
119

 Chapter Five: Conclusions and Suggestions for Future Work

5.1 Conclusions

From this research, many things are noticed and concluded. The

following are the most important ones:

1. The type of network messages that are relevant to the file system deal

with port number equal 139 and 445. Both of these ports refers to SMB

working over NetBIOS, and then NetBIOS over TCP/IP.

2. To gain high-speed detection, the network packets should be filtered.

Filtering the network packets reduce the amount of incoming data to

speeds the analysis stage time.

3. Disk's resources should be indexed to be capable apply structural

searching technique (like, search sorted binary tree) to achieve high-

speed searching performance.

4. Some of the headers' fields of headers of TCP/IP protocols are really

meaningful to monitoring process. These fields are:

a. Source IP, Destination IP, and Protocol fields of IP protocol

header.

b. Source Port number and Destination Port number of TCP

protocol header.

c. Command and Flags fields of SMB protocol header.

In addition, there are unused fields for monitoring process, which

are:

a. Checksum field of IP and TCP protocol header.

b. TTL field of IP protocol header.

c. Window field of TCP protocol header.

d. EXTRA field of SMB protocol header.

120

 Chapter Five: Conclusions and Suggestions for Future Work

5. The power of the network intrusion detection system depends on which

network segment is sniffed and, thereby, on what is the extracted

information from this segment.

6. During system implementation, several problems have been raised, the

main ones are:

a. Finding a proper mechanism to aggregate the local shared resources

to use them in Initialization Module of the Client subsystem. To

solve this problem, a Binary Tree structure was implemented as

dynamic link list of records. Each record contains one shared

resource and two links to related resources records.

b. How to distinguish between clients' users when they access a shared

resource, in addition to PC's IP and PC user account name, if there is

another user on the same PC and may use the same PC account. To

solve this problem, the users were classified into three - classes and

each class is classified into two or three - levels.

c. The type of the response of the administrator against suspicious

users. There are several actions that could be taken against suspicious

users, such as warning the user, blocking user's IP, ending user's

network session, etc. the simplest one that is adopted in this thesis is

using warning message.

121

 Chapter Five: Conclusions and Suggestions for Future Work

5.2 Suggestions for future work

In the following, some recommendations for future work in NNIDSs

are listed:

1. Utilization of users profiles in detection engine.

2. Applying Misuse analyze strategy with FMS.

3. Extend this work to detect others file system actions (such as, list file

attribute, browsing files and folders, print a file, and so on).

4. Use another response type instead of Warning Message, such as

prevention the attacks by ending user network session, or blocking

user's IP.

5. Running FMS on a Wide Area Network (WAN) or Metropolitan

Area Network (MAN). Taken into considerations all the necessary

scalable factors to establish such a system, examples: distributed

databases, local and global Administrator subsystems and their

administrators' privileges.

89

Chapter four: FMS Interfaces and Evaluation

4.1 FMS Interfaces

FMS system interface consists of two interfaces: Administrator

interface which is installed in the Administrator computer, and Client

interface which is installed in the remote computers.

The Client subsystem is executed by FMS_Client.exe file that must

run in the remote computers to be used by any user aims to access the

network shared resources. At the Administrator side, the

FMS_Administrator.exe is executed in the Administrator computer to start

monitoring the entire network for suspicious actions that performed on files

and folders.

4.1.1 FMS Client Subsystem Interfaces
FMS Client subsystem interface is designed to make its use is easy.

The main functions of it are: user authentication to access the network

shared resources, system initialization, and start monitoring specific LAN.

When FMS_Client.exe is executed, FMS Main frame will appear as

shown in Figure (4.1).

Figure (4.1) FMS Main frame

Main frame consists of:

1. Setting option: this option will be used by system manager to initialize

the system's information.

90

Chapter four: FMS Interfaces and Evaluation

2. User Name textbox: to allow user to enter his/her own username for

login.

3. Password textbox: to allow user to enter his/her password.

4. Login button: an already registered user can login after entering his/her

username and password.

5. Register button: a user who aims to register with new username can use

the Register button.

A. Initialization of FMS Client subsystem
When there is need to initialize the system, system manager should

click on Setting option. System manager decides if there is need to

initialize the FMS.

To set the system information, system manager is asked to enter a

specific password to perform setting process. FMS will check the entered

password, if it is valid then FMS Setting frame will appear to him/her as

shown in Figure (4.2). Otherwise, FMS will display an error message to

him/her to try again.

Figure (4.2) FMS Setting frame

91

Chapter four: FMS Interfaces and Evaluation

FMS Setting frame consists of the following buttons:

1. Detect Administrator button: this button is used to detect the

Administrator PC using broadcasting technique.

2. Define User resources button: this button is used to define the user's

shared resources on the current host. Shared resources types depend on the

applied environment. FMS is applied in a university environment.

Therefore, the type of shared resources may be files and folders of students,

employees, books, thesis, etc. Figure (4.3) illustrates the frame that will be

displayed when Define User Resources button is clicked on.

This frame defines three types of shared resources, which are:

administration, students, and books. Each type has its textbox to enter a

new file/folder name with this type, button to add the new file/folder, and

ComboBox that show which resource(s) had been defined.

3. Configure ACL button: when a click is made on this button, Configure

ACL frame will appear, as shown in Figure (4.4).

Figure (4.3) User Shared Resources Configuration frame

Figure (4.4) Configure ACL frame

92

Chapter four: FMS Interfaces and Evaluation

The above frame contains two buttons, Send Shared List to

Administrator, and Receive ACL from Administrator. When Send Shared

List to Administrator button is clicked on, the shared resources of the

current host are gathered into a list and send to Administrator subsystem to

define their permissions.

While clicking on Receive ACL from Administrator button, FMS

will receive list of pre-defined permissions of the sent list of shared

resources.

4. Set Time Threshold Value button: this button is used to set time

threshold value for counting a number of user actions repetitions, which

affects the Alarm level as discussed in Chapter 3 at section 3.3.1.1. When

this button is clicked on, FMS will ask the system manager to enter number

of minutes to set the time threshold. By default, FMS Client subsystem set t

value to 15 minutes. Value of t range is chosen to be from one minute to 2

hours due to logical reasons, if entered value less than of 1 minute or

greater than 120 minutes, an error message will appear to the manager.

5. Receive Users' info list button: this button is used to receive a list of

information for all registered users from Administrator subsystem. The

information are: PC's IP, PC name, PC account name, username, user type,

and PC description. This list will be utilized to define each user to the

system by his/her information.

B. Registering into FMS
The following steps show how a new user can use FMS Client

subsystem for registration:

Step1: click on a Register button in Main frame, then the Register frame

will appear as shown in Figure (4.5). Then, the user must enter the

following information:

93

Chapter four: FMS Interfaces and Evaluation

1. User Name: represent client's user nickname that will be used for login,

its length should be between 4 and 12.

2. Password: password to be used with the above username for login, its

length should be between 6 and 14.

3. Confirm Password: retyping the above password to confirm it.

4. Person Type: select type of user from FMS list of user types. The types

of users in FMS are: Visitor, Student, and Employee. Visitor is the user

who isn't defined in the Registration database. Student is the user who is

defined in Registration database by his/her name, study stage, and level.

When user is Student type, Full name textbox will be enabled and user

should enter student name as stored in Registration database. Employee

is the user who is defined in Registration database by his/her name,

level, and identification card number. When user is Employee type, Full

name textbox should be filling, and College ID textbox will be enabled

to enter his/her identification card number.

Step2: after entering the above information, the user should click on

Submit button. If the entered information are accepted by Administrator

Figure (4.5) FMS Register frame

94

Chapter four: FMS Interfaces and Evaluation

subsystem as new user, then success message will appear. Otherwise, an

error message corresponding to the information error will appear and

another try is made.

C. Login into FMS
When FMS Main frame is appeared to the user as shown in Figure

(4.1); the user should enter his/her username and password, and then click

on Login button to let him/her view the shared resources. FMS Client

subsystem will check the validity of these information, by sending them to

FMS Administrator subsystem. If username and password are valid, he/she

will be permitted to enter the system. Otherwise, an error message will

appear to him/her to make another try.

D. Controlling FMS
When user login succeeded, the user gain control the system and the

Main Control frame will appear see Figure (4.6).

Main Control frame contains three menus: Tools, Monitoring, and Help.

1. Tools menu: this menu contains the following options as shown in

Figure (4.7).

Figure (4.6) Main Control frame

95

Chapter four: FMS Interfaces and Evaluation

(a) Reconfigure option: when system manager clicks on Reconfigure

option; FMS Client subsystem will ask him/her to enter a password. If the

password is accepted, then the FMS Setting frame, as shown in Figure

(4.2), will appear to him/her. The system manager will re-enter the new

setting of the system information to be restarted again. If he/she chose to

restart later, then Monitoring menu will be disabled to prevent FMS from

using the invalid system information, as shown in Figure (4.8).

(b) StartUp Program option: this option is used to add/remove FMS Client

subsystem to/from Windows OS start up program list, as shown in Figure

(4.9).

Figure (4.8) Main Control frame with disabled Monitoring menu

Figure (4.7) Tools menu of Main Control frame

96

Chapter four: FMS Interfaces and Evaluation

(c) Logout option: this option is used to logout the user from the system and

the Main frame is appeared again. When clicking on Logout option, FMS

will ask user to re-enter his/her password. If the entered password incorrect

corresponding to login username, an error message will appear.

(d) Hide option: this option is used to hide the Main Control frame from the

screen, and put it as small icon in the Start bar beside Windows clock, as

shown in Figure (4.10). If user clicks on the above icon, the Main Control

frame will maximized and again appears on the screen. The target of this

job is to make the monitoring process in the background, and without

confusing the PC's user.

(e) Exit option: this option is used to end FMS execution. A click on Exit

option will make FMS ask user to confirm end of program. Then FMS will

ask user to enter his/her password as Logout from the system. If user enters

his/her password, FMS will prompt user to wait until save all setting.

2. Monitoring menu: this menu is used to control the monitoring of current

FMS Client subsystem on current host against suspicious actions. This

menu has two options, Start and Stop options, as shown in Figure

(4.11).

Figure (4.9) Tools menu after add FMS to start up menu

Figure (4.10) FMS Client Subsystem icon

97

Chapter four: FMS Interfaces and Evaluation

When Start option is clicked on, FMS will try to connect itself to the

current LAN in order to monitor it. User can stop the monitoring by

clicking on Stop option, as shown in Figure (4.12). If FMS cannot connect

to LAN, an error message will appear to the user to retry again.

3. Help menu: this menu has one option, which is About, as shown in

Figure (4.13). Clicking on About option will display a message that

demonstrate the current state of FMS, as shown in Figure (4.14).

Figure (4.11) Monitoring menu of Main Control frame

Figure (4.12) How to stop monitoring

Figure (4.13) Help menu of Main Control frame

98

Chapter four: FMS Interfaces and Evaluation

4.1.2 FMS Administrator Subsystem Interfaces
FMS Administrator subsystem interface is designed to perform the

following functions: preparing the FMS pre information, monitoring the

entire network by FMS Client subsystems, respectively.

When FMS_Administrator.exe is executed, Administrator Access

frame will appear as shown in Figure (4.15).

This frame consists of the following:

1. Username textbox: to allow Administrator to enter its own username

for login.

2. Password textbox: to allow Administrator to enter the password

corresponding to above username.

3. Login button: when Administrator enters its own username and

password; Administrator should click on Login button to access the

Main Control frame of FMS Administrator subsystem.

Figure (4.15) Administrator Access frame

99

Chapter four: FMS Interfaces and Evaluation

When Administrator enters username and password, and click on

Login button, FMS Administrator subsystem will check if the entered

username and password are both valid or not. If they are valid then the

Main Control frame will appear as shown in Figure (4.16). Otherwise, an

error message will appear for three times, then it terminates the execution.

A. Configuration FMS Administrator subsystem

The following steps show how to configure the FMS Administrator

subsystem:

Step1: When the frame shown in Figure (4.16) is appeared, Administrator

click on Configuration button then Configuration frame shown in Figure

(4.17) will appear.

Step2: Receive a list of shared resources from each client that must be

protected on the network by clicking on Start button.

Figure (4.16) Administrator Main Control frame

Figure (4.17) Administrator Configuration frame

100

Chapter four: FMS Interfaces and Evaluation

Step3: Create the ACL (Access Control List) for each received shared

resources list by clicking on Set Permission button. After, the click on Set

Permission button, the frame shown in Figure (4.18) will appear. This

frame contains list of the received shared resources lists. Each list named as

[client computer name_"shared.bin"] corresponds to the client that sent its

shared resources list as a file.

Administrator then can select one of the lists and then click on

Set/Update button to set permissions or update if the permissions were set

before. When Administrator clicks on Set/Update button, the frame shown

in Figure (4.19) will appear.

Figure (4.18) Clients' shared resources lists frame

Figure (4.19) Administrator set permissions frame

101

Chapter four: FMS Interfaces and Evaluation

In the Administrator set permission frame, Administrator can set

permissions for a specified shared resources list as explained in the

following iterative steps:

1. Select shared resource from Shared resources list by selecting an item

from Shared List.

2. Select user from Client Username ComboBox.

3. Choose one or more of the Checkboxes that named Open, Modify,

Delete, and Copy with respect to the types of permissions. The type of

permission depends on the shared resource and user's information that

appears on frame with User information label.

4. Click on Set button to add the permission of the selected shared resource

to ACL. If the permission is already exists in ACL, then an error

message will appear to avoid duplicate in ACL.

5. When ACL creation or updating is completed, Administrator should

click on Save to File button to save the ACL into file to be send to the

client who sent the shared list.

Step4: Send files to the FMS Client subsystems. These files represent the

pre information of FMS Client subsystems. These files are ACL file and list

of users' information (that gathered during users' registration and stored in

"users_info_list.bin" file).

When Send Users Info/ACL Lists button, on the frame shown in

Figure (4.17), is clicked on; the frame shown in Figure (4.20) will appear.

This frame contains on Files list, Send File button, and Set Users Info File

to Send it button. Initially, File list contains list of ACL files, then

Administrator can select ACL and click on Send File button to send it to

client who its PC name appear in Receiver PC Name label. When

Administrator aims to send the of users information list to Client

subsystem, Administrator should click on a button named Set Users Info

102

Chapter four: FMS Interfaces and Evaluation

File to Send it, and then click on Send File button to send it to same

receiver (Client subsystem).

Step5: Configure users registrations database by clicking on Configure

Users RegDB button on frame shown in Figure (4.17). When click on this

button, frame Configure RegDB shown in Figure (4.21) will appear.

To configure employees' information, click on Set Employees button,

then Employees Configuration frame, as shown in Figure (4.22), will

appear. This frame consists of the following:

a. Employee Full name textbox: to allow Administrator to enter employee

name.

b. Employee ID textbox: to allow Administrator to enter employee

identification card number.

Figure (4.20) Send Files to Client Subsystem frame

Figure (4.21) Configuration RegDB frame

103

Chapter four: FMS Interfaces and Evaluation

c. Employee Level option: to define the level of the employee that is used

to define the level of his/her permissions.

d. Save To Employee List button: when clicking on this button, the entered

employee name, employee ID, and employee level will be saved into

employees information file.

To configure students' information, click on Set Students button, then

Students Configuration frame will appear. This frame consists of the

following:

a. Student Full name textbox: allow Administrator to enter student name.

b. Student stage ComboBox: select the stage of student that could be either

M.Sc. or B.Sc.

c. Level Option: this option is depend on the student stage. If student stage

is B.Sc., then he/she has three levels represented by classes, first class,

second class, and third class as shown in Figure (4.23). While if student

stage is M.Sc., then he/she has two levels; which are courses year and

project year as shown in Figure (4.24).

d. Save To Student List button: when this button is clicked on, the entered

student name, student stage, and student level will be saved into students

information file.

Figure (4.22) Employees Configuration frame

104

Chapter four: FMS Interfaces and Evaluation

B. Monitoring the Events
On the Main Control frame shown in Figure (4.16), when Monitoring

button is clicked on, then the Monitoring frame is appeared as shown in

Figure (4.25). This frame has four functions, they are:

1. Select the monitoring process mode either to be online or offline mode.

When Enable Monitoring button is clicked on, each alarm message

received from FMS Client subsystem will be displayed in the Online

Messages list. Whereas, when clicking on Disable Monitoring button is

done, each alarm message received will be stored temporary into offline

messages file.

2. View offline messages that received in offline monitoring mode, by

click on View Offline Messages button, Offline Messages frame will

appear, as shown in Figure (4.26).

Figure (4.23) Students Configuration frame with B.S.c. student

Figure (4.24) Students Configuration frame with M.S.c. student

105

Chapter four: FMS Interfaces and Evaluation

106

Chapter four: FMS Interfaces and Evaluation

107

Chapter four: FMS Interfaces and Evaluation

3. View the users' profiles corresponding to users registrations processes

and FMS Clients alarm messages. Users' profiles is divided into two parts,

users information profiles and users activities.

When click on View Users Profiles button on Monitoring frame, Users

Profiles frame will appear, as shown in Figure (4.27). This frame has two

buttons, Registration Profiles and Activities Profiles.

Figure (4.27) Users Profiles frame

When click on Registration Profiles button, the Users Information

Profiles frame, shown in Figure (4.28), will appear. This frame consists of:

a. Client Username ComboBox: to allow Administrator to select Client's

username.

b. User Information list: to display short information about selected user.

Figure (4.28) Users Registration Profiles frame

108

Chapter four: FMS Interfaces and Evaluation

When click on Activities Profiles button, Users Activities frame, as

shown in Figure (4.29), will appear. This frame contains a list of user's

activities in details, and user threat level that computed according to each

alarm message with high threat level.

Figure (4.29) Users Activities frame

C. Response to Monitoring
To response to the monitoring, a click on Response to User button is

made on the Monitoring frame, then Response frame will appear, as shown

in Figure (4.30).

The Administrator response is a warning message, which is send to the

suspicious user. Response frame consists of the following:

109

Chapter four: FMS Interfaces and Evaluation

1. User Name ComboBox: to allow Administrator to select one of the

suspicious users to warns it.

2. User Information list: to display short information about selected user.

3. Message textbox: to allow Administrator to enter suitable warning

message to be send to the suspicious user.

4. Clear button: to clear the Message textbox.

5. Send button: when administrator click on Send button, FMS

Administrator subsystem will send the written message (in the Message

textbox) to the selected user (which is assigned by the User Name

ComboBox).

Sent message will be received by FMS Client subsystem to warn the

user for its suspicious action(s).

When Administrator aim to terminate the run of FMS Administrator

subsystem, FMS will ask Administrator to enter his/her password, to verify

Administrator identity. If the password is valid then FMS execution is

terminated. Otherwise, an error message appears.

Figure (4.30) Administrator Response frame

110

Chapter four: FMS Interfaces and Evaluation

4.2 FMS Evaluation
The evaluation of FMS has three prospectives; Accuracy, Time

Consuming, and Memory Consuming. The accuracy evaluation of such

intrusion detection system depends on two factors; false positive and false

negative measures. While the time consumption of FMS is computed

according to the execution time of system initialization stage and detection

stage. The initialization time is spent for once to construct ACL by Client

subsystem, while detection time is spent to search ACL each time by Client

subsystem to find the permission of an accessed object. Memory

consumption is the size of memory, which is used by FMS to construct the

ACL into binary tree.

4.2.1 Accuracy
The accuracy of FMS will be assessed using the measures: the false

positive and false negative values. Both measures depend on: (1) number of

detected attacks, (2) number of alerts that generated by Client subsystem.

To measure the accuracy of FMS, a simulation was conducted by applying

different types of file attacks on the network resources and the number of

false positive and false negative alarms were computed.

In addition to false positive and false negative, during the tests, a score

is given to each detected threat.

The types of the applied file attacks are those associated with the file

access types: Open, Modify (i.e. write, rename or create objects), Delete,

and Copy. These file access types lead to nine types of file application

services: open file, write to file, rename file, rename folder, create file,

create folder, delete file, delete folder, and copy file.

The choice of test case was depended on the following criteria:

(1) Number of occurrences of each event.

111

Chapter four: FMS Interfaces and Evaluation

(2) Number of executed action for specific subject.

(3) Variety of user authentication (i.e. allowed or denied).

(4) Type of object classes.

(5) Time of event occurrence.

In the test cases, the authorized users will be referred as Auth, and the

unauthorized users will be referred as Unauth.

Test Case One:

Each of the four types of actions have been applied for ten times, by

various cases of user authentication, user class, and object class, to compute

the false positive and false negative values.

Table (4.1) shows the false positive values for test case one, and Table

(4.2) shows the false negative values for the same case.

Table 4.1 False Positive values of the Test Case one

System Class Application Class User Class User
Class

Action
Type Auth Unauth Auth Unauth Auth Unauth

Open 1 0 2 0 1 0
Modify 0 0 0 0 1 0
Delete 1 0 0 0 0 0

Student

Copy 0 0 0 0 2 0
Open 0 0 1 0 0 0

Modify 1 0 2 0 1 0
Delete 1 0 0 0 0 0

Employee

Copy 3 0 0 0 2 0
Open 2 0 0 0 2 0

Modify 1 0 0 0 0 0
Delete 1 0 0 0 0 0

Visitor

Copy 0 0 0 0 1 0

112

Chapter four: FMS Interfaces and Evaluation

From Table (4.1) several points were noticed, which are:

1. The cases of attacks that are sent by unauthorized users didn't present

any false positive values because false positive depends on the number

of authorized accesses which are described as attacks.

2. When the class of the object is System class and the type of action are

either Modify or Delete then some false positive hits have been

registered because detection rule decision is made according to the

number of the occurrences of those actions by the same user.

3. Other cases of false positives alarms are obtained when Open and Copy

actions are performed for all resources classes. Also, false positive

alarms are obtained when Modify and Delete actions are performed for

User and Application classes. Those cases are registered because the

complete path of the accessed object isn't received by detection engine

correctly due to the network traffic.

