentially same as MSE. The

Mean Absolute Difference is sometimes referred to as the Mean Absolute

Error [Salo07].

∑
=

′−=
M

i
íi ss

M
MSE

1

2)(
1

 (4.1)

Where,

 is is the i
th

 sample in the original wave data.

is′ is the corresponding i
th

 sample in reconstructed wave data.

M is the total number of audio samples.

Developers of compression methods need a standard metric to

measure the quality of reconstructed files compared with the original

ones. Well reconstructed file resembles the original one, and the metric

value should indicate this resemblance in proper way. Such a metric is a

dimensionless number, and that number should not be very sensitive to

small variations in the reconstructed file. The most common measure

used for this purpose is the Peak Signal to Noise Ratio(PSNR). It is

familiar to workers in the field, it is also simple to calculate, but it has

only a limited, approximate relationship with the perceived errors noticed

by the human. This is why higher PSNR values imply closer resemblance

between the reconstructed and the original files, but they do not provide a

Experimental Results and System Evaluation Chapter Four

57

guarantee that viewers or listeners will like the reconstructed

files[Salo07].









=

MSE
PSNR

2

10

255
log 10 (4.2)

PSNR values are used only to compare the performance of different

lossy compression methods, or to describe the effects of different

parametric values on the performance of an algorithm. In this research the

fidelity criteria used to assess the performance of the proposed system are

MSE and PSNR. The performance tests were performed on the proposed

system by using some selected audio files as test material.

4.4.2. Compression Compactness

A very logical way of measuring how well a compression

algorithm compresses a given set of data is to look at the ratio of the

number of bits required to represent the data before compression to the

number of bits required to represent the data after compression. This ratio

is called Compression ratio [Umba98].

CR= Uncompressed Data size / Compress file size (4.3)

CR measurement has been used as indicator for the compactness

ability of the established compression scheme in this research project.The

system will compress the file size during the compression phase and will

produce coded minimized file size ready for encryption phase. During

encryption and specifically in sharing process, any 2 files will be able to

reconstruct the wave file with size equal to the original file size.

Experimental Results and System Evaluation Chapter Four

58

4.5 Test Parameters

In DCT method, the control parameters that have significant effects

on the transformation and ratio of the correctly retrieved secret bits; are:

Block size value and quantization step.

The effects of the involved control parameters (Block length and

Quantization Step values) have been studied; specifically their effects on

the compression process in order to minimize the shared file size to

construct smaller shares than the original file size and to accomplish the

sharing process.

4.5.1 Block Length Test

The conducted test had been applied on an audio data array, this

array was partitioned into blocks whose size is BL (12, 16 and 20)

samples. Table (4.4) shows the obtained test results.

Table (4.4) (The effect of the block size (BL) on the performance of

Compression of wave files used)

ID
Original File
Size in KB

Compressed File size in KB

BL = 12 BL = 16 BL = 20

File 1 80.6 78.3 75.1 73.7

File 2 162 98.3 86.2 74.2

File 3 193 116 102 88.4

File 4 253 165 141 124

File 5 310 211 186 171

File 6 848 662 550 499

4.5.2 Quantization Tests

The main parameters used to manage quantization Process is Qstp

and weight values in equation (3.1) as shown in tables (4.5) and (4.7). If

Experimental Results and System Evaluation Chapter Four

59

the value of weight is increased it causes an increase in the distortion

level of signal.

a) In this test Qstp in equation (3.1) will set to 1 and weight is set to 0.1,

with 2 test of BL 12 and 16.

Table (4.5) (The effect of the Quantization on the performance of

Compression of wave files used, Qst () Vector dimension at equation

(3.1) is set to block length 12,Qstp =1 and Weight is set to 0.1)

original size
KB

compress
file KB

CR MSE PSNR

File 1 80.6 78.3 1.02937 0.46912 51.418
File 2 162 98.3 1.64802 0.40501 52.0561
File 3 193 116 1.66379 0.4077 52.0274
File 4 253 165 1.53333 0.47046 51.4056
File 5 310 211 1.46919 0.4571 51.5307
File 6 848 662 1.28097 0.48938 51.2343

Table (4.6) (The effect of the Quantization on the performance of

Compression of wave files used, Qst () Vector dimension at equation

(3.1) is set to block length 16 ,Qstp =1 and Weight is set to 0.1)

original size
KB

compress
file KB

CR MSE PSNR

File 1 80.6 75.1 1.07324 0.50082 51.134
File 2 162 86.2 1.87935 0.43059 51.7902
File 3 193 102 1.89216 0.42909 51.8053

File 4 253 141 1.79433 0.41357 51.9653

File 5 310 186 1.66667 0.4323 51.773
File 6 848 550 1.54182 0.43161 51.7798

Experimental Results and System Evaluation Chapter Four

60

b) In this test Qstp in equation (3.1) will set to 1 and weight is set to 0.2,

with 2 test of BL 12 and 16.

Table (4.7) (The effect of the Quantization on the performance of

Compression of wave files used, Qst () Vector dimension at equation

(3.1) is set to block length 12,Qstp =1 and Weight is set to 0.2)

original size
KB

compress
file KB

CR MSE PSNR

File 1 80.6 64.1 1.25741 0.5193 50.9766
File 2 162 72.9 2.22222 0.33303 52.906
File 3 193 86.9 2.22094 0.33382 52.8957
File 4 253 125 2.024 0.34964 52.6946
File 5 310 176 1.76136 0.38587 52.2664
File 6 848 527 1.60911 0.4156 51.9441

Table (4.7) gives better Compression Rate results than table (4.5)

with weight value equal to 0.2 rather than 0.1under the same conditions,

but the PSNR still in fifties with less MSE values except in case of File 1

although its CR is not big compared to other files.

Table (4.8) (The effect of the Quantization on the performance of

Compression of wave files used, Qst () Vector dimension at equation

(3.1) is set to block length 16,Qstp =1 and Weight is set to 0.2)

original size
KB

compress
file KB

CR MSE PSNR

File 1 80.6 71.9 1.121 0.59642 50.3753
File 2 162 61.8 2.62136 0.31955 53.0854
File 3 193 72.6 2.6584 0.31763 53.1116
File 4 253 108 2.34259 0.36038 52.5632
File 5 310 160 1.9375 0.1946 55.2394

Experimental Results and System Evaluation Chapter Four

61

File 6 848 500 1.696 0.44408 51.6562

c) In this test Qstp in equation (3.1) will set to 1 and weight is set to 0.5,

with 2 test of BL 12 and 16.

Table (4.9) (The effect of the Quantization on the performance of

Compression of wave files used, Qst () Vector dimension at equation

(3.1) is set to block length 12,Qstp =1.5 and Weight is set to 0.5)

original size
KB

compress
file KB

CR MSE PSNR

File 1 80.6 61.9 1.3021 6.390955 40.0751
File 2 162 60 2.7 6.530509 39.9813
File 3 193 70.5 2.73759 6.529173 39.9822
File 4 253 106 2.38679 6.527369 39.9834
File 5 310 157 1.97452 6.215679 40.1959
File 6 848 484 1.75207 6.144837 40.2457

Table (4.10) (The effect of the Quantization on the performance of

Compression of wave files used, Qst () Vector dimension at equation

(3.1) is set to block length 16,Qstp =1.5 and Weight is set to 0.5)

original size
KB

compress
file KB

CR MSE PSNR

File 1 80.6 61.3 1.31485 0.74438 49.4129
File 2 162 51.3 3.15789 0.41918 51.9068
File 3 193 64.5 2.99225 0.76445 49.2973
File 4 253 83.2 3.04087 0.4505 51.5939
File 5 310 134 2.31343 0.58084 50.4903
File 6 848 417 2.03357 0.62583 50.1662

Experimental Results and System Evaluation Chapter Four

62

Table (4.9) gives better MSE and PSNR results than table (4.10)

with BL equal to 12 rather than 16 under the same conditions, the PSNR

values decreased to acceptable level under fifties and MSE values

increased While in table (4.10) High CR are given with less MSE and

high PSNR values.

4.6 The Effect of using Zeros Run Length.

 Run-length encoding for a data sequence having frequent runs of

zeroes, each time a zero is encountered in the input data, two values are

written to the output file. The first of these values is a zero, a flag to

indicate that run-length compression is beginning. The second value is

the number of zeros in the run. Since our wave data will have large

number of consecutive zeros the data size can be greatly reduced using

RLE therefore this compression will be useful.

4.7 The Effect of using Shifting Code

 The binary code words, produced by applying shift encoder on

encoded data, are saved in the file. Algorithm (3.5) shows the steps to

implement the shift encoding, taking into consideration the following

remarks:

a) Before applying shift coding the data have been mapped into

positive values, which is a necessary condition to conduct shift

encoding.

b) Before a applying shift encoding the proper size of its code words

should be determined, so in algorithm (3.5) a simple optimization

technique is implemented, it is based on testing all possible

codeword sizes to find out the best size that lead to lowest

consumption in bits (i.e. lowest output size).

Experimental Results and System Evaluation Chapter Four

63

4.8 The Effect of Sharing Random Coefficients.

Random Coefficients will be used as a key for each share,

proposed scheme in our research is (2,n) sharing scheme therefore to

reconstruct the original file any two share files will be used to retrieve the

original wave file as shown in algorithm (3.9).

Since each share will be generated using arithmetic function with

coefficients belong to that share therefore to guarantee that each share

will be distinctly different than the other, Random Coefficients which

assigned for each share will be completely different. During share

generation, the Compressed diffused data we use the following Functions:

 Share1 = v1a11 + v2 a21

 Share2 = v1 a12+ v2 a22

Now to calculate v1 and v2 during the de-share process we could

derive their values arithmetically by using the following equation (4.4)

and (4.5):

v1 = (Share1 a22 - Share2 a21) \ (a11 a22 - a21 a12) (4.4)

v2 = (Share2 a11 - Share1 a12) \ (a11 a22 - a21 a12) (4.5)

As in equations (4.4) and (4.5), Two shares should be pooled in

order to reconstruct the compressed diffused file and if attacker have one

share the he should use N2 Random choice for each Share2, a21 and a22

to try to reveal the Second share.

Experimental Results and System Evaluation Chapter Four

64

4.9 Test Results

1. The increase in the block length parameter causes an increase in

 CR and a decrease in PSNR.

2. The increase in the value of MSE causes a little increase in Cr

value, and a good decrease in PSNR values as shown in table (4.9).

3. The PSNR value decreased and the C.R value increased depend on

decreasing the number of compressed bits.

4. Best Result of PSNR at BL 12, Qstp 1.5 and Weight 0.5 in table

(4.9), While increasing the BL to 16 under the same conditions

only gives best result in CR but less quality for the reconstructed

file.

Introduction Chapter One

 1

Introduction
1.1 Motivation

Due to the recent development of computers and computer networks,

huge amount of digital data can easily be transmitted or stored. However,

it is noted that transmitted data in networks or stored data in computers

may easily be eavesdropped or substituted by enemies if the data are not

enciphered by some cryptographic tools. Therefore, encryption methods

are one of the popular approaches to ensure the integrity and secrecy of

the protected information. However, one of the critical vulnerabilities of

encryption techniques is single-point-failure, for example, the secret

information cannot be recovered if the decryption key is lost or the

encrypted content is corrupted during the transmission. In addition, the

possession of an extremely sensitive key by an individual may not be

advisable as the individual may not be fully trusted. To address these

reliability problems, a Secret Sharing Scheme (SSS) is a better alternative

to take care of such vulnerabilities.

