Abstract

With the explosive advancement in imaging techniel®egnd specially with
proliferation of the world wide web, image retritvhas attracted the
increasing interests of researches in the fielddwjital libraries, image
processing and database system. Research in huarasppon of image
content suggests that content-based image retri@BIR) can follow a
sequence of steps. The typical steps of CBIR syséeen image query
formation, image feature extraction, similarity reegement, indexing and
retrieval, and user interaction. The correct chaicd set up for each step will
result in a well, efficient and suitable CBIR syste

This work concentrates on one important and crugtegg of the whole
CBIR system: feature extraction (or feature foro@t The image features
used are all characterized as low — level featufdmse include: image
luminance histogram, low — passed luminance histogtuminance pyramid,
color pyramid, and combined feature.

The main contributions are: simplicity (i.e. easy implement the
feature extraction phase), suitability (i.e. pr@vatceptable retrieving results),
efficiency, and economy. The CBIR with the presdnteature extraction
variants are tested on a selected database ofch thetteen image classes. In
general, the results indicate that the choice @fgenfeature can greatly affect
the performance of CBIR system. Experimental resatliowed that image
features that utilize achromatic and chromatic nmiation of the image can
provide about 75% accurate results, while thoseegpon only intensity
information can give accurate results in about 26%6%. Moreover, the
combination of two features can give in better tssu
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Chapter Five Conclusions and FuturerkVo

5.1 Conclusions

The main contribution of this thesis is to use lewel image features
for indexing images in CBIR system. The concerdregion designing
low-level image features are: easy to implementgenaignature,
economic (requires relatively less memory storagysignature vectors
are small in size), fast computation of image digreg and ability of
providing acceptable results. The implementationnedige signature
with these aims in mined draws the following cosabas:

1. On overall and for small database size, the pedona of CBIR
based on the implemented low-level image signatargtion is

accepted.

2. Luminance based image signatures can provide CBifR w
acceptable results. This is due to that luminansevis able to
detected sharp edges and the fine details of pateerd textures

in the image.

3. Image signatures that are extracted from the threage
components (i.e. both achromatic and chromaticrmédion)

perform better than those achromatic — based irs@gatures.

4. Subsampling — based image signatures are morer libta
histogram — based image signature. This comes tinerfact that
subsampling methods preserve spatial image layoulide
histogram — based methods point out occurrencastritaition

of intensities within the image.
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Chapter Five Conclusions and FuturerkVo

5. Color subsampling based signatures are more polwdréan
luminance subsampling based ones. The reason b#hséact
Is that the first method of subsampling preservestial color
distribution within the image while the latter peeges only
spatial distribution of intensities within the ineag

6. Combining two (but more quantized) features in omage
signature behaves, at least, as good as the ldttdre two

combined features.

5.2 FutureWork

The signature extraction methodologies presentethim thesis still
produce some grossly mis — retrieved images, aeg§ Hre never
wholly successful. Thus, there is a room for imgmment if the
following directions of future work are investigdte

1. After images indexing via their signatures, signatonatching is
required. Hence, the key problem is deciding whsamature
searching technique is the fastest one to breakndtve

efficiency problem when dealing with very largeatase.

2. Combining these easy-to-implement, economic lovellev
signatures with more complex mid — or high — leuwahge

features to get more better results.
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Chapter Five Conclusions and FuturerkVo

3. Deciding which color model that can give the bastilarity
metric between two image signatures belonging tam tw

semantically'very relevartand”very irrelevant’ images.

4. Deciding which image filter that can preserve thestifine and
sharp details of a large variety of images, socakeep this

useful information within.

5. One can build a CBIR system with two — stages insmgeature
calculations. The first signature (e.g. combingphature) can be
used to retrievek images from the whole database. Thus, it
should give acceptable results but at the same itisigould be
just to calculate and easy to implement. In th@sdstage, one
can use more complex and powerful image signatufiter out

the only relevant images from thogeretrieved images.



Chapter Four Experimental Evalaas

4.1 Introduction

This chapter is intended to test the applicationth&ef signature (or
feature) generation variants explained in the e&vi chapter for
content-based image retrieval process. The systeftwase was

completely written in Matlab (R2007a) Version 1.5.2

4.2 Image Database and Results

In order to assess the five types of image sigeathey are used with
the same database of natural images. Althoughthge database used
in the experiments is relatively small in size, iutontains a diverse
collection of semantically distinct image classEsis database has 13
semantically distinct classes (including lionswérs, faces, air planes,
etc.) with a total of 63 images, as shown in t¢hl&). The images were
taken from different image resources available fmst CBIR work.
Some of these resources are: source image couetdsy Brittan —
FreeFoto.com, natural image database of ENSEA Ukitye Vision
Human database, courtesy of Scott Chumbley, Coathbase and

Landsat satellite images.
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Chapter Four Experimental Evalaas

Table (4.1):Image Database.

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7

Brain01

;\\ //’f

Brain02

Airplane02

Cloud04

“Cloud05

Brain07 Cheetah07

Brain08

Brain09
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Class 8

Class 9

Land01

Flower03

Class 10

Class 11

Sunset01

Sunset02

Sunset04

Class 12

Class 13

TreeO1

ry;» #

Lion06

Lion08

a7




Chapter Four Experimental Evalaas

During experiments, the query images were alsontdkam the
database but, of course, each image submitted iQuery was
temporarily deleted from the database while therygueas processed.
The results present a total qf=13 different queries using the five
image signatures in several variations. In {He 2nd, 3d and 4
signature variations the total number of queries set toQ=4. For
each querygq, each ground truth imaged[i...,N(q)] is assigned a rank
value k if it is in the first K=min[4N(q)2M] where
M =max(N(qgy),N(a5).....N(0y9) =8. Table 4.2 illustrates the selected

gueries and their corresponding number of groumith timages.

Table 4.2: Queries and their number of ground truth images.

Query no. Query N(q) K
1 Airplane0: 1 4
2 BrainO1 8 16
3 BugOz 3 12
4 Car0O: 5 16
5 Cheetah?2 6 16
6 CloudO: 4 16
7 FaceO. 2 8
8 FlowerO: 2 8
9 LandO? 1 4
1C Lion02 7 16
11 Sunset0 3 12
12 Tiger0z 3 12
13 TreeO: 5 16

All results below present only the first ten retad results. Following
illustrates some of the results obtained throughexpgeriments. All
images shaded with gray color reflect the corrattiaving result
within the first 10 images. Additionally, thereas entry at the tail of
each result denoting the case of satisfactory cetimpol of retrieving,
thus its value can be either successful or unsafidesSuccessful
retrieving can be satisfied only if al(q) images are retrieved within

the first K images, otherwise it is unsuccessful retrieving.
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4.2.1Luminance Histogram

Table (4.3a): Results of CBIR using luminance histogram imagmaiure in YIQ

color space
Query 1 Query 8 Query 9 Query 1C
S .
Airplane01 Flower03 Land01 Lion02
K=4 N(g) =1 K=8 N(g) =2 K=4 N(g) =1 K=16 N(q) =7
Result Distance Result Distance Distance Distance
277.45 \ 268.64 257.54 123.21
Bug02
363.32 ? 298.25 258.21 ' 139.93
Sunset03
E 409.07 308.18 26731 | [H 155.21
Cloud05 ree06
" ap
=1 456.53 313.89 286.17 L 162.15
Cheetah06 Lion06
461.23 317.42 !" 304.70 E 173.34
Lion03 Cloud04
471.90 321.23 ~ & 311.31 188.89
Tree06
479.81 338.03 327.93 200.20
484.45 354.34 343.96 205.26
487.43 i v 356.09 345.04 " 207.84
Tiger04 Lion06 Lion08
'5 Jil 4 5
487.53 \18 L 361.26 El 360.31 209.40
Cloud04 Tiger03 Lion05 Lion05
‘ Unsuccessful Successful Successful Successful
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Table (4.3b): Results of CBIR using luminance histogram imagmaiure infof3
color space.

Query 2 Query 5 Query 7 QueQ/ 8

Brain0O1

Cheetah02

v
\

Face03

Flower03

' K=16 N(@)=8 K=16 N(@=6 K=8  N()=2

K=8 | N(g)=2

Result \ Distance

Result \ Distance | Result \ Distance | Result \ Distance

H 269.15 4 263.26 150.32 224.18
Brain05 Cheetah01

301.93 A 263.31 173.76 257.53
Brain03 Cheetah07

319.87 301.40 174.09 264.60
Cheetah03

327.23 308.26 188.95 280.43

336.39 309.14 191.81 280.54

350.89 319.60 198.01 294.93

364.68 336.45 215.67 296.79

490.87 338.31 218.10 307.87

492.45 381.79 224.65 324.85

= 500.09 : 381.96 242.12 352.32
Face02 Cheetah04

\ Unsuccessful Successful | Unsuccessful Successful
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Table (4.3c): Results of CBIR using luminance histogram imaggnaiure in
CIECAMO97 color space.

Query 4 Query 6 Query 11 Query 12
et ' l. (0
Car02 CloudO1 Sunset02 Tiger02

' K=16 N(@)=5 K=16 N(@=4 K=12 N(@=3 K=12 N(q)=3

a 71.93 147.37 67.34 67.26
Car01 Tiger01
: 72.93 153.23 77.75 76.04
Tiger03 Cheetah04
S
75.15 176.10 108.15 g 82.89
TreeO1 ar0
h 82.57 eV 176.68 121.64 83.26
Tree05 Tiger04
e 87.29 u 179.67 }? 122.79 84.56
Sunset02 FaceO1
91.14 179.70 L ¥ 138.34 88.51
92.07 179.78 138.84 90.48
92.85 182.37 146.87 94.42
100.57 189.43 146.92 99.28
Cloud02
104.29 R4l 189.59 150.31 101.00
¥ 5 St i 75 i
Tiger02 Lion03 Lion03
Unsuccessful Unsuccessful | Unsuccessful ‘ Successful
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4.2.2 Low-passed Luminance Histogram
Table (4.4a): Results of CBIR using low — pass luminance histogrimage
signature in YIQ color space.

