

 الرحمن الرحيم بسم االله

 نَرفعَُ درجَاتٍ مَنْ نَشَاءُ وَفوَْق
 كُل ذي عِلْمٍ عَليمٌ

 صدق االله العظيم

)٧٦(سورة يوسف

Supervisor Certification

We certify that this thesis was prepared under our supervision at the

Department of Computer Science/College of Science/Al-Nahrain

University, by Malath Sabri Kareem as partial fulfillment of the

requirements for the degree of Master of Science in Computer Science.

Signature: Signature:

Name: Dr. Sattar B. Sadkhan Name: Dr. Abeer M. Yousif
Title : Assist. Prof. Title : Lecturer
Date : / /2006 Date : / /2006

In view of the available recommendations, I forward this thesis for

debate by the examination committee.

Signature:

Name : Dr. Taha S. Bashaga

Title : Head of the department of Computer Science,

Al-Nahrain University.

Date : / / 2006

Certification of the Examination Committee

We chairman and members of the examination committee certify

that we have studies this thesis "An Authentication Scheme for Instant

Messaging System" presented by the student Malath Sabri Kareem and

examined her in its contents and that we have found it worthy to be

accepted for the degree of Master of Science in Computer Science.

Signature:

Name: Dr. Loay E. George
Title : Assist. Prof.
Date : / /2007

 (Chairman)

Signature: Signature:

Name: Dr.Bara’a A. Attea Name: Dr. Jamal M. Kadhum
Title : Assist. Prof. Title : Lecturer
Date : / /2007 Date : / /2007

 (Member) (Member)

Signature: Signature:

Name: Dr. Sattar B. Sadkhan Name: Dr. Abeer M. Yousif
Title : Assist. Prof. Title : Lecturer
Date : / /2007 Date : / /2007

 (Supervisor) (Supervisor)

 Approved by the Dean of the Collage of Science, Al-Nahrain
University.

Signature:

Name: Dr. LAITH ABDUL AZIZ AL -ANI
Title : Assist. Prof.
Date : / /2007

 (Dean of Collage of Science)

Acknowledgment

First of all, profusely and thanks are due to Allah who

enabled me to achieve this research work.

 I would like to express my special gratitude to Dr. Sattar

B. Sadkhan for his helpful supervision in the first stage of this

project.

 I'm indebted to Dr. Abeer M. Yousif for her valuable

guidance, supervision and untiring efforts that enabled me to

finish work in this research.

Grateful thanks to the Head of Department of Computer

Science Dr. Taha S. Bashaga for confidence gave to me and for

his continues support.

My deep appreciation goes to all of M.Sc. colleagues

especially Haider M. Jaber for help and effort.

Finally, my special thanks to my parents, sisters and

brothers for their support and encouragement during the period

of my studies.

 Malath

Abstract

 Instant messaging system is considered to be one of the widely used

application area, it is rapidly growing as a primary communications

technology among corporate, educational and home users. Users of instant

messaging systems need to authenticate each other before communicating,

so the need for login authentication becomes an important issue.

This research deals with the design and implementation of instant

messaging system (IMS) supported with a suggested method to authenticate

users. The suggested method combines two different authentication

mechanisms: Fixed Password and Digital Signature, where the

authentication process passes through multi levels of security checks.

The proposed instant messaging system provides the users with some

features like text chatting in public and private chat area, sending offline

messages using private chat area, and changing the current password in the

case of its steeling or forgetting. IMS uses TCP/IP protocol for all

communications between hosts. All connections between server and clients

are based on client/server networking model, while connections between

clients is based on peer-to-peer networking model.

The proposed system has been evaluated from three points of views,

which are: easy of use, fast execution and security, where the system

provides the users with a common easy way for chatting in virtual real time.

The security level provided for users of IMS is quite suitable for this kind of

applications. IMS was implemented using Microsoft Visual Basic 6.0

programming language and tested on PCs connected to a LAN network at

which all computers are running under Window XP operating system.

List of Abbreviations

AOL American On-Line

ASCII American Standard Code for Information Interchange

DSA Digital Signature Algorithm

EBCDIC Extended Binary Coded Decimal Interchange Code

HAVAL HAsh of VAriable Length

IM Instant Messaging

ICQ I Seek You

IRC Internet Relay Chat

IP Internet Protocol

ISO International Standards Organization

LAN Local Area Network

MAC Message Authentication Code

MD Message Digest

NIST National Institute of Standards and Technology

OSI Open Systems Interconnection

PC Personal Computer

PKI Public Key Infrastructure

RFC Request For Comment

RSA Rivest Shamir Adleman

SHA Secure Hash Algorithm

SHS Secure Hash Standard

TCP Transmission Control Protocol

UDP User Datagram Protocol

List of Contents

1.1 Introduction to Instant Messaging System 1

1.2 Network Fundamentals 2

 1.2.1 TCP/IP 3

 1.2.2 Ports and Sockets 5

 1.2.3 Network Structural Models 6

1.3 Literature Survey 8

1.4 Aim of Thesis 10

1.5 Thesis Layout 10

2.1 Introduction 12

2.2 Authentication Services Types 13

2.3 Authentication Functions 13

 2.3.1 Message Encryption 14

 2.3.2 Message Authentication Code (MAC) 16

 2.3.3 Hash function 16

2.4 Authentication Mechanisms 18

 2.4.1 Password 18

 2.4.2 Public Key Cryptography 20

 2.4.3 Zero-Knowledge Proof 20

 2.4.4 Digital Signature 21

2.5 ElGamal Digital Signature 23

Chapter One: Introduction 1

Chapter Two: Message Authentication over Computer Networks 12

 2.5.1 Mathematical concepts 23

 2.5.2 ElGamal Algorithm 24

 2.5.3 Security of ElGamal Signature Scheme 25

3.1 Introduction 27

3.2 Design Requirements and Considerations 28

3.3 System Structure 29

3.4 Initialization Module 30

 3.4.1 Keys Generation 30

 3.4.2 Start Serving 41

3.5 Registration Module 42

3.6 Login Module 49

3.7 Chatting Module 55

 3.7.1 Chat 56

 3.7.2 Adding UserIDs to Buddy List 57

3.8 Change Password Module 57

 3.8.1 Changing Known Password 57

 3.8.2 Changing Forgotten Password 59

4.1 IMS Interface 61

4.2 How to Use IMS Server 61

4.3 How to Use IMS Client 65

 4.3.1 How to register in IMS 66

 4.3.2 How to Login to IMS 68

Chapter Three: Design and Implementation of IMS 27

Chapter Four: IMS Interface and Evaluation 61

 4.3.3 Adding a UserID to Buddy List 71

 4.3.4 Changing Password 73

4.4 IMS Evaluation 76

5.1 Conclusion 79

5.2 Future Work 81

Chapter Five: Conclusions and Future Work 79

CHAPTER ONE

Introduction

1.1 Introduction to Instant Messaging System

Instant Messaging is the transmission of an electronic message over a

computer network using software that immediately displays the message in a

window on the screen of the recipient. Instant Messaging (IM) requires that

both parties be logged onto their IM service at the same time. Instant

Messaging also known as a "chatting," has become very popular for both

business and personal use. In business, IM provides a way to contact co-

workers any time of the day, providing they are at their computers.

Instant messaging requires the use of a client program that hooks up

an instant messaging service. In early instant messaging programs, each

letter appeared as it was typed, and when letters were deleted to correct

typos this was also seen in real time. This made it more like a telephone

conversation than exchanging letters. In modern instant messaging

programs, the other party in the conversation generally only sees each line of

text right after a new line is started. Popular instant messaging services on

the public Internet include, AOL (American On-Line), Yahoo!, Skype,

Google Talk, NET, Jabber, and ICQ (I Seek You) messengers.

Instant messaging typically boosts communication and allows easy

collaboration. In contrast to e-mails, the parties know whether the peer is

available and conversations are then able to happen in real time. On the

other hand, people are not forced to reply immediately to incoming

messages. This way, communication via instant messaging can be less

intrusive than communication via phone, which is partly a reason why

Chapter One: Introduction

 ٢

instant messaging is becoming more and more important in corporate

environments [Ans06].

Instant messaging applications are traditionally designed to require

continuous access to a centralized server. Access to the centralized server is

required to authenticate users. Authentication is one of the most fundamental

features a centralized instant messaging server provides [Wik06]. User

Authentication is the process of determining that a user is who he/she claims

to be [Mar00]. Here are a few common reasons why one wants to verify an

identity in the first place [Cha05]:

1. To control access to application.

2. To bind some sensitive data to an individual.

3. To establish trust between multiple parties to form some interaction

with them.

4. To assure that a piece of information is genuine.

Within an application, one or all of these aspects may apply.

Since instant messaging system is considered one of the Internet

services, the following section will present some related network

fundamentals.

1.2 Network Fundamentals

The term "computer network" means a collection of autonomous

computers interconnected by a single technology. Two computers are said to

be interconnected if they are able to exchange information. Different devices

on the network communicate with each other through a predefined set of

rules (protocols). The device on a network can be in the same room or

scattered through a building, or they can even be scattered around the world,

connected by a long-distance communication medium [Cra99].

Chapter One: Introduction

 ٣

The layered concept of networking was developed to accommodate

changes in technology. Each layer of a specific network model may be

responsible for a different function of the network. Each layer will pass

information up and down to the next subsequent layer as data is processed

[Com06].

The standard model of a layered network is the 7-layer International

Standards Organization (ISO) Open Systems Interconnection (OSI)

Reference Model. The entire OSI model is not implemented, where the most

common layered set of protocols in use is the Transmission Control

Protocol/Internet Protocol (TCP/IP) set of protocols. TCP/IP works in a very

similar manner to the OSI model in that it takes approach to provide network

services. Each layer in the TCP/IP model communicates with the layers

above and below it in the same way that the layers in the OSI model do

[Eir00].

1.2.1 TCP/IP

The TCP/IP protocol allows computers of all sizes, from many

different computer vendors, running totally different operating systems, to

communicate with each other. TCP/IP is normally considered to be a 4-layer

system as shown in figure (1.1) [Ric93]. TCP/IP is a broad set of rules and

standards, these rules control how data on the network is sent on the correct

path to reach its intended destination, how some communication errors are

handled, and how logical connections between nodes on the network are

established, maintained, and ended [Cra99].

Chapter One: Introduction

 ٤

Table (1.1): The Four Layers of the TCP/IP protocol

APPLICATION TELNET, FTP, E-MAIL, ETC.