Secret Sharing Scheme deals with problem, namely sharing a highly

sensitive secret among a group of n users so that only when a sufficient

number k of them come together, the secret can be reconstructed, that

reduces the risk of losing the key but also makes compromising the key

more difficult. [CHA13]

1.2 Concept of Secret Sharing Scheme (SSS)

A Secret Sharing Scheme (SSS) is a process or a protocol that

divides a secret given as input into pieces called shares such that only

specific subset of shares allow reconstruction of the original secret

[Men96].

Chapter One

Introduction Chapter One

 2

More formal, it is a pair of algorithms (Share, Rec), where:

1. Share(S,m) is a randomized sharing algorithm that on input a

secret S outputs a set of m shares {s1,…,sm};

2. Rec(si1,…,sit), t ≤ m is a deterministic reconstruction algorithm

from shares that outputs S if {si1,…,sit} is authorized and halts

otherwise.

A set of shares that allows reconstruction is addressed as

authorized or qualified. The set of all authorized sets of shares is

called the access structure and it is denoted by AS. Usually the shares

are distributed to distinct participants and hence they also refer to

authorized (or qualified) set of users as the ones able to reconstruct the

secret by putting their shares together; no other set of parties should be

able to disclose it. An access structure is called monotone if any set

containing an authorized set is also authorized. Informally, this means

that if a group of users can recover the secret, then no matter how

many others members join, the extended group will also be able to

determine it [Smi06].

1.3 Classification of Secret Sharing Scheme

Secret sharing schemes are characterized along multiple independent

dimensions; these are [Bei96, Hof08, Guo13]:

A. Quantity Dimension. Depending on the “quantity” of the secret-

information leaked to an unauthorized group, secret sharing

schemes can be classified as Perfect Secret Sharing and

Computational secure secret sharing:

i. Perfect Secret Sharing. A secret sharing scheme is perfect if

the shares corresponding to each unauthorized subset provide

absolutely no information about the secret [Oli13]. More

formally, a perfect SSS:

Introduction Chapter One

 3

• permits perfect reconstruction for each authorized set, i.e.

H[S|A] = 0, for all A ϵ AS;

• discloses no information about the secret for each

unauthorized set, i.e. H[S|B] = H[S], for all B ∉ AS.

ii. Computational secure secret sharing. A secret sharing scheme

is computational secure if some information about the secret is

leaked to the unauthorized groups, but the problem of finding

the secret is intractable. SS scheme could be based on any

assumption of computational difficulties like the factorization of

integers or the calculation of discrete logarithms.

B. Share Dimension. Based on the dimension of the shares, SSS

categorize into: ideal and non-ideal [Hof08].

i. A secret sharing scheme is ideal if it is perfect and its

information rate equals 1, (the information rate of a user is

defined as the size of the shared secret divided by the size of

the user's share), in other words, the size of each share is equal

to the size of the secret.

ii. In order to be practical, the amount of secret information

distributed as shares should be as small as possible in non-

ideal scheme. For perfect secret sharing, the size of any share

is larger than the size of the shared secret. Therefore, the

information ratio is upper bounded by 1, which becomes the

optimal case.

C. Access structure Dimension. Considering the access structure,

SSS classify into: Special SSS and General SSS [Guo13].

i. Formal definition of general secret sharing is: Let P =

{ p1,p2,…,pn} be the set of participants, and let Γ = (Γ1; Γ2; … ;

Γm) be an m-tuple of access structures on the set of P, where m

Introduction Chapter One

 4

≤ 2|P|-1. The secret data can be shared among these n

participants, and each participant holds one piece of information

relating to the secret data. Each qualified subset Γ , 1 ≤ i ≤ m of

P, pre-determined according to the access structures Γ = (Γ1;

Γ2; … ; Γm), can cooperate to reconstruct the shared secret

data. In General SSS, the access structure is not restricted in any

way, except (usually) monotony, as required for the majority of

practical schemes.

ii. Special SSS The access structure satisfies some specific

properties. These are:

• Threshold SSS. The access structure contains all sets with the

cardinal at least t, 1≤ t≤ m. Informally any t or more shares

are enough to restore the secret, while few than t shares are

not. We denote such a scheme by (t; m)-secret sharing;

• Unanimous (or all-or-nothing) SSS. The access structure

contains only the set of all shares. Informally, all shares are

required for secret reconstruction. Unanimous SSS is a (m;

m)-threshold SSS.

D. Type of the shared secret. Depending on the type of the shared

secret, SSS separate into:

i. Bit-String SSS. The shared secret is a sequence of bits, such

as an element from a finite field or a text. These are the most

popular SSS and present a high utility in practice.

ii. Visual SSS (VSSS). The shared secret is an image. A visual

secret sharing (VSS) scheme, which originates from the

visual cryptography proposed by Naor-Shamir [Nao94], may

be one of the most well-known realization of SS schemes.

The VSS scheme is a method to encode a secret image into

Introduction Chapter One

 5

several shares, each of which does not reveal any

information of the secret image. Each share is printed on a

transparency, and is distributed to one of n participants. The

secret image can easily be decrypted only by stacking the

shares in an arbitrary order.

iii. Audio or Video SSS. The shared secret is an audio or video

file. An Audio Secret Sharing (ASS) scheme is a special

type of secret sharing scheme, where the shares of embedded

messages and/or the secret are/is audio file(s). It is likely that

the secret is not a bit string or visual and it deals with audio

secrets. In these cases, it could be desired to reconstruct the

audio secret without any computation. In a perfect ASSS

with an audio secret the following conditions hold [Ehd08]:

• Every authorized subset could recognize the audio secret by

pooling their shares together.

• Every unauthorized subset could not reach a nonrandom

audio file by pooling their shares together. (i.e. the mutual

information between the secret file and the obtained file by

an unauthorized subset should be zero.)

1.4 Problem statement

One of the most important issues when designing secret sharing

schemes is the size of the pieces. Secret sharing schemes usually have

information theoretic security which implies that each share be as large as

the secret [Des93]. So, in the case were the secret is N bits and is shared

among K people who must all come together to recover the secret, each

share must be at least N bits because it is required that information

obtained must be zero any K-1 users working together. Any scheme

overcome this bound must leak partial information of the secret. [Che12]

Introduction Chapter One

 6

Satisfying the above condition becomes a problem, especially when the

secret is multimedia content, even with the best known schemes. Because

the parties will not have enough memory to store their pieces even in

fairly small networks or are able to successfully transmit it through a low

bandwidth network.

A second major problem with secret-sharing schemes is that the

shares' size in the best known secret-sharing schemes realizing general

access structures is exponential in the number of parties in the access

structure. Thus, the known constructions for general access structures are

impractical. On the other hand, the best known lower bounds on the

shares' size for sharing a secret with respect to an access are far from the

above upper bounds. The best lower bound was proved by [Csi96],

proving that, for every n, there is an access structure with n parties such

that sharing l-bit secrets requires shares of length Ω(ln/log n) . So, the

question if there exist more efficient schemes handle space problem

remains open [Bei96].

1.5 Previous Work

 Recent works that deal with Audio Secret Sharing have used

different methods and with different efficiencies. The following are some

studies in this field:

• Yang [Yan02], proposed two methods (Construction 1, Construction 2) to

construct the 2-out-of-n audio cryptography scheme with only one cover

sound, and one method (Construction 3) to construct the 2-out-of-n

optical cryptography scheme with only one cover image.

• Lin et al. [Lin03], they proposed two new (2, n) ASS schemes, which

carefully employ the technique of time division with only one cover

sound. Comparing with the first scheme, the second scheme has the

advantage of flexible improvement in relative contrast as needed. To test

Introduction Chapter One

 7

the acoustic result, they implemented those two proposed (2, n) ASS

schemes for small n using one wave-type cover sound and then obtained

near expected results.

• Socek and Magliveras [Soc05], propose and analyze a new type of

cryptographic scheme, which extends principles of secret sharing to

Morse code-like audio signals. The proposed “audio cryptography

scheme” (ACS) is perfectly secure and easy to implement. It relies on the

human auditory system for decoding. Audio sharing scheme (ASS)

proposed earlier were based on disguising secret binary message with a

cover sound. Moreover, only 2-out-of-n audio sharing schemes have ever

been proposed. Their scheme correlates strongly, and is analogous to

schemes in well-studied visual cryptography. Consequently، they were

able to use the existing visual cryptography constructions and obtain not

only k-out-of-n audio sharing schemes, but also the most general audio

cryptography schemes for qualified subsets.

• Fugita et al. [Fuj06], proposed Audio Secret sharing scheme, in this

scheme to reconstruct secret or get the secret, a decoder is required. It is

not possible directly playing all shares sound simultaneously.

• Kurihara et al. [Kur08], proposed a new fast (k, n)-threshold scheme

which uses just EXCLUSIVE-OR(XOR) operations to make n shares and

recover the secret from k shares. They prove that every combination of k

or more participants can recover the secret, but every group of less than k

participants cannot obtain any information about the secret in the

proposed scheme. Moreover, the proposed scheme is an ideal secret

sharing scheme similar to Shamir's scheme, in which every bit-size of

shares equals that of the secret. They also evaluate the efficiency of the

scheme.

Introduction Chapter One

 8

• Ehdaie et al. [Ehd08], a new audio secret sharing scheme which is secure

and ideal is proposed. This scheme is (k, n) threshold for k ≥ 2, where the

previous schemes were (2, n). It is assumed that both ”shares” and

”secret ”، are audio files instead of a bit string secret. The audio secret is

reconstructed without any computation that is only by playing audio

shares simultaneously. Moreover, the simulation results show that the

new scheme is not sensitive to audio noise.

• Nikam et al. [Nik10], new (2, 2) Audio Cryptography Scheme is

proposed, the proposed scheme hides a digital secret message into two

specified cadence. The original secret wave file is perceived from both

cadences playing simultaneously.

• Naskar et al. [Nas11], suggested a novel secret sharing scheme which

employs simple graphical masking method, performed by simple

ANDing for share generation and reconstruction can be done by

performing simple ORing the qualified set of legitimate shares. Not only

that, the generated shares are compressed and each share contains partial

secret information that leads to added protection to the secret and reduced

bandwidth requirement for transmission.

• Shaw [Sha12] a modern approach for secured transmission of audio files

using fractal based chaos is proposed, which is based on audio secret

sharing scheme and cryptography. This scheme uses a powerful

encryption algorithm in the first level of security, which is very complex

to break. In the second level it uses a more powerful secret sharing

scheme to divide information into several pieces such that certain subsets

of these pieces (shares) can be used to recover the information. If

intruders want to get the information then several shares need to be theft.

If intruders want to destroy the information then several shares need to

be destroyed. This scheme have introduced a new robust and fractal based

Introduction Chapter One

 9

cryptography with secret sharing scheme which provides low

computational complexity during both sharing and reconstruction phases.

It also reduces the bandwidth of transmission medium and provides

strong protection of the secret file and the compression rates vary

depending upon the threshold value.

• Chaudhuri [Cha13], proposed a new robust and secured Secret Sharing

scheme which is equally applicable for any file formats (e.g. Image,

Audio, and Text etc.) and it provides low computational complexity

during both sharing and reconstruction phases. The proposed scheme

employs simple graphical masking method, done by simple ANDing for

share generation and reconstruction can be done by simple ORing the

qualified set of shares. Thus his scheme ensures minimal computational

complexity compared to the earlier proposed schemes thus makes it

effective for addressing energy saving distributed environment where

battery driven low end processors are used and security is also a major

challenge.

1.6 Aim of thesis

This project aims to establish a new secret sharing scheme capable

of protecting Audio data using DCT transform, The proposed encryption

scheme generates Shares by combining bit-level decomposition/stacking

with a {2, n}-threshold sharing strategy. Perfect reconstruction is

achieved by performing decryption through simple operations based on

linear equations without the need for any post processing operations. The

use of DCT domain will be useful to reduce the total size of shares due to

its compactness capabilities. Since the low frequency coefficients of DCT

transform hold a significant part of the audio signal energy; which in turn

causes the significance localization problem, a set of hashing functions

Introduction Chapter One

 10

will be used to prune the significance of the transform bits to overcome

this problem.

