
CHAPTER FIVE

Conclusions and Suggestions

5.1 Conclusions

During the design, implementation and test phases of this research

project, a lot of remarks have been issued; the following are some of them:

1. The proposed system concerned with monitoring the shared resource

sharing, this requires continual monitoring of the ports that involved in

the resource sharing processes. In this thesis it had been shown that

ports 139 NetBIOS and 445, (which are part of the ports used in TCP/IP

protocol suite) are indicated for accessing shared files.

2. Monitoring ports 139 NetBIOS and 445 requires that the process of

climbing the stack of TCP/IP protocol suite begun from the internet

layer, that is by capturing the network traffic in that layer (i.e. IP

packets).

3. Not all the captured packets are relevant to filing access events, so a

packet filtering system is needed to filter out the unnecessary packets.

Packets filtering is applied on the captured packets to filter only those

involved with ports 139 and 445. Checking the ports in this work is a

sort of monitoring that based of signature type (specifically, the port

signature).

4. Not all packets belong to ports 139 and 445 are needed in monitoring

unit, only some of them are used to serve the monitoring process in the

proposed system.

5. The number of relevant packets depends on the nature of the user access

(i.e., if a user’s access to network resources increased, then the number

of transmitted packets will increase also, and if the access type is copy

Chapter Five Conclusion and Suggestions

 101

and deal with large files or folders, then the number of associated

packets will increase).

6. Indexing a large number of folders and files takes a significant space in

memory, and it needs few minutes in the initialization stage. Since, the

monitoring unit concerns only with shared resources, so it is necessary

to index only the shared folders and files to reduce the space and time

requirements of the indexing process.

5.2 Suggestions for Future Work

In the following some suggestions for future work are given to

enhance the proposed monitoring and make it more effective:

1. Develop the network monitoring system to be capable to make

defense against threats directed to filing system, by using back up

mechanism to retrieve the deleted or modified files.

2. Develop the network monitoring system to be capable to prevent the

filing system from unauthorized users’ accesses (for example

imposing some controls on the attributes of system files and change

their attributes to be read only).

3. Using some dynamic and evolutionary systems to improve the

monitoring process, for example we can use neural network, because

it is capable to be trained on user's actions or commands.

4. Enhance the files indexing system by decreasing the required time

for indexing all folders.

5. Develop the network monitoring system to be capable to retrieve any

report for any user at any time, by design and build an archive

system.

CHAPTER FOUR

PERFORMANCE TEST RESULTS

4.1 Introduction

This chapter is dedicated to present the results of the conducted tests

to evaluate the performance of the proposed monitoring unit. The tests have

been performed to evaluate the performance of monitoring for all

considered types of file/folder access (i.e., Read, Write, Copy, and Delete

accesses). The measure used in these tests is the required time for detecting

and assigning each access when the host storage media are loaded with

different numbers of files and folders.

Also, in this chapter the results of testing the performance of

administration unit’s components (i.e., index filing system and rules editor)

are presented.

4.2 The Test Results of Monitoring Unit

In this section, the number of captured packets per minutes are

measured to show the strength of the implemented filtering mechanism.

When clients’ machine turn on and start establishing connections

with server, the monitoring unit should start capturing all the incoming to

server, some test conducted for few minutes to be as examples, to show the

ratio between the relevant packets to all transmitted packets . In Table (4.1),

the field “monitoring time” means the run time of the established

monitoring unit, the field “Total packets number” refers to the number of

packets that captured during the monitoring time, while the field “relevant

packets number” indicate for the number of packets passed through five

Chapter Four Performance Test Results

 88

modules’ of the established monitoring unit, they are relevant to the

proposed monitoring system.

As shown in Table (4.1), the monitoring time was taken around to 5

minutes, while the total number of all captured packets was noticed varies

in a wide range packets because it depends on the number of logged on

users using network resources.

Table (4.1) The relevant number of packets and the corresponding total

number of transmitted packets

Monitored Time

(minute)

Total Number of

Captured Packets(packet)

Relevant Packets Number

(packet)

4.83 3969 16

5.12 1348152 5

4.80 7267 35

5.11 3429 42

In Table (4.1), one can seen that the number of captured relevant

packets doesn’t depend on total number of captured packets, for example,

when the total number of captured packets is 1348152 and the relevant

packets are 5 (% 0.0004). In other example, the total number of captured

packets is 3429 while the relevant packets are 42 (% 1.2). These small

relative ratios of relevant packets refers to the importance of packet’s

filtering stage that applied on the captured packets, this reduce can led to

stable performance of other system’s modules.

4.2.1 Testing Versus Read and Write Accesses

Read access event occur when a client tries to access some shared

folders or files. While the Write access even occur when a client tries to

Chapter Four Performance Test Results

 89

access one of the storage network resources to write on any file, even if

write access is denied by the server machine.

When a client wants to open any file from shared resources, all

folders exist in area defined by file’s path must be accessed by that user.

The proposed monitoring unit refers to Read access when a client had

opened these folders, while when he opened the file and tries to update, the

proposed monitoring unit registers a write access event was occurred.

The established monitoring unit was implemented on two different

machines. Table (4.2) shows the properties of these machines, while Table

(4.3) shows the test results of Read and Writes accesses to network

resources.

Table (4.2) The hardware features of the used two d ifferent machine

Machine Name Machine Features

Computer 1 Intel (R), Celeron (R), 1.4 GHz processor, 480 MB RAM

Computer 2 Intel (R), Celeron (R), 1.73 GHz processor, 504 MB RAM

In Table (4.3) three keys are considered; type of file, size of file, and

the time. Time field refers to required time in applies five modules’

monitoring unit on some packets for read and write access.

Table (4.3) The test results of READ & WRITE access

File

Name

File

Type

File

Size

Time in Computer 1

(milliseconds)

Time in Computer 2

(milliseconds)

Read Write Copy Delete Read Write Copy Delete

File1 HTML 2 KB 1 3 0* 0* 16 0* 0* 0*

File2 HTML 73KB 0* 16 0* 0* 3 0* 0* 0*

File3 PDF 421KB 1 0* 0* 0* 0* 0* 0* 0*

* zero (0) indicate the measured time is not significant (it is less than 0.5 millisecond)

Chapter Four Performance Test Results

 90

4.2.2 The Test Results of Copy Access

This section illustrates the evaluation of time that required to apply

the five modules of monitoring unit on copy access case by such a client.

As shown in Table (4.4), computer 1 and computer 2 are two different

machines and their properties are listed in Table (4.2).

The monitoring unit doesn’t need take a significant time if the copied

folder is empty or has a small size, or contains small amount of subfolders

and files. But if the number of copied subfolders and files is high or their

sizes are large then the time required for applying copy action will

increased.

Table (4.4) The results of tests conducted on COPY access

Folder

Name

Folder
details

(subfolders
/ files)

Folder

Size

Time in Computer 1

(milliseconds)

Time in Computer 2

(milliseconds)

Read Write Copy Delete Read Write Copy Delete

Folder1 Empty 0 0* 0* 0* 0* 0* 0* 0* 0*

Folder2 0/1 1.5 MB 0* 0* 0* 0* 0* 0* 0* 0*

Folder3 1/111 105MB 0* 0* 16 0* 0* 0* 16 0*

Folder4 3200/439 294MB 0* 0* 15 0* 0* 0* 16 0*

Folder5 2/22 1.3GB 0* 0* 31 0* 0* 0* 15 0*

Folder6 1/48 1.7 GB 0* 0* 94 0* 0* 0* 16 0*

* zero (0) indicate the measured time is not significant (it is less than 0.5 millisecond)

4.2.3 The Test Results of Delete Access

Table (4.5) shows the time test result for delete access, the properties

of computer 1 and computer 2 are shows in Table (4.2).

In delete access, the five modules’ of the monitoring unit needed 1-2

milliseconds when applied on computer 2, while they needed more time

when they applied on computer 1.

Chapter Four Performance Test Results

 91

Table (4.5) The test results of DELETE access

Folder

Name

Detail

Sub/

files

File Size

Time in Computer 1

(milliseconds)

Time in Computer 2

(milliseconds)

Read Write Copy Delete Read Write Copy Delete

Folder1 Empty 0 0* 0* 0* 0* 0* 0* 0* 0*

Folder2 0/1 1.5 MB 0* 0* 0* 0* 0* 0* 0* 0*

Folder3 0/195 238MB 0* 0* 0* 16 0* 0* 0* 2

Folder4 100/790 MB 0* 0* 0* 2 0* 0* 0* 1

File 1 - 4.7 MB 0* 0* 0* 0* 0* 0* 0* 0*

File 2 - 56.8 MB 0* 0* 0* 0* 0* 0* 0* 0*

* zero (0) indicate the measured time is not significant (it is less than 0.5 millisecond)

4.3 The Test Results of Administration Unit

In this section the results of the conducted tests to evaluate the

performance of the components of administration unit’s (i.e., filing

indexing module and rules editor modules) are discussed.

The administration unit is installed and works on server machine.

Therefore, in the test four different machines have been used as server

machine, the properties of these machines are illustrated in Table (4.6).

Table (4.6) The hardware features of the used serve r machines

Machine Name Machine Features

Computer 1 Intel (R), Celeron (R), 1.4 GHz processor, 480 MB RAM

Computer 2 Intel (R), Celeron (R), 1.73 GHz processor, 504 MB RAM

Computer 3 Intel (R), Pentium (R), 3.00 GHz processor, 504 MB RAM

Computer 4 Intel (R), Pentium (R), 3.00 GHz processor, 1.9 GB RAM

4.3.1 The Test Results of Files Indexing Module

The files indexing module was used in three ways: first, this module

was applied for indexing all folders and files which are exist on the shared

Chapter Four Performance Test Results

 92

storage resources of the machine. Second, it was used for indexing folders

only and ignores files. Third, this module was used for indexing the shared

folders only and ignores other folders.

The file indexing module was applied on four different machines,

their names and HW features are listed in Table (4.6). Table (4.7) shows

the number of folders and files exit on the hard disk of each server machine.

Also, this table illustrates the time taken by three runs: (1) indexing all

folders and files, (2) indexing folders only, and, (3) indexing the shared

folders only. The needed time to index folders is much less than the time

needed to index folders and files, while the indexing of shared folders had

elapsed the shortest time.

The volume of the overhead (i.e., indexing information) needed for

indexing all folders was 16.3 MB, while for indexing all files was 81.5 MB.

Table (4.7) The test result of index filing module

Machine

Name

Index

Types

Folders

 Number

Files

 Number

Time

(minutes)

Size

(MB)

Computer 1 Folders & Files 6596 85817 3.25 97.8

Computer 1 Folders 6596 - 0.17 16.3

Computer 1 Shared Folders 267 - 0.020 16.3

Computer 2 Folders & Files 3553 58862 1.43 97.8

Computer 2 Folders 3553 - 0.49 16.3

Computer 2 Shared Folders 9 - 0.07 16.3

Computer 3 Folders & Files 4825 49587 2.08 97.8

Computer 3 Folders 4825 - 0.52 16.3

Computer 3 Shared Folders 10 - 0.051 16.3

Computer 4 Folders & Files 4125 50136 1.90 97.8

Computer 4 Folders 4125 - 0.18 16.3

Computer 4 Shared Folders 15 - 0.0002 16.3

Chapter Four Performance Test Results

 93

4.3.2 The Test Results of the Rules Editor Module

Rules editor module consists of two main sub modules (i.e., add

rules and modify rules). Table (4.8) shows the test results of the “add rules”

sub module. This sub module was applied on the four server machine in

two different ways, in the first way it was applied on all folders exist in the

hard disk, while in the second test it was applied on the shared folders only.

In the two cases, the rules editor modules (add rules, modify rules) had

consumed 15.3 MB from size of server’s hard disk to registered the

required overhead information.

Table (4.8) The test results of add rules module

Machine

Name

Folders

Types

Folders

 Number

Time

 (minutes)

Computer 1 All folders 6596 3.49

Computer 1 Shared folders 267 0.016

Computer 2 All folders 3553 1.48

Computer 2 Shared folder 9 0.010

Computer 3 All folders 3561 1.26

Computer 3 Shared folder 10 0.018

Computer 4 All folders 4125 3.11

Computer 4 Shared folder 15 0.003

The clients always tries to access the shared documents, but the

number of shared documents varies from client to another, for example the

administrator may permit a client to access some folders, while he may

permit all folders to other clients.

Table (4.9) shows the test results of the “modify rules” sub module.

One can see that this sub module was applied on the four server machines

in two different ways, like “add rules” sub module.

Chapter Four Performance Test Results

 94

Table (4.9) The test results of “modify rules” modu le

Machine

Name

Folders

Types

Folders

 Number

Time

 (minutes)

Computer 1 All folders 6596 2.662

Computer 1 Shared folders 267 0.014

Computer 2 All folders 3553 0.90

Computer 2 Shared folder 9 0.011

Computer 3 All folders 4825 0.92

Computer 3 Shared folder 10 0.026

Computer 4 All folders 4125 3.1

Computer 4 Shared folder 15 0.004

From test results listed in Tables (4.8) and (4.9), it can be noticed

that the time required to scan the list of shared folders is much less than the

time required scanning the list of all folders because the number of shared

folders is less than the number of all folders. These results indicate the

importance of applying the administration unit to manage the lists of shared

modules and files exclusively, in order to minimize the overall

management time taken by the administration unit.

4.4 Final Reports

Figure (4.1) shows the final report of user1. This report contains

source IP and destination IP which are extracted from IP header, source

port and destination port extracted from TCP header, type of access

extracted from CIFS header, file name and file path extracted from

NTCreate_andX and Deletedirectory headers. Time and Date fields

represent the time and date of user access, from which the administrator

know when users are access to the shared resources. The packet database

Chapter Four Performance Test Results

 95

for each client compared with rules database to decide which access is

allowed and which is not. Finally the output illustrated in Permission field.

Figure (4.2) shows the report of user2, while Figure (4.3) shows the

report of user3. Figure (4.4) shows the general report which contains the

accesses of user1, user2 and user3.

Chapter Four Performance Test Results

 96

Chapter Four Performance Test Results

 97

Chapter Four Performance Test Results

 98

Chapter Four Performance Test Results

 99

CHAPTER ONE

GENERAL INTRODUCTION

1.1 Introduction

The world of computers has changed dramatically over the past three

decades. Before twenty-five years ago, most computers were centralized

and managed by data centers, computers were kept in locked rooms and

staffs of people made sure they were carefully managed and physically

secured. Links outside a site were unusual. Computer security threats were

rare, and they were basically concerned with insiders: authorized users,

accounts misuse, theft and vandalism, and so forth. These threats were well

understood and dealt with using standard prevention techniques (like,

computers behind locked doors, and accounting for all resources). While

computing in the 1990's, and after, is radically different. Many systems are

in private offices and labs, and they often managed by individuals or

persons employed outside a computer center. Many systems are connected

into the Internet, and from there around the world.

Security threats are different today. The advisers say "don't write

your password down and put it in your desk" someone may find it. With

world-wide Internet connections, someone could get into such system from

the other side of the world and steal the password in the middle of the night

when the building is locked up. Viruses and worms can be passed from

machine to machine. The Internet allows the electronic equivalent of the

thief who looks for open windows and doors, now a person can check

hundreds of machines for vulnerabilities in a few hours.

System administrators and decision makers have to understand the

security threats that exist, what the risk and cost of a problem would be,

Chapter One General Introduction

 2

and what kind of action they want to take (if any) to prevent and respond to

security threats. [RFC1244]

From a day-to-day perspective, network administrators and operators

want assurance that the equipment they have deployed is behaving properly.

They wish to know when the use of the network changes, requiring new

hardware, or configuration changes on existing hardware. Although this

information may be available from the hardware products themselves,

network monitoring software provides flexibility to the network

administrator and the opportunity to verify that the hardware is reporting

properly. Administrators and operators also want to ensure that their

networks are not being used for nefarious purposes. Network monitoring

provides a window onto network use, possibly revealing malicious

outsiders who have exploited one or more hosts on the network, or

authorized insiders using the network for unauthorized purposes. [HUG06]

At (1990) [SHE07] a network monitoring system called “Network

System Monitor (NSM) “ was developed in University of California. NSM

was established to run on a SUN UNIX workstations. It was the first foray

into monitoring network traffic, which uses traffic data as the primary data

source. Before this time, most intrusion detection systems utilize the

information extracted from operating system audit trails or keystroke

monitors [HER90].

Intrusion Detection Systems (IDS) are an important component to

protect computer systems and networks from abuse. Although intrusion

detection technology is immature and should not be considered as a

complete defense, it can play a significant role in overall security

architecture. When an IDS is properly deployed, it can provide warnings

indicating that a system is under attack, even if the system is not vulnerable

to the specific attack. These warnings can help users alter their

Chapter One General Introduction

 3

installation’s defensive posture to increase resistance to attack. In addition,

an IDS can serve to confirm secure configuration and operation of other

security mechanisms such as firewalls [MCH00].

