

_|áà Éy TuuÜxä|tà|ÉÇá

Abbreviation Meaning

AI Artificial Intelligent

API Application Program Interface

Bcc Blind carbon copy

Cc Carbon copy

CNRI Corporation National Research Initiative

E-mail Electronic mail

EMFA Email Filtering Agent

FTP File transfer Protocol

HTTP Hyper Text Transfer Protocol

IMAP Internet Message Access Protocol

POP Post Office Protocol

POP3 Post Office Protocol Version 3

SDK

SMTP Simple Mail Transfer Protocol

Abstract

 As the number of users connects to the internet increases rapidly,

Electronic mail (E-mail) is quickly becoming one of the fastest and most

economical forms of communication available, since E-mail is extremely

cheep and easy to send. As our lives have become ever increasingly tied up

to the online world, the volume of E-mails coming into our inboxes has

also been increasing, so the problem of email filtering is a critical one. The

current solution usually consists of using E-mail filtering program that can

filter incoming E-mail according to user specified rules; this program is the

E-mail Filtering Agent (EMFA).

 EMFA system splits E-mails into categories, this would help to

automate the process of sorting through E-mail and applying actions (such

as deleting unwanted mail or forwarding or replying messages to a specific

address).

 The agent learns the actions to be performed on E-mail and the

features to be used in the classification task from predefined examples in

the system. It uses machine learning to classify the messages into two

lists: Negative list (that contains unwanted messages) and Positive list (that

contains the messages that must be forwarded or replied) and then discard

the contents of the negative list and reply or forward the positive list

messages.

 To implement EMFA system, JAVA language was used. It provides

a set of abstract classes defining objects that comprise the E-mail system

also supporting the creation of sophisticated user interfaces.

Tv~ÇÉãÄxwzÅxÇà

\ ãÉâÄw Ä|~x àÉ xåÑÜxáá Åç á|ÇvxÜx tÑÑÜxv|tà|ÉÇ àÉ Åç

áâÑxÜä|áÉÜ? WÜA]tÅtÄ `A ^tw{xÅ? yÉÜ z|ä|Çz Åx à{x

Åt}ÉÜ áàxÑá àÉ zÉ ÉÇ àÉ xåÑÄÉÜx à{x áâu}xvà? á{tÜ|Çz ã|à{ Åx à{x

|wxtá |Ç Åç ÜxáxtÜv{ ÂWxá|zÇ tÇw \ÅÑÄxÅxÇàtà|ÉÇ Éy

XÅt|Ä Y|ÄàxÜ|Çz TzxÇàÊ tÇw w|ávâáá à{x ÑÉ|Çàá à{tà \ yxÄà

à{xç tÜx |ÅÑÉÜàtÇàA

ZÜtàxyâÄ à{tÇ~á yÉÜ à{x [xtw Éy WxÑtÜàÅxÇà Éy VÉÅÑâàxÜ

fv|xÇvx? WÜA gt{t fA Utá{tzt?

TÄáÉ? \ ã|á{ àÉ à{tÇ~ à{x áàtyy Éy VÉÅÑâàxÜ fv|xÇvx

WxÑtÜàÅxÇà tà TÄ@at{Üt|Ç hÇ|äxÜá|àç yÉÜ à{x|Ü {xÄÑA

\ ãÉâÄw Ä|~x àÉ átç 5à{tÇ~ çÉâ5 àÉ Åç yt|à{yâÄ yÜ|xÇwá yÉÜ

áâÑÑÉÜà|Çz tÇw z|ä|Çz Åx twä|áxáA

Dedication

To my father who supports me

Republic of Iraq

Ministry of Higher Education

and Scientific Research

Al-Nahrain University

College of Sciences

Design and Implementation of Email

Filtering Agent

A thesis

Submitted to the College of Science / AL-Nahrain University in

partial Fulfillment of the Requirements for the Degree of Master

of Science in Computer Science.

By

Huda Fawzi Al-Shahad

(B.Sc.2002)

Supervisor

Dr.Jamal M. Kadhem

1429 Sofar

2008 February

gtuÄx Éy VÉÇàxÇàá

Chapter One: Introduction

1.1 Introduction --- 1

1.2 Literature Survey --- 2

1.3 The aim of Thesis -- 4

1.4 Thesis Layout --- 4

Chapter Two: Email and Intelligent Agent overview

 2.1 Introduction -- 6

2.2 Artificial Intelligent --- 8

2.3 Agent -- 9

 2.3.1 Agent Architectures -- 12

 2.3.1.1 Classical Approach: Deliberative Architectures ------------ 12

 2.3.1.2 Alternative Approaches: Reactive Architectures ----------- 13

2.4 From AI to Intelligent Agents ---13

 2.4.1 Intelligent Agent Framework --15

 2.4.1.1 Requirements ---15

 2.4.1.2 Design Goals ---15

 2.4.2 Application of intelligent agent -------------------------------------16

2.5 Email Agent ---17

 2.5.1 Message Format --18

 2.5.2 Email Filtering --21

2.6 Learning System --22

 2.6.1 Learning paradigm ---23

 2.6.1.1 Supervised learning ---24

 2.6.1.2 Unsupervised learning --24

 2.6.1.3 Reinforcement learning ---25

 2.7 Design of Email Filtering agent --26

 2.7.1 System Requirements for email agent ------------------------------26

 2.7.2 Clustering algorithm --27

Chapter Three: Design and Implementation of EMFA

3.1 Introduction --28

3.2 Email Filtering Agent (EMFA) System --------------------------------28

3.3 Connection to POP3 --30

 3.3.1 Open Session ---32

 3.3.2 Store class --33

3.4 Fetch messages ---35

3.5 Feature Extraction ---37

3.6 Clustering algorithm ---39

3.7 Filtering Algorithm --42

 3.7.1 Forward Message --42

 3.7.2 Reply Message ---44

 3.7.3 Delete Message ---45

Chapter Four: Email Filtering Interface and Result

4.1 Introduction --47

4.2 EMFA system ---47

4.3 EMFA frame --48

4.4 Running Agent --50

4.5 Example --60

Chapter Five: Conclusion and Future Work

5.1 Discussion and Conclusion ---64

5.2 Future Work --65

Appendix A (Environment Properties)

List of References

 ا���	� ا����� ���

�ُ ا��ِ��َ� ِ��َ�ْ�َ
�َ�ُ��ا ِ���ُ�ْ

وَا��ِ��َ� أُوُ��ا
 ُ�
اْ�ِ%ْ$�َ دَرَ!َ تٍ وَ

ِ�َ	 َ�ْ%َ	ُ$�نَ
 ٌ��ِ(َ)

ا�%.�� ا�%$- ,+ق
)١١(اادلة

 ا�����

د ����
�� ا	���
 ا	
و	�
 	�������ت �
�(�� ��ا�����
 .%$�رة �!�ده) ا���ا'�& ا	�

 ا�	���و�� +��* ا	��() ��ا�	���و�� ا.
 ا3�ع وار12 ا��اع ا��$��ت ا	���/�ة .�- ان ا	�

�. و53* ا�ر�3ل ����
 ا�	���و�� ا، و�� ��ا�
 ار���ط .����7 %��	6 ا���	>ي �$* ا	��7 /� .:6 ا	�

�@) %�? ا	��ء ، ��ا�
 ا�=� . (���� �A�'ا ��
 ا�	���و��
 و��B�& ا	��)$�
. و	5>ا ����

 ا�	���و�� ا	�Dدم %������د ��
 و��B�& ا	��)$�	 E����% F�=�� �G�A	ا �ا	A* ا	����
م /� ا	�+

(7���

 و��B�& ا، ��H +�ا��)$�	 *�I�	م ا�J7	ا H��� م�J7	ھ>ا ا��
 ا�	���و���	(Email

Filtering Agent)(EMFA

 �J7�6 ، ھ>ا ا	�J7م ��Dم %��ز�� ا	�M�3* ا�	���و��) او�������� ا	�L/ Hت ���7)���� *�@ �/
ھ>ا ����

� ا/��ل ���7) ��Dو�
���M�3* ا�	���و�	 (�D�3�ا
�
A� H�� م�D� ��	وا

 ا�	���و�� او���������ا	�

)� *O�F��� �7ان� F�

 ا	�Dد���� او ا@�%
 ا	�M�3* ا�	���و����P%) و��� ��Q	ا *M�3�).�& ا	

��
 ا�	���و	�3��1 ا	 F�G ر��ز *������ R��% ������ از�
م ، ا	�J7م ���Aي ��H ط���� *%

 ا�	���و	�3�
دة و���/) ���F� �D ا	���ز ا	��2Tذة ��D. ?�% Fل ا	A�
���:� U	ذ F� �
%
��

)Vر���	3* وا���3
ام %�? ا	��اص �F ا	�DAل ��7ان ا	�T% .(

 ا�	���و�� وا	���ات ا	�����$
 وا	�� �����* �����E ا	�I�* ����6 ا�/��ل ا	�� �7(>ھ� ��H ا	��ا	�

 /� ا	�J7م�
 ���وD%�3
�Oا� F� X�7$�	ا
���� �/ .