1.7 Thesis Organization

Beside Chapter One, the remaining part of this thesis consists of
four chapters:

Chapter 2:-"Principles of Secret sharing Schemes and Compression"
This chapter presents the background of the used threshold secret

sharing schemes. The well-known and commonly used Stages and
algorithms in data compression based on DCT are also demonstrated.

Chapter 3:-"The Proposed Scheme"

This chapter covers the details of the developed Audio Secret

Sharing Scheme; their stages and steps. Also, a description for the

implementation of each step is described. Also, some examples are given

to illustrate the performance of the suggested methods to handle each

system task.

Chapter 4:- "Experimental Results and System Evaluation"

This chapter presents the results of experimental analysis of some

tests applied to define the compression performance of the scheme in

addition to its secrecy capability.

Chapter 5:-"Conclusions and Suggested Future work"

This chapter holds a list of some conclusions after implementing the

proposed scheme, and it gives some suggestions for future work to

enhance the presented system.

V{tÑàxÜ g{Üxx The Proposed Scheme

27

The Proposed Scheme

3.1 Introduction

Secret sharing is a method to distribute a secret between some

participants such that particular subsets (i.e. authorized subsets) could

obtain the secret, whereas unauthorized subsets could not.

An Audio Sharing Scheme is proposed in this thesis. This scheme is

(2, n) threshold, 2 is the number of participants who can reconstruct the

audio file together, and n is the total number of generated shares which is

greater than 2.

 This chapter is dedicated to present the design considerations,

implementation requirements and the steps taken throughout the

establishment of the proposed sharing scheme. The implementation steps

are illustrated in details using diagrams and/or pseudo code.

3.2 Design Considerations

 The main goal of the proposed encryption scheme is to reduce the

size of secret data before the sharing process take place to preserve a

sufficient level of security and confidentiality of audio data under real

time constraints, the proposed sharing scheme should be perfect scheme.

3.3 Tools and Requirements

 The proposed encryption scheme is implemented using Visual

Basic 6 computer language. It is executed for testing purpose on

computer with processor of 2.2 GHZ dual core, 3 Giga Byte of RAM

under Microsoft Windows 7 operating system.

Chapter Three

V{tÑàxÜ g{Üxx The Proposed Scheme

28

3.4 The proposed Scheme Structure

The proposed scheme prototype consists of two modules: Encoder

and Decoder. The input to the former is plain audio data (.WAV) while

the output is n shares. Both modules perform the same functions but in

opposite way as shown in Figures (3.1), (3.2).

Encoder is passes through two stages: compression and encryption. The

main functions of Encoder module are listed below:

Stage A- Compression functions:

The main functions of Compression module are listed below and

shown in Figure (3.3)

1- Loading and Reading a wave data.

2- Decompose wave data into Blocks

3- Transforming each block from spatial to frequency domain by

adopting DCT.

4- Quantizing DCT coefficients to the nearest integer value.

5- Applying Run-Length Encoding (Spatial Encoder).

6- Performing Shifting Code (Entropy Encoder).

Stage B- Encryption Functions:

The main functions of Encryption module are listed below and shown

in Figure (3.4).

1- Diffusion.

2- Generating Random Coefficients.

3- Generating Share Functions.

4- Generating n shares.

5- Distributing n shares.

V{tÑàxÜ g{Üxx The Proposed Scheme

29

Diffused Bits

Stream of Bits

Figure (3.1) The Block Diagram of Encoding Module

Compression
Stage

Encryption
Stage

Share 1 Share n Share …

Wave File

Generate
Coefficients for

each share

Generating Shares

Diffusion

Run Length Encoding

Shifting Coding

DCT transformation

Blocking

Quantization

V{tÑàxÜ g{Üxx The Proposed Scheme

30

Dealer

Decryption

De-Compression

Stream of Bits

Figure (3.2) The Block diagram Of Decoding Module

 Run Length Inverse

De-Quantization

Shifting CodeInverse

DCT Inverse

Original Wave File

Share 1 Share 2

Reconstruct compressed Data

Fetch Share1 and
Share2 Coefficients

Pooling Share1 and Share2
with their Coefficients

Diffusion

V{tÑàxÜ g{Üxx The Proposed Scheme

31

 Print Error
message

"Wrong Input"

No

yes

No

No

yes

yes

Run Length Encoding

 Shifting Coding

 stream of Bits

End

Blocking Wave vector

 Discrete Cosine
Transform
Coefficients

 Quantization Process

more
blocks

more
blocks

 Read Wave and save
data as vector Wav()

 Draw Wave Signal and
print out Specs.

 Load wave

Is wave
mono

Start

Figure (3.3) The Flowchart OF Compression

V{tÑàxÜ g{Üxx The Proposed Scheme

32

Diffusion file F of
Compressed Data

Start

Figure (3.4) Encryption Flowchart

 Share n

Share 1

 Share 2

a1V1+a2V2

yes No

 Load the
Compressed file

Diffusing the
compressed File

Read 2 Bytes From F

Input No. of Shares
n>2

Generate Random
Coefficients for each

share (a1,a2)

Create for each share
Share Function

Fn1,…,Fnn

Is there
more 2

Save Files

End

Start

V{tÑàxÜ g{Üxx The Proposed Scheme

33

3.4.1 Wave Loading

The wave file (.WAV) is selected in the current work to understand

its structure see Appendix A. This type of wave files is considered to be

the simplest form of audio format; it could be simply converted to any

other forms of audio files. To load the actual data, the following steps

should occur:

• First File header is read;

• Second File header is analyzed;

• Third the actual raster data is extracted

In the recent work, the wave file is chosen to be "mono" and the number

of bits per sample is equal to twelve, algorithm (3.1) presents this

function.

Algorithm (3.1) Loading Original Wave File
Input: Original Wave file
Output: Wav () ' Array of integers contains the data samples of the original wave file
 Nm ' Number of samples

Procedure

Step1: Read the header of the wave file
Step2: Read Data format from the header
 Check if data format = 1 ' means the format of the data is PCM"
 Read Channel Number from the header
 Read Sample Resolution from the header
 Check if channel Number = 1 then
 Check If Sample Resolution = 8 then ' mean the channel type is
mono
 Read the Chunk Size of fmt chunk from the header
 Check If Chunk Size of fmt chunk > 16 then
 Jump to location after (Chunk Size -17)
 End if
 Read Chunk ID
 Read Data Size

 Step3: Set L=47 ' jump to location after header types until data
chunk
 While Chunk ID <> " data"
 Set L = L + Data size
 Seek to L in file

V{tÑàxÜ g{Üxx The Proposed Scheme

34

 Read Chunk ID
 Read Data Size
 End While
 Set Nm = Data Size
 Read original data from data chunk then store it in Wav () array
 Else
 Printout " Wrong Sample Resolution: Choose another wave file"
 End if
 Else
 Printout " Wrong Channel type: Choose another wave file
 End if
 End if
Step4: Return (Wav , Nm)
End Procedure

3.4.2 Decompose Wave Data into Blocks

 After loading the mono wave data into one dimension array,

decomposing function will executed. The audio channel data will be

divided into small blocks with block size equal twelve because each sub-

block in the source encoder exploits some redundancy in the audio data in

order to achieve better compression. The transformation sub-block

decorrelates the data. Figure (3.5) shows the form of splitting a frame A

into four blocks to show the merits of splitting into blocks over the whole

channel.

Figure 3.5 frame (A) is Split into 4 blocks

3.4.3 DCT Transformation

As common, DCT transformation will be applied on each block

along in the entire wave data to be transformed from time domain into

frequency domain. The result of applying DCT transformation to each

2347 3119 3774 4552 5302 5972 7689 7643 7966 7658 7540 8357 9611 10177 10023 10096

 Block 1

 Block 2

 Block 3

 Block 4

V{tÑàxÜ g{Üxx The Proposed Scheme

35

block of previous frame A is shown in Figure (3.6), while algorithm (3.2)

presents the implementation steps of DCT transformation.

Figure (3.6) DCT transformation on frame (A)

Algorithm (3.2) Discrete Cosine Transform
Input: Wav () ' data samples of the original wave file
 Nm ' Number of samples
 BL ' Block length

Output: DCT.C () ' DCT coefficients

Procedure
Step1: Split Wav () array into blocks of length BL
Step2: 'Compute DCT coefficients
 For U = 0 To (Nm - 1 - BL) Step BL
 Set I = U/ BL
 For J = 0 To BL - 1
 Set temp = 0
 For k = 0 To BL - 1
 temp = temp + Wav(k + U) * Cos(((((2 * k) + 1) * J * 3.14) / (2 *
BL)))
 End For k
 If J = 0 Then
 T2 = ((2 / BL) ^ 0.5) * (1 / 2 ^ 0.5)
 Else
 Set T2 = ((2 / BL) ^ 0.5)
 End if
 Set DCT.C (I, J) = T2 * temp
 End For J
 End For U
Step3: Return(DCT.C ())
End Procedure

3.4.4 Quantization

To improve the compression gain, quantization is taken place. I.e.

reducing the number of possible values of a quantity, thereby reducing

1168.77 3 1617.7 6896 99.739 92 1750.4 12835 182.89 562.5 223.5 15760 231.85 -246.5 275.17 19953

 Block 1

 Block 2

 Block 3

 Block 4

V{tÑàxÜ g{Üxx The Proposed Scheme

36

the number of bits needed to represent it. This is done by simply dividing

each component in the frequency domain by a weight factor, and then

rounding to the nearest integer. As a result of this, many of the higher

frequency components are rounded to zero, and many of the rest of the

components become small numbers.

 In the current work, The DCT Coefficient will be quantized

uniformly by dividing each coefficient by weight factor equal 0.1then the

rounding reals into integers represented by three bits only, that allows

more values and loses less information. The steps of Quantization are

illustrated in algorithm (3.3).

In this process, The number of possible values of the quantity (and

thus the number of bits needed to represent it) is reduced at the cost of

losing information. A "finer" quantization, that allows more values and

loses less information, can be obtained by Formula 3.1:

Q(DCT.C) = CInt (DCT.C / Qst(x)) (3.1)

Qst(U) = Qstep * (1 + weight * U)

And Qstep = 1

 weight = 0.1

 Qst () Vector dimension is set to block length 12 elements.

DCT.C () DCT Coefficients will be treated as blocks Qst() of
Coefficients.

Qstep could be set to 1 or 1.5, weight could be set to 0.1or 0.2.

Algorithm (3.3) Quantization
Input : DCT.C () ' Array of DCT coefficients
 Nm ' Represent Number of samples
 BL ' Represent Block length

Output : Q () ' Array of integers contains the Quantized coefficients

V{tÑàxÜ g{Üxx The Proposed Scheme

37

Procedure
Step1: Set Q () array dimensions to Q(Nm / BL, BL)
 Set Qst () Vector dimension to Qst (BL)
 Set Qstep = 1
 Set Alpha = 0.1 ' Represent the weight to minimize the
 quantization error
Step2: For U = 0 To BL - 1
 Qst(U) = Qstep * (1 + Alpha * U)
 End For U

Step3: For U = 0 To Nm - 1 - L Step BL

 For X = 0 To BL - 1
 Q(U / BL, X) = CInt (DCT.C (U / BL,X) / Qst(X))
 End For X
 End For U
Step4: Return(Q)
End Procedure

3.4.5 Run-Length Encoding

Run Length Encoding (RLE) is lossless compression that represent

any group of data as pare of (item, run), this coding is useful when there is

long stream of redundant items. In this research, a special run length

encoder for treating zeroes is utilized as illustrated in algorithm (3.4).