Table (4.2) False Negative values of the Test Case one

System Class Application Class User Class User
Class

Action
Type Auth Unauth Auth Unauth Auth Unauth

Open 0 0 0 1 0 0
Modify 0 1 0 0 0 0
Delete 0 0 0 0 0 0

Student

Copy 0 0 0 0 0 2
Open 0 0 0 0 0 0

Modify 0 1 0 0 0 0
Delete 0 0 0 0 0 0

Employee

Copy 0 2 0 2 0 1
Open 0 0 0 1 0 0

Modify 0 0 0 0 0 0
Delete 0 0 0 0 0 0

Visitor

Copy 0 2 0 0 0 1

113

Chapter four: FMS Interfaces and Evaluation

From Table (4.2) several points have been noticed, they are:

1. The cases of attacks which are sent by authorized users haven't caused

any false negative alarm, because false negative depends on the number

of unauthorized accesses (attacks) which are undetected.

2. There are few attacks cases that FMS may fail to detect them. These

cases may occur due to one of the following reasons:

a. The Client subsystem didn't generate events for these actions,

b. The Administrator subsystem didn't receive the alarm messages

under heavy traffic, or

c. The rules decided that these actions are authorized with a particular

permission because the rules follow a target path similar to the path

of other target in ACL.

All of the above-mentioned reasons due to network traffic that may

not pass the occurred event or the object path isn't determined correctly.

As result, the accuracy of FMS is measured in percent as follow:

1. The number of executed actions in Table (4.1) are 360 actions, they

imply 26 cases of false positive. Therefore, the accuracy of FMS in

the term of false positive is %92.7.

2. The number of executed actions in Table (4.2) are 360 actions, they

imply 14 cases of false negative. Therefore, the accuracy of FMS in

the term of false negative is %96.1.

114

Chapter four: FMS Interfaces and Evaluation

Test Case Two:

The four types of actions have been applied, ten times for each one,

different cases of user authentication, user class, and object class, at each

test case the alarm level value was determined.

Table (4.3) shows the alarm level values for Student class. Table (4.4)

shows the alarm level values for Employee class. And Table (4.5) shows

the alarm level values for Visitor class. Each arrow symbol (i.e. →)

represents the increase of the alarm level for its primitive value. The bold

numbers represent the false positive cases.

Table 4.3 Alarm level values for Student user class

System Class Application Class User Class
Auth Unauth Auth Unauth Auth Unauth

Open 3 3→6 0 2→5 0 1→2
Modify 0→5 9→9 0 8→9 7 7→9
Delete 0→5 9→9 8 8→9 0 7→9
Copy 0 3→6 0 2→5 0 1→2

Table 4.4 Alarm level values for Employee user class

System Class Application Class User Class
Auth Unauth Auth Unauth Auth Unauth

Open 0 3→6 0 2→5 0 1→2
Modify 0→5 9→9 8 8→9 8 7→9
Delete 0→5 9→9 0 8→9 0 7→9
Copy 0 3→6 0 2→5 0 1→2

115

Chapter four: FMS Interfaces and Evaluation

Table 4.5 Alarm level values for Visitor user class

System Class Application Class User Class
Auth Unauth Auth Unauth Auth Unauth

Open 3 3→6 0 3→6 0 2→4
Modify 0→5 9→9 0 8→9 0 7→9
Delete 0→5 9→9 0 8→9 7 7→9
Copy 0 3→6 0 3→6 0 2→4

The discussion of results of test case two can be summarized as follows:

1. The attack cases that sent by authorized user, except Modify and Delete

on system resources, don't present threat according to rules.

Nevertheless, some cases have been presented as alarms and these cases

are false positive cases. The generated alarm for the false positive case

is equal to the primitive value because the error in detection didn't

occurred again in the next occurrence and the rule decided these actions

as authorized actions.

2. According to rules the cases of Modify and Delete actions on system

resources class, which are sent by all types of authorized users, were

presented by alarms when these actions occurred more than one times

only.

3. Alarm level value, which is generated, begin with the primitive value

according to Table (3.2) and then increased according to Algorithm

(3.19).

4. According to Table (3.2), the primitive values of the alarm level for

Student user class are similar to alarm level values for Employee user

class in cases of unauthorized users only. Therefore, one can notice this

similarity in Tables (4.3) and (4.4).

116

Chapter four: FMS Interfaces and Evaluation

4.2.2 Time and Memory Consumption
The efficiency of the monitoring systems is evaluated primarily by the

Accuracy, but the Accuracy is often depends on the consumed time to

execute some stages in the systems.

In FMS, there is a time required to construct the ACL during the

initialization stage, and additional time is required to search the ACL for

permission of an accessed object during the detection stage.

The above consumed time depends on the number of shared files and

folders which are indexed into the ACL (i.e. number of nodes in the ACL).

In addition to the consumed time, the used memory to construct the

ACL is an important efficiency factor it depends on the number of shared

files and folders.

Table (4.6) presents the performance of the system in terms of time

and memory consumption for certain cases of the numbers of shared files

and folders. Memory consumption is the size of used memory to load the

ACL as a link list into the computer RAM.

Both, the consumed time and memory depend on some of the H/W

specifications of the computer that runs FMS. FMS was installed in

computer which has the following specification according to CPU and

RAM:

1. CPU – 1.7 GHz.

2. RAM – 512 MB.

Table (4.6) shows the Time and Memory consumption for different

cases of numbers of shared resources.

117

Chapter four: FMS Interfaces and Evaluation

Table 4.6 Time and Memory consumption

Size of shared
resources

(Files/Folders)

Time to
construct

ACL

Time to
search
ACL

Size of
used
RAM

Measured in GB

Number of
shared resources

(Files/Folders)
Measured in second Measured

in MB
 ≈ 4.21 8,579 16 0.009 4.936
 ≈ 7.69 13,317 32 0.011 7.352
 ≈ 11.62 19,855 42 0.015 13.328
 ≈ 48.10 21,900 42 0.021 16.188
 ≈ 10.72 41,756 94 0.081 31.348
 ≈ 39.09 62,254 118 0.200 59.104
 ≈ 32.01 78,481 155 0.406 82.413
 ≈ 89.77 140,735 300 0.912 112.932

The discussion of results can be summarized as follows:

1. The numbers of shared resources depends on the contents of the shared

resources of students, employees and visitors, which turn depend on

applied environment. For example, the number 41756 represents files

and folders all have size around 10 Gigabytes. As for the largest case

(i.e. 140735 files and folders), it represents the greatest number of the

test cases, the files and folders size is about 90 Gigabytes. The size of

shared resources is ineffective on the size of ACL; because ACL deals

with object's name only.

2. The consumed time for constructing the ACL in some cases may be too

long (e.g. 300 seconds ≈ 5 minutes), but this time will be spend for

once, only during initialization stage, and hence it is reasonable time for

a system tries to index shared resources size about 90 Gigabytes or

more.

118

Chapter four: FMS Interfaces and Evaluation

3. The consumed time to search ACL is short time when the number of

objects is not relatively big. And this is the advantage of using the

Binary Tree structure to index the shared resources.

4. The size of used memory in some cases may be considered big, but this

is, today, not a problem with available computer's memory size is more

than 512 MB.

1

Chapter One: Intrusion Detection

1.1 Introduction
In the last decade, networks have grown in both size and importance.

In particular TCP/IP networks, and most notably the world-wide Internet,

have become the main means to exchange data and carry out transactions.

They have also become the main means to attack hosts.

The growing importance of the Internet and of network security issues

has shifted security concerns from the operating system domain to the

network itself. Security efforts are experiencing a similar shift. Local,

centralized approaches are evolving into distributed and networked

approaches, in an effort to cope with the interconnected heterogeneous

platforms and to provide scalable solutions.

Intrusion detection (ID) is an approach to security that is also evolving

towards networked environments. Intrusion detection began as a technique

for detecting masqueraders and misfeasors in standalone systems, but in the

last few years the focus of intrusion detection has moved towards network

[Vig97].

Intrusion detection is the process of monitoring the events occurring in

a computer system or network and analyzing them for signs of intrusions,

defined as attempts to compromise the confidentiality, integrity,

availability, or to bypass the security mechanisms of a computer or

network. Intrusions are caused by attackers accessing the systems from the

network, authorized users of the systems who attempt to gain additional

privileges for which they are not authorized, and authorized users who

misuse the privileges given them. Intrusion Detection System (IDS) is a

software or hardware product that automates this monitoring and analysis

process [Bac00].

Intrusion detection system allows organizations to protect their

systems from the threats that come with increasing network connectivity

2

Chapter One: Intrusion Detection

and reliance on information systems. Given the level and nature of modern

network security threats, the question for security professionals should not

be whether to use intrusion detection, but which intrusion detection features

and capabilities to use. There are several compelling reasons to acquire and

use IDSs [Bac00]:

1. To detect attacks and other security violations those are not prevented

by other security measures.

2. To act as quality control for security design and administration,

especially of large and complex enterprises.

3. To provide useful information about intrusions that do take place by

documents the existing threat to an organization, allowing improved

diagnosis, recovery, and correction of causative factors.

1.2 Taxonomy of Intrusion Detection Systems
Intrusion Detection Systems can be classified into three categories

with respect to: 1) Where data is collected; 2) Where and how data is

processed; and 3) The way that analyze the collected data (analyze

strategy) [Spa00].

In the following sections, these categories will be explained.

1.2.1 Data Collection Mechanisms

Intrusion Detection Systems can be divided into two main types

according to way data is collected: Host-Based Intrusion Detection System

and Network-Based Intrusion Detection System [Spa00].

A. Host-Based Intrusion Detection Systems
Host-based IDSs (HIDSs) operate on information collected from

within an individual computer system. This vantage point allows host-

based IDSs to analyze activities with great reliability and precision,

3

Chapter One: Intrusion Detection

determining exactly which processes and users are involved in a particular

attack on the operating system. Furthermore, unlike network-based IDSs,

host-based IDSs can “see” the outcome of an attempted attack, as they can

directly access and monitor the data files and system processes usually

targeted by attacks.

Host-based IDSs normally utilize information sources of two types,

operating system audit trails, and system logs. Operating system audit trails

are usually generated at the innermost (kernel) level of the operating

system, and are therefore more detailed and better protected than system

logs. However, system logs are much less obtuse and much smaller than

audit trails, and are furthermore far easier to comprehend. Some host-based

IDSs are designed to support a centralized IDS management and reporting

infrastructure that can allow a single management console to track many

hosts. Others generate messages in formats that are compatible with

network management systems [Bac00].

Host-based intrusion detection systems have many advantages,

including [Axe98]:

1. Host-based IDSs, with their ability to monitor events local to a host, can

detect attacks that cannot be seen by a network-based IDS.

2. Host-based IDSs can often operate in an environment in which network

traffic is encrypted, when the host-based information sources are

generated before data is encrypted and/or after the data is decrypted at

the destination host

3. Host-based IDSs are unaffected by switched networks.

4. When Host-based IDSs operate on OS audit trails, they can help to

detect Trojan Horse or other attacks that involve software integrity

breaches. These appear as inconsistencies in process execution.

4

Chapter One: Intrusion Detection

While the disadvantages of host-based intrusion detection systems are

[Axe98]:

1. Host-based IDSs are harder to manage, as information must be

configured and managed for every host monitored.

2. Since at least the information sources (and sometimes part of the

analysis engines) for host-based IDSs reside on the host targeted by

attacks, the IDS may be attacked and disabled as part of the attack

(denial-of-service attacks).

3. Host-based IDSs are not well suited for detecting network scans or other

such surveillance that targets an entire network, because the IDS only

sees those network packets received by its host.

4. When host-based IDSs use operating system audit trails as an

information source, the amount of information can be immense,

requiring additional local storage on the system.

5. Host-based IDSs use the computing resources of the hosts they are

monitoring, therefore inflicting a performance cost on the monitored

systems.

B. Network-Based Intrusion Detection Systems (NNIDS)
NIDS deals with the traffic that is passed over the network between

hosts. A NIDS "sniffs" packets from off the network and compares the

traffic to signature of known attacks or normal behaviour depends on

analyses method. NIDS designed to be able to look at the information that

is in the packets and keep their focus on what traffic is traveling over the

wire on a subnet.

Network-based IDSs often consist of a set of single-purpose sensors

placed at various points in a network. These units monitor network traffic,

5

Chapter One: Intrusion Detection

performing local analysis of that traffic and reporting attacks to a central

management console [Isa04].

Advantages of network-based IDSs are [Lyd04]:

1. A few well-placed network-based IDSs can monitor a large network.

2. The deployment of network-based IDSs has little impact upon an

existing network. Network-based IDSs are usually passive devices that

listen on a network wire without interfering with the normal operation

of a network. Thus, it is usually easy to retrofit a network to include

network-based IDSs with minimal effort.

3. Network-based IDSs can be made very secure against attack and even

made invisible to many attackers.

The disadvantages of network-based IDSs are [Lyd04]:

1. Network-based IDSs may have difficulty processing all packets in a

large or busy network and, therefore, may fail to recognize an attack

launched during periods of high traffic.

2. Many of the advantages of network-based IDSs don’t apply to more

modern switch-based networks. Switches subdivide networks into many

small segments (usually one fast Ethernet wire per host) and provide

dedicated links between hosts serviced by the same switch. Most

switches do not provide universal monitoring ports and this limits the

monitoring range of a network-based IDS sensor to a single host. Even

when switches provide such monitoring ports, often the single port

cannot mirror all traffic traversing the switch.

3. Network-based IDSs cannot analyze encrypted information. This

problem is increasing as more organizations (and attackers) use Virtual

Private Networks (VPNs).

4. Most network-based IDSs cannot tell whether or not an attack was

successful; they can only discern that an attack was initiated. This

6

Chapter One: Intrusion Detection

means that after a network-based IDS detects an attack, administrators

must manually investigate each attacked host to determine whether it

was indeed penetrated.

5. Some network-based IDSs have problems dealing with network-based

attacks that involve fragmenting packets. These malformed packets

cause the IDSs to become unstable and crash.

C. Hybrid Intrusion Detection System
Hybrid Intrusion Detection is the fusion of both HIDS and NIDS so

that they both work together by combine the ability of NIDS to detect an
attack and then correlate that with the HIDS that will tell if the security has
been breached. Hybrid intrusion detection systems combine the goods (and
some the bads) of both HIDS and NIDS [Roe02].

There are some disadvantages though in using hybrid IDS:
1. This is an infant technology and some commercial products could be

expensive.

2. They can only monitor one host just like the HIDS.

D. Network-Node Intrusion Detection Systems
Network-Node Intrusion Detection System performs a task similar to

traditional NIDS by monitoring network packets for signs of misuse.

However, NNIDS another approach to NIDS by singling out the data that is

coming into a single host and analyzing it. NNID software is installed on

each computer to be protected. This software does not watch all traffic sent

through the network; rather, it only monitors packets sent to and from the

particular computer on which it reside. This eliminates the problems that

network intrusion detection traditionally has had by collecting and

analyzing the packets at their final destination. This allows the system to

analyze the traffic at its destination but it take the focus away from the

7

Chapter One: Intrusion Detection

traffic that is going to over the subnet allowing the detector to see

specifically where the attack was going [Isa04].

This system resolves the three major problems mentioned previously

in NIDS, which are [Smi02]:

1. Since the NNID software resides on each computer, it has access to

unencrypted network traffic and thus is not blinded by VPNs and other

forms of network encryption.

2. NNIDS eliminates throughput concerns because it only monitors traffic

sent to and from one computer.

3. Since the NNID software is specifically installed on those computers

designated to be protected, switched networks and other variations of

network topologies no longer provide barriers through which the

intrusion detection software cannot see.

1.2.2 Data Processing
IDSs can be classified according to where and how data is processed

into Distributed-Based Intrusion Detection System and Centralized-Based

Intrusion Detection System.

A. Distributed-Based Intrusion Detection System
The Distributed-Based Intrusion Detection System (DIDS) is where

data is collected and analyzed in multiple hosts [Spa00]. Gathering and

analyzing data from many distributed systems in order to obtain a more

complete picture of the attackers' activities. Monitoring and detection is

done using an agent-based approach, where response decisions are made at

central point of analysis [Bur03].

8

Chapter One: Intrusion Detection

B. Centralized-Based Intrusion Detection System
This system may collect data in a distributed fashion, but processed

centrally. A centralized IDS analyses its data at a fixed number of

locations. These locations are independent of the number of hosts begin

monitored. Where distributed IDS analyses its data at a number of locations

proportional to the number of hosts that are begin monitored.

In this classification, only the locations and the number of the data

analysis computers are considered; the data collection components are not

considered [Zie04].

1.2.3 Analyze Strategy

With respect to the method of analysis the collected data by IDS, IDSs

can be classified into two types: Misuse-Intrusion Detection System and

Anomaly-Intrusion Detection System [Bac00].

A. Misuse-Intrusion Detection System
Misuse detection essentially checks for "activity that's bad" with

comparison to abstracted descriptions of undesired activity. This approach

attempts to draft rules describing known undesired usage (based on past

penetrations or activity which is theorized would exploit known

weaknesses) rather than describing historical "normal" usage. Rules may be

written to recognize a single auditable event that in and of itself represents

a threat to system security, or a sequence of events that represent a

prolonged penetration scenario. The effectiveness of provided misuse

detection rules is dependent upon how knowledgeable the developers are

about vulnerabilities. Misuse detection may be implemented by developing

expert system rules, model based reasoning, state-transition analysis

systems, or neural nets [Ory06].

9

Chapter One: Intrusion Detection

Advantages of Misuse-Intrusion Detection System are [Ham06]:

1. Misuse detectors are very effective at detecting attacks without

generating an overwhelming number of false alarms.

2. Misuse detectors can quickly and reliably diagnose the use of a specific

attack tool or technique. This can help security managers prioritize

corrective measures.

3. Misuse detectors can allow system managers, regardless of their level of

security expertise, to track security problems on their systems, initiating

incident handling procedures.

Disadvantages of Misuse-Intrusion Detection System are [Ham06]:

1. Misuse detectors can only detect those attacks they know about.

Therefore, they must be constantly updated with signatures of new

attacks.

2. Keeping the knowledge base of such intrusion detection system up to

date is not easy. Even after gathering information about the attacks, it is

time consuming to analyze them and update the knowledge base of the

IDS.

B. Anomaly-Intrusion Detection System
Anomaly detectors identify abnormal unusual behavior (anomalies) on

a host or network. They function on the assumption that attacks are

different from “normal” (legitimate) activity and can therefore be detected

by systems that identify these differences. Anomaly detectors construct

profiles representing normal behavior of users, hosts, or network

connections. These profiles are constructed from historical data collected

over a period of normal operation. The detectors then collect event data and

use a variety of measures to determine when monitored activity deviates

from the norm [Axe98].

10

Chapter One: Intrusion Detection

Advantages of Anomaly-Intrusion Detection System are [Bac00]:

1. IDSs based on anomaly detection detect unusual behavior and thus have

the ability to detect symptoms of attacks without specific knowledge of

details.

2. Anomaly detectors can produce information that can in turn be used to

define signatures for misuse detectors.

Disadvantages of Anomaly-Intrusion Detection System are [Bac00]:

1. Anomaly detection approaches usually produce a large number of false

alarms due to the unpredictable behaviors of users and networks.

2. Anomaly detection approaches often require extensive “training sets” of

system event records in order to characterize normal behavior patterns.

As a result, Intrusion detection systems (IDS) are defined by both the

method used to detect attacks and the placement of the IDS on the network.

An IDS may perform either misuse detection or anomaly detection and may

be deployed as either a network-based system or a host-based system.

These results in four general groups: misuse-host, misuse-network,

anomaly-host and anomaly-network. Some IDS combine qualities from

these categories (usually implementing both misuse and anomaly detection)

and are known as hybrid systems in their methods for analyzing collected

data [Bur03].

1.3 Literature Survey
Various efforts in the field of Intrusion Detection were introduced.

The literature survey presented in this section will be mainly concerned

with design and implementation of intrusion detection systems. Some of

the related published literatures are summarized bellow:

11

Chapter One: Intrusion Detection

1. Snapp, Brentano, and et al [Sna91]: They designed and implemented a

prototype Distributed Intrusion Detection System (DIDS) that combines

distributed monitoring and data reduction (through individual host and

LAN monitors) with centralized data analysis (through the DIDS director)

to monitor a heterogeneous network of computers. A main problem

considered in their paper was the Network-user Identification problem,

which is concerned with tracking a user moving across the network,

possibly with a new user-id on each computer. Initial system prototypes

had provided quite favorable results on this problem and the detection of

attacks on a network. This paper provides an overview of the motivation

behind DIDS, the system architecture, and capabilities, and a discussion of

the early prototype.

2. Chen, Cheung, and et al [Che96]: This paper presented GrIDS (Graph-

Based IDS) which is attempted to fuse together the information from

various nodes into a graph of the entire activity of the system. This allows

large-scale attacks to be easily noticed. Because of the similarity of this

approach to network management, it can had an easy to understand user

interface and would be straightforward to integrate with network

visualization and monitoring tools. Unfortunately, the framework is not

powerful enough to build an IDS with a high level of coverage. Nor is it

useful for most automated monitoring tasks, with a few exceptions: the

detection of worms, the detection of network scans, and the detection of

telnet chains. Extensive scalability was not been explicitly addressed.

3. Vigna and Kemmerer [Vig97]: This paper presented a new approach that

applies the State Transition Analysis Technique (STAT) to network

intrusion detection. Network-based intrusions are modeled using state

transition diagrams in which state and transition are characterized in a

12

Chapter One: Intrusion Detection

network environment. The target network environment itself is represented

using a model based on hyper-graphs. By using a formal model of both the

network to be protected and the attacks to be detected, the approach is able

to determine which network events have to be monitored and where they

can be monitored, providing automatic support for configuration and

placement of intrusion detection components.

4. Porras and Neumann [Por97]: This paper presented EMERALD (Event

Monitoring Enabling Responses to Anomalous Live Disturbances) which

was a new generation of distributed IDS in the development of IDES

(Intrusion Detection Expert System) and NIDES (Next-generation Intrusion

Detection Expert System). EMERALD was arguably the most complete

advanced intrusion detection system. Much of the professional team has

extensive experience in intrusion detection. It uses both signatures in an

expert system and statistics to detect attacks. Considerable portions of

EMERALD have a well-defined API (Application Programming Interface)

with multiple modules. Indeed, the EMERALD software has been

significantly developed and even deployed in a few instances. EMERALD

has been used as the core IDS for later research resulting in IDS software

by SRI. For example, the alert correlation research performed by SRI was

added to the EMERALD software for testing.