1.2 Related Work

� Molina 2001 [MOL01]: He had implemented an auditory intrusion

detection system (IDS) which is based on an out-of band approach (i.e.,

using integrity checking system), inside the auditor other IDS can be

implemented. The auditor could sniff the traffic passing by the Ethernet

card and alert the machine when detects some possible network attacks.

To ensure and check the integrity of the file system, two approaches

have been followed; the first approach is to create a secure database,

which is usually composed of hashes of the important files, the second

approach is to create digital signatures of sensitive data (such as

executable files) using public keys.

� Ali 2003 [ALI03]: He had built an intrusion detection system using full

packet monitoring technique to detect both known and new attacks. The

most fundamental elements that need to be examined during traffic

monitoring and analysis are source and destination IP address, TCP and

UDP traffic, ICMP traffic.

� Mustafa 2003 [MUS03]: He had designed a system to detect intrusions

caused by intrudes in network based system, the proposed system

captures packet in the network and analyze them to check if they are

normal or abnormal. The analysis combines anomaly and misuse

Intrusion Detection to detect more kinds of intrusion. Anomaly

detection was done by using back propagation neural network to learn

Chapter One General Introduction

 4

the normal network traffic in order to detect the abnormal traffic.

Misuse detection matches the current traffic with several attack

signatures.

� Viipuri 2004 [VII04]: He had introduced a packet monitoring system

with free packet capture and analysis software. Network traffic was

analyzed in a core network consisting of multiple entry and exit points,

which have been called points of presence (PoP). Each PoP was fitted

with a traffic monitoring device listening on all incoming and outgoing

packets to and from the network.

� Pande 2005 [PAN05]: He had introduced a network monitoring tool,

called PickPacket, that handles the conflicting issues of network

monitoring and privacy through its judicious use. PickPacket has four

components: (1) PickPacket configuration file generator for assisting the

user in setting up the parameters for capturing packets, (2) PickPacket

packet filter for capturing packets, (3) PickPacket post-processor for

analyzing packets, and (4) PickPacket data viewer for showing the

captured data to the user.

� Abed 2006 [ABE06]: He had established a system called ”Low Level

Security” aim to protect NetBIOS by using firewall to deny of all

external incoming requests from unauthorized users that try to access

ports (137 UDP, 138 UDP, 139 TCP) through LAN, such requests may

try to see or damage the private information and at the same time they

may allow the passage of other incoming requests from authorized user.

The proposed system uses packets filtering and firewall technology. The

objective of this proposed NetBIOS firewall system is to protect the

shared resources and information from unauthorized user who wants to

Chapter One General Introduction

 5

see or damages the private information or share information. The system

apply a fixed set of rules on the incoming packet to determine whether

they will be allowed to pass or not, these rules are based on comparing

the IP address and port number of the source and destination with those

authorized IP, and port numbers listed in a table.

� Hughes 2006 [HUG06]: He focused on parsing application streams

using standard parsing methods. Also, he proposed a machine-readable

grammar for specifying stream protocols, and developed a parser

generator to build parsers for network monitors. The proposed grammar

is compatible with the grammar used to describe the existing protocols.

In order to convert the existing specifications to the proposed format the

researcher suggested that a network analyzer should climb the protocol

stack from the physical and transport layers to the application layer.

1.3 Aim of Thesis

The aim of this research is to design and build a network security

monitoring system which monitors all login users in a local area network

and make security evaluation to their access to the network filing system.

Also it is concerned with building a dedicated file indexing system which is

required to check the users’ authentication. Users’ authentication is one of

the more common security mechanisms; it requires defining the allowed

privileges for each user, by which the user can access the network storage

media. These rules are specified by the administrator which has the

privilege to manage the whole system, and receives reports about any

violation issued by one or more of the users. From those reports the

administrator can recognize and assess the intrusion level.

Chapter One General Introduction

 6

1.4 Thesis Layout

The remaining part of this thesis consists of four chapters:

� Chapter Two entitle “Network Protocols and Security“

This chapter is concerned with the definition of network

models, Transport Control Protocol/ Internet Protocol (TCP/IP) suite,

and its important protocols, specifically Server Message Block (SMB)

protocol and Common Internet File System (CIFS) protocol. Also,

some related topics in security and network security are defined. At

the end of this chapter, the filing systems (its types, its access

controls) are given.

� Chapter Three entitle “Network Security Monitoring System

Design ”

This chapter introduces the design and implementation steps

of the proposed network monitoring system. Also in this chapter

the established indexing system for the shared files is presented.

� Chapter Four entitle “Performance Test Results “

This chapter introduces the results of tests to evaluate the

performance of the proposed network monitoring system.

� Chapter Five entitle “Conclusions and Suggestions”

 This chapter introduces the derived conclusions and

suggestions for future works are given.

CHAPTER TWO

NETWORK PROTOCOLS AND SECURITY

2.1 Network Fundamentals

A computer network is an interconnected system of computing

devices that provides shared economical access to computer services.

Networks are important since they provide several benefits (such as

resource sharing, saving money, etc).

Networks can be divided into Local Area Networks (LANs),

Metropolitan Area Networks (MANs), and Wide Area Network (WANs).

Each network type has its own characteristic, technologies, and speeds.

LANs cover a building and operate at high speeds. MANs cover a city (for

example, the cable television system). WANs cover country or continent.

LANs and MANs are unswitched (i.e., do not have routers); WANs are

switched. Networks can be interconnected to form internetworks [TAN03].

Communication between computers in a network can be

accomplished in two important fashions: (1) a broadcast fashion where

systems transmit in general to the media accessible to all other systems,

Figure (2.1) shows the two most common topologies found in a broadcast

networks, and (2) a point-to–point fashion where each system transmits to

 (a) (b)

Fig. (2.1) Broadcast network topologies: (a) Ring, (b) Bus.

Chapter Two Network Protocols and Security

 8

another specific system, Figure (2.2) depicts two other topologies found in

point-to-point networks [FIS00].

(a) (b)

Fig. (2.2) Point-to-Point topologies: (a) Ring, (b) Star.

2.2 Network Models

A Network model is a protocol suite reflects the design or

architecture to accomplished communication between different systems.

Any network model usually consists of layers. Each layer of the model

represents specific functionality [Hel00].

There are two important network models: (1) International Standard

Organization/ Open System Interconnection (ISO/OSI) model and (2)

Transmission Control Protocol/Internet Protocol (TCP/IP) model. The

Protocols associated with ISO/OSI model are rarely used any more while

the protocols of the TCP/IP model are widely used [TAN03]. TCP/IP

works in a very similar manner to OSI model in that it takes a layered

approach to provide network services [Hel00].

The OSI has 7-layers, each layer is build upon the layer below it to

standardize and simplify communication between them. Conceptually, each

layer is designed to provide specific services to the layer above it. This

effectively hides the details of communication between lower level layers

and the upper levels, and it serves to modularize the protocols for each

layer. Also the purpose is using layers to create an environment where each

Chapter Two Network Protocols and Security

 9

layer on a system communicates with the same layer on another system by

using the protocol that developed for that layer. Each subsequent lower

level takes the information passed to it from the level above, and formats it

to meet its protocol needs before sending it along; Figure (2.3) illustrates

this process. In this figure, a seven layer model is assumed. Data to be sent

is created at layer 7 of the source host and send to layer 7 of the destination

host. The message only needs to be formatted in layer 7, and is then passed

to the next level.

Fig. (2.3) Packaging of data in layers

It is possible at any of these layers that the message may need to be

divided into different parts. At each layer a header or tailer may be attached

to the message. If the message is split, each portion is treated as its own

entity by all layers below the split. Each portion may then receive its own

header. As the message is received at the destination host, it is passed back

 Application Layer (data)

 Presentation Layer Header

 Session Layer Header

 Transport Layer Header

 Network Layer
 Header

 Data Link

 Header and Tailer

Source Physical Media Destination

Chapter Two Network Protocols and Security

 10

up through the layers. Each layer strips off its header, and if the message

had been split into separate parts then the layer reassembles it.

The standard model of layered network architecture is the 7-layer

International Standard Organization (ISO) Open Systems Interconnections

(OSI) Reference Model. The lowest layer of this model is called the

Physical Layer, this layer is concerned with the actual transmission of raw

binary bits across a transmission medium. Layer 2, called Data Link layer,

is designed to take the raw bits that have been transmitted and turn them

into what appears to be an error-free line. The next layer is the Network

Layer; this layer is concerned with controlling the subnet. The key issue at

this layer is routing. The Transport Layer is the fourth layer whose purpose

is to provide transmission services to the higher levels without being

concerned about cost-effective data transfer. It is also insures that all pieces

are received correctly. The fifth layer is the Session Layer which provides

away for higher level entities to establish synchronized dialogue (sessions).

The sixth layer, Presentation Layer, provides certain services that are

frequently used by the seventh layer. The highest level, layer 7, is the

Application Layer which is concerned with a number of different protocols.

In practice, the entire OSI model is not implemented. The most

common layered set of protocols in use is TCP/IP suite of protocols.

TCP/IP works in a very similar manner to the OSI model in that it takes a

layered approach to providing network services. Each layer in the TCP/IP

model communicates with the layers above and below it in the same way

that the layers in the OSI model do [FIS00].

2.3 The TCP/IP Internet Layering Model [COM95]

The ISO model can be mapped to describe the TCP/IP layering

scheme. TCP/IP software is organized into four conceptual layers as shown

Chapter Two Network Protocols and Security

 11

in Figure (2.4). These four conceptual layers are:

1. Application Layer. Users invoke application programs that access

services available across a TCP/IP internet. Each application program

may interact with one of the transport level protocols to send or

receive data. Each application program chooses the style of transport

needed which can be either a sequence of individual messages or a

continuous stream of bytes.

Fig. (2.4) The four conceptual layers of TCP/IP software as well as

the form of data as it passes between them.

2. Transport Layer. The primary duty of transport layer is to provide

communication from one application program to another. Such

communication is often called end-to-end. The transport layer may

regulate the flow of information. It may also provide reliable transport,

ensuring that data arrives without error and in sequence.

3. Internet Layer. The Internet layer handles communications from one

machine to another. It accepts a request to send a packet from the

transport layer along with an identification of the machine to which

Conceptual Layer

Application

Transport

Internet

Network Interface

Objects passed between Layers

Messages or streams

Transport Protocol Packets

IP Datagrams

Network-Specific frames

Chapter Two Network Protocols and Security

 12

the packet should be sent. It encapsulates the packet in an IP datagram,

fills in the datagram header, uses the routing algorithm to determine

whether to deliver the datagram directly or send it to a router, and

passes the datagram to the appropriate network interface for

transmission.

4. Network Interface Layer. It is the lowest level of TCP/IP software. It

comprises a network interface layer, responsible for accepting Internet

Protocol (IP) datagrams and retransmitting them over a specific

network.

2.4 TCP/IP Suite

The generic term "TCP/IP" usually means anything and everything

related to the specific protocols of TCP and IP. It can include other

protocols, applications, and even the network medium. Samples of these

protocols are: User Datagram Protocol (UDP), Address Resolution Protocol

(ARP), and Internet Control Message Protocol (ICMP). Samples of the

related applications are: TELNET, File Transfer Protocol (FTP), and

Network File System (NFS) [RFC1180].

The TCP/IP suite is not a single protocol; rather, it is four layers

communication architecture that provide some reasonable network features,

such as end-to-end communications, packet sequencing, internetwork

routing, and some specialized functions unique to US Department of

Defense communications needs (such as standardized message priorities).

The bottom layer, network services, provides data for

communication through the network hardware (such as Ethernet, Token

Ring, and Asynchronous Transfer Mode (ATM)). The layer above the

network services layer is referred to as the internet protocol (IP) layer. The

Chapter Two Network Protocols and Security

 13

IP layer is responsible for providing a datagram service that routes data

packets between dissimilar network architectures. IP has a few interesting

features, one of which is the reliability. As a datagram service, IP does not

guarantee delivery of data. Data concurrency, sequencing and delivery

guarantee is the job of TCP protocol. TCP provides error control,

retransmission, packet sequencing, and many other capabilities. The

structure of TCP/IP protocol set is shown in Figure (2.5) along with the

approximately equivalent ISO model layers.

Fig. (2.5) TCP/IP protocol relationships

It can be seen that TCP/IP is essentially a four layer model, although

the layers have no clear cuts as in the OSI model. The TCP/IP model has

been drawn according to its use, rather than being defined first and then the

protocols specified. In OSI protocols, every thing appears to be put into the

Application

Presentation

Session

Transport

Network

Data Link

Physical

Application

Transport

Internet

Network
Interface

N
F

S

F
T

P

T
el

ne
t

SN
M

P

R
IP

D
N

S

TCP

UDP

IP

Ethernet Token Frame ATM
 Ring Relay

 OSI Model TCP/IP Protocol TCP/IP Protocol Suite
 Layers Architecture Layers

Chapter Two Network Protocols and Security

 14

protocol, but parts are made optional. In TCP/IP, the protocols are kept

very simple, if more functionality is required then another protocol is added

to deal with the situation [JAI97].

2.4.1 Internet Protocol

The internet protocol (IP) is the network layer protocol which is the

glue that holds the whole Internet together. Unlike most older network

layer protocols, it was designed from the beginning with internetworking in

mind. Its job is to provide a best (i.e. not guaranteed) way to transport

datagrams from source to destination, without regard to whether these

machines are on the same network or whether there are other networks in

between them [TAN03].

The IP provides the capability of fragmentation and reassembly of

long datagrams, if necessary, for transmission through “small packet”

networks. The internet protocol is specifically limited in scope to provide

the functions necessary to deliver a package of bits (an internet datagram)

from a source to a destination over an interconnected system of networks.

There is no mechanism to augment end-to-end data reliability, flow control,

sequencing, or other services commonly found in host-to-host protocols.

The internet protocol implements two basic functions: addressing

and fragmentation. The internet modules use the addresses carried in the IP

header to transmit internet datagrams toward their destinations, while it use

fields in the IP header to fragment and reassemble internet datagrams when

necessary for transmission through “small packet” network. The IP uses

four key factors in providing its service: Type of Service, Time to Live,

Options, and Header Checksum. The detected errors may be reported via

Chapter Two Network Protocols and Security

 15

the internet control message protocol (ICMP) which is implemented in the

IP module [RFC791].

An IP datagram consists of header part and text part. The header has

20-byte fixed part and a variable length optional part [TAN03]. A summary

of the contents of the internet header is shown in Figure (2.6): The fields of

this header are [RFC791]:

Ver: The Version (4 bits) field indicates the format of internet header.

IHL: The Internet Header Length(4 bit) in words, each word is 32 bits. The

minimum value for a correct header is 5.

TOS: Type Of Service (8 bits) field provides an indication of the abstract

parameters of the quality of the desired service.

Fig. (2.6) Internet datagram header

Total Length: Its length is 16 bits which is the length of datagram,

measured in octets, including internet header and data.

Identification: Its length is 16 bits, it an identifying value assigned by the

sender to aid in assembling the fragment of a datagram.

Flags: Its length is 3 bits, it holds various control flags.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Ver. IHL TOS Total Length

 Identification Flags Fragment Offset

TimetoLive Protocol Header Checksum

 Source Address

 Destination Address

 Options Padding

Chapter Two Network Protocols and Security

 16

Fragment Offset: Its length is 13 bits, this field indicates where in the

datagram this fragment belong.

Time to Live: Its length is 8 bits, this field indicates the maximum time the

datagram is allowed to remain in the internet system.

Protocol: Its length is 8 bits, this field refers to the next level protocol used

in the data portion of the internet datagram.

Header checksum: Its length is 16 bits field, this field holds the checksum

value of the header only.

Source Address: its length is 32 bits, this field indicates the IP address of

source.

Destination Address: its length is 32 bits, it refers to the IP address of

destination.

Options: this field is variable in length; it may be zero or more. In some

environments the security option is required in all datagrams.

Padding: this field is variable in length, it is used to ensure that the internet

header ends on a 32 bit boundary, the padding is zero.

2.4.2 Transmission Control Protocol

Transmission Control Protocol (TCP) was specifically designed to

provide a reliable end-to-end byte stream over an unreliable internetwork.

An internetwork differs from a single network because different parts may

have widely different topologies, bandwidths, delays, packet sizes, and

other parameters. TCP was designed to dynamically adapt to properties of

the internetwork and to be robust in the face of many kind of failures

[TAN03].