�ة ا	����!��	 �G�2 ��P ������ از� Unsupervised Machine)م ا	�J7م ����
م ط

Learning) F���M�+ H	ا
��
 ا	����
 : 	��D�6 ا	�M�3* ا�	���و�M�D	اNegative List ي��A� ��	ا

 ا��:�%��M�D	�5 وا/<. Y:� ��	ا
��ا	�� ���Aي ��H��Positive List H ا	�M�3* ا�	���و

���
 ا	�� �:Y ا�@�%
 ����5 او ����
 ا	����
 و��د ا	�M�3* ا�	���و�M�D	ت ا����A� ف<A� U	ذ
ھ� %�

 ا��:�%��M�D	@�ده /� ا��	ا *M�3� .��H او ���ر ا	

��
��Jم ال JAVAا��3 [��!�	 �/�@ EMFA ف�.�- ��57 ��وده %�:���
 �F ا	���$�ات ��

��
 ا�	���و�� .وا�=� �
�6 �2] وا@�5ت ��ض ��!�رة، ا	��7'� ا	�� ���* ��Jم ا	�

ر�� ا���اق��

 وزارة ا������ ا����� وا���� ا�����

��� ا�������

م ا���
ب/ ���� ا���
م�! �"#

و��/ ��'%�� و&�.�- ا����, ا+�*��و(� ()�م&'��� و&�%�$

 رسالة

جامعة النهرين ،مقدمة الى كلية العلوم
علومفي ماجستيرالجزء من متطلبات نيل درجة ك

الحاسوب

لقبَ من ِ ◌ِ

 هدى فوزي الشهد

 بكلوريوس
٢٠٠٢

 المشرف

 جمال محمد كاظم.د

1428 ���
 ���ط 200٨

Certification of the Examination Committee

We chairman and members of the examination committee certify that

we have studies this thesis "Design and Implementation of Email

Filtering Agent" presented by the student Huda Fawzi Al-Shahad and

examined her in its contents and that we have found it worthy to be

accepted for the degree of Master of Science in Computer Science .

 Signature:

 Name: Dr. Lamia H.Khalid
 Title : Assistant Professor
 Date : / /2008

 (Chairman)

Signature: Signature:

Name: Dr. Loay E. George Name: Dr. Taha S. Bashaga
Title : Assistant Professor Title : Lecturer
Date : / /2008 Date : / /2008

(Member) (Member)

Signature:

Name: Dr. Jamal M. Kadhem

Title : Lecturer

Date : / /2008

 (Supervisor)

Approved by the Dean of the Collage of Science, Al-Nahrain University.

Signature:

Name: Dr. LAITH ABDUL AZIZ AL-ANI
Title : Assist. Prof.
Date : / /2008
 (Dean of Collage of Science)

Supervisor Certification

 I certify that this thesis was prepared under my supervision at the

Department of Computer Science/Collage of Science/Al-Nahrain University,

by Huda Fawzi Al-Shahad as partial fulfillment of the requirements for the

degree of Master of Science in Computer Science.

Signature:

Name: Dr. Jamal M. Kadhem

Title: Lecturer

Date: / /2008

 In view of the available recommendations, I forward this thesis for

debate by the examination committee.

Signature:

Name: Dr. Taha S. Bashaga

Title: Head of department of Computer Science, Al-Nahrain University.

Date: / /2008

1.1 Introduction

 E-mail communication has become more available, it is being used

as a fundamental communication tool by millions of people around the

world. E-mail is used to organize meetings, manage virtual work teams,

discuss work-related proposal, make announcements and solve problems. A

user may receive tens or even hundreds of emails every day. E-mail users

commonly try to manage the large amount of emails they receive by using

automatic approach to processing the email which is called email filtering

[Che06].

Email filtering is the processing of e-mail to organize it according to

specified criterion. Most often this refers to the automatic processing of

incoming messages, but the term also applies to the intervention of human

intelligence in addition to artificial intelligence, and to outgoing emails as

well as those being received. Email filtering software inputs email and for

its output, it might pass the message through unchanged for delivery to the

user's mailbox, it might redirect the message for delivery elsewhere, or it

might even throw the message away. Some mail filters are able to edit

messages during processing [Wik07].

 The problem of email filtering is a very practical one. As our lives

become ever increasingly tied to the online world, the volume of email

coming into our inboxes has also been increasing steadily. The solution

 Chapter One Introduction

 2

usually consists of using a mail filtering program that can sort incoming

mail based on user conditions. Here is where machine learning comes to

the rescue. If we can train a machine, or rather a computer program, to

learn what email should go where, Junk mail would be discarded.

 Instead of simply offering tools that are manipulated by human users,

an email agent attempts to organize email massages automatically based on

its knowledge about each individual user.

Agent architecture has been developed which observes a user

performing tasks, and identifies features which can be used as training data

by a learning algorithm. Using the learned profile, an agent can give a

device to the user on dealing with new situations. The agent uses sender

and recipient field of the message and the keywords from the subject field.

Other information such as whether the message has been read, whether it is

a reply to a previous message, etc [Pay97].

1.2 Literature Survey

• In 1994, Y. Lashkari et al. [Las94] have presented interface agents

for the electronic mail domain used in commercial email application.

The interface agent monitors the actions of the user over long period

of time, finds recurrent patterns and offers to automate them. They

had used Memory Based Reasoning algorithm. A problem was

occurred when he used it, so collaborative agents is used.

Collaborative agents consist of a number of agents belonging to

other users. It allows each agent to built a model of each agents area

of expertise.

 Chapter One Introduction

 3

• In 1994, T. Payne [Pay94] had described the development of an

agent which employs machine learning techniques to discover rules

for filtering email. The agent makes use of a machine learning

approach to build up a user model or profile of the users’ interests.

User actions are observed for use in creating rules, and these rules

are used to filter incoming mail messages. The CN2 induction

algorithm is used to induce rules based on these observations. He had

show that features from the body of an email message can be utilized

as well as more traditional features such as the subject or sender

fields.

• In 1999, Y.Chang [Cha99] had presented Pine mail system under

UNIX that use sort mail algorithm to solve the problem of email

filtering by using text classification. Text classification takes a

document consisting of a set of words and tries to categorize the

document among a specified set of topics, or classes, then put each

email as belonging to a particular folder.

• In 2000, J. Rennie [Ren00] had presented a filtering system, ifile,

that use to automate classification techniques to filter personal email.

Ifile use an efficient supervised Naive Bayes implementation which

can both built a classification model and filter a new email messages.

Each document in a user’s corpus was labeled according to a model

built on the rest of the email messages. He has discussed the result of

classifying the text of message and selects the appropriate folder.

 Chapter One Introduction

 4

• In 2000,M. Pazzani [Paz00]had discussed a variety of approaches

that could learn a profile of a user’s interests for filtering mail. He

has used text mining algorithm to create understandable profiles of a

user’s interests and word pairs as terms increases the acceptance of

profiles and learned from noisy training data. He had found that

subjects have little confidence in learned rules for text classification

and suggest that using word pairs as terms may improve the user

acceptance learned prototype profiles.

• In 2003,N.Turenne [Tur03]had discussed the term clustering method

evaluated by a text classification task involving user profile. The

clustering algorithm is based on the extraction of terms in a training

corpus. He had demonstrated the utility of his approach in electronic

mail classification. The e-mail folder represents the user areas of

interest. Several classification strategies that run over a personal set

of text have been compared to form mailing lists.

1.3 The aim of Thesis:

 The aim of project is to build an agent that delete, forward and reply

mail messages. It is used to assist the user in classifying mail message into

different folders, and then filtered them according to specifying conditions.

1.4 Thesis Layout

 This thesis was organized as follows:

• Chapter two: This chapter presents the structure of electronic

messages and how to deal with them and how to construct the

intelligent agent to be use for email filtering.

 Chapter One Introduction

 5

• Chapter three: This chapter presents the design requirements and

considerations of the EMFA, and then the structure of the system

will be explained with the modules and the algorithms that are used

to implement this system.

• Chapter four: This chapter presents user interface and evaluation of

the designed system.

• Chapter five: This chapter introduces conclusions on this work, with

recommendations for future.

2.1 Introduction

 Email stands for electronic mail. While it originated as an after thought

to the beginnings of the Internet, it is currently one of the most popular

services of the Internet. Email does not have to be Internet based. It can be an

in-house service that reaches only a certain population. Internet email can be

sent to anyone in the world who has an Internet email address [Cam96].

 Electronic mail is a natural use of networked communication

technology that developed along with the evolution of the Internet. Indeed,

message exchange in one form or another has existed from the early days of

timesharing computers. Network capable email was developed for the

ARPANET shortly after its creation, and has now evolved into the powerful

email technology that is the most widely used application on the Internet

today [Cro78].

 Key events and milestones in the invention of email are described

below:

• Timesharing computers: With the development in the early 1960's

of timesharing computers that could run more than one program at

once, many research organizations wrote programs to exchange text

messages and even real-time chat among users at different terminals.