Query 3 Query 13
Bug02 Lion02 Tree01
. K=12 | N@=3 K=4 | N@=1 K=16 N@=7 K=16  N(=5
| Result | Distance \ Result | Distance \ Result \ Distance \ Result | Distance
ot
216.01 >3 243.50 140.37 119.37
Cloud04 Tree05
W/
= 273.98 270.21 145.07 : 135.37
Airplane01 Cheetah05
305.67 273.12 146.92 - 148.31
Airplane02 Tiger03
. 310.39 285.89 183.26 172.53
310.90 294.28 186.43 188.32
334.90 333.57 | 189.03 § L 191.50
Tree03 Tiger04
374.42 335.96 ‘ 193.75 ﬂ 194.78
Cheetah04 Lion08 Face02
394.51 = 356.28 196.18 197.20
Cloud02
397.45 & 357.98 196.93 202.79
Tree06
407.04 _ 362.06 W 205.34 - 203.95
Sunset04 Tree03 Lion07 Cheetah01
| Unsuccessful Successful Successful Unsuccessful
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Table (4.4b): Results of CBIR using low — pass luminance histogrimage
signature irtap color space.

Cloud01 Face03 Sunset02 Tlger02

K=16 | N(@)=4  K=8 N@)=2 K=12 N(@=3 K=12 N(@)=3

Query 6 Query 7 Query 11 Query 12

\ Result | Dlstance| Result \ Dlstance\ Result \ Distance = Result \ Distance

,”: la
- 294.87 , 150.28 278.53 116.31
Sunset01 Sunset04 FaceO1
- 315.71 171.51 280.67 e 176.37
Cloud03 Face01 Tlger04
404.34 185.82 296.79 h 220.46
Lion03 Tree05
409.48 186.32 304.73 28312
L|0n08 Flower01
428.67 190.32 305.73 221.18
Sunset03 Car06
430.23 215.34 328.37 233.82
TigerO1
451.67 228.54 330.75 235.60
507.28 247.56 348.75 =G 237.17
Land02
™
538.10 255.09 >3 341.53 S 1 245.95
Cloud04 Face02
543.67 266.43 H 344.79 250.04
Brain02 Tree03 Face02 Sunset04
Successful Unsuccessful ‘ Unsuccessful ‘ Successful
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Table (4.4c): Results of CBIR using low — pass luminance hisiogrimage

signature in CIECAM97 color space.

Query 1 Que Query 5
Airplane01 Brain01 Cheetah02 Flower03
- K=4  N@=1 K=16 N(@=8 K=16 N(@=6 K=8 N(@=2
| |

. Result | Distance Result Distance

Result | Distance

Result | Distance

265.78 256.45 27.14 ﬁ 36.29
Flower02
302.04 275.35 43.28 45.35
Airplane02
; 339.48 295.67 93.62 50.81
Sunset03
347.53 303.20 101.28 55.98
367.00 352.45 : 102.07 62.03
Cheetah04
} 382.14 394.00 ] 400.89 67.20
Tlger04 Land01
al
=1 384.09 417.39 108.10 | 67.79
Cheetah06 Tree02 Cloud04
: 403.14 428.48 113.62 m 72.76
Cheetah04 i Lion03 Lion07
421.57 431.10 125.82 @ 93.20
Car02
424.31 499.48 126.14 A 98.56
Cheetah06 Face03
‘ Successful Successful Successful ‘ Unsuccessful
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4.2.3 Luminance pyramid
Table (4.5a): Results of CBIR using luminance pyramid image aigre of 8*8
pixels in YIQ color space.

Query 3 Query 10 Query 13
Bug02 Lion02 Tree01
 K=12 | N(@=3 K=4 N@=1 K=16 N(@=7 K=16  N(@=5
| Result | Distance \ Result \ Distance \ Result \ Distance \ Result | Distance
2.8642 4.0221 3.5652 3.6756
Cheetah07
3.2270 4.5262 3.8201 3.7940
3.6123 4.7132 3.8448 4.2250
3.7844 : 4.9141 4.1427 4.3265
Cheetah05
3.8796 4.9748 4.2962 4.3919
Lion03
4.0663 4.9754 4.4082 4.4857
Lion01
4.2503 e 5.2807 ‘ 45497 4.5356
Lion07 Lion08
4.2636 . 5.3048 =< 4.6110 4.5437
Cheetah03 Cheetah06
{
4.4983 : = 5.4128 4.6634 4.7040
Tree04 Airplane01
4.6644 5.4988 s 4.7762 £ & 4.7238
Lion06 Lion06 Tree06
| Successful Unsuccessful Unsuccessful Unsuccessful
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Table (4.5b): Results of CBIR using luminance pyramid image aigre of 8*8
pixels ingaf color space.

Query 4 Query 5 Query 6
Car02 Cheetah02 CIoudOl Flower03
| K=16 | N(@=5 K=16 N(@=6 K=16  N@=4 K=8 N(q)=2
| Result \ Distance \ Result \ Distance | Result | Distance \ Result \ Distance
‘ 1.9358 1.0629 = 4.6271 1.8121
Car01 Cheetah03 Cloud02 Flower02
| 22
i} 2.2945 1.0938 4.9523 . 2.0985
Flower02 Flower01
\% 2.4433 1.3651 6.0967 % 2.3067
Car03 Car03
2.5090 1.5059 7.0229 L 2.3627
Bug01 Cheetah01
2.7731 1.5430 7.2754 2.4044
Brain04
{
2.8749 1.6111 //)\J\/ 7.8393 2.4192
2.8907 1.6255 7.8435 2.6684
%“. 2.9352 1.6258 7.9403 2.7314
Flower03
3.0220 : 1.6689 8.0963 2.7605
Tiger03 Cheetah04
= 3.0705 =3 1.6989 , 8.1443 2.8056
Tree01 Cheetah06 Brain06
Unsuccessful Successful | Successful ‘ Successful
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Table (4.5c¢): Results of CBIR using luminance pyramid image afgre of 8*8
pixels in CIECAM97 color space.

Query 1 Query 2 Query 5 Query 11
Airplane01 Brain01 Cheetah02 Sunset02
\ K=4 | N@=1 K=16 N(@=8 K=16 N(@=6 K=12 N(g)=3
Result | Distance Result | Distance Result | Distance  Result | Distance
4.3168 3.7202 1.8052 4.8715
Airplane02 Brain08
4.4351 4.0334 1.8856 4.9145
Brain03
4.4761 4.5020 1.9874 4.9761
4.8715 4.9311 ﬁ 2.0111 5.0068
Flower02
5.0311 5.5926 . 2.1133 5.6576
Cheetah03
5.0336 5.9548 ' 2.1456 : 5.6986
Cheetah04
5.1036 7.0169 2.2169 5.7560
Cheetah02
5.1281 7.3204 * 2.2920 & 5.7656
Tree05 Car02
5.1441 10.8965 2.2991 ' 5.7685
CarO1 Tree02
5.1728 11.0510 - 2.3010 5.8177
Car02 Sunset01 Flower01 Bug04
‘ Successful Successful | Unsuccessful | Unsuccessful
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4.2.4 Color Pyramid

Table (4.6): Results of CBIR using color pyramid of 8*16 pixels

Query 1 Query 3 Query 6 Query 13
B =
Airplane01 Bug02 Cloud01 Tree0l
- K=4 [ N@=1 K=12 [ N@=3 K=16 N@=4 K=16 N() =5

. Result | Distance Result | Distance = Result | Distance = Result | Distance

A 32.9372 . 25.5768 = 30.5957 ' 43.4071
Airplane02 Bug04 Cloud02 Tree02
34.3608 . 33.1975 40.4727 - 56.5787
Cheetah02 Cheetah03 Tree05
38.1805 36.0708 58.2638 59.3139
Cheetah03 Bug01
40.1712 . 37.5542 62.2912 A 59.3846
Bug03
42.7717 . 38.2595 67.6112 59.6205
Cheetah02
43.1281 . 41.8342 68.6486 60.4064
Brain06
46.5424 42.0345 70.7966 60.6877
Lion03
46.7499 42.4020 70.8955 62.9621
Cheetah02
46.8414 43.4599 738020 | 4 65.5223
Cheetah06
e { g
i o 48.3874 44.8557 e 75.8539 ’ 65.7923
Lion02 Brain01 Airplane01 Tiger03
‘ Successful Successful | Successful Unsuccessful
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Table (4.7):Results of CBIR using YIQ pyramid of 8*16 pixels.

Query 2 Query 5 Query 8 Query 9
& ¥, . %p« =
Brain0O1 Cheetah02 Flower03 Land0O1
K=16 | N(@)=8 K=16 N@=6 K=8 N@=2 K=4 | N@=1

' Result  Distance Result | Distance = Result | Distance = Result | Distance

%
. 11.5924 6.1901 19.5182 | 17.8369
Brain08 Cheetah03 Cloud03
12.0063 9.8058 23.4253 20.0813
Brain03
- 12.7444 12.6164 24.7460 20.3677
Brain06 Flower01
. 12.8236 12.8691 M 24.8622 20.8059
Brain02 Tiger03
14.7497 13.1111 25.3249 20.9381
) 19.6702 13.3862 25.4375 21.1187
Brain09
19.8368 13.5060 26.2777 21.1479
20.4649 13.6073 27.6826 22.2581
Brain04
22.3403 14.2146 28.3075 22.4491
Bug02
23.1082 ‘ i 14.4802 28.4574 22.5499
Bug01 Cheetah0€ Cheetah0z
Successful Unsuccessful Successful Successful

59




Chapter Four Experimental Evalaas

4.2.5 Combined Signature

Table (4.8a): Results of CBIR using combined signature by comiginuminance
histogram of 64 elements in YIQ color space witmilbance pyramid of 8*8 pixels
in YIQ color space.