Transport TCP, UDP

Network IP, ICMP, IGMP

Link Device driver and interface card

The main workhorses of this protocol are IP, TCP, and UDP:

1. IP (Internet Protocol) [Par99]: the Internet Protocol resides into

Internet layer. Its main tasks are addressing of information datagrams

(packet) between computers and managing the fragmentation process

of these datagrams.

2. At the transport layer, the two most common protocols are the

Transmission Control Protocol (TCP) and the User Datagram Protocol

(UDP) [Par99] [Ric93]:

• TCP (Transmission Control Protocol): provides a

considerable number of services to the IP layer and the upper

layers. Most importantly, it provides a connection-oriented

protocol to upper layers that enable an application to be sure

that a datagram sent out over the network was received in its

entirety. In this role, TCP acts as a message-validation protocol

providing reliable communications. If a datagram corrupted or

lost, TCP usually handles the retransmission, rather than the

applications in the higher layers. Also, TCP does not interpret

the contents of the bytes at all. TCP has no idea if the data bytes

being exchanged are binary data, ASCII characters, EBCDIC

characters, or whatever. The interpretation of this byte stream is

up to the applications on each end of the connection.

Chapter One: Introduction

 ٥

• UDP (User Datagram Protocol): UDP is a simple, datagram-

oriented, transport layer protocol. UDP provides no reliability:

it sends the datagrams that the application writes to the IP layer,

but there is no guarantee that they ever reach their destination.

Any desired reliability must be added by the application layer.

1.2.2 Ports and Sockets [Par99]

All upper-layer applications that use TCP (or UDP) have a port

number that identifies the application. In theory, port numbers can be

assigned on individual machines the administrator desires, but some

conventions have been adopted to enable better communication between

TCP implementations, which enables the port number to identify the type of

services that one TCP system is requesting from another. Port numbers can

be changed, although this can cause difficulties. Most systems maintain a

file of port numbers and their corresponding service. Each communication

circuit into and out of the TCP layer is uniquely identified by a combination

of two numbers, which together are called a socket. The socket is composed

of the IP address (32-bit) of the machine and the port number used by the

TCP software. Both the sending and receiving machines have sockets.

Because the IP is unique across the interwork, and the port numbers are

unique to the individual machine, the socket numbers are also unique across

the entire interwork. This enable a process to talk to another process across

the network, based entirely on the socket number.

Chapter One: Introduction

 ٦

1.2.3 Network Structural Models

The most two common popular structural models to setting up

networks are:

1. Client/Server Networking Model In this design, a small number of

computers are designated as centralized servers and given the task of

providing services to a larger number of user machines called clients,

see figure (1.2) Client/server architecture is the basis for most TCP/IP

protocols and services [Cha04]. TCP/IP supports two essential modes

of network communication [Dal95]:

1. Streams are a connection-oriented form of communication,

which means that there is a persistent connection between the

client and the server for the duration of the communication (like

a telephone conversation).

2. Data-grams are a connection-less form of communication,

which means that there is not a persistent connection between

the client and the server. Each message between the client and

the server is a separate connection, containing its own

addressing information.

Chapter One: Introduction

 ٧

Figure (1.2) Client/Server Networking

2. Peer-to-Peer Networking Model In a strict peer-to-peer networking

setup, every computer is an equal, a peer in the network. Each

machine can have resources that are shared with any other machine.

There is no assigned role for any particular device, and each of the

devices usually runs similar software. Any device can and will send

requests to any other, as illustrated in figure (1.3). In this model, each

device on the network is treated as a peer, or equal. Each device can

send requests and responses, and none are specifically designated as

performing a particular role. This model is more often used in very

small networks [Cha04].

Chapter One: Introduction

 ٨

Figure (1.3): Peer-to-Peer Networking

1.3 Literature Survey

 Various efforts in the field of authentication over network were

introduced; the survey presented is concerned with some of the published

researches related to user authentication of the most popular instant

messaging software available now days

1. ICQ [Isa01]: stands for “I Seek You”. According to the ICQ

documentation, ICQ operates in a server-based and peer-to-peer

fashion. Client’s authentication is done using encryption, such that

each packet sent from the client to the server is encrypted before being

sent. Every time the client sends a packet to the server it must receive

an acknowledgment from the server. ICQ is based on synchronous

communication, for every ICQ message sent a reply has to be received

to know if the message has been accepted, beside that many

operations should be done on client-side, so ICQ might be slow.

Chapter One: Introduction

 ٩

2. MSN [Min03]: it’s included in Microsoft Windows operating systems.

MSN Messenger uses TCP protocol for all communication between

hosts. Client can be connected to multiple servers concurrently. In

this kind of architecture the server's could easily become congested.

The MSN messenger is based on an asynchronous protocol, which

ensures that new messages can be sent without waiting response of

previous messages. The centralized server architecture also simplifies

group messaging, but may cause problems if the servers become

crowded. The MSN authenticates users using challenge-response

password hashed using MD5 hashing algorithm.

3. The IRC [Irc03]: stands for “Internet Relay Chat”, IRC was specified

in 1993 by Oikarinen, it’s the oldest famous ”chatting” protocol still

used. Using the IRC protocol clients always talks to other clients

through a server using single TCP connection. The message can go

through multiple servers before it reaches the other client. An IRC

client connects to a server specified by the user. Every server knows

every user in the network and when a client wants to talk to another

user, all it needs to know is the nickname of the other client and the

server delivers the possible message through other servers to the

destination client.

4. AOL [Jer03]: stands for “American On-Line”, it’s based on TCP

protocol for communication, the AOL architecture consists of two

main components, which are the Authorizer, which validates

username and password and the BOS (Basic Oscar Service). Before

connections are made to any of the BOS or special-purpose servers it

is necessary to be authorized by the Authorization Server.

Chapter One: Introduction

 ١٠

5. Yahoo [Mes06]: All Yahoo communications use TCP/IP

communication. To authenticate client, the client sends the username

to the server. The server responds with a challenge string. The client

responds to this challenge with two response strings. If authentication

is successful, the connection goes into the messaging state, otherwise,

an error response is sent back.

1.4 Aim of Thesis

The aim of the project is to design and implement an Instant

Messaging System (IMS) provided with a proposed authentication method.

The proposed authentication method adopts combination of two-

authentication mechanisms: Fixed Password and Digital Signature. The

designed IMS allows users to communicate with one another in virtual real

time. Users communicate by typing messages, which are sent instantly to

another user or group of users within the chat area. Users must be

authenticated before being able to communicate with each other.

1.5 Thesis Layout

This section presents a guide for reading this thesis. The layout of the

remaining individual chapters and their contents are reviewed briefly

• Chapter Two: This chapter concerns with the types of authentication

services, types of message authentication functions and mechanisms

that are used over network. ElGamal digital signature scheme

algorithm is presented in this chapter with its related mathematical

concepts.

Chapter One: Introduction

 ١١

• Chapter Three: This chapter presents the design requirements and

considerations of the proposed system, and then the structure of the

system will be explained together with modules and algorithms that

are used to implement the system.

• Chapter Four: This chapter presents user interface and evaluation of

the designed system.

• Chapter Five: This chapter introduces conclusions on this work, with

recommendations for future work.

CHAPTER TWO

Message Authentication over Computer Networks

2.1 Introduction

Authentication is the technique by which a process verifies that its

communication partner is who it is supposed to be and not imposter

[Jam01]. The need for providing authenticity arises in many different

situations and it especially crucial when a user operates from remote

terminal. Two different cases can be distinguished [Seb89]: user

authentication and message authentication. User authentication can be

made either directly when a user’s specific characteristics (e.g., finger

prints, voice frequency spectrum, digital signature flow, etc.) are checked,

or indirectly when a unique secret piece of information is proved to be in

the user’s possession. As a matter of fact, indirect user authentication is

equivalent to the message authentication. Message authentication relies

upon imposing a prearrangement structure for the message.

Authentication must be done solely on the basis of message and

data exchange as part of an authentication protocol. The goal of an

authentication protocol is to provide the communicating parties with

some assurance that they know each other’s true identities [Jam01].

Network entities do not typically have physical access to the

parties they are authenticating. Malicious users or programs may attempt

to obtain sensitive information, disrupt service, or forge data by

impersonating valid entities. Distinguishing these malicious parties from

valid entities is the role of authentication, and is essential to network

security [Pat02].

Chapter Two Message Authentication over Network

 ١٣

2.2 Authentication Services Types

 Two specific authentication services are defined in OSI (Open

System Interconnection) standard [Wil03]:

1. Peer entity authentication: provided for the cooperation of the

identity of a peer entity in an association. It is provided for use at

the establishment of, or at times during the data transfer phase, of a

connection. It attempts to provide confidence that an entity is not

attempting either a masquerade or an unauthorized replay of

previous connection.

2. Data origin authentication: provided for the cooperation of the

source of a data unit. It does not provide protection against the

duplication or modification of data units. This type of service

supports application like electronic mail where there are no prior

interactions between the communication entities.

2.3 Authentication Functions

Any message authentication mechanism can be viewed as having

fundamentally two levels. At the lowest level, there must be some sort of

function that produces an authenticator: a value to be used to authenticate

a message. This lower-level function is then used as a primitive in a

higher-level authentication protocol that enables a receiver to verify the

authenticity of a message. The types of function that may be used to

produce an authenticator are grouped into three classes, as follows

[Wil03]:

1. Message encryption

2. Message Authentication Code (MAC)

3. Hash function

In the following sections these classes will be described in details.

Chapter Two Message Authentication over Network

 ١٤

2.3.1 Message Encryption

Encryption is the process of encoding a message so that its

meaning is not obvious. Decryption is the reverse process: transforming

an encrypted message back into its normal form. The original form of a

message is known as plaintext, and the encrypted form is called

ciphertext. Denote a plaintext message P as a sequence of individual

characters),...,,(21 npppP = ; similarly ciphertext can be written as

),...,,(21 mcccC = , formally, the transformations between plaintext and

ciphertext are denoted

)(PEC = (2.1)

and

)(CDP = (2.2)

Where C represents the ciphertext, E is the encryption algorithm, P

is the plaintext, and D is the decryption algorithm. Some encryption

algorithms use a key K, so that the ciphertext message depends on both

the original message and the key value, denoted

),(PKEC = (2.3)

Essentially, E is a set of encryption algorithms and the K selects

one specific algorithm. Sometimes the encryption and decryption keys are

the same, so that

)),(,(PKEKDP = (2.4)

This style of encryption is called symmetric encryption because D

and E are mirror-image processes, see figure (2.1), the sender A uses the

key to encrypt the plaintext and sends the ciphertext to the receiver. The

receiver B applies the same key to decrypt the message and recover the

plaintext.