It is important to understand that TCP is a communication protocol,

not a piece of application software [COM00]. TCP is assumed to be a

Chapter Two Network Protocols and Security

 17

module in an operating system. The users access TCP much like they

would access the file system. The TCP may be called by other operating

system functions (for example, to manage data structures). The actual

interface to the network is assumed to be controlled by a device driver

module. The TCP does not called by the network device driver directly,

but rather it is called by the internet datagram protocol module, which may

in turn called by the device driver.

Transmission is made reliable via the use of sequence numbers and

acknowledgments. Conceptually, each segment is assigned a sequence

number. Segments also carry an acknowledgment number which is the

sequence number of the next segment. An acknowledgment by TCP does

not guarantee that the data has been delivered to the end user, but only that

the receiving TCP has taken the responsibility to do so. To govern the flow

of data between TCPs, a flow control mechanism is employed. The

receiving TCP reports a "window" to the sending TCP. This window

specifies the number of octets, starting with the acknowledgment number,

that the receiving TCP is currently prepared to receive.

The format of TCP header is shown in Figure (2.7); it includes the

following fields [RFC793]:

Fig. (2.7) TCP header

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 Source Port Destination Port

 Sequence Number

Acknowledgement Number

Offset Reserved Flags Window

 Checksum Urgent Pointer

 Options Padding

Chapter Two Network Protocols and Security

 18

Source Port: Its length is 16 bits, it is the source port number.

Destination Port: Its length is 16 bits, it is the destination port number.

Sequence Number: Its length is 32 bits, it refers to the sequence number.

Acknowledgment Number: Its length is 32 bits, Sequence and

Acknowledgment Numbers are used for windowing

acknowledgment technique.

Data Offset: Its length is (4 bits), is refers to the number of 32 bit words in

the TCP header, it indicates where the data begins.

Reserved: Its length is 6 bits, reserved for future use, must be zero.

Flags or Control Bits: (6 bits), there are several bits used as status

indicators to show, for example, the resetting of the connection.

Window: Its length is 16 bits, it refers to the number of data octets

beginning with the one indicated in the acknowledgment field which

the sender of this segment is willing to accept.

Checksum: Its length is 16 bits, it is the 16 bit one's complement of the

one's complement sum of all 16 bit words in the header and text.

Urgent Pointer: Its length is 16 bits, this field holds the current value of the

urgent pointer as a positive offset from the sequence number in this

segment. The urgent pointer points to the sequence number of the

octet following the urgent data. This field is only be interpreted in

segments with the URG control bit set.

Options: This variable sized field contains some negotiation parameters, to

set the size of the TCP packets for example. Options may occupy

space at the end of the TCP header and are a multiple of 8 bits in

length. All options are included in the checksum.

Chapter Two Network Protocols and Security

 19

2.5 Ports, Connections, and Endpoints [COM00]

TCP allows multiple application programs on a given machine to

communicate concurrently, and it demultiplexes incoming TCP traffic

among application programs. TCP uses protocol port numbers to identify

the ultimate destination within a machine, each port number assigned to a

small integer used to identify it. TCP ports are complex because a given

port number does not correspond to a single object, instead TCP has been

build on the connection abstraction, in which the object to be identified are

virtual circuit connections, not individual ports.

 Since TCP uses the connection, not the protocol port; connections are

identified by a pair of endpoints. TCP defines an endpoint to be a pair of

integers (host, port), where host is the IP address for a host and port is a

TCP port on that host. For example, the endpoint (128.10.2.3, 25) specifies

TCP port 25 on the machine with IP address 128.10.2.3, and if there is a

connection form machine (128.10.2.3) to machine (128.10.2.7), it might be

defined by the endpoints: (128.10.2.3, 1069) and (128.10.2.7, 25).

2.5.1 TCP Port 139

Port 139 is Network Basic Input Output System (NetBIOS) Session

Service, it is used for resource sharing on Windows 9x, ME and

NT [BIN07].

A resource sharing computer network is defined to be a set of

independent and interconnected computer systems, so as to permit each

computer system to utilize all of the resources of each other computer

systems. That is, a program running in one computer system should be able

to call on the resources of the other computer systems much as it would

normally call a subroutine [RFC61].

Chapter Two Network Protocols and Security

 20

The goal of resource sharing is to make all programs, equipment, and

especially data available to any one on the network without regard to the

physical location of the resource and the user. An obvious and widespread

example is having a group of office workers share a common printer

[TAN03].

The systems which are trying to connect to share files that might be

available on another system, hence these shared files should be blocked

because most of these traffics are result of worms or viruses which can use

open file shares to propagate, they also can be the result of malicious users

attempt to connect to any computer. Once these systems connected, they

can download, upload or even delete or edit files on the connected file

share.

If the systems used open file shares (including sharing of printers, etc)

on a local network (LAN), then it should be using a firewall such that the

local file shares are not accessible from the internet because connecting to

open file shares is likely the easiest and most common hack on the internet

[BIN07].

Port 139 is the single most dangerous port on the Internet. All "File

and Printer Sharing" on a Windows machine runs over this port. About

10% of all users on the Internet leave their hard disks exposed on this port.

This is the first port hackers want to connect to, and the port that firewalls

block [IBM07].

The NetBIOS service has become the dominant mechanism for

personal computer networking. NetBIOS provides a vendor independent

interface for the IBM Personal Computer (PC) and compatible systems.

NetBIOS defines a software interface not a protocol. There is no "official"

NetBIOS service standard. In practice, however, the IBM PC-Network

version is used as a reference.

Chapter Two Network Protocols and Security

 21

NetBIOS has generally been confined to personal computers to date.

However, since larger computers are often well suited to run certain

NetBIOS applications, such as file servers, this specification has been

designed to allow an implementation to be built on virtually any type of

system where the TCP/IP protocol suite is available. NetBIOS was

designed for use by groups of PCs. Both connection and connectionless

services are provided, and broadcast and multicast are supported. NetBIOS

applications employ NetBIOS mechanisms to locate resources, establish

connections, send and receive data with an application peer, and terminate

connections, these mechanisms will collectively be called the NetBIOS

Service [RFC1001].

2.5.2 TCP Port 445

TCP port 445 is a new port used by Windows 2000, Windows XP

and Windows Server 2003 and used for Server Message Block (SMB) over

TCP. The SMB protocol is used among other things for file sharing in

Windows NT/2000/XP. In Windows NT it ran on top of NetBIOS over

TCP/IP (NetBT), which uses the ports 137, 138 (UDP) and 139 (TCP). In

Windows 2000/XP/2003, Microsoft added the possibility to run SMB

directly over TCP/IP, without the extra layer of NetBT, to do this they use

TCP port 445. NetBIOS on WAN or over the Internet, however, may lead

to an enormous security risk. All sorts of information (such as the domain,

workgroup and system names, as well as account information) are

obtainable via NetBIOS [DAN07].

If the client has NetBT enabled, it will always try to connect to the

server at both port 139 and 445 simultaneously. If there is a response from

port 445, it sends a reset to port 139, and continues its SMB session to port

445 only. If there is no response from port 445, it will continue its SMB

Chapter Two Network Protocols and Security

 22

session to port 139 only, if it gets a response from there. If there is no

response from either of the ports, the session will fail completely. If the

client has NetBT disabled, it will always try to connect to the server at port

445 only. If the server answers on port 445, the session will be established

and continue on that port. If it doesn't answer, the session will fail

completely. If the server for example runs Windows NT 4.0 and has

NetBT enabled, it listens on UDP ports 137, 138, and on TCP ports 139,

445. If it has NetBT disabled, it listens on TCP port 445 only [VID04].

2.6 Server Message Block (SMB) Protocol

At (1984), IBM created SMB [COD07] which is an important

protocol because of the large number of PCs out there that already have

client and server implementations running on them. All Windows for

Workgroups, Windows 95 and Windows NT systems are capable of

running SMB as a client, a server, or both. SMB, which stands for Server

Message Block, is a protocol for sharing files, printers, serial ports, and

communications abstractions such as named pipes and mail slots between

computers. SMB is a client-server, request-response protocol. Figure (2.8)

illustrates the way in which SMB works.

Fig. (2.8) SMB work

Servers make file systems and other resources (printers, mailslots,

APIs) available to clients on the network. Client computers may have their

 SMB Response

 SMB Requist
Client Server

Chapter Two Network Protocols and Security

 23

own hard disks, but they also want access to the shared file systems and

printers on the servers.

Clients connect to servers by using NetBIOS over TCP/IP, NetBIOS

Enhanced User Interface (NetBEUI) or Internetwork Packet

Exchange/Sequenced Packet Exchange (IPX/SPX). SMB can run over

multiple protocols as shown in Figure (2.9).

SMB can be used over TCP/IP, NetBEUI and IPX/SPX. If TCP/IP or

NetBEUI are in use, then the NetBIOS API is being used. Once they have

established a connection, clients can then send commands (SMBs) to the

server that allow them to access shares, open files, read and write files, and

generally do all the sort of things that user want to do with a file system.

However, in the case of SMB, these things are done over the network.

SMB was also sent over the Digital Equipment Corporation network

protocol (DECnet). Since the inception of SMB, many protocol variants

have been developed to handle the increasing complexity of the

environments that it has been employed in [SHA07].

Microsoft and Intel created the first rendition of the SMB/CIFS file

sharing protocol called Core Protocol which was the first protocol variant

[COD07], known to SMB implementations as PC NETWORK PROGRAM

TCP/IP OSI

Application
SMB

Application
Presentation

NetBIOS NetBIOS
NetBEUI

NetBIOS Session
TCP/UDP TCP&UDP

DECnet IPX
Transport

IP IP Network
Ethernet or

others EthernetV2 EthernetV2
802.2,2 802.2,2

802.3,802.5 Link
802.3,802.5

Fig. (2.9) SMB over multiple protocols

Chapter Two Network Protocols and Security

 24

1.0. Subsequent variants were introduced when more functionality was

needed. Core protocol could handle a basic set of operations, including

[SHA07]:

1. Connecting to and disconnecting from file and print shares.

2. Opening and closing files.

3. Opening and closing print files.

4. Reading and writing files.

5. Creating and deleting files and directories.

6. Searching directories.

7. Getting and setting file attributes.

8. Locking and unlocking byte ranges in files.

The protocol elements (requests and responses) that clients and

servers exchange called SMBs. They have a specific format that is very

similar for both requests and responses. Each consists of a fixed size header

portion, followed by a variable sized parameter and data portion. After

connecting at the NetBIOS level, the client is ready to request services

from the server. However, the client and server must first identify which

protocol variant they each understand [SHA07].

The actual protocol variant client and server will use is negotiated

using the negprot SMB which must be the first SMB sent on a connection

[SHA07]. The Negotiate SMB command client request is used to resolve

the protocol dialect for a session. The client sends a list of dialects. The

server responds with the index number in the list of an acceptable dialect.

The Negotiate SMB command packet defines the data portion of the CIFS

client request and server response packets for the command code

SMB_COM_NEGOTIATE [MIC06]. As shown in Figure (2.10), the client

Chapter Two Network Protocols and Security

 25

sends a Negotiate SMB (negprot) to the server, listing the protocol dialects

that it understands.

 Fig. (2.10) SMB Negotiate

The server responds with the index of the dialect that it wants to use,

or 0xFFFF if none of the dialects was acceptable. Once a protocol is

established, the client can proceed to logon to the server if required. They

do this with a Session setup and X (sesssetupX) SMB. The response

indicates whether or not they have supplied a valid username password pair

and if so, can provide additional information. One of the most important

aspects of the response is the User ID (UID) of the logged on user. UID is a

field in SMB header, this UID must be submitted with all subsequent

SMBs on that connection to the server.

In older variant protocols (Core and Core Plus) the client cannot

logon, while in CIFS protocol he can. Once the client has logged on, the

client can proceed to connect to a tree. The client sends a Tree connect

SMB (tcon) or Tree connect and X SMB command (tconX) specifying the

network name of the share that they wish to connect to, and if all is

acceptable, the server responds with a Tree ID (TID), TID is a field in

SMB header. The client will use TID in all future SMBs relating to that

share, as shown in Figure (2.11).

Having connected to a tree, the client can now open a file with an

open SMB, followed by reading it with read SMBs, writing it with write

SMBs, and closing it with close SMBs [SHA07].

 Negprot Response

 Negprot Command
Client Server

Chapter Two Network Protocols and Security

 26

Fig (2.11) SMB Tree Connect

2.7 Common Internet File System (CIFS) Protocol

CIFS is a network protocol whose most common use is sharing files

on a Local Area Network (LAN). At (1996) SMB was renamed as

Common Internet File System (CIFS) with new features [COD07]. Key

features that CIFS offers are [JAV07]:

1. File Access with integrity: CIFS supports the usual set of file

operations; open, close, read, write and seek. CIFS also supports file

and record lock and unlocking. CIFS allows multiple clients to

access and update the same file while preventing conflicts by

providing file sharing and file locking.

2. Optimization for Slow Links: The CIFS protocol has been tuned to

run well over slow-speed dial-up lines. The effect is improved

performance for users who access the Internet using a modem.

3. Security: CIFS servers support both anonymous transfers and secure,

authenticated access to named files. File and directory security

policies are easy to administer.

4. Performance and Scalability: CIFS servers are highly integrated

with the operating system, and are tuned for maximum system

performance. CIFS supports all Microsoft platforms after Windows

95. It also supports other popular operating systems such as Unix,

IBM LAN server etc.

 tconX Response

 tconX Command
Client Server

Chapter Two Network Protocols and Security

 27

5. Unicode File Names: File names can be in any character set, not

just character sets designed for English or Western European

languages.

6. Global File Names: Users do not have to mount remote file systems,

but can refer to them directly with globally significant names, instead

of ones that have only local significance.

7. CIFS complements Hypertext Transfer Protocol (HTTP):

Providing more sophisticated file sharing and file transfer than older

protocols, such as FTP.

The CIFS protocol works by sending packets from the client to the

server. Each packet is typically a basic request of some kind of file access

(such as open, close or read file). The server then receives the packet,

checks to see if the request is legal, verifies the client has the appropriate

file permissions, and finally executes the request and returns a response

packet to the client. The client then parses the response packet and can

determine whether or not the initial request was successful.

CIFS is a fairly high-level network protocol. In the OSI model, it is

probably best described at the Application/ Presentation layer. This means

CIFS relies on other protocols for transport. The most common protocol

used for reliable transport is NetBT. Many different protocols have been

used for the transport layer, however with the enormous popularity of the

Internet NetBT has become the de-facto standard. Although file sharing is

CIFS’s primary purpose, there are other functions that CIFS is commonly

associated with. Most CIFS implementations are also capable of

determining other CIFS servers on the network (for browsing), printing,

and even complicated authentication techniques [COD07].

Chapter Two Network Protocols and Security

 28

2.7.1 The Common Internet File System Protocol Uses

CIFS protocol is most commonly used with Microsoft operating

systems. Windows for Workgroups was the first Microsoft operating

system had used CIFS, and since then each newly issued Microsoft

operating system is capable to function as both a CIFS server and client.

Microsoft operating systems use CIFS for remote file operations (typically

mapping network drives), browsing (via the Network Neighborhood icon),

authentication (NT and Windows 2000), and remote printer services. It

would be fair to say that the core of native Microsoft networking is built

around its CIFS services. Because of Microsoft large corporate and home

user base, CIFS protocol is found virtually everywhere. Flavors of Unix

operating system also implement a CIFS client/server via Samba program.

Apple computers also have CIFS clients and servers available, which had

make CIFS the most common and available protocol for file sharing

[COD07].

CIFS is based on the file system used on Microsoft Networks. It is

being targeted by Microsoft to replace the file system services of both File

Transfer Protocol (FTP) and Network File System (NFS), and allows to

directly mount CIFS remote system as a directory or drive, hence it can

transfer files to or from remote site just by using a regular copy command

or file manager. The advantages of CIFS can be better demonstrated if it is

compared with two other internet file transfer protocols (like FTP and NFS).

[BIZ07]

2.7.2 Common Internet File System Packet Header

Every CIFS request and response uses the packet header as shown in

Figure (2.12) [COD07]:

Chapter Two Network Protocols and Security

 29

Header: The beginning of every CIFS packet contains a 4-byte header. The

first byte is 0xFF, followed by the ASCII representation of the letters

S, M, and B.

Command: The command field contains a one-byte code indicating the

CIFS packet type. Examples from the CIFS1.0 draft for this field are

SMB_COM_READ_ANDX, (0x2E), SMB_COM_TREE_CONNECT

(0x70), and SMB_COM_NEGOTIATE (0x72).

Error class: A server flag indicates whether or not a given request was

successful. Typically, when the field is zero it indicates the request

success. If non-zero, the field indicates what class the error code is

from. The error class field takes one of the following values:

1. ERRDOS (0x01): Error is from the core of DOS operating system.

2. ERRSRV (0x02): Error is generated by the server network file

manager.