Query 4 Query 8 Query 10
. ’4;;4 =
) gl
Car02 Flower03 Lion02 Tiger02
| K=16 | N@=5 K=8 | N@=2 K=16 | N@=7 @ K=12 | N(@)=3
| Result | Distance ‘ Result ‘ Distance ‘ ‘ Distance ‘ Result ‘ Distance
% 18087 & 29799 15871 17250
Car03 Flower02
@ 55838 ﬁ 35408 19345 18195
Tiger02
56003 37038 19387 24043
58157 37506 20864 h 24491
59151 38634 21083 28618
61013 39337 23965 29740
Tiger01
5= 31
-\ 61953 ‘ 41364 24599 29742
Tiger03 Car01
\\\
63441 \ 43147 26978 30190
63814 44142 27007 30530
Tree05
S 1.93e+003 44506 27662 31814
Face02 Tiger03 Cheetah04 Tiger01
| Successful ‘ Successful Successful Successful
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Table (4.8b): Results of CBIR using combined signature by comiginuminance
histogram of 64 elements in YIQ color space wittocpyramid of 8*8 pixels.

Query 2 Query 6 Query 7 Query 9
= A %)
BrainO1 Cloud01 Face03 LandO1
K=16 N(q)=8 K=16 N(g)=4 K=8 N(q) =2 K=4 N(g) =1
Result | Distance | Result | Distance | Result | Distance | Result | Distance
29837 r 24854 | & 17348 29255
Brain07 Cloud02 Tlger04 Cloud04
& .
—H 32180 | W= | 34660 4»%3 19843 32327
Brain05 Car06 Lion08
33501 !!! l 42953 e 20100 SR i 33244
Brain03 Cloud03 Tree05 L|0n04
35521 46996 20427 - 34415
Cheetah06
35707 48141 21798 37186
Tree06
—' 37135 48539 22197 i 38673
Brain02 Lion03
_ﬁ7 37436 48621 22289 40433
SunsetOl
39129 48796 s 23254 43512
Tlger02
39419 49417 ‘;"1 23737 43523
Face02 Lion06
57374 50049 25429 44765
Cloud02
| Successful | Successful | Unsuccessful Successful
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Table (4.8c): Results of CBIR using combined signature by comiginuminance
pyramid of 8*8 pixels in YIQ color space with colpyramid of 8*8 pixels.

Query 4
==
Car02

Query 2
&

BrainOl
K=16 N(q) =8
Result Distance

288.83

410.96

444 .86

455.94

467.91

\8%)) 551.68
Brain09

s 4 588.00

Airplane02

622.54
Brain04

657.40

730.98
Bug02

Successful

Queﬁ 3

Bug02
K=12 N(q) =3
Result Distance
377.28
Bug04

{
437.14
Airplane01
477.80
512.03
523.68
545.71
560.60
Ny 567.99
Bug01
. 594.35
Cheetah02
g 621.36
Tree02
Successful

K=16
Result

&

Car01

Flower02

Tiger03

WY
Cheetah01

N(g) =5

Distance

591.47

713.35

744.25

843.15

880.38

910.94

943.27

1.04e+003

1.05e+003

1.06e+003

Successful

Quei 5

Cheetah02

K=16
Result

Cheetah03

Lion06

St

04

Cheetah04

Cheetah0€

N(q) =6

Distance

243.50

307.80

319.88

326.41

361.60

394.19

408.38

408.95

426.76

427.62

Successful
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4.3 General Evaluation

This section gives an overall evaluation for thplaability of the five
different image signatures used throughout the raxjeats. Table (4.9)
presents the performance evaluation of the oveesllts given in
section 4.2. Table (4.10) presents the overall raoyu of the
implemented signatures, where accuracy is definezte, as the

percentage of successful retrieving results.

Table (4.9):results of performance evaluation.

Signature | L\ Query AVR MRR NMRR | ANMRR
type no.

1 5 4 1
1.t 0 0
(4.3a) 1 0 0 0.25
10 4 0 0
2 5.€25 1.125 0.C9
Luminance 5 3.t 0 0
Histogram (4.3b) 7 5 3.5 0.46¢ 0-139
8 1.t 0 0
4 10.¢ 7.€ 0.557
(4.30) 6 9.2t 6.7¢ 0.46¢ 1.605
11 9 7 0.58:
12 2 0 0
5.333 3.333 0.277
9 1 0 0
(4.4a) 10 4 0 0 0.208
13 10.¢ 7.8 0.55%
6 2.5 0 0
Low — Pass 7 5 3. 0.46€
Luminance (4.4b) 11 5 2 0.63¢ 0.275
Histogram 5 5 0 0
1 1 0 0
2 4.5 0 0
(4.4¢) 5 5333 | 1833 | o015 | 0033
8 15 0 0
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Table (4.10):The accuracy of the implemented signatures.

Signature type Signature variation Accuracy
YIQ 75%
Luminance Histogram Lafd 50%
CIECAM97 25%
_ YIQ 50%
Low HIT;SOZ :_;nTlnance Lap 50%
CIECAM97 75%
YIQ 25%
Luminance Pyramid Laf3 75%
CIECAM97 50%
. RGB 75%
Color Pyramid
YIQ 75%
Luminance P [ [
| | His}({;g;;(?; Luminan 100%
Combined Signature Color Pyramid + Luminance Histogr: 75%
Color Pyramii+ Luminance Pyram 100%

Luminance based image signatures {#e. ond, and 3'd
variations) can have tolerable information for CBlee tables 4.3 —
4.5). The accuracy of results ranges from 25% &.7bhis is due to
that luminance vision is capable of detecting sheatges and the fine
details of patterns and textures in the image.tH@mother hand, image
signatures that are extracted from the three in@amaponents (i.e.
achromatic and chromatic information) support, orerall, more
power to the CBIR than those achromatic — basedansagnatures (see
tables 4.6 and 4.7). The accuracy of results is.75%

While histogram — based methods, (results presentidbles 4.3
and 4.4), depend on only occurrence or distributibimtensities within

the image, subsampling — based image signatuess)l{s presented in
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tables 4.5 — 4.7), are signatures that preserv@abpanage layouts
which in turn provide better results than histogranbased image
signature (60% of accuracy for subsampling — b&BtR vs. 54% of
accuracy for histogram — based CBIR).

Moreover, Color subsampling - based signaturesiifeegiven in
tables 4.6 and 4.7) are dominant over luminanceauapling — based
ones (They give accuracy of about 75% vs. 25% 86 & luminance
subsampling). The reason behind this fact is thatdolor method of
subsampling preserves spatial color distributiothivithe image while
luminance preserves only spatial distribution demsities within the

image.

Finally, combining two (but more quantized) featuna one
image signature behaves, at least, as good asetier of the two
combined features. For example, comparing resaltables 4.6 with

results presented in tables (4.8c).
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Chapter One Introduction

1.1 Information Retrieval

Information retrieval (IR) is finding material ohaunstructured nature
that satisfies an information need from within Eugpllections (usually

stored on computers) [Man0Q7].

Now, hundreds of millions of people engage in infation
retrieval every day when they use a web searcmengi search their
email. Information retrieval is fast becoming the domindotm of

information access, overtaking traditional dataksigke searching.

IR can cover different kinds of data and informatjgroblems.
The term “unstructured data” refers to data whioksinot have clear,
semantically overt, easy — for — a computer stinectli is the opposite
of structured data, the canonical example of whiha relational
database, of the sort companies usually use to tamairproduct
inventories and personnel records. In reality, st data are truly
“unstructured”. This is definitely true of all tedfta if you count the
latent linguistic structure of human languages. &wgn accepting that
the intended notion of structure is overt strugtumeost text has
structure, such as headings and paragraphs andofes{ which is
commonly represented in documents by explicit markauch as the
coding underlying web pages). IR is also used wlifate “semi-
structured” search such as finding a document wtirerditle contains
Java and the body contains threading.

The field of information retrieval also covers sogmg users in

browsing or filtering document collections or fugtiprocessing a set of
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retrieved documents. Given a set of documentstesing is the task of
coming up with a good grouping of the documentsedasn their
contents. It is similar to arranging books on aksbelf according to
their topic.

Information retrieval systems can also be distislged by the
scale at which they operate, and it is useful tstifyuish three
prominent scales. Ilweb search, the system has to provide search over
billions of documents stored on millions of compateDistinctive
issues need to gather documents for indexing, baivlg to build
systems that work efficiently at this enormous ecand handling
particular aspects of the web, such as the explmitaf hypertext and
not being fooled by site providers manipulating @ampntent in an
attempt to boost their search engine rankings,ngibe commercial
importance of web. At the other extreme personal information
retrieval. In the last few years, consumer operating systbange
integrated information retrieval (such as Apple’'sadVOS X Spotlight
or Windows Vista’s Instant Search). Email programsally not only
provide search but also text classification: theleast provide a spam
(junk mail) filter, and commonly also provide eithenanual or
automatic means for classifying mail so that it t@nplaced directly
into particular folders. Distinctive issues herelie handling the
broad range of document types on a typical persooaiputer, and
making the search system maintenance free andisulfly lightweight
in terms of startup, processing, and disks-pacgeuizat it can run on
one machine without annoying its owner. In betweethe space of

enterprise, ingtitutional, and domain-specific search, where retrieval
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might be provided for collections such as a corponsg internal
documents, a database of patents, or researclesmic biochemistry.
In this case, the documents will typically be stbom centralized file
systems and one or a handful of dedicated machkiilgsrovide search
over the collection [Man07].

1.2 CBIR Motivations

When it comes to express ideas and conveying irgbom, mankind

has always preferred concrete visual means (imgg&sting) to more
abstract counterparts (written text). This is cléarthe vision and
understanding from the ancient times of the visnathods compared
to the written methods. Moreover, the recent dewalent of

technological digital data handling has furtheresgthened human
dependence on visual modes of communication. Tdms for instance,
be withessed in the explosively growing amountigftdl image data,
especially with the proliferation of the World Witléeb (WWW). This

rapid production has, as a result, generated a repsitory of visual
information in large area of applications such asdital image

database, criminal suspect tracking, travel imagkery, scientific,

educational, industrial, and personal or family tynsie collection

[Hua98].

The information stored in the visual repositoryisually useless
if it is unorganized. Retrieving a particular imagem a huge
unorganized image database is similar to searctundpook from a

huge library without the aid of catalogs. In otlards, indexing an
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image database is analogous to cataloging a librahwus, the

importance of the ability to search and retrievages from an image
collection can not be overemphasized and is usuahoted by CBIR

problem [Lon03].