Chapter Two Message Authentication over Network

 ١٥

Figure (2.1): Symmetric Encryption

Other times encryption and decryption keys come in pairs. This

form is called asymmetric. With a public key or asymmetric system, each

user has two keys: a public key and a private key. The user may publish

the public key freely. The keys operate in inverses. Let PRIVK be a user’s

private key and letPUBK be the corresponding public key [Cha97], then,

)),(,(PPUBKEPRIVKDP = (2.5)

Symmetric Encryption can be used for authentication, since a

receiver can assume that only the sender knows the secret key. On the

other hand public-key encryption provides confidentiality but not

authentication. Because any opponent could also use B’s public key to

encrypt a message, claiming to be A. To provide both confidentially and

authentication, A can encrypt M first using its private key, and then B’s

public key, which provide confidentiality as shown figure (2.2), where

aKR is the sender private key,
a

KU is the sender public key, bKR is the

receiver private key and bKU is the receiver public key [Wil03].

M E E D M

)(M
aKR

E)]([M
aKR

E
b

KU
E)(M

aKR
E

D

aKR
aKU

b
KRb

KU

Figure (2.2) Public Key Encryption

K K

Sender A Receiver B

Sender A Receiver B

Chapter Two Message Authentication over Network

 ١٦

2.3.2 Message Authentication Code (MAC)

A public function of the message and a secret key that produce a

fixed-length value that server as the authenticator. A MAC also known as

a cryptographic checksum is generated by a function C of the form

)(MKCMAC = (2.6)

Where M is a variable–length message, K is a Shared secret key shared

only by sender and receiver, and)(MKC is the fixed-length authenticator.

The MAC is appended to the message at the source at a time when

the message is assumed or known to be correct. The receiver

authenticates that message by re-computing the MAC , see figure (2.3).

The MAC value protects both a message's integrity as well as its

authenticity, by allowing verifiers (who also possess the secret key) to

detect any changes to the message content [Wil03].

Figure (2.3) Basic Use of Message authentication Code (MAC)

2.3.3 Hash function

Hash Functions take a block of data as input, and produce a hash

or message digest as output. Hash function produces a reduced form of a

body of data such that most changes to the data will also change the

reduced form. The usual intent is that the hash can act as a signature for

the original data, without revealing its contents. Therefore, it's important

that the hash function be irreversible - not only should it be nearly

impossible to retrieve the original data, it must also be unfeasible to

construct a data block that matches some given hash value.

Sender A Receiver B

Chapter Two Message Authentication over Network

 ١٧

Randomness, however, has no place in a hash function, which

should completely deterministic. Given the exact same input twice, the

hash function should always produce the same output. Even a single bit

changed in the input, though, should produce a different hash value. The

hash value should be small enough to be manageable in further

manipulations, yet large enough to prevent an attacker from randomly

finding a block of data that produces the same hash [Fre06]. Hash

algorithms that are in common use include [Gar06]:

1. Message Digest (MD) algorithms: A series of byte-oriented

algorithms that produce a 128-bit hash value from an arbitrary-

length message.

• MD2: Designed for systems with limited memory, such as

smart cards.

• MD4: Similar to MD2 but designed specifically for fast

processing in software.

• MD5: Developed after potential weaknesses were reported

in MD4; this scheme is similar to MD4 but is slower because

more manipulation is made to the original data. The MD5

algorithm is intended for digital signature applications.

2. Secure Hash Algorithm (SHA): Algorithm for NIST's (National

Institute of Standards and Technology) Secure Hash Standard

(SHS). SHA-1 produces a 160-bit hash value, five algorithms in

the SHS: SHA-1 plus SHA-224, SHA-256, SHA-384, and SHA-

512 which can produce hash values that are 224, 256, 384, or 512

bits in length, respectively.

3. RIPEMD: A series of message digests; RIPEMD-160 was

optimized for 32-bit processors to replace the then-current 128-bit

Chapter Two Message Authentication over Network

 ١٨

hash functions. Other versions include RIPEMD-256, RIPEMD-

320, and RIPEMD-128.

4. HAVAL (HAsh of VAriable Length): HAVAL can create hash

values that are 128, 160, 192, 224, or 256 bits in length.

5. Whirlpool: Whirlpool operates on messages less than 2256 bits in

length, and produces a message digest of 512 bits.

The hash algorithm MD5 will be considered in designing the

authentication method in chapter three, a clear description of it is stated

in Appendix A.

2.4 Authentication Mechanisms

 Authentication mechanisms can be classified in many ways; the

following overview will generalize several authentication mechanisms to

authenticate uses over network [Ric01]:

2.4.1 Password

Password can be classified into two main types:

1. Fixed Password

One of the most commonly used authentication schemes employs

passwords. Along with a user name, a password must be presented to the

authentication system to gain access [Eri00]. Authentication is based on

knowing the (name, password) pair. The length and format of the

password also vary from one system to another. The system compares the

entered password against the expected response and reacts accordingly. If

the password matches that on file for the user, the user is authenticated to

the system. If the password match fails, the system requests the password

again [Cha97].

A fixed password system is vulnerable to interception and replay.

The extent of the risk to which the system is exposed will depend on the

Chapter Two Message Authentication over Network

 ١٩

deployment. If passwords are being transmitted across an unprotected

network the risk is greater than with a closed system where there are

limited opportunities for eavesdropping. Since user-chosen passwords are

memorable, they are likely to contain some inherent structure. To help

provide additional protection, some proposals deploy machine-generated

passwords, but these are not especially popular. In fact, such approaches

can sometimes be counter-productive since a password that is difficult to

remember is sometimes written down, which might degrade the overall

security of the system [Fre04].

There is a reason why passwords are so popular: they're fast,

they're cheap, and, in practice, people don't forget them or lose the pieces

of paper all that often. Username and passwords are an authentication

solution for low-value transactions and for accessing non-sensitive online

information [Eli00].

2. One-time password [Ing06]

 There are two types of one-time passwords, challenge-response

password and password list.

1. The challenge-response password responds with a challenge value

after receiving a user identifier. The response is then calculated

from either the response value or select from a table based on the

challenge.

2. A one-time password list makes use of lists of passwords, which

are sequentially used by the person wanting to access a system.

The values are generated so that it is very hard to calculate the next

value from the previously presented values. It is important to keep

in mind that Password systems only authenticate the connecting

party. It does not provide the connecting party with any method of

Chapter Two Message Authentication over Network

 ٢٠

authenticating the system they are accessing, so it is vulnerable to

spoofing or a man-in-middle attack.

2.4.2 Public Key Cryptography

Public Key Infrastructure (PKI) is a security architecture that was

introduced to provide an increased level of security in exchanging

information over an insecure Internet. Essentially, a PKI includes all the

components required to establish and maintain trust relationship and

binding of a public key to its owner within a system providing public key

based applications [And06].

Authentication using public key cryptography was covered in

section 2.3.1.

2.4.3 Zero-Knowledge Proof [Dic06]

A zero-knowledge proof is an interactive method for one party to

prove to another that a (usually mathematical) statement is true, without

revealing anything other than the veracity of the statement.

A zero-knowledge proof must satisfy three properties:

1. Completeness: if the statement is true, the honest verifier (that is,

one following the protocol properly) will be convinced of this fact

by an honest prover.

2. Soundness: if the statement is false, no cheating prover can

convince the honest verifier that it is true, except with some small

probability.

3. Zero-knowledge: if the statement is true, no cheating verifier

learns anything other than this fact. This is formalized by showing

that every cheating verifier has some simulator that, given only the

Chapter Two Message Authentication over Network

 ٢١

statement to be proven (and no access to the prover), can produce a

transcript that "looks like" an interaction between the honest prover

and the cheating verifier.

2.4.4 Digital Signature

 Digital signature is completely analogous to a handwritten

signature used for centuries to authenticate documents. The reason that

signatures have been used is that, everyone’s signature is unique and hard

to forge and a document, which has been signed, would be hard to

repudiate later. These same assurances are desirable for computer

generated and transmitted documents. It’s liked to be able to prove that a

document sent by somebody was indeed sent by that individual [Eri00].

Digital signature powered by public key infrastructure (PKI)

technology, are widely recognized as the best practice for ensuring digital

accountability for electronic transactions. Digital signatures are the most

effective, secure, and easy-to implement method of proving

accountability while enabling electronic transactions [Ent06].

Two general classes of digital signature schemes can be briefly

summarized as follows [Men96]:

1. Digital signature schemes with appendix require the original message

as input to the verification algorithm. Examples of mechanisms

providing digital signatures with appendix are the DSA, ElGamal and

Schnorr signature schemes. ElGamal digital signature scheme is used

in the proposed system in chapter three, and it’s presented in this

chapter.

2. Digital signature schemes with message recovery do not require the

original message as input to the verification algorithm. In this case the,

the original message is recovered from the signature itself. Examples

Chapter Two Message Authentication over Network

 ٢٢

of mechanisms providing digital signatures with message recovery are

RSA, Rabin and Nyberg-Rueppel public-key signature schemes.

The goal of an adversary is to forge signatures; that is, produce

signatures, which will be accepted as those of some other entity. There

are two basic attacks against public-key digital signature schemes

[Joh01].

1. Key-only attacks: In these attacks, an adversary knows only the

signer’s public key.

2. Message attacks: Here an adversary is able to examine signatures

corresponding either to known or chosen messages. Message

attacks can be further subdivided into three classes:

• Known-message attack: An adversary has signatures for a

set of messages, which are known to the adversary but not

chosen by him.

• Chosen-message attack: An adversary obtains valid

signatures from a chosen list of messages before attempting

to break the signature scheme. This attack is non-adaptive in

the sense that messages are chosen before any signatures are

seen. Chosen-message attacks against signature schemes are

analogous to chosen-cipher text attacks against public-key

encryption schemes.

• Adaptive chosen-message attack: An adversary is allowed

to use the signer as an oracle; the adversary may request

signatures of messages, which depend on the signer’s public

key, and he may request signatures of messages, which

depend on previously, obtained signatures or messages.

Chapter Two Message Authentication over Network

 ٢٣

2.5 ElGamal Digital Signature

In 1985, Tahir ElGamal [Tah85] published a public-key

cryptosystem based upon the discrete logarithm problem. The security of

ElGamal's signature scheme is based on solving the discrete logarithm

problem.