5. Barrus and Rowe [Bar98]: They proposed a distributed architecture with

autonomous agents to monitor security-related activity within a network.

Each agent operates cooperatively yet independently of the others,

providing for efficiency, real-time response, and distribution of resources.

This architecture provides significant advantages in scalability, flexibility,

extensibility, fault tolerance, and resistance to compromise. They also

proposed a scheme of escalating levels of alertness, and a way to notify

13

Chapter One: Intrusion Detection

other agents on other computers in a network of attacks so they can take

preemptive or reactive measures. They designed a neural network to

measure and determine alert threshold values. A communication protocol is

proposed to relay these alerts throughout the network. They illustrated their

design with a detailed scenario.

6. Yang, Ning, and et al [Yan00]: This paper presented CARDS

(Distributed System for Detecting Coordinated Attacks) was the

implementation of ideas in "Abstraction based Intrusion Detection in

Distributed Environments". The main idea in this signature based approach

is to automatically break the signature down into smaller components that

can be distributed and recombined to match the signature. The approach is

interesting, but the technical treatment is difficult to follow. It may be a

promising approach, when and if many issues get resolved. It is not yet

sufficiently developed to facilitate an analysis of network performance or

other distributed performance issues. It is not clear how it performs for

denial of service attacks or other overload attacks. The implementation as

described does not appear to be complete; indeed a paragraph in the back of

the CARDS paper implies that it is only underway, but not finished. The

interconnections between nodes are glossed over.

7. Roesch [Roe02]: Roesch showed that there are a few basic concepts one

should understand about Snort. Snort is an open source network intrusion

prevention and detection system utilizing a rule-driven language, which

combines the benefits of signature, protocol and anomaly based inspection

methods. There are three main modes in which Snort can be configured:

sniffer, packet logger, and network intrusion detection system. Sniffer

mode simply reads the packets of the network and displays them for user in

a continuous stream on the console. Packet logger mode logs the packets to

14

Chapter One: Intrusion Detection

the disk. Network intrusion detection mode is the most complex and

configurable configuration, allowing Snort to analyze network traffic for

matches against a user defined rule set and performs several actions based

upon what it sees.

8. Smith [Smi02]: Smith illustrated that the learning abilities of neural

networks can serve to detect the malicious activity on network

environment. These systems are tested against denial of service attacks,

distributed denial of service attacks, portscans, and even some doorknobs

attacks. In addition, showed how these systems detect long-term attacks,

which occur when attackers space out their efforts to evade detection. In

this work, the network based intrusion detection explained using a

Perception-based, feed-forward neural network system and a system based

on classifying, self-organizing maps. Both of these systems are tested on

data provided from the DARPA intrusion detection evaluation program as

well as live attacks in an isolated computer network.

9. Maselli, Deri, and Suin [Mas03]: Goal of this paper is to show that in

every network there are some global variables that can be profitably used

for detecting network anomalies, regardless of the type of network users

and equipment. As most of the relations among these variables are fixed,

this paper shows that it is possible to define generic network rules aimed to

automatically detect selected network anomalies. Finally, it covers the

design and implementation of an open-source application used to

effectively validate this work on a large campus network.

10. Li [Wei04]: This paper described a technique of applying Genetic

Algorithm (GA) to Network Intrusion Detection Systems (NIDSs). A brief

overview of the intrusion detection system, genetic algorithm, and related

detection techniques are presented. Parameters and evolution process for

15

Chapter One: Intrusion Detection

GA are discussed in detail. Unlike other implementations of the same

problem, this implementation considers both temporal and spatial

information of network connections in encoding the network connection

information into rules in IDS. This is helpful for identification of complex

anomalous behaviors. This work focused on the TCP/IP network protocols.

1.4 Aim of Thesis
This research aims to monitor security-related activity within a

network. It should monitor a variety of hosts and operating system

platforms to detect an intruder attack before an intruder can do more

damages or accesses to a sensitive information. The proposed research is

applied by explicitly looking for the filing system attack as a result of

previous analysis (predefined suspicious behaviour) or due to some

triggering event of suspicious behavior. Also, it proposes a scheme of

escalating levels of alertness so that the system administrator can take

preemptive action against the attack, such as warning the suspicious users

for their misuse actions.

1.5 Thesis Layout
Beside chapter one, the remaining part of this thesis consists of other

four chapters:

v Chapter Two (Network Monitoring): Discuss the concepts of

network categories, network protocols. Also, it discusses network

monitoring for intrusion detection systems and their component and

efficiency.

v Chapter Three (FMS Design and Architecture): Presents the

structure of the established system such that it explains the main

16

Chapter One: Intrusion Detection

stages of the system, with some explanation to the implementation

steps of each stage.

v Chapter Four (FMS Interfaces and Evaluation): Presents the main

interfaces of the established system and discusses the results of the

conducted tests to detect network intrusions. The weakness and

success cases of the proposed system are presented.

v Chapter Five (Conclusions and Suggestions for Future Work):

Presents a list of derived conclusions and suggestions for future

work.

42

 Chapter Three: System Design And Architecture

3.1 Introduction

This chapter is dedicated to investigate the design considerations and

implementation requirements, which are considered throughout the design

stage of the proposed intrusion detection system. The scheme of the

proposed system and its implementation will be presented in details.

In this chapter, the words "User", "Administrator", and "system

manager" are used as indication to persons who have different

responsibilities. Client Subsystem and Administrator Subsystem indicate

the software programs that run by User and Administrator, respectively.

The word "Client" refers to the host on the network.

3.2 Design Considerations and Requirements
The aim of the thesis is to design and implement an intrusion detection

system that protect all shared resources (i.e. shared files and folders) on

each host in the network from attacks.

The name of the proposed system is chosen to be FMS (the acronym

for File Monitoring System). FMS should monitor all the packets coming

to each host in the network and detect the intrusion cases by reporting the

Administrator with alarm messages.

To achieve the above aim, different features of intrusion detection

systems were studied. The study had guide to point the following

considerations during designing stage of FMS:

1. FMS will be designed as a Distributed-based Intrusion Detection

System, i.e. the data will be collected and analyzed on each host in the

network individually. Since, the shared resources of each host will be

protected independently.

2. The analysis strategy of FMS was chosen to be Anomaly, where the

profiles that represent the normal behaviour of each user per each host

will be initialized first by Administrator, then stored on each host lately.

43

 Chapter Three: System Design And Architecture

The reason for choosing the Administrator to initialize and update each

profile of each user is to offer more confidentially and integrity level to

the system.

3. The intrusion that will be detected by FMS is concerned with checking

illegal user's actions that are associated with shared files and folders,

such as open file, delete folder, etc.

To implement the above designing considerations, the following

hardware and software requirements will be in need:

1. Ethernet LAN, the most widely deployed protocol in network layer in

the TCP/IP protocol suite is Ethernet. So, Ethernet LAN type will be

chosen instead of other types (Token Ring, Arcnet). Ethernet network

connects the clients using either HUB or Switch HUB.

2. Dedicated network category, the most suitable one for the thesis is Peer-

to-Peer category. Because each host can share its resources to other

hosts as Server, and can access the shared resources on other hosts as

Client.

3. Operating Systems to run Ethernet network such as Windows XP or

Server 2003.

4. Programming language that support network operations like connecting,

receiving incoming network packets and sending messages from host to

another using socket API functions. Visual Basic (VB) is chosen to

implement this thesis.

3.3 FMS Architecture
FMS consists of two main subsystems; Administrator Subsystem and

Client Subsystem as illustrated in Figure (3.1).

44

 Chapter Three: System Design And Architecture

Figure (3.1) FMS Architecture

Functional Flow Data and Functional Flow Data Flow

List of users

Users' info
DB

Registration
DB

Permission Unit

RegDB Unit

Response Module

User Profile Alarm Message

Monitoring Module

Users Profiles
Unit.

Administrator
authority status

List of shared
resources

 List of users
and ACL

Warning
 Messages

Alarm
Message

List of
users and

ACL

Client
Subsystem Administrator Subsystem

Check Administrator Authority
Module

Attacker
PC

Alarm level and
Notify Message

List of Events

Alarm Module

Sniffing Module

Detection Module

Authentication
Module

Login Unit

Registration
Unit

User authority
status

Initialization and
Reconfiguration

Module

Request
information

Response
information

Initialization
Module

Users'
Information Unit

Alarm Messages
Unit

45

 Chapter Three: System Design And Architecture

Each subsystem as shown in Figure (3.1) implies different stages, and

each stage is performed by specific units. Some stages execute units in both

subsystems independently, while other stages, imply overlapping between

executing jobs of units of both subsystems when some shared results are

needed. Client subsystem modules are:

1. Initialization and Reconfiguration Module: it initializes Client

subsystem information. This module performs the following functions:

a. Identify the important user shared resources which must be protected

with a particular level of protection.

b. Determine the Administrator's PC.

c. Assemble the local shared resources into a list L.

d. Send the list L to the Administrator subsystem to set/update

permissions.

e. Get list of shared/permissions (or ACL) from the Administrator

subsystem.

f. Get list of users from the Administrator subsystem.

g. Determine Time threshold value (t) that will be used in Detection

Module.

2. Authentication Module: it identifies user to the system. This module

consists of two units, as follow:

a. Registration Unit: it registers the allowed user into the system

depending on user's information.

b. Login Unit: it log-in any user into the system depends on user's

registration

3. Sniffing Module: it sniffs incoming packets to the current host, and

then generates list of occurring events.

4. Detection Module: it detects malicious events by applying specific

rules during traffic analysis, and then generates an alarm code which

46

 Chapter Three: System Design And Architecture

represents the level of threat that occurred, and a notify message that

describes the occurred threat. These information will be send to the

Alarm Module.

5. Alarm Module: it generates alarm messages which represent users

suspicious activities and then sending these messages to the

Administrator. The alarm message depends on alarm code and notify

message that generated in the Detection Module.

On the other hand, Administrator subsystem consists of the following

modules:

1. Check Administrator Authority Module: it checks the authenticity

of Administrator identity.

2. Initialization Module: it initializes pre-system information. This

module consists of three units, as follows:

a. Permission Unit: it Sets/Updates the permissions (i.e. Access

Control List - ACL) for all shared resources of each user, and then

sends them to the Client subsystem.

b. Users Information Unit: it creates Database contains list of users

with some required information to the system after registration

process. These information are PC name, PC local IP, PC account

name, user name, and user type.

c. Registration Database (RegDB) Unit: it creates Database contains

all identification information of all users identification whom

allowed to use the system.

3. Monitoring Module This module consists of two units, as follow:

a. Alarm Messages Unit: it selects the case of monitoring process

either to be online or offline modes.

47

 Chapter Three: System Design And Architecture

b. Users Profiles Unit: it creates profile for any misbehavior user to be

utilized in the future detection.

4. Response Module: it generates a proper response (Warning messages)

in the case of detecting an intrusion.

3.3.1 Client Subsystem
 The client subsystem is the main part of FMS that is installed on the

remote computers to be protected from the intruders. The users of these

computers must be legal ones to access the shared resources on the

network. The client subsystem will disable any access to the shared

resources unless user's identity is authorized to the system. To check the

user's authentication and start monitoring process, the client subsystem will

run at windows startup.

 The client subsystem is divided into five modules, as it will be

explained bellow.

A. Initialization Module
The main goal of this module is to initialize all necessary Client

subsystem information. The following six functions of this module will be

executed once at the first run of the system.

1. Identify the user shared resources: The system manager identifies the

important user shared resources which must be protected with a particular

level of protection. The shared resources are classified into classes

according to their applicability (e.g. administration, books, thesis, etc).

Classes are stored in classes file. Algorithm (3.1) explains how to add new

class to the classes file, whereas, Algorithm (3.2) explains how to add new

shared resource to an existing class.

48

 Chapter Three: System Design And Architecture

 Algorithm (3.1) Add Shared Resources Class
 Goal: Add a new class to the classes' types file.

 Input:

object_classes_filein: file contains a List of all classes types with their

shared resources.

Class_Type: Class of the shared resources.

 Output:

object_classes_fileout: updated file contains a List of all classes types with

 their shared resources.

 Step1: System manager enters the new Class_Type.

 Step2: If (Class_Type does NOT exist in object_classes_filein) Then

1. Call Algorithm (3.2) with Class_Type for each addition of shared

resource into Class_Type.

2. Add Class_Type to object_classes_fileout

 3. Return (object_classes_fileout)

 Else Return (object_classes_filein)

 Step3: End.

 Algorithm (3.2) Update Shared Resources Class

 Goal: Add a new shared resource to existing class (i.e. update existing class).

 Input:

Class_Typein: Class of the shared resources.

Shared_Name: String represents a shared resource.

 Output:

Class_Typeout: Class of the shared resources after updating it.

 Step1: System manager select shared resource that named a Shared_Name

 If (Shared_Name does NOT exist in Class_Typeout) Then

 1. Increase the number of defined shared resources in Class_Typein

Class_Typeout. Index = Class_Typein. Index + 1

 2. Class_Typeout. Shared (Index) = Shared_Name

 Else Class_Typeout = Class_Typein

 Step2: Return (Class_Typeout).

49

 Chapter Three: System Design And Architecture

2. Determining PC Name of the Administrator: the Name of the

Administrator's PC is used for sending and receiving specific data to/from

Administrator subsystem during the interaction processes between the two

subsystems. By using the Broadcasting technique, the system will gain the

Administrator PC name by sending Client request message and wait for the

Administrator to answer the Client request with Administrator PC name.

3. Assembling the shared resources into a list, and send it to the

Administrator: This unit assembles the local shared resources from the

local Microsoft Management Console (MMC). Microsoft Management

Console is an application executed at a host for an administrative job.

Microsoft Management Console uses the extension msc which stands for

Microsoft Common Console Document (MCCD). Therefore, files which

use the .msc extension open with the application Microsoft Management

Console. One of the console tools is Computer Management Console (its

console file compmgmt.msc). This Console lists many consoles such as

Event Viewer console, Shared Folders console, Local Users and Groups,

etc.

Shared Folders console (its console file fsmgmt.msc) lists the local

shared resources, current users' sessions, and open files through the

network on the current computer. Shared resources on the current computer

represented as a list of records; each record is formatted, as depicted in

Figure (3.2).

After collecting the list of shared resources of each client, these

resources are sent to the Administrator to set their permission. Setting

Shared Folder
Name

Shared Path #Client
Connections

Type Comment

Figure (3.2) Structure of shared resources list as stored in Shared
Folder Console

50

 Chapter Three: System Design And Architecture

permissions depends on the type of shared resource and the class type of

the user. This list will be used later by the Client system to build Access

control list. Algorithm (3.3) presents assemble and sends shared resources

units.

 Algorithm (3.3) Assemble the Shared Resources into List
 Goal: Assemble the local shared resources into a list from the local Microsoft

 Management Console (MMC) and send it to the Administrator.

 Const:

MMC = Microsoft Management Console.

 Input:

AdminPcName: Administrator PC Name.

 Output: List_Sh: List of shared resources.

 Step1: Access the computer shared resources list using fsmgmt.msc console file

 with MMC.

 Step2: Set L = MMC.SharedFolders.SharedResourcesList

 Step3: For each Item In L do

List_Sh. Index = List_Sh. Index + 1

List_Sh. Items (Index) = L.Item

 End For Item

 Step4: Send List_Sh list to the Administrator's computer that named AdminPcName.

 Step5: End.

4. Construct the Access Control List: This unit receives a list called ACL

of shared resources and their permissions for each user, from Administrator

subsystem in order to organize these items in a suitable structure. This

structure will be accessed later on by Detection Module to determine the

access validity of each user. The selection of a suitable structure wasn't

easy since it must meet the following criteria:

• It should be flexible in size to contain all shared resources but at the

same time it should reserve a less memory capacity. Since there is

51

 Chapter Three: System Design And Architecture

Shared
File/Folder

Permission Brother for shared
file/folder

Son of shared folder
only

dependability between the permissions of the parent resource and their

children, the redundancy must be removed.

• The access time to the object (i.e. shared resource) should be as

minimum as possible to satisfy fast execution.

• Any modification to the structure (i.e. changing an exist shared resource,

inserting new one, etc) should be as fast as possible.

According to the above criteria, the structure is selected to be Binary

Tree that satisfies acceptable execution time. The tuple of the binary tree is

shown in Figure (3.3). This tree is ordered according the path of the shared

resource where the left child represents Brother file or folder of the shared

resource and the right child represents the Son of it. Algorithm (3.4) shows

how to construct the ACL.

Figure (3.3) Tuple's format for ACL

 Algorithm (3.4) Construct ACL
 Goal: Construct the ACL received from the administrator into Binary Tree tructure.

 Input: ACLin: List of local shared resources with their permissions received from

Administrator.

 Output: ACLout: Binary tree representing the local shared resources with their

permissions.

 Step1: Index = 1

 Step2: While Not EOF (ACLin) Do

 (1)Get the Indexed object from ACLin and store it in tree ACLout.

 ACLout. Shared = ACLin. Item (Index). Shared_Name

 (2)Copy permissions of all registered users of the indexed object to ACLout.

For i = 1 To No of Registered User do

 ACLout.Permission.User (i) = ACLin.Item(Index).Permission(i)

 End For i Continue

52

 Chapter Three: System Design And Architecture

 (3)Construct list of indexed object's brothers and organize them into ACLout.

 For each Folder In SubFolders(Parent (ACLin.Shared)) do

 Create New Node of ACL.

Set NewNode = New ACL

Set NewNode.Shared = Folder

Set ACLout.Brother = NewNode

Set ACLout = NewNode

 Index = Index + 1

 GOTO (1)

End For Folder

 For each File In SubFiles(Parent (ACLout.Shared)) do

 Create New Node of ACL.

Set NewNode = New ACL

Set NewNode.Shared = File

Set ACLout.Brother = NewNode

Set NewNode.Son = Null

Set ACLout = NewNode

 GOTO (1)

End For File

 (4)Construct list of indexed object's children and organize them into ACLout

 a. Set SubFolders =SubFolders(ACLin.Item (Index))

 b. Set SubFiles =SubFiles(ACLin.Item (Index))

 c. For each SubFolder In SubFolders do

 Set ACLout.Son = SubFolder

 Set ACLout. Shared = SubFolder

 GOTO (1)

 End For SubFolder

 d. For each SubFile In SubFiles do

 Set ACLout.Son = SubFile

 Set ACLout.Shared = SubFile

 GOTO (1)

 End For SubFile

 End Of While

 Step3: End.

53

 Chapter Three: System Design And Architecture

5. Get the list of registered users from the Administrator subsystem: The

list of users will be used in Detection module. This list contains full

information of each user such PC name, PC's IP, PC user account name,

username, and user Type. This information is aggregated during

registrations processes of each user.

6. Determine Time threshold value (t): This value represents the maximum

accepted period of time to compute the repetitions of each action. System

manager will define the threshold value then it will be used in Detection

module later on to compute the threat.

After executing the previous units, the job of Initialization module is

finished and user Authentication module is started. Initialization module is

executed at the first run of the system to initialize the system information,

but it may re-run again to re-configure the system if there is a need.

Reconfiguration the system may be required, for example, if there is new

user was registered into the system, or updating the current ACL.

B. User Authentication Module
The job of this module is to ensure that users of FMS are authorized to

access the shared resources. To reach this goal, two steps are needed: first,

registration of the new allowed users to the system (the word "allowed"

means all users can use FMS and already have saved information in its

database). Second, login the predefined users by checking their identify

information. After that, the network-shared resources will be visible to the

users. The above two steps are performed by the following units:

1. Registration Unit
In this unit, if the user is not registered before, he/she must be

registered as a new member in the system. Any allowed user can register

into the system by performing the following steps:

54

 Chapter Three: System Design And Architecture

a. Entering username: username has maximum length 15 characters and

should not contain any special characters.

b. Entering password: password has maximum length 8 characters. The

user is requested to enter a password twice to confirm its password.

c. Selecting user type: user type identifies the level of that user and his/her

permissions. User type could be Student, Employee, or any user type

according to the system environment.

d. User may be requested to enter additional information depending on the

user type. These information is to identifying the user according to its

type. For example, when an employee (i.e. user type is employee) aims

to register into the system, he/she asked to enter his/her employee name

and identification card number.

After acquiring the registered information by Client subsystem, these

information will be verified by Administrator subsystem by checking the

registration database (RegDB). Administrator subsystem will inform the

user about registration status (i.e., either accepted or rejected). If it is

accepted, the registration information will be added to the RegDB. If it is

not, then another trial will be made. Algorithm (3.5) shows how the

Registration unit works.

2. Login Unit
After finishing registration, Login unit is called when the user needs to

use the system. To login, the user must present its own correct username

and password. Client subsystem will verify the entered username and

password by matching them with the registered username and password. If

the user enters invalid information, the system will prompt him/her to re-

enter correct information, for three times as maximum. When User is

logged into the system; the shared resources will be visible to him/her and

55

 Chapter Three: System Design And Architecture

Client subsystem will start execute its monitoring functions. Algorithm

(3.6) shows how the Login unit works.

 Algorithm (3.5) Register Process
Goal: Register new member into the Client subsystem.

Input:

Username: the name of Client's user.

Pass: the password of Client's user.

 Confirm_Pass: the password of Client's user.

 User_Type: type of Client's user.

 Additional_Info: Additional information related to User_Type.

Output: Flag: Boolean represents the state of registration (True or False).

Step1: Input Username, Pass, Confirm_Pass, and User_Type.

Step2: If Pass = Confirm_Pass Then

If User_Type = "Student" Then

Input full name and store it into Additional_Info

Else If User_Type = "Employee" Then

 Input full name and ID number and store it into Additional_Info

 Else

Flag = False

Step3: Connect to Administrator subsystem using socket API functions.

Step4: Send (Username,Pass, User_Type, and Additional_Info) to the Administrator

 subsystem to check the validity of information.