The well text indexing techniques that were dedigfue text are
neither suitable nor sufficient for image data.sI¢an be traced back to
the following facts [Hua98]. A text document is orelimensional (an
array of words), whereas a digital image is twoehsional (a video is
three dimensional because of time component), @&mdd) the size of
image data is usually larger than text. Moreovieg, iinost significant
difference between text and image data is that svard in some sense
semantic objects, while the image data need to roeepsed and
interpreted to extract the perceptual meaning (byclwvimage data is
likely to be explored, navigated and retrieved),iclhis yet to be

achieved task in computer vision and image undedstg.

Traditionally, manual text annotations approach wased for
image data indexing and retrieving. The annotaticas be used by
some text information retrieval (TIR) systems toars@ images
indirectly [Sal89, Reg06]. However, there are saleinherent
difficulties and problems with this approadhirst, since image data
contains very rich information, it is very diffidulb capture the content
of an image using only a few keywords, as wellles tedious work,
labour intensive, language dependent, and vocabutantrolled
involved in such an annotation process itsebecond, manual
annotation process is quite subjective, ambiguand,incompletefor
example, if a query refers to image content that was mutially
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annotated, or if the user uses different words ¢ecdbe the same
image content, the text retrieval system will tHan. Moreover, in

some cases it is rather difficult to characterieetatn important real
world concepts, entities, and attributes by medriexa only. Example
of such concepts is the shape of single objectthadvarious spatial
constraints among multiple objects in an image.s€hkave created
great demands for automatic and effective techsigoe content —
based image (video) retrieval systems that can atengeescriptors for

symbolizing various properties of images.

1.3 CBIR Challenges

Most CBIR systems adopt the following two stepsrapph to search
image databases [Hua98, Qiu03].

First, indexing each image in a database; where a feature vector
capturing certain essential properties of the imegeomputed and

stored in deature base.

Secondsearching feature base; where a query image is given by
the user, its feature vector is computed, comparelde feature vectors
in the feature base, and images most similar to ghery image
according to aheuristic similarity measure, are retrieved from the
image database. By such a way the system is c@llesty — By —
Example (QBE).
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In a typical QBE system, a user poses a query byiging an
existing image, and the system ranks the targejes@n the database

according to the query image.

Content — based video browsing tools also providersi with
similar capabilities. Here, a user provides anregegng query frame
and the system retrieves other similar frames feomdeo sequence.
For example, a FBI agent might want to locate a criminal frammideo

clip by supplying a mug shot of that criminal.

The indexing of an image database is often refea®tkature
extraction. Mathematically, a feature is an-dimensional vector, with
its components computed by some image analysis.tufeea
representation scheme can be either low — leviglfmmediate — level, or
high — level [Qiu03]. Low — level deals with pidelel features, high —
level deals with abstract concepts and intermedialevel deals with
something in between. Whilst low — level visiorfagly well studied,
mid and high — level concepts are very difficult goasp, certainly
extremely difficult to represent using computesbExamples of low —
level visual cues are color, texture, shape, aratiapinformation.
Regions or blobs generated as result of image s®gten are
examples of middle — level features, whilst objestsnantic categories
or types of event depicted in images are exampfeligh — level
features. Then, the components of a feature may be derived from one
visual cue or from composite cues, such as combimatf color and

texture.
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The gap between high — level features (human pgorg@and low

— level features limits the query scheme to be @BiEh is not natural
to human interaction with the image retrieval systdHigh — level
features facilitate a more natural user interactwith the image
retrieval systemFor example, user's queries are typically semantic
(e.g.,"show me an image of the sky") and not onowa | level
(e.g.,"show me a predominantly a blue and whitegefip In other
words, users typically expect content — based immatjeeval system to
analyse their queries at the same level of sensattitat a human would
do while performing analysis of the content of theage. However,
high — level features are almost, impossible toegate or extract

without human interaction (i.e. manually generdeadures) [Reg06].

Beside image features, there are other issues lalttmges need
to be addressed for content — based image retr@nhl/ideo browsing
tasks. These are [Qiu03]:

® Perceptual similarity: Perceptual similarity determines the
effectiveness of the feature for the purpose afevdl. A good

feature f (1) for an imagel should be designed to have certain
qualities such that a distance functieq) - f (I)| should be large

if and only if images andi are not similar.
% Efficiency: where the computation af(1) should be fast enough.

® Economy: the size of image feature(l) should be small. This

not only affects the efficiency of retrieval, bus@ affects the
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design of indexing data structure, such as muldirensional

indexing scheme.

1.4 Literature Survey

M. Swain and D. Ballard [Swa91]: in 1991, M. Swaind D. Ballard
used color histogram method for image indexing.yTBeowed that
color histogram has a number of advantages inajuaiasy and simple
to implement, insensitive to scale, rotation andnsfation, very
successful for small size databases. However, dakiogram based
Image retrieval systems encounter poor performémciarge database.
They demonstrate that this weakness comes fronfaittethat color
histogram method preserve only color informatiod does not include
any information regarding the spatial positionsh&f color. Hence, any
two images with very different spatial color layswan have the same
color histogram. This case evident in large da@pasere the chance

of (visually) different images having similar colmistograms increase.

To overcome the problem encountered by color hratagof the
previous method; different authors proposed diffeepproaches. Two
of such approaches are those of K. Hirata and To KE992) [Hir92]
and W. Hsu et. al. (1995) [Hsu95]. They divided thmage into sub
images and describe each sub image features w#bparate color
histogram. These methods suffer from expensive abatipn, storage
overhead, and can not accommodate translation @atlon of color

regions.
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Another line of work is that of J. Huang in 1998u@98]. He
proposed a new image features called correlograrmfage indexing.
Color correlogram represents the spatial corrglabd colors in an
image. It can be represented as a table indexedolyy pairs and
distance, where thgth entry for <i, j > specifies the probability of
finding a pixel of colori at distancek away from another pixel of
color j. By providing an efficient algorithm for computinthe
correlogram table, the resulted CBIR gives highfqrerance for

tackling various problems in image retrieval andiea browsing.

Then in 1999, C. Carson et. al. [Car99] used imzggmentation
approach for image indexing. This technique (ahdeghniques based
on image segmentation) can identify region moreustely than color
histogram but the difficulty associated with an wete image
segmentation process makes it complicated bothenmg of image

features extraction and matching.

In 2003, G. Qiu and K. Lam [Qiu03]: suggested abcahdexing
method based on human vision theories and digigadat analysis.
Their argument is that image patches of differqudtial frequencies
would have different perceptual as well as physstghificances. The
input image is passed through a bank of filters decompose the

image into a number of images; eagh layer image corresponds to

the kth filter of the filter bank. By filter bank, pixelsf the input image
are classified into different layers. Then, eaclagm layer is indexed
using a quantized color histogram. The color histog of the final

image feature is obtained by concatenating theufeatof all sub —
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layers. Their method significantly enhances thégoerance and power
of color indexing schemes used in CBIR but at Hraestime retains its
simplicity and elegance.

Also in 2003, L. F. M. Vieira, et. al. [Vie03] proped several
ways to browse a color image from a database déatan of color
iImages according to a greyscale query image. Thain image feature
used is image Luminance. Luminance informationxisagted in their
work using £ofy color model, and is passed through number of
processing (including histogram computation, coantroh with low
and high pass filters) to obtain the final imagatdee. They keep
simplicity in feature implementation so as to pdmvian acceptable

level of accuracy in image retrieval.

1.5 Work Contributions

The work in this thesis is concentrating on implatmey a group of
iImage features that can facilitate the processofent — based image
retrieval system. The main objectives in the feataxtraction and

Image indexing implementation are:

® Design smplicity; where the implementation of image feature

extraction and indexing phase is made as simpp®ssible.
¢ Efficiency; where the computation of image feature is made fas

© Economy; where the size of image feature vector is made as
small as possible.

1C
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© Accuracy;, where the retrieving results of the CBIR using the
implemented group of image features are suitabdea@ceptable
according to the query image.

1.6 ThessLayout
The rest of this thesis is organized as follows: -

© Chapter 2, presents the fundamental theories of content edoas
image retrieval system, their development, and @mrapts that
can characterize a typical CBIR technique includiqgery
formation, feature extraction, similarity metriydexing and

retrieval, and user interaction.

& Chapter 3, presents five types of image features, all of tlaem
considered to be low — level image features. Aisdliscusses
how to extract these features from an image, fedemgth, and
similarity or distance measurements used to compeifiion

between two distinct features.

@ Chapter 4, presents how to evaluate a particular CBIR system
using the image features mentioned in chapter 8.r&kults on a
given database of a set of image classes are tadut@ashow the
accuracy range for a give feature.

® Finally, chapter 5 concludes the work and points out some

possible future ramifications.

11



Chapter Three Image Signatures Generation

3.1 Introduction

In the previous chapter, the whole componentsdbastitute a typical
content — based image retrieval systems are pre@e@ important
step in this retrieval system is the image feat@etor specification.
This chapter presents a number of image featurdedcamage
signature) variations. The variations are baseckitdrer luminance,
processed luminance, or color information. Theofelhg sections
present these variations together with the sintylametric used

between images.

3.2 Signature 1: Quantized Luminance Histogram

In this variation, the luminance (i.e. intensitgjarmation is used as a
relevant similarity criterion for content — basedalge retrieval. The

formation of this signature follows the followingguence: -

1. Extract luminance information from the image by aeelating
achromatic channel from the chromatic channelss Tain be
established by converting the RGB color space efithage
into a decorrelated color space (e.g., Y8@}, and CIECAM97

presented in the previous chapter).

2. The values of intensity extracted in step 1 cameagé numbers
with small value range. Hence, to overcome thisbl@m a

linear normalization of the luminance channel puieed before
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computing histogram. A quantization tolevels is performed

using the formula: -

C(xy)= int(w* (n—1)j (3.1)

max—min
Where:

L(P(x y)): represents the luminance value of pixel at

coordinatéx, y).

n : number of quantization levels (Integer value).

max: maximum value of luminance channel before

guantization.

min: minimum value of luminance channel before

guantization.