2.5.1 Mathematical Concepts

 To understand ElGamal algorithm, some mathematical concepts

related to this algorithm must be well understood, these are listed below:

1. Discrete Logarithm Problem [C2c06]: The ordinary logarithm

problem: given a base b and a number x, find y such that

 xb y = (2.7)

 E.g., the logarithm to base 2 of 128 is 7.

 This can be done in modular arithmetic too. Suppose for a particular

choice of n, x, b, that there is a y such that

)(modnxb y = (2.8)

 Then finding that y is the Discrete Logarithm Problem modulo n.

 The Discrete Logarithm Problem is useful for the following reason:

suppose n is large; then given n, b, y it's easy to find x, but no

algorithm is known that, given n, b, y, will efficiently find x.

2. Primitive Root (Generator) [Bry06]: Let p be a prime, then b is a

primitive root for p if the powers of b, 1, b, b^2, b^3 ...include all of

the residue classes mod p (except 0). Since there are p-1 residue

classes mod p (not counting 0), that means the first p-1 powers of b

have to be different mod p. We have noticed that the powers of b form

a repeating cycle, and that cycle can't be longer than p-1. So, b is a

primitive root if the cycle is as long as it can possibly be. Examples: If

Chapter Two Message Authentication over Network

 ٢٤

p=7, then 3 is a primitive root for p because the powers of 3 are 1, 3,

2, 6, 4, 5---that is, every number mod 7 occurs except 0. But 2 isn't a

primitive root because the powers of 2 are 1, 2, 4, 1, 2, 4, 1, 2,

4...missing several values.

3. Multiplicative Inverse [Enw06]: In modular arithmetic, the

multiplicative inverse of x is also defined: it is the number a such that

(a * x) mod n = 1. However, this multiplicative inverse exists only if a

and n are relatively prime. For example, the inverse of 3 modulo 11 is

4 because it is the solution to (3 * x) mod 11 = 1.

2.5.2 ElGamal Algorithm [Men96]

The ElGamal signature scheme generates a signature with

appendix on binary messages of arbitrary length, and requires a hash

function ph Ζ→*}1,0{: , where p is a large prime number. The algorithm

can mainly be divided into three algorithms: key generation, signature

generation and signature verification as shown in algorithms 2.1, 2.2, 2.3

respectively.

Algorithm (2.1): ElGamal Key Generation

1. Generate a large prime p and a generator a of the multiplicative group Z*p.

2. Select a random integer a, 1≤ a ≤ p -1

3. Compute py a modα= (2.9)

4. A’s public key is (p, α, y); A’s private key is a.

Algorithm (2.2) ElGamal Signature Generation

1. Select a random secret integer k, 21 −≤≤ pk

2. Compute pr k modα= (2.10)

3. Compute)1mod(1 −− pk (2.11)

4. Compute)1mod(}*)({1 −−= − pramhks (2.12)

5. A’s signature for m is the pair),(sr

Chapter Two Message Authentication over Network

 ٢٥

Algorithm (2.3): ElGamal Signature Verification

1. Obtain A’s authentic public key (p, α, y)

2. Verify that 1≤ r ≤ p-1; if not, then reject the signature.

3. Compute prYv sr mod1 = (2.13)

4. Compute h (m) and pv mh mod)(
2 α= (2.14)

5. Accept the signature if and only if 21 vv = (2.15)

Proof that signature verification works: If the signature was generated by

A, then)1}(mod)({1 −∗−≡ − pramhks . Multiplying both sides by k gives

)1(mod)(−∗−≡∗ pramhsk and rearranging yields

)1(mod)(−∗+∗≡ pskramh . This implies)(mod)()(pr sraskramh ααα ≡≡ ∗+∗ .

Thus 21 vv = , as required.

2.5.3 Security of ElGamal Signature Scheme [Men96]

1. An adversary might attempt to forge A’s signature on m by

selecting a random integer k and computing pr k modα= .

The adversary must then determine)1mod(}*)({1 −−= − pramhks . If

the discrete logarithm problem is computationally infeasible, the

adversary can do no better than to choose an s at random; the

success probability is only p/1 , which is negligible for large p .

2. A different k must be selected for each message signed; otherwise,

the private key can be determined with high probability as follows:

Suppose

 and

 Then)1mod())()(()(2121 −−≡− pmhmhkss

 If)1mod(021 −≠− pss , then)1mod())()(()(21
1

21 −−−= − pmhmhssk .

 Once k is known, a is easily found.

)1mod(}*)({ 1
1

1 −−= − pramhks

)1mod(}*)({ 2
1

2 −−= − pramhks

Chapter Two Message Authentication over Network

 ٢٦

3. If no hash function h is used, the signing equation is

)1mod(}{1 −−= − parmks . It is then easy for an adversary to mount

an existential forgery attack as follows. Select any pair of integers

),(vu with 1)1,gcd(=−pv . Compute ppyr avuvu modmod +== αα and

)1mod(1 −−= − prvs . The pair),(sr is a valid signature for the

message)1mod(−= psum , since ryvusarm ==
−− ααα
1

) .

4. Step 2 in algorithm 2.3 requires the verifier to check that pr <<0 .

If this check is not done, then an adversary can sign messages of its

choice provided it has one valid signature created by entity A, as

follows. Suppose that),(sr is a signature for message m produced

by A. the adversary selects a message m′ of its choice and

computes)(mh ′ and)1mod()]().[(1 −′= − pmhmhu (assuming

)1mod()]([1 −− pmh exists). It then computes)1mod(−=′ psus and r ′

such that)1(mod −≡′ prur and)(modprr =′ . The pair),(sr is a

signature for message m, which would be accepted by the

verification algorithm if step 2 were ignored.

CHAPTER THREE

Design and Implementation of an Instant Messaging

System

3.1 Introduction

The aim of the project is to design and implement an Instant

Messaging System (IMS) provided with authentication method. This

work is concerned with online/offline interactive communication method

using text to send and receive instant messages among users.

The system has the ability to open or start text conversation

between two or more users using two types of chat area: public chat area

and private chat area. In the first type, each member of the chat area can

see what every other member types, and in turn any responses sent will be

sent to all other members of the conversation. In the second type, two

users can exchange instant messages using private chat area, only those

two users participating in this area can see what each other types. For

both chatting types, the text appears as it is typed on PCs participating in

the chat. Also, users can send offline messages using private chat area;

each user can see his/her offline messages (if there is any) after login.

The presented authentication method is used as a control to allow

only members of the system to communicate with each other. This

method utilizes a combination of two authentication mechanisms: Fixed

Password and Digital Signature. ElGamal algorithm is used to generate

digital signature.

In this chapter the words “User” and "Administrator” will be used

as indication to a real human being, while the words “Client” and

”Server” indicate the software programs that run by User and

Administrator respectively.

 Chapter Three Design and Implementation of IMS

 ٢٨

IMS was implemented using Microsoft Visual Basic 6.0

programming language and tested on LAN at which all computers are

connected to network HUB, and all computers are running under

Windows XP operating system.

3.2 Design Requirements and Considerations

The Proposed Instant Messaging System requires a high-speed

central server and a number of clients connected through a network. At

least, three computers must exist, one of them is the server run by an

administrator, and the other two computers are clients run by users. A

client logs onto IMS server using a UserID and Password, each client

represent a unique UserID, so that each user may represent more than one

client in IMS. The server authenticates the request and either allows or

denies access to services. The implementation of the proposed system

requires data storing, so Microsoft Office Access software was used to

store the required data in files and these files can be accessed easily using

Visual Basic programming language.

The design considerations of the system are:

1. Easy of use by users.

2. Fast execution: where user’s registration and login time should be

acceptable, and regarding to the chatting process, it should be a

virtual real time chatting between users.

3. Security: where only authenticated users should be allowed to

login.

In the next sections a clear description of the proposed system will be

presented.

 Chapter Three Design and Implementation of IMS

 ٢٩

3.3 System Structure

From the functional point of view, the system consists of five

modules (Initialization module, Registration module, Login module,

chatting module and change password module) as shown in figure (3.1).

The main function of the Initialization module is to generate list of

public keys using ElGamal algorithm that will be used for authentication

process in the next modules. The aim of the second module is to

accomplish client registration process; registration process implies

creation of a secret key and distributes public keys (that generated in first

module) for each client. These keys will be calculated from (UserID,

Password) pair and from challenge information. In the third module a

registered client login to the system after providing a valid digital

signature, which is verified by server, this signature is used as a challenge

proves what client claim to be. When client login then it is considered to

be online. The term Online is used to indicate that the client is allowed to

login and ready to chat with any other online clients, while Offline term

means that the client is not yet logged in. After logging in, the client is

provided with set of functions by the fourth module, which are:

1. Chatting with other users using public or private chat area.

2. Adding to a list (named Buddy List) some of IMS’s UserIDs

selected by user.

3. Sending offline messages to offline users.

4. Changing password.

 Chapter Three Design and Implementation of IMS

 ٣٠

Figure (3.1): System Modules

3.4 Initialization Module

This module is executed at server side and it consists of two parts:

1. Keys Generation: in this part, the server creates a table of client’s

public keys.

2. Starting Serving: in this part, the server prepares to start client’s

serving.

3.4.1 Keys Generation

According to ElGamal algorithm (section 2.5.2) each client must

generate two numbers p and α randomly. p should satisfy two

conditions:

1. p should be prime number.

2. The prime p should be large enough to make discrete logarithm

problem infeasible.

And α must be generator of p. Generating such large prime number p

randomly by client could be time consuming because in some places

along the number line, primes are closely packed, and in some other

places there are large gaps. So to accommodate the designed system

consideration concerning to speed of executing on client side, prime

numbers generation and finding their generator are made at server side.

Initialization
Module

Registration
Module

Login
Module

User
Interface

Change
Password
Module

Chatting
Module

 Chapter Three Design and Implementation of IMS

 ٣١

The server generates a table, named Primes/Generators table (table 3.1),

of N numbers (prime numbers (p) and generator (α)). A third field in this

table is the flag field, which is used as an indicator that pair (p,α) was

assigned to any client in registration process or not. Initially this field is

False for all N entries, this table is saved in a file named Keys.

Generation process is illustrated in algorithm 3.1.