3. ERRHRD (0x03): Hardware error.

4. ERRCMD (0xFF): Command was not in the SMB format

Error code: This 16-bit field indicates the type of error that has occurred.

When its value is zero it indicates no error. If its value is non-zero

then this number in conjunction with the error class above can be

looked up in the CIFS1.0 draft to give full error descriptions (such as,

bad password or file does not exist). As with the error class, this field

is set only by servers in response to a previous request.

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0xFF S M B

Command Error Class Must be zero Error Code

Error Code Flags Flags2

Chapter Two Network Protocols and Security

 30

Pad or security signature typically pad and therefore
must be zero

Tree ID (TID) Process ID (PID)

User ID (UID) Multiplex ID (MID)

WordCount ParameterWords [WordCount]

ByteCount

Buffer [ByteCount]

Fig. (2.12) The structure of CIFS header

Flags: Most of the 8 bits in the flags field specify particular options. The

only one of interest is bit-3. When bit-3 is set to 1, all pathnames in

this particular packet must be treated as caseless (case insensitive).

While, when it is set to 0, all pathnames are case sensitive.

Flags2: This 16-bit field specifies more options. Bits that are useful: Bit 0,

if set, indicates that the server may return long file names in the

response. Bit 6, if set, indicates that any pathname in the request is a

long file name. Bit 15, if set, indicates strings in the packet are

encoded as UNICODE.

Pad/security signature: This field is typically set to zero.

Tree ID (TID): It is a 16-bit integer identifies which resource (disk share or

printer, typically) this particular CIFS packet is referring to. When

packets are exchanged which do not have anything to do with a

resource, this number is meaningless and ignored.

Process ID (PID): It is a 16-bit integer identifies which process is issuing

the CIFS request on the client. The server uses this number to check

for concurrency issues (typically to guarantee that files will not be

corrupted by competing client processes).

Chapter Two Network Protocols and Security

 31

User ID (UID): It is 16-bit number identifies the user who had issued CIFS

request on the client side. The client must obtain the UID from the

server by sending a CIFS session setup request containing a

username and a password. A UID is valid only for the given

NetBIOS session. Other sessions could potentially be using an

identical UID that the server correlates with a different user.

Multiplex ID (MID): It is a 16-bit integer used to allow multiple

outstanding client requests to exist without confusion.

WordCount and parameter words: CIFS packets use these two fields to

hold command-specific data. The wordcount specifies how many

16-bit words the parameter words field will actually contain. In this

way, each CIFS packet can be adjusted to the size needed to carry its

own command-specific data. The wordcount for each packet type is

typically constant. There are two wordcounts defined for every

single command; one wordcount for the client request and another

for the server response. These two counts are needed because the

amount of data necessary to make a request is not necessarily the

same amount needed to issue a reply.

ByteCount and buffer: These fields are very similar to the wordcount and

parameter words field mentioned above; they hold a variable amount

of data that is specified on a per packet basis. The bytecount

indicates how many bytes of data will exist in the buffer field that

follows.

2.7.2.1 Network Create andX Command

Network Create and X (NTcreate_andX) is a CIFS Command packet

that is held when there is an access to resource sharing, Figure (2.13) shows

Chapter Two Network Protocols and Security

 32

the client request of NTcreate_andX header, while Table (2.1) lists the

details of NTcreate_andX header fields. [MIC06]

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

WordCount AndXCommand AndXReserved AndXOffset
 Reserved NameLength Flags

 RootDirectoryFid
 DesiredAccess

 AllocationSize

 FileAttributes
 ShareAccess
 CreateDisposition
 CreateOptions

 ImpersonationLevel
 SecurityFlags

Byte Count File Name

Fig. (2.13) NTcreate_andX header

Table (2.1) the details of NTcreate_andX header fields

Name of Field Size
(Byte)

Description

WordCount 1 Refers to count of parameter words.

AndXCommand 1 It specified for secondary command

AndXReserved 1 Reserved. This value must be 0 (zero).

AndXOffset 1 This field is offset to WordCount location for the

following command.

Reserved 1 Reserved, and its value must be 0.

NameLength 1 It holds the length of the Filename[] field in

bytes.

Flags 4 It specified for flags.

RootDirectory 4 Refers to optional directory for relative open.

DesiredAccess 8 It specified for access desired, its value illustrates

in Table (2.2).

Chapter Two Network Protocols and Security

 33

AllocationSize 8 Refers to initial allocation size.

FileAttribute 4 It specified for flags and attributes for the file.

ShareAccess 4 It specified for types of share access.

CreateDisposition 4 Flags defining the action to take if the file already

exists.

CreateOptions 4 It specified for file create options.

Impersonation 4 Security QOS information. This field specifies

the client impersonation level.

SecurityFlags 1 Security tracking mode flags.

ByteCount 2 Count of data bytes.

Filename[] Variable It specified the name of file and its path

From table (2.1), three fields are considered in this work, because

they guides to the type of access, these fields are (desired access, create

options, and file name). The first two fields are shows in details as follows:

� Desired Access Field: This field is represented by access mask. The

access mask, which is one of encoding data types, is a 32-bit value

containing specific, standard, and generic rights. These rights are used

in access control entries, and are the primary means of specifying the

requested or granted access to an object, these rights are [MIC06]:

1. Specific rights: Values 0-15, these rights contain the access mask

specific to the object type associated with the mask.

2. Standard rights: Values 16-23, these rights contain the object's

standard access rights and can be a combination of the predefined

standard rights flags. Table (2.2) shows the specific and standard

rights.

3. Generic rights: Values 24-31, these rights contain the object's

generic access rights and can be a combination of the predefined

generic rights flags. Table (2.3) lists generic right.

Chapter Two Network Protocols and Security

 34

 Table (2.2) Specific and standard rights of access mask [MIC06]

Flag Description
DELETE
0x00010000

Delete access.

READ_CONTROL
0x00020000

Read access to the owner, group, and discretionary
access-control list (ACL) of the security descriptor.

WRITE_DAC
0x00400000

Write access to ACL.

WRITE_OWNER
0x00080000

Write access to owner.

SYNCHRONIZER
0x00100000

Windows NT synchronize access.

Table (2.3) Generic rights of access mask [MIC06]

Flag Description
ACCESS_SYSTEM_SECURITY
24

Access system security. This flag is not a
typical access type. It is used to indicate
access to a system ACL. This type of access
requires the calling process to have a
specific privilege.

MAXIMUM_ALLOWED
25

Maximum allowed.

26-27 Reserved.
GENERIC_ALL
28

Generic all.

GENERIC_WRITE
30

Generic write.

GENERIC_READ
31

Generic read.

� Create Options Field: It specified for options to create the files. The

value of this field illustrates in Table (2.4).

Table (2.4) Flags for files

Value Meaning
FILE_SUPERSEDE
0x00000000

If the file already exists, supersede it by the
specified file. Otherwise, create the file.

FILE_OPEN
0x00000001

If the file already exists, return success;
otherwise, fail the operation.

FILE_CREATE Create file.

Chapter Two Network Protocols and Security

 35

0x00000002
FILE_OPEN_IF
0x00000003

Open the file if it already exists; otherwise,
create the file.

FILE_OVERWRITE
0x00000004

Overwrite the file if it already exists; otherwise,
fail the operation.

FILE_OVERWRITE_IF
0x00000005

Overwrite the file if it already exists; otherwise,
create the file.

2.7.2.2 Delete Directory Command

Delete Directory (SMB_COM_DELETE_DIRECTORY) command

specified for deletes the directories from shared resources. Figure (2.14)

shows the header of this command, while Table (2.5) illustrates the details

of each field.

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
WordCount ByteCount BufferFormat

DirectoryName[]

Fig. (2.14) Delete directory header

Table (2.5) The details of Delete directory header

Name of Field Size
(Byte)

Description

WordCount 1 Refers to count of parameter bytes. The value is 0.

ByteCount 1 Count of data bytes. The value is greater than 0.

BufferFormat 1 Buffer format. The value is 0x04.

DirectoryName[] Variable It specified directory name and its path.

2.8 Computer Security Concepts

Intrusion detection was constantly evolving to meet a set of

functional goals, all associated with improving the security of computers

Chapter Two Network Protocols and Security

 36

and networks. In this section some of the fundamental terms and concepts

of computer and network security are given [BAC00].

A practical definition of a secure computer system is “a system that

can be depended upon to behave as it is expected to” [GAR96]. From this

intuitive definition of security, one can infer the fundamental concepts

associated with security.

A more precise formal technical definition of computer security is

given in terms of the “security triad: confidentiality, integrity, and

availability”. These security triad are [BAC00]:

1. Confidentiality is the requirement that “access to information be

restricted to only those users authorized for that access”. Much of the

work done by the government in computer security focuses on

confidentiality.

2. Integrity is the requirement that “information be protected from

alteration”. Integrity is especially critical in systems handling data

such as medical records (imagine the impact of someone altering

doctors’ orders on a patient record) or financial accounts. Many

publicized Web site attacks involve breaches of integrity, in which

address tables or site content are modified.

3. Availability is the requirement that “the information and system

resources continue to work, and the authorized users be able to

access resources when they need them, where they need them, and in

the form in which they need them”. Many network-based attacks,

such as “teardrop” and “ping of death,” crash servers by sending

them network traffic fashioned to exploit vulnerabilities in the

operating system software running on those servers. These intrusions,

Chapter Two Network Protocols and Security

 37

which violate availability requirements, are labeled denial of service

attacks.

A secure computer system supports all above mentioned three goals

of the security triad. In other words, a secure system protects its

information and computing resources from unauthorized access, tampering,

and denial of service [BAC00].

2.8.1 Threat

Most security programs are driven by a desire to address a threat. A

threat is defined as any situation or event that has the potential to harm a

system. This harm can be in the form of disclosure, destruction, or

modification of data; or denial of access to data, or to the system-

processing resources. Major categories of threat include hackers, viruses,

fire, flood, lightning strikes; the list goes on and on. From this list, it could

be noticed that threats can be either internal or external to the system and

can be intentional or incidental. To achieve security goals, the physical

threats must be considered as well as computer threats. This may require

background investigations of personnel serving in critical roles (for

example, system administrators) when they have significant control over

computing and information resources [BAC00].

How are threats structured in the computer security world? There are

several ways to classify threat, and some involve with the source of the

threat. An early model had specified the following three categories of

threats [AND80]:

1. External penetrators: Unauthorized users of the system.

Chapter Two Network Protocols and Security

 38

2. Internal penetrators: Authorized users of the system who overstep

their legitimate access rights. These internal threats are divided into

the following:

A. Masqueraders: Those who appropriate the identification and

authorization credentials of others.

B. Clandestine users: Those who successfully evade audit and

monitoring measures.

3. Misfeasors: Authorized users who exceed their privileges.

4. People who attempt to gain access to a system or data.

5. Programmatic threats: including software attacks such as viruses,

trojan horses, and malicious Java or ActiveX applets.

6. People who probe or scan systems in search of vulnerabilities they

can exploit their search results in a later attack.

2.8.2 Vulnerability

Security problems in computer systems result from vulnerabilities.

Vulnerabilities are weaknesses in systems that can be exploited in ways

that violate security policy. Vulnerabilities occur in a two ways [BAC00]:

1. Technical Vulnerabilities: weaknesses occur in the design and

implementation of the system software and hardware.

2. Procedural or Management Vulnerabilities: weaknesses occur in

security policy, procedures, controls, configuration, or other system

management areas.

Most systems have vulnerabilities of some sort, but this does not

mean that the systems are too flawed to use. Not every threat results in an

attack, and not every attack succeeds. Success depends on the degree of

Chapter Two Network Protocols and Security

 39

vulnerability, the strength of attacks, and the effectiveness of any

countermeasures in use. If the attacks needed to exploit vulnerability are

very difficult to carry out, then the vulnerability may be tolerable. If the

perceived benefit to an attacker is small, then even an easily exploited

vulnerability may be tolerable. However, if the attacks are well understood

and easily made, and if the vulnerable system is employed by a wide range

of users, then it is likely that there will be enough benefit for someone to

make an attack [RFC2828].

Several rules of thumb govern the likelihood of vulnerabilities

occurring in systems. The larger system is the greater likelihood of

vulnerabilities. The more complex system is the greater likelihood of

vulnerabilities. The more dynamic system and its environment (for

example, a system that is repeatedly updated or replaced with a new

operating system), is the greater likelihood of vulnerabilities. Although

threat and vulnerabilities are intrinsically related, they are not the same.

Threat is the result of exploiting one or more vulnerabilities. Any intrusion

detection should be designed to identify and respond to both [BAC00].

2.8.3 Intrusion Detection

During the last 27 years ago intrusion Detection (ID) had been an

active field of research, its importance had attracted the scientific attention

since (1980) due to the John Anderson’s publication “Computer Security

Threat Monitoring and Surveillance”, which was one of the earliest papers

in the field [MCH00].

ID is the process of monitoring computer networks and systems for

violations of security policy. In simplest terms, intrusion detection systems

consist of three functional components [BAC00]:

Chapter Two Network Protocols and Security

 40

1. An information source that provides a stream of event records.

2. An analysis engine that finds signs of intrusions.

3. A response component that generates reactions based on the outcome

of the analysis engine.

The first component for ID is the data source. This element can also

be considered an event generator [BAC00].

The IDSs can be classified according to data sources into two types

[MCH00]:

1. Network-Based Systems: Look at packets on a network segment.

While network-based systems can simultaneously monitor numerous

hosts, they can suffer from performance problems, especially with

increasing network speeds. Many network-based systems are popular

because they are easy to deploy and manage and have little or no

impact on the protected system’s performance.

2. Host-Based Systems: Operate on the protected host, inspecting audit

or log data to detect intrusive activity. Host-based systems can

monitor specific applications in ways that would be difficult or

impossible in a network-based system.

The second component in the intrusion detection process is the

analysis engine, this system component takes information from the data

source and examines the data for symptoms of attack or other policy

violations. In intrusion detection, most analysis approaches involve misuse

detection, anomaly detection or some mix of the two. The two main

analysis approaches are [BAS00]:

1. Misuse Detection: Engines look for something defined to be “bad.”

To do this, they filter event streams, searching for activity patterns

Chapter Two Network Protocols and Security

 41

that match a known attack or other violation of security policy.

Misuse detection uses pattern-matching techniques, matching against

patterns of activity known to indicate problems. Most current,

commercial intrusion detection systems utilize misuse detection

techniques.

2. Anomaly Detection: Engines look for something rare or unusual.

They analyze system event streams, using statistical techniques to

find patterns of activity that appear to be abnormal. This approach

reflects the view of some intrusion detection researchers that

intrusions are some subset of anomalous activity.

The third component in the intrusion detection process is response,

intrusion detection system responses can be classified as [BAC00]:

1. Active Responses: The system automatically (or in concert with the

user) blocks or otherwise affects the progress of the attack. Active

responses involve taking action based on the detection of an

intrusion.

2. Passive Responses: The system simply reports and records the

problem. Passive responses are those provide information about the

user, relying on the user to take subsequent action. Passive responses

are important, and in many cases represent the sole response form for

the system.

2.8.4 Network Monitoring

At (1990) [SHE07] a network monitoring system called “Network

System Monitor (NSM)“ which is developed in University of California

was established to run on a SUN UNIX workstations. Before this time,

Chapter Two Network Protocols and Security

 42

most intrusion detection systems utilize the information extracted from

operating system audit trails or keystroke monitors [HER90]. NSM does

not use audit trails to perform its intrusion detection. Instead, it monitors

the broadcast channel to observe all network traffic. As a result of this, it

can monitor a variety of hosts and operating system platforms [MUK94].

Till now, the general architecture of NSM is still reflected in many

commercial intrusion detection products. NSM functioned to do the

following tasks [HER90]:

1. Placing the system’s Ethernet network interface card into

promiscuous mode; in which each network frame generates an

interrupt, thereby allowing the monitoring system to listen to

all traffic, not just those packets addressed to the system.

2. Capturing network packets.

3. Parsing the protocol to allow extraction of pertinent features.

4. Using a matrix-based approach to archive and analyze the features,

both for statistical variances from normal behavior and for violations

of pre-established rules.

NSM was a significant milestone in intrusion detection research

because it was the first attempt to extend intrusion detection to

heterogeneous network environments. Also, it was one of the first intrusion

detection systems to run on an operational system (i.e, the local area

network of the computer science department at University of California)

[HER90].

The objective of NSM is to determine if the packet flow matches a

known signature. There are three kinds of signatures that are particularly

important [SHE07]:

Chapter Two Network Protocols and Security

 43

1. String signatures, the packet checking process is based on looking

for a text string that indicates a possible attack.