 Call Algorithm (3.21) by Administrator subsystem and put the result in Flag.

Step5: Return (Flag).

56

 Chapter Three: System Design And Architecture

 Algorithm (3.6) Login Process
 Goal: Login system's member into the Client subsystem.

 Input:

 Username: the name of Client's user.

 Pass: the password of Client's user.

 Output: Flag: Boolean represents the state of login process (True or False).

 Step1: Call Algorithm (3.7) to make shared resources invisible.

 Step2: Input Username and Pass.

 Step3: Connect to Administrator subsystem using socket API functions.

 Step4: Send (Username and Pass) to the Administrator subsystem to check the

 validity of information.

 Call Algorithm (3.22) by Administrator subsystem and put result in Flag.

 Step5: If (Flag is True) Then

 Call Algorithm (3.8) to make shared resources visible.

 Step6: Return (Flag).

 Algorithm (3.7) Make Share Invisible
 Goal: Make the shared resources invisible to the Client's user.

 Const: Path_S = indicates the path of the folder where network's shared resources

 are stored as list of folders.

 Input: None.

 Output: None.

 Step1: For each subfolder In Path_S do

Set attribute of the subfolder = system + hidden

 End For subfolder

 Step2: End.

57

 Chapter Three: System Design And Architecture

 Algorithm (3.8) Make Share Visible
 Goal: Make the shared resources visible to the Client's user.

 Const: Path_S = indicates the path of the folder where network's shared resources is

 stored as list of folders.

 Input: None.

 Output None.

 Step1: For each subfolder In Path_S do

Set attribute of the subfolder = normal

 End For subfolder

 Step2: End.

C. Sniffing Module
 Sniffer function is listening to the network segment or sniffs packets

on a specific network segment as explained in chapter two. Network

segment determines what the Sniffer is looking for. The Sniffer module in

this thesis sniffs packets on a three-layer segment (Application, Transport,

and Internet layers) of TCP/IP model.

Sniffer module will receive all incoming window messages, and then

filters them to reduce the amount of processing by ignoring unimportant

packets to its purpose. Filtering process depends on the type of incoming

messages; meaningful messages are from the type of Window Socket

Message (WinSockMsg), which are specified to network packets. In

addition, WinSockMsg will be filtered to keep only the messages that are

related to file system operations.

After finishing filtering process, Sniffer module will generate a

sequence of events that represent the executed operations by the sniffed

network segment.

Sniffer functions can be summarized into three parts: 1- Initialize the

socket function to prepare the system to connect over LAN and retrieve

58

 Chapter Three: System Design And Architecture

specific network segment, 2- Subclassing function to process the incoming

network packets in the defined message handling procedure, and 3-

Filtering function to generate events that represent file system application

services only. To do these three functions, Sniffer module consists of three

units, which are:

1- Initialize socket unit which initialize the Socket.

2- Subclass unit which subclassing the window that receives the socket

message. In other words, Hook the window to sniffs only the

Windows Socket Message (WinSockMsg).

3- Filter unit which filtering the WinSockMsg.

1. Initialize Socket Unit

The function of this unit is to initialize the network socket using some

API declarations and functions to prepare the system to connect over local

network and retrieve only 3-layer segment of the TCP/IP model. Algorithm

(3.9) shows how this unit works.

 Algorithm (3.9) Initialize Socket
Goal: Initialize the network socket using some API functions and prepare the socket

to retrieve the full TCP/IP packet without the network layer protocol

information (header and footer).

 Input: None.

 Output: None.

 Step1: Load windows socket API library using WSAStartUP API function to

 initialize the underlying windows socket DLL, this step must success before

 using API socket declarations and functions.

 Step2: Create the socket S using Socket API function

 AF_INET = 2 // TCP/IP Protocols.

 Sock_RAW = 3 // Access to internal network protocol type.

 IPPROTO_IP = 0 // determine which segment of S will be processed.

 S = Socket (AF_INET , Sock_RAW , IPPROTO_IP) Continue

59

 Chapter Three: System Design And Architecture

// S represents the endpoint for communication

 Step3: Set socket option using Setsockopt API function.

 SOL_SOCKET =0xFFFF // this value means option will be set

 SO_RCVTIMEO = 0x1006 // Set time-out value

 RCVTIMEO =0x1388 // option value = 5000 seconds

Call Setsockopt (S,SOL_SOCKET, SO_RCVTIMEO , RCVTIMEO,_)

 Step4: Bind the socket using Bind API function.

 // Binds defined IP and port number with S

 Current_Socket.IP = Local IP // PC's LAN IP

 Current_Socket.PortNumber =0x1B58 // port : 7000

Call Bind (S, Current_Socket , Len(Current_Socket))

 Step5: Specify mode of operation on the socket using WSAIoctl API function.

 SIO_RCVALL =0x98000001 / S can receiving all IPv4 and IPv6 packets.

 Call WSAIoctl (S, SIO_RCVALL, _, _, _, _, _, 0, 0)

Step6: Specify the type of the operation that will be done on the socket message using

 WSAAsyncSelect API function.

HWnd = CurrentWindow.HWnd // Handle of current window

WSM = 0x401 // 0x401 mean window socket message

Ops = 1 // READ incoming packet (i.e. RECV function will be used).

Call WSAAsyncSelect (S, HWnd, WSM , Ops)

 Step7: End.

2. Hook the window – Subclass Unit
 Unit function is a subclass the processing of window message or hooks

the window using some API functions.

 Hook is a point in the system message-handling mechanism where an

application can install a subroutine to monitor traffic in the system (e.g.

network traffic) and process particular types of messages (such window

socket message) before they reach the target window procedure.

 Subclass unit changes the processing of certain type of window

message, which is WinSockMsg, from the default Window procedure to

60

 Chapter Three: System Design And Architecture

new defined procedure called Filtering_Procedure. Filtering_Procedure is

the next unit of the Sniffer module. Algorithm (3.10) explains how to

subclass the window.

 Algorithm (3.10) Subclassing Window
 Goal: Subclass the window using some API functions and process particular types

 of Window messages in new procedure.

 Const: WinSockMsg: Window Socket Message type

 Input: WinMsg: Window Message.

 W, L: additional parameters that describe the window message.

 Current_Window: Window which receives the message.

 Output: Flag represents Success or Fail.

 Step1: Get address of the new window message procedure that handle the window

message using AddressOf API function:

Filter_Address = AddressOf (Filtering_Procedure)

 Step2: If WinMsg is WinSockMsg Then

1. Specify the operation of the SetWindowLong function:

 Opt = GWL_WNDPROC // mean that new address sets as window

2. Use SetWindowLong API function to causes the system to call the

 new window procedure instead of the previous one and the previous

 window procedure address will be stored in Add_Old:

 Addr_Old=SetWindowLong(Current_Window,Opt,Filter_Address)

Return (Success).

 Else

Cause the system to restore the processing of window message to the

default window procedure using CallWindowProc API function:

Call CallWindowProc (Addr_Old, Current_Window ,WinMsg , W, L)

Return (Fail).

 Step3: End.

61

 Chapter Three: System Design And Architecture

Figure (3.4) Buffer content

20 bytes <= 1424 32 bytes 4 bytes 20 bytes

IP
Header

Data
of application service

SMB
Header

NetBIOS
Header

TCP
Header

3. Filter Unit
 The previous units determine which type of Window messages will be

processed and where it will be processed. Filter unit, on the other hand,

presents how to process the WinSockMsg.

 In the new message procedure (Filtering_Procedure), system will

receive the window socket message (WinSockMsg) and store it into buffer

with length 1500 bytes as maximum packet size according to Maximum

Transmission Unit (MTU) of TCP/IP for the Ethernet. MTU is the

maximum size of a single data unit (e.g., IP datagram) of digital

communications depending on the properties of the network. The content of

buffer represents the packet that travels over network to the current host as

shown in Figure (3.4). This packet is constructed from 3-layers headers that

encapsulate the application data.

The intended application service at the data of application layer is one

of the file system application services such as open file, delete file, copy

file, etc. These applications deal with Server Message Block protocol

(SMB) of the application layer protocols. SMB protocol uses to request file

and print services from server systems over network. SMB is based on

NetBIOS session type as explained in chapter two.

 Filtering Unit is classified into two parts; first part is to filter the

WinSockMsg and aggregate the values of protocols headers into IP, TCP,

NetBIOS, and SMB records respectively. The second part is to generate

events that will be used later in Detection module. These events represent

62

 Chapter Three: System Design And Architecture

Source Destination File/Folder Path Action NoOfTry

the file system events which are occurred on the local host through the

network.

Each event is represented as a record of six fields as illustrated in

Figure (3.5), these fields are:

Figure (3.5) Event format

a. Source: this field contains full information about the subject of action.

These information are: FMS username, user type, source PC name, PC's

IP, PC user account name, and PC description.

b. Destination: this field contains full information about the accessed

shared file/folder, these information are: Destination PC name, PC's IP,

and PC description.

c. File/Folder: this field contains the accessed shared file/folder name.

d. Path: this field contains the path of the accessed shared file/folder.

e. Action: this field contains the action type which is one of the file system

application services (actions or operations). File system operations are:

open file, delete folder, delete file, rename folder, rename file, create

folder, create file, write to file, and copy file.

f. NoOfTry: this field represents list of occurrences of event. Each item in

the list is represented by date/time of event, as shown in Figure (3.6).

Figure (3.6) NoOfTry List format

Algorithm (3.11) represents the steps of filtering network messages

process, while Algorithm (3.12) represents the steps of generating events

process.

Index Date/Time of occurrence

63

 Chapter Three: System Design And Architecture

 Algorithm (3.11) Filtering Network Messages
 Goal: Filtering WinSockMsg and extracting the information of one traveled packet

 Input:

WinSockMsg: Window Socket Message represents the incoming packet from

the network to current Window

S: Current Socket.

 Output:

IPrec: IP Header Record of IP Header.

TCPrec: TCP Header Record of TCP Header.

NTBrec: NetBIOS Header Record of NetBIOS Session Header.

SMBrec: SMB Header Record of SMB Message Header.

State: Boolean flag that represents if the packet is filtered (state=True) or

discarded (state=False).

Step1: Sniff the incoming packet using RECV API function and store it into Buffer

with length 1500 Bytes.

RECV (S, Buffer, 1500, _)

 Step2: Copy the first 20-bytes of Buffer to the IP Headers Record.

IPrec = Buffer [0 . . 19]

 Step3: Check the protocol field of IP Header if it is TCP protocol.

 If Protocol Field of IP Header <> 6 Then

TCP protocol doesn't exit at Transport layer.

 State = False.

GOTO Step12

 Step4: Copy the next 20-bytes of Buffer to the TCP Headers Record.

TCPrec = Buffer [20 . . 39]

Step5: Check the port number field of TCP Header that determines which process

runs at Application layer.

If TCPrec.SourcePort <>139 And

 TCPrec.SourcePort <> 445 And

 TCPrec.DestinationPort <> 139 And

 TCPrec.DestinationPort <> 445

Then

SMB protocol doesn't exit at Application layer. Continue

64

 Chapter Three: System Design And Architecture

 State = False.

 GOTO Step12

Step6: Copy the next 4-bytes of Buffer to the NetBIOS Header Record because SMB

 depends on NetBIOS protocol.

NTBrec = Buffer [40 . . 43]

Step7: Check the type of NetBIOS session to achieve SMB deals with file system

 application services.

 If NTBrec.SessionType <> 0 Then // i.e. not session message

Traveled messages aren't client request or server response of file system

application services.

 State = False.

 GOTO Step12

 Step8: Copy the next 32-bytes of Buffer to the SMB Headers Record.

 SMBrec = Buffer [44 . . 75]

Step9: Check the first 4-bytes that represent the ID of SMB header which mean that

 SMB defined at Application layer.

 If (SMBrec.ID[1] = 0xFF) And (SMBrec.ID[2] = 'S') And

 (SMBrec.ID[3] = 'M') And (SMBrec.ID[4] = 'B') Then

SMB is defined at Application layer as client request or server response

to file system application services.

 Else

State = False.

 GOTO Step12

Step10: Check the type of SMB message (or traveled packet) if it is client request or

 server response.

 If (SMBrec.FLAG & 128) = 0 Then

 SMB message is client request

 Copy the remaining of Buffer to the SMB Data Portion.

 SMBrec.DataPortion = Buffer [76 . . 1499]

 Else

 State = False.

 GOTO Step12

 Step11: State = True

 Step12: End.

65

 Chapter Three: System Design And Architecture

From Algorithm (3.11), one can notice, the current detection engine

depends on client request message only. The client request packet contains

or passes the needed information (key information) about the request, while

server response message represents the state of client request.

 Algorithm (3.12) Generate Events
 Goal: generates list of events that represent the occurred actions.

 Input: IPrec: IP Header Record.

TCPrec: TCP Header Record.

SMBrec: SMB Header Record.

 Output: Events[]: List of events.

 Index: number of occurred events.

 Step1: Initialize the flag that indicates the state of determination of the file system

 application service. tmpEvent will be used as temporary event to aggregate

 the information before adding it to Event[] list.

ActionDetectedFlag = True
 Step2: Check if the Command field of SMB Header is delete directory.
 If (SMBrec.COMMAND = 1) Then //SMB_COM_DEL_DIR
 tmpEvent.Action = "_delete folder_"
 For i = 0 To SMBrec.Data.ByteCount do
 tmpEvent.File/Folder= tmpEvent.File/Folder+SMBrec.Data.DirectoryName[i]
 End For i
 GOTO Step9
 Step3: Check if the Command field of SMB Header is rename file or folder.

If (SMBrec.COMMAND = 7) Then //SMB_COM_Rename
 tmpEvent.Action = "_rename file/folder_"

 For i = 0 To SMBrec.Data.ByteCount do
 tmpEvent.File/Folder= tmpEvent.File/Folder+ SMBrec.Data.OldFileName[i]
 End For i
 GOTO Step9
 Step4: Check if the Command field of SMB Header is NT_CreateAndX.

If (SMBrec.COMMAND = 162) Then //SMB_COM_NT-CreateAndX
If (SMBrec.Data.CreateDisposi = 0x40) And
 (SMBrec.Data.CreateOptions = 0x02) And

 Continue

66

 Chapter Three: System Design And Architecture

 (SMBrec.Data.ShareAccess = 0x02) And
 (SMBrec.Data.Flags = 0x16) Then
 tmpEvent.Action = "_create file_"
 Call Algorithm(3.13) and put result into tmpEvent.File/Folder
Else If (SMBrec.Data.CreateDisposi = 0x200040) And

(SMBrec.Data.CreateOptions = 0x02) And
(SMBrec.Data.ShareAccess = 0x01) Then
tmpEvent.Action = "_delete file_"

 Call Algorithm(3.13) and put result into tmpEvent.File/Folder
Else If (SMBrec.Data.CreateDisposi = 0x000001) And

(SMBrec.Data.CreateOptions = 0x02) And
(SMBrec.Data.ShareAccess = 0x02) Then
tmpEvent.Action = "_create Folder_"

 Call Algorithm(3.13) and put result into tmpEvent.File/Folder
Else If (SMBrec.Data.CreateDisposi = 0x200044) And

(SMBrec.Data.CreateOptions = 0x02) And
(SMBrec.Data.ShareAccess = 0x01) Then
tmpEvent.Action = "_copy file_"

Call Algorithm(3.13) and put result into tmpEvent.File/Folder

ElseIf (SMBrec.Data.CreateDisposi = 0x000040) And

SMBrec.Data.CreateOptions = 0x02) And
(SMBrec.Data.ShareAccess = 0x03) And
(SMBrec.Data.AllocationSize = 0x80) And
(SMBrec.Data.DesiredAccess =0x2019F) Then
tmpEvent.Action = "_write to file_"
Call Algorithm(3.13) and put result into tmpEvent.File/Folder

Else
tmpEvent.Action = "_open file_"

 Call Algorithm(3.13) and put result into tmpEvent.File/Folder
GOTO Step9

 Step5: Check if the Command field of SMB Header is TreeConnectAndX.
If (SMBrec.COMMAND = 117) Then // SMB_COM_TreeConnectAndX
//This Command passes the current reached path.

Call Algorithm(3.14) and put result into tmpEvent.Path
GOTO Step9

 Step6: Check if the Command field of SMB Header is Transaction.
 Continue

67

 Chapter Three: System Design And Architecture

 If (SMBrec.COMMAND = 37) Then //SMB_COM_Transaction

Check the bytes of SMB Data portion to aggregate the needed info.

// When this command is occurred, many types of information may be passed

depending on bytes values of SMB Data portion. These information may be one

of the following at a time:

1.Source computer name that will be stored into tmpEvent.SourcePC

2.Destination computer name that will be stored into tmpEvent.DestinationPC

3.Source PC description that will be stored into tmpEvent.SourcePC_Desc

4.Destination PC description that will be stored in tmpEvent.DestinPC_Desc

5.Source PC account name that will be stored into tmpEvent.SourcePC_Acc //

GOTO Step9

 Step7: Check if the Command field of SMB Header is SessionSetupAndX.

If (SMBrec.COMMAND = 115) Then //SMB_COM_SessionSetupAndX

Check the bytes of SMB Data portion to aggregate the needed info.

// When this command is occurred, many types of information may be passed

depending on bytes values of SMB Data portion. These information may be one

of the following at a time:

1. Source PC account name that will be stored into tmpEvent.SourcePC_Acc.

2. Source computer OS version.

3. Source computer LAN type. //

GOTO Step9

 Step8: Ignore the incoming packet.

 ActionDetectedFlag = False

 GOTO Step13

 Step9: tmpEvent.SourcePC_IP = IPrec.SourceIP

 Step10: tmpEvent.DestinationPC_IP = IPrec.DestinationIP

 Step11: tmpEvent.Date&Time = Date&Time of the current computer

 Step12: If (ActionDetectedFlag = True) Then

Call Algorithm (3.15) to add tmpEvent to Event[].

Clear tmpEvent

 Step13: End

68

 Chapter Three: System Design And Architecture

 Algorithm (3.13) Get Name SMB_COM_162
 Goal: Get full name (or path) of the File/Folder that processed by the action that had

been detected in SMB_COM_NT_CreateAndX.

 Const: SMB_COM_NT_CreateAndX record

 Input: SMBrec: SMB Header Record.

 Output: File/Folder_Name: Represents File/Folder name of particular Action.

 Step1: Initialize the output string.

File/Folder_Name = ""

 Step2: Get full name of the File/Folder..

 For i=Len (SMB_COM_NT_CreateAndX)+1 To SMBrec.Data.ByteCount do

 File/Folder_Name = File/Folder_Name + SMBrec.Data [i]

 End For i

 Step3: End.

 Algorithm (3.14) Get Path SMB_COM_117
 Goal: Get path of the File/Folder that processed by the action that had been detected

 in SMB_COM_TreeConnectAndX.

 Const: SMB_COM_TreeConnectAndX record

 Input: SMBrec: SMB Header Record.

 Output: Path: Represents Path of File/Folder name of particular Action.

 Step1: Initialize the output string.

Path = ""

 Step2: Get path of the File/Folder.

For i=Len(SMB_COM_TreeConnectAndX)+1 To SMBrec.Data.ByteCount do

Path = Path + SMB.Data [i]

 End For i

 Step3: End.

69

 Chapter Three: System Design And Architecture

 Algorithm (3.15) Add Event to the List of Events
 Goal: Update the existing Event[] List by adding new event.

 Input: tmpEvent : Represents new event was occurred.

 Event[] : List of Events.

 Indexin : Number of Events.

 Output: Indexout : Number of Event after update if not Exist.

 Event[] : List of Events after updated.

 Step1: Call Algorithm(3.16) with Indexin to check if tmpEvent is exist in Event[],

 then, put results into Exist Flag and IndexE.

 Step2: If Exist = True Then //Update the NoOfTry field of the exist event.

 Number = Even[IndexE].NoOfTry.No

Even[IndexE].NoOfTry.No = Number + 1

Event[IndexE].NoOfTry.Times (Number+1) = tmpEvent.Date&Time

 Else // Increase the number of events then add the new event.

 Indexout = Indexin + 1

 Event[Indexout] = tmpEvent

 Step3: End.

 Algorithm (3.16) Check the List of Events
 Goal: Check if the new event was added to Event[] List before, or not.

 Input: tmpEvent : Represents new event was occurred.

 Event[] : List of Events.

 Index : Number of Events in Event[].

 Output: Exist : Boolean flag (True or False) to indicate if the event exist or not.

 IndexE : Index of Event that match tmpEvent.

 Step1: Initialize the output flag.

 Exist = False

 Step2: Sort the Event[] list according the subject name.

 For i = 1 To Index do

 For j = 1 To index – i do

 If (Event[j].Subject name > Event[j+1].Subject name) Then

temp = Event (j)

Event (j) = Event (j + 1)
 Continue

70

 Chapter Three: System Design And Architecture

Event (j + 1) = temp

 End For j

 End For i

Step3: Use Binary search technique to Search sorted list of events to find tmpEvent.

 (1) Low = 1

 High = Index

 (2) If (High < Low) Then // not found

 GOTO Step4

 Mid = (Low + High) / 2

 If (Event[Mid].Subject name > tmpEvent.Subject name) Then

 High = Mid - 1

 GOTO (2)

 Else If (Event[Mid].Subject name < tmpEvent.Subject name) Then

 Low = Mid + 1

 GOTO (2)

 Else // Found

 IndexE = Mid

 Exist = True

 Step4: End.

From Algorithm (3.12), one can notice that many commands may pass

the same information like PC account name, which are required for

generating an event. The problem is how to know which command is

passing the information, and this depends on the network traffic and the

time of the executed command. The solution is implemented in Algorithm

(3.12), which deals with all possible cases.

D. Detection Module
The main function of this module is to detect the malicious events and

reports the Alarm module with alarm level (which is also called threat

level) by applying particular rules on occurring events depending on

information that provided by Initialization and Sniffing modules.

71

 Chapter Three: System Design And Architecture

In addition to alarm level, this module supplies the Alarm module with

Notification Message that contains some information that guides the

Administrator to identify the threat.