 Table (3.1): Primes/Generators

P α Flag

590295810358705651741 6 False

590295810358705651817 3 False

590295810358705651829 2 False

etc

It's important to note that in computer the largest integer number that

can be treated as a single unit is 264 = 18, 446, 744, 073, 709, 551, 616

(which represented with 64 bits). According to Buchmann [Joh01], p

must be at least 768-bit number, so data type of p was chosen to be string

in order hold large values. As a result the standard library of binary

operators (>, <, =, +, -, *, /) can not be used with string data type, so each

of these operations is replaced by a program code that do the same

operation but for very large sizes of integer numbers.

According to Menezes [Men96], for each given length of p there

must be security parameter t, such that if the primaility test on a number p

is run t times, then the probability that p is declared “prime” all t times

(i.e., the probability of error) is at most (1/2)t. Table 3.2, named

SecurityParameter table, shows for samples of K the smallest security

parameter t with error probability (1/2)80.

 Chapter Three Design and Implementation of IMS

 ٣٢

Algorithm 3.1 for constructing Primes/Generators table requires

passing four inputs: first input is the numbers of primes to be generated

(N), minimum length (in bits) of first generated prime number (K),

SecurityParameter table, and a list of small prime numbers less than 500

(SmallPrime), this list is generated in advance and then passed to the

algorithm, this list is generated in advance to be used with each prime test

in algorithm 3.2.

Table (3.2): SecurityParameter

K (bits) t

 100 27

 150 18

 200 15

 etc

According to the passed length (K), the security parameter t will be

chosen to hold an initial value that could be changed later in the

algorithm. If K length doesn’t match any entry in SecurityParameter

table, the initial value of t will be the closest biggest value of the passed

K. Then an odd value of length equal K is generated to be test if it is

prime number or not using Find Prime algorithm (algorithm 3.2).

There are two cases of the generated odd value:

• The number p is prime; then its generator α will be searched, and after

finding its generatorα, the pair (p,α) will be saved in

Primes/Generators table (table 3.1). Then p will also be incremented

by two. Incrimination will continue until N primes will be found.

• The number p is not prime; then its value will be incremented by two,

in order to be tested as the next odd probable prime number.

 Chapter Three Design and Implementation of IMS

 ٣٣

Algorithm (3.1): Generate Primes/Generators table

Input: Number of primes to be generated Integer numbers (N)

 Minimum length of first generated prime (K)

 SecurityParameter table

 SmallPrimes list

Output: File contain Primes/Generators table

Procedure

1. For I ← 1 to 2

 For J ← 1 to 40

 If SecurityParameter (J, I) ≥ K then

 Set t ← SecurityParameter (J, I)

2. Set PBIN ← "1" & string of (K-2) zeros & "1"

3. Convert PBIN to decimal and put result in p

4. Call Subtract (p,"1") algorithm and put result in p1 (algorithm 3.5)

5. Call Subtract (p,"2") algorithm and put result in p2 (algorithm 3.5)

6. Open Keys file

7. For I ←1 to N

 7.1 Call Find Prime (p, p1, p2, SmallPrimes, Counter, t) algorithm “algorithm

3.2” and put resulted prime number in p, resulted prime factors in Factors

table and put size of factors table in F.

 7.2 Call Find Alpha (p1, Factors, F) algorithm “algorithm 3.3” and put result in

α.

 7.3 Set PrimesGenerators (I). p←p, PrimesGenerators (I). α← α

 7.4 Call Addition (p,"2") algorithm “algorithm 3.6” and put result in p

8. Close Keys file

As explained above, to test p number is prime or not, Find Prime

algorithm is called. There are few algorithms that are used to check if any

number is prime or not. According to Menesez [Men96], the most

efficient known algorithm that is used as a primality test is the Miller

Rabin primality test (described in appendix A), this algorithm check an

odd integer number p if it is prime or not. This algorithm is called in Find

 Chapter Three Design and Implementation of IMS

 ٣٤

Prime algorithm (algorithm 3.2), but before it is called, the number must

pass three tests which are made to speed up deciding if the number is

prime number or not, which are:

1. If the most right digit of p equals 5 then it is dividable by 5.

2. If summation of p’s digits mod 3 equal 0 then it is dividable by 3.

3. If p is dividable by any number in the SmallPrimes list, then it’s

not prime.

As the number is moving from test to test then its probability to be

prime number will increase. After passing the last test, the Miller Rabin

algorithm will make the final decision that the number is prime or not.

In algorithm 3.2, p-1 needs to be factorized; the prime factors are

saved in Factors table of size F. (Example: the prime factorization of 12

is 2*2*3, these factors are saved as follows Factors (1). Base=2, Factors

(1). Power=2, Factors (2). Base=3, Factors (2). Power=1).

Algorithm (3.2): Find Prime

Input: String represents an odd decimal number (p)

 String represents an even decimal number (p1)

 String represents an odd decimal number (p2)

 Security parameter (t)

 SmallPrimes list

 Size of the primes array (Counter)

Output: Prime number (p)

 Factors table

 Size of Factors table (F)

Procedure

1. Set Flag ← False

2. Do until Flag=true

 If Right (p, 1) =5 then

 Call addition (p,"2") algorithm "algorithm 3.6" and put result in p.

 Else

 Chapter Three Design and Implementation of IMS

 ٣٥

 Set Sum ← 0

 For I ← 1 to Length (p)

 Sum=sum+ p (I)

 If Sum mod 3= 0 then

 Call addition (p,"2") algorithm "algorithm 3.6" And put result in p.

 Else

 Set I ← 1

 Do while I ≤ Counter

 Call DivMod (p, primes (I)) algorithm “algorithm 3.9”and put result in

Result and Reminder

 If Reminder = 0 then

 If Small Primes (I) = p then exit Do loop

 Increment I by 1

 Factorize p1 and put result in Factors table

 Set F←size of Factors table

 Do until Factors (I). Base ≠2

 Increment s by 1

 Increment I by 1

 For I← 1 to F

 Call Multiplication(r, Factors (I). base) algorithm “algorithm 3.7”and put

result in r

 Call Miller Rabin (p, r, s, t) algorithm and put result in Flag

3. Return p, Factors table and F

After finding a prime number p, its generator α must be searched;

algorithm 3.3 illustrates finding the generator α. The search starts from

value 2 and proceed until finding the first generator, which will be less

than p. In this algorithm modular exponential is computed using repeated

square and multiply algorithm (Appendix A). For rest of this chapter this

algorithm will be called to compute different values and its named

Fastexp for short, which stand for (Fast Exponential) algorithm.

 Chapter Three Design and Implementation of IMS

 ٣٦

Algorithm (3.3): Find Alpha

Input: String represent an even integer number (p1)

 Factors table

 Number of prime factors (F)

Output: Generator of p1 (α)

Procedure

1. Set α ← 2, I ← 1, Flag ← False

2. Do until Flag=True

 2.1 Do while I ≤ F

 a. Call DivMod (p1, Factors (I). Base) algorithm “algorithm 3.9”and put

result in e

 b. Call FastExp (α, e, p1) algorithm and put result in b

 c. If b = "1" then exit loop

 2.2 If I = F then Flag=True

 Else Call Addition (α, "١") algorithm” algorithm 3.6” and put result in α

3. Return α

The algorithms that perform the binary operations (<, =, >, +, -, *,

/) are listed below. Note: each of the mentioned operations requires two

operands, s1 and s2; data type of each one is a string that represents an

integer decimal number. Also in these algorithms some notations are used

to illustrate dealing with numbers as strings, these notations are explained

below with an example, let s1= 549755814121:

length (s1): number of digits in s1, length (s1)=12,

s1 (j): digit of order j in s1, s1 (4)=7,

left (s1, j), left digit(s) in s1 of length j, left (s1, 5)= 54975,

right (s1, j): right digit(s) in s1 of length j, right (s1, 5)= 14121,

mid (s1, i, j): digit(s) from s1 of length j starting from digit of order i, mid

(s1, 2, 6)= 497558

s1 & s2 : concatenation of s1 with s2, suppose s2= 2053, so

s1 & s2 = 5497558141212053

 Chapter Three Design and Implementation of IMS

 ٣٧

Algorithm (3.4): Compare

Input: String represents integer number (s1)

 String represents integer number (s2)

Output: Greater, Smaller, or Equal

Procedure

1. If Left (s1, 1) = "-" and Left (s2, 1) = "-" Then

 s1 = Right(s1, Length (s1) - 1)

 s2 = Right(s2, Length (s2) - 1)

Else If Left (s1, 1) = "-" Then

 Return = "Smaller"

 Exit

 Else

 If Left (s2, 1) = "-" Then

 Return = "Greater"

 Exit

2. If Length (s2) > Length (s1) The Return “Smaller"

3. If Length (s2) < Length (s1) Then Return “Greater"

4. For i ← 1 to Length (s1)

 4.1 If s1 (i) > s2 (i) Then Return “Greater"

 4.2 If s1 (i)< s2 (i) Then Return “Smaller"

5. Return “Equal”

Algorithm (3.5): Subtraction

Input: String represents integer number (s1)

 String represents integer number (s2)

Output: Result of s1- s2

Procedure

1. Call Compare (s1, s2) algorithm “algorithm 3.4”and put result in Answer

2. If Answer=”Smaller” then Set s← s1, s1 ← s2, s2 ← s, Sign←”-“

 Else set Sign←””

3. For I← 1 to length (s2)

 3.1 Set Digit1← s1 (Length (s1) - I + 1), Set Digit2← s2 (Length (s2) - I + 1)

 3.2 If Digit2 > Digit1 Then

 a. Set s ← Value (Digit1) + 10 – Value (Digit2) + s

 Chapter Three Design and Implementation of IMS

 ٣٨

 b. For J ← I + 1 to Length (s1)

 Set Digit1 ← s1 (Length (s1) - J + 1),

 If Value (Digit1) > 0 Then

 Set Digit1← Value (Digit1) – 1

 Set s1 ← left (s1, Length (s1) - j) + Digit1 + Mid (s1, Length

(s1) - j + 2, j)

 Exit for loop

 Else

 s1 = left(s1, Length (s1) - j) + "9" + Mid(s1, Len(s1) - j + 2, j)

 Else

 Set s ← Value (Digit1) – Value (Digit2) + s1

5. Set s ← left (s1 (Length (s1) – Length (s1))) + s

6. Return Sign & s

Algorithm (3.6): Addition

Input: String represents integer number (s1)

 String represents integer number (s2)

