ABSTRACT

Clustering is a discipline devoted to find and describe cohesive or
homogeneous chunks in data, the clusters. An example of clustering problem is
the automatic reveading of meaningful parts in a digitalized image. The
motivation for the focus on data clustering is the fact that data clustering is an
important process in pattern recognition and machine learning. Clustering
algorithms are used in many applications such as image segmentation, vector
and color image quantization, compression, etc. Therefore, finding an efficient
clustering algorithm is very important for researchers in many different
disciplines.

The primary objective of thisthesisisto utilize Genetic Algorithm (GA)
as a clustering tool for the unsupervised classification of grayscale image data.
It presents two variants of GA: the first variant is based on the canonica GA
while the second variant is based on compact GA, cGA. The characteristics
components of each algorithm are presented in term of individua and
population representation, fitness function evaluation, evolution (selection,
crossover, and update) operators, and stopping condition. These two genetic
algorithms are then coupled with one popular local-search cluster algorithm,
known as K-means agorithm. By coupling, the objective is to harness the
power of each algorithm: GA search exploration power and K-means search
exploitation power. Moreover, the canonical mechanism of perturbation
operators symbolized by both crossover and mutation is imitated in a modified
version of cGA in an attempt to improve its search power.

To show the applicability of the presented clustering algorithms, Human
medical MRI and land sat images, are used in the experiments. Also, the
experiments considered different number of clusters. Comparison results are
reported in qualitative terms (i.e. visualy) and in quantitative terms using
guantization error, weighted error (sum of cluster compactness, clusters
separation, and quantization error), and compactness-separation ratio. Results
demonstrate that cross-fertilization between the two algorithms is of being
benefit in image data clustering, and it outperforms K-means and genetic-based
agorithms when they operated individualy. Additionaly and more
interestingly, the modified cGA outperforms the traditional cGA, which
leverage the influence of the added perturbation operators including two-point
crossover and binary mutation.
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