As is often the case, more than one person at the same time noticed

that it was a natural use of a new technology to extend human

Chapter Two Email and Intelligent Agent overview

 ٧

communications. However, these early systems were limited to use by

the group of people using one computer [Cro78].

• SNDMSG & READMAIL: In the early 1970's, Ray Tomlinson was

working on a small team developing the TENEX operating system,

with local email programs called SNDMSG and to extend the

addressing to the network, Tomlinson chose the "commercial at"

symbol to combine the user and host names, providing the naturally

meaningful notation "user@host" that is the standard for email

addressing today. These early programs had simple functionality and

were command line driven, but established the basic transactional

model that still defines the technology email gets sent to someone's

mailbox [Cro78].

• MAIL & MLFL. In 1972, the commands MAIL and MLFL were

added to the FTP (file transfer protocol) program to provide standard

network transport capabilities for email transmission. FTP sent a

separate copy of each email to each recipient, and provided the

standard ARPANET email functionality until the early 1980's when

the more efficient SMTP (simple mail transfer protocol) protocol was

developed. Among other improvements, SMTP enabled sending a

single message to a domain with more than one address, after which

the local server would locally copy the message to each recipient

[Cro78].

• Commercial Email. In 1988, Vinton Cerf arranged for the connection

of MCI Mail to the NSFNET through the Corporation for the National

Research Initiative (CNRI) for "experimental use", providing the first

sanctioned commercial use of the Internet. Shortly thereafter, in 1989,

Chapter Two Email and Intelligent Agent overview

 ٨

the Compuserve mail system also connected to the NSFNET, through

the Ohio State University network [Cro78].

• Online Services. In 1993, the large network service providers America

Online and Delphi started to connect their proprietary email systems to

the Internet, beginning the large scale adoption of Internet email as a

global standard [Cro78].

 As the most popular application on the Internet, electronic mail (email)

has become an increasingly critical tool to running a business and/or one's

daily life. Many people are overloaded with a large number of emails on a

regular basis, and important messages can often get buried under piles of

other emails by mistake. Existing email software typically offers functions

that help users manage multiple email accounts, organize their emails into

folders, specify filters to sort emails automatically by subject, sender, etc. and

to block unwanted emails [Den98].

2.2 Artificial Intelligent

 The science of artificial Intelligent (AI) is approximately forty years

old, dating back to a conference held at Dartmouth in 1958. In the early years,

the excitement of both scientists and the popular press tended to overstate the

real world prowess of AI system. The early successes were followed by a

slow realization that what was hard for people to do but almost impossible for

computers to do. The promise of the early years has never been fully realized,

and AI research and the term artificial intelligence have become associated

with failure and technology.

After 40 years of work, three major phrases of development in AI

research can be identified. In the early years, much of the work dealt with

Chapter Two Email and Intelligent Agent overview

 ٩

formal problems that were structured and had well-defined problem

boundaries .This included work on math-related skills such as proving

theorems, geometry, calculus, and playing games such as chess.

In this first phase, the emphasis was on creating general "thinking

machines" which would be capable of solving broad classes of problems.

 A second phase began with the recognition that the most successful AI

projects were aimed at very narrow problem domains and usually encoded

much specific knowledge about the problem to be solved.

At the third phase, much of the AI community has been working on

solving the difficult problems of machine vision and speech, natural language

understanding and translation, commonsense reasoning, and robot control. A

branch of AI known as connectionism regained popularity and expanded the

range of commercial application through the use of neural networks for data

mining ,modeling ,and adaptive control. Recently, the explosive growth in the

Internet and distributed computing has led to the idea of agents that move

through the network, interacting with each other and performing tasks for

their users.

Intelligent agents use the latest AI techniques to provide autonomous,

intelligent, and mobile software agents, thereby extending the reach of users

across networks [Big01].

2.3 Agent

 An agent is anything that can be viewed as perceiving its environment

through sensors and acting upon that environment through effectors. A human

agent has eyes, ears, other organs for sensors, and has hands, legs, mouth, and

other body parts for effectors. A robotic agent substitutes cameras and

infrared range finder for the sensors and various motors for the effectors. A

generic agent is diagrammed in figure (2.1).

Chapter Two Email and Intelligent Agent overview

 ١٠

Figure (2.1) Agent diagram

 A software agent should display some of the characteristics that are

associate with human intelligence: learning, inference, adaptability,

independence, creativity, etc. In other words, a software agent is a program

that its users can delegate tasks to, rather than commanding it to perform the

tasks [Hui00].

 Any software agent must have the following characteristics:

• It must be autonomous, which means that it can operate on its own

without a direct human command. Software agents have individual

internal States and goals, and act in such a manner as to meet their

goals on behalf of their users.

• It must be personalized; that is, it acquires the user's interests and

adapts as it evolves over time.

• It must be persistent, either run continuously or save its state, so that

the user can see the agent as a stable entity and develop a trust

relationship with it.

There are some examples of software agents in practice:

Chapter Two Email and Intelligent Agent overview

 ١١

• An agent that sorts through e-mail messages and filters out unsolicited

commercial e-mail commonly known as spam.

• An agent that searches for information on the Web, either directly by

looking at Web sites, or by sending queries to one or more search engines.

• An agent that learns what type of news stories a user is interested in, and

fetches suitable content from news sources such as CNN, MSNBC, and other

major media sites.

• An agent that compares prices on products for users across a variety of sites,

 and offers "comparison shopping" through a Web interface.

• Mobile agents that send themselves to a central meeting site to exchange

 information and barter for prices on products or services, and then return to

 their users with prices and costs.

• An agent that monitors a source of information (such as a store catalog), for

 changes relating to the interest of a user, such as movie releases starring a

 particular actor or actress, or new novels by a particular author. Such an

 agent might e-mail one or more users to alert them to this change.

Of course, software agents can be written to perform all sorts of tasks,

limited only by one's imagination. For some time, artificial intelligence

researchers have been predicting that software agents will be the next "killer

application". While such a vision may be overly optimistic, software agents

are likely to be a significant growth area in the future.

As a language, Java is ideally suited to the development of software

agents. With its built-in support for HTTP communication, agent developers

can easily make their agents "Web aware," without the need to write a custom

HTTP implementation. This helps agent developers concentrate on the

application, without being overly burdened by developing the network code

[Dav02].

Chapter Two Email and Intelligent Agent overview

 ١٢

2.3.1 Agent Architectures

 All the focusing in the beginning concerned with agent theory the

construction of formalisms for reasoning about agents, and the properties of

agents expressed in such formalisms. The aim is to shift the emphasis from

theory to practice. Considering the issues surrounding the construction of

computer systems that satisfy the properties specified by agent theorists. It

specifies how the agent can be decomposed into the construction of a set of

component modules and how these modules should be made to interact. The

total set of modules and their interactions has to provide an answer to the

question of how the sensor data and the current internal state of the agent

determine the actions and future internal state of the agent. Architecture

encompasses techniques and algorithms that support this methodology

[Woo98].

 Agent theories are specifications which describe how agents are

conceptualized, what properties they should have and how these properties

should be formally represented and reasoned about.

 Agent architectures represent the move from specification to

implementation. They can be thought of as software engineering models of

agents; researchers in this area are primarily concerned with the problem of

designing software or hardware systems that will satisfy the properties

specified by agent theorists.

2.3.1.1 Classical Approach: Deliberative Architectures

 The term "deliberative agent" seems to have derived from use of the

term "deliberate agent" to mean a specific type of symbolic architecture. A

deliberative agent or - agent architecture is based on a strong notion of agents

and contains an explicitly represented, symbolic model of the world, and

Chapter Two Email and Intelligent Agent overview

 ١٣

decisions (for example about what actions to perform) are made via logical

(or at least pseudo-logical) reasoning, based on pattern matching and

symbolic manipulation.

 In classical AI, symbolic representations provide an interface between

the independent information processing units. Reasoning in this systems is

realized through logics, mostly second-order module logics.

The idea of deliberative agents based on purely logical reasoning is highly

appealing, but there are at least two important problems to be solved:

1. The transduction problem: that of translating the real world into an

 accurate, adequate symbolic description, in time for that description to be

 useful.

2. The representation/reasoning problem: that of how to symbolically

 represent information about complex real world entities and processes

 (since computers may simulate reasoning but not the interaction with the

 environment), and how to get agents to reason with this information in time

 for the results to be useful.

2.3.1.2 Alternative Approaches: Reactive Architectures

 A Reactive Architecture is an architecture that does not include any

kind of central symbolic world model and doesn't use any complex reasoning.

The problems associated with symbolic AI have led some researchers to

question the viability of the whole paradigm, and to the development of what

are generally known as reactive architectures.

2.4 From AI to Intelligent Agents

 As in any AI application, what the agent is expected to do, and in what

domain, will have a significant impact on the type of knowledge

Chapter Two Email and Intelligent Agent overview

 ١٤

representation that use. If the agent has a limited number of situations it needs

to respond to, maybe hardcoding the intelligence into procedural program

code are the solution. If the agent has to build or use sophisticated models of

the problem domain and solve problems at different levels of abstraction, then

frames or semantic nets are the answer. In many applications, it needs to use a

mixture of these knowledge representations.