Output: Result of s1 + s2

Procedure

1.Call Compare (s1, s2) algorithm “algorithm 3.4”and put result in Answer

2. If Answer = “Smaller” then

 Set s ← s1, s1 ← s2, s2 ← s

3 For I←1 to length (s2)

 3.1. Set Digit1= s1 (Length (s1) - I + 1), Set Digit2= s2 (Length (s2) - I + 1)

 3.2. Set Sum ← Value (Digit1) + Value (Digit2)

 3.3. Set r ← Right (Sum,1)

 3.4. Set l ←Left (Sum, 1)

 3.5. Set s ← r & s

 3.6. If Value (Sum) > 9 then

 Set s1 ← left (s1, Length (s1) -I) + r + Mid (s1, Length (s1) -I + 1,I - 1)

 For J = I + 1 to Length (s1)

 Set Digit1 ← Value (s1 (Length (s1) - J + 1)) + Value (l)

 Chapter Three Design and Implementation of IMS

 ٣٩

 If Value (Digit1) > 9 then

 Set l ← Left(Digit1,1)

 s1 ← Mid(s1, 1, Length (s1) - J) + "0" + Mid(s1, Length (s1) - J + 2,

J - 1)

 Else

 s1 = Mid(s1, 1, Length (s1) - j) + Digit1 + Mid(s1, Len(s1) - J + 2, J -

1)

 Set l ← ""

 Exit for Loop

 Else

 s1 = Mid(s1, 1, Length (s1) - I) + r + Mid(s1, Length(s1) - I + 2)

 Set l ← ""

 3.7 Set s1 ← l + s1 (Length (s1))

 3.8 Set l ← ""

4. Set s ← l & Mid (s1, 1, Length (s1) - Length (s2)) & s

5. Return s

Algorithm (3.7): Multiplication

Input: String represents an integer number (s1)

 String represents an integer number (s2)

Procedure

Output: Multiplication result of s1* s2

1. Call Compare (s1, s2) algorithm “algorithm 3.4”and put result in Answer

2. If Answer="Smaller" then

 Set s ← s1, s1← s2, s2← s

3. Set Digit1 ← s2 (Length (s2))

4. Call MultiplyOne (s1, Digit1) algorithm and put result in s (algorithm 3.8)

5. For I ← 2 to Length (s2)

 5.1 Set Digit1 ← s2 (Length (s2) - I + 1)

 5.2 Call MultiplyOne (s1, Digit1) algorithm “algorithm 3.8”and put result in

Temp

 5.3 Set Temp←Temp & “0”

 5.4 Call Add (Temp, s) “algorithm 3.6” and put result in s

6. Return s

 Chapter Three Design and Implementation of IMS

 ٤٠

Algorithm (3.8): MultiplyOne

Input: String represents an integer number (s1)

 Integer number of length one (Digit1)

Output: Multiplication of s1 * Digit1

Procedure

1. For I ← 1 to Length (s1)

 1.1 Set Digit2 ← s1 (Length (s1) - I + 1)

 1.2 Set Temp← Value (Value (Digit1) * Value (Digit2)) + Value (l)

 1.3 If Length (Temp) > 1 Then Set l ← left (Temp, 1)

 Else Set l ← ""

 1.4 Set r ← Right (Temp, 1)

 1.5 Set s ← r & s

2. Set s ← l & s

3. Return s

Algorithm (3.9): DivMod

Input: String represents an integer number (s1)

 String represents an integer number (s2)

Output: Division and reminder result of s1/ s2

Procedure

1. Call Compare (s1, s2) “algorithm 3.4” and put result in Answer

2. If Answer = "Smaller" Then

 Set reminder ← s1, result← "0"

 Exit

Else

 If Answer = "Equal" Then

 Set reminder ← "0", result ← "1"

 Exit

3. Set temp←””

4.Do until s1 = temp

 4.1 set s← Mid (s1, 1, Length (s2))

 4.2 Call Compare(s, s2) algorithm “algorithm 3.4” and put result in Answer

 Chapter Three Design and Implementation of IMS

 ٤١

 4.3 If Answer = "Smaller" Then set s ← s + Mid (s1, Length (s2) + 1, 1)

 4.4 For I = 0 To 9

 Call MultiplyOne (s2, I) algorithm “algorithm 3.8”and put result in temp

 Call Subtract(s, temp) algorithm “algorithm 3.5” and put result in temp

 If Left (temp, 1) = "-" Then

 Set I ← I + 1

 Set temp ← Right (temp, Length (temp) - 1)

 Exit For

Else

 Call compare (s2, temp) algorithm “algorithm 3.4” and put result in Answer

 If answer=”Greater” or Answer=”Equal” then

 Exit For

 4.5 set s1 ← temp & Right (s1, Length (s1) – Length (s))

 4.6 set r ← r & I

5. Set reminder←s1, result ←r

6. Return result and reminder

3.4.2 Starting Serving

Once the keys (p, α) were successfully generated, the server

prepares to start client’s serving. Starting serving requires opening two

windows sockets:

1. WsTcpServerReg: this socket will be used to send and receive data

between server and all the clients. These data are mainly related to

the registration process. This socket will be listening (i.e. waiting

for connections from clients) on port pt1.

2. WsTcpServerLog: this socket will have the same above socket’s

function except that the sent and received data is related to the

login process. This socket will be listening on port pt2.

Once server starts listening, then it’s ready to exchange data with

any client for both registration and logging in operations. The exchanged

 Chapter Three Design and Implementation of IMS

 ٤٢

data are transmitted between clients and server in form of packets. The

IMS packet consists of header and data. Figure (3.2) shows typical

representation of the proposed IMS packet.

Packet ID Version Length Service Type

Data

Figure (3.2): IMS Packet

IMS header part consists of:

1. Packet ID: The first three bytes of all packets are always

“IMS” string, the messenger name.

2. Version: Two bytes are for the IMS version number; the

current version of IMS is 1.0.

3. Length: A two-byte value stating how many bytes are in the

data section of the packet.

4. Service Type: Five bytes used to tell the client and server what

kind of service is requested/being responded to.

IMS data part consists of sent/received data between client and

server. The following packet is an example of an IMS packet

(IMS, 1.0, 5, chats, “hello”)

3.5 Registration Module

In this module, the client registers as new member in IMS;

successful registration sequence is shown in figure (3.3). Client’s

registration at IMS server requires first creating a windows socket

(WsTcpClientReg) to be used for connecting with server on port pt1, if

connection didn’t succeed then reconnection with server will

automatically repeated until either connection accomplished or user

choose to stop reconnection.

Header

Data

 Chapter Three Design and Implementation of IMS

 ٤٣

Figure (3.3): Successful Registration Sequence

After successful connection, client must present:

• The registering information (RegInfo), which include (UserID,

First Name, Last Name, Birthday date).

• Password

• Challenge information: a string represents an answer to a question;

in IMS client program there is specific number of questions, so that

the user select one of the questions and answer it. This information

Connect

Accept

Send RegInfo

Receive RegInfo

Get unused p, α

Send p, α
Receive p, α

Compute Secret Keys a, ac

Compute Public Keys y, yc

 Receive y, yc

 Save y, yc

Close Close

Client Server

Send Public Keys y, yc

 Chapter Three Design and Implementation of IMS

 ٤٤

will be used when user needs to change the password because

he/she forgot it.

Note that first and last name is for interface presentation not for

authentication.

The password must meet two requirements:

1. Its length must be at least 8 characters long and less than 16.

2. There must be at least one alphabetic character (A through Z) or (a

through z), and one numeric character (0 through 9) in the

password.

The client sends to server a packet contains its RegInfo, the server

accepts the Registration Info only if:

1. UserID, First Name, Last Name and challenge information do not

contain any special characters *, &, ^, $, #, @, (,) ~, >, <, ?, |, \, ’,

”, :, {,}, %.

2. Birthday must be valid birthday date of the form (YYYY, MM,

DD).

3. The length of the UserID is greater than 3 characters and less than

16, this range is chosen to make number of possible UserID very

large.

4. UserID must be unique, i.e. never used by any other client before,

if it is then client should choose another UserID.

If any of the above requirements was not satisfied then the server

send error message to user to inform him/her to re-choose the UserID.

After accepting the registration information by server, the server

assigns unused values of p, α. The entry with false value in the flag field

marks unused values for p, α. The index of p, α, in Primes/Generators

table is saved in Pending Registering table (table 3.3) and set flag field of

this entry to true.

 Chapter Three Design and Implementation of IMS

 ٤٥

Table (3.3): Pending Registering

UserID First Name Last Name Birthday ChallengeInfoQuestion PαIndex

Paul_2002 Paul Andrew 2000/10/10 What’s the name of

your first school

1

Linda_Wilson Linda Wilson 1988/2/3 What’s your childhood

hero

3

Martin_Steve Martin Thomas 1977/9/10 What make was your

first car or bike

2

etc

Now server sends p, α to client who in turn will use these two

numbers for computing another numbers, which are: the secret keys a, ac

and public keys y, yc. The secret keys a and ac are computed using MD5

hash algorithm (Appendix A), such that a=MD5 (UserID & Password),

ac=MD5 (UserID & Challenge Information). Now, client computes

public keys y and yc as follows [Men96]:

 py a modα= (3.1)

 py ca
c modα= (3.2)

y and yc are computed using FastExp algorithm (Appendix A),

Client sends its public keys y, yc to server. After receiving these keys

from client, server saves these two numbers in Registered Clients table

(table 3.4), server also save all information collected to this client which

are: First Name, Last Name, Birthday, ChallengeInfoQuestion and

PαIndex from Pending Registering client table.

Table (3.4): Registered Clients

UserID First

Name

Last

Name

Birthday y yc ChallengeInfoQuestion PαIndex

Linda_Wilson Linda Wilson 1981/9/10 53180632110

6783356666

29478167448

3622736176

What’s the name of

your first school

3

The UserID of this client is saved in another table called Offline

table (table 3.5). This table consists of four fields, first one is the UserID

 Chapter Three Design and Implementation of IMS

 ٤٦

of a client, which its registration process is in final stage, and rest fields

are initially empty. Offline Messages field is used to save offline

messages sent by other clients to this client in time this client was offline.

The Buddy List field consists some UserIDs that was added by this client.

The last field, Add Request, contains requests from other clients to add

this client to their Buddy List field. Finally server informs this client that

registration process was completed successfully and disconnects

connection with client.

The mentioned numbers p,α, y will be used in the client’s

verification process at login. The above steps are presented in algorithm

3.10. The input to this algorithm is server’s IP (SerIP), and server

listening port pt1, registration information (RegInfo) and (UserID,

Password) pair entered by user.