3. After post — conversion quantization, the luminamtennel
will admit 128 possible values. Then, the histogream be
evaluated as a vector of 128 pixel counts. Formsgigaking,
the luminance histogram of am*n image | is a discrete
function that maps each valwe in the imagés intensity range

to the fraction of pixels in image that have intensitk, thus:
h =[A1 (K)) (3.2)

where:

A1 (K) ={1(xy) =K}
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I(x,y) = intensity of a pixel at coordinate,y) in imagel .

Figure 3.1 depicts an example of luminance histiogapplied

for a given color image.

An image
N ; Cl-€hannel C24Channel
* Step 1
\#\ ;
P Luminance
extraction

128 Elements

Figure 3.1: Luminance histogram.

In this variant, the similarity metric used betweaem feature vectors

f1(1) and f2(J) of imagesl andJ respectively can be performed as:
maxi

D(fAI), f2(J)) = _zl\fq(l)-fzi(J)\ (3.3)
| =

Wheremaxi equals to the feature vector length, e.g., 128.
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3.3 Signature 2: Low — Passed Luminance Histogram

The second variation that compresses an imageistgnature is that
of convolving the pre — processed (i.e. quantineglkly normalized)

luminance channel with a low — pass filter.

The low — pass or more commonly referred to as $mnog
filters are used for blurring and for noise redoctiBlurring is used in
preprocessing steps, such as removal of noise raatl details from
an image prior to (large) object extraction, andding of small gaps
in lines or curves [Gon01]. Blurring can be appl®dusing a low —
pass filter to the input image in order to allowe thow spatial
frequencies in the image to pass through, whilenatiting the high
spatial frequencies of the noise components. Umbately it is
impossible to retain all the image detail in sunofosthed image and
hence some degradation will occur (i.e. edges endtginal image
become less well defined or identified). Thus albsthing filters will
seek a compromise in removing as much noise asbp®se¢hile still
preserving the detailed edge information. The rfitig operation can
be implemented by convolving the entire image veitsquare mask
(of size, e.g. 33 or 5x5) which operate by replacing each pixel value

P by the average of its neighbours [Awc95].

A revision and improvement of square mask was phbl by
Nagao and Matsuyama. These authors divide #ferieighbourhood
of a pixel into nine regions. The nine regions farg pentagonal and
hexagonal regions as shown in figure 3.2.
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xy) )

)

(%, ) /

(c) (d)

oy . y)

(e) ®

*y) xy)

(9) (h)
Figure 3.2: (&) Upper Pentagonal mask. (b) Right Pentagonakmg) Left
Pentagonal mask. (d) Lower Pentagonal mask. (eptJRmht Hexagonal mask.

() Upper-Left Hexagonal mask. (g) Lower-Right Hgraal mask. (h) Lower-
Left Hexagonal mask.
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Another type of low — pass filters is GaussiarefiltAn example
of Gaussian filter is that of Burtand Aldenson [88f with
coefficients (0.05, 0.25, 0.4, 0.25, and 0.05) mopkeparable to the

rows and columns of an image.

0.4

0.31

0.2r

Gix)

01

ﬂ 1 1 1
-4 -2 0 2 4
X

Figure 3.3: 1-D Gaussian distribution with mean 0 amé-1

The process of generating low — passed luminarstedram is
illustrated in figure 3.4. Although the generatiohimage signature
that depends on either pure or low — passed lurnendistogram is
simple, but it faces a particular drawback. Thetdgsams are
invariant to the positions and orientations ofwvheous objects within

an image.

Here also, the similarity measure in equation (3s3used for

computing relation between two image feature vector

35



Chapter Three Image Signatures Generation

An |mage Y - Channel C1-Cgannel  C2 - Channel

~ Luminance
—

Extraction

Luminance
Quantization

Low Pas:
F|Iter|ng

Histogram
Creation

) 128 elements "
012 ... 127

0o oo ... 79

Figure 3.4: Generating low — passed luminance histogram.

1.3 Signature 3: Luminance Pyramid

Luminance pyramid or plain subsampling is anotheay wof

compressing an image into its signature. In thishneue, the
properly pre — processed quantized luminance imsgeibsampled
down into a regular grid of regions of the sames,semd the mean
intensity within each such region is computed. Tpr@cess of
subsampling is continued on the resulted subsamiplegie for a
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given number of times so as to create a multi elle¥ subsampled
images. The last level can correspond to an imége.@., 128 or 64
regions (i.e. 128 or 64 pixel). By this sequencesatbsampling, an
image pyramid is constructed in which the baserlageresponds the
whole image with all its fine details, and the ap®xthe pyramid
corresponds to the image signature that has a nebkso
approximations to the intensity organization foe thmage at the
pyramid base. Figure 3.5 depicts an example of éampgramid
starting at the base with 26B56 intensity images and ending with
the 816 apex image.

Unlike the previous two variations, in this typeiwfage feature,
the similarity metric is performed on values ofeimsity themselves

rather than on their histograms. Thus, for twouesg vectorsf,; and

f , belong to image andJ respectively, the similarity metric is: -

n m

D(F(1), £2(3))= D DL, (x ¥) = L, (%) (3.4)

x=1 y=1

Where
n: width of the signature,
m: hight of the signature,
L, (x y): luminance value of a pixel at coordinatesy) in the
feature vecton ,
L,(xy): luminance value of a pixel at coordinatesy) in the
feature vecton, and

nxm= length of the signature.
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= 8x16 (Image Signature)

5 16x16

128x128

256x 256

Figure 3.5: Image luminance pyramid.

Figure 3.6 illustrates the sequence of generatimgge signature

based on luminance pyramid.
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An |mage Y- Channel -Channel C2-Chdnnel

Luminance

Extractior

Luminance
Quantization

Subsamplin
PN —————~> m Image

down to 64 Signature
pixel

Figure 3.6: Image signature based on luminance pyramid.

As can be shown from the figure, the image sigmapreserves
information related to the spatial distributioninfensities within the
image which may be important to disambiguate twmasgically
different regions that have similar colors but bt texpanse of
obliterating some or all clues about the existesrceot of fine texture

in the image.

1.4  Signature 4 : Color Pyramid

Like luminance pyramid, an image color pyramid &&nconstructed
by subsampling the image into several layers beitettception is that

subsampling is performed on the three image chamaéter than on
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only the luminance channel. In RGB color space,dh&nnels Red,
Green, and Blue are image components, whilst in gegorrelated
color space, one channel is for luminance inforomfnd the other
two channels are for chromatic information. Theosekcdifference is
that; during subsampling and when mean value oh ed@nnel is
computed, the pixel with closest color componentsdlected to be
the subsampled pixel in the next finest layer a# gyramid. The
closest pixel is that pixel with minimum Euclidedistance from the
average color in case of RGB color model. For YIQY&V color
model, the weighted Euclidean distance presentddwbés used
[Tas98]:

5y= 100 12,3 (~m=02. 3 (rem )2 3.5
D(P,P) \/160/ Y) S+ 5(€1=CP o+ (C2=C)) (3.5)

Where:

P: is a colored pixel.

P : is a colored pixel neighboured to pixel
Y : Luminance value of pixel of pixet.
Y

: Luminance value of pixel of pixea? .
C1: 1St chromatic component (eitheror U ) of pixel P.
C1: 1St chromatic component (eitheror U ) of pixel P.
c2: 2hd chromatic component (either or v ) of pixel P.

C2: 2"d chromatic component (either or v ) of pixel P .
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.. 8x16 (Image Signature)

256x256

Figure 3.7: Image color pyramid.
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1.5 Signature 5: Combined Signature

In this variant, we considered the use of imagaatiges that are
computed from two basic signatures (i.e. thoseasiges discussed in
the previous sectionsfor example the signature that combines
luminance with subsampling starts by computinghiséogram of the
luminance (or its corresponding low — passed lumgea and
computing pyramid of either luminance or color irmaglowever, the
computation of histogram and pyramid are consideretis research
to a more coarse quantization of only 64 valuesawh histogram and
pyramid computations. Thus, the size of the sigeatloes not to be
increased. The final signature is, thus, obtained lsoncatenation of
the quantized luminance histogram and the subsaplage. Figure
3.8 depicts the steps of this signature variatidlso, figure 3.9
presents the application of this signature whennamnce pyramid and

color pyramid are used together to generate thdwd signature.
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An image Y-Channel  C1-Channel C2-Channel
Luminance
Extraction
Luminance
Quantizatio Subsamp"ng
to 64 value to 64 pixes
[ |
[]
Concatenate
value:
) 128 elements'
o 1 2 .. .63[0 1 2 ... 63
[27 48 61 . . . 679 [56 61 46 . . . 59
) 64 elements a 64 elements g

Figure 3.8: A combined signature of 64 elements from the lwange histogram

and 64 elements from luminance pyramid.
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Y-Channel C1-Channel C2-Channel An image
o .
Luminance

< ———

Extraction

Subsampling Subsampling
to 64 pixes to 64 pixes

\4 v

'\D/

Concatenate
value:

_

128 elements'

&
<

o 1 2 . . . &3] o 1 2 . . . 63
[555 607 455 . . . 550 Red[235 248 223 . . . 224
. , Greer[211 241 221 . . . 22§
64 elements Blug[223 245 149 . . . 21

) 64 elements ’

Figure 3.9: A combined signature generated from luminance migaof 8*8

pixels with color pyramid of 8*8 pixels.
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2.1 Introduction

The advances in the internet and digital image @etechnologies
resulted in a huge volume of digital image repaogifgroduced by the
scientific, educational, medical, industrial, etapplication. The
difficulties encountered by text — based imageieesl systems, thus,
became more severe, and the need for efficientnamd directions in
image database management systems that are basesliah— rather

than text — based retrieving techniques becamentufBeg06].

This chapter looks at the fundamental of contebased image
retrieval techniques. This includes the developnoér@ontent — based
image retrieval techniques, visual content featuiredexing schemes,

similarity/distance measurements, and system paence evaluations.