2. Port signatures, such kind of checking is simply based on detecting

and analyzing the connection attempts to some well known,

frequently attacked ports.

3. Header signatures, the checking is based on detecting and analyzing

the dangerous or illogical combinations in packet headers.

A network-based ID system views packet traffic on its network

segment as a data source. This is usually accomplished by placing the

network interface card in promiscuous mode. Although this approach is

simple and powerful, but it does not always work on modern network

systems. For instance, in the case of switched networks the network switch

acts to isolate network connections between hosts so that a host can see

only the traffic that is addressed to it. Also, data that travels via other

communications media (such as, dial-up phone lines) cannot be monitored

using this approach [BAC00].

2.9 File System

For most users, the file system is the most visible aspect of an

operating system. It provides the mechanism for on-line storage and access

to both data and programs of the operating system and to all the users of the

computer system.

The file system consists of two distinct parts: a collection of files,

each storing related data, and directory structure (which organizes and

provides information about all the files in the system). Some file systems

have a third part, partitions, which are used to separate physically or

logically the large collections of directories [GAL98].

Chapter Two Network Protocols and Security

 44

2.9.1 File Types

The most common technique for managing the file types is to include

the type as part of the file name. The file name consists of two parts: a

name and an extension, usually separated by a period character. In this way,

the user and operating system can know from the name alone what is the

type of a file. For example, in MS-DOS, a name can consist of up to eight

characters followed by a period and terminated by an up-to-three character

extension. The file system uses the extension to indicate the type of the file

and to define the type of operations that can be done on that file. For

instance, only a file with a “ .com ”, “ .exe ”, or “ .bat ” extension can be

executed. The “ .com ” and “ .exe ” files are two forms of binary executable

files, whereas a “.bat” file is a batch file containing in ASCII format,

commands to the operating system [GAL98].

2.9.2 Types of File Access

The need for protecting files is due to the ability to access files. On

systems that do not permit access to the files of other users, protection is

not needed. Thus, one extreme would be to provide complete protection by

prohibiting access, while the other extreme is to provide free access with no

protection. Both of these approaches are too extreme for general use,

therefore controlled access is needed. Protection mechanisms provide

controlled access. Access is permitted or denied depending on several

factors, one of which is the type of requested access. Several different types

of operations may be controlled; like

1. Read: Read from the file.

2. Write: Write or rewrite the file.

3. Execute: Load the file into the memory and execute it.

Chapter Two Network Protocols and Security

 45

4. Append: Write new information at the end of the file.

5. Delete: Delete the file and free its space for possible reuse.

6. List: List the name and attributes of the file.

Other operations, such as renaming, copying, or editing the file, may

also need to be controlled. For many systems, however, these higher level

functions (such as copying) may be implemented by a system program that

makes lower level system calls. For instance, copying a file may be

implemented simply by a sequence of read requests. In this case, a user

with read access can also cause the file to be copied, printed, and so on. So,

protection is provided at only the lower level.

Many different protection mechanisms have been proposed. Each

scheme has its own advantages and disadvantages, and each type must be

selected as appropriate according to its applicability and feasibility to the

intended application. For example, a small computer system that is used by

only a few members of a research group may not need the same types of

protection as will a large corporate computer that is used for research,

finance and personnel operations [GAL98].

2.9.3 File Protection

When information is kept in a computer system, a major concern is

its protection from both physical damage (reliability) and improper access

(protection). Reliability is generally provided by duplicate copies of files.

Many computers have system programs that automatically (or through

computer operator intervention) copy disk files to a backup storage media

at regular intervals (once per day or week or month) to maintain a copy for

the files.

Chapter Two Network Protocols and Security

 46

File systems can be damaged by hardware problems (such as error in

reading or writing), power surges or failures, head crashes, dirt, and

temperature extremes. Files may be deleted accidentally. Bugs in the file-

system software can also cause file content to be lost. Protection can be

provided in many ways. For small single-user system, it might provide

protection by physically removing the CD drives and locking them in the

desk drawer or file cabinet. In a multi-user system, however, other

mechanisms are needed [GAL98]. Such mechanisms are access controls.

2.9.4 Access Controls

Early computers had no internal controls to limit their access, and

any user could interact with any portion of the desired system. In today’s

larger and much more complex environments, however, just because

individuals have been established as authorized users does not mean that

they should have access to all information contained in the system. This is

the job of Access Control security services, they determine which

information an individual can access. There are several methods of access

controls, the most three popular are [FIS00]:

1. Protection Table: It is one of the simplest methods of access controls.

The established table (i.e., protection table) contains every user (or

subject) who may have a privilege to access the system, and every

file (or object) stored on the system. The typical access modes which

may be found in the table include Read, Write, Execute, Delete, List,

as shown in Figure (2.15). A location in the table with no entry

means that the user has not been granted any type of access for this

file. While a protection table may seem like a simple solution to the

Chapter Two Network Protocols and Security

 47

access control problem, in the reality it is rarely implemented in this

fashion.

Fig. (2.15) A sample of protection table

The reason for this is that the created table will become extremely

large and sparsely populated. Most users will have access to only

their own files and not to the files created by other users. This fact

may lead to a sparse table in which its most entries will be blank.

Reserving space for a large, mostly empty table is a tremendous

waste of space.

2. Capabilities Based: Another scheme of access controls is called a

capabilities-based, this scheme could be thought of as dividing a

protection table, as depicted in Figure (2.16), into rows. Associated

with each user is a list of the objects the user may access along with

the specific access permission for each object. This list is called a

Capability list. An example of the capability list for User2 is shown

in Figure (2.16).

Object Permissions

File1 R,W,--,--,L

File 2 R,--,--,--,L

File 3 --,W,--,--,--

Fig. (2.16) Capability list for User 2

 File 1 File 2 File 3 File 4

User 1 Read, Write

User 2 Read, Write Read List

User 3 Read, Write Execute

Chapter Two Network Protocols and Security

 48

3. Access Control Lists: While capability techniques can be thought of

as dividing the protection table into rows, the Access Control Lists

(ACL) divide it by columns. Instead of maintaining a separate list for

each subject detailing the objects that a subject has access to, ACLs

are created for each object and list the subjects that have permissions

to access them, as shown in Figure (2.17). There are several obvious

advantages in using Access Control Lists over the other techniques;

the first is the ease in which a list of all subjects granted access to

specific object can be determined. The second is the ease with which

access can be revoked, the owner of object can simply remove or

change any entry in the ACL to revoke or change the type of access

granted to any subject.

File 1 File 2 File 3

User 2 RWL User 2 RL User 1 RWL

 User 3 RWL User 2 L

Fig. (2.17) Access Control Lists

The third advantage is saving the storage space that is used in this

method. The tables do not have to list each subject for every object,

just those have access permission and that mode of access is granted.

The drawback of this method is the difficulty in listing in all objects

lists a specific subject which has access to all of them. In this case,

all of ACLs would need to be scanned to determine which contained

a reference to the subject in question.

CHAPTER THREE

NETWORK SECURITY MONITORING SYSTEM

DESIGN

3.1 Introduction

This chapter is dedicated to introduce the design and implementation

steps of the proposed network security monitoring system. This system was

designed to run under Windows operating system platforms, and it was

applied on client-server LANs. The antivirus and firewalls programs may

collide with the work of the proposed system.

3.2 The System Model

The general structure of the proposed network security monitoring

system is illustrated in Figure (3.1).

Fig. (3.1) The general system model

Network
Traffic

Packet
Capture

Packet
analyzer

Packet
Filter

Packet
Processing

Packets
DB

Saving
Packet

 Monitoring unit Administration unit

Rules
DB

Folders
DB

Index
system

Add
rules

Modify
rules

Report

Rules Editor

Chapter Three NSM System Design

 50

It is consist of two basic units: packets monitoring unit and

administration unit. The monitoring unit works in client side, while the

administration unit works in server machine. Monitoring unit consists of

four main modules, packet capture, packet analyzer, packet processing,

saving packet modules. Also, the monitoring unit has a database dedicated

to archive the packets that used by administration unit. Administration unit

consists of two main modules: indexing module, and rules editor. Also, the

administration unit uses two main databases, one for listing the shared

folders and files in the network, and the other for listing the applied rules.

Rules editor consists of two main modules; add rules module for

initializing the new rules, and modify rules module for modifying the

existing rules; these two modules save their output (i.e., the rules) in the

rules database.

The system begins to respond just when there is a client request.

Client request means that there is row of data or packets transmitted from

client to server. The monitoring module captures these packets, analyze,

process, and save it in the packets database. On the other side (i.e., on

server machine) the administration unit initializes the process of indexing

the available shared folders and files by activating the index folders module,

and saving the established index list in the folders database.

The output of the proposed model is a report which takes the data

from two databases, packets database and rules database.

3.3 Packet Capture Module

As mentioned in chapter two, section 2.4, the TCP/IP suite is not a

single protocol; rather, it has four layers communication architecture that

provides some reasonable network features (such as end-to-end

communications, packet sequencing, internetwork routing). These four

Chapter Three NSM System Design

 51

layers of TCP/IP suite are; network layer, internet layer, transport layer and

application layer.

Packet capture module captures all packets in internet layer; it means

that this module captures IP packets or IP datagrams. The reason of

capturing packets in this layer (not in network layer) is that “the network

layer involves with hardware component”.

After starting connection, the packet capture module begins to

capture packets, packet after packet, each packet figured as row of data that

saved in a specific location in the memory. The next step is moving this

data from its specific location in memory and save it as an array of bytes

called ReadBuffer. Since, the maximum length of each packet is 1500 bytes

therefore the length of ReadBuffer was assigned 1500 byte.

To easily recognize the details of each packet, the array of bytes,

ReadBuffer, was structured as a set of fields. Packet capture module

matches ReadBuffer structure with the internet protocol (IP) and the

transmission control protocol (TCP) frames structure; they will be

described in following subsections:

1. Matching the Internet Protocol Frame

The internet protocol (IP) frame structure consists of two parts:

header and body (text) parts, see section 2.4.1. The header consists of 20-

byte fixed part and a variable length optional part. The total length of the

IP_header record is 20 bytes, its structure is list in Table (3.1).

The length of IP packet is between 40 to 1500 bytes, the first 20

bytes represent the IP header (starting from byte-0 till byte-19). Figure (3.2)

illustrates the structure of IP packet and the position of IP header in the

packet. After creating an IP header record, the data of ReadBuffer array are

copied into IP header record.

Chapter Three NSM System Design

 52

Table (3.1) IP header record

Field Name Size in bytes
Ip_verlen 1
Ip_tos 1
Ip_totallength 2
Ip_id 2
Ip_offset 2
Ip_ttl 1
Ip_protocol 1
Ip_checksum 2
Ip_srcaddr 4
Ip_destaddr 4

Fig. (3.2) IP packet and IP header [RFC791]

In IP header, there are some fields have length less than one byte,

like Ver and IHL, to fix their values in IP record, they merged in one byte

field. As shown in Table (3.1) the ip_verlen is defined as byte while its real

length is 4-bits. In the same table, one can notice that IHL field was not

defined in IP header record as individual field, because the fields Ver (4

bits) and IHL (4 bits) have been combined in one field called ip_verlen

whose length is one byte.

20 bytes

 Data

IP header

IP packet IP Header

0123 4 5 6 7 89012345 678 90123 45678901
Ver IHL TOS Total Length

identification flag Fragment offset
Time to live protocol Header checksum

Source address
Destintion address

Chapter Three NSM System Design

 53

2. Matching the Transmission Control Protocol (TCP) Frame

The TCP header consists of a 20-byte fixed part and a variable length

optional part. Table (3.2) shows the structure of TCP header.

To check if the received packet is TCP or not, the ip_protocol field

must be checked. If the field ip_protocol equal to 6, then the data from

ReadBuffer (20) to ReadBuffer (39) are copied into TCP header record.

Figure (3.3) shows the position of TCP header in IP packet.

Table (3.2) TCP header record

Field Name Size in bytes
Src_portno 2
Dst_portno 2
Sequenceno 4
Acknowledgeno 4
DataOffset 1
Flag 1
Windows 2
Checksum 2
UrgentPointer 2

Fig. (3.3) IP packet and TCP header [RFC793]

IP header Data TCP header IP packet

TCP header

0123 456789 012345 67890123 45 67890 1
Source port Destination port

Sequence number
Acknowledgement number

offset reserved flags window
checksum Urgent pointer

Chapter Three NSM System Design

 54

Code list (3.1) illustrates the implemented steps to perform packet

capturing task. The input is a row of data, and the output consists of IP

header record, TCP header record and ReadBuffer array.

Some received packets are not necessary in the proposed system

(like UDP and ICMP packets), because they doesn’t used to transfer

commands to filing system. The established packet capture module ignores

such kinds of packets, and restricts its analysis only on the received TCP

packets.

Code List (3.1) Packet Capture Module.

Input

Row of data.

Output

IP header record shows in Table (3.1).

TCP header record shows in Table (3.2).

 ReadBuffer (0 to 1499) of byte.

Begin

Step 1: Start connection.

Step2: Load a row of data from receive buffer of the network card, and save it in

specific location in the memory.

Step3: Dematerialize the data saved in specific location in the memory as an array

(ReadBuffer) of bytes.

Step4: If length of ReadBuffer <= 0 then go to step 2, Else copy the data from

ReadBuffer (0) to ReadBuffer (19) in IP header record.

Step5: Check if ip_protocol<>6 then go to step 2, Else copy the data from

ReadBuffer (20) to ReadBuffer (39) in TCP header record.

Step6: If connection is not terminated then go to step2.

Step 7: End.

Chapter Three NSM System Design

 55

3.4 Packets Analyzer Module

After capturing IP packets and copying some of its information in IP

header and TCP header constructs, the contents of some fields should be

tested. The test steps can be summarized as follows:

1. Reading IP Header Fields: During reading the fields of IP header,

some remarks are noticed, theses remarks are:

a. After reading and testing the fields of IP header (including

version, IP header length (IHL), type of service (TOS), total

length, identification, flags, fragment offset, time to live (TTL),

protocol type, checksum, source IP, destination IP), the value of

some fields are fixed in all received packets, as shown in Table

(3.3). While, the values of other fields vary from packet to

another (like total length, checksum, source IP and destination IP).

 Table (3.3) The fixed fi elds’ values of IP header

Field Version IHL TOS TTL Protocol

Size in
bits

4 4 8 16 8

Value
4

(IPv4)
5 words Routine 128 sec.

6 (TCP)
1 (ICMP)
17 (UDP)

b. Among all fields of IP header, two fields are very important and

considered in this work, these fields are source IP and destination

IP.

c. The two merged fields (version and IHL) in one byte field called

ip_verlen, are extracted by applying the following:

version= (ip_verlen and 240)>>4.

Chapter Three NSM System Design

 56

IHL= ip_verlen and 15.

The value of version field is extracted by capturing the highest 4

bits (i.e., highest significant nipple) from the byte ip_verlen,

while the value of IHL field is extracted by getting the 4 least

significant bits in ip-verlen.

2. Reading TCP Header Fields: During reading TCP header fields, it

is found that the first two fields (source port and destination port) are

important. After starting connection and trying to read a shared file

from another machine, it was found that either the source or

destination port will be equal to 139. Also, in some tests to access

some shared files, it is found that port number 445 could be used

instead of 139. Also during the analysis of TCP header, it is found

that if the source port was equal to 139, then the destination port

would be equal to a number greater than 1000, and it varies from run

to another. Also if destination port was equal to 139, then the source

port would equal to a number greater than 1000. Same behavior was

noticed when port 445 is used (instead of 139). Since, the involved

transport protocol in any instance of accessing shared files is TCP,

and the used ports in this protocol are 139 and 445.

3. Simulating Different Types of Filing Access: In order to get

knowledge about the role of remaining contents of the TCP packet in

the access instance of shared files, some tests have been conducted

by simulating various types of filing access. During these test, some

read/write trials on shared files from another machine were

performed. To simply searching for application protocol, all the

packets that generated during these trials are registered in a capture

Chapter Three NSM System Design

 57

file of type text. Having such a text files contains all data of packet

make the way of allocating the parts of packets that assign the file

access type and the file name more easier.

During the investigating of the captured file contents, the

following consideration and remarks are taken:

� The term “SMB” always exists in each packet, it is a part of a

4-bytes header, and the first byte is 0xFF, followed by the

ASCII representation of the letters S, M, and B.

� Among the contents of the capture file, the name of the

accessed files and their paths had been found. The

investigation of the remaining contents of the captured packets

had indicated that the used application protocol is CIFS which

is a new version of SMB. The steps mentioned in code list (3.2)

have been implemented to analyze only the packets that

related to events of accessing shared files.