This module is classified into two units; Aggregation unit and

Decision Making unit. The function of Aggregation unit is to collect the

information that is provided by Initialization and Sniffing modules plus

information provided by this unit. Decision Making unit is the place where

decisions are made to distinguish which event(s) cause the threat.

1. Aggregation Unit
This unit receives information from previous modules (Initialization

and Sniffing modules) and computes other to prepare them to be utilized by

Decision Making unit.

Initialization module provides ACL and list of FMS registered users.

ACL will be utilized to determine user's permission of specific object. List

of registered users will be utilized to identify class type of the user as

recorded during user registration process. The implemented user classes in

the FMS are Student, Employee, and Visitor according to university

environment.

Sniffing module provides the list of occurred events. Each event is

presented by subject, action, object, and number of occurrences data types.

The computed information by this unit depends on the list of occurred

events. This information is the class type of the object. The accessed

objects are classified into System, Application, and User classes depending

on object path, and object applicability.

System and Application classes are defined automatically by the

system while User class resources are defined by the system manager

during initialization stage as explained in section 3.3.1 - A.

72

 Chapter Three: System Design And Architecture

System and application classes have defined the shared files/folders

that related to Windows resources and application resources, respectively.

Examples of the system class path are "C:\WINDOWS" or

"C:\WINDOWS\SYSTEM32". Example of application class path is

"D:\Program Files\Microsoft Office".

Table (3.1) presents the summary of the above mentioned assembled

information.

Table (3.1) Aggregated information by Aggregation unit

The providing
module

Incoming
information

Computed
information Description

Initialization
module ACL Permission User access type for

specific shared file/folder.

Initialization
module List of users User class User type to identify the

user privilege.

Sniffing module List of Events Object class File/Folder type.

Sniffing module List of Events Action type One of the file system
application services.

Sniffing module List of Events NoOfTry value Number of event
occurrences.

Algorithm (3.17) presents the function of get permission from ACL.

73

 Chapter Three: System Design And Architecture

 Algorithm (3.17) Get Permission
 Goal: determine the access type of particular object (file or folder) depend on ACL.

 Input: UsersList: List of registered users.

 ACL: Access Control List.

 Event: represents an occurred event.

 Output: Perm: Indicator to user access type which is either 1 (allowed) or 0 (denied).

 Step1: ActionType is indicating to the type of event action.

If Event.Action is Open Then ActionType = 1

Else If Event.Action is Modify Then ActionType = 2

Else If Event.Action is Delete Then ActionType = 4

Else If Event.Action is Copy Then ActionType = 8

 Step2: Split Event.Path using Split function according to "\" character into array of

 folders' names called PathArr[] with length PathL , and then add the object

 name to the PathArr, then add object name to the array.

 PathL = Split (Event.Path , "\" , PathArr)

 PathArr[PathL] = Event.File/Folder

 PathArr[PathL] = Event.File/Folder

 Step3: Initialize the variables

Set TempL = ACL

i = 1

 Step4: While (i <= PathL AND TempL <> Null) Do

 If (TempL.ObjectName = PathArr[i])Then

 If i = PathL Then Goto Step5

 Set TempL = TempL.Son

 i = i +1

 Else Set TempL = TempL.Brother

 End Of While

 Step5: Get the index of the Event.Subject from UsersList.

 InX = UserList (Event.subject)

 Step6: Get the permission type of InX user for TempL node in the ACL.

Perm = (TempL.Permission(InX) AND ActionType)

 If Perm = ActionType Then Perm = 1

 Else Perm = 0
Step7: Return (Perm)

74

 Chapter Three: System Design And Architecture

2. Decision Making Unit
The main function of this unit is to compute an alarm level based on

saved primitive values, and generates a notification message that will be

sent to Alarm module, by applying specific rules depending on the

provided information from Aggregation unit. Rules are the core of the

Detection module. Rules are defined as conditional statements that decide if

specific event considered as threat (intrusion) or not.

The primitive values of the alarm level are range from 1 to 9 as

illustrated in Table (3.2) depending on three factors which are user class,

object class, and action type. These values are estimated according to the

problem environment needs. For example, any one shouldn't access system

class resources. Therefore, the alarm level for any threat may damage

system resources is set to 9 (i.e. maximum alarm level).

The primitive values will be increased depending on the number of

occurrences, which is represented by NoOfTry field, of the same event

within the period t.

Table (3.2) Alarm level values

 Student Employee Visitor

Open modify Delete Copy open modify Delete Copy open modify Delete Copy

System
3 9 9 3 3 9 9 3 3 9 9 3

Open modify Delete Copy open modify Delete Copy open modify Delete Copy

Application
2 8 8 2 2 8 8 2 3 8 8 3

Open modify Delete Copy open modify Delete Copy open modify Delete Copy

User
1 7 7 1 1 7 7 1 2 7 7 2

 User
 Class Object

 Class

75

 Chapter Three: System Design And Architecture

In addition to alarm level, detection rules supply notification message.

Notification message has information that guide the Administrator to

identify the threat. Notification message describes the occurred threat by

providing information related to the threat. These information are: user

class, action type, and object class. In some cases, additional message is

considered. This case is occurred when the same user performs different

types of attacks on the same object. Algorithm (3.18) presents the work of

the detection rules.

 Algorithm (3.18) Decision Making

 Goal:Decide if the Event(s) represent a threat or not, depends on the pre-information.

 Input:

Index: Index to the current event.

Event[]: List of occurred events.

 Permission: Represents access type of particular object (0 or 1).

ResourceClass: String represents file/folder class.

UserClass: String represents type of user depends on users information list.

UsersList: List of registered users.

AlarmLevels: 3-dimensional array of Alarm level that represents Table (3.2).

First index represents the ResourceClass, second index represents the

UserClass, and third index represent the action type.

UserResources: List of user resources, which are defined in initialization stage.

 Output:

 Alarm_Level : Threat level that focused on host.

 Notify_Message : description of the threat.

 Step1: Initialize output.

 Alarm_Level = 0

 Notify_Message = ""

 Step2: Get UserClass depending on UsersList and Event[index].Source username.

 Step3: Get ResourceClass depending on Event[index].Path,Event[index].File/Folder,

 and UserResources.

 Continue

76

 Chapter Three: System Design And Architecture

 Continue

 Step4: Get the permission of Event[index]

 Call Algorithm (3.17) and put result into Permission.

 Step5: If Permission = 1 Then GOTO Step10 // Authorized user

 Step6: Get Alarm_Level value from AlarmLevels array

 (1) Determines ResourceClass number (R_C).

 If (ResourceClass = "System") Then R_C =1

 Else If (ResourceClass = "Application") Then R_C =2

 Else R_C = 3

 (2) Determines UserClass number (U_C).

 If (UserClass = "Student") Then U_C =1

 Else If (UserClass = "Employee") Then U_C =2

 Else U_C = 3

 (3) Determines Action type according to Event[Index].Action field.

 If (Event[Index].Action = "_open file_") Then

Action =1 // open

 Else If (Event[Index].Action = "_rename directory_") OR

 (Event[Index].Action = "_rename file_") OR

 (Event[Index].Action = "_create directory_") OR

 (Event[Index].Action = "_create file_") OR

 (Event[Index].Action = "_write to file_") Then

Action = 2 // modify

 Else If (Event[Index].Action = "_delete directory_") OR

 (Event[Index].Action = "_delete file_") Then

Action = 3 // delete

 Else If (Event[Index].Action = "_copy file_") Then

Action = 4 // copy

 (4) Set alarm level value from its position in AlarmLevels.

Alarm_Level = AlarmLevels [R_C , U_C].Values[Action]

 Step7: Check Event[Index].NoOfTry field.

 If (Event[Index].NoOfTry > 1) Then

 Call Algorithm (3.19) and put result into Alarm_Level.

 Step8: Generate notification message depending on UserClass, ResourceClass, and

 Event[Index].Action field.

77

 Chapter Three: System Design And Architecture

 Notify_Message=UserClass+ ":" +Event[Index].Action+ ":" + ResourceClass

 Step9: Check if there is another action are executed on the same object to compute

 the additional message.

 (1) DiffAction = 0

 (2) For i = Index-1 DownTo 1 do

 If (Event[i].Subject = Event[Index].Subject)

And (Event[i].Destination = Event[Index].Destination)

And (Event[i].Path = Event[Index].Path)

And (Event[i].File/Folder = Event[Index].File/Folder)

Then

 DiffAction = DiffAction + 1

 End For i

 (3) Notify_Message = Notify_Message + "Different Action = " + DiffAction

 GOTO Step11

 Step10: If Event[Index].Action = "_open file_" OR

 Event[Index].Action = "_copy file_"

 Then GOTO Step11 // Discard Event[Index]

 Else If (ResourceClass = "User") OR (ResourceClass = "Application") Then

 GOTO Step11 // Discard Event[Index]

 Else If (ResourceClass = "System") Then

 If (Event[Index].NoOfTry > 1) Then

 Call Algorithm (3.19) and put result into Alarm_Level.

 Notify_Message = UserClass+ ":" + Event[Index].Action + ":"

 + "System Resources"

 Step11: End.

78

 Chapter Three: System Design And Architecture

 Continue

 Algorithm (3.19) Update Alarm Level Value
 Goal: update the value of Alarm level depends on NoOfTry field.

 Const:

t : represent the time threshold value for counting lowest difference to the

Event.Dates× between times of occurrences.

 Input:

 Index: Index to the current event.

 Event[] : List of occurred Event.

 Alarm_Level in : Threat level that focused on host.

 UserClass class of user

 ResourceClass: class of shared resource

 Output:

 Alarm_Level out : Alarm level which updated.

 Step1: Count = 0

 For i = Event[Index].NoOfTry.No DownTo 2

 If ABS (Event[Index].NoOfTry.Times(i) -Event[Index].NoOfTry.Times(i-1)) < t

 Then Count = Count + 1

 Else

Exit For loop

 End For i

 Step2: // Depends on the following points, increase the value of Alarm_Level in:

(1) Value of Count that represent the active repetition of Event

(2) Event[Index].Action

(3) UserClass

(4) ResourceClass

(5) Relationship between values of alarm level in Table (3.1) //

// check the deletion and modification actions.

If Event[Index].Action = "_delete directory_" OR

 Event[Index].Action = "_delete file_" OR

 Event[Index].Action = "_rename directory_" OR

 Event[Index].Action = "_rename file_" OR

 Event[Index].Action = "_create directory_" OR

 Event[Index].Action = "_create file_" OR

79

 Chapter Three: System Design And Architecture

 Event[Index].Action = "_write to file_"

 Then Modify_Delete = True

 Else Modify_Delete = False

If ResourceClass = "System" Then

 If Modify_Delete= True Then

 Alarm_Level out = Alarm_Level in + Count

 Else // open file or copy actions

 Alarm_Level out = Alarm_Level in + int (Count / 3)

Else If ResourceClass = "Application" Then

 If Modify_Delete= True Then

 Alarm_Level out = Alarm_Level in + int (Count * (8/9))

 Else // open file or copy actions

 If (UserClass = "Student") Or (UserClass = "Employee") Then

 Alarm_Level out = Alarm_Level in + int ((Count * (8/9)) / 4)

 Else

 Alarm_Level out= Alarm_Level in +int((Count* (8/9)) / (8/3))

Else If ResourceClass = "User" Then

 If Modify_Delete= True Then

 Alarm_Level out = Alarm_Level in + int (Count * (7/9))

 Else // open file or copy actions

 If (UserClass = "Student") Or (UserClass = "Employee") Then

 Alarm_Level out = Alarm_Level in + int ((Count * (7/9)) / 7)

 Else

 Alarm_Level out = Alarm_Level in + int ((Count * (7/9)) / (7/2))

 Step3: Return (Alarm_Level out).

E. Alarm Module
The main function of Alarm module is to generate Alarm Message for

the malicious event(s) and send it to the Administrator subsystem.

The generation of the alarm messages is done according to some rules,

which are called alarm rules. These rules depend on three factors, which

are: alarm level value, notification message, and the information of the

80

 Chapter Three: System Design And Architecture

occurred event. These factors come from Detection module. The format of

Alarm rule is illustrated in Figure (3.7).

Input Input Input Output

Alarm level Occurred Event Notification
Message Alarm Message

Figure (3.7) Alarm rule format

Alarm level value is used to represent the type of primitive alarm

message, see Table (3.3).

Table (3.3) Types of Primitive Alarm Messages

Alarm level value Primitive Alarm Message
1 "_not effective threat _"

2 , 3 "_low threat level_"
4 , 5 , 6 "_medium threat level_"

7 , 8 "_high threat level_"
9 "_computer risk_"

The Event fields provide many important information about the threat

that will be attached to the primitive alarm message. These information are:

subject username, destination PC's IP, object path, object name, and date &

time of threat.

Notify_Message contains user class, action type, object class, and

additional message for special case of attack. Notify_Message will be

attached to the alarm message as follow:

Alarm_Message out = Alarm_Message in + Notify_Message

81

 Chapter Three: System Design And Architecture

3.3.2 Administrator Subsystem
The Administrator subsystem is the control unit of the monitoring

system. It is installed on one of the LAN computers from which the

Administrator monitors the LAN. The Administrator subsystem is divided

into four modules as follow:

A. Check Administrator Authority Module
This module is used to check the Administrator authenticity before

opening the main window of Administrator subsystem. This module, as

explained in Algorithm (3.20), gives the Administrator three trails to enter

the correct username and password. If the user fails, the Administrator

subsystem execution will terminated.

 Algorithm (3.20) Check Administrator Authenticity
Goal: Check the Administrator authenticity.

Const: Administrator_ID : Administrator username.

Password : Administrator password.

Input: Admin_ID: the name of Administrator.

 Pass: the password of Administrator.

Output: Flag: Flag represent Success or Fail.

Step1: Initialize the variables

 i = 1

 Flag = False

Step2: Check if the Administrator exceeds his/her three trails.

If i > 3 Then GOTO Step5

Step3: Input Admin_ID and Pass.

Step4: If (Administrator_ID = Admin_ID) And (Password = Pass) Then

Flag = True

 Else

i = i + 1

GOTO Step2

Step5: Return (Flag).

82

 Chapter Three: System Design And Architecture

B. Initialization Module
This module executed synchronously with the Initialization module of

the Clients subsystems. This module has 3-functions, which are: permission

list generation, clients list generation, and registration configuration.

Therefore, this module is classified into three units according to their

functions: Permission Unit, Users Information Unit, and Registration

Database Unit (RegDB Unit).

1. Permission Unit
The Administrator subsystem receives the shared resources lists from

each client subsystem. Each list contains paths and names of shared

resources. These lists will be stored in temporary files on Administrator PC.

The Administrator subsystem allows the Administrator to set the

permissions of these shared resources.

The permission types are four; open, modify, delete, and copy. These

four types include inherently 9 actions which could be performed by any

network message as shown in Table (3.4). Each permission is coded with a

number that indicate the permission type. These numbers are represented

by 4-bits, each bit indicates to a specific permission type.

Table (3.4) Permissions types

Permission
Code Type

File system application services

0000 Not set all operations are unauthorized
0001 Open open file

0010 Modify write to file, rename file, rename folder, create file, and
create folder

0100 Delete delete file and delete folder
1000 Copy copy file

The Administrator follows the following steps to set a permission for

any object:

83

 Chapter Three: System Design And Architecture

(1) Choose the list of shared resources from the shared lists that arrived

from the Clients subsystems.

(2) Choose an object from the above selected list.

(3) Choose user from list of registered users.

(4) Choose particular type(s) of permission. (i.e. access type)

(5) Repeat steps 3-4 to all registered users.

The Administrator determines type of permission depends on both

object class and user class. The Administrator may set one or more

permissions for specified object. If the Administrator does not determine

the type of permission for specific object, its permission will set to zero,

which means all users are denied and not allowed access this object.

For example, if the Permission of Object-A is [9 for User1] , [11 for

User2] and Permission of Object-B is 0. That is mean:

User1 is authorized to Open and Copy Object-A

User2 is authorized to Open, Modify, and Copy Object-A

All Users is unauthorized to access Object-B

When the permissions of a particular shared resources list are set, the

Permission unit saves this list with their permissions into new file, which is

called Access Control List (ACL) for these shared resources. ACL is list of

all users-objects permissions. Each item in this list formatted as shown in

Figure (3.8).

Object List of authorized users (N users) with their permissions

Path Name User-1 Permission-1 User-2 Permission-2 … … User-N Permission-N

Figure (3.8) ACL format

84

 Chapter Three: System Design And Architecture

Each ACL will be sent to its Client subsystem sender, during

initialization stage, to be utilized later by Detection module.

2. Users Information Unit
The main function of this unit is to generate list of FMS registered

users depending on information of the successful user registration process.

The list of users contains detailed information about each user. These

information are: PC name, PC's IP, PC user account name, username, and

user type. These information comes from the Registration Database unit

after the success of the registration process.

The following modules and units utilize the list of users:

(1) Permission Unit: to identify the information of each user during

permission evaluation.

(2) RegDB Unit: to check if the user aims to register with existing

username.

(3) Response Module: to present the attacker information such as PC

name and PC's.

(4) Initialization and Reconfiguration module of Client subsystem: to send

the list of users to the Detection module to identify the user class

during detection process.

This list will be updated after each successful registration process, so it

will be stored in a database that called Users' Info DB.

3. Registration Database Unit
Registration Database holds all identification information of all users.

Registration database represent list of names, IDs, user classes, or any

information can be used during the registration stage. This database created,

and updated at this Unit.

85

 Chapter Three: System Design And Architecture

When allowed user aimed to register into FMS in Register Unit of

Authentication Module in the Client subsystem; his/her registration

information will received here. Algorithm (3.21) explains how to check

these information to accept the registration or deny it.

If the user registration information are accepted, then, these

information will be sent to Users Information unit to add the user to the list

of registered users.

 Algorithm (3.21) Check Registration
Goal: Check the registration information received from the Client subsystem at

 Register process.

Const: UserinfoDB: Database contains list of registered users information.

 RegDB: Database contains lists of users identification information.

Input: Register_information: represent Username, Pass, User_Type, and

 Additional_Info.

Output: Flag: Flag represent Success or Fail.

Step1: If (Username doesn't exist in UserinfoDB) And

 (User_Type and Additional_Info match the information saved at

 Registration DB) Then

 Add Register_information (Username, Pass, User_Type) to UserinfoDB

 Return (Success)

 Else

 Return (Fail)

 Step2: End.

Also, when user tries to login into FMS through the Login Unit;

his/her login information will received here. Algorithm (3.22) explains how

to check the integrity of the user.

86

 Chapter Three: System Design And Architecture

 Algorithm (3.22) Check Login Process
Goal: Check the Login information that received from the Client subsystem at Login

 process.

Const: UserinfoDB : Database contains List of registered users' information.

Input: Username: Entered Username at Login Process.

 Pass: Entered Password at Login Process.

Output: Flag: Flag represents Success or Fail.

Step1: If (Username and Pass are match the saved information at UserinfoDB) Then

Return(Success)

 Else

 Return (Fail)

Step2: End.

C. Monitoring Module
This module has two main functions; receive the alarm messages and

create users profiles according to the alarm messages. To perform these

functions, this module consists of two units; Alarm Messages and Users

Profiles units.

1. Alarm Messages Unit
The function of this unit is to receive the alarm messages from each

Client subsystem. These messages may be displayed as list of alarms to the

Administrator as Online mode of monitoring or may be saved into status

file as Offline mode. FMS allows the Administrator to select which mode of

monitoring to be executed (which is either Online or Offline modes). This

characteristic adds more flexibility to the system.

Each alarm message contains level of the occurred threat. Hence, not

all received messages should be displayed in the same style. The message

87

 Chapter Three: System Design And Architecture

of the highest level of threat will be displayed with more active style, like

play sound to notify the Administrator for this case of threat.

The received messages will be utilized by the Users Profiles unit to

find out the suspicious behaviour for each attacker. Therefore, this unit will

send a copy from each received alarm message to the Users Profiles unit.

2. Users Profiles Unit
 Each alarm message contains details about the threat subject. These

details are username, user type, PC name, user PC account name, and PC's

IP. Alarm messages are classified into groups according to the subjects of

threats. These groups, which are called Users profiles, show the suspicious

behaviors of users due to their suspicious actions.

Each user's profile contains user threat level, and description of his/her

attacks. User threat level is computed according the alarm messages of

highest threat level that related to this user.

Users' profiles are utilized by Response module to warn misbehavior

users.

D. Response Module

The main function of this module is taking a response in case of

detecting intrusion. In FMS, the response is represented as Warning

Message that warns the suspicion user for his/her misuse. The Warning

Message depends on the received alarm messages and users profiles.

Alarm message describes the occurred threat, while user profile

describes the suspicious user behaviour. Depending on these information,

the Administrator chooses a suitable Warning Message to be sent to the

suspicion user, as shown in Algorithm (3.23).

88

 Chapter Three: System Design And Architecture

 Algorithm (3.23) Response
Goal: Send warning messages to suspicious user as result for its misuse.

Input:

Alarm_MSG: Alarm messages from Alarm Module at Client subsystem.

UsersList: List of registered users.

User_Profile: suspicious user profile.

Output:

Warn_Msg: Warning Message.

Step1: Depending on the Alarm_MSG and User_Profile, the Administrator, Choose

 a proper message to be sent to the suspicious user and set this message in

Warn_MSG.

Step2: Send Warn_MSG to the user that has been identified from Alarm_MSG and

 Users_List.

Step3: End.

17

Chapter two: Network Monitoring

2.1 Introduction
The world dictionary defines a network as a "group of computers and

associated devices that are connected by communications facilities".

There are three roles for computers in networks [Jai02]:

1. Clients, which use but don't provide network recourses.

2. Servers, which provide network resources.

3. Peers, which both use and provide network resources.

In this chapter, network categories, protocols, and network monitoring

for intrusion detection systems that are published in the literature have been

exposed.

2.2 Network Categories

Based on the roles of the computers attached to them, networks are

divided into three types [Jai02]:

1. Server-based (also called client-server).

2. Peer (also called peer-to-peer).

3. Hybrid network (is a client server network that also has peers sharing

resources and most networks are hybrid networks.