2.2 CBIR Framework

Content — based image retrieval uses the visuakent of an image
such agolor, shape, textureandspatial layoutto represent and index
the image. In typical content — based image radtisystems (Figure

2.1) [Lon03], the following general steps are folkd: -
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Relevance|

Feedback |

A 4 A 4 A 4

Usel Query R Visual .| Feature
Formation " Content "]  Vectors \
A
Similarity
Comparison
Image Visual Content .| Feature /
Databast descriptiol "| Databast v
Indexing &
Retrieva

y

Outpu
Retrieval resuli

Figure 2.1: Diagram for content — based image retrieval system

® Feature extraction;the visual content of the images in the
database are extracted and described by multi -erdiional
feature vectors. Generally speaking, image content include
both visual and semantic content. Visual contemt ba very
general or domain specifiGeneral visual contennhclude color,
texture, shape, and spatial relationstiymmain specific visual
content like human faces, is application dependent ang ma
involve domain knowledgeSemanticcontentis obtained either
by textual annotation or by complex inference pduces based

on visual content.

® Feature database formatiomhe feature vectors of the images in

the database form feature database.
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® Feature extractions from the query image; to retedmages,
users providethe retrieval system with example images or
sketched figures. The system then changes thesepées into

its internal representation of feature vectors.

© Similarity measurementthe similarities/distances between the
feature vectors of the query example or sketchthode of the
iImages in the database are then calculated antkvidtris

performed with the aid of an indexing scheme.

® Feedback;recent retrieval systems have incorporated feddbac
to modify the retrieval process in order to gereeagrceptually

and semantically more meaningful retrieval results.

Formally speaking the image retrieval problem entHetD be an

image database ar@ be the query image. Obtain a permutation of the
Images inD based o, i.e. assign ranl(<|)DﬂD|] for eachi OD, using
some notion of similarity toQ. This problem is usually solved by
sorting the images OD according tof (1)~ f(Q)|, where f() is a
function computing feature vectors of images and| f is some
distance metric defined on feature vectors.

One important and critical step of the whole CBIRstem
depicted in figure 2.1 is the feature formatiorfeature extraction used

to index images. The remaining sections of thigptdrareview image

features that are considered to be general viewade descriptions.
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2.3 Color and Color Models

Color US (colour, internationally) is a sensatianduced in the brain
in response to the incidence of light on the retiriathe eye. The
sensation of color is caused by differing qualibéshe light emitted by
light sources or reflected by objects [Lev97].

A graphical image is nothing more than a collectxdrorganized
colors intended to communicate some informationth@ case of a
scene or abstract image, the intent may primaelyddinfluence one’s
aesthetic sense. On the other hand, a quarteryhues graph might be
intended to influence a stockholder's blood pressuditimately,
however, both boil — down to the same thing a ctl@ of colors
[Lus93].

Color is very important component of graphical imgg Many of
the tasks associated with the manipulation andalispf graphics files
involve color — related operations [Lus93, Dav00]many engineering
application, qualitative and quantitative charaztgron of color is
essential. Color is an expression of spectral tmiggs of targets and as
such is the basis of identifying objects or estingattheir attributes.
With the advent of computer aided digital techngjudhe facility to
produce a wide range of colors has dramaticallyrawpd. Color may
be used on visual systems for aesthetic purposdpfmatting or for
coding. Human eye is capable of distinguishing nemers than gray
shades.
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There are several models used to describe thestimulus color
scheme, some are: RGB, YIQ, YU¥qB, and CIECAM97 models.
Each model has certain advantages over the otbensierting between
the different models is generally done by a re&yivsimple mapping.

Following subsections highlight in some detailsstheolor models.

2.3.1 RGB Moddl

In the RGB model, each color appears in its primapectral
components of red, green, and blue. This modehsed on a Cartesian
coordinate system. The color subspace of intesette cube shown in
figure 2.3 [Dav00], in which RGB values are at thimorners. Cyan,
magenta, and yellow are at three other cornerckBkRat the origin,
and white is at the corner farthest from the origimmthis model, the
gray scale extends from black to white along the Joining these two
points, and colors are points on or inside the cdeéned by vectors
extending from the origin. For convenience, theuagsion is that all
color values have been normalized so that the sbhben in the figure
is the unit cube that is, all values of R, G, andrB assumed to be in
the range (0O, 1) [GonO1].

1€
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Blue=(0,0, 1) Cyan=(0,1,1)

Magenta= (1,0, 1) \k
~——1— White=(1,1,1)

Black=(0,0,0) —— —~

I e s een = (0,1, 0)
>
= -~
Gray Scale

Red - (1,0, 0) Yellow = (1, 1, 0)

Figure 2.2: RGB color cube. Points along the main diagonakhgray values from

black the origin to white at point (1, 1, 1).

232 YUV and YIQ Color Spaces

The YUV is a format that was first developed fotocaelevision in
order to be compatible with the black and whited awidely used
throughout EuropeYy stands for luminance (or Luma), (Cb) is the
color difference for blue and (Cr) is the color difference for red. In
black and white televisions only the component is shown. The RGB

to YUV conversion is defined as [Pon04]:

Y 0299 0587 0114 || R
U|=]-0147 -0289 0436 ||G (2.1)
\Y 0615 -0515 -0300||B

YUV uses a matrixes combination of Red, Green ahge Bo
reduce the amount of information in the signal. Thechannel
describes Luma (slightly different than Luminandbg range of value
between light and dark. Luma is the signal seerblagk and white

television. Theu (Cb) andvVv (Cr) channels subtract the Luminance

17
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values from Redu) and Blue (v) to reduce the color information.
These values can then be reassembled to deterhenmik of Red,
Green and Blue. Some deeper research into YUV Ievwwa reasons
why Blue always looks so crummy when extracted frodeo images.
Theu channel ranges from Red to Yellow, thechannel ranges from
Blue to Yellow. Because Yellow is Red and Greeng Reessentially
sent three times, Green twice and Blue only on@eoRstruction the
Luminance component reveals another reason Bluersuthe Blue
channel is only 11% of Luminance [Mal03]. The tfansation from
YUV back to RGB model is [Bou94]:

Rl [10 00  11407[Y
G|=|10 -0394 - 0581||U (2.2)
B| [10 2028 00 ||V

The YIQ model is used in commercial color TV broastng.
Basically, YIQ is a recording of RGB for transmamsiefficiency and
for maintaining compatibility with monochrome TVasdards. In fact,
the Y component of the YIQ system provides all the viddormation
required by a monochrome television set. The RGBI conversion
is defined as [GonOQ1]:

Y 0299 0587 0144 || R

I | =] 0596 —-0275 -0321||G (2.3)
Q 0212 -0528 0311 ||B

Converting from YIQ space to RGB space with theense matrix

transformation [Hea94]:

18
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R 1000 0956 0620 ||Y
G| =|1000 -0272 - 06471 (2.4)
B 1000 -1108 1705 ||Q

In the YIQ color space, where the coordinate represents the
luminance, andl and Q coordinates represent the chrominance
components andQ, respectively. Tha and Q components are used
to jointly represent saturation and hue. It is Wwonoting that the
luminance componeny contains a large component of the visual
content, whereas the two chrominance component@ndQ, contain
less perceptual information. Thus, due to the huwianal system’s
lower sensitivity to color information, it is pobf to sub sample the
chrominance information and then integrate it badk the overall

color image without any loss of perceptual quality.

2.3.3 ftop and CIECAM97 Color Spaces

¢ap color space was proposed by Ruderman et. al. fRdfD4]. It
was developed to minimize correlation between tireg coordinate
axes of the color space for many natural scenas.sface is based on
data — driven human perception research that asstiradhuman visual
system is ideally suited for processing naturahsse The color space
provides three decorrelated, principal channelsesponding to an
achromatic luminance channeland two chromatic channeds andg,
which roughly correspond to yellow — blue and redreen opponent
channels. Small changes in one channel impose rminefiect on
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values of other two. Following is the conversioonfrRGB to/ag and

vice versa [Pan04, Fil04]:

The image can be converted from RGBUWas space using the
following conversion [Pan et. al. 04]:

L 03811 05783 00407|[R
M| =|01967 07244 00782||G (2.5)
S 00241 0.1288 08444/ B

Then convert the data to logarithmic space:
L=Log L
M =Log M (2.6)
S=Log S

Then transform fromMs to ¢ag follows:

1
— 0 0
AL 1 1 17ML
a:0%011—2M 2.7)
Vi 611—105
0 0 —
i V2

The result can be transferred back with the invkrsperation

from ¢apB to RGB:

1
L 111\/50 ° /
Mi=[1 1 -2|l0 L olla (2.8)
s| |1 -1 0 0*/0615
j V2]
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L =10
M =10 (2.9)
S=10°

Finally, convert fronrLMSto RGB:

R 44679 -35873 01193 || L
G| =|-12186 23809 -0.1624||M (2.10)
B 00497 -0.2439 12045 || S

CIECAM97 is one of many color appearance modelswats
developed as an international standard color appear model that
borrows the best ideas from many different colgpespance models.
Previous to the development GfECAM97s, only CIELAB stands for
(Commission International de I'Eclairage) developeg Richard
Hunter in 1942 that defines colors along two pabegs for color (a and
b) and a third for lightness (L)) was availableaasolor appearance
[DiC98]. CIE TCl — 34 proposed the CIE 1997 Interi@olor
Appearance Model (Simple Version) (CIECAM97s) tewar the need
of the imaging industry for a single color appeasmmodel. The goal
was to develop a model that could be used for @eviecndependent
color imaging applications and to promote unifogitroughout the
industry [Hat02]. The CIECAM97s model is closelyates to theraps
color space. The transformation from RGB twms and then to
CIECAM97s is [Rei01]:

0.3811 0.5783 0.0402|| R

L
M| =|01967 07244 00782||G (2.11)
S 00241 0.1288 08444/ B
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A 200 100 005 || L
Cl| =|100 -109 009 ||M (2.12)
C2 011 011 -022(| S

Where A is the achromatic channel anth, and c2 are the
chromatic channels. The two chromatic chanmalsand Cc2 resemble
the chromatic channels and g in ¢apB space, while the chromatic
channel is different. Another difference is thaECIAM97s operates in
linear space whilerag is defined in log space [Rei0l]. The inverse

operation to convert from CIECAM97s to RGB coloase is:

03279 03216 020617[ A
M| =|03279 -06353 -0.1854||Cl (2.13)
S| [03279 -01569 -45351||C2

—

R 44679 -35873 01193][L
G| =|-12186 23809 -0.1624||M (2.14)
B 00497 -02439 12045 || S

24 Texture

Texture, as observed in wood, grain, stone, clgtiass, etc. is an
important surface property measure to describeoregmoothness,
coarseness, regularity, reflectivity, and grantyarlthough texture is
readily detected by the human visual system, nmadbrdefinition of

texture exists. Analysis of texture begins by idgimg basic texture
elements (i.e. texels) which repeat with some degfepredictability.