Code List (3.2): Simulating Different Types of Filing Access.

Input

TCP header record

ReadBuffer (0 to 1499) of byte.

Output

Data_ file.txt

Begin

Step1: Apply packet capture module.

Step2: Check if Src_portno =139 or Dst_portno=139 then go to step 4.

Step3: Check if Src_portno =445 or Dst_portno=445 then go to step 4, Else go to

step 5.

Step 4: Copy data from ReadBuffer(40) to the end of packet in Data_file.txt.

Step 5: End.

Chapter Three NSM System Design

 58

3.4.1 Matching the CIFS Frame Function

After capturing the CIFS packets, the CIFS header record is

extracted, the elements of the record are listed in Table (3.4).

Table (3.4) CIFS Header field

This extraction is done by copying data from ReadBuffer into CIFS

header record. This data laid in the area extended from element 40 to 71 in

ReadBuffer as shown in Figure (3.4).

Fig. (3.4) The position of CIFS header from IP pack et [COD07]

Field Size in bytes Value
Delimiter 1 256
ID1 1 “S”
ID2 1 “M”
ID3 1 “B”
Command 1 162 or 1
Error class 1 -
Must zero 1 0
Error code 2 -
Flag 1 -
Flag2 2 -
Pad 12 0
TID 2 -
PID 2 -
UID 2 -
MID 2 -

IP header TCP header Data CIFS header IP packet

01234567 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
0xFF S M B

command Error class Must zero Error code
 flags Flag2

pad
TID PID
UID MID

CIFS header

40 72

Chapter Three NSM System Design

 59

The implemented steps for extracting CIFS header record is similar

to that mentioned in code list (3.2), but it different in step 4. Instead of

copying data in a text file, it copy in CIFS header record.

3.5 Packet Filter Module

It was noticed that various types of packets are received at each

moment, this module filters these packets and send only those filters related

to file access operations for analysis. Among various types of received

packets the following packets which have been filtered out are:

1. Handshake packets: such packets are used to establish a connection.

2. Broadcast packets: such kind of packets hold short messages in

certain contexts, they sent by any machine and received by all the

other, this type of packets uses UDP protocol.

3. ICMP packets: such packets are used to send a ping from one

machine to another.

4. SMB negotiate: such packets sent by a client machine to the server,

they send as the first SMB packets during the connection.

5. Session_setup_andX packets: they are SMB command packets by

which the client can continue to logon to the server if required.

6. Tree_connect_andX packets: through such SMB command packets,

the user can connect with the network.

7. Other SMB commands packets: include some packets of the SMB

commands that are not necessary in our proposed system, like

SMB_Close.

8. The repeated packets: some packets are repeatedly sent for different

purposes, the most important one is for synchronization.

Chapter Three NSM System Design

 60

9. Server response packets: each command has two types of packets,

client request and server response. The proposed system ignores such

kind of packets.

3.6 Packets Processing Module

During capturing, pre analyzing and filtering stages, the IP header,

TCP header, CIFS header and data are extracted. Packet processing module

is responsible for further analyzing the packets. It takes CIFS header record

with its remaining data to extract more information about the nature of the

events of accessing shared files. The extracted information include: names

of files, type of access, source address…etc.

The remaining contents of packet is called command packet.

Command packet is identified by the command field in CIFS header

(CIFS.cmd). The CIFS command packets indicate which file accessing

command is hold in the captured packet (like SMB_COM_DELETE_

DIRECTORY 0x01, SMB_COM_OPEN 0x02, SMB_COM_CREATE

0x03…etc).

Generally, there are two kinds of CIFS command packets, either

client request or server response packets. Packet processing module is

concerned with the client request packet and it ignores server response

packets.

The types of access that considered in this work are: Read, Write,

Copy, and Delete accesses. According to these four accesses, the following

four cases have been applied:

1. Read Access: The type of command packet that used in this access is

NTcreate_andX. All CIFS commands have specific numbers, and the

command number of NTcreate_andX equal 0xA2. Figure (2.13) shows

the header of NTcreate_andX command. To copy the remaining data

Chapter Three NSM System Design

 61

from ReadBuffer to NTcreate_andX header, its dedicated record is

created. Table (3.5) shows the fields of this record.

Table (3.5) NTcreate_andX header fields

Field Size in bytes
Wordcount 1
andXcommand 1
AndXreserved 1
andXoffset 2
Reserved 1
Namelength 1
Flags 4
RootDirectoryFid 4
DesiredAccess 8
AllocationSize 8
FileAttributes 4
ShareAccess 4
CreateDisposition 4
CreateOptions 4
ImpersonationLevel 4
SecurityFlags 1
Bytecount 2

Filename
specified in

Namelength field

To check if the received TCP packet is NTcreate_andX or not, the

CIFS_cmd field must be checked. If the field CIFS.cmd equal to A2,

then the data segment in ReadBuffer started from 72 to the value

specified in ip_totallength field are copied into NTcreate_andX header

record. Figure (3.5) illustrated the position of NTcreate_andX header in

IP header.

To know if the received packet is client request or server response,

the WordCount field should be checked. (i.e., If NTcreate_andX.

WordCount field equal 24, then the current packet is client request and

should be analyzed, otherwise the current packet is considered as server

response and it is omitted).

Chapter Three NSM System Design

 62

Fig. (3.5) NTcreate_andX header in IP packet [MIC06]

Then, the field that is checked in this step is NTcreate_andX.

DesiredAccess. The value in this field is used to specify the type of

access, and it is represented by access mask encoding.

In Read case, the value of NTcreate_andX.DesiredAccess field is

equal to 0x20000. According to Table (2.2) this value means there is

Read access to the owner, group, and the discretionary access control

list (ACL) of the security descriptor.

The name of file that is accessed by a client and its path is extracted

from the received packet. NTcreate_andX.Filename field is used to

specify the files’ names and paths.

2. Write Access: Like Read access, the type of command packet that is

implemented in this access is NTcreate_andX. Therefore, this case

IP header TCP header CIFS header NTcreate_andX
header

IP packet

NTcreate_andX header
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

WordCount AndXComm AndXReservd AndXOffset
 Reserved NameLength Flags

 RootDirectory
 DesiredAccess

 AllocationSize

 FileAttributes
 ShareAccess
 CreateDispos
 CreateOptions

 ImpLevel
 SecurityFlags

Byte Count File Name

Chapter Three NSM System Design

 63

applies the same check of client request packet which had been applied

in Read access.

To check if a client trying to access a shared file for writing, the

NTcreate_andX.DesiredAccess field must be checked. In Write case, the

value of NTcreate_andX.DesiredAccess field is equal to 0x400000,

according to Table (2.2) this value means there is Write access to ACL.

3. Copy Access: If a client trying to access shared files by Copy command,

then the NTcreate_andX packets are issued. Therefore, the same check

of client request packet that had been applied in Read and Write

accesses is applied in Copy access.

To check if a client copies any file from shared resources, the

NTcreate_andX.CreateOptions field must be checked. CreateOptions

field is defined as long type, and its possible values are listed in Table

(2.4).

Copy access means that a new file is going to be created. When the

user access type is Copy, the NTcreate_andx.CreateOptions field must

be 0x000002. According to Table (2.4) this value means that a new file

is created.

4. Delete Access: There are two types of command packets could be

applied to perform delete access; these types are CIFS_DeleteDirectory

and NTcreate_andX.

CIFS_DeleteDirectory packets are issued when a client try to

delete a directory from a shared resource, while NTcreate_andX packets

are issued when a file is deleted from a shared resource.

Chapter Three NSM System Design

 64

The command number of CIFS_DeleteDirectory is 1, (i.e.,

CIFS.cmd=1). Figure (2.14) illustrates the header of CIFS_Delete

Directory command.

In order to copy the remaining data from ReadBuffer to the record

of CIFS_DeleteDirectory header, first the record of DeleteDirectory

header is created. Table (3.6) shows the DeleteDirectory header fields.

To check if the received TCP packet is the type CIFS_DeleteDirectory

or not, CIFS_cmd field must be checked. If it is equal to 1, then the

block of data in ReadBuffer (starting from position 72 up to

ip_totallength) are copied into CIFS_DeleteDirectory header record.

To know the name of the directory that is going to be deleted by a

client and its path, the field CIFS_DeleteDirectory.Directoryname

should be used for this purpose.

In the case of a file deletion from a shared resource by a client, the

field NTcreate_andX.DesiredAccess must be checked. If

NTcreate_andX. DesiredAccess field is equal 0x10000, then according

to Table (2.2) this value indicate there is delete file access.

Table (3.6) Delete directory header fields

Field Size in bytes

Wordcount 1
Bytecount 1
Bufferformat 1
Directoryname >=2

The established packet processing module applies the above

mentioned checks to allocate the four types of clients’ accesses to the

shared folders and files. Also, it gets the names of these folders and files

and their paths. Code list (3.3) illustrates the implemented steps of the

Chapter Three NSM System Design

 65

packet processor.

Code List (3.3): Packet Processing Module.

Input

ReadBuffer (0 to 1499) of byte.

IP header record as shown in Table(3.1).

CIFS header record as shown in Table (3.4).

Output

NTcreate_andX header record that shown in Table(3.5)

DeleteDirectory header record that shown in Table(3.6)

Access type as string.

File_name as string.

Begin

Step1: Apply the CIFS header construction function.

Step2: If CIFS.cmd <> 0xA2 then go to step 9.

Step3: Copy data from ReadBuffer (72) to ReadBuffer(ip_totallength) into

NTcreate_andX header record.

Step4: If NTcreate_andX.wordcount<>24 then go to step13.

Step5: If NTcreate_andX.DesiredAccess=0x20000 then access_type=”read” and

go to step 12.

 Step6: If NTcreate_andX.DesiredAccess = 0x400000 then set access_

type=”write” and go to step 12.

Step7: If NTcreate_andX. CreateOptions=0x000002 then set access_ type=”copy”

and go to step12.

Step8: If NTcreate_andX.DesiredAccess=0x10000 then set access_ type=”delete”

and go to step 12, else go to step 13.

Step9: If CIFS.cmd <> 1 then go to step 13.

Step10: Copy data from ReadBuffer (72) to ReadBuffer (ip_totallength) in

DeleteDirectory header record.

Step11: Set file_name to DeleteDirectory.DirectoryName and go to step 13.

Step12: Set file_name to NTcreate_andX.FileName.

Step 13: End.

Chapter Three NSM System Design

 66

3.7 Saving Packet Module

After applying the four previous modules (i.e., packet capture, packet

analyzer, packet filter, and packet processes) on the received packets, some

information from each extracted packet is saved before sent to server

machine. This module is used for saving some fields which are extracted

from IP, TCP, CIFS, and NTcreate_andX packets and send it to server

machine.

Saving and retrieval a data from binary files is faster than other types

of files (for example, text files). Therefore, in this work binary files are

used to save the extracted information. These files accessed by

administrator only (i.e., they couldn’t accessed by users). In each run, the

data append to these files until the administrator terminates these data. In

order to access these binary files by the server machine, they are defined as

shared files. Shared file means that they could be accessed at any instance

by more than one application. This binary shared file is saved in a directory,

which should already be shared on the network to call it by the server

machine.

A new array called Shared had been created on each client to collect

all extracted fields before saving them in a binary shared file. The extracted

fields are saved in Shared array according to the following steps:

Step1: The two fields (source IP, destination IP address) which are

extracted from IP header record, are saved in Shared array as follows:

Shared (i).source_IP= ipheader.ip_srcaddr.

Shared (i).dest_IP= ipheader.ip_destaddr.

Step2: The two fields (source port, destination port) extracted from TCP

header record, are saved in Shared array as follows:

Shared(i).source_Port= tcpheader.Src_portno.

Chapter Three NSM System Design

 67

Shared(i).dest_Port= tcpheader.Dst_portno.

Step3: The Command field extracted from CIFS header (which is saved in

access type variable when applying packet processing module) is

saved as follows:

Shared(i).command=access type.

Step4: File name or Directory name fields are extracted from

NTcreate_andX or DeleteDirectory headers. These fields are already

exist in File_name variable, the contents of this variable are copied

in Shared array:

Shared (i).File_name=File_name

Code list (3.4) shows the implemented steps of saving the packet array in a

binary share file.

Code List (3.4) Saving Packet Module.

Input

IP header record.

TCP header record.

Access_ type as string.

File_name as string.

Output

A binary shared file contains the array “Shared” which is a record type of:

Source_IP as string

Dest_IP as string

Source_Port as integer

Dest_Port as integer

Command as byte

File_name as string

File_path as string At_time as time

At_date as date

Chapter Three NSM System Design

 68

3.8 The Monitoring Unit

Network security monitoring system monitors the clients’ accesses to

the available storage shared resources, which they exist in server machine.

Therefore, the implementation of the proposed system was based on a

client-server model, and the monitoring unit is implemented on client side.

The combination of the modules (packet capture, packet analyzer,

packet filter, packet processing, and saving packet modules) makes the

monitoring unit. Code list (3.5) shows the implemented steps to manage the

Begin

Step1: Set i=0.

Step2: From each received bulk of packets

Step2.1: Set Shared(i).Source_IP to ipheader.ip_srcaddr, and set Shared(i).

Dest_IP to ipheader.ip_destaddr.

Step2.2: Set Shared(i).Source_port to tcpheader.Src_portno, and set Shared(i).

Dest_Port to tcpheader.Dst_portno.

Step2.3: Call (Get_ FilePath) function to extract the File_ path from File_name.

Step2.4: Set Shared(i).Filename to File_name, set Shared(i).File_path to

File_path

Step2.5: If access_type=”read” then set Shared(i).command to 1,Else if

access_type=”write” then set Shared(i).command to 2, Else if

access_type=”copy” then set Shared(i).command to 3, Else if access_type

=”delete” then set Shared(i).command to 4.

Step2.6: Get the time of access and save it in Shared(i).At_time, and get the Date

of access and save it in Shared(i).At_date, increment i by 1.

Step 2.7: If i<1000 then go to step 2.1(for the new coming bulk of packets)

Step2.8: Open binary shared file and save the “Shared” array in this file, and set

i=0.

Step2.9: Check in stop command is not prompted then go to step 2.1.

Step3: End.

Chapter Three NSM System Design

 69

calling of these five modules to conduct the monitoring activity. While

Figure (3.6) shows the layout of monitoring unit.

Code list (3.5): Monitoring Unit

Input

Row of data

Output

Database packets

Begin

Step1: Do while connection is starts.

Step2: Apply Packet Capture module on the received packet.

Step3: Apply Creating CIFS header module on the output of Packet Capture

module.

Step4: Apply Packet Processing module on the output of Creating CIFS header

module.

Step5: Apply Saving Packet module on the output of Packet Capture module and

the output of Packet Processing module.

Step6: Check if connection is not stop then go to step 1.

Step7: End.

Chapter Three NSM System Design

 70

Fig. (3.6) The layout of monitoring unit

3.9 The Proposed Access Control Service

 As mentioned in chapter two, the job of Access Control security

services is determine which information the user can access and which are

not. Therefore, the proposed monitoring unit requires an access control

service to control the access privileges of clients.

In order to design a stable access control, the number of folders exist

in various PC machines have been calculated. During this check, it is found

that maximum number of folders is around to (20000) folders, and for files

it is (90000) files on the hard disks of the tested PC machines. Because of

this huge numbers of folders and files in some machines, the first two

methods of access controls (i.e., protection table, capabilities based) are

unsuitable to be implementing in this work. Therefore, the method Access

Control Lists (ACLs) is the most suitable one to this work. The proposed

access control and ACLs are similar in the way of indicating for each

DB

Source
IP

Destination
IP

Source
Port

Destination
Port

Command
File

Name
File
Path

 Packet
 Saving
 Module

Packet
Processing

Module

NTcreate_andX
header

Deletedirectory
header

Network
Traffic

Packet
Capture
Module

IP
header

TCP
header

Packet Analyzer
Module

CIFS
header

Chapter Three NSM System Design

 71

object which a specific user is allowed to access that object. Figure (3.7)

shows the general format of the proposed access control.

Folder 1 User 1
RWCD

User 2
RWCD

…… User n
 RWCD

Folder 2 User 1
RWCD

User 2
RWCD

…… User n
RWCD

.

.

Folder i
User 1
RWCD

User 2
RWCD

…… User n
RWCD

Fig. (3.7) The general format of the proposed acces s control

The objects of the access control are machines’ folders, not

machines’ files because of the large numbers of files, which leads to a long

search time to specify the access permission for each client.

3.10 The Index Filing Module

Network Security Monitoring System monitors the filing contents of

the shared resources of the server’s machine; therefore, it requires indexing

for all folders and files of the server’s machine.