Whether learning is a desirable function depend on the domain the

intelligent agent will work in, as well as the environment. If the agent is long-

lived and will perform similar tasks many times during its lifetime, then

learning can be used to improve its performance. But adding learning would

be overkill if the agent will be used only occasionally.

The intelligent agent must have an equivalent source of information

about the world in which it lives. This information comes in through its

sensors, which may not be same way that do, but it still has to be able to

gather information about its environment. This could be done actively, by

sending messages to other agents or system, or it could be done passively by

receiving a stream of event messages from the system, the user, or other

agents. Just like people, the software agent must be able to distinguish the

normal events from the significant events. In a modern GUI environment such

as Windows or Macintosh, the user generates a constant stream of events to

the underlying windowing system. The agents can monitor this stream and

must recognize sequences of basic user actions (mouse movement, pause,

click, mouse movement, pause, double-click) as signaling some larger-scale

semantic event or user action.

If the agent works in the e-mail or newsgroup monitor domain, it will

have to recognize when new documents arrive, whether the user is interested

in the subject matter or not, and whether to interrupt the user at some other

task to inform him of the newly available information. All of this falls into the

Chapter Two Email and Intelligent Agent overview

 ١٥

realm of perception. Being able to notice or recognize information hidden in

data is not easy. It requires intelligence and domain knowledge. Thus being

called "perceptive" is a compliment usually reserved for intelligent people. To

be useful personal assistants, agent must be perceptive.

 The design of agents should be in such a way that the messages don't

have to be very perceptive. The user needs to explicitly tell the agent what to

do and how to do it. The events that are generated could contain all the

information the agent needs to determine the current state and the appropriate

action [Big01].

2.4.1 Intelligent Agent Framework

2.4.1.1 Requirements

 The first step of any software development project is the collection of

requirements from the intended user community. The first requirement is that

the intelligent agent framework be practical. No practical in the sense that it is

product-level code ready to put into production, but in that the basic

principles and thrust of the design is applicable to solving real-world

problems. Another requirement is that the architecture must be flexible

enough to support the applications.

To summarize the requirements, a simple flexible architecture that is

focused on intelligent agent issues is needed. It must be practical so it can

solve realistic problems and must have a decent user interface so its functions

and limitations will be readily apparent to the user [Big01].

2.4.1.2 Design Goals

 Requirements come from the users and tell them what functions or

properties the product must have in order to be successful. Having a validated

Chapter Two Email and Intelligent Agent overview

 ١٦

set of requirements is useful, because it focuses the energy on the important

stuff. It is just as important to have a clear set of design goals that can use to

guide the technical decisions which must be made as the solution that meets

those requirements are developed.

There are some fundamental approaches which will drive the design.

The first approach is that the intelligent agents can be viewed either as

adding value to a single standalone application, or as a freestanding

community of agents which interact with each other applications. This

approach is the least complex because it could view the agent as a simple

extension of the application functionality. By providing the intelligent agent

functions as an object-oriented framework, intelligent behavior can be easily

added to any Java application.

The second approach is more agent-centric, where the agents call the

shots and monitor and drive the applications. Here the agent manager is an

application in its own right and must interface with other applications which

are driven by the agents. The complexity here is that a generic mechanism for

application communications should be defined through the agent manager

[Big01].

2.4.2 Application of Intelligent Agent

 There are several orthogonal dimensions along which agent

applications could be classified. They can be classified by the type of agent,

by the technology used to implement the agent, or by the application domain

itself.

1. Industrial Applications: Industrial applications of agent technology were

among the first to be developed, as early in 1987 agents are being applied the

Chapter Two Email and Intelligent Agent overview

 ١٧

contract net task allocation protocol in a manufacturing environment. Today,

agents are being applied in a wide range of industrial application [Jen98].

2. Commercial Applications:

• Information Management: As the richness and diversity of

information available in everyday lives has grown, so the need to

manage this information has grown [Jen98].

• Information filtering: Every day, enormous amounts of information

are presented (via email and newsnet news, for example), only a tiny

proportion of which is relevant or important. These information need to

be sorted and focused on them [Jen98].

• Email filtering: describe an electronic mail filtering agent program

that learns to prioritize, delete, forward, sort, and archive mail

messages on behalf of a user [Jen98].

3. Medical Applications: Medical informatics is a major growth area in

computer science. New applications are being found for computers every day

in the health industry [Jen98].

4. Games: It’s describing several applications of agent technology to

computer games. For example, the designers have developed a version of the

popular Tetris computer game [Jen98].

2.5 Email Agent

 Electronic mail provides an essential communication media for people

all over the world. Many people are overloaded with a large number of emails

on a regular basis. Users today want the ability to automatically prioritize and

organize their e-mail, and in the future, they would like to do even more

Chapter Two Email and Intelligent Agent overview

 ١٨

automatically, such as addressing mail by organizational function rather than

by person.

 Intelligent agents can facilitate all these functions by allowing mail

handling rules to be specified ahead of time, and letting intelligent agents

operate on behalf of the user according to those rules. Usually it is also

possible (or at least it will be) to have agents deduce these rules by observing

a user's behavior and trying to find patterns in it [Her97].

Messages are exchanged between hosts using the SMTP (Simple Mail

Transfer Protocol) with software programs called mail transport agents. Users

can download their messages from servers with standard protocols such as the

POP (Post Office Protocol). IMAP (Internet Message Access Protocol)

provides the user more capabilities for retaining e-mail on the server and for

organizing it in folders on the server [Wik07].

2.5.1 Message Format

 Internet e-mail messages consist of two major components:

Headers: Message summary, sender, receiver, and other information about

the e-mail.

Body: The message itself, usually containing a signature block at the end.

The headers usually have at least four fields [Res01]:

1. From: The e-mail address of the sender of the message.

2. To: The e-mail address of the receiver of the message.

3. Subject: A brief summary of the contents of the message.

4. Date: The local time and date when the message was originally sent.

Chapter Two Email and Intelligent Agent overview

 ١٩

An email address is unique, just like a Post Office street, city, state and zip

address. Email addresses have two parts:

• The user name

• The email server or host address

 The host address is similar to a post office address. When you send

mail to someone in another city, the address on the envelope is read and that

piece of mail is directed to a post office for delivery. That is the purpose of

the host or email server. The user name is separated from the host address by

the @ (pronounced "at") sign. Each user name is unique to a particular host

address [Wik07]. For example Jane A. Alverno’s email address at Alverno

would be:

 The information supplied in the headers on the recipient's computer is

similar to that found on top of a conventional letter. The actual information

such as who the message was addressed to is removed by the mail server after

it assigns it to the correct user's mailbox. Also note that the From field does

not have to be the real sender of the e-mail. It is very easy to fake the From

line and let an e-mail seem to be from any mail address. It is possible to

digitally sign an e-mail. This is much harder to fake.

Other common header fields include:

Chapter Two Email and Intelligent Agent overview

 ٢٠

1. Cc: Carbon copy (because typewriters use carbon paper to make copies of

letters). It’s contains the addresses of others who are to receive the message,

though the content of the message may not be directed at them.

2. Bcc: Blind carbon copy (the recipient of this copy will know who was in

the To field, but the recipients cannot see who is on the Bcc: list).

It contains addresses of recipients of the message whose addresses are not to

be revealed to other recipients of the message [Res01].

3. Received: Tracking information generated by mail servers that have

previously handled a message.

4. Content-Type: Information about how the message has to be displayed,

usually a MIME type.

Due to an artifact of the notational conventions, the syntax indicates

that, when present, "Date", "From", "Sender", and "Reply-To" fields must be

in a particular order. These header items must be unique (occur exactly once).

However header fields, in fact, are NOT required to occur in any

particular order, except that the message body must occur AFTER the

headers. For readability and ease of parsing by simple systems, it is

recommended that headers be sent in the order "Date", "From", "Subject",

"Sender", "To", "cc", etc. This specification permits multiple occurrences

of most optional-fields. However, their interpretation is not specified here,

and their use is strongly discouraged [Cro97].

Chapter Two Email and Intelligent Agent overview

 ٢١

Figure (2.2) Structure of Message Format

2.5.2 Email Filtering

Active users of electronic mail may receive dozens or even hundreds of

messages every day. To facilitate retrieval of messages weeks, months or

years after their original receipt, most mail reader applications allow users to

organize their messages into user-defined folders [Ric99].

 The term “mail filtering” is used in different contexts and requires

some discussion before the meaning can be cleared. Mail filters, or, sets of

rules that users put together to file incoming e-mail into different mailboxes

or folders. It is call personal mail filtering because it pertains directly to a

single person’s organizational preferences. As e-mail use has grown, some

regularity has come about the sort of e-mail that appears in users’ mail boxes.