Table (3.5): Offline

UserID Offline Message Buddy List Add Request

Paul_2002 "Hello, how are you?",

2006/11/14, 12:16 pm

Martin_Steve Linda_Wilson,

2006/11/14, 12:16pm

Algorithm (3.10): Client Registration

Input: Server IP (SerIP)
 Server local port (pt1)

 Registration information (RegInfo)

 Client’s UserID (UserID)

 Client’s password (Password)

Output: Success or Fail

Procedure
1. Client connects to server using WsTcpClientReg on server’s listening port pt1.

2. If Server is ready then it will:

 2.1 Increment number of client’s attempting to register by one,

 Set Index←index+1

 2.2 Accept connection request

 2.3 Send to client the packet (IMS, 10, 5, Regis, Ready)

 Else

 Chapter Three Design and Implementation of IMS

 ٤٧

 Client get error message telling that server is not available at current time

 Repeat step 1.

3. Client sends the server the packet (IMS, 1.0, Length, Regis, RegInfo)

4. Server receives RegInfo and check RegInfo.

5. If RegInfo doesn’t satisfy its condition then

 Set Answer to contain name of field(s) in RegInfo table that are not valid with

reason

 Send to client packet (IMS, 1.0, 5, RegRe, Answer)

 Disconnect with client

 Else

 Open clients file

6. Set I←1, Flag←True

7.Do while not end of file

 7.1 If RegisteredClients (I). UserID = UserID then

 Set Flag←False

 Exit loop

 7.2 Increment I by 1

8. If Flag= False then

 Server Send to client packet (IMS, 1.0, 5, RegRe, Exist)

 Disconnect with client

 Else

 Open Keys file

9. assignSearch for unused p, α

10. Set pαIndex ←index of p and α

11. Server saves client information in Pending Registering table.

 Set Pending Registering (index). UserID←UserID

 Pending Registering (index). First Name ←First Name

 Pending Registering (index). Last Name ←Last Name

 Pending Registering (index). Birthday←Birthday

 Pending Registering (index). pαIndex ← pαIndex

 Pending Registering (index). ChallengeInfoQuestion ← ChallengeInfoQuestion

 Pu= p &”;”& α

12. Server send client packet (IMS, 1.0, Length, RegPu, Pu)

13. Client receive packet and do the following:

 13.1 Set a← UserID & Password

 13.2 Set ac←UserID & Challenge Information

 13.3 Call MD5 (a) algorithm and put hexadecimal result in a

 13.4 Call MD5 (ac) algorithm and put hexadecimal result in ac

 Chapter Three Design and Implementation of IMS

 ٤٨

 13.5 Convert a to decimal representation and put result in a.

 13.6 Convert ac to decimal representation and put result in ac.

 13.7 Call Compare (a, p) algorithm “algorithm 4.3” and put result in flag

 13.8 If flag= “Greater” then

 Call DivMod (a, p1) algorithm “algorithm 3.9” and put result in a

 13.10 Call FastExp (α, a, p) and put result in y.

 13.11 Repeat step 13.9 for ac instead of a

 13.12 Call FastExp (α, ac, p) and put result in yc.

14. Send to server the packet (IMS, 1.0, Length, RegPu,UserID; y; yc)

15 Server receive packet and do the following:

 If UserID ≠ Pending Registering (index).UserID then

 Delete client from pending registering table

 Send error packet to client (IMS, 1.0, 4, RegRe, Fail)

 Return Fail

 Else

 Open Clients file

 Add new entry to RegisteredClients table

 Registeredclients.UserID ← UserID

 RegisteredClients.FirstName ← pending registering (index).First Name

 RegisteredClients.LastName ← pending registering (index).Last Name

 RegisteredClients.Birthday ← pending registering (index).Birthday

 RegisteredClients. ChallengeInfoQuestion ← ChallengeInfoQuestion

 RegisteredClients.pαindex ← pending registering(index).pαindex

 RegisteredClients.y ← y

 RegisteredClients.yc ← yc

16. Server Send client packet (IMS, 1.0, 4, RegRe, Done)

17. Delete client from Pending Registering table

18. Disconnect with client

19. Return Success

To check if a UserID is already exists in Registered client table,

client must send to server the packet (IMS, 1.0, RegCh, UserID) to server

using WsTcpClientReg, the server reply with Packet (IMS, 1.0, Length,

Answer), and then server disconnects with client. If the UserID exists the

Answer will be “Exists” else it will be “Not Exists”.

 Chapter Three Design and Implementation of IMS

 ٤٩

3.6 Login Module

The client must present its own correct UserID and Password to

login, figure (3.4) illustrates successful login sequence. After successful

login the client will be considered to be Online. In this module the server

will make use of the windows sockets (WsTcpServerLog), which created

in Starting Serving part (3.4.2).

Successful login requires client to pass the authentication test. The

authentication test involves the client to send its UserID to server, server

checks if UserID exists in OnlineClients table (table 3.6), if UserID was

exists then server inform client that this UserID is already logged in.

Table (3.6): OnlineClients

UserID

Paul_2002

Linda_Wilson

Martin_Steve

etc

If UserID was not exists in OnlineClients table, server search for

that client p, α and y in Registered Clients table, add then to Pending

Login table (table 3.7) and send them to it.

Table (3.7): Pending Login

UserID p α y

Linda_Wilson 590295810358705651829 2 531806321106783356666

 Chapter Three Design and Implementation of IMS

 ٥٠

Figure (3.4): Successful Login Sequence

Connect

Accept

Send UserID

Receive UserID

Get p, α, y of UserID

Send p, α
 Receive p, α

Compute secret key a

Compute public key y

 Receive y

Generate random
message

Send Message Receive Message

Client Server

Select k

Compute k-1

Compute r

Compute s

Send s, r
Receive s, r

Compute v1, v2

Send Offline Messages
and Add requests

Send UserID, y

Receive Offline
Messages and Add

requests

 Chapter Three Design and Implementation of IMS

 ٥١

Client uses its UserID and password as input to MD5 hash

algorithm to compute its secret key a, then using FastExp algorithm

(Appendix A) to compute its public key y [Men96]:

py a modα= (3.3)

Then, client sends y with UserID in a packet to server, server

checks if the received pair (UserID, y) matches any entry in

PendingLogin table. If no match happened then server sends error

message to client and then disconnect with it. But if there was matching

then server sends client a message to sign it, the message is hashed using

MD5 hash algorithm.

The client receives the hashed message and starts signing process.

First client compute a random secret number k, such that gcd(k, p-1)=1,

generating the random k will make use of the function Rnd, this function

is a defined function in Visual Basic programming language, that returns

a value less than 1 but greater than or equal to zero. Then client compute

r using as follows [Men96]:

 pr k modα= (3.4)

To compute signature s, client must compute inverse of k, which is

computed using extended Euclidian algorithm (Appendix A). Now client

computes signature s as follows [Men96]:

)1mod(})({1 −−= − parmhks (3.5)

Client sends the received message, r, and s to server. Upon

receiving the signature, server verify the received signature as follows

[Men96]:

 pryv sr mod1 = (3.6)

 pv
mh mod)(

2 α= (3.7)

If v1 ≠ v2 then the client failed to prove its identity (i.e. verification

process failed) so server send error message to client and then disconnect

 Chapter Three Design and Implementation of IMS

 ٥٢

with client. But If v1= v2 then verification process succeeds and client

allowed being online.

The server adds this client’s UserID to OnlineClients table (table

3.6).

The server also sends the UserID and IP of this client to all clients

in Online Clients table, finally server checks Offline table and sends to

this client the UserIDs (if there is any) in Buddy List field, also server

sends any offline messages or add requests that may be sent by other

clients. Algorithm 3.11 illustrates login process.

Algorithm (3.11): Login Process

Input: Server IP (SerIP)

 Server local port (pt2)

 UserID of a client aims to login (UserID)

 Password of UserID (Password)

Output: Success or Fail

Procedure

1. Using WsTcpClientLog client A connects to server’s IP (SerIP) on its listening

port pt2.

2. If Server is available then server do the following:

 2.1 Increment number of client’s attempting to login by one,

 Set index←index+1

 2.2 Accept connection request

 2.3 Send to client the packet (IMS, 1.0, 5, Login, Ready)

 Else

 Client get error message telling that server is not available at current time

 Repeat step 1.

3. Client sends Server Packet (IMS, 1.0, Length, Login, UserID)

5. Server receive packet and set I←1

6. Do until I ≥ Index-1

 If OnlineClients (i). UserID= UserID then

 a. Send client Packet (IMS, 1.0, 5, LogRe, Loged)

 Chapter Three Design and Implementation of IMS

 ٥٣

 b. Disconnect with client

 c. Return Fail

 Else

 Increment I by 1

7. Set I ← 1, PαIndex ← 0

8. Open Clients file

9. Do while not end of file

 If RegisteredClients (I). UserID=UserID then

 Set PαIndex ←RegisteredClients (I). PαIndex

 Set Pending Login(index).UserID=UserID

 Set Pending Login(index). y ←RegisteredClients (I).y

 Exit loop

10. If PαIndex ≠ 0 then

 10.1 Open keys file

 10.2 Set Pending Login (index) .p←PrimesGenerators (PαIndex). p

 Set Pending Login (index).α←PrimesGenerators (PαIndex).α

 10.3 Sends client Packet (IMS, 1.0, Length, Logpα, p, α)

 Else

 Sends client Packet (IMS, 1.0, 4, LogRe, Fail)

 Disconnect with client

 Return Fail

11 Client receive packet and do the following:

 11.1 Set a← UserID & Password

 11.2 Call MD5 (a) algorithm and put hexadecimal result in a

 11.3 Convert a to decimal representation and put result in a.

 11.4 Call Compare (a, p) algorithm “algorithm 4.3” and put result in flag

 11.5 If flag= “Greater” then

 Temp=Divmod (a, p)

 11.6 Call FastExp(α, a, p) and put result in y.

 11.7 Send server the packet (IMS, 1.0, Length, LoggY, UserID; y)

12. Server receive packet and do the following:

 12.1 If received y ≠ Pending Login (index). y then

 Send client packet (IMS, 1.0, 4, LogRe, Fail)

 Chapter Three Design and Implementation of IMS

 ٥٤

 Disconnect with client.

 Return Fail

 Else

 Server create random message (M) of length 128 bit

 12.5 Call MD5 algorithm to compute message digest of (M) and put result in M.

 12.7 Send the hashed message to client (IMS, 1.0, Length, HsMsg, M)

13. Client receive packet and do the following:

 13.1 set G←”0”

 13.2 Do until G=1

 a. Rd←Rnd

 b. Set k ← right (Rd, length (Rd)-2)

 c. Compute GCD (k, p1) and put result in G

 13.3 Call FastExp (α, k, p) and put result in r.

 13.4 Call Inverse (k, p -1) algorithm and put result in k1

 13.5 call Multiplication (a, r) algorithm “algorithm 3.7” and put result in s.