Each texel consists of a group of pixels which ¢e@ve random,

periodic, or partially periodic distributions. Onetwhole, man — made
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materials feature regular, periodic textures, whilaturally occurring
textures are random. In general, texture analyais e divided into
three principle approaches: statistical, structurahd spectral.
Statistical techniques are used primarily for nraltyr occurring
textures, having a random nature yield charactgoizs of textures as
smooth, course, grainy, and so on. Structural igcles are well suited
to man — made textures. They deal with the arraegérf image
primitives, such as the description of texture bdase regularly spaced
parallel lines. Spectral techniques are used fottighl periodic
patterns so as to detect global periodicity inmaage [Awc95].

2.5 Edge/Shape

The shape of objects / regions is yet another Idevel image feature
for content — based image retrieval. Edge detecto sometimes
segmentation are used to extract shape featuresegmaent image into
regions or objects. Since robust and accurate insegenentation is
difficult to achieve, the use of shape featuresifoage retrieval has
been limited to special applications where objectsegion are readily
available. The state — of — art methods for shagseription can be
categorized into eitheboundary — basedrectilinear shape [Jag91],
polygonal approximation [Ark91], finite element nedd [Scl95], and
Fourier — based shape descriptions [Arb90, Kau®biggion — based
methods (statistical moments [Yan94]). A good shegx@esentation
for an object should be invariant to translatiomation and scaling.
Shape features based on some shape descriptors Imaned
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discriminating capability. One problem with shagssctiptors is that it
Is hard to find a good perceptual measurementroilaa shapeskor
example similar moments do not guarantee similar shafdmrtly
speaking, shape is an important visual cue buteattoes not provide

good image retrieval performance.

2.6 Spatial Relationship

Regions or objects with similar color and texturegerties but have
different semantic meaning can be further distisged by imposing
spatial constraints-or example regions of blue sky and ocean may
have similar color histogram, but their spatialdtbons in images are
different. Thus, the spatial location of regions gbjects) or the spatial
relationship between multiple regions (or objeatsan image can be

useful for searching images.

The most widely used spatial relationship is thergpresentation
proposed by chang et. al. [Cha87] where the spagdiationships in an
image is divided into two sets of spatial operat@se defines local
spatial relationships and the other defines thebajlospatial
relationships. This and subsequent methods calitdéeithree types of
guery. The first type is for finding all images tl@ntain objects Q
O, ... O,. The second type is for finding all images contajnmages
that have certain relationship between each otinexlevant to the
distance between them. The third type is for figdall images that
have certain distance relationship between objects.
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2.7 Similarity / Distance M easures

Instead of exact matching, content — based imageval calculates
visual similarities between a query image and irsage database.
Accordingly, the retrieval result is not a singlmaige but a list of
images ranked by their similarities with query ireag he distance
function used to compare features of images alagspan important
role. An ideal distance functiod and the feature (1) would satisfy

the perceptual similarity:

D(f(17),f(19) Is small = 1, andl, are perceptual similar. In

most cases, features are treated as points in-hidimension space.
Therefore, it is naturally to define distance fumes in terms of
Euclidean norms. The; norm andL, norm are commonly used when
comparing two feature vectors. These norms can fdezifeed by
following Minkowski — From Distance [Hau98]: -

Minkowski — Form Distance: - If each dimension of image
feature vector is independent of each other ammd exjual importance,
the Minkowski — form distance |, is appropriate for calculating the

distance between two images. This distance is eefas [Hua98]:
D(,3)=>|f()-f()" (215

When p= 1, 2, D(1,J) is thel,, L, (also called Euclidean distance),

distance respectively. Minkowski — form distancehis most widely

used metric for image retrieval.
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2.8 Indexing Scheme

One important issue in content — based image velrisystems is
effective indexing and fast searching of imageseflasn visual
features. However, feature vectors of images temdhave high
dimensionality, and thus they are not well suited conventional
indexing structures. Thus, to set up an efficiamiexing scheme,
dimension reduction should be used.

One commonly used dimension reduction techniqueshés
principle component analysis (PCA) that linearlypsmanput data to
coordinate space such that the axes are alignesfléct the maximum
variations in the data. PCA is commonly used inroacray research as
a cluster analysis tool. It is designed to capthiesvariance in a dataset
in terms ofprinciple componentdn effect, one is trying to reduce the
dimensionality of the data to summarize the mospartant (i.e.
defining) parts whilst simultaneously filtering oumise. Principle
Components is a set of variables that define aeption that
encapsulates the maximum amount of variation inatas#t and is
orthogonal (and therefore uncorrelated) to the iptesv principle
component of the same dataset. Additionally Karhurd.oeve (KL)
transform can be used for dimension reduction. Tiethod has the
ability to locate the most important sub — spacediuhe expense of
destroying the important feature properties thagnidy pattern

similarity.

After dimension reduction, the multi — dimensiorddta are

indexed using number of methods, e.g., R — treeali quad — trees, K
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— d — B trees and grid files [Lon03]. Most of thesdexing schemes
can provide reasonable performance for a small marobdimensions
(up to 20), but explore exponentially with the masing of the

dimensionality and eventually reduce to sequesgalching.

2.9 user interaction

The formation and modification of queries in contenbased image
retrieval systems can only be obtained by systderaotion with the
user. User interaction typically consists of twotpa

1. Query formulation partwhere kind of images a user wishes to
retrieve from the database is specified. Querylmaformed in

either:

& Category browsing:to browse through the database
according to the category of the image, which digss

images according to their semantic or usual content

® Query by conceptto retrieve images according to the
conceptual description associated with each imagthe

database.

® Query by sketchto draw a sketch (using graphical editing
tool) from which images with similar visual featareill

be extracted from the database.
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® Query by exampleto provide an example image from
which images with similar characteristics will kedrreved

from the database.

2. Results presentation partwhere an interactive relevance
feedback is used as an active learning processnfmoving the
effectiveness of information systems. The main ide#0 use
positive and negative examples from the user taong system
performance. For a given query, the system, frestjeve a list
of ranked images according to predefined similantgtrics.
Then, the user marks the retrieved images as ml€pasitive
example) to the query or not relevant (negativargtas). Then,
the system will refine the retrieval results basadhe feedback
and present a new list of images to the user. [yhgpeaking, in
relevance feedback, one can incorporate positive regative
examples to refine the query and/or to adjust timalagity

measure.

2.10 Performance Evaluation

In 1999, MPEG7 recommend a retrieval performancaluation
measure called, theverage normalized modified retrieval rank
[Lon03]. Let number of ground truth images for aey queryq be
denoted asN(g) and the maximum number of ground truth images for

all Q queries, i.e. maxN(a),N(q,) ..., N(q,), as M. Then, for aed

given queryq, each ground truth image is assigned a rank value
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rank (k) that is equivalent to its rank in the ground trimiages if it is
in the first K query results where = min[4N(g),2M]. Otherwise, the
Image k is assigned a rank valyer1. The average rankivR(q) for

guery q is computed as:

P rank (K)
AVR(q) = TN(Q) (2.16)

K =1
The modified retrieval rankRRq) is computed as:
MRR(q) = AVR(q) - 05-05* N(q) (2.17)

MRR) takes valued when all the ground truth images are within the

first K retrieval results.

Then, the normalized modified retrieval raRRq), which ranges

from 0 to 1, is computed as:

_ MRR()
NMRR@) K +05-05* N(q) (2.18)

Finally, the average normalized modified retrieka@hk ANMRR over

all Q queries is computed as:

Q
ANMRR = > NMRR(q) (2.19)
q=1

1
Q
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Abstract

With the explosive advancement in imaging techniegand specially with
proliferation of the world wide web, image retrieveas attracted the increasing
interests of researches in the field of digitalrdiles, image processing and
database system. Research in human perceptionagfeimontent suggests that
content-based image retrieval (CBIR) can follovegusence of steps. The typical
steps of CBIR system are: image query formatioragenfeature extraction,
similarity measurement, indexing and retrieval, asdr interaction. The correct
choice and set up for each step will result in #,vedficient and suitable CBIR
system.

This work concentrates on one important and crusiep of the whole
CBIR system: feature extraction (or feature forwati The image features used
are all characterized as low — level features. &haslude: image luminance
histogram, low — passed luminance histogram, lungeapyramid, color
pyramid, and combined feature.