In particular, un-solicited e-mail, such as “make money fast” schemes, chain

letters and porn advertisements, is becoming all too common. Filtering out

such unwanted trash is known as junk mail filtering [Ren00].

 There are three types of filtering [Pay94]:

Chapter Two Email and Intelligent Agent overview

 ٢٢

• Cognitive Filtering: this characterizes a message by the contents and

meaning of the message. Participants in the survey looked for certain

keywords or phrases to classify messages.

• Social Filtering: this complements the cognitive approach by

concentrating on the personal and organizational interrelationships

between sender and receiver. For example, more attention may be

given to messages from a superior such as a supervisor.

• Economic Filtering: this is based on a cost-benefit assessment of a

message, such as the length of a message.

 Instead of simply offering tools that are manipulated by a human user,

an email agent attempts to organize email messages automatically based on its

knowledge about each individual user. In particular, the agent should be able

to classify incoming email messages into folders and to prioritize them so that

the user can focus on more important emails first [Den98].

2.6 Learning System

Learning means that the agent is capable of using its past experience in

order to improve its future behavior. Ways to implement this property may

vary from simple repetitive observation of a certain behavior in the

environment to heavyweight tools such as neural networks [Jen98].

 The idea behind learning is that percepts should be used not only for

acting, but also improving the agent's ability to act in the future. Learning

takes place as a result of the interaction between the agent and the world, and

from observation by the agent of its own decision-making processes

One central element of intelligent behavior is the ability to adapt or

learn from experience. Adding learning or adaptive behavior to an intelligent

Chapter Two Email and Intelligent Agent overview

 ٢٣

agent elevates it to a higher level of ability. A learning agent can adapt to your

likes and dislikes. It can learn which agents to trust and cooperate with, and

which ones to avoid. A learning agent can recognize situations it has been in

before and improve its performance based on prior experience [Big01].

The following strategies can be used by a learning agent [Pfe01]:

• Rote learning: direct implementation of knowledge and skills

without requiring further interface or transformation from the

learner.

• Learning from instruction and by advice taking:

operationalization transformation an internal representation and

information like an instruction or an advice that is not directly

executable by learner.

• Learning from examples and by practice: extraction and

refinement of knowledge and skills a general concept or a

standardized pattern of motion from positive and negative

examples or from practical experience.

• Learning by discovery: gathering new knowledge and skills by

making observations, conducting experiments, and generating

and testing hypotheses or theories on the basis of the

observational and experimental results.

2.6.1 Learning Paradigm

There are three major learning paradigms, each corresponding to a

particular abstract learning task. These are supervised learning, unsupervised

learning and reinforcement learning [Kur05].

Chapter Two Email and Intelligent Agent overview

 ٢٤

2.6.1.1 Supervised Learning

 Supervised learning the most common form of learning and is

sometimes called programming by example. The learned agent is trained by

showing it examples of the problem state or attributes along with the desired

output.

 Tasks that fall within the paradigm of supervised learning are pattern

recognition (also known as classification) and regression (also known as

function approximation).

2.6.1.2 Unsupervised Learning

Unsupervised learning is used when the learning agent needs to

recognize similarities between inputs or to identify features in the input data.

The data is presented to the agent, and it adapts so that it partitions the data

into groups.

 Tasks that fall within the paradigm of unsupervised learning are in

general estimation problems; the applications include clustering, the

estimation of statistical distributions, compression and filtering.

 In unsupervised clustering, unlabelled collection of documents is

available. The aim is to cluster the documents without additional knowledge

or intervention such that documents within a cluster are more similar than

documents between clusters. Clustering techniques can be categorized into

two major groups as partitional and hierarchical [Ozg04].

There are two types of unsupervised clustering:

1- Partitional Clustering Techniques.

2- Hierarchical Clustering Techniques

Chapter Two Email and Intelligent Agent overview

 ٢٥

2.6.1.3 Reinforcement learning

Reinforcement learning is a type of supervised learning where the error

information is less specific. It can also be used in cases where is a sequence of

inputs and the output or action is only taken after the specific sequence

occurs.

Tasks that fall within the paradigm of reinforcement learning are

control problems, games and other sequential decision making tasks.

 Another important distinction in learning agents is whether the

learning is done on-line or off-line. On-line learning means that the agent is

sent out to perform its tasks and that it can learn or adapt after each

transaction is processed. On-line learning is like on-the-job training and

places severe requirements on the learning algorithms. It must be very fast

and very stable. Off-line learning, on the other hand, is more like a business

seminar. You take your salespeople off the floor and place them in an

environment where they can focus on improving their skills without

distractions. After a suitable training period, they are sent out to apply their

newfound knowledge and skills. In an intelligent agent context, this means

that the data will be gathered data from situations that the agents have

experienced. This data will be augmented with information about the desired

agent response to build a training data set. Once this database is obtained, it

could be used it to modify the behavior of the agents [Big01].

 Unsupervised machine learning for user modeling has been mostly used

in non-educational applications. For example, collaborative filtering (CF)

systems employ unsupervised learning techniques to model user preferences

and make item recommendations based on user similarities. Other research

has demonstrated the use of unsupervised learning on words in a document to

model and automatically manage email activities [Ame07].

Chapter Two Email and Intelligent Agent overview

 ٢٦

2.7 Design of Email Filtering agent

 As information requirements vary greatly from user to user, the

filtering system should be highly personalized to satisfy the users’ needs. This

model may be used over a long period of time, yet it cannot be assumed that

the requirements of the user will remain static, so the agent must be able to

notice when these requirements change and revise its model accordingly

[Pay94].

2.7.1 System Requirements for email agent

The requirement is to develop a mail agent which aids its user in

handling mail. The agent sits above the mail tool observing the users

interactions with the tool. It can interact with the mail tool in order to perform

actions automatically for the user.

The following is a list of the types of actions the agent will attempt to

learn from observing the user:

• Messages which are filed away in different mailboxes for later browsing.

• Junk mail which the user is never interested in reading.

• Messages which are forwarded to other users.

The agent comprises of a number of modules, each of which are

responsible for certain tasks. Each time the rule base is generated, the existing

rules are discarded and new ones are created. This process can be processor

intensive, so it occurs as a regular batch process. Classification of new mail

messages is performed each time a new message is delivered; again to reduce

processing time when the mail tool is invoked.

The agent has to be as transparent as possible. Mail agents such as that

which communicates with the mail tool rely on the user interacting with the

agent in addition to the mail tool. The only time the user is aware of the agent

Chapter Two Email and Intelligent Agent overview

 ٢٧

is when the user requests help. Because of this the agent has to interact with

an existing mail tool [Sun98].

2.7.2Clustering algorithm

The objective of the project is to build a module for an office agent that

clusters emails into folders. The primary question that arises is whether an

agent can do the above since such a clustering (as any other clustering

operation) requires a metric of similarity/dissimilarity as the centric operator.

However, there is no gold standard available in such a scenario. In fact, each

user decides his own gold standard; in other words a user himself decides as

to what he wants to be considered as similar/dissimilar. For example,

someone might want his emails to be foldered based on the month of receipt

whereas someone else would want the clustering to be done based on subject

and content. List emails provide another such example.

 As input the agent shall receive emails of its client, along with a set of

examples, both similar and dissimilar, in order to develop a sense of what the

user requires in his clustering. The agent has the task to group the emails into

folders based on the similarity between them in the form of common subjects,

common email threads etc. The goal is to design a learning strategy for the

agent to learn how to cluster [Sah03].

���

3.1 Introduction
 This chapter will describe the system of email filtering agent which

utilize clustering algorithm that classify the messages into two lists

negative and positive according to the features that extracted from each

message. Then, the filtering algorithm will be applied on the two lists. The

messages in the negative list will be deleted and the messages in the

positive list will be replied to the same sender or forwarded to a new one.

3.2 Email Filtering Agent (EMFA) System

 Email Filtering Agent (EMFA) modules deal with the messages in

the Inbox that need to be filtered, so the first step in the system is to fetch

the messages from Inbox, then extract the features from these messages,

and then apply clustering algorithm that will divide the messages into two

lists negative and positive lists. Negative list contains unwanted messages

while Positive list contains wanted messages. After that, the filtering

algorithm will be applied on the two lists. The messages in negative list

will be deleted and the messages in the positive list will be either replied or

forwarded according to the features that extracted .The architecture of

proposed Email Filtering Agent (EMFA) is shown in Figure (3.1).

Chapter Three Design and Implementation of EMFA

29

Figure (3.1) EMFA system model

POP3 Connection
module

 Fetch
Messages

Feature
Extraction 1

Clustering

Negative Positive

Filtering Deleted
Messages

Feature
Extraction 2

Positive

Reply

Messages

Forward

Messages

Chapter Three Design and Implementation of EMFA

30

3.3 Connection to POP3

 The design of POP3 and its procedures supports end-users with the

disconnected state (such as dial-up connections), allowing those users to

retrieve e-mail when they are connected and then view and manipulate the

retrieved messages without the need to stay connected. To fulfill the

connection with the POP3 server multi functions are used such as

smtpmailer 1.4, mail-1.4 and activation-1.1.Although most clients have

an option to leave mail on server, e-mail clients using POP3 generally

connect, retrieve all messages, store them on the user's PC as new messages

and then disconnect. In contrast, the newer, more capable Internet Message

Access Protocol (IMAP) supports both connected (online) and

disconnected (offline) modes of operation.