The first 4 items of the DCT array contains a value that is always of a

very high magnitude, it is called the DC coefficient, other coefficients

represent increase in higher frequencies, they are called AC coefficients

and they are become of lower magnitude as they move from left to right

therefore the first Four coefficients are left as its. While the remaining

coefficients will be encoded by RLE.

Algorithm (3.4) Spatial Encoding (Run Length of zeros)
Input: Q () ' DCT coefficients
 Nm 'Represent Number of samples
 BL 'Represent Block length

Output: RL () ' Vector of Run Length Values
 RLsize ' Size of RL Vector ()

Procedure

Step1: 'Copy Quantization Vector into 1D temp vector

V{tÑàxÜ g{Üxx The Proposed Scheme

38

 Set U = 0 ' Counter
 For I = 0 To Nm / BL - BL
 For J = 0 To BL - 1
 Set tempRL(U) = Q(I, J)
 Set U = U + 1
 End For J
 End For I

Step2: ' save the first 4 items into the RL Vector
 and the
 Set J = 0
 For I = 0 To 3

 Set (I) = tempRL(I)
 End For I
Step3: 'start Run Length for the 0s of quantized values
 Set J = 4
 Set I = 4
 Set count = 0
 While I < Nm
 Set count = 0
 While (tempRL(I) < 1) And I < Nm '(TempRL(I) > -1

 Set count = count + 1
 Set RL(J) = count

 Set I = I + 1
 End While
 While tempRL(I) > 0 And I < Nm

 Set RL(J) = tempRL(I)
 Set I = I + 1
 Set J = J + 1
 End While
 End While
 Set RLsize = J
Step4: Return(RL(),RLsize)
End Procedure

3.4.6 Shifting Code (Entropy Encoder)

The entropy encoder compresses the values resulted from Run

length encoding as a step to result in better overall compression. It is

accurately determines the probabilities for each value and produces an

appropriate code based on it, so that the resultant output code stream (or

Code words) will be smaller than the input stream. In the current system,

shifting coding technique is adopted to encode the output of RLE, taking

into consideration that there are long runs of zeros. Here, each item will

V{tÑàxÜ g{Üxx The Proposed Scheme

39

first mapped to positive value and then its histogram will be calculated.

After that an optimizer is used to produce the required number of bits for

representation.

The main idea of this coding method is to find the coefficient that

is abnormally large between coefficients; the shifting coding technique

partitions the large coefficient into smaller coefficients. Shifting Coding

steps are illustrated in algorithm (3.5)

Algorithm (3.5) Entropy Encoding (Shifting Code)
Input: RL () ' Run Length Values Vector
 RLsize ' the Size of Vector RL ()

Output: CodeFile contains data after shifting

Procedure

Step1: ' Mapping RL () vector values into Positive
 For I = 0 To RLsize
 If RL(I) < 0 Then
 Set RL(I) = -2 * RL(I) - 1
 Else
 Set RL(I) = 2 * RL(I)
 End If
 End For I
Step2: ' Find the Max value from Run Length vector
 Set Max = RL(0)
 For I = 0 To RLsize
 If Max < RL(I) Then
 Set Max = RL(I)
 End If
 End For I
 Set Nb = Int(Log(Max) / Log(2) + 0.9)
 If (2 ^ Nb - 1) < Max Then
 Set Nb = Nb + 1
 End If
Step3 ' Calculate the Histogram
 For I = 0 To RLsize
 Set J = RL(I)
 Set His(J) = His(J) + 1
 End For I
Step4: ' Start Shift Coding Optimizer
 Set OptSize = Nb * (RLsize + 1)
 Set OptBt1 = Nb: OptBt2 = 1
 For Nbb = 2 To Nb - 1
 Set Rng = 2 ^ Nbb – 1
 Set Sm = RLsiz + 1

V{tÑàxÜ g{Üxx The Proposed Scheme

40

 Set Smm = 0
 For I = 0 To Rng
 Set Smm = Smm + His(I)
 End For I
 Set Sm = RLsize + 1 + Smm * Nbb
 Set Smm = 0
 Set Rngg = Max – Rng
 Set Nbt = Int(Log(Rngg) / Log(2) + 0.9)
 If (2 ^ Nbt - 1) < Rngg Then Nbt = Nbt + 1
 For I = Rng + 1 To Max
 Set Smm = Smm + His(I)
 End For I
 Set Sm = Sm + Smm * Nbt
 If OptSiz > Sm Then
 Set OptSize = Sm: OptBt1 = Nbb
 Set OptBt2 = Nbt
 End If
 End For Nbb

Step5: ' Create file to store coded data
 Open FileCode for writing
 Write RLsize, 24
 Write (OptBt1), 4
 Write (OptBt2), 4
 Set Rng = 2 ^ OptBt1
 For I = 0 To RLsize
 If RL(I) < Rng Then
 Write Bit 0: WriteWord CLng(RL(I)), OptBt1
 Else
 Write Bit 1: WriteWord CLng(RL(I) - Rng), OptBt2
 End If
 End For I
 Close FileCode
End procedure

3.4.7 Diffusion

The compressed stream will be then diffused by applying Simple

diffuser to prune the bits significance in order to avoid localization

problem.

The proposed diffuser in our scheme is shown in Figure (3.7), and

illustrated in algorithm (3.6) which implies re-arrangement for bits in

reversal for each byte in the encrypted file. This reversible diffuser is

applied to compressed coefficients. It is required to provide the necessary

diffusion. It is used to achieve better security properties. This approach

V{tÑàxÜ g{Üxx The Proposed Scheme

41

enables us to get better security per-instruction ratio for our implemented

software than is possible for the existing ciphers.

Figure 3.7 Diffusion for Compressed Stream of Bits

Algorithm (3.6) Diffusion for The Compressed File
Input: CodeFile of Compressed data

Output: FileS of Diffused Data
Procedure

Step1: open CodeFile to read byte of data, FileS to save Diffused Bytes
Step2: Read Byte of CodeFile
 re-arrange bits in reverse
 Save diffused byte in FileS
Step3: Repeat step2 While Not end of file CodeFile

Step4: Close CodeFile and FileS
 End Prcedure

3.4.8 Generating Random Coefficients

 The produced compressed and ciphered stream bytes of the secret

audio file is then shared using (2, n) threshold, so any two participants

from n users can reconstruct the audio file together. To satisfy the former

condition, two random coefficients (a1 and a2) for each participant will be

generated using arithmetic functions produces values linearly independent

and fulfill the following conditions: Both Coefficients for all shares must

be:

• For either two shares they should satisfy the conditions a11a22-

a21a12 <> 0.

Where a11 and a21 belong to Share1, a12 and a22 belong to

Share2.

Compression Diffusion Sharing

V{tÑàxÜ g{Üxx The Proposed Scheme

42

• The values of as' must be:

a) Either three of them odd or the other is even.

b) Or three of them are even and the other is odd.

Algorithm (3.7) Generate Random Coefficient for each share
Input: Shares_no ' Number of shares

Output: randA (No. of Shares, 2) ' array of Random Coefficient
 File RandA ' File to save generated random numbers

Procedure

Step1: ' Initialization step
 If (No. of Shares) > 2 Then
 Randomize()
 Set tmp = Int(255 * Rnd() + 1)
 Set no(1) = tmp
 Set k = 2
Step2: ' Generate Random Numbers
 Do While k <= (No. of Shares * 2)
 Randomize()
 Set tmp = Int(255 * Rnd() + 1)
 For j = 1 To k
 If Not tmp = no(j) Then flg = True
 Else
 Set flg = False
 Set j = k
 End If
 End For j
 If flg = True Then
 Set no(k) = tmp
 Set k = k + 1
 End If
Step3: ' Save non repeated values and set them to Random Coefficients
 For k = 1 To No. of Shares
 If no(k) + no(k + No. of Shares) <= 127 Then
 Set randA(k, 1) = no(k): randA(k, 2) = no(k + No. of Shares)
 End For k
Step4: Return(randA())
End Prcedure

3.4.9 Generating Share Functions

 After Generating two random Coefficients for each share, each share

will be generated using the following formula:

 S1 = v1a11 + v2 a21

V{tÑàxÜ g{Üxx The Proposed Scheme

43

 S2 = v1 a12+ v2 a22

 …

Sn= v1a1n + v2 a2n (3.2)

Where

n is the number of shares,

v represent bytes of compressed file.

Algorithm (3.8) Generate Share Function for each share
Input: Shares_no ' Number of shares
 randA () ' array of Random coefficient

Output: S1() ' Array of functions, one for each share

Procedure

Step1: For j = 1 To Shares_no
 Set S1(j) = (v1 * randA(j, 1)) + (v2 * randA(j, 2))
 Save S1(j) in file j
 End For
Step2: Return(S1())

End Procedure

3.4.10 Generating n shares

After the process of generating random coefficients and functions

for each share were constructed, the generation of shares will be the next

step using formula (3.2). Since the secret audio file will be shared among n

users, then n shares will be generated and each one is saved in separate

file. Algorithm (3.9) illustrates the steps of shares generation process.

Example:

Encrypted file F= { v1, v2, v3,v4,v5,…,vm}.
m is the length of file F.

To generate Share 1 we will use the Coefficients a1 and a2 that

belong to Share1 and the function S1 = v1a11 + v2 a21

Share 1 items will be :

V{tÑàxÜ g{Üxx The Proposed Scheme

44

{ v1a11 + v2 a21 , v3a11 + v4 a21 , v5a11 + v6 a21 , v7a11 + v8 a21 , … ,
vm-1a11 + vm a21 }.

Share 2 items will be:

{ v1a12 + v2 a22 , v3a12 + v4 a22 , v5a12 + v6 a22 , v7a12 + v8 a22 , … ,
vm-1a12 + vm a22 }.
Share n items will be:

{ v1a1n + v2 a2n , v3a1n + v4 a2n , v5a1n + v6 a2n , v7a1n + v8 a2n , … ,
vm-1a1n + vm a2n }.

Calculate each S by taking 2 bytes form the compressed secret audio

file and use the share coefficient to produce share items at each computing

process.

Algorithm (3.9) Generate N Shares
Input: Shares_no ' Number of shares
 randA() ' array of Random coefficients
 FileS ' Represent File of Diffused data to be shared.

Output: N Number of files, each file will represent a separate share
 N 'Represent No. of shares
 File RandA ' File to save generated random numbers as array (shares_no,2)

Procedure

Step1: If (No. of Shares) > 2 Then
 generateA (No. of Shares) ' procedure generate 2 different numbers
for each share
 Set randA(No. of Shares, 2) ' Save generated Numbers as array 2D in file
 Shares_no = No. of Shares
 Set S1(Shares_no) ' S1 array to compute values for each share
Else
 MsgBox "Error, shares must be greater than 2"
 Jump to Read (No. of Shares)
End If
Step 2: For j = 1 To Shares_no
 Create File j ' Represent separate share
 Next j

size = LOF(100) 'size of FileS
Nsize = (size) 'how many integer number contain
Set no(Nsize)

V{tÑàxÜ g{Üxx The Proposed Scheme

45

If LOF(100) > 0 Then ' check if FileS contain a data & read them all
 Get no(Nsize) from data file ' Save data in array no()
 For i = 0 To (Nsize - 1) Step 2
 Set v1 = no(i) ' v1 represent First byte
 Set v2 = no(i + 1) ' v2 represent 2nd byte
 For j = 1 To Shares_no
 S1(j) = (v1 * randA(j, 1)) + (v2 * randA(j, 2)) ' compute Shares Values of
FileS and store each share values in separate File'
 Save S1(j) in file j
 Next j
 Next i
End If
Close FileS

Step 3: For j = 1 To Shares_no
 Close file j
 Next j
End Procedure

3.5 The Designed Decoder

In Encoding Stage the encoded wave data is transformed into

compressed stream of bits thereafter that stream will be encrypted by

using arithmetic calculations to produce n different shares save in

separated file. On the other hand, in decoding module any two shares are

used to reconstruct the compressed data, thereafter decompression is

implemented to obtain the original wave file as shown in algorithm

(3.10).