The above mentioned types of networks will be described in the following

sections.

2.2.1 Server-Based Networks
Server-based networks are defined by the presence of dedicated

servers on a network that provide security and resources to the network.

Server-based (or client-server) networks divide processing tasks

between clients and servers. Clients (often called "front end") request

services, such as file storage and printing, and servers (often called "back

end") deliver them. Server computers typically are more powerful than

client computers, or are optimized to function as servers [Zac01].

18

Chapter two: Network Monitoring

2.2.2 Peer Networks
In a peer-to-peer network, there are no dedicated servers, and there is

no hierarchy among the computers. All the computers are equal and

therefore they are known as peers. Each computer functions as both a client

and a server, and there is no administrator responsible for the entire

network. The user at each computer determines what data on that computer

is shared on the network. Peer-to-peer networks are also called

workgroups. The term "workgroup" implies a small group of people.

Peers are also not optimized to share resources. Generally, when a

number of users are accessing resources on a peer, the user of that peer will

notice significantly degraded performance. Peers also generally have

licensing limitations that prevent more than a small number of users from

simultaneously accessing resources [She01].

2.2.3 Hybrid Networks
Hybrid networks have all three types of computers operating on them

and generally have active directory domains and workgroups. This means

that while most shared resources are located on servers, network users still

have access to any resources being shared by peers in your workgroup. It

also means network users do not have to log on to the domain controller to

access workgroup resources being shared by peers [She01].

2.3 Network Protocol Model
A protocol is a set of rules for communication. A protocol defines the

shape of a packet (Packet refers to the information that is sent over a

network through network communications which originate at a source, and

sent to a destination) that will be transmitted across the network, as well as

all the fields within the packet and how they should be interoperated.

19

Chapter two: Network Monitoring

 Ethernet Tokin Ring

TCP/IP Protocol Suite TCP/IP Model

Network

Application

Transport

Internet

UDP

TCP

 IP IGMP

 ICMP

Telnet

SMTP

SMB

FTP

A protocol suite is a group of protocols that evolves together, that used

in the same environment or created in the same company, such as the

Internet Protocol suite and NetWare suite.

Each protocol suite has many protocols each performs a specific

function. Some of these protocols perform the same function as another

protocol in another protocol suite [Dul98].

The most commonly referenced protocol model is the OSI (Open

Systems Interconnect) model, it was developed by the ISO (International

Standardization Organization). The OSI model referred to as network

protocol model [Dav04].

Internet is the ultimate example of an internetwork (collection of

interconnected LANs). The protocols that make up the internet protocol

suite, the best known being TCP (Transmission Control Protocol) and IP

(Internet Protocol), have become de facto standards because of the success

of the Internet. The entire protocol suite is sometimes referred to as TCP/IP

suite as shown in Figure (2.1).

The four layers of the TCP/IP model, as shown in Figure (2.1), are as

follow [Dul98]:

Figure (2.1) TCP/IP Model

20

Chapter two: Network Monitoring

1. Network (Link) Layer: The network layer is responsible for

communication directly with the network. It must understand the network

architecture being used, such as token ring or Ethernet, and provide an

interface allowing the Internet layer to communicate with it. The Internet

layer is responsible for communication directly with the network layer.

2. Internet Layer: The Internet layer is primarily concerned with routing

and delivery of packets through the Internet Protocol (IP). All the protocols

in the Transport layer must use IP to send data. The Internet Protocol

includes rules for how to address and direct packets, fragment and

reassemble packets, provide security information, and identify the type of

service begin used.

IP is not a connection-based protocol, however, it does not guarantee

that packets transmitted on to the wire will not be lost, damaged,

duplicated, or out of order because these are the responsibility of higher

layers of the networking model, such as the Transport layer or the

Application layer.

The header that IP applies to the data (it receives from the transport

layer protocol) is typically 20 bytes long. The datagram format is shown in

Figure (2.2) [Mic03].

0 3 7 15 32-bits

Version IHL TOS THL

ID Flags Offset

TTL Protocol Checksum

Source IP

Destination IP

Options

Data

Figure (2.2) IP header format

21

Chapter two: Network Monitoring

The most commonly used fields of IP header are:

a) Version (4- bits): This field specifies the version of the IP protocol

used to create the datagram, which are either 4 or 6. The version in

current use is 4, which can support up to 232 addresses (32 bits), while

6 is developed as a replacement that can support up to 2128 addresses

(128 bits) to fulfill future needs with better security and network related

features.

b) Internet Header Length (IHL, 4 bits): This field specifies the length

of the datagram's header, in 32-bit (4-byte) words. The typical length of

a datagram header is five word (20 bytes), but if the datagram includes

additional options, it can be longer, which is the reason for having this

field.

c) Type Of Service (TOS, 1 byte): This field contains a code that

specifies the services priority for the datagram. This is a rarely used

feature that enables a system to assign a priority to a datagram that

routers observe while forwarding it through an internetwork. The values

provide a trade-off a many delay, throughput, and reliability.

d) Total Header Length (THL, 2 bytes): This field specifies the length of

datagram, including that of the datagram fields and all of the header

fields, in bytes.

e) Identification (ID, 2 bytes): This fields contains a value that an equally

identifies the datagram. The destination system uses this value to

reassemble datagram that have been fragmented during transmission.

f) Flags (3 bits): This field contains bits used to regulate the datagram

fragmentation processes.

g) Fragment Offset (Offset, 13-bits): When a datagram is fragmented, the

system inserts a value in this field that identifies this fragment's place in

the datagram.

22

Chapter two: Network Monitoring

h) Time To Live (TTL, 1 byte): This field specifies the number of

networks that the datagram should permitted to travel through on the

way to its destination. Each routers that forwards the datagram reduces

the value of this filed by one. If the value reaches zero, the datagram is

discarded.

i) Protocol (1 byte): This filed contain a code that identifies the protocol

that generated the information found in the data field such 6 represent

TCP and 17 represent UDP.

j) Header Checksum (Checksum, 2 bytes): This field contain a

checksum value computed on the IP header fields only (and not the

contents of the data filed) for the purpose of error detection.

k) Source IP Address (Source IP, 4 bytes): This field specifies the IP

addresses of the system that generated the datagram.

l) Destination IP Address (Destination IP, 4 bytes): This field specifies

the IP addresses of the system for which the datagram is sent.

m) Options (variable): This field is present only when the datagram

contains one or more of the 16 available IP options. The size and

content of the field depends on the number and the nature of the options.

n) Data (variable): This field contains the information generated by the

protocol specified in the protocol fields. The size of the field depends on

the data link layer protocols used by the network over which the system

will transmit the datagram.

Other protocols that exist in the Internet layer are the Internet Control

Messaging Protocol (ICMP) that is used for network error reporting and

generating messages that require attention, and Internet Group

Management Protocol (IGMP) that is used to support multicasting.

23

Chapter two: Network Monitoring

3. Transport Layer: The transport layer provides service of transporting

application layer data between the client and server sides of an application.

The TCP/IP suite includes two protocol at this layer, the Transmission

Control Protocol (TCP) and the User Datagram Protocol (UDP), which

provide connection-oriented and connectionless data transfer, respectively.

TCP is the main transport layer protocol of the Internet protocol suite.

It also provides addressing (with service addresses) services at the network

layer. TCP provides reliable, full-duplex, connection-oriented transport

service to upper-layer protocols.

In many cases, the Application layer protocol passes more data to TCP

than can fit into a single packet, so TCP splits the data into smaller pieces.

Each piece is called a segment, and the segments that comprise a single

transaction are known collectively as a sequence. Each segment receives its

own TCP header and is passed down to the Internet layer for transmission

in a separate datagram. When all of the segments arrive at the destination,

the receiving computer reassembles them into the original sequence

[Mic03].

The header that TCP applies to the data (it receives from the

Application layer protocol) is typically 20 bytes long. The datagram format

is shown in Figure (2.3).

24

Chapter two: Network Monitoring

0 15 31-bits

Source Port Destination Port

 Sequence Number

 Acknowledgment Number

Data
Offset Reserved Control

Bits Window

Checksum Urgent Pointer

Options

Data

Figure (2.3) TCP header format [Mic03]

The most commonly used fields of TCP header are:

a) Source Port (2 bytes): This field identifies the process on the

transmitting system that generated the information carried in the data

filed.

b) Destination Port (2 bytes): This field identifies the processes on the

receiving system for which the information in the data filed is intended.

c) Sequence Number (4 bytes): This field identifies the location of the

data in this segment in relation to the entire sequence.

d) Acknowledgment Message (4 bytes): In acknowledgment (ACK)

messages, this field identifies the sequence number of the next segment

expected by the receiving system.

e) Data Offset (4 bits): This field identifies the number of 4-byte words in

the TCP header.

f) Reserved (6 bits): This field unused.

g) Control Bits (6 bits): This field contains 6 flag bits that identify the

functions of the message.

h) Window (2 bytes): This field identifies how many bytes the computer

capable of accepting from the connected system.

25

Chapter two: Network Monitoring

i) Checksum (2 bytes): This field contains the results of the Cyclical

Redundancy Check (CRC) computation performed by the transmitting

system, and used by the receiving system to detect error in the TCP

header, data, and parts of the IP header.

j) Urgent Pointer (2 bytes): When the urgent (URG) control bit is

present, this field indicates which part of the data in the segment the

receiver should treated as urgent.

k) Options (variable): This field may contain information related to

optional TCP connection configuration features.

l) Data (variable): This field may contain one segment of an information

sequence generated by an application layer protocol.

4. Application Layer: The Application layer handles details of the

particular end-user applications. The TCP/IP protocols at this layer can take

several different forms. Some protocols, such as the File Transfer Protocol

(FTP), can be applications in themselves, whereas others, such as

Hypertext Transfer Protocol (HTTP), provide services to applications.

Additionally, in this layer there are Network File System (NFS). Also,

may be called as the Distributed File System (DFS) or Internet File System

(IFS). The most common Network File Systems are: 1-Andrew File System

(AFS), 2-Distributed File System (DFS), and 3-Server Message Blocks

(SMB), which is explained in the next section.

2.4 Server Message Block Protocol (SMB)
Server Message Block (SMB) is a network protocol whose most

common used in sharing files on a LAN at application layer. This protocol

allows a client to manipulate files just as if they where on the local

computer.

26

Chapter two: Network Monitoring

The SMB is a client-server or request-response protocol. Operations

such as read, write, create, delete, and rename are supported. The only

difference being that the files are not on the local computer and are actually

on a remote server [You01].

The SMB protocol works by sending packets from the client to the

server, each packet is typically a basic request of some kinds of file

processes, such as open file, close file, or read file. The server then receives

the packets, checks to see if the request is legal, verifies the client has the

appropriate file permission, and finally executes the request and returns a

response packet to the client. The client then parses the response packet and

can determine whether or not the initial request was successful.

SMB is a fairly hi-level network protocol. In the OSI (Open Systems

Interconnect) model, it is probably best described at the Application/

Presentation layer. This mean SMB relies on other protocols for transport.

The most common protocol used for reliable transport is NetBIOS (refer to

Network Basic Input/Output System). SMB message format will be

illustrated in Figure (2.4), which is composed of three basic parts [Mic04]:

1. The header,

2. The parameter Block, and

3. The data block.

27

Chapter two: Network Monitoring

0 7 15 23 31

0xFF 'S' 'M' 'B'

COMMAND STATUS . . .

. . . STATUS FLAGS FLAGS2

EXTRA . . .
.
.

TID PID

UID MID

WordCount Parameter Words[WordCount] . . .

Data Block

ByteCount Buffer[ByteCount] . . .

Parameter Block

Figure (2.4) SMB Message format

2.4.1 SMB Header
SMB header consists of a number of fields which are explained in the

following sections.

A. SMB Header Fields
The most common used fields of SMB header are [Mic04]:

• Protocol ID: The first four bytes are the protocol identifier, which

always has the same value as shown in Figure (2.5).

1st Byte 2nd Byte 3rd Byte 4th Byte
0xFF = 255 ASCII of 'S' = 83 ASCII of 'M' = 77 ASCII of 'B'= 66

Figure (2.5) SMB Protocol ID field

• COMMAND Field: tells us what kind of SMB we are looking at, for

example: when rename a file or directory client request or server response

DATA
Portion

Header
Portion

28

Chapter two: Network Monitoring

(SMB message), COMMAND field take the value 7. This field will be

discussed in section 2.4.1.2.

• STATUS Field: There are two possible error code formats, DOS &

OS/2 and NT-STATUS. DOS & OS/2 use 16-bits error codes, grouped into

classes, as presented in Figure (2.6).

0 1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

ErrorClass <reserved> ErrorCode

Figure (2.6) DOS & OS/2 error code format

While WindowsNT introduced a new set of 32-bit error codes, known

as NT_STATUS codes. These use the entire status field to hold the

NT_Status value, as shown in Figure (2.7).

0 1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

NT_Status

Figure (2.7) NT_STATUS error code format

With two errors code formats from which to choose, the client and

server must confer to decide which set will be used.

• FLAGS Field that characterizing the SMB request/response, if bit 7 is

set, this packet is a server response.

• FLAGS2 Field: 16-bit flag field defining the capabilities of the

client/server transaction.

• EXTRA Field: this field takes up most of the remaining formerly

reserved bytes. It contains 12-bytes filled by zeros.

• TID: acronym to "Tree ID". TID field is used to identify connections to

shares once they have been established.

29

Chapter two: Network Monitoring

• PID: acronym to"Process ID". This value is set by the client, and is

intended as an identifier for the process sending the SMB request.

• UID: acronym to "User ID". The server assigns it after the user has

authenticated and is valid until the user logs off.

• MID: acronym to "Multiplex ID". This is used by the client to keep

track of multiple outstanding requests.

B. SMB Command Field
The COMMAND field determines the DATA portion of the SMB

header, so according to the COMMAND field value, the DATA portion

will be structured. Therefore, DATA portion may take several structures.

These structures are called Formats of the SMB commands. The first data

portion field is WORDCOUNT, being the same field as WordCount in the

SMB Header.

The most widely SMB commands that carry more significant

information about most common file system operations are listed bellow

[You01]:

• Delete Directory Command: This command is send to delete a directory

and the directory name with its Path is passed. The abbreviation of this

command is SMB_COM_DEL_DIR. When SMB Command field takes the

value 0x01, the data portion of SMB header will be formatted as Table

(2.1).

Table (2.1) Data Portion fields of SMB_COM_DEL_DIR

Field name Displacement
(bytes)

Length
(bytes) Description

WordCount 0 1 The value is zero.

ByteCount 1 2 Count of data bytes The
value is greater than 0.

BufferFormat 3 1 The value is 0x04.
DirectoryName[] 4 Variable Directory name.

30

Chapter two: Network Monitoring

• Rename File/Directory Command: This command is send to changes

the name of file or directory. The abbreviation of this command is

SMB_COM_RENAME. When SMB Command field takes the value 0x07,

the Data Portion of SMB header will be formatted as Table (2.2).

Table (2.2) Data Portion fields of SMB_COM_Rename

Field name Displacement
(bytes)

Length
(bytes) Description

WordCount 0 1 Count of parameter words.
The value is 1.

SearchAttributes 1 2 Target file attributes

ByteCount 3 2 Count of data bytes. The
value is greater than 4.

BufferFormat1 5 1 The value is 0x04.
OldFileName 6 Variable Old file name.

BufferFormat2 * 1 Second buffer format. The
value is 0x04.

NewFileName * Variable New file name.

• NT_CreateAndX Command: When SMB command took the value

0xA2, the SMB command is NT_CreateAndX. The abbreviation of this

command is SMB_COM_NT_CreateAndX. The data portion of the SMB

request at this command will pass many of the file system application

operations depend on the fields values of SMB_COM_NT_CreateAndX

header. These operations may be Create file, Delete file, Copy file, Open

file, or Create folder. Table (2.3) illustrates SMB data portion of this

command.

Table (2.3) Data Portion fields of SMB_COM_NT_CreateAndX

Field name Displacement
(bytes)

Length
(bytes) Description

WordCount 0 1 Count of parameter words. The value
is 24.

AndXCommand 1 1 Secondary command. If no secondary
command exists, the value is 0xFF.

31

Chapter two: Network Monitoring

Field name Displacement
(bytes)

Length
(bytes) Description

AndXReserved 2 1 Reserved, this value must be zero.

AndXOffset 3 1 Offset to WordCount location for the
following command.

Reserved 4 1 Reserved, the value must be zero.

NameLength 5 1 Length in bytes of the Filename[]
field.

Flags 6 4 Flags, see Table (2.4).

RootDirectory 10 4 If non-zero, the open command is
relative to this directory.

DesiredAccess 14 8 Access desired.
AllocationSiz 22 8 Initial allocation size.
FileAttribute 30 4 Flags and attributes for the file.
ShareAccess 34 4 Type of share access, see Table (2.5).

CreateDisposi 38 4 Flags defining the action to take if the
file already exists, see Table (2.6).

CreateOptions 42 4 File create options.

Impersonation 46 2
Security QOS information. This field
specifies the client impersonation
level, see Table (2.7).

SecurityFlags 50 1 Security tracking mode flags, see
Table (2.8).

ByteCount 51 2 Count of data bytes.
Filename[] 53 Variable Name of file to open or create.

Table (2.4) SMB_COM_NT_CreateAndX Flags field values

Value Meaning

0x02 Request a dynamic lock.

0x04 Request a batch dynamic lock.

0x08 Target of open command must be a directory.

0x10 Request extended response.

32

Chapter two: Network Monitoring

Table (2.5) SMB_COM_NT_CreateAndX ShareAccess field values

Value Meaning

0x00000000 Prevents file sharing.

0x00000001 Can be opened for read access.

0x00000002 Can be opened for write access.

0x00000004 Can be opened for delete.

Table (2.6) SMB_COM_NT_CreateAndX CreateDisposition field values

Value Meaning

FILE_SUPERSEDE
0x00000000

If the file already exists, supersede it by the
specified file. Otherwise, create the file.

FILE_OPEN
0x00000001

If the file already exists, return success; otherwise,
fail the operation.

FILE_CREATE
0x00000002

If the file already exists, fail the operation;
otherwise, create the file.

FILE_OPEN_IF
0x00000003

Open the file if it already exists; otherwise, create
the file.

FILE_OVERWRITE
0x00000004

Overwrite the file if it already exists; otherwise, fail
the operation.

FILE_OVERWRITE_IF
0x00000005

Overwrite the file if it already exists; otherwise,
create the file.

Table (2.7) SMB_COM_NT_CreateAndX ImpersonationLevel field values

Value Meaning

0x0000 Anonymous

0x0001 Identification

0x0002 Impersonation

0x0003 Delegation

33

Chapter two: Network Monitoring

Table (2.8) SMB_COM_NT_CreateAndX SecurityFlags field values

Value Meaning

SECURITY_DYNAMIC_TRACKING
0x01

Security tracking mode is dynamic.

SECURITY_EFFECTIVE_ONLY
0x02

Only the enabled aspects of the client
security context are available to the
server.

• TreeConnectAndX Command: When SMB command took the value

0x75, the SMB command is TreeConnectAndX. The abbreviation of this

command is SMB_COM_TreeConnectAndX. The client request for this

command will pass the current path of the file/folder that processed by the

one of the file system application operation or services. Table (2.9)

illustrates SMB data portion of this command.

Table (2.9) Data Portion fields of SMB_COM_TreeConnectAndX

Field name Displacement
(bytes)

Length
(bytes) Description

WordCount 0 1 Count of parameter words. The
value is 4.

AndXCommand 1 1
Secondary command. If no
secondary command exists, the
value is 0xFF.

AndXReserved 2 1 Reserved. The value must be zero

AndXOffset 3 2
Offset in bytes to the WordCount
location for the following
command.

Flags 5 2

Additional information. When
Bit0 of the 2-bytes present, the
Tree connection to Tid should be
disconnected.

PasswordLength 7 2 Length of Password[].

ByteCount 9 2 Count of data bytes. The value is
greater than 2.

Password[] 11 Variable

This is a variable length field
with the length specified by
PasswordLength. If a password is
not used, the value is a null.

34

Chapter two: Network Monitoring

Field name Displacement
(bytes)

Length
(bytes) Description

Path[] * Variable Server name and/or share name.

Service[] * Variable Type of component requested, see
Table (2.10).

Table (2.10) SMB_COM_TreeConnectAndX Service field values

Value Meaning

A Disk share for PC NETWORK PROGRAM 1.0 or later.

LPT1 Printer for PC NETWORK PROGRAM 1.0 or later.

IPC Named pipe for MICROSOFT NETWORKS 3.0 or later.

COMM Communications device for MICROSOFT NETWORKS 3.0 or later.

????? Any device type for MICROSOFT NETWORKS 3.0 or later.

• SessionSetupAndX Command: When SMB command took the value

0x73, the SMB command is SessionSetupAndX. The abbreviation of this

command is SMB_COM_SessionSetupAndX. The client request for this

command continues the user session definition begun by the request of

NEGOTIATE command (SMB_COM_NEGOTIATE) at the 3-hand

checking request and response.

The packet of this command defines the data portion of the SMB client

request and response packets. Table (2.11) shows the data portion fields for

request message for this command.

Table (2.11) Data Portion fields of SMB_COM_SessionSetupAndX

Field name Displacement
(bytes)

Length
(bytes) Description

WordCount 0 1 Count of parameter words.
The value is 10.

AndXCommand 1 1
Secondary command. If no
secondary command exists,
the value is 0xFF.

35

Chapter two: Network Monitoring

Field name Displacement
(bytes)

Length
(bytes) Description

AndXReserved 2 1 The value must be zero.

AndXOffset 3 2
Offset in bytes to the
WordCount location for the
following command.

MaxBufferSize 5 2 Client maximum buffer
size.

MaxMpxCount 7 2 Maximum count of pending
multiplexed requests.

VcNumber 9 2 If this is the first VC
number, the value is zero.

SessionKey 11 4 The value is valid only if
VcNumber is non-zero.

PasswordLength 15 2 Length of account
password.

Reserved 17 4 The value must be zero.
ByteCount 21 2 Count of data bytes.