 When connected, the interface between a mail-client and the network

must be defined, this is called Session. The mail Session object manages

the configuration options and user authentication information that are used

to interact with messaging systems. There are simultaneous multiple

sessions. Each session can access multiple message stores and transports.

Any desktop application that needs to access the current primary message

store can share the default session. Typically the mail-enabled application

establishes the default session, which initializes the authentication

information necessary to access the user’s Inbox folder. Other desktop

applications then use the default session when sending or accessing mail on

behalf of the user. When sharing the session object, all applications share

authentication information, properties, and the rest of the state of the

object.

Chapter Three Design and Implementation of EMFA

31

 After defining session, the database that holds the messages in the

Inbox must be defined, this is called Store. The Store also defines the

access protocol used to access folders and retrieve messages from folder.

After defining Store, the connection with the POP3 will be fulfilled. Figure

(3.2) shows how to connect with POP3 by entering the host, username and

password and save them as Properties. The properties will then be passed

to the Session that opened with the network and then POP3 will be used to

define Store that takes the information from the session. At the end, when

all the information is available, the connection is fulfilled with the POP3 to

open the Inbox and retrieve messages from it.

Figure (3.2) connection with POP3

Session Store

Connection with
POP3

Host, Username and
Password

Properties

Chapter Three Design and Implementation of EMFA

32

3.3.1 Open Session

 The Session class provides access to the protocol providers that

implement the Store, Transport, and related classes. The Session class

allows messaging system implementations to use the Authenticator object

that was registered when the session was created. The Authenticator object

is created by the application and allows interaction with the user to obtain a

user name and password. The user name and password is returned in a

PasswordAuthentication object. The messaging system implementation

can ask the session to associate a user name and password with a particular

message store using the setPasswordAuthentication function.

There are two ways to create a Session in Java language as shown below:

• Session session = Session.getInstance (props, authenticator)

• Session defaultSession = Session.getDefaultInstance(props,

authenticator)

 The Properties object that initializes the Session contains default

values and other configuration information. It is expected that clients using

the values for the mail.host, mail.username, and mail.password. Algorithm

(3.1) shows the steps to open session.

Chapter Three Design and Implementation of EMFA

33

3.3.2 Store class

 The Store class models the message database and its access protocol.

A client uses it to connect to a particular message store, and to retrieve

messages in Inbox. Clients gain access to a Message Store by obtaining a

Store object that implements the database access protocol. Most message

stores require the user to be authenticated before they allow access; the

connection method performs that authentication.

 For many message stores, a host name, user name, and password are

sufficient to authenticate a user. Store provides a default connect method.

In either case, the client can obtain missing information from the Session

Algorithm (3.1) open session

Input: username and password

Output: flag is true

Procedure

Step1: Set Username and Password.

Step2: Define props as properties.

Step3: Set authentication on username and password.

Step4: Pass properties and authentication as parameters of session.

Step5: Set flag of session as true to open session.

Chapter Three Design and Implementation of EMFA

34

object’s properties, or by interacting with the user by accessing the

Session’s Authenticator object. Typically, the client retrieves the default

Store or Transport object based on properties loaded for that session as

shown below:

• Store store = session.getStore()

 The client uses the Session object’s getStore method to connect to

the default store. The getStore method returns a Store object subclass that

supports the access protocol defined in the user properties object, which

will typically contain per-user preferences as shown in appendix (A). After

that, the Inbox is opened to read the messages from it. Figure (3.3) shows

the message-handling process, and algorithm (3.2) illustrates how to use

store class to connect with POP3 and read messages.

Figure 3.3 message-handling processes

Chapter Three Design and Implementation of EMFA

35

3.4 Fetch messages

 The Folder class represents a folder containing messages. Folders

can contain subfolders as well as messages, thus providing a hierarchical

structure. Each user has a folder that has the case-insensitive name INBOX.

The Inbox can be viewed as presenting a resizable array of messages to a

Algorithm (3.2) store class

Input: properties and POP3

Output: create Inbox

Procedure

Step1: Define pstore and folder as new variables.

Step2: Pass properties.

Step3: Open session with POP3 server as a parameter.

Step4: Open connection to connect the store with the server.

Step5: Open Store as read_only mode and save messages in Inbox.

Step6: Read messages from Store.

Step7: Close folder after finished from it.

Step8: Close the connection

Chapter Three Design and Implementation of EMFA

36

client. This allows the client to access a message based on its index within

this array. The index is the message’s sequence-number. Sequence numbers

begin at one (1) and continue incrementing by one, through the total

number of messages in the folder.

 The Store class provides abstract functions for allowing the user to

retrieve a folder:

• getDefaultFolder

• getFolder

 The getDefaultFolder function for the corresponding Store object

returns the root folder of a user’s default folder hierarchy. This is the

default initial state of a folder. The getFolder function returns the specified

folders Folder getFolder (String name). The folder class provides a

specific function to get one or more messages from Inbox, this function is

getMessage. The getMessage function, when given no parameters, returns

all of the message objects in the folder. The getMessage function takes the

number of messages in the Inbox that is known by using getMessageCount

function. Algorithm (3.3) shows how to open the Inbox and how to fetch

messages from it.

Chapter Three Design and Implementation of EMFA

37

hg

3.5 Feature Extraction

 The agent should be able to classify the incoming email message into

folders according to the features that were extracted from the message

headers. The header contains information about who was the sender, time

Algorithm (3.3) Fetch message

Input: Store

Output: Messages

Procedure

 Step1: Define a variable such as x to compute the number of

 messages in the Inbox.

 Step2: Open store to get Inbox.

 Step3: Open Inbox for read_write mode.

 Step4: Save number of messages in x parameter.

 Step5: Define a counter to facilitate fetching messages.

 Step6: Fetch the first messages.

 Step7: Check if the counter is larger than number of messages, If No

 then increment the counter, If Yes then close the Inbox.

Chapter Three Design and Implementation of EMFA

38

and date of sending, subject of the message, recipients, etc. The functions

getFrom, getSubject and getDate are used to extract the features: From

field, Subject field and Date field from the headers. Figure (3.2) illustrates

the message hierarchy and the functions that deal with it and algorithm

(3.4) shows the steps that are followed to extract the features from

messages.

 Figure (3.2) message hierarchy

Chapter Three Design and Implementation of EMFA

39

3.6 Clustering algorithm

 Clustering is the algorithm of organizing objects into groups whose

members are similar in some way. The designing of clustering algorithm is

to choose how to classify emails. It represents each email using both header

Algorithm (3.4) Feature extraction

 Input: Message

Output: Date, Subject and From

Procedure

Step1: Define three arrays for the features that extracted from messages.

Step2: Open Inbox for read _write folder.

Step3: Save the number of messages in a counter.

Step4: Fetch a message from Inbox.

Step5: Extract the Subject field, From field and Date field from the

 header of the message and save them in the arrays.

Step6: Increment the counter.

Step7: Check the counter if it is less than the number of messages in the

 Inbox, If No then fetch another message, If Yes then close the

 Inbox.

Chapter Three Design and Implementation of EMFA

40

features that include the subject line, email addresses, and date of sending

message.

 A clustering algorithm creates a set of rules for each class in a

concept. Each rule covers many examples of the class in question (positive

examples), yet selects examples of other classes (negative examples).

According to these examples, the messages will be filled into two lists,

Negative and Positive lists. The Negative list contains messages that have

the date which is specified by the user under specific condition and the

Positive list contains messages that will be filtered by using filtering

algorithm after extracting other features from it. Figure (3.3) shows how to

use the features in clustering algorithm and algorithm (3.5) illustrates the

steps of clustering algorithm.

Figure (3.3) clustering algorithm

Chapter Three Design and Implementation of EMFA

41

Algorithm (3.5) Clustering

Input: Message Date, Subject and From

Output: negative and positive lists

Procedure

Step1: Define two arrays: positive and negative.

Step2: Fetch the Date field from Date arrays.

Step3: Split the day, month and year from the Date field.

Step4: Check the month with a specific value that the user was entered.

Step5: If the year is less than the predefine value then consider the

message as

 negative and save it in the negative array.

Step6: If the month is larger than the value then consider the message as

 positive and save it in the positive array.

Step7: Increment the counter.

Step8: Check the counter with the length of Date array, if it is less than

 the number of messages in the array, If No then fetch another

 date, If Yes then close the array.

Chapter Three Design and Implementation of EMFA

42

3.7 Filtering Algorithm

 After clustering, filtering algorithm will be applied on negative and

positive lists. In this project the social filtering is used. This type of filtering

depends on the interrelationships between sender and receiver. The

negative list contains the unwanted messages that were classified

depending on the date of the message, these messages will be deleted.