Decoding process is considerably easier and faster than the

encoding process because it involves little or less computations than

encoding process. As shown in Figure (3.2) the designed decoder is

Consists of the following steps:

1. Load two shares (two files).

2. The dealer will fetch the Generated Coefficients as a1, a2 for each

share.

3. The dealer wills Fetch Generated Functions to reconstruct the

original compressed bits.

V{tÑàxÜ g{Üxx The Proposed Scheme

46

4. Reconstruct the original Diffused Compressed file from Share1 and

Share 2 data.

5. Inverse the diffusing for the compressed file

6. Now the output of the de-sharing will be a file of compressed

stream of bits by Perform Shifting Code Inverse the output will be

integer values.

7. Zeros Run Length Inverse will be performed to re-insert the

compressed consecutive zeros.

8. De-Quantization will be performed now.

9. DCT Inverse will be performed on the de-quantized values

10. The output from DCT Inverse will be the saved to reconstruct

finally the original wave data.

Algorithm (3.10) Decoding process
Input: File RandA ' File to save generated random numbers as array (shares_no,2)
 2 share files
Output: File De-share of the reconstructed wave file

Procedure
' Start De-Share Process'
Read (Share1, Share2)
Fetch share1 coefficients a11,a21 from File RandA
Fetch share2 coefficients a12,a22 from File RandA
Create File D ' to save data after de-share process
While Not End Of file Share1 and Share2
 Read S1 from Share1
 Read S2 from Share2
 Compute v1 = (S1*a22 – S2*a21) \ (a11*a22 – a21*a12)
 Compute v2 = (S2*a11 – S1*a12) \ (a11*a22 – a21*a12)
 Save v1 and v2 at File D
End While
Close File D
Perform Inverse Diffusing For Compressed diffused Data
'Start De-Shifting Process'
RLsiz = ReadWord ' Set file size

 OptBt1 = ReadWord(4)
OptBt2 = ReadWord(4)

 ReDim rRL(RLsiz)
Rng = 2 ^ OptBt1

 For ii = 0 To RLsiz
 If ReadBit = 0 Then

 rRL(ii) = ReadWord(OptBt1)

V{tÑàxÜ g{Üxx The Proposed Scheme

47

 Else
 rRL(ii) = ReadWord(OptBt2) + Rng

 End If
 Next ii

 CloseReadFile
 ' Inverse Mapping into Positive '

ReDim RL(RLsiz)
For i = 0 To RLsiz

RL(i) = rRL(i(
Next i
For i = 0 To RLsiz

 If Not (rRL(i) Mod 2 = 0) Then
 RL(i) = ((rRL(i) + 1) / 2) * -1

 Else
 RL(i) = rRL(i) / 2

 End If
 Next i

 ' Start RL inv '
Dim k As Integer
Dim temp As Integer
temp = 0
For ii = 0 To RLsiz - 1
 If RL(ii) = 0 Then temp = temp + RL(ii + 1) – 1
Next ii
For i = 0 To 3

) InvRL(i) = RL(i
Next i

 Set j = 4
Set i = 4
Dim count0 As Integer
count0 = 0
While j < Nm And i < Nm

 If RL(i) = 0 Then
 count0 = RL(i + 1)

 i = i + 1
 End If

 While RL(i - 1) = 0 And count0 > 0
 count0 = count0 - 1

 InvRL(j) = 0
 j = j + 1

 Wend
 If RL(i - 1) = 0 Then i = i + 1

 While RL(i) > 0 Or RL(i) < 0
 InvRL(j) = RL(i)

 i = i + 1
 j = j + 1

 Wend
Wend
U = 0
For i = 0 To Nm \ L - L

V{tÑàxÜ g{Üxx The Proposed Scheme

48

 For j = 0 To L - 1
) RL(U) = q(i, j

 U = U + 1
 Next j

Next i
Start De-Quantization''

)ReDim DeQ(Nm \ L, L
 ReDim Qst(L)

 Qstep = 1
Alpha = 0.1

 For U = 0 To L - 1
 Qst(U) = Qstep * (1 + Alpha * U)

 Next U
For U = 0 To Nm - 1 - L Step L

 For x = 0 To L – 1
) DeQ(U / L, x) = q(U / L, x) * Qst(x

 Next x, U

 ''INVERSE DCT
 For U = 0 To (Nm - 1 - L) Step L

 SF = U \ L
 For j = 0 To L - 1

 temp = 0
 For k = 0 To L - 1

 If k = 0 Then T2 = (1 / 2 ^ 0.5)
 Else T2 = 1

 temp = temp + DeQ(SF, k) * Cos(((((2 * j) + 1) * k * 3.14) / (2 * L))) * T2

 Next k
 wavT(U + j) = ((2 / L) ^ 0.5) * temp

 Next j
 Next U

 temp = 0
Save wavT at File De-Share
End Procedure

Principles of Secret Sharing Schemes and Compression Chapter Two

11

Principles of Secret sharing Schemes and Compression

2.1 Introduction
 This chapter is dedicated to explore the theoretical background

need to establish system of audio coding to be transmitted through

networks. In the sense of thesis context, audio coding means audio

cryptography and compression. This chapter is divided into two main

parts: The first one explained threshold secret sharing cryptography

methodology while the principles of data compression based on Discrete

Cosine Transform will be discussed in part two.

2.2 Concepts of threshold Secret Sharing Schemes

Threshold secret sharing refers to method for distributing a secret

amongst a group of participants, each of whom is allocated a share of the

secret. The secret can be reconstructed only when a sufficient number of

shares are combined together; individual shares are of no use on their

own. More formally, in a secret sharing scheme there are one dealer and

n players. The dealer gives a secret to the players, but only when specific

conditions are fulfilled. The dealer accomplishes this by giving each

player a share in such a way that any group of t (for threshold) or more

players can together reconstruct the secret but no group of fewer than t

players can. Such a system is called a (t, n)-threshold scheme (sometimes

it is written as an (n, t)-threshold scheme). [Sha12]

For example, consider a (k, n) threshold Secret Sharing scheme

illustrated in figure 2.1. A secret S is encrypted into n pieces called shares

V , each of which has no information of secret S, but S can be decrypted

by collecting k shares whereas (k-1) or fewer cannot be decrypted the

secret S.[Iwa03]

Chapter Two

Principles of Secret Sharing Schemes and Compression Chapter Two

12

(Figure 2.1): A (k, n)–threshold Secret Sharing Scheme

In general, threshold SSS consists of multiple phases: [O1i13]

1. Initialization. It defines the environment of the scheme: the parameters,

the possible space of secrets and shares and any other pre-requisites;

2. Sharing. It describes the splitting algorithm of the secret into multiple

shares. Usually, a Trusted Third Party (TTP) called dealer performs

the sharing; however, dealer-free SSS also exist;

3. Distribution. It indicates the share(s) that are sending to each

participant via secure channels. Usually, during this phase, each

participant receives one share. However, a single party may also own

multiple shares (and therefore obtain more power within the group) or

even an authorized set of shares (and hence becomes able to

reconstruct the secret by him).

4. Reconstruction. It explicit the key recover formulas or algorithms

performed to determine the secret from an authorized set of shares.

 2.3 Constructions of Threshold Secret Sharing Scheme

The current section presents the common Threshold Secret Sharing

Schemes explained in literature.

2.3.1. Trivial secret sharing

There are several (t, n) secret sharing schemes for t = n, when all

shares are necessary to recover the secret. When space efficiency is not a

concern, these schemes can be used to reveal a secret to any desired

subsets of the players simply by applying the scheme for each subset. For

Principles of Secret Sharing Schemes and Compression Chapter Two

13

example, to reveal a secret s to any two of the three players Alice, Bob

and Carol, create three different (2,2) secret shares for s, giving the three

sets of two shares to Alice and Bob, Alice and Carol, and Bob and Carol.

This approach quickly becomes impractical as the number of subsets

increases, for example when revealing a secret to any 50 of 100 players,

whereas the schemes described below allow secrets to efficiently be

shared with a threshold of players. [Sha12]

The difficulty lies in creating schemes that are still secure, but do

not require all n shares. For example, imagine that the Board of Directors

of a company would like to protect their secret formula. The president of

the company should be able to access the formula when needed, but in an

emergency any 3 of the 12 board members would be able to unlock the

secret formula together. This can be accomplished by a secret sharing

scheme with t = 3 and n = 15, where 3 shares are given to the president,

and 1 is given to each board member.

When space efficiency is not a concern, trivial t = n schemes can

be used to reveal a secret to any desired subsets of the players simply by

applying the scheme for each subset. For example, to reveal a secret s to

any two of the three players Alice, Bob and Carol, create three different

(2,2) secret shares for s, giving the three sets of two shares to Alice and

Bob, Alice and Carol, and Bob and Carol [Sti95].

2.3.2. Shamir's scheme

This secret sharing scheme is based on (k, n)-threshold based secret

sharing technique (k ≤ n) see figure (2.2). The technique allows any k out

of n shares to construct a given secret, a (k-1) degree polynomial is

necessary. This polynomial function of order (k-1) is constructed as,

		���� = �� + �
x + ��x� +	�
x
 + ��x� +⋯+ ���
x��
	�mod	p�				�2.1�											
Now we can easily generate n number of shares by using above equation.

Where a0 is the secret, p is a prime number and all other coefficients are

Principles of Secret Sharing Schemes and Compression Chapter Two

14

random elements from the secret. Each of the n shares is a pair (xi, yi) of

numbers satisfying f(xi) = yi and xi>0, 1≤ i ≤ n and 0< x1< x2…< x≤ p-1.

Given any k shares, the polynomial is uniquely determined and hence the

secret a0 can be computed via Lagrange interpolation. However, given k-

1or fewer shares, the secret can be any element in the field.

The polynomial function f(x) is destroyed after each shareholder

possesses a pair of values (xi, yi) so that no single shareholder knows the

secret value a0. In fact, no groups of k-1 or fewer shares can discover the

secret a0. On the other hand, when k or more secret shares are available,

then we may set at least k linear equations yi= f(xi) for the unknown ai's.

The unique solution to these equations shows that the secret value a

can be easily obtained by using Lagrange interpolation [Sha79].

Shamir's SSS is regarded as a Perfect SS scheme because knowing

even (k-1) linear equations doesn't expose any information about the

secret.

Figure (2.2): Shamir's secret sharing scheme where k=2

Some of the useful properties of Shamir's (k, n)-threshold scheme

are [Cha13]:

1. Secure: Information theoretic security.

2. Minimal : The size of each piece does not exceed the size of the

original data.

 Chapter Two

3. Extensible: When

added or deleted

4. Dynamic: Security can be easily enhanced without changing the

secret, but by

same free term) and

5. Flexible: In organizations where hierarchy

supply each participant different number of pieces according to

his importance inside the

president can unlock the safe alone, whereas 3

required together to unlock it.

• Example

The following example illustrates the basic idea

Note, however, that calculations in the example are done using integer

arithmetic rather than using

below does not provide perfect secrecy and is not a true example of

Shamir's scheme. So we'll explain this problem and show the right way to

implement it (using finite field arithmetic).

Suppose that our secre

We wish to divide the secret into 6 parts

parts is sufficient to reconstruct the secret. At random we obtain

two () numbers: 166 and 94.