AccountPassword[] 23 Variable Account password.
AccountName[] * Variable Name of account.

PrimaryDomain[] * Variable Client primary domain.

NativeOS[] * Variable Client native operating
system.

NativeLANMan[] * Variable Client native LAN Manager
type.

For more information about the SMB commands, Appendix A present

list of most common SMB commands with their codes.

2.4.2 Parameters Block
In the middle of the SMB message are two fields labeled WordCount

and Parameter Words as shown in Figure (2.4), which are:

1. WordCount is the number of words in the Words array.

2. Words[WordCount] is SMB parameters; varies with SMB command.

The Words field is simply a block of data that is 2 × WordCount bytes

in length. Each SMB message type has a different record structure that is

carried in the Words block. Think of that structure as representing the

36

Chapter two: Network Monitoring

parameters passed to a function (the function identified by the SMB

command code listed in the header) [Mic04].

2.4.3 Data Block
Following the SMB_PARAMETERS is another block of data, the

content varies in structure depending on a per-SMB header as explained in

section 2.4.1.2. SMB Data Block consist of two fields as shown in Figure

(2.4), they are:

1. ByteCount is the number of bytes in the Bytes field.

2. Bytes[ByteCount] is the contents varies with SMB command.

The Bytes field holds the data to be manipulated. For example, it may

contain the data retrieved in response to a READ operation, or the data to

be written by a WRITE operation.

2.5 NetBIOS Over TCP/IP
The SMB protocol is supposed to be transport independent. That is,

SMB should work over any reliable transport that meets a few basic

criteria. NetBIOS (Network Basic Input/Output System) is one such

transport.

Port number of TCP protocol determines how the SMB works over

TCP/IP. Port 139 refers to SMB is working over NetBIOS, and then

NetBIOS over TCP/IP. While port 445 refers to SMB is working over

TCP/IP directly.

NetBIOS is probably best described at the session layer in the OSI

model. NetBIOS mainly used by Microsoft to transport SMB file service

messages as shown in Figure (2.8) [Dav04].

37

Chapter two: Network Monitoring

Figure (2.8) NetBIOS over TCP/IP

NetBIOS provides three basic services over TCP/IP suite, which are

[Dav04]:

1. NetBIOS Name service: Name service is used to map NetBIOS names

(addresses) to IP addresses in the underlying IP network. NetBIOS

addressing is dynamic. Application may add names as needed, and remove

those names when finished. Each node on the LAN will also have a default

name, known as the Machine Name or the Workstation service name,

which is typically added when NetBIOS starts. Name service uses UDP

protocol at the Transport layer in the TCP/IP suite.

2. NetBIOS Datagram service: Datagram service provides for the delivery

of NetBIOS datagram via UDP protocol. NetBIOS provides connectionless

communications to handle UDP datagram. When the main function of

NetBIOS is transport SMB file service messages; datagram service is

OSI TCP/IP Protocols

Application

Presentation
SMB

NetBIOS
Session

Application

Name Service datagram service Session Service

Transport Transport UDP TCP

Network Internet IP

Data link Network Ethernet

Physical

38

Chapter two: Network Monitoring

probably the second least well understood aspect of NetBIOS because

correct implementation is not critical to file sharing especially.

3. NetBIOS Session service: Session service is used to establish and

maintain point-to-point, connection-oriented NetBIOS session over TCP.

Session service is the traditional transport for SMB. Applications that use

NetBIOS session service run on SMB protocol at the Application layer,

TCP protocol at the Transport, and IP protocol at the Internet layer in the

TCP/IP model. Examples of these applications that use NetBIOS session

service are file and printer sharing. Type of session is determined depend

on the values of NetBIOS Session header fields. Figure (2.9) represents the

NetBIOS Session header format.

0 1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

TYPE Reserved LENGTH (17 bits)

The LENGTH field contains the number of bytes of payload, and the

TYPE field is used to distinguish between the six different Session Service

message types, which are [RFC87]:

1. 0x00 == Session Message

2. 0x81 == Session Request

3. 0x82 == Positive Session Response

4. 0x83 == Negative Session Response

5. 0x84 == Retarget Session Response

6. 0x85 == Session Keepalive

Figure (2.9) Session Service header format

39

Chapter two: Network Monitoring

2.6 Network Monitoring for Intrusion Detection
In the world of intrusion detection, researches tend to focus on

detecting attacks and clearly anomalous activity. An important component

of a complete intrusion detection solution is basic network monitoring and

traffic analysis. Network monitoring collects information on connections,

while traffic analysis allows to see what services are being used on a

network and to compare that against the activity that we should be seeing.

This allows to identify unauthorized services being used within a network

[Mar02].

2.6.1 Network Monitoring

In order to perform basic network monitoring, there is a need to collect

information on traffic at various points within a network.

As networks become larger, the deployment of a single IDS could not

satisfy the need for ubiquitous protection. A potentially large number of

IDSs (called IDS sensors in this case) have to act in concert to trace

suspicious activity through all domains of the network. Events that might

indicate an intrusion have to be aggregated and analyzed on a central host.

Aggregation encompasses collecting and normalizing diverse information

from multiple sources providing information in an unified data format

[Sol04].

One of the important methods that collect information is packet

sniffering. A packet sniffer is computer software that can intercept and log

traffic passing over a digital network or part of a network. As data streams

travel back and forth over the network, the sniffer captures each packet and

eventually decodes and produces it to the analyzer to analyze its content

according to the appropriate specifications [Ory06].

Sniffed segment was chosen as allow to examination of the traveled

40

Chapter two: Network Monitoring

packets and in particular to filtering these packets and extract needed

information to detect the threat. This segment can be shown on the TCP/IP

suite, see Figure (2.10) [Moo02].

Layer Number Layer Name Sample Protocol

Layer1 Application SMB, HTTP, FTP, Telnet

Layer2 Transport TCP, UDP

Layer3 Internet IP, IPX

Layer4 Network Ethernet, Arcnet

2.6.2 Traffic Analysis

Before an actual analysis can take place, a correlation engine has to

process the events and find relationships between them. The actual

correlation can be based on a combination of time stamps, source or

destination addresses, and other logical relationships established between

the events [Sol04].

Protocol analysis means analyzing the behavior of protocols to

determine whether one host is communicating normally with another. For

example, the TCP handshake is initiated by sending a TCP SYN packet to

another host. The other host responds with a SYN ACK packet, to which

the originating host responds with an ACK packet. Suppose that a host

sends nothing but SYN packets to another host. This is an indication of a

“SYN flood” attack designed to deplete memory and other resources in the

receiving host [End04].

Figure (2.10) Sniffed segment of TCP/IP (represented by shadow area)

41

Chapter two: Network Monitoring

2.7 Measuring the Efficiency of an IDS
The efficiency of an Intrusion Detection System can be measured by

the number of false positives and false negatives. A false positive is

produced if the IDS claims there has been an intrusion when there has not.

A false negative occurs if the IDS fails to detect an intrusion.

This measurement determines how accurately the IDSs diagnose an

attack. The impact of an IDS' accuracy is going to be organization specific.

Some organizations may have high tolerance of false positive because they

have staff and time to investigate them, while other organizations would

rather have a system that misses attacks as long as it does not raise false

alarms. Therefore, false positive may be standard measurement to the IDS

in some environments, considering that the false negative is not found for

perfect detection [BEn02].

False negatives can be computed by subtracting the number of

accurately detected attacks from the total number of attacks sent. Whereas,

false positives can be computed by subtracting the number of accurately

detected attacks from the total number of alerts raised.

As result, to do measuring of efficiency to an IDS in an environment,

there are some requirements that should be achieved. The following

requirements should be exist in the IDS environment [Ran01]:

1. Attacker hosts that attacks are lunched from, and

2. Target hosts that the attacks are directed at, and that run the intrusion

detection software and monitor a specified network segment.

The following requirements should be computed by applying IDS [Ran01]:

1. Total number of attacks sent.

2. Number of accurately detected attacks.

3. Total number of alerts raised.

Abstract
Computer network technologies have grown rapidly in the last few

decades. With the increased use of networked computers for critical

applications, computer intrusions have been increased and became a

significant threat to these systems and, thus Intrusion Detection Systems

(IDS) have become essential addition to security infrastructure of most

organizations.

This thesis presents the design and implementation of a Network Node

Intrusion Detection System (NNIDS) that support IPv4 protocol. The name

of the proposed system is chosen to be FMS (the acronym for File

Monitoring System). It detects a variety of attacks which are directed to the

resources of filing system. The implied detection rules are based on

matching the predefined normal behaviour of the system with the

characteristics of the detected users' events.

The primary constituting system modules are: logging module which

defines the users allowed to access shared resources; sniffing module that

captures and decodes packets and generates a list of events; detection

module that analyzes the list of events and determines the suspicious

activity; and alarming module that generates alarm messages to the

Administrator in case of attacks.

The system has been evaluated according to three factors accuracy,

time, and memory consumption. Several simulated attacks have been sent to

the proposed system to test it. Test shows that most of the attacks of the

filing system can be detected with acceptable ratios of false positive and

false negative values.

Acknowledgment

First, I would like to thank God, for all the

blessings that have given us.
I would like to express my sincere gratitude and

appreciation to my supervisor Dr. Abeer M. Yousif for
her valuable guidance, supervision and untiring efforts
during the course of this work.

There are no enough words to be wonderfully
eloquent to thank Dr. Luay Adwar Jorj for his
continuous supports and valuable guidance during
period of my studies.

Grateful thanks for the Head of Department of
Computer Science Dr. Taha S. Bashaga, staff and
employees.

Finally, special thanks to my family especially my
parents, and my friends for their continuous
encouragement during the period of my studies.

 Suleiman

1-A

Appendix A

Most Common SMB Commands

A.1 Common SMB Commands Codes
The most common commands of the SMB COMMAND values

represented in Table (A.1).

Table (A.1) Most Common SMB Commands

SMB Command Code

SMB_COM_CREATE_DIRECTORY 0x00

SMB_COM_DELETE_DIRECTORY 0x01

SMB_COM_OPEN 0x02

SMB_COM_CREATE 0x03

SMB_COM_CLOSE 0x04

SMB_COM_FLUSH 0x05

SMB_COM_DELETE 0x06

SMB_COM_RENAME 0x07

SMB_COM_QUERY_INFORMATION 0x08

SMB_COM_SET_INFORMATION 0x09

SMB_COM_READ 0x0A

SMB_COM_WRITE 0x0B

SMB_COM_LOCK_BYTE_RANGE 0x0C

SMB_COM_UNLOCK_BYTE_RANGE 0x0D

SMB_COM_CREATE_TEMPORARY 0x0E

2-A

Appendix A

Most Common SMB Commands

SMB Command Code

SMB_COM_CREATE_NEW 0x0F

SMB_COM_CHECK_DIRECTORY 0x10

SMB_COM_PROCESS_EXIT 0x11

SMB_COM_SEEK 0x12

SMB_COM_LOCK_AND_READ 0x13

SMB_COM_WRITE_AND_UNLOCK 0x14

SMB_COM_READ_RAW 0x1A

SMB_COM_READ_MPX 0x1B

SMB_COM_READ_MPX_SECONDARY 0x1C

SMB_COM_WRITE_RAW 0x1D

SMB_COM_WRITE_MPX 0x1E

SMB_COM_WRITE_COMPLETE 0x20

SMB_COM_SET_INFORMATION2 0x22

SMB_COM_QUERY_INFORMATION2 0x23

SMB_COM_LOCKING_ANDX 0x24

SMB_COM_TRANSACTION 0x25

SMB_COM_TRANSACTION_SECONDARY 0x26

SMB_COM_IOCTL 0x27

SMB_COM_IOCTL_SECONDARY 0x28

3-A

Appendix A

Most Common SMB Commands

SMB Command Code

SMB_COM_COPY 0x29

SMB_COM_MOVE 0x2A

SMB_COM_ECHO 0x2B

SMB_COM_WRITE_AND_CLOSE 0x2C

SMB_COM_OPEN_ANDX 0x2D

SMB_COM_READ_ANDX 0x2E

SMB_COM_WRITE_ANDX 0x2F

SMB_COM_CLOSE_AND_TREE_DISC 0x31

SMB_COM_TRANSACTION2 0x32

SMB_COM_TRANSACTION2_SECONDARY 0x33

SMB_COM_FIND_CLOSE2 0x34

SMB_COM_FIND_NOTIFY_CLOSE 0x35

SMB_COM_TREE_CONNECT 0x70

SMB_COM_TREE_DISCONNECT 0x71

SMB_COM_NEGOTIATE 0x72

SMB_COM_SESSION_SETUP_ANDX 0x73

SMB_COM_LOGOFF_ANDX 0x74

SMB_COM_TREE_CONNECT_ANDX 0x75

SMB_COM_QUERY_INFORMATION_DISK 0x80

4-A

Appendix A

Most Common SMB Commands

SMB Command Code

SMB_COM_SEARCH 0x81

SMB_COM_FIND 0x82

SMB_COM_FIND_UNIQUE 0x83

SMB_COM_NT_TRANSACT 0xA0

SMB_COM_NT_TRANSACT_SECONDARY 0xA1

SMB_COM_NT_CREATE_ANDX 0xA2

SMB_COM_NT_CANCEL 0xA4

SMB_COM_NT_RENAME 0xA5

SMB_COM_OPEN_PRINT_FILE 0xC0

SMB_COM_WRITE_PRINT_FILE 0xC1

SMB_COM_CLOSE_PRINT_FILE 0xC2

SMB_COM_GET_PRINT_QUEUE 0xC3

Supervisor Certification

We certify that this thesis was prepared under our supervision at

the Department of Computer Science/College of Science/Al-Nahrain

University, by Suleiman Sa’adon Fawzy as partial fulfillment of the

requirements for the degree of Master of Science in Computer

Science.

Supervisors

Signature:

Name: Abeer M. Yousif

Title: Lecturer

Date: / / 2008

The Head of the Department Certification

In view of the available recommendations, I forward this thesis

for debate by the examination committee.

Signature:

Name: Dr. Taha S. Bashaga

Title: Head of the department of Computer Science,

 Al-Nahrain University.

Date: / / 2008

Examining Committee Certification

We certify that we have read this thesis and as an examining

committee, examined the student in its content and what is related to

it, and that in our opinion it meets the standard of a thesis for the

degree of Master of Science in Computer Science.

Examining Committee Certification

Signature:

Name: Dr. Loay E. George

Title: Assist. Prof. (Chairman)
Date: / / 2008

Signature: Signature:

Name: Dr. Bara’a A. Attea Name: Dr. Jamal M. Kadhum

Title: Assist. Prof. (Member) Title: Lecturer (Member)
Date: / / 2008 Date: / / 2008

Supervisors Certification

Signature:

Name: Abeer M. Yousif

Title: Lecturer

Date: / / 2008

The Dean of the College Certification

 Approved by the Council of the College of Science

Signature:

Name: Dr. LAITH ABDUL AZIZ AL - ANI

Title: The Dean of College of Science, Al-Nahrain University.
Date: / / 2008

Dedication . . .

To

My Dear Parents

Suleiman

List of Tables

Table(2.1) Data Portion fields of SMB_COM_DEL_DIR
Table(2.2) Data Portion fields of SMB_COM_Rename
Table(2.3) Data Portion fields of SMB_COM_NT_CreateAndX
Table(2.4) SMB_COM_ NT_CreateAndX Flags field values
Table(2.5) SMB_COM_NT_CreateAndX ShareAccess field values
Table(2.6) SMB_COM_NT_CreateAndX CreateDisposition field values
Table(2.7) SMB_COM_NT_CreateAndX ImpersonationLevel field values
Table(2.8) SMB_COM_NT_CreateAndX SecurityFlags field values
Table(2.9) Data Portion fields of SMB_COM_TreeConnectAndX
Table(2.10) SMB_COM_TreeConnectAndX Service[] field values
Table(2.11) Data Portion fields of SMB_COM_SessionSetupAndX
Table(3.1) Aggregated information by Aggregation unit
Table(3.2) Alarm level values
Table(3.3) Types of primitive Alarm Messages
Table(3.4) Permissions types
Table(4.1) False Positive values of Test Case One
Table(4.2) False Negative values of Test Case One
Table(4.3) Alarm level values for Student user class
Table(4.4) Alarm level values for Employee user class
Table(4.5) Alarm level values for Visitor user class
Table(4.6) Time and Memory consumption

List of Abbreviations

ACK Acknowledgment

ACL Access Control List

AFS Andrew File System

API Application Programming Interface

CARDS A Distributed System for Detecting Coordinated Attacks

CRC Cyclical Redundancy Check

DFS Distributed File System

DIDS Distributed-based Intrusion Detection System

EMERALD Event Monitoring Enabling Responses to Anomalous Live Disturbances

FMS File Monitoring System

FTP File Transfer Protocol

GA Genetic Algorithm

GrIDS Graph based Intrusion Detection System

HIDS Host-based Intrusion Detection System

HTTP Hypertext Transfer Protocol

ICMP Internet Control Messaging Protocol

ID Intrusion Detection

IDES Intrusion Detection Expert System

IDIOT Intrusion Detection In Our Time

IDS Intrusion Detection System

IFS Internet File System

IGMP Internet Group Management Protocol

IHL Internet Header Length

IP Internet Protocol

ISO International Standardization Organization

LAN Local Area Network

MCCD Microsoft Common Console Document

MMC Microsoft Management Console

MID Multiplex ID

MIDAS Multics Intrusion Detection and Alerting System

MTU Maximum Transmission Unit

NADIR Network Anomaly Detection and Intrusion Reporter

NetBIOS Network Basic Input/Output System

NFS Network File System

NIDS Network-based Intrusion Detection System

NNIDS Network Node Intrusion Detection System

NSM Network Security Monitor

OSI Open Systems Interconnect

PID Process ID

RegDB Registration Database

SMB Server Message Block

SRI Stanford Research Institute

STAT State Transition Analysis Technique

TCP Transmission Control Protocol

TCP/IP Transmission Control Protocol / Internet Protocol

THL Total Header Length

TID Tree ID

TOS Type Of Service

TTL Time To Live

UDP User Datagram Protocol

UID User ID

URG Urgent Pointer

VB Visual Basic

VPN Virtual Private Network

WinSockMsg Window Socket Message

List of Algorithms

Algorithm (3.1) Add Shared Resources Class
Algorithm (3.2) Update Shared Resources Class
Algorithm (3.3) Assemble the Shared Resources into List
Algorithm (3.4) Construct ACL
Algorithm (3.5) Register Process
Algorithm (3.6) Login Process
Algorithm (3.7) Make Share Invisible
Algorithm (3.8) Make Share Visible
Algorithm (3.9) Initialize Socket
Algorithm (3.10) Subclassing Window
Algorithm (3.11) Filtering Network Messages
Algorithm (3.12) Generate Events
Algorithm (3.13) Get Name SMB_COM_162
Algorithm (3.14) Get Path SMB_COM_117
Algorithm (3.15) Add Event to the List of Events
Algorithm (3.16) Check the List of Events
Algorithm (3.17) Get Permission
Algorithm (3.18) Decision Making
Algorithm (3.19) Update Alarm level value
Algorithm (3.20) Check Administrator Authenticity
Algorithm (3.21) Check Registration
Algorithm (3.22) Check Login Process
Algorithm (3.23) Response

List of Figures

Figure(2.1) TCP/IP Model
Figure(2.2) IP header format
Figure(2.3) TCP header format
Figure(2.4) SMB Message format
Figure(2.5) SMB Protocol ID field
Figure(2.6) DOS & OS/2 error code format
Figure(2.7) NT_STATUS error code format
Figure(2.8) NetBIOS over TCP/IP
Figure(2.9) Session Service header format
Figure(2.10) Sniffed segment of TCP/IP
Figure(3.1) FMS Architecture
Figure(3.2) Structure of shared resources in Shared Folder Console
Figure(3.3) Tuple's format for ACL
Figure(3.4) Buffer content
Figure(3.5) Event format
Figure(3.6) NoOfTry List format
Figure(3.7) Alarm rule format
Figure(3.8) ACL format
Figure(4.1) FMS Main frame
Figure(4.2) FMS Setting frame
Figure(4.3) User Shared Resources Configuration frame
Figure(4.4) Configuration ACL frame
Figure(4.5) FMS Register frame
Figure(4.6) Main Control frame
Figure(4.7) Tools menu of Main Control frame
Figure(4.8) Main Control frame with disabled Monitoring menu
Figure(4.9) Tools menu after add FMS to start up menu
Figure(4.10) FMS Client subsystem icon
Figure(4.11) Monitoring menu of Main Control frame
Figure(4.12) How to stop monitoring
Figure(4.13) Help menu on Main Control frame

Figure(4.14) About message
Figure(4.15) Administrator Access frame
Figure(4.16) Administrator Main Control frame
Figure(4.17) Administrator Configuration frame
Figure(4.18) Clients' shared resources lists frame
Figure(4.19) Administrator Set Permission frame
Figure(4.20) Send File to Client subsystem frame
Figure(4.21) Configuration RegDB frame
Figure(4.22) Employees Configuration frame
Figure(4.23) Students Configuration frame with B.Sc. student
Figure(4.24) Students Configuration frame with M.Sc. student
Figure(4.25) Administrator Monitoring frame
Figure(4.26) Offline Messages frame
Figure(4.27) Users Profiles frame
Figure(4.28) Users Registration Profiles frame
Figure(4.29) User Activities frame
Figure(4.30) Administrator Response frame

 بسم االله الرحمن الرحيم

ْيرفع َ ْ ُالله َ َالذين َّ َّ
ُآمنوا ِ ْمنكم َ ُ ْ

َوالذين ِ َّ َ
ُأوتوا ِ ُ

َالعلم ْ ْ
ٍدرجات ِ

َ َ ُوالله َ َّ َبما َ َتعملون ِ ُ َ ْ ٌخبير َ َ
ِ

 صدق االله العظيم

)١١(ادلةأ

122

[Abr01] Wanderley J. Abren, "NIDS on Mass Parallel Processing Architecture", Jr,

Phrack 57, 2001.

[And80] James. P. Anderson, "Computer Security Threat Monitoring and

Surveillance", Technical Report Contra-ct 79F26400, Anderson Co., Box 42,

Fort Washington, PA, 19034, USA, April 1980.