While in the positive list, the messages will be either replied or forwarded

according to the From field and Subject field. The features that are

extracted from the messages in filtering algorithm are the same features

that were extracted in clustering algorithm but there is no need to extract

the date field here. The performing of reply and forward is decided when

the From field is extracted. According to From field the agent will decide

which messages will be forwarded and which will be replied. For the

replied messages the Subject field will decide which form of the two

predefined user forms should be used for the body. Figure (3.4) illustrate

the filtering algorithm diagram.

3.7.1 Forward Message

 Email forwarding involves passing email from one address to

another. The address of the message in the positive list will be compared

with the addresses in the user defined forward list which is set by the

user. User defined forward list contains the specific email addresses that

are specify if the message will be forwarded or not. If the email address is

matches with one of these addresses, the message will be forward to all

addresses in the address book. The counter of the number of forwarded

messages will be increased with every sent message. Algorithm (3.6)

shows the steps of forward message.

Chapter Three Design and Implementation of EMFA

43

From field

Subject field

Filtering

Algorithm

Forward

Reply

Negative

List

Positive

List

Delete message

Negative

Positive

Actions

Features

Figure (3.4) Filtering algorithm

Algorithm (3.6) Forward Message

Input: Positive list

Output: Forward Messages

Procedure

Step1: Define an addresslist1 (user defined forward list) that has favorite

 email addresses.

Step2: Open positive list.

Continue

Chapter Three Design and Implementation of EMFA

44

3.7.2 Reply Message

 In the reply message, the agent will compare the address of the

message in the positive list with a user defined reply list. The user

defined reply list contains the sender email addresses of the messages that

the agent must send a reply to them. There are two standard forms defined

by the user, these forms will be used for the message body and will be

answered to the senders. The agent will depend on the Subject field for

these messages to choose one of the two forms, and then a message will be

sent to the sender using the same email address. The counter of the number

of replied messages will be incremented by 1 each time a message is sent.

Algorithm (3.7) shows the above steps.

 Algorithm (3.7) Reply Message

 Input: Positives list

Output : replied Messages

Procedure

Step1: Open an addresslist2 that has an important email address.

Continue

Step3: For each message in positive list, take the From field from them.

Step4: Check if the email address is match with one of the addresses in

 the address boo, if not match then send a warning message.

Step5: Check the counter of messages in positive list, if it is less than

 the number of messages in the list, If No then fetch another

 message, If Yes then close the array.

Chapter Three Design and Implementation of EMFA

45

3.7 Delete Message

 Deleting messages from Inbox is a two-phase operation. The first

phase is setting the DELETED flag for messages to mark them as deleted

messages, but they will not be removed from the list. The setFlags function

is responsible for setting this flag. Flags objects carry flag settings that

describe the state of a message object within the list. The second phase is

deleting the messages by using the expunge function. When the expunge

function returns, the sequence number of those messages will be

renumbered. Algorithm (3.8) shows the deletion steps.

Step2: Open positive array.

Step3: For each message in the positive list, get the From field and

 Subject field.

Step4: Check if the email address is match with one of the addresses in

 the addresslist2, then fetch the from that must be write in the

 message body.

Step5: Take the subject to write in the Subject field.

Step6: Send the message.

Step7: Check the counter of messages in positive list, if it is less than

 the number of messages in the list, If No then fetch another

 message, If Yes then close the array.

Chapter Three Design and Implementation of EMFA

46

Algorithm (3.7) Deleting Message

Input: Negative list

Output : Deleted Messages

Procedure

Step1: Open negative list.

Step2: Define a counter to the number of messages in the negative array.

Step3: Set flag of each message to True.

Step4: Delete messages.

Step5: Refresh the Inbox to renumber the messages in it.

Step6: Check the counter with the number of messages in the negative

 list, if it is less than the number of messages in the list, If No then

 fetch another message, If Yes then close the array.

 4.1 Introduction

The EMFA system described in chapter three was implemented here

using JAVA (version 1.4) and Eclipse (SDK 3.2.2) running under

windows XP operating system. The experiments are performed on Pentium

4, 1.6 GHz with 256 MB of RAM.

The algorithms described in chapter three for reading messages,

feature extraction, clustering, and filtering algorithm are applied on a set of

messages that are stored in the Inbox and the obtained results are illustrated

in the following sections.

4.2 EMFA system

EMFA system is designed with many frames to enable the agent to

filter the messages stored in the Inbox. The first frame that appears on the

screen is the main frame that contains the inbox and the messages header.

The header of the messages is divided into four fields: Subject, From,

Date and ID (that is a unique number associated with each message).

When any message is selected, the body of the message appears in

the same frame as shown in figure (4.1).

Chapter Four Email Filtering Interface and Result

 48

Figure (4.1) EMFA system

4.3 EMFA frame

The EMFA frame contains a menu of two options File and Email, and

those options are illustrated below:

1-File option: This option contains two items, Preferences and Exit as

shown in figure (4.2).

• Preferences: It contains three fields, Account Settings, POP3

Server Settings and Outgoing mail Setting. These fields should be

filled correctly so that the user can have access to his account.

• The Account Settings field should be filled with the name and the

Email address of the user. Then the username and password must be

entered in the POP3 Server Settings fields. If the server requires

Chapter Four Email Filtering Interface and Result

 49

authentication, the username and password of server must be entered

in the Outgoing Mail Settings as shown in figure (4.3).

• Exit: this button ends the execution of the monitoring system.

Figure (4.2) EMFA frame

Chapter Four Email Filtering Interface and Result

 50

Figure (4.3) Preference frame

2- Email option: this option contains many items, Compose, Reply,

Forward, Delete and Agent.

4.4 Running Agent

 When an agent button is clicked, then the program will be run

automatically. A reading Inbox frame will appear that contains the progress

bar, Start and OK buttons. If start button is pressed, then progress bar will

indicate the progress of reading the messages in the inbox one by one as

shown in figure (4.4).

Chapter Four Email Filtering Interface and Result

 51

Figure (4.4) Reading Inbox frame

 When the reading inbox process is done, a new report window will

appear reporting the number of messages in the inbox, as shown in figure

(4.5).

Chapter Four Email Filtering Interface and Result

 52

Figure (4.5) Reading Inbox report

 After that, the agent will apply clustering algorithm on all of the

messages as shown in figure (4.6). When the progress bar starts, the agent

will extract the features from messages such as Subject, From and Date.

Chapter Four Email Filtering Interface and Result

 53

Figure (4.6) Feature Extraction

 When extraction is finished, messages will be divided into two lists,

Positive list and Negative list according to the extracted features. These

lists will be shown in figure (4.7) and figure (4.8).

Chapter Four Email Filtering Interface and Result

 54

 Figure (4.7) Negative Lists

Chapter Four Email Filtering Interface and Result

 55

Figure (4.8) Positive Lists

 The last step of the agent work is to filter the messages in the

Positive list and Negative list, filtering process will be represented by a

feature extraction progress bar as shown in figure (4.9).

Chapter Four Email Filtering Interface and Result

 56

Figure (4.9) Filtering Application

 Filtering will be applied on the negative and positive lists after

extracting the features. The messages in the negative list will be deleted.

The agent consults the user to confirm the deletion before completing the

process. A dialog window will appear asking the user to agree on deleting

the contents of the negative list, this is shown in figure (4.10).

Chapter Four Email Filtering Interface and Result

 57

Figure (4.10) Warning Message

 The agent will then reply or forward the messages in the positive list

according to the extracted features as shown in figure (4.11) for the reply

and figure (4.12)for the forward.

Chapter Four Email Filtering Interface and Result

 58

Figure (4.11) Reply window

Chapter Four Email Filtering Interface and Result

 59

Figure (4.12) Forward window

 When the agent finishes doing all of its operations on the inbox, it

will ask the user to exit the system, an exit window will appear asking the

user to confirm exiting the EMFA system with two buttons one for OK and

the other for cancel.

Chapter Four Email Filtering Interface and Result

 60

4.5 Example

 In this example, three messages will be taken to show how to apply

EMFA on these messages. This example takes first, third and fifth message

in order in the Inbox as shown in figure (4.13)

Chapter Four Email Filtering Interface and Result

 61

Figure (4.13) messages in example

 When EMFA starts working, the features will be extracted from the

messages’ header. These features are Subject, From and Date, as shown in

figure (4.13). Each message has different Subject and From field, while the

first message and the third message have the same year date. The fifth

message will be negative example because the condition is

 < IF the date is before 2007 then it is negative>,

 When clustering algorithm is applied, the obtained result show the

negative list contains the fifth message and the positive list contains the

first and the third message.

 The features will be extracted again from the messages in the

positive list. These features are only Subject and From. The Subject of the

first message shows the information of specific account and the From field

is (myweb) that shows specific message. The Subject of the third message

Chapter Four Email Filtering Interface and Result

 62

shows hostname and public information, and From field shows Network

server. The first message is considered as private message but the third one

is not. When the filtering algorithm is applied, the messages in the negative

list will be deleted. Figure (4.14) shows the Inbox after delete fifth message

and how the next one is replaced instead of it.