Our polynomial to produce secret shares (points) is therefore:

We construct 6 points

Principles of Secret Sharing Schemes and Compression

15

: When n is kept fixed, Di pieces can be dynamically

added or deleted without affecting the other pieces.

: Security can be easily enhanced without changing the

 changing the polynomial occasionally (keeping the

same free term) and constructing new shares to the participants.

: In organizations where hierarchy is important, we can

participant different number of pieces according to

his importance inside the organization. For instance, the

president can unlock the safe alone, whereas 3 secretaries are

required together to unlock it.

wing example illustrates the basic idea of Shamir's scheme

Note, however, that calculations in the example are done using integer

arithmetic rather than using finite field arithmetic. Therefore the example

below does not provide perfect secrecy and is not a true example of

Shamir's scheme. So we'll explain this problem and show the right way to

implement it (using finite field arithmetic).

Suppose that our secret is 1234 .

We wish to divide the secret into 6 parts , where any subset of 3

is sufficient to reconstruct the secret. At random we obtain

) numbers: 166 and 94.

Our polynomial to produce secret shares (points) is therefore:

 from the polynomial:

Sharing Schemes and Compression

pieces can be dynamically

her pieces.

: Security can be easily enhanced without changing the

changing the polynomial occasionally (keeping the

constructing new shares to the participants.

is important, we can

participant different number of pieces according to

organization. For instance, the

secretaries are

Shamir's scheme.

Note, however, that calculations in the example are done using integer

. Therefore the example

below does not provide perfect secrecy and is not a true example of

Shamir's scheme. So we'll explain this problem and show the right way to

, where any subset of 3

is sufficient to reconstruct the secret. At random we obtain

Our polynomial to produce secret shares (points) is therefore:

from the polynomial:

 Chapter Two

We give each participant a different single point (both

Because we use

not . This is necessary because if one would have

would also know the secret

any 3 points will be enough.

Let

We will compute Lagrange basis polynomials

Therefore

Recall that the secret is the free

and we are done.

2.3.3 Blakley's secret sharing scheme

Blakley's secret sharing scheme is geometric in nature. The secret

is a point in an m dimensional

share defining an affine

the set of solutions x=(

xm=b. By finding the intersection of any

is, the point of intersection) can be obtained. This

as the person with a share of the secret knows the secret is a point on his

or her hyperplane. Nevertheless,

perfect security [Bla79

Principles of Secret Sharing Schemes and Compression

16

We give each participant a different single point (both

 instead of the points start from

. This is necessary because if one would have

would also know the secret . In order to reconstruct the secret

any 3 points will be enough.

Lagrange basis polynomials:

Recall that the secret is the free coefficient, which means that

Blakley's secret sharing scheme

Blakley's secret sharing scheme is geometric in nature. The secret

dimensional space. n shares are constructed

affine hyperplane in this space; an affine hyperplane

=(x1, …,xm) to an equation of the form a

. By finding the intersection of any m of these planes, the secret

is, the point of intersection) can be obtained. This scheme is not perfect,

with a share of the secret knows the secret is a point on his

or her hyperplane. Nevertheless, this scheme can be modified to achieve

Bla79]. Figure 2.3 presents this scheme.

Sharing Schemes and Compression

 and).

 and

. This is necessary because if one would have he

to reconstruct the secret

coefficient, which means that ,

Blakley's secret sharing scheme is geometric in nature. The secret

constructed with each

hyperplane is

a1x1 + … + am

of these planes, the secret (that

scheme is not perfect,

with a share of the secret knows the secret is a point on his

this scheme can be modified to achieve

Principles of Secret Sharing Schemes and Compression Chapter Two

17

Figure (2.3) Blakley's Scheme

2.3.4 Chinese Remainder Theorem

The Chinese Remainder Theorem can also be used in secret sharing, for it

provides us with a method to uniquely determine a number S modulo k

many relatively prime integers [Sha12],

 S < ∏ ������ m1, m2, …mk (2.2)

 There are two secret sharing schemes that make use of the Chinese

Remainder Theorem; [Mig83] and [Asm83]. They are threshold secret

sharing schemes, in which the shares are generated by reduction modulo

the integers, and the secret is recovered by essentially solving the system

of congruence using the Chinese Remainder Theorem.

2.3.5 Proactive secret sharing

Proactive secret sharing is a method to update

distributed keys (shares) in a secret sharing scheme periodically such that

an attacker has less time to compromise shares. This contrasts to a non-

proactive scheme where if threshold number of shares is compromised

during the lifetime of the secret, then secret is compromised.

 Chapter Two

If the players (holders of the shared secret) store their shares on

insecure computer servers, an

Since it is not often practical to change the secret, the uncompromised

(Shamir-style) shares should be updated in a way that they generate the

same secret, yet the old shares are invalidated.

In order to update the shares, the dealer (i.e., the person who gives

out the shares) generates a new random polynomial with constant term

zero and calculates for each remaining player a new ordered pair, where

the x-coordinates of the old and new pairs are the same. Each player then

adds the old and new y

the new y-coordinate of the secret

• The dealer constructs a random polynomial over a field of degree

 where is the threshold

• Each player gets the share

the number of players, and

interval

• The secret can be reconstructed via

• To update the shares, all parties need to construct a random

polynomial of the form

• Each player sends all other players

• Each player updates their share

 where is the time interval in which the shares are valid

All of the non-

useless. An attacker can only recover the secret if he can find enough

other non-updated shares to reach the threshold. This situation should not

happen because the players deleted their old shares. Ad

attacker cannot recover any information about the original secret from the

update process because it only contains random information.

Principles of Secret Sharing Schemes and Compression

18

If the players (holders of the shared secret) store their shares on

insecure computer servers, an attacker could crack in and steal the shares.

Since it is not often practical to change the secret, the uncompromised

should be updated in a way that they generate the

same secret, yet the old shares are invalidated.

In order to update the shares, the dealer (i.e., the person who gives

out the shares) generates a new random polynomial with constant term

zero and calculates for each remaining player a new ordered pair, where

coordinates of the old and new pairs are the same. Each player then

adds the old and new y-coordinates to each other and keeps the result as

coordinate of the secret [Her95].

The dealer constructs a random polynomial over a field of degree

is the threshold

Each player gets the share where

the number of players, and is the share for player

The secret can be reconstructed via interpolation of shares

To update the shares, all parties need to construct a random

polynomial of the form

sends all other players

Each player updates their share by

is the time interval in which the shares are valid

-updated shares the attacker accumulated become

useless. An attacker can only recover the secret if he can find enough

updated shares to reach the threshold. This situation should not

happen because the players deleted their old shares. Additionally, an

attacker cannot recover any information about the original secret from the

update process because it only contains random information.

Sharing Schemes and Compression

If the players (holders of the shared secret) store their shares on

could crack in and steal the shares.

Since it is not often practical to change the secret, the uncompromised

should be updated in a way that they generate the

In order to update the shares, the dealer (i.e., the person who gives

out the shares) generates a new random polynomial with constant term

zero and calculates for each remaining player a new ordered pair, where

coordinates of the old and new pairs are the same. Each player then

coordinates to each other and keeps the result as

The dealer constructs a random polynomial over a field of degree

, is

is the share for player at time

shares

To update the shares, all parties need to construct a random

is the time interval in which the shares are valid

updated shares the attacker accumulated become

useless. An attacker can only recover the secret if he can find enough

updated shares to reach the threshold. This situation should not

ditionally, an

attacker cannot recover any information about the original secret from the

Principles of Secret Sharing Schemes and Compression Chapter Two

19

The dealer can change the threshold number while distributing

updates, but must always remain vigilant of players keeping expired

shares.

2.4 Principals of Audio Compression

 The next subsections will be devoted to presents all necessary

methodologies for audio compression work.

2.4.1 Digital Audio

Sound can be digitized and broken up into numbers. When sound is

played into a microphone, it is converted into a voltage that varies

continuously with time. Figure 2.4 shows a typical example of sound that

starts at zero and oscillates several times. Such voltage is the analog

representation of the sound. Digitizing sound is done by measuring the

voltage at many points in time, translating each measurement into a

number, and writing the numbers on a file. This process is called

sampling. The sound wave is sampled, and the samples become the

digitized sound. The device used for sampling is called an analog-to-

digital converter (ADC). The method of representing each sample with an

independent code word is called pulse code modulation (PCM). Figure

2.4 shows the digital audio process. [digital audio compression]

Figure (2.4) Digital Audio Process

Since the sound samples are numbers, they are easy to edit. However, the

main use of a sound file is to play it back. This is done by converting the

numeric samples back into voltages that are continuously fed into a

Principles of Secret Sharing Schemes and Compression Chapter Two

20

speaker. The device that does that is called a digital-to-analog converter

(DAC). Intuitively, it is clear that a high sampling rate would result in

better sound reproduction, but also in many more samples and therefore

bigger files. Thus, the main problem in sound sampling is how often to

sample a given sound [Sal04].

2.4.2 Concepts of Audio Compression

Huge amount of data transmission is very difficult both in terms of

transmission and storage. Compression is basically to remove redundancy

between neighboring samples and between adjacent cycles. Major

objective of audio compression is to represent signal with lesser number

of bits. The reduction of data should be done in such a way that there is

acceptable loss of quality. [Pat13]

In general, compression methods have been classified as either lossless or

lossy. Lossless techniques allow the exact original data to be

reconstructed from the exact original data to be reconstructed from the

compressed data. It is mainly used in cases where it is important that the

original signal and the decompressed signal are almost same or identical.

Examples of lossless compression are Run Length and Huffmann coding.

Lossy techinuqes are a data encoding method that compresses data by

removing some of them. The aim of this technique is to minimize the

amount of data that has to be transmitted. They are mostly used for

multimedia data compression. Examples of lossy compression are MPEG

and JPEC All real world measurements inherently contain a certain

amount of noise. If the changes made to these signals resemble a small

amount of additional noise, no harm is done. This distinction is important

because lossy techniques are much more effective at compression than

lossless methods. The higher the compression ratio (Compression ratio =

size of the output file / size of the input file) the more noise added to the

data. [Smi06]

Principles of Secret Sharing Schemes and Compression Chapter Two

21

2.4.3 Techniques for Audio compression

 Audio compression is classified into three techniques [Pat13]; these are:

A. Waveform Coding

The signal that is transmitted as input is tried to be reproduced at

the output which would be very similar to the original signal. Waveform-

based codecs are intended to remove waveform correlation between audio

samples to achieve audio compression. It aims to minimize the error

between the reconstructed and the original speech waveforms. Typical

ones are Pulse Code Modulation (PCM) and Adaptive Differential PCM

(ADPCM) [Sun13].

B. Parametric coding

In this type of coding the signals are represented in the form of

small parameters which describes the signals very accurately. In

parametric extraction method a preprocessor is used to extract some

features that can be later used to extract the original signal [Bri06].

C. Transform Coding

In this method the signal is transformed into frequency domain and

then only dominant feature of signal is maintained. In transform method

audio can be represented in terms of coefficients. Transform techniques

do not compress the signal, they provide information about the signal and

using various encoding techniques compressions of signal is done. Audio

compression is done by neglecting small and lesser important coefficients

and data and discarding them and then using quantization and encoding

techniques [Pan93].

 This technique of compression is performed in the following steps:

1- Transform technique; 2-Quantization; and 3- Encoding.

2.5 Discrete Cosine Transform

The discrete cosine transformation (DCT) is a technique for

converting a signal into elementary frequency components. In

Principles of Secret Sharing Schemes and Compression Chapter Two

22

particular, The cosine transform translates a set of data points from the

spatial domain to the frequency domain using Cosine basis

functions[Sal07].

The DCT in one dimension is given by [Sal04] as equation 2.3

�� = 2!"