Before indexing all drives, folders, and files of the shared storage

area in the server machine, three arrays have been created, these arrays are:

index_drives, index_folders, and index_files.

Index_drives is an array of records; each record consists of drive_no,

drive name, first_folder, last_folder, first_file, last_file fields as shown in

Table (3.7). While index_folders also is an array of records; the elements of

the record are folder_number, folder_name, folder_path, drive_no fields as

shown in Table (3.8). Index_files is an array of records, each record consist

Chapter Three NSM System Design

 72

of file_number, file_name, file_path, drive_no fields, as shown in Table

(3.9).

Table (3.7) Index_Drives DB

Field Name
Size

(Byte)
Description

Drive_no 1 Specifies the host drive number.

Drive_name 2 Specifies the host drive name.

First_folder 2
Specifies the index number of first child folder saved in this

drive.

Last_folder 2
Specifies the index number of last child folder saved in this

drive.

First_file 4 Specifies the index number of first file exist in this drive.

Last_file 4 Specifies the index number of last file exist in this drive.

Table (3.8) Index_Folders DB

Field Name Size (Byte) Description

Folder_no 2 Specifies the index number of the folder.

Folder_name 50 Specifies the name of the folder.

Folder_path 800 Specifies the complete path of the folder.

Drive_no 1 Specifies number of the host drive of this folder.

Table (3.9) Index_Files DB

Field Name Size (Byte) Description

File_no 4 Specifies the index number of the file.

File_name 50 Specifies the name of file.

File_path 800 Specifies the complete path of file.

Drive_no 1 Specifies the index number of the host drive of this file.

Chapter Three NSM System Design

 73

The steps of file indexing module are summarized by the following:

1. Reading Hard Disk’s Drives: This module begins to allocate the hard

disk’s drives of the server machine, and specify a unique number to

each drive, and finally save this number in index_drives.drive_no field.

Also, this module gets the name of each drive and save it in

index_drives.drive_name field.

2. Reading Drives’ Folders: The module reads the first folder that exist in

first drive using the API function FindFirstFile, this function opens a

search handle, searches a folder, and returns the name of the first file

exist in that folder. Then, as next step the file indexing module reads all

folders, subfolders, and all files exist in the searched drive using the API

function FindNextFile. This function continues the file search from the

previous call to the FindFirstFile function.

The FileName is a string variable used by FindNextFile function,

this variable holds the scanned names of folders and files. The attributes

of this variable must be checked to recognize whether the detected

entity is a folder or a file. If the attributes of FileName refers to folder,

then the module assign to this folder a unique index number, and save it

in index_folders.folder_no field. Also it will save the FileName in

index_foldes.folder_name field, and save the complete path of folder in

index_folders. folder_path field.

Also this module save for each scanned drive the index number of

the first folder detected, in that drive, in index_drives.first_folder field,

and save the index number of the last detected folder exist in the same

scanned drive in index_drives.last_folder field.

3. Scanning Files in Folders: The files also scanned by checking the

attributes of FileName, if the check of folder attributes is failed, then the

Chapter Three NSM System Design

 74

scanned entity is considered a file. The module assign to each detected

file a unique index number, and save this number in index_files.File_no

field, and the FileName in index_files. file_name field, and saves the

complete file path in index_files.file_path field.

Also this module save the index number of first detected file in

index_drives.first_file field, and the index number of the last detected

file in index_drives.last_file field for each drive. When the search

handle became null, then it’s closed using the FindClose function.

Saving the index of all folders and files in this way is similar to using

pointers (i.e., there is a pointer for each drive refer to the position of its

folders and files in the lists), while the interaction between these arrays

seems like those in tree structure as shown in Figure (3.8).

Fig. (3.8) The relationship between the index_drive s array, index_folders

array, and index_files array

To easily recall the arrays’ information by other modules, the arrays

(index_drives, index_folders, and index files) are saved in three DB table

0 1 2 5001 . . 6000 . . n

Index_folders array

0 1 2 10001 . . 25000 . . m

 Index_files array

Drive_no:0 Drive_no :1
Drive_name:C Drive_name: D
First_folder :0 First_folder :5001
Last_folder :5000 Last_folder:6000
First_file:0 First_file:10001
Last_file :10000 Last_file:25000

Index_drives array

Chapter Three NSM System Design

 75

files. In this work, the binary format was used to establish these tables,

because this type of files saves and retrieves their data faster than other

structural database files (like Microsoft ACCESS). The implemented steps

of the module “indexing folders and files” are shown in Code List (3.6).

Some folders which are saved in the same drive have exactly same

names. Therefore, the complete path for each folder and file is saved. For

example, suppose that the following two paths are found in a host drive,

“C:\Document and setting\ computer1 \WINDOWS”, and

“C:\WINDOWS”. In such case, the folder “WINDOWS” exist in two

different places in the drive. When the module reading folder’s work on

this disk, an error (“names duplication”) will be happen when these folders

are saved in index_folders array. For this reason the registration of

complete path for each folder and file is necessary.

Chapter Three NSM System Design

 76

Code List(3.6): Indexing Files Module.

Input

All hard disk’s drives of the server machine.

Output

Folders DB contains three tables (in binary format), hold the data of the

following three structure arrays:

Index_drives (0 to 9) array of

Drive_no as byte

Drive_name as string * 2

First_folder as integer

Last_folder as integer

First_file as long

Last_file as long

Index_folders (0 to 20000) array of

Drive_no as byte

Folder_no as integer

Folder_name as string * 50

Folder_path (0 to 15) as string* 50

Index_files (0 to 100000) array of

Drive_no as byte

File_no as long

File_name as string *50

File_path (0 to 15) as string*50

Begin

Step1: Read all drives of hard disk by Drive List Box control.

Step2: Set n to the number of drives.

Step3: Set d, fo, fi equal to 0.

Step4: Set d equal to Index_drives(d).drive_no; and set drive1.list(d) equal to

Index_drives(d) .drive_name.

Continue

Chapter Three NSM System Design

 77

3.11 Tree Builder Module

In this work, the administrator is responsible to define the monitoring

rules; he enters to the system after he passes the specific ID and password.

He should specify the available access to each user. Therefore, the

administration interface shows all listed folders, those registered in folders

database, to administrate in a clear form and for easily used. The Treeview

control is used to view all registered folders for rules assignment.

Step5: Set fo equal to Index_drives(d).first_folder; and set fi equal to

Index_drives(d). first_file.

Step 6: Call FindFirstFile function for the derive (Index_drives(d).drive_name)

and put its retrieved non-empty string in Filename.

Step 7: Check if Filename=”.” And “ ..”, then go to step 10.

Step8: Check if the attributes of Filename refers to Folder then

Step8.1: Put fo in Index_folders (fo). folder_no;

Step8.2: Put Filename in Index_folders(fo).folder_name;

Step8.3: Apply get_path function on Filename and put the retrieved path string in

Index_folders(fo). folder_path;

Step8.4: Increment fo by 1 and go to step 10.

Step9: Put fi in Index_files(fi).file_no; put Filename in Index_files(fi). file_name;

Apply get_path function on Filename and put the retrieved path string in

Index_file(fi).file_path; increment fi by 1.

Step 10: Call FindNextFile function and check, if there is another file or folder

then put the non empty string in Filename and go to step 7.

Step11: Call FindClose function.

Step12: Put fo-1 in Index_drive(d).last_folder, and put fi-1 in Index_drive(d).

last_file.

Step 13: Increment d by 1; check if d<n then go to step4.

Step 14: Save Index_drives, Index_folders and Index_files arrays in binary files.

Step 15: End.

Chapter Three NSM System Design

 78

The TreeView control is designed to display data which is

hierarchical in nature, such as organization trees, the entries in an index, the

files and folders on a disk.

A node in this tree can be expanded or collapsed, depending on

whether or not it has child nodes or not. The expanded or collapsed nodes

events are important to administrate the hierarchal folder list to the desired

depth (as he wants).

Also a node can be checked by its check box. This property is very

important in rules specification. In the proposed system, folders are

checked by administrator, if he check any folder, it means that he want to

specify rules to that folder. Immediately, a small window appears for

adding rules. Figure (3.9) shows the list of all drives exist on a server

machine with their hosted folders using TreeView control.

The tree builder module builds the tree by load data from the folders

database, code list (3.7) shows the implemented steps of tree builder.

When using tree builder module; it is important to notice that

index_tree.rules field, which is the output of this module, is still empty, this

field is filled when using the “add rules” module.

Chapter Three NSM System Design

 79

Fig. (3.9) The Tree View of administrator interfac e

Chapter Three NSM System Design

 80

3.12 Add Rules Module

This module is responsible for initiating the rules (including access

privileges) using the database table for file indexing (folders database).

This module uses the output data of the module “file indexing”.

Code List (3.7) Tree Builder Module.

Input

Folders DB table contains the index_folders array.

Drives DB table contains the index_drives array.

Output

A binary file contains the index_Tree(0 to 20000) array of record, each

element consists of:

Node as as string * 50

Index as integer

Path as string * 750

Rules (1 to 4) as byte

Begin

Step1: Get index_drives and index_folders arrays from DBs.

Step2: Set d = 0, set index=0, and enable the treeview.checkbox.

Step 3: Check if index_drive(d).drive_name= null then go to step 10.

Step4: Set i = index_drives(d).startfolder.

Step5: Check if i > index_drives(d).endfolder then go to step 9.

Step6: Check if index_folders(i).folder_name and index_folders(i).folder_path is

exist in the tree then go to step 8.

Step7: Set index_tree (index).node = index_folders(i).folder_name, set index_tree

(index).index = index, set index_tree (index).path = index_folders(i).

folder_path, increment index by 1.

Step8: Increment i by 1 and go to step 5.

Step9: Increment d by 1 and go to step 3.

Step10: End.

Chapter Three NSM System Design

 81

The module “add rules” requires applying the tree builder module in

each run; because the tree is terminated after the module is stopped. After

apply tree builder module, the tree of folders appears to administrator in

order to initialize the rules. This tree contains check box on the left of each

folder, by which he can specify (choose) the folders that can be accessed by

specific user, see Figure (3.9). Also this tree contains a small window on

the top right corner, by which administrator can assign the allowed rules.

Code list (3.8) shows the steps of add rules module.

Code List (3.8) Add Rules Modules.

Input

A binary file contains the index_Tree (0 to 20000) array of record, each

consist of:

Node as integer

Index as string * 50

Path as string * 750

rules (1 to 4) as byte

Output

A binary file contains the index_Tree (0 to 20000) updated by new rules.

Begin

Step1: Apply Tree Builder module on index_Tree array.

Step 2: Check if tree.node.checkbox<>true then go to step 8.

Step 3: Check the list of users, if list_users are checked then set i= user number,

Else go to step 8.

Step4: Check if rules(i) <= 0 then go to step 6.

Step5: Check if read.check=true then set rules(i)=rules(i) or 1,

if write.check=true then set rules(i)=rules(i) or 2,

if copy.check=true then set rules(i)=rules(i) or 4,

if delete.check=true then set rules(i)=rules(i) or 8.

Step6: Increment i by 1 and check if i <=4 then go to step4.

Continue

Chapter Three NSM System Design

 82

3.13 Rules Implementation

In order to reduce the memory consumption, the assigned rules have

been registered in bitmap form (i.e., assigning one bit to specify the status

of one access type). This registration mechanism led to using an array of

bytes, called Rules. The length of this array is equal to the number of

monitored users’ (i.e., the number of users have privilege to use the shared

storage resources). If the number of users equal to n, then the length of

Rules array equal to n.

In this work, four types of folders and files accesses are considered:

Read, Write, Copy, and Delete. The status (permitted or not) of each access

type needs one bit to be represented; therefore, 4 bits are needed to

represent the status of the four types of access. So, in this work, each entry

of Rules array had given 8 bits (1 byte). The most right 4 bits are used, and

the other 4 bits are ignored as shown in Figure (3.10).

Bit number 1 2 3 4 5,6,7,8

Represent READ WRITE COPY DELETE Ignore

Fig. (3.10) Bitmap representation

Each element of the array hold the assign rules for certain user, for

example Rules (1) contains the rules of user number 1, Rules (2) contains

Step 7: Check if there is more specified rules for such node then go to step 2.

Step8: Open a binary file, save rules, and close file.

Step9: End.

Chapter Three NSM System Design

 83

the rules of user number 2, …etc. To assign rules for each folder for any

user, the Rules array is presented in form of table as shown in the example

shown in Figure (3.11). In this example, four users are included in the rules

table. Therefore, the length of Rules array equal 4 for each folder or drive.

In this example, user1 which is represented by Rules (1), can read, write,

copy, and delete the folder “C:\WINDOWS”, because the value of Rules (1)

is equal 15. While, user2 which is represented by Rules (2), can only read

and write on the same folder. The range of values of Rules array in the

proposed system is [0, 15].

Folder

Name

Folder

 path

“User 1”

Rules(1)= 15

“User 2”

Rules(2)= 3

“User 3”

Rules(3)= 4

“User 4”

Rules(4)= 1

WINDOWS C:\ D C W R D C W R D C W R D C W R

1 1 1 1 0 0 1 1 0 1 0 0 0 0 0 1

Fig. (3.11) An example of Rules array’s representation

3.14 Modify Rules Module

The steps of modify rules module can be summarized as follows:

1. Taking data from index_tree array.

2. Applying tree builder module on index_tree array.

3. Display the exist rules, and gives the administrator the ability to

modify the exist rules.

4. Saves the changes in index_tree array.

The administrator can adds or erases any type of access to any folder

for any user. Code list (3.9) shows the implemented steps of the module

“modify rules”. In this code list, building the view tree and fixing the

Chapter Three NSM System Design

 84

existing rules are illustrated by steps [1-8]. In step 9, the module of add

“rules” module is called to add other new rules.

3.15 Report Module

 Report module is responsible for binding the monitoring unit with

administration interface, by taking the output of monitoring unit and the

output of administration unit. This module compares between these two

outputs, and makes a report about the users accesses (privileges). The

implemented steps of this module are show in code list (3.10). In this code

Code List (3.9): Modify Rules Module

Input

 A binary file contains the index_Tree (0 to 20000) array of record

(consist of Node, Index, Path, rules()):

Output

 A binary file that contains index_Tree hold the modified rules.

Begin

Step 1: Apply Tree Builder module on index_Tree array.

Step2: Set i = 0.

Step3: Check if index_tree(i).node= null then go to step 9.

Step4: Check if index_tree(i).node.check<>true then go to step8 .

Step5: Set j=0; check if index_tree(i).rules(j) <= 0 then go to step 7.

Step 6: If index_tree(i).rules(j) and 1 < >0 then read.check=true,

if index_tree(i).rules(j) and 2 < >0 then write.check=true,

if index_tree(i).rules(j) and 4 < >0 then copy.check=true,

if index_tree(i).rules(j) and 8 < >0 then delete.check=true.

Step7: Increment j by 1, and check if j<=4 go to step 6.

Step 8: Increment i by 1 and go to step3.

Step 9: Call Add rules module beginning from step2.

Step 10: End.

Chapter Three NSM System Design

 85

list, there is a calling to get_user function in step5, the input of this function

is “source IP number” and the output is the user number which is assigned

to that IP, the implemented steps of this function shown in code list (3.11).

Code List (3.10) Report Module.

Input

(i) A binary shared file contains the array Shar (0 to 10000) of record, each

record consists of the following members:

Source_IP as string

Dest_IP as string

Source_Port as integer

Dest_Port as integer

Command as byte

File_name as string

File_path as string

At_time as time

At_date as date

(ii) A binary file that contains the index_Tree (0 to 20000) array of records,

each record consists of the following members:

Node as integer

Index as string * 50

Path as string * 750

rules (1 to 4) as byte
Output

Report
Begin

Step1: Set i = 0, set j = 0.

Step2: Check if shar(i).source_ip = null then go to step12.

Step3: Check if index_tree(j).node = null then go to step 11 .

Step4: Check if index_tree(j). node doesn’t exist in shar(i).file_path then go to

step 10.

Continue

Chapter Three NSM System Design

 86

Step 5: Call get_user function.

Step 6: Check if index_tree(j).rules(user) > 0 then call get_rules function, Else

set allowed=false and go to step 8.

Step7: Check if index_tree(j).rules(user)=shar(i).command then set

allowed=true, Else set allowed=false.

Step8: Add to report the items shar(i).source_ip, shar(i).dest_ip, shar(i).

source_port, shar(i).dest_port, shar(i).command, shar(i).file_name,

shar(i).file_path, shar(i).at_time, shar(i).at_date.

Step 9: Check if allowed=true then add to report “allowed access”, Else add to

report “not allowed access”.

Step 10: Increment j by 1 and go to step 3.