Figure (4.14) deleted message

 The first message will be replied to the same sender using a

predefined form for the body and the third message will be forwarded to all

addresses in the address book. Figure (4.15) shows one of the email

addresses inbox that the third message has been forwarded to.

Chapter Four Email Filtering Interface and Result

 63

Figure (4.15) Inbox2

5.1 Discussion and Conclusions:

 Many things were noticed and concluded while working on the

EMFA system. The following are the most important ones:

• The EMFA system makes it easier for the user to use the E-mail

rather than the normal system. The agent will assist the user in

opening the inbox, reading the messages, deleting the unwanted

messages and replying or forwarding the other messages.

• The features that extracted from the messages will facilitate the

comparison between messages’ header and the predefined

conditions that created by the user.

• In on-line connection the performance of the agent is adapted

automatically while the data in offline connection are static.

• The classification algorithm was obtained to get more improvement

for the filtering performance because it classified the messages into

two lists. That process is easier to apply the filtering on the list than

Inbox.

• Java is platform independent, so it can be run on Windows, Linux,

Unix and many other operating systems. Due of it is simplicity

programs can be written in less time less cost and with less bugs.

Chapter Five Discussion, Conclusions and Future Work

65

During EMFA System implementation, two problems aroused, those

problems were:

1. The security of the server that the system was supposed to be

connected to was an obstacle; the yahoo server has a very high

security level, which it is impossible to connect to. A less secured

server was used to establish the connection, which was the mail.s-

ictc.com server.

2. The delete function of the EMFA system requires an offline

connection to work properly. Unlike the reply and the forward

functions that work properly online. This requires going offline

during the deletion process and then reconnecting to perform the

other tasks of the system.

5.2 Future Work

 After developing EMFA system, several ideas may improve

the system. These ideas have been left as recommendations for

future work. These recommendations are:-

1- Giving the user a last chance to check the E-mails before

permanently deleting them should be considered, so the deleted

messages might be moved into a trash folder.

2- In cases of dealing with inbox with a large number of messages it

is recommended to use fuzzy to make an efficient classification

for the messages so the agent will work in a better way in such

cases.

3- The agent may perform extra tasks in sorting the incoming

messages by distributing them into folders with different

Chapter Five Discussion, Conclusions and Future Work

66

categories such as folders for messages containing pictures or

attachment document…etc. This requires extracting the features

from the body of the message instead of the subject and the from

fields.

4- Including the possibility of attaching files to the E-mail is one of

the ideas that may add extra facilities to the system.

5- The user predefined lists (contact lists) can be modified to be

updatable. This can be done when the agent prompts the user to

add a contact that happened to receive emails from it repeatedly.

Appendix A

Environment Properties

 This section lists some of the environment properties that are used

by the JavaMail APIs. The JavaMail javadocs contain additional information

on properties supported by JavaMail.

Property Description Default Value

mail.store.protocol Specifies the default Message

Access Protocol.

 The Session.getStore() method

returns a Store object that

implements this protocol. The

client can override this property

and explicitly specify the

 protocol with the

 Session.getStore(String

protocol) method.

The first

appropriate

protocol in the

config files

mail.transport.protocol Specifies the default Transport

Protocol.The

Session.getTransport() method

returns a Transport object that

The first

appropriate

protocol in the

implements this protocol. The

client can override this property

and explicitly specify the

 protocol by using

Session.getTransport(String

protocol) method.

config files

mail.host Specifies the default Mail

server. The Store and Transport

object’s connect methods use

this property, if the protocol-

specific host property is absent,

to locate the target host.

The local

 machine

mail.user Specifies the username to

provide when connecting to

a Mail server. The Store and

Transport object’s connect

methods use this property, if the

protocol-specific username

property is absent, to obtain the

username.

user.name

mail.protocol.host Specifies the protocol-specific

 default Mail server.

 This overrides the mail.host

property.

mail.host

mail.protocol.user Specifies the protocol-specific

default username for connecting

to the Mail server.

This overrides the mail.user

property.

mail.user

mail.from Specifies the return address of

the current user. Used by the

InternetAddress.getLocalAddre

ss method to specify the current

user’s email address.

username@host

Hint: Note that Applets can not determine some defaults

listed in this Appendix. When writing an applet, you must specify the

properties you require.

[Ame07] Amershi, S. and Conati, C.,”Unsupervised and

 Supervised Machine Learning in User Modeling for

 intelligent Learning Environment” ,Proceedings of the

 12th international conference on Intelligent user

 interfaces, 2007.

[Big01] Bigus, J., “Constructing Intelligent Agents with JAVA”,

 Professional Developer’s Guide, 2001.

[Cam96] Campbell, M. and Aspray, W.,” History of the

 Information Machine”, 1996.

 [Cha99] Chang, Y., “Email Filtering: Machine Learning

 Techniques and an Implementation of the UNIX Pin Mail

 System”,

 Master thesis,1999.

[Che06] Shen, D., Zhang, B. and Chen, Z., “Adding Semantics to

 Email Clustering”, Sixth International Conference on Data

 Mining, 2006.

[Cro78] Croker, D., “Email History”, Application of Information

 Netwark, IEEE, Vol. 66, No.11,1978.

[Cro97] Crocker, D., H., “Standard for the format of ARPA

 Netwark Text Message (1), RFC 733, 1997.

[Dav02] David, R. and Reilly, M., “JAVA Netwark Programing and

 Distributed Computing”, 2002.

 "http://www.davidreilly.com/jnpbook"

[Den98] Deng, Y., “A personalized Email Agent”, Master Thesis,

 Department of Computer Science and Information

 Engineering, National Taiwan University, 1998.

 [Her97] Hermans, B., “Intelligent Software Agents on the Internet”,

 First Monday Vol.2, No. 3, 1997.

[Hui00] Hui, Y., “Keyphrase-Based Information Sharing In Multi-

 Agent System”, Master thesis, 2000.

[Jen98] Jenning, N., R. and Wooldridge, M., “Application of

 Intelligent Agent”, 1998.

 [Kur05] Kuridi, A., H., “Design and Implementation of Intelligent

 Information System for Junk Filtering”, Master thesis, 2005.

[Las94] Lashkari,Y and Metral,M, “Collaborative Interface Agent”,

 Conference on Interface agent, 1994.

 [Ozg04] Ozgur, A., “Supervised and Unsupervised Machine Learning

 techniques for text document categorization”, Master thesis,

 1994.

[Paz00] Pazzani, M., J., “ Representation of Electronic Mail Filtering

 Profiles: A user study”, research in part by the National

 Science Foundation Grant, 2000.

[Pay94] Payne, T.,” Learning Email Filtering Rules with Magi”, A

 mail agent Interface, Master Thesis 1994.

[Pay97] Payne, T., “Experience with Rule Induction and K-nearest

 Neighbor Methods for Interface Agents that learn”, IEEE,

 Transformations on Knowledge and Date Engineering,

 Vol.9, No.2, 1997.

 [Pfe01] Pfeier, R., “Software Agent”, Seminar in new Artificial

 Intelligence, 2001.

 [Ren00] Rennie, J., D., “ifile: An Application of Machine Learning to

 E-MailFiltering”, Text Mining Workshop, 2000.

[Res01] Resnick, P.,”Internet Message Format”, RFC2822, Network

 working group, 2001.

[Ric99] Richard B. S. and Jeffrey O. K.,” MailCat: An Intelligent

 Assistant for Organizing E-Mail”, Proceedings of the Third

 International Conference on Autonomous Agents, 1999.

[Sah03] Saha, M. and Wadhera, G., “Learning a Distance Metric to

 cluster E-Mails”, 2003.

[Sun98] Sun Microsoft.Inc, Java Mail Guide for Service Providers”

 [Tur03] Turenne, N., “Learning Semantic Classes for Improving

 Email Classification”, Proceedings of Text Mining and Link

 analysis Workshop, 2003.

 [Wik07] Wikipedia, “Email”, The free encyclopedia, last modified 20-

 May-2007.

[Woo98] Wooldridge, M. and Jennings, N., R.,” Intelligent Agents:

 Theory and Practice”, Research supported by UK Science

 and engineering Research ,1998.

	Microsoft Word - Abbreviation11.pdf
	Microsoft Word - Abstract.pdf
	Microsoft Word - Acknowledgment.pdf
	Microsoft Word - dedication.pdf
	Microsoft Word - Republic of Iraq.pdf
	Microsoft Word - Table of Contents.pdf
	Microsoft Word - الاية.pdf
	Microsoft Word - الخلاصة.pdf
	Microsoft Word - جمهورية العراق.pdf
	Microsoft Word - 01-Final Certification.pdf
	Microsoft Word - certification.pdf
	Microsoft Word - CH1.pdf
	Microsoft Word - CH2.pdf
	Microsoft Word - Ch3.pdf
	Microsoft Word - CH4.pdf
	Microsoft Word - CH5.pdf
	Microsoft Word - appendax A.pdf
	Microsoft Word - references.pdf