[And98] R. Anderson and A. Khattak, "The Use of Information Retrieval Techniques

for Intrusion Detection", In Proc. of the 1st International Workshop on the

Recent Advances in Intrusion Detection (RAID), Louvain-la-Neuve, Belgium,

September 1998, pp. 441-448.

[Axe98] S. Axelsson, "Research in Intrusion Detection Systems: A Survey", TR: 98-

17, Department of Computer Engineering, Chalmers University of

Technology, Goteborg, Sweden, 1998.

[Bac00] Rebecca Bace and Peter Mell, "Intrusion Detection Systems", National

Institute of Standards and Technology, NIST Special Publication on Intrusion

Detection System, 2000.

http://csrc.nist.gov/publications/nistpubs/800-31/sp800-31.pdf

[Bar98] Joseph Barrus and Neil C. Rowe, "A Distributed Autonomous-Agent

Network-Intrusion Detection and Response System", In Proc. of the 1998

Command and Control Research and Technology Symposium, Monterey CA,

June-July 1998, pp. 1-12.

[BEn02] James Fell BEng, "Combination of Misuse and Anomaly Network Intrusion

Detection Systems", Kaleton Internet, Unit 205, 57 Great George Street,

Leeds, LS1 3AJ, United Kingdom, March 2002.

 http://www.kaleton.com/infosec/idspaper.html

http://csrc.nist.gov/publications/nistpubs/800-31/sp800-31.pdf
http://www.kaleton.com/infosec/idspaper.html

123

[Bur03] Daniel J. Burroughs, Linda F. Wilson, and George V. Cybenko, "Analysis of

Distributed Intrusion Detection Systems Using Bayesian Methods", Thayer

School of Engineering, Dartmouth College, Hanover, NH 03755, 2003.

[Che96] S. Chen, S. Cheung, R. Crawford, M. Dilger, J. Frank, J. Hoagland, K. Levitt,

C. Wee, R. Yip, and D. Zerkle, "GrIDS - A Graph Based Intrusion Detection

System for Large Networks", In Proc. of the 19th National Information

Systems Security Conference, October 1996, pp. 361-370.

[Cro94] M. Crosbie and E. Spafford, "Defending a Computer System using -

Autonomous Agents", Technical Report No. 95-022, COAST Laboratory,

Department of Computer Sciences, Purdue University, 1994.

[Das99] Luiz A. DaSilva, "Network Management paper", Center for Wireless

Telecommunication, Virginia Polytechnic Institute and State University,

1999.

http://www.ee.vt.edu/~prangapr/documants/rangaprabhu-Qos_paper.doc

[Dav04] Joseph Davies, "TCP/IP Fundamentals for Microsoft Windows", Online

Book, Technical Writing for Microsoft Corporation, Published in November

2004 and Updated in January 2007.

http://technet.microsoft.com/en-us/library/bb727013.aspx

[Den87] D. Denning, "An Intrusion-Detection Model", IEEE Transactions on Software

Engineering, 13(2):222-232, 1987.

[Dul98] Emmett Dulaney, "MCSE FAST TRACK – TCP/IP", Book, New Riders

Publishing, First Edition, September 1998.

[Edm00] Edmund W., "Network Monitoring fundamentals and standards report",

College of Engineering and Technology of Ohio University, 2000.

http://www.cis.ohio-state.edu/~jain/cis788-97/net-monitoring/index.htm

http://www.ee.vt.edu/~prangapr/documants/rangaprabhu-Qos_paper.doc
http://technet.microsoft.com/en-us/library/bb727013.aspx
http://www.cis.ohio-state.edu/~jain/cis788-97/net-monitoring/index.htm

124

[End04] Carl Endorf, Eugene Schultz, and Jim Mellander, "Intrusion Detection &

Prevention", Book, published by McGraw-Hill, March 2004.

[Ham06] Lawrence R. Halme and R. Kenneth Bauer, "[Intrusion Detection FAQ]

AINT Misbehaving: A Taxonomy of Anti-Intrusion Techniques", Arca

Systems, Inc., 2540 North First St., Suite 301, San Jose, CA 95131-1016, May

2006. http://www.sans.org

[Heb90] T. Heberlein, G. Dias, K. Levitt, B. Mukherjee, J. Wood, and D. Wolber, "A

Network Security Monitor", In Proc. of the IEEE Symposium on Research in

Security and Privacy, 1990, pp. 296-304.

[Her04] Christopher R. Hertel, "Implementing CIFS", Online Book, 2004.

http://ubiqx.org/cifs

[Hoc93] J. Hochberg, K. Jackson, C. Stallings, J. McClary, D. Dubois, and J. Ford,

"NADIR: An Automated System for Detecting Network Intrusion and

Misuse", Computers & Security, Elsevier Science Publishers, Volume 12,

235-248, May 1993.

[Isa04] Richard C. Isaacson, "Small Environment Network Intrusion Detection",

Paper, 2004. http://www.beldurnik.com

[Jac91] K. Jackson, D. Dubois, and C. Stallings, "An Expert System Application for

Network Intrusion Detection", In Proc. of the 14th National Computer

Security Conference, Washington, D.C., October 1-4, 1991, pp. 215-225.

[Jai02] Manish Jain, "Networking Complete: Second Edition", Book was Published

for BPB Publications, B-14, Connaught Place New Delhi-110001, 2002.

[Jou97] F. Jou, F. Gong, C. Sargor, S. Wu, and C. Rance, "Architecture Design of a

Scalable Intrusion Detection System for the Emerging Network

http://www.sans.org
http://ubiqx.org/cifs
http://www.beldurnik.com

125

Infrastructure", Technical Report CDRL A005, Department of Computer

Science, North Carolina State University, 1997.

[Jou00] Jou, Y., Gong, F., Sargor, C., Wu, X., Wu, S., Chang, H., and Wang, F.,

"Design and Implementation of a Scalable Intrusion Detection System for

the Protection of Network Infrastructure", In DARPA Information

Survivability Conference and Exposition, January 2000.

[Kum94] S. Kumar and E. Spafford, "An Application of Pattern Matching in

Intrusion Detection", Technical Report CSD- TR-94-013, The COAST

Project, Department of Computer Sciences, Purdue University, 1994.

http://citeseer.ist.psu.edu/kumar94application.html

[Kum95] Sandeep Kumar, "Classification and Detection of Computer Intrusions",

Department of Computer Sciences, Purdue University, Ph.D. Dissertation,

1995.

[Lun88] T. Lunt, R. Jagannathan, R. Lee, S. Listgarten, D. Edwards, P. Neumann, H.

Javitz, and A. Valdes, "IDES: The Enhanced Prototype. A Real-Time

Intrusion Detection System", Technical Report SRI Project 4185-010, SRI-

CSL-88-12, Computer Science Laboratory, SRI International, 1988.

[Lyd04] Andrew Lydon, "Compilation for Intrusion Detection Systems ", Master

Thesis of Science, College of Engineering and Technology of Ohio

University, March 2004.

[Mar02] Kelly Martin, "Security Focus, http://www.securityfocus.com", 2002.

http://www.securityfocus.com/infocus/1220

[Mas03] Gaia Maselli, Luca Deri, and Stefano Suin, "Design and Implementation of

an Anomaly Detection System: an Empirical Approach", Centro Serra, Pisa

University, Pisa, Italy, 2003.

http://citeseer.ist.psu.edu/kumar94application.html
http://www.securityfocus.com
http://www.securityfocus.com/infocus/1220

126

[Mic03] Microsoft, "How TCP/IP Works", March 2003.

http://technet2.microsoft.com/WindowsServer/en/library/3a9b874b-188a-

4352-b542-27f433db07b01033.mspx?mfr=true

[Mic04] Microsoft, "CIFS Packet Formats", 2004.

http://msdn2.microsoft.com/en-us/library/aa302213.aspx

[Moo02] Andrew Moore, James Hall, Christian Kreibich, Euan Harris, and Ian Pratt,

"Architecture of a Network Monitor", University of Cambridge Computer

Laboratory, JJ Thomson Avenue, Cambridge CB3 0FD, United Kingdom,

2002.

[Muk94] Biswanath Mukherjee, Todd L. Heberlein, and Karl N. Levitt, "Network

Intrusion Detection", IEEE Network, 8(3):26-41, May-June 1994.

[Ory06] Oryspayev D. Oryspayuli, "What intrusion detection approaches work well if

only TCP/IP packet header information is available?", Master Thesis,

Faculty of Electrical Engineering, Mathematics and Computer Science,

University of Twente, Netherlands, August 2006.

[Pri97] Katherine E. Price, "Host-Based Misuse Detection and Conventional

Operating Systems' Audit Data Collection", Master Thesis of Science,

Purdue University, December 1997.

[Por97] P. Porras and P. Nenmann, "EMERALD: Event Monitoring Enabling

Responses to Anomalous Live Disturbances", In Proc. of the Nineteenth

National Computer Security Conference, Baltimore, Maryland, October 22-

25, 1997, pp. 353-365.

[Ran01] Marcus J. Ranum. "Experiences Benchmarking Intrusion Detection System",

NFR Security Technical Publication, December 2001. http://www.nfr.com

[RFC87] NetBIOS Working Group RFC 1002 (Request For Comment), "Protocol

http://technet2.microsoft.com/WindowsServer/en/library/3a9b874b-188a
http://msdn2.microsoft.com/en-us/library/aa302213.aspx
http://www.nfr.com

127

Standard for a NetBIOS Service on a TCP/IP Transport Detailed

Specification", March 1987. ftp://ftp.rfc-editor.org/in-notes/rfc1002.txt

[Roe02] Martin Roesch, "Snort Users Manual: Snort Release: 1.9.x", 26th, depends

on, Snort Documentations, Online, Internet", April 2002. http://www.snort.org

[Seb88] M. Sebring, E. Shellhouse, M. Hanna, and A. Whitehurst, "Expert Systems in

Intrusion Detection: A Case Study", In Proc. of the 11th National Computer

Security Conference, Baltimore, Maryland, October 17-20, 1988, pp. 74-81.

[Sha02] Richard Shape, "Just what is SMB?: V1.2", 8 October 2002.

 http://samba.anu.edu.au/cifs/docs/what-is-smb.html

[She01] Tom Sheldon, "Encyclopedia of networking and Telecommunications", Pan

American and International Copyright Conventions, 2001.

http://www.linktionary.com/f/file_systems.html

[Sma88] S. Smaha, "Haystack: An Intrusion Detection System" , In Fourth Aerospace

Computer Security Applications Conference, Tracor Applied Science Inc.,

Austin, Texas, December 1988, pp. 37-44.

[Smi02] Rasheda Smith, "Network-Based Intrusion Detection Using Neural

Networks", Department of Computer Science, Rensselaer Polytechnic

Institute, Troy, New York 12180-3590, 2002.

[Sna91] Steven R. Snapp, James Brentano, Gihan V. Dias, Terrance L. Goan, Todd

L. Heberlein, Che-Lin Ho, Karl N. Levitt, Biswanath Mukherjee, Stephen

E. Smaha, Tim Grance, Daniel M. Teal, and Doug Mansur, "DIDS

(Distributed Intrusion Detection System) - Motivation, Architecture, and An

Early Prototype", Computer Security Laboratory, Division of Computer

Science, University of California Davis, Davis, California 95616, 1991.

ftp://ftp.rfc-editor.org/in-notes/rfc1002.txt
http://www.snort.org
http://samba.anu.edu.au/cifs/docs/what-is-smb.html
http://www.linktionary.com/f/file_systems.html

128

[Sna92] S. Snapp, S. Smaha, D. Teal, and T. Grance, "The DIDS (Distributed

Intrusion Detection System) prototype". In Proc. of the Summer USENEX

Conference, San Antonio, Texas, June 8-12, 1992, pp. 227-233.

[Sol04] Rene Soltwisch and Dieter Hogrefe, "A Survey on Network Security - 2004",

Institute for Informatics, George-August-University Contingent, Germany,

ISSN 1611-1044, Number IFI-TB-2004–04, October 2004.

http://www.ifi.informatik.uni-goettingen.de

[Spa00] E. Spafford and D. Zamboni, "Data collection mechanisms for intrusion

detection systems", CERIAS Technical Report, Center for Education and

Research in Information Assurance and Security, 1315 Recitation Building,

Purdue University, West Lafayette, In 47907-1315, June 2000.

[Vac89] H. Vaccaro and G. Liepins, "Detection of Anomalous Computer Session

Activity", In Proc. of the 1989 IEEE Symposium on Security and Privacy,

Oakland, California, May 1-3, 1989, pp. 280-289.

[Vig97] Giovanni Vigna and Richard A. Kemmerer, "NetSTAT: A Network-based

Intrusion Detection System", Reliable Software Group, Department of

Computer Science, University of California Santa Barbara, 1997.

[Wei04] Wei Li, "Using Genetic Algorithm for Network Intrusion Detection",

Department of Computer Science and Engineering, Mississippi State,

University, Mississippi State, MS 39762, 2004.

[Yan00] Jiahai Yang, Peng Ning, X. Sean Wang, and Sushil Jajodia, "CARDS: A

Distributed System for Detecting Coordinated Attacks", In Proc. of Sixteenth

Annual Working Conference on Information Security (SEC 2000), S. Qing

and J. H. P. Elof, Eds., Kluwer Academic, August 2000, pp. 171-180.

[You01] Eric Young, "CIFS Explained", Code FX, Software solutions for applications

and appliances, 4545 Campus Ave., California, San Diego, CA 92116, 2001.

 http://www.codefx.com

http://www.ifi.informatik.uni-goettingen.de
http://www.codefx.com

129

 [Zac01] Craig Zacker, "Network+ Certification Training Kit: Second Edition",

published by Microsoft Press, A Division of Microsoft Corporation, One

Microsoft way, 2001.

[Zie04] Marek P. Zielinski, "Applying Mobile Agents in an Immune-System-Based

Intrusion Detection System", Master Thesis, Computer Science, University of

South Africa, November 2004.

List of Contents

Chapter One: Intrusion Detection

1.1 Introduction---(1)
1.2 Taxonomy of Intrusion Detection Systems--------------------------------(2)

1.2.1 Data Collection Mechanisms--(2)
A. Host-Based Intrusion Detection Systems----------------------------(2)
B. Network-Based Intrusion Detection Systems------------------------(4)
C. Hybrid Intrusion Detection System-----------------------------------(6)
D. Network-Node Intrusion Detection Systems-------------------------(6)

1.2.2 Data Processing--(7)
A. Distributed-Based Intrusion Detection System---------------------(7)
B. Centralized-Based Intrusion Detection System---------------------(8)

1.2.3 Analyze Strategy---(8)
A. Misuse-Intrusion Detection System-----------------------------------(8)
B. Anomaly-Intrusion Detection System---------------------------------(9)

1.3 Literature Survey --(10)
1.4 Aim of Thesis--(15)
1.5 Thesis Layout--(15)

Chapter Two: Network Monitoring

2.1 Introduction--(17)
2.2 Network Categories---(17)

2.2.1 Server-Based Networks---(17)
2.2.2 Peer Networks--(18)
2.2.3 Hybrid Networks---(18)

2.3 Network Protocol Model---(18)
2.4 Server Message Block Protocol (SMB) --------------------------------(25)

2.4.1 SMB Header--(27)
A. SMB Header Fields--(27)
B. SMB Command Field--(29)

2.4.2 Parameters Block--(35)
2.4.3 Data Block--(36)

2.5 NetBIOS Over TCP/IP--(36)
2.6 Network Monitoring for Intrusion Detection--------------------------(39)

2.6.1 Network Monitoring--(39)
2.6.2 Traffic Analysis--(40)

2.7 Measuring the Efficiency of an Intrusion Detection System---------(41)

Chapter Three: System Design and Architecture

3.1 Introduction---(42)
3.2 Design Considerations and Requirements------------------------------(42)
3.3 FMS Architecture---(43)

3.3.1 Client Subsystem---(47)
 A. Initialization Module ---(47)
B. User Authentication Module---(53)

1. Registration Unit---(53)
2. Login Unit---(54)

C. Sniffing Module--(57)
1. Initialize Socket Unit---(58)
2. Hook the window – Subclass Unit--------------------------------(59)
3. Filter Unit--(61)

D. Detection Module---(70)
1. Aggregation Unit--(71)
2. Decision Making Unit--(74)

E. Alarm Module---(79)
3.3.2 Administrator subsystem--(81)

A. Check Administrator Authority Module------------------------------(81)
B. Initialization Module--(82)

1. Permission Unit---(82)
2. Users Information Unit--(84)
3. Registration Database Unit---(84)

C. Monitoring Module--(86)
1. Alarm Messages Unit--(86)
2. Users Profiles Unit---(87)

D. Response Module--(87)

Chapter Four: FMS Interfaces and Evaluation

4.1 FMS Interfaces---(89)
4.1.1 FMS Client Subsystem Interfaces----------------------------------(89)

A. Initialization of FMS Client subsystem----------------------------(90)
B. Registering into FMS---(92)
C. Login into FMS--(94)

D. Controlling FMS---(94)
4.1.2 FMS Administrator Subsystem Interfaces-------------------------(98)

A. Configuration FMS Administrator subsystem---------------------(99)
B. Monitoring the Events---(104)
C. Response to Monitoring---(108)

4.2 FMS Evaluation---(110)
4.2.1 Accuracy---(110)
4.2.2 Time and Memory Consumption----------------------------------(116)

Chapter Five: Conclusions and Suggestions for Future Work

5.1 Conclusion ---(119)
5.2 Future Work--(121)

References--(122)

Appendix (A): Most Common SMB Commands----------------- (1-A)

 جمھوریة العراق
 وزارة التعلیم العالي و البحث العلمي

 جامعة النھرین
 كلیة العلوم

تعقب المتطفلين نوع عقدة نظام
 شبكة

جامعة النھرین كجزء من متطلبات نیل شھادة ، رسالة مقدمة الى كلیة العلوم
 الماجستیر في علوم الحاسوب

 من قبل

 سليمان سعدون فوزي

)٢٠٠٤ بكالوریوس(

 ةالمشرف

 ي یـوســفــعبـیــر متـ. د

 ١٤٢٩ ربیع الأول ٢٠٠٨ نیسان

Republic of Iraq
Ministry of Higher Education and scientific research
Al-Nahrain University
College of Science

Network Node Intrusion Detection
System

A Thesis
Submitted to the College of Science, Al-Nahrain University

In Partial Fulfillment of the Requirements for
The Degree of Master of Science in Computer Science

By

Suleiman Sa'adon Fawzy

(B.Sc. 2004)

Supervisor

Dr. Abeer M. Yousif

April 2008 Rabee' Al-Awwal 1429

 الخلاصة

بالإس تعمالِ المتزای دِ و. م تْ تقنی اتُ ش بكةِ الحاس وبِ ب سرعة ف ي العق ود القلیل ة الماض یة نَ

، أو الخاص ة للتطبیق اتِ الحرج ةِ)Network Computers – ش بكة حاس بات (للحاس باتِ المُ شَبَّكةِ

 أنظم ة تعقّ ب ،اھذبالأنظمةِ، والانواع من إلى ھذه خطر وأُصبحتْ تھدید أزدات حاسوبِ التدخلات

 .المنظماتِمن ر یكثلل ة التحتییةالأمنِالبنیة المتطفلین أَصْبَحتْ إضافةً ضروریةً إلى

ال ذي) NNIDS(عق دةِ ش بكةِ نوعتُقدّمُ ھذه الإطروحةِ تصمیمَ وتطبیقَ نظام تعقّب المتطفلین

المخت صر لنظ امِ مراقب ة (FMSنَ نّ اس مَ النظ امِ المُقتَ رَحِ مُختَ اَرُ لِك ي یَكُ و أ .IPv4 برتوك ول دعمِی

نظ ام م ن ن وع المصادرِ الم شتركةِ المسلطة على الھجماتِ مجموعة من یَكتشفُ ھذا النظام .)الملفِ

مطابقة ال سلوك الطبیع ي ستند على على قواعد ت النظام المقترحیحوي.)Filing System (ملفاتال

 .ةخصائصِ أحداثِ المستعملین المُكتَشَفللنظام مع المُعَرَّفِ

 التي تُمیّزُ الم ستعملین تسجیل الدخولوحدة : المقترحیتكون منھا النظام ھناك وحدات أساسیة

ال شبكة وتُت رجمُ رُزَمَ ل تقطشْمُّ الت ي تَال وح دةَ الم صادرِ الم شتركةِ، ال ىوللوص با لھ مسَ محَال ذین

أي منھ ا كشفِ التي تُحلّلُ قائم ةَ الأح داثِ وتُق رّرُ ال، وحدة الخاصة بھاالأحداثِبوتُولّدُ قائمةَ المنقولة

 تحدی د التي تُولّدُ رسائلَ إنذار إل ى الم دیرِ ف ي ح الاتِ الأنذار، ووحدة اً ومشكوكً فیھ مریبنشاطَ یمثل

 .الھجماتِ

 ھجم ات عِ دّة . الدق ھ ، الوق ت ، واس تھلاك ال ذاكرة :ت م تقی یم النظ ام وفق ا لثلاث ة عوام ل

أغلب ھجماتِ نظ امِ الملف ات بأنّ بیَّنتالإختبارَنتائج . لنظامِ المُقتَرَحِ لإختِباره أُرسلتْ إلى ا صطنعةمُ

 . الأیجابیة والسلبیةالأخطاءقیم من مقبولة نِسَبقترح بیُمْكِنُ أَنْ یُكتَشفَ بالنظامِ المُ

	Chapter Five.pdf
	Chapter Four.pdf
	Chapter One.pdf
	Chapter Three.pdf
	Chapter Two.pdf
	Abstract.pdf
	Acknowledgment.pdf
	Appendix A.pdf
	Certifications.pdf
	dedication.pdf
	Liat of Tables.pdf
	List of Abbreviations.pdf
	List of Algorithms.pdf
	List of Figures.pdf
	quran.pdf
	References.pdf
	Table of Contents.pdf
	title_arbic.pdf
	title_english.pdf
	الخلاصة.pdf