The main contributions are: simplicity (i.e. easyimplement the feature
extraction phase), suitability (i.e. provide acedpd retrieving results),
efficiency, and economy. The CBIR with the presdreature extraction variants
are tested on a selected database of a set @ethimnage classes. In general, the
results indicate that the choice of image featuen greatly affect the
performance of CBIR system. Experimental resulsw&d that image features
that utilize achromatic and chromatic informatidrthee image can provide about
75% accurate results, while those depend on omdnsity information can give
accurate results in about 25% - 75%. Moreoverctirabination of two features
can give in better results.



duadAll

cnay O e slaadl A0l 3 daaladl skl aey Buals ¢y peaill L sSET o ) i) o
osall dallaay 4l )l GliSall Jlae & Gialdl alaialy aa dale ) sall pla il ¢ g s
Agad )l il sleall (e 0 30 Gal s (e 4 aiialy Lal i) ae ) 8 Akl

Lsra G asm 135 ¢ geall CLLAAS e 5 dailie s Gaill Cueaa Sl pla il il o
AL gl @l ol a5 Leela il 5 Lele Jaall 5 LlISiul (Say ) sa il () Jgaasl
Agiall ) geall gl yiud Gl o) LS el sase (aill Graaa S gla i) alas o £ )
il sl Bazeiall Cililual) 8 daga dalise 228 (5 ginall il e

, allall 3 ) gum JSE5 1 ghadll (g Abusasy o G (S (5 sinall Qi) e daall ) gaall Balaiiaal )
el Jelii g la yiull g A jedll 4l (Wl 5 ) seall allee ) Al

alaill Alia 5 5 58S 5 B 0l Jamy of Sy 8 shad JS) aaaall sl o)

e o LS ¢ allaall QS5 5 allaall ) jai) a5 alkail) 8 daga 35ha o S 5 i 14 )
25 ¢ hly (5 st ld allaa o) Aoy allee Lo s i LS Canall 138 8 daddiiad) 3 saall
e, Bl Dsoal 53 g saill Sl an Nl B sall g sal Slall el el allell
Al allaall lll o s g sl

Balaiual g g allaall (DALY dalaie g dagy g Al 48y Hla () Jsall 5o Gl 12 4ty L
Adle 3eUSy A g il

O o il cly Sy ) gall Glial e Ciia VT (e L 58 cilily saclE e alaill i) g
e adixi Al alleal) o) LS ¢ albaill glol g dallad 8 S JSE i o (Sar B geall allaa lial
WES e aaied el o ST Agige i g Al e Clasleall s Al il lall
(ol s any Of Sy (el alat) la @l ) ASUYL cdadé il gladll



Certification of the Examination Committee

We chairman and members of the examination comenitertify that we
have studied this thesi8mage Signature for Content — Based Image
Retrieval" presented by the studeriKhawla Omer Farhan" and
examined here in its content and that we have foimdvorthy to be
accepted for the Degree of Master of Science in@der Science.

Signature:

Name: Dr. Laith A. AL-Ani
Title: Assist. Prof.

Date: 13 /4 /2008

(Chairman)
Signature: Signature:
Name: Dr. Bushra K. AL-Abudi Name: Dr. Haithem A. AL-Ani
Title: Assist. Prof Title: Lecturer
Date: 13/4 /2008 Date: 13/4 /2008
(Member) (Member)
Signature:

Name: Dr. Bara’a A. Attea

Title: Assist. Prof.

Date: 13 /4 /2008
(Supervisor)

Approved by the Deen of the College of Science,
AL-Nahrain University

Signature:
Name: Dr. Laith A. AL-Ani
Title: Assist. Prof.
Date: 13/4 /2008
(Dear of College of Scienct



References

[Arb et. al. 90] K. Arbter, W. E. Snyder, H. Burkida and G.
Hirzinger, “Application of Affine — invariant
Fourier Descriptors to Recognition of 3D
Objects”, |IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 12, p.p. 640 — 647,
1990.

[Ark et. al. 91] E. M. Arkin, L. P. Chew, D. P. Hanhlocher, K.
Kedem, and J. S. B. MitchelllAn Efficiently
Computable Matric for Comparing Polygonal
Shapes; |IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 13, no. 3, p.p. 209 —
226, 1991.

[Awc Tho 95] G. J. Awcock, and R. Thoma%Applied Image
Processing,' ACMILLAN Press Ltd., 1995.

[Bou 94] P. Bourke;Converting between RGB and CMY, YIQ,
YUV", 1994. Available at [URL:
stronomy.swin.edu.au/~pbourke/colour/convert.html

[Bur Ade 83] P. J. Burt and E. H. AdelsofThe Laplacian
Pyramid as a Compact Image Cod¢EEE Trans.
Communication, vol. Com — 13, p.p. 532 - 540,
1983.

[Car et. al. 99] C. Carson, M. Thomas, S. Belongile, M.
Hellerstain and T. Malik;Blob world: A System
for Region — based Image Indexing and Retrieval”
in Proc. Int. Conf. Visual Information Systems, pp.
509 - 516, 1999.

70



References

[Cha et. al. 87]

[Dav 00]

[DiC Sab 98]

[Fil et. al. 04]

[Gon Woo 01]

[Hat 02]

[Hir Kat 92]

S. K. Chang, Q. Y. Shi, and C.Y¥n, “Iconic
Indexing by 2D Strings”IEEE Trans. on Pattern
Analysis and Machine Intelligence, vol. 9, no. 3,
p.p. 413 — 428, May 1987.

K. Davies, Digital Color Model Puts Color in a
New Light", 2000.

[URL:
http://www.ColorCube.com/articles/models/model,
htm].

J. M. DiCarlo, and J. C. Sabataiti€IECAM97
Color Appearance Model'1998. Available at [URL:
ise. stanford. edu / class / psych221/ projects/ 98
ciecam / Description. htral

L. Filipe, M. Vieira., R. D. Eridon, R. Nascimento,
A. F. Fernando Jr, R. L. Carceroni, A. A. and
Araujo, "Automatically Choosing Source Color
Images for Coloring Grayscale Images|EEE
Computer Society, Pages 3 — 4, 2004.

R. C. Gonzalez, and R. E. Wood3igital Image
Processing, Second Edition — Wesley Publishing,
2001.

E. F. HattenbergetGraphical User Interface for
the CIECAM97s and Revised CIECAM97s Color
Appearance Mode]2002.

K. Hirata and T. KatajRough Sketch — based
Image Information Retrieva]” NEC Res.
Develop., vol. 34, pp. 263 — 273, 1992.

71



References

[Hsu et. al. 95]

[Hua 98]

[Jag 91]

[Kau et. al. 95]

[Lev 97]

[Lon et. al. 03]

[Lus 93]

[Mal 03]

W. Hsu, T. S. Chua, and H. K. Bufgn
Integrated Color — spatial Approach to Content —
based Image Retrieval’in Proc. 1995 ACM
Multimedia Conf., pp. 305 — 313, 1995.

J. Huang, Color — Spatial Image Indexing and
Applications”,  Ph.D  dissertation, Cornell
University, 1998.

H. V. JagadishA Retrieval Technique for Similar
Shapes; Proc. of Int. Conf. on Management of
Data, SIGMOID 91, p.p. 208 — 217, May 1991.

H. Kauppinen, T. Seppnéen, andRktikainen,
“An Experimental Comparison of Autoregressive
and Fourier — based Descriptors in 2D Shape
Classification”, IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 17, no. 2, p.p. 201 —
207, 1995.

H. Levkowitz, ‘Color Theory and Modeling for
Computer Graphics, Visualization, and
Multimedia Application§ Lowell, Massachusetts,
USA, 1997.

F. Long, H. Zhang, and D. D. Feng,
“Fundamentals of Content — based Image
Retrieval”, p.p. 476, 2003.

L. Marv, ‘Bitmapped Graphics Programming in
C++", 1993.

J. Maller,"RGB and YUV Color2003. Available at
[URL:
http://www.Joemaller.com/fcp/fxscipt-yuv-

color.shtm.

72



References

[Man et. al. 07]

[Pan et. al. 04]

[Pon et. al. 04]

[Qiu Lam 03]

[Reg et. al. 06]

[Rie et. al. 01]

[Sal 89]

[Sel Pen 95]

C. D. Manning, P. Raghavan, EdbchitzeAn
Introduction to Information RetrievaJ’Cambridge
University Press, Cambridge, London, 2007.

Z. Pan, Z. Dong, and M. Zhatfy,new Algorithm
for Adding Color to Video or Animation Clips"
Journal of WSCQ@Pages 2 — 3, 2004.

DPongas, F. Gunter, A. Uignard, and A. Billard,
"Mobile cameras for the eyes of Robot®2004.
Available at [URL:
http://www.humanoids.epfl.Ch/research/hardware/re
port/ Pongas.short.pdf

G. Qiu and K. LamiFrequency Layered Color
Indexing for Content — based Image Retrieyal”
IEEE Trans. on Image Processing, vol. 12, no. 1,
pp.102 — 113, Jan. 2003.

M. Rege, M. Dong, and F. FotouBiyilding a
User — centered Semantic Hierarchy in Image
Databases; Multimedia Systems, Springer —
Verlag, vol. 12, no. 45, pp. 325 — 338, March
2006.

E. Reinhard, M. Ashikhmin, B. Gbgcand P.
Shirley, "Color Transfer between ImageslEEE
Computer Graphics and Applications, Pages 21(5):
34 -41, 2001.

“Text Information Retrieval’ 1989.

S. Sclaroff, and A. Pentlafidpdal Matching for
Correspondence and RecognitionlEEE Trans.
on Pattern Analysis and Machine Intelligence, vol.
17, no. 6, p.p. 545 — 561, Jun 1995.

73



References

[Swa Bal 91]

[Tas et. al. 98]

[Vie et. al. 03]

[Yan Alg 94]

M. J. Swain and D. H. Ballar@Color Indexing”,
International Journal of Computer Vision, vol. 7,
no. 1, pp.11 — 32, Jan. 1991.

T. Tansdizen, L. Akarun, and Codyr “Color
Quantization With Generic Algorithms”Signal
Processing Image Communication, vol. 12, no. 1,
p.p. 49 — 57, 1998.

L. F. M. Vieira, R. D. Vilela, an€E. R. do
Nascimento, “Automatically Choosing Source
Color Images for Coloring Grayscale Images”
IEEE Computer Society, 2003.

L. Yang, and F. Algregtsefffast Computation of
Invariant Geometric Moments: A New Method
Giving Correct Results”Proc. IEEE Int. Conf. on
Image Processing, 1994.

74



	Microsoft Word - Abbriviation and abstract_4.pdf
	Microsoft Word - C. V..pdf
	Microsoft Word - Certification_4.pdf
	Microsoft Word - Chapter Five - Conclusions and Future Work.pdf
	Microsoft Word - Chapter Four - Experemantal Evaluations_4.pdf
	Microsoft Word - Chapter One - Introduction.pdf
	Microsoft Word - Chapter Three- Image Signatures Generation_4.pdf
	Microsoft Word - Chapter Two - Fundamentals of CBIR.pdf
	Microsoft Word - Chapters_4.pdf
	Microsoft Word - Doc1_4.pdf
	Microsoft Word - New Microsoft Word Document_4.pdf
	Microsoft Word - New Microsoft Word Document _2__4.pdf
	Microsoft Word - New Microsoft Word Document1_4.pdf
	Microsoft Word - References.pdf