Step 11: Increment i by 1 and go to step 2.

Code list (3.11) Get_User Function

Input

shar(i).source_ip as string.

Output

User as byte.

Begin

Step1: If shar(i).source_ip= 10.0.0.1 Then user = 1,

Else If shar(i).source_ip= 10.0.0.2 Then user = 2,

Else If shar(i).source_ip= 10.0.0.3 Then user = 3,

Else If shar(i).source_ip= 10.0.0.4 Then user = 4,

Step2: End.

Republic of Iraq
Ministry of Higher Education and Scientific Research
Al-Nahrain University
College of Science

Network Security Monitoring

System

A Thesis

Submitted to College of Science of AL-Nahrain University in

 Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Science

By

Zainab Hyder Ameen AL-Essa
(B.Sc. 1999)

Supervisor

Dr. Loay E. George

March 2008 Rabia I 1429

ج

ِ��ـمِ نِ ا	ر�َ� ِ�ْ�ـمِ ِ� ا	ر�

 َ� ُ�ؤتَ وََن َن َ�َ�ــ�ءُ ُ�ؤ�ِ� ا	ِ��َ
َ#ــ�راً َ�"ـــِـ�راً ِ�َ� َ د أوُــ�َ ا	ِ��َـــ�َ

رُ �� وََ% �ــذَ�
 إ) أوُْ	ـُواْ ا'َ	َ�ـ%بِ

 0َدَقَ � ا	َ+.-, ا	َ+ظ�م

 ٢٦٩ا	� رة

Acknowledgement

I would like to express my deep gratitude and sincere thanks

to my supervisor Dr. Loay E. George for guidance, assistance

and encouragement during the course of this project.

Grateful thanks for the Head of Department of Computer

Science of Al-Nahrain University Dr. Taha S. Bashagha for the

continuous support during the period of my studies.

I owe deep gratefulness to my family: my parents, uncle,

and brothers for their attention and encouragement, to my

 ج

husband and children for their constant concern and their

precious words that gave me strength and power when it was

desperately needed, to my aunt and cousins for their prayer.

Grateful thanks to my group fiends specially Rasool

Husham and Haider Majeed for their helpful during the period

of this project.

Zainab

Dedicated To……….

My Parents

My Husband

My Brothers

My Children

 With My Love

mt|Çtu

Abstract

This research is concerned with the design and implementation of a

network security monitoring system. A focus was put on monitoring the

shared network resources (specifically filing system). In this work, the

layers of TCP/IP suite have been studied and their roles in the process of

network monitoring were defined, it was found that the internet layer can

play the major role. Also, in this project a filing index system to index the

files of network resources was built.

The layout of the established monitoring system is composed of two

major units (i.e., monitoring and administration units). The monitoring unit

works on client side; it monitors all users’ accesses to network resources by

capturing the IP packets, and then analyze, filter, and assess their security

aspects. Finally, it saves some of extracted parts of the IP packets in a

database. The administration unit work on server side, it is used for

indexing the network resources (i.e., shared files and folders). This unit

permits the administrator to assign some available rules to manage the

users' accesses. Finally, some reports could be produced, by merging the

outputs of both units (monitoring and administration). The registered

information about the captured packets are compared with the assigned

access' rules for each subject to produce the periodic reports.

The results of the conducted tests indicate that the stage of filtering

out the unnecessary packets is very important. If the monitoring unit

considers only the relevant packets, then the performance of the system

increases and the performance will be stable even when there is high

network traffic load.

The proposed monitoring system has been established using

Windows API functions with Microsoft Visual Basic 6.0.

List of Abbreviations

ACL Access Control List

ARP Address Resolution Protocol

ATM Asynchronous Transfer Mode

CIFS Common Internet File System

DECnet Digital Equipment Corporation Network

DNS Domain Name System

FTP File Transfer Protocol

HTTP Hyper Text Transfer Protocol

ICMP Internet Control Message Protocol

ID Intrusion Detection

IDS Intrusion Detection System

IP Internet Protocol

IHL Internet Header Length

IPX/SPX Internetwork Packet Exchange/ Sequence Packet
Exchange

ISO International Standard Organization

LAN Local Area Network

MAN Metropolitan Area Network

MID Multiplex ID

Negprot Negotiate protocol

NetBEUI NetBIOS Enhanced User Interface

NetBT NetBIOS over TCP/IP

NetBIOS Network Basic Input Output System

NFS Network File System

NSM Network System Monitor

OSI Open System Interconnection

PC Personal Computer

PID Process ID

RIP Routing Information Protocol

SMB Server Message Block

SNMP Simple Network Management Protocol

Tcon Tree connect

Telnet Telecommunication Network

TCP Transmission Control Protocol

TID Tree ID

TOS Type Of Service

UDP User Datagram Protocol

UID User ID

WAN Wide Area Network

Contents

Abstract I

List of Abbreviation II

Contents IV

Chapter One “General Introduction”

1.1 Introduction 1

1.2 Related Work ٣

1.3 Aim of Thesis 5

1.4 Thesis Layout ٦

Chapter Two “Network Protocols and Security”

2.1 Network Fundamental 7

2.2 Network Models 8

2.3 The TCP/IP Internet Layering Model 10

2.4 TCP/IP Suite 12

 2.4.1 Internet Protocol 14

 2.4.2 Transmission Control Protocol 16

2.5 Ports, Connections, and End Points 19

 2.5.1 TCP port 139 19

 2.5.2 TCP port 445 21

2.6 Server Message Block (SMB) Protocol 22

2.7 Common Internet File System (CIFS) Protocol 26

 2.7.1 CIFS Protocol Uses 28

 2.7.2 CIFS Packet Header 28

 2.7.2.1 Network Create andX Command 31

 2.7.2.2 Delete Directory Command 35

2.8 Computer Security Concepts 35

 2.8.1 Threat 37

 2.8.2 Vulnerability 38

 2.8.3 Intrusion Detection 39

 2.8.4 Network Monitoring 41

2.9 File System 43

 2.9.1 File Types 44

 2.9.2 Types of File Access 44

 2.9.3 File Protection 45

 2.9.4 Access Controls 46

Chapter Three “Network Security Monitoring System

Design”

3.1 Introduction 49

3.2 System Model 49

3.3 Packet Capture Module 50

 1. Matching the Internet Protocol Frame 51

 2. Matching the Transmission Control Protocol Frame 53

3.4 Packet Analyzer Module 55

 3.4.1 Matching the CIFS Frame Function 58

3.5 Packet Filter Module 59

3.6 Packet Processing Module 60

3.7 Saving Packet Module 66

3.8 The Monitoring Unit 68

3.9 The Proposed Access Control Service 70

3.10 The Index Filing Module 71

3.11 Tree Builder Module 77

3.12 Add Rules Module 80

3.13 Rules Implementation 82

3.14 Modify Rules 83

3.15 Report Module 84

Chapter Four “Performance Test Results”

4.1 Introduction 87

4.2 The Test Results of Monitoring Unit 87

 4.2.1 Testing Versus Read and Write Accesses 88

 4.2.2 The Test Results of Copy Access 90

 4.2.3 The Test Results of Delete Access 90

4.3 The Test Results of Administration Unit 91

 4.3.1 The Test Results of File Indexing Module 91

 4.3.2 The Test Results of Rules Editor Module 93

4.4 Final Reports 94

Chapter Five “Conclusions and Suggestions”

5.1 Conclusions 100

5.2 Suggestions 101

References

[ABE06] Abed, S., S.; ”Low Level Security” , M.Sc. thesis, University of

Technology, 2006.

[ALI03] Ali, Z., A.; “A Real Time Packet Monitoring For Network

Intrusion Detection System”, M.Sc. thesis, University of

Technology, 2003.

[AND80] Anderson, J., P. ; “Computer Security Threat Monitoring and

Surveillance”, James P. Anderson Company, Fort Washington,

1980.

[BAC00] Bace, R., G.; ”Intrusion Detection”, Macmillan Technical

Publishing, USA, 2000.

[BIN07] Binary Vision, “TCP port 139” , http://www.linklogger.com,

Visit Date: May 2007.

[BIZ07] BizNet Communications Inc, “CIFS Services”,

http://www.biz1.net, Visit Date: July 2007.

[COD07] CodeFX Software solutions for applications and

appliances, ”CIFS Explained” , http://www.codefx.com, Visit Date:

May 2007.

[COM95] Comer, D., E.; “Internetworking With TCP/IP “, Vol. 1, 3rded.,

Prentice-Hall of India, 1995.

References i

[DAN07] Daniel Petri Ltd ,”What's Port 445 Used For in Windows

2000/XP”, http://www.PETRI.co.il, Visit Date: May 2007.

[FIS00] Fisch, E., A.; White, G., B.; ” Secure Computers and Networks”,

CRC Press LLC, 2000.

[GAL98] Galvin, S., “Operating System Concepts”, addition Wesely, 5th

ed., 1998.

[GAR96] Garfinkel, S.; Spafford, E.,H.; ”Practical UNIX and Internet

Security”, 2nd ed., by O’Reilly and Associates, 1996.

[HEL00] Helton, P. G., “Security in computing” , Prentice Hall PTR,

2000.

[HER90] Heberlein, L., T.; “A Network Security Monitor.” , Proceedings

of the IEEE Symposium on Research in Security and Privacy,

Oakland, CA, pp. 269-304, May 1990.

[HUG06] Hughes, E.; “Parsing Streaming Network Protocols”, M.Sc.

thesis, Carleton University, 2006.

[IBM07] IBM Internet Security Systems, “Port 139 NetBIOS” ,

http://www.iss.net , Visit Date: May 2007.

[JAI97] Jaiswal, S.; ”TCP/IP” , by Galgotia Publications, 1st ed., 1997.

[JAV07] Javvin Technology, Inc.; “Microsoft CIFS” , http://www.javvin.

com/protocolCIFS.html , Visit Date: May 2007.

References i

[MCH00] Mchugh, J.; Christie, A.; Allen, J.; “Defining your self: The

Role of Intrusion Detection Systems”, IEEE Software, No 5, pp.

42-51, September/ October 2000.

[MIC06] Microsoft Corporation, “Microsoft Developer Network Library

(MSDN)” , 2006, http://msdn2.microsoft.com

[MOL01] Molina, J.; “Using Independent Auditors for Intrusion

Detection Systems”, M.Sc. thesis, University of Maryland, 2001.

[MUK94] Mukherjee, B.; Heberlein, T. L.; Todd,L. ; Levitt, K., N.;

“Network Intrusion Detection”, IEEE Network, Vol. 8, No.3, pp.

26-41, May/ June 1994.

[MUS03] Mustafa, K., H.; ”A Simulated Intrusion Detection System

Using Packet Header”, Ph.D. thesis, University of Technology

December 2003.

[PAN05] Pande, B.; Gupta, D.; Sanghi, D.; Jain, S.K.; “The Network

Monitoring Tool-PickPacket”, Information Technology and

Application, Vol. 2, No. 10.1109/ICITA.2005.274, pp. 191-196,

Julyc2005.

[RFC61] Walden, D.; Beranek, B.; “A Note on Interprocess

Communication in a Resource Sharing Computer Network“,

RFC 61, Network Working Group, July 1970.

[RFC791] Postel, J.; ”Internet Protocol ”, RFC-791, prepared for Defense

Advanced Research Projects Agency Information Processing

Techniques Office, Information Sciences institute, University of

Southern California, September 1981.

References i

[RFC793] Postel, J.; “Transmission Control Protocol”; RFC-793, Darpa

Internet Program, Protocol Specification, prepared for Defense

Advanced Research Projects Agency Information Processing

Techniques Office, September 1981.

[RFC1001] Aggarwal, A.; Aguilar, L.; ”Protocol Standard For A

NetBIOS Service on A TCP/UDP Transport: Concept and

Method”, RFC-1001, Network Working Group, March 1987.

[RFC1180] Socolofsky, T.; Kale, C.; ”A TCP/IP Tutorial” , RFC-1180,

Network Working Group, Spider Systems Limited, January 1991.

[RFC1244] Holbrook, P.; Reynolds, J. ; “Site Security Handbook”, RFC-

1244, Network Working Group, July 1991.

[SHA07] Sharpe, R.; “Just What is SMB?” , http://samba.anu.edu.au/

cifs/docs/what-is-smb.html, Visit Date: May 2007.

[SHE07] Sheif, J., S.; Dearmond, T., G.; “Intrusion Detection: Systems

and Models”, California Institute of Technology, JPL, Pasadena,

California State University, Visit Date: July 2007,

http://doi.ieeecomputersocity.org/10.1109/ENABL.2002.1029998,

[TAN03] Tanenbaum, A., S.; “Computer Networks” , Prentice-Hall PTR,

New Jersy, 4th ed., 2003.

[VID04] Vidstrom, A. ; “The Use of TCP Port 445 in Windows 2000”,

http://ntsecurity.nu, Visit Date: May 2007.

[VII04] Viipuri, T.; “Traffic Analysis and Modeling of IP Core

Networks”, M.Sc. thesis, Helsinki University of Technology, 2004.

ور�� ا��راق��
 وزارة ا�����م ا���� وا���ث ا����

 ن����� ا��
ر�
 ���� ا���وم

 ة للشبكات ـّنظام المراقبة السري

 ر����

�د� ا�� ���� ا���وم �� ���� ا�	�ر�ن

�ط���ت 	�ل �����ر �� "�وم ا�!��وب��زء ن ��� دة ا�

ن $�ل

 ز�	ب !�در أ�ن آل "���
)����١٩٩٩ور�وس (

 المشرف

 �ؤي إدور �ورج. د

 1429ر��3 ا2ول ٢٠٠٨آذار

 ا�����

 و
	�ء����
 ھ�ا ا����وع ��� ��� ��&%�م ا���ا# � ا�"��ّ� ��� ��ت و��

 .- ھ�ا.)filing system()�ا# � ا��,ارد ا������� ��� �� و(���)�'�ت ا�	%�م

و4 8��64 أدوارھ� .- �����)�ا# �)TCP/IP(ا�5�6 4 درا�3 ط �1ت)�0,�� ا�ـ

�A�"4@ أن 6�4? ا�=ور) internet layer(و#= و<= أن ط �1 ا;&��&�: ، ا�� ��

��� أن ھ�ا ا����وع ��E,ي ��� &%�م ا�'���3 ا;C �ر�� . ا;3�3- .- ھ�ه ا�����6

)filing index system (�(�3��'��� ت),ارد ا���'.

، ���,ن)�JA ا�	%�م)H وH���=G رH�"�I وھ�� وG=4- ا���ا# � وا;دارة

��ت ا��"��=)�H ��,ارد �G @��> ?#ن ���ا,
�وG=ة ا���ا# � 5�64 ��� <�&? ا�

�)� ا�ـ G أ���1ط Kط�� H� �� ا��)IP (�����ّ3 ى=(=�=E4و�4'���� و �����E4 M

5�64 ��� . ����ن ا� H(N6 أ<�ا��I ا�����رة .- #��=ة
��&�ت ��&O. ة ا;دارة=Gأ)� و

ھ�ه ا�,G=ة ،)أي ا���'�ت وا�'���ت ا����َ���(<�&? ا���دم �'���3),ارد ا�� ��

����R ا� H(N6 ا�1,ا�= ا��"�,�G ��"��=م .- إ ��=��� S�"4 ���G دارة

��ت
�H ، و�,ل ا��"��=)�H ��,ارد ا�� ���Eھ�ه ا� H� ا���1ر�� N6
 �=14 و��

H�4=G,ا� H�4ھ� U4ا,& U(د Kط�� H� �)Vوا H�Eا(���رھ� . ا� .����6,)�ت ا��- 4

1=� W�4 ا���1ر���� ��,C,و4"����0 �14رن)@ ا�1,ا�= ا��.

�مE�4'�� ا� ��G�(نX
، ا��C ��Zور�� ھ-)��� <=اً UI��& ���4 ا;(� �ر

J1. م�%	��
�م ا����1�6 Eا]�� �ر ا� H�6
.��ا �[دي ا�� ، .Oذا أَ(�ت وG=ة ا���ا# �

�� �	= ز��دة ا�5�E ��� ا�� ��، ز��دة �'�ءة ا�	%�م�M �1 4 '�ءة�أن ھ�ه ا� ���.

���3=ام U(�&� ا� ���4 4(Windows API functions) �Z� @((MS

Visual Basic 6.0) .

	Microsoft Word - chapter five.pdf
	Microsoft Word - chapter four.pdf
	Microsoft Word - chapter one.pdf
	Microsoft Word - chapter two.pdf
	Microsoft Word - chpter three.pdf
	Microsoft Word - Network Security Monitoring System.pdf
	Microsoft Word - ref.pdf
	Microsoft Word - خلاصة.pdf