� #�		$ %& cos)*�2& + 1��+

2! ,*
-�

.��
					… 2.3

#� = 1√2,																				�45	� = 0,1,																					� > 0,			 * 		�45	� = 0,1,… , ! − 1															

The input is a set of n data values pt (pixels, audio samples, or other

data) and the output is a set of n DCT transform coefficients (or weights)

Gf. The first coefficient G0 is called the DC coefficient and the rest are

referred to as the AC coefficients. Notice that the coefficients are real

numbers even if the input data consists of integers. Similarly, the

coefficients may be positive or negative even if the input data consists of

nonnegative numbers only. The decoder inputs the DCT coefficients in

sets of n and uses the inverse DCT (IDCT) to reconstruct the original data

values (also in groups of n), The IDCT in one dimension is given as

equation 2.4.

%& = 2!"

� 		$ #:�: cos)*�2& + 1�:+

2! ,*
-�

.��
					… 2.4					

 The important feature of the DCT (i.e. the feature that makes it so

useful in data compression) is that it takes correlated input data and

concentrates its energy in just the first few transform coefficients. If the

input data consists of correlated quantities, then most of the n transform

Principles of Secret Sharing Schemes and Compression Chapter Two

23

coefficients produced by the DCT are zeroes or small numbers, and only

a few are large (normally the first ones). The early coefficients contain the

important (low-frequency) image information and the later coefficients

contain the less-important (high-frequency) image information.

Compressing data with the DCT is therefore done by quantizing the

coefficients. The small ones are quantized coarsely (possibly all the way

to zero) and the large ones can be quantized finely to the nearest integer.

After quantization, the coefficients (or variable-size codes assigned to the

coefficients) are written on the compressed stream. Decompression is

done by performing the inverse DCT on the quantized coefficients. This

results in data items that are not identical to the original ones but are not

much different.

In practical applications, the data to be compressed is partitioned

into sets of n items each and each set is DCT-transformed and quantized

individually. The value of n is critical, small values of n such as 3, 4, or 6

results in many small sets of data items. Such a small set is transformed

to a small set of coefficients where the energy of the original data is

concentrated in a few coefficients, but there are only few coefficients in

such a set. Thus, there are not enough small coefficients to quantize.

Large values of n result in a few large sets of data. The problem in such a

case is that the individual data items of a large set are normally not

correlated and therefore result in a set of transform coefficients where all

the coefficients are large. Experience indicates that n = 8 is a good value

and most data compression methods that employ the DCT use this value

of n.

2.6 Scalar Quantization

The dictionary definition of the term “quantization” is “to restrict a

variable quantity to discrete values rather than to a continuous set of

Principles of Secret Sharing Schemes and Compression Chapter Two

24

values.” In the field of data compression, quantization is used in two ways

[Sim06]:

1. If the data to be compressed are in the form of large numbers,

quantization is used to convert them to small numbers. Small numbers

take less space than large ones, so quantization generates compression.

On the other hand, small numbers generally contain less information

than large ones, so quantization results in lossy compression.

2. If the data to be compressed are analog (i.e., a voltage that changes

with time) quantization is used to digitize it into small numbers.

Smaller the numbers give better compression, but also the greater the

loss of information. This aspect of quantization is used by several

speech compression methods.

2.7 Run-Length Encoding

Digitized signals can have runs of the same value, indicating that

the signal is not changing. For instance, digitized music might have a

long run of zeros between songs. Run-length encoding is a simple

method of compressing these types of files.

Figure 2.5 illustrates run-length encoding for a data sequence having

frequent runs of zeros. Each time a zero is encountered in the input data,

two values are written to the output file. The first of these values is a

zero, a flag to indicate that run-length compression is beginning. The

second value is the number of zeros in the run. If the average run-length

is longer than two, compression will take place. On the other hand, many

single zero in the data can make the encoded file larger than the original.

Many different run-length schemes have been developed. For example,

the input data can be treated as individual bytes, or groups of bytes that

represent something more elaborate, such as floating point numbers.

Run-length encoding can be used on only one of the characters (as with

the zero above), several of the characters, or all of the characters.

Principles of Secret Sharing Schemes and Compression Chapter Two

25

Figure (2.5) Example of Run-Length Encoding.

2.8 Shift Coding

The idea of this method is to encode the sequence of numbers by

code words whose bit length is less than the bit length required to

represent the maximum value of the sequence of numbers to be coded.

The numbers whose values are large may split into a sequence of

code words, by using the following formula 2.5 [Gon02]

X = nWm+Wr (2.5)

Where:

X is the number to be coded, n is the number of code words that

used to encode the number X, Wm is the lowest value which cannot be

coded by using a single code word, Wr is the value of the last code word

used to encode X.

The values of Wm, Wr, and n are determined by using equations

2.6, 2.7, and 2.8 consequently;

Wm = 2b – 1 (2.6)

Wr = X mod Wm (2.7)

n = X div Wm (2.8)

Where

b is the number of bits used to represent each single shift code

word.

Original data stream: 17 8 54 0 0 0 97 5 16 0 45 23 0 0 0 0 0 3 67 0 0 8 …

Run-length encoded: 17 8 54 0 3 97 5 16 0 1 45 23 0 5 3 6 7 0 2 8 …

Principles of Secret Sharing Schemes and Compression Chapter Two

26

The performance of Huffman coding and shift coding are better when the

sequence of numbers has a histogram whose shape is highly peaked. The

performance of shift coding is better than Huffman and arithmetic coding

when the histograms have long tails [Mah07].

Dedication

To My father, mother, brothers

My Husband

And My Lovely Sons

With my love

I

 List of Abbreviations

Audio Cryptography Scheme ACS
analog-to-digital converter ADC
Adaptive Differential PCM ADPCM
Audio Secret Sharing ASS
Audio Secret Sharing Scheme ASSS
digital-to-analog converter DAC
Decibel DB
Discrete Cosine Transform DCT
Discrete Wavelet Transform DWT
Kilo Byte KB
Mean Square Error MSE
pulse code modulation PCM
Pulse Code Modulation PCM
Peak Signal to Noise Ratio PSNR
Run Length Encoding RLE
Secret Sharing Scheme SSS
Trusted Third Party TTP
Visual Secret Sharing VSS
Visual Secret Sharing Scheme VSSS
Windows Audio Visual WAV
Joint Photographic Experts Group JPEG
Moving Picture Experts Group MPEG

II

List of Algorithms

Algorithm (3.1) Loading Original Wave File

Algorithm (3.2) Discrete Cosine Transform

Algorithm (3.3) Quantization

Algorithm (3.4) Spatial Encoding (Run Length of zeros)

Algorithm (3.5) Entropy Encoding (Shifting Code)

Algorithm (3.6) Diffusion for The Compressed File

Algorithm (3.7) Generate Random Coefficient for each share

Algorithm (3.8) Generate Share Function for each share

Algorithm (3.9) Generate N Share

Algorithm (3.10) Decoding process

III

List of Figures

Figure(2.1) (k, n)–threshold Secret Sharing Scheme

Figure(2.2) Shamir's secret sharing scheme where k=2

Figure(2.3) Blakley's Scheme

Figure(2.4) Digital Audio Process

Figure(2.5) Example of Run-Length Encoding

Figure(3.1) The Block Diagram of Encoding Module

Figure(3.2) The Block diagram Of Decoding Module

Figure(3.3) The Flowchart OF Compression
Figure(3.4) Encryption Flowchart
Figure(3.5) frame (A) is Split into 4 blocks

Figure(3.6) DCT transformation on frame (A)

Figure(3.7) Diffusion for Compressed Stream of Bits

Figure(4.1) Main menu for the proposed scheme

Figure(4.2) Reading wave file button

Figure(4.3) Loading wave file

Figure(4.4) Play the wave file

Figure(4.5) Start (Sharing + Compression) Processing

Figure(4.6) Saving data in file data.dat after shifting Code

Figure(4.7) Sharing and compression status

Figure(4.8) Wave reconstruction button

Figure(4.9) Wave reconstruction status button

Figure(4.10) Reading Re-Constructed wave file

IV

List of Tables

Table(4.1) example of wave file size before and after compression

Table(4.2) generation of linear functions with tow random coefficients for

each share, n=3

Table(4.3) wave file size with share size after shares generation in the

proposed scheme)

Table(4.4) The effect of the block size (BL) on the performance of

Compression of wave files used

Table(4.5) The effect of the Quantization on the performance of

Compression of wave files used, Qst () Vector dimension at equation

(3.1) is set to block length 12,Qstp =1 and Weight is set to 0.1

Table(4.6) The effect of the Quantization on the performance of

Compression of wave files used, Qst () Vector dimension at equation

(3.1) is set to block length 16 ,Qstp =1 and Weight is set to 0.1

Table(4.7) The effect of the Quantization on the performance of

Compression of wave files used, Qst () Vector dimension at equation

(3.1) is set to block length 12,Qstp =1 and Weight is set to 0.2

Table(4.8) The effect of the Quantization on the performance of

Compression of wave files used, Qst () Vector dimension at equation

(3.1) is set to block length 16,Qstp =1 and Weight is set to 0.2

Table(4.9) The effect of the Quantization on the performance of

Compression of wave files used, Qst () Vector dimension at equation

(3.1) is set to block length 12,Qstp =1.5 and Weight is set to 0.5

Table(4.10) The effect of the Quantization on the performance of

Compression of wave files used, Qst () Vector dimension at equation

(3.1) is set to block length 16,Qstp =1.5 and Weight is set to 0.5

V

List of Contents

1.1 Motivation 1

1.2 Concept of Secret Sharing Scheme (SSS) 1

1.3 Classification of Secret Sharing Scheme 2

1.4 Problem statement 5

1.5 Previous Work

1.6 Aim of Thesis

6

 9

1.7 Thesis Organization 10

11 2.1 Introduction

11 2.2 Concepts of threshold Secret Sharing Schemes

12 2.3 Constructions of Threshold Secret Sharing Scheme

12 2.3.1 Trivial secret sharing

13 2.3.2 Shamir's scheme

16 2.3.3 Blakley's secret sharing scheme

17 2.3.4 Chinese Remainder Theorem

17 2.3.5 Proactive secret sharing

19 2.4. Principals of Audio Compression

19 2.4.1 Digital Audio

20 2.4.2 Concepts of Audio Compression

21 2.4.3 Techniques for Audio compression

21 A. Waveform Coding

Chapter One: Introduction 1

Chapter Two: Principles of Secret sharing Schemes and 11
 Compression

VI

21 B. Parametric coding

21 C. Transform Coding

21 2.5 Discrete Cosine Transform

23 2.6 Scalar Quantization

24 2.7 Run-Length Encoding

25 2.8 Shift Coding

27 3.1 Introduction

27 3.2 Design Considerations

27 3.3 Tools and Requirements

28 3.4 The proposed Scheme Structure

33 3.4.1 Wave Loading

34 3.4.2 Decompose Wave Data into Blocks

34 3.4.3 DCT Transformation

35 3.4.4 Quantization

37 3.4.5 Run-Length Encoding

38 3.4.6 Shifting Code (Entropy Encoder)

40 3.4.7 Diffusion

41 3.4.8 Generating Random Coefficients

42 3.4.9 Generating Share Functions
43 3.4.10 Generating n shares

45 3.5 The Designed Decoder

4.1 Introduction 49

4.2 Mathematical definition for the proposed SSS (2,n) 49

4.3 Sharing Example 50

4.4 The Test Measures 55

Chapter Three: The Proposed Scheme 27

Chapter Four: Experimental Results and System Evaluation 49

VII

 4.4.1 Fidelity Measures 56

 4.4.2 Compression Compactness 57

4.5 Test Parameters 58

 4.5.1 Block Length Test 58

 4.5.2 Quantization Tests 58

4.6 The Effect of using Zeros Run Length 62

4.7 The Effect of using Shifting Code 62

4.8 The Effect of Sharing Random Coefficients 63

4.9 Test Results 64

5.1 Conclusion 65

5.2 Suggested Future Work 66

Chapter Five: Conclusions and Suggested Future Work 65

References

[Asm83] C. A. Asmuth and J. Bloom, "A modular approach to key

safeguarding", IEEE Transactions on Information Theory, IT-

29(2) pages:208–210, 1983.

[Bei96] Amos Beimel, "Secure Schemes for Secret Sharing and Key

Distribution", Ph.D thesis, Senate of the Technion, Israel

Institute of Technology, Haifa, 1996.

[Bei97] A. Beimel, A. Gal, and M. Paterson, "Lower bounds for

monotone span programs", Computational Complexity,

Conference version: FOCS '95., 6(1), pages: 29-45, 1997.

[Bla79] G.R. Blakley, "Safeguarding cryptographic keys", AFIPS

Conference Proceedings, vol.48, pp.313–317, 1979.

[Bri06] Manuel Briand, David Virette, and Nadine Martin, "Parametric

Coding of Stereo Audio Based on Principal Component

Analysis", Proc. of the 9th Int. Conference on Digital Audio

Effects (DAFX’06), Montreal, Canada, September 18-20, 2006.

 [Cha06] Teng-Kuei Chang, "An Audio Feature Extraction Scheme Based

on Secret Sharing and Wavelet Transform", M.Sc. thesis,

Department of Computer Science and Engineering, Tatung

University, 2006.

[Cha12] Ka Fai -Peter Chan, "Secret Sharing in Audio Steganography",

Article, Provider: citeseer, 2012.

[Cha13] Ayan Chaudhuri, "Design of a secured secret sharing technique

and its application on mobile handsets", M.Sc. thesis, School of

Mobile Computing and Communication, Jadavpur University,

Kolkata, India, 2013.

[Che12] Kai-Yuen Cheong, "A secret sharing scheme of prime numbers

based on hardness of factorization, Japan advanced institute of

science and technology, 2012.

[Csi96] L. Csirmaz, "The dealer's random bits in perfect secret sharing

schemes", Studi Sci. Math. Hungar., 32(3-4), pages 429-437,

1996.

 [Des93] Y. Desmedt,"Threshold cryptosystems", Advances in

cryptology-Auscrypt'92, volum 718 of Lecture Notes in

computer science, pages 5-14. Sepringer-Verlag, 1993.

 [Des98] Y. Desmedt, S. Hou, and J. Quisquater, “Audio and optical

cryptography,” Advances in Cryptology - Asiacrypt'98, Lecture

Notes in Computer Science, LNCS 1514, pp.392–404, Springer

Verlag, 1998.

[Ehd08] Mohammad Ehdaie, Taraneh Eghlidos, and Mohammad Reza

Aref, "A Novel Secret Sharing Scheme from Audio

Perspective", Internatioal Symposium on Telecommunications,

pp.13-18, 2008.

[Fuj06] Norihiro Fujita, Ryouichi Nishimura and Yoˆiti Suzuki, “Audio

secret sharing for 1-bit audio”, Acoust Sci. &Tech. 27, 3 (2006).

[Gon02] Gonzalez, R., and Woods, R.; "Digital Image Processing",

Pearson Education International, Prentice Hall, Inc., 2nd Edition,

New Jersey, 2002.

[Guo13] Cheng Guo , and Chin-Chen Chang," A Construction for Secret

sharing Scheme with General Access Structure", Journal of

Information Hiding and Multimedia Signal Processing, Volume

4, Number 1, January 2013.

[Her95] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung, "Proactive

secret sharing or: How to cope with perpetual leakage", In D.

Coppersmith, editor, Advances in Cryptology - CRYPTO ’95,

volume 963 of Lecture Notes in Computer Science, pages 339–

352. Springer-Verlag, 1995.

[Hof08] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman, "An

Introduction to Mathematical Cryptography", Springer, USA,

2008.

[Iwa03] Mitsugu Iwamoto, "General Construction Methods of Secret

Sharing Schemes and Visual Secret Sharing Schemes", M.Sc.

thesis, University of Tokyo ,Tokyo, Japan, 2003.

[Kur08] Jun Kurihara, Shinsaku Kiyomoto, Kazuhide Fukushima and

Toshiaki Tanaka, 13." On a Fast (k,n)-Threshold Secret Sharing

Scheme", Journal IEICE Transactions on Fundamentals of

Electronics, Communications and Computer Sciences archive,

Volume E91-A Issue 9, Pages 2365-2378, Oxford University

Press Oxford, UK September 2008.

[Lin03] Chen-chi Lin, Chi-sung Laih and Ching-Nung Yang, “New

Audio Secret Sharing Schemes With Time Division Technique”

- Journal Of Information Science And Engineering 19, pp.605-

614, 2003.

[Mah07] Mhamood, R. F., "Improved Once-Time-Search Method Based

on Inter-Block Correlation", M.Sc. Thesis, Al-Nahrain

University,College of Science, 2007.

[Men96] Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van

Oorschot. "Handbook of Applied Cryptography", CRC Press

Inc., 1996.

[Mig83] M. Mignotte, "How to share a secret", in T. Beth, editor,

Cryptography Proceedings of the Workshop on Cryptography,

Burg Feuerstein, 1982, volume 149 of Lecture Notes in

Computer Science, pages 371–375, Springer-Verlag, 1983.

[Nao94] Moni Naor and Adi Shamir. "Visual cryptography", In

Proceedings of the 13th annual international conference on

Theory and application of cryptographic techniques,

EUROCRYPT'94, pages 1-12. Springer, 1994.

[Nas11] Prabir Kr. Naskar, Hari Narayan Khan, Ujjal Roy, Ayan

Chaudhuri , Atal Chaudhur, "Shared Cryptography with

Embedded Session Key for Secret Audio", International Journal

of Computer Applications (0975 – 8887), Volume 26– No.8,

page5-9, July 2011.

[Nik10] Amresh Nikam, Poonam Kapade, and Sonali

Patil,"Audio Cryptography: "A (2,2) Secret Sharing for Wave

File", International Journal of Computer Science and

Application Issue, ISSN 0974-0767, pp.96-99, 2010.

[O1i13] Ruxandra Florentina Olimid, "Secret Sharing-based Group Key

Establishment", Ph.D. thesis, Department of mathematics and

computer science, university of Bucharest, 2013.

[Pan93] Davis Yen Pan, "Digital Audio Compression", Digital Technical

Journal Vol. 5 No. 2, Spring 1993.

[Pat13] M. V. Patil, Apoorva Gupta, Ankita Varma, and , Shikhar Salil,

"Audio and Speech Compression Using DCT and DWT

Techniques", International Journal of Innovative Research in

Science, Engineering and Technology, Vol. 2, Issue 5, May

2013.

 [Sal04] David Salomon, "Data Compression the Complete Reference",

Third Edition, Springer –Verlag, New York, Inc., 2004.

[Sha79] Adi Shamir, "How to share a secret?", Commun. ACM,

22(11):612-613, pages 13, 21, 25, 26, November 1979.

 [Sha12] Jyotsna Shaw, "A modern approach for secured transmission of

audio files using fractal based chaos", Ms.c thesis, department

of computer science & Engineering, Jadavpur University,

Kolkata, India, 2012.

[Smi06] Steven W. Smith, "The Scientist and Engineer's Guide to Digital

Signal Processing, copyright", California Technical Publishing,

2006.

[Soc05] Socek, D., and Magliveras, S.S, "General access structures in

audio cryptography", IEEE International Conference on Electro

Information Technology ISBN: 0780392329, Pages: 1-6, 2005.

[Sti95] Douglas Stinson, "Cryptography: Theory and Practice", CRC

Press, ISBN: 0849385210, 1995.

[Sun13] L. Sun Mkwawa, I.-H., Jammeh, E., Ifeachor, E., "Guide to

Voice and Video over IP, Computer ommunications and

Networks", DOI 10.1007/978-1-4471-4905-7_2, Springer-

Verlag, London, 2013.

[Yan02] Ching-Nung Yang, "Improvements on Audio and Optical

Cryptography", JOURNAL OF INFORMATION SCIENCE

AND ENGINEERING 18, 381-391 (2002).

[ShSu00] Shi, Y. Q., and Sun, H.; "Image and Video Compression for

Multimedia Engineering"; CRC Press LLC; United States of

America; 2000.

[Umba98] Umbaugh, S. E.; "Computer Vision and Image Processing: A

Practical Approach using CVIP Tools";Prentice Hall, Inc.;

1998.

[Salo07] Salomon, D.; "Data Compression"; Springer; United Kingdom;

London; 4th Edition; 2007.

[Sal07] D. Salomon." Variable- Length Codes for Data Compression",

Springer-Verlag, London Limited.2007

[Grg01] S. Grgic, M. Grgic," Performance Analysis of Image

Compression Using Waelet" Member,IEEE, and Branka

Zovoko-Chilar, Member, IEEE.Vol.48, NO.3, JUNE 2001

Summary

An Effective and secure protection of sensitive information is the

primary concern in communication systems or network storage systems, it

is important for any information process to ensure data is not being

tampered. To achieve confidentiality and integrity of multimedia

information, various Secret Sharing Schemes (SSS) have been developed.

This thesis presents a (2,n) threshold Secret Sharing Scheme, which

is one of the types of SSS and a special kind of (k, n) threshold scheme.

This scheme share a secret file among n participants, and any two

participants could cooperate to reconstruct the secret file, otherwise

participants could get nothing. The proposed scheme is designed to solve

the problem of increasing share size in most threshold secret sharing

schemes besides guaranteeing security with low complexity..

The proposed scheme prototype consists of two modules: Encoder

and Decoder, the input to the former is plain audio data (.WAV) while the

output is n shares. Encoder is passes through two stages: compression and

encryption. Compression is achieved by performing Discrete Cosine

Transformation DCT, Quantizing, Run-Length Encoding, and Shifting

Coding stages sequentially. While encryption is acquired by diffusion,

implementing Random Coefficients generating and Share Functions

generating stages consecutively.

The performance of the proposed scheme was tested, using some

fidelity measures such as Mean Square Error (MSE) and Peak Signal Noise

Ratio (PSNR) to measure the rate of error while Compression Ratio (CR) is

used to measure the compression efficiency. The test result shows

encourage results.

Republic of Iraq
Ministry of Higher Education
and scientific research
Al-Nahrain University
College of Science
Department of Computer Science

Share Audio Cryptography Using DCT
Transform

A Thesis
Submitted to the College of Science/Al-Nahrain University as a partial
fulfillment of the requirements for the Degree of Master of Science in

Computer Science

By

Sarah Saad Ali Albaghdady
B.Sc. 2003 Computer Science / College Science / Al-Nahrain University

Supervised by
Dr. Abeer M. Yousif
(Assistant Professor)

April 2014 Second Jamadi 1435

	Microsoft Word - Achnowledgment.pdf
	Microsoft Word - Appendix.pdf
	Microsoft Word - Title.pdf
	Microsoft Word - Arabic Summary.pdf
	Microsoft Word - title_arbic.pdf
	Microsoft Word - Chapter five.pdf
	Microsoft Word - Chapter Four.pdf
	Microsoft Word - Chapter one.pdf
	Microsoft Word - Chapter Three.pdf
	Microsoft Word - Chapter two.pdf
	Microsoft Word - Dedication.pdf
	Microsoft Word - ListOfContents.pdf
	Microsoft Word - References.pdf
	Microsoft Word - Summary.pdf
	Microsoft Word - title_english.pdf