 13.6 call Subtraction (M, s) algorithm “algorithm 3.5” and put result in s.

 13.7 Call Multiplication (k1, s) algorithm “3.7” and put result in s.

 13.8 cal DivMod (s, p1) and put reminder result in Temp.

 13.9 Call Addition (s, p1) algorithm “algorithm 3.8” and put result in s.

 13.10 Client send signature to server (IMS, 1.0, Length, SgMsg, M;s;r)

14. Server receive packet and start verification process as follows:

 14.1 If r ≤1 or r ≥ p-1 then

 Send error Packet (IMS, 1.0, 4, LogRe, Fail)

 Return Fail

 Else

 Call FastExp (Pending Login (index).y, r, Pending Login (index).p) algorithm

and put result in Temp1

 Call FastExp(r, s, Pending Login (index).p) algorithm and put result in Temp2

 Call Multiplication (Temp1, Temp2) algorithm “algorithm 3.7” and put result

in Temp2

 Call DivMod (Temp2, Pending Login (index).p) algorithm “algorithm 3.9”

and put reminder result in v1 .

 Chapter Three Design and Implementation of IMS

 ٥٥

 14.2 Call FastExp (Pending Login (index).α, m, Pending Login (index).p)

algorithm and put result in v2.

 14.3 Call Compare (1v , 2v) algorithm “algorithm 3.4” and put result in Answer

 14.4 If Answer=”Equal” then

 Send to each client in OnlineClients table the UserIDs in this table with IP

of each client

 Else

 Send Packet= (IMS, 1.0, 4, LogRe, Fail)

 Return Fail

 14.5 Set I←1, off←””, request←””

 14.6 open Offline table

 Do while not end of file

 If Offline (I). UserID=UserID then

 If Offline (I). Offline≠”” then

 Set off←Offline (I). Offline

 If Offline (I).AddRequest ≠ “” then

 Set request←Offline (I).AddRequest

 14.7 Set Message←off &”;” & request

 14.8 server send to client (IMS, 1.0, Length, LogOf, Message)

15. Client receive Client create windows socket WsChat1 to use it for chatting with

other clients in private area chat

16. Return Success

3.7 Chatting Module

In this module the client is allowed to:

1. Chat with other clients.

2. Adding UserID to a list named Buddy List.

3. Sending offline messages to offline clients.

4. Changing known password.

The following sections provide clear description of these functions.

 Chapter Three Design and Implementation of IMS

 ٥٦

3.7.1 Chat

 Online clients can send instant messages to each other using:

1. Public chat area: where all clients chat in one area such that the text

in this area can be seen by all clients, this chat area contains

UserIDs of all online clients. The instant message is first sent to

server using the windows socket WsTcpClientLog, and upon

receiving it; the server sends it to all clients except sender. The

clients receive the instant message and print it in public chat area.

2. Private chat area: this chat area is specified for two users only.

Also online client can use both chat areas at the same time. The

client can use this chat area for chatting with online clients or for

sending offline messages to offline clients. As mentioned before

each online client creates windows socket WsChat1 and start

listening on port pt3. Suppose client A want to chat with client B,

so there is two cases:

• If client B is online then client A create windows socket

WsChat2, and save the instant message typed by user in

buffer, then client A connects to client B on the listening

port pt3. Client B accept connection request, and inform A

that its ready to chat. Client A sends buffered instant

message to B, client B receive that instant message and now

both clients, A and B, can exchange instant messages.

• If client B is offline then client A save instant message typed

by user in buffer and then using the windows socket

WsTcpClientLog, client A send the typed message to server,

server will update the client B entry in Offline table such that

Offline field in this table will contain: UserID of client A,

A’s instant message and current time.

 Chapter Three Design and Implementation of IMS

 ٥٧

3.7.2 Adding UserIDs to Buddy List

 The client is allowed to modify Buddy List field in Offline table.

Suppose client A wants to add client B to its Buddy List, so using

WsTcpClientLog, client A sends to server client’s B UserID. Server

checks if this UserID exists in RegisteredClients table, if it does not exist

then server sends error message to client A to inform it that this UserID is

not exists. Else if UserID exists then server check if B’s UserID already

exists in A’s Buddy List, if its exists then server sends to client A a

message telling that client B is already in A’s Buddy List, else server

checks if client B is online, if B is offline then server updates client B

entry in Offline table so that Add request field will contain UserID of

client A and current time, but if B was online then server send to it a

message telling that client A wants to add it to its Buddy List table. If

Client B refused add request then server send to client A a message

telling that client B refused adding request, else server update client A

entry in Offline table so that So that clients A and B UserID will be added

to Buddy List field in A and B entries in offline table..

 The function of changing password is same as described in section

3.8.1.

3.8 Change Password Module

 The password can be changed by user in two cases: first when user

wants to change the password which he/she knows, second when user

forgot the password correspond to a UserID.

3.8.1 Changing Known Password

 To change a password correspond to a specific UserID, the client

must first connect with server, connection will be done using

 Chapter Three Design and Implementation of IMS

 ٥٨

WsTcpClientLog socket (pt2). After successful connection, the client

must presents its UserID, current password and the new password, the

client send the UserID to server, server receives UserID and searchs for it

in RegisteredClients table, if the UserID does not exist in this table then

the server sends error message to client.

But if the UserID exists in RegisteredClients table so server gets p, α

correspond to this UserID from this table and sends them to it, the client

receives the pair (p, α) and computes the secret key a, a=MD5(UserID &

current password) ,then uses a to generate the public key y as follows

[Men96]:

py a modα= (3.8)

 Client sends to server its UserID and public key y, then the server

verifies if the received y match an entry in Registered client table

correspond to the received UserID. If the match happened then server

sends client a random hashed message to sign, the client receive message

and select a random value k such that gcd(k, p-1)=1 and then compute k-1

mod p -1, to compute r as follows [Men96]:

pr k modα= (3.9)

and then compute s as follows [Men96]:

)1mod(}*)({1 −−= − pramhks (3.10)

Client send the signature pair (s, r) to server, server verify signature as

follows [Men96]:

 pryv sr mod1 = (3.11)

 pv mh mod)(
2 α= (3.12)

 If v1=v2 then sever sends to client a message that verification

process succeed, now client computes a new secret key a and computes

public key y and sends it to server, server replaces old value of y with the

received y.

 Chapter Three Design and Implementation of IMS

 ٥٩

 The client can make use of the new password next time client

login.

3.8.2 Changing Forgotten Password

 Changing forgotten password is another function of the proposed

IMS. To make use of a UserID which its password was forgotten, first the

client connects to server using window socket WsTcpClientLog, server

accept connection request and asks client to sent its UserID and birthday

date, if UserID is not exist in RegisteredClients table then server send to

client error message, else server checks if the entered birthday is correct,

only if birthday date is correct then server get the question of challenge

information of this client from RegisteredClients table and sends it to

client. Client will answer the question and then the answer will be hashed

with UserID using MD5 hash algorithm to compute ac,

ac=MD5(UserID & Challenge Information), then compute public key yc

as follows [Men96]:

 py ca
c modα= (3.13)

Client sends yc to server, server receives yc and checks if the received yc

matches the yc correspond to that UserID in RegisteredClients table. If it

doesn’t match then server sends error message to client, else server sends

to client a random hashed message to sign. Client sign the message (as

with login) by first selecting a random number k, such that gcd (k, p-1)=1

and computing r as follows [Men96]:

 pr k modα= (3.14)

Client selects a random secret number k, such that gcd(k, p-1)=1, and

then computes k-1 mod p -1to compute s as follows [Men96]:

)1mod(}*)({1 −−= − pramhks c (3.15)

Client sends signature pair (r, s) to server. Server receives signature pair

and verifies signature, as follows [Men96]:

 Chapter Three Design and Implementation of IMS

 ٦٠

 pryv sr
c mod1 = (3.16)

 pv mh mod)(
2 α= (3.17)

If v1= v2 then verification process succeeds. The new secret key will be

computed using the UserID and the new password, a=MD5 (UserID &

password), then compute public key y [Men96]:

 py a modα= (3.18)

and send public key to server. Server replace the old y with the new

received one.

CHAPTER FOUR

IMS Interface and Evaluation

4.1 IMS Interface

IMS system consists of two interfaces, Server (IMS Server), which

is installed in the Administrator's computer, and the Client (IMS Client),

which is installed in the remote computers.

The IMS Client.exe must run in the remote PC in the network by

adding it to the start up menu of the remote PC to be used by any user

who aims to be member of IMS’s clients. At the Administrator side, the

IMS Server.exe is executed in the Administrators computer to start

client’s serving.

4.2 How to Use IMS Server

IMS server interface designed to enable the Administrator to serve

clients reside at the host or remote PC(s) easily. When IMS executed, the

main form, shown in figure (4.1), will appear. This form consists of three

menus.

 Figure (4.1): IMS Server Main form

 Chapter Four

 ٦٢

Menus in the main form are:

1. File: allows administrator to generate new primes/generators table,

which will contain values for (p,α) in new file or in an existing file

as shown in figure (4.2).

Figure (4.2): File Menu

2. Run: allow administrator to start or stop IMS Server’s running as

shown in figure (4.3).

Figure (4.3): Run Menu

3. Help: This option contains one function, this function is About, as

shown in figure (4.4). Clicking on this About option will displays a

message box contain short information about the IMS, as shown in

figure (4.5).

 Chapter Four

 ٦٣

Figure (4.4): Help Menu

Figure (4.5): About Option

The following steps show how administrator should use IMS

Server to be able to serve IMS users properly:

Step1: when administrator first runs the IMS Server, then the main form

shown in figure (4.1) will appear.

Step2: the administrator must first fill the Primes/Generators table to

generate (p,α) pairs by clicking on “New File” option in File

menu. When clicking on this option, the form shown in figure

 Chapter Four

 ٦٤

(4.6) will appear, it allows administrator to choose where to save

the file which Primes/Generators table will be saved in.

Figure (4.6): save form

After that, the form shown in figure (4.7) will automatically

appear, the administrator enters number of primes to be generated and

length (in bits) of minimum prime to be generated, then click OK button.

When (p,α) generation complete message box will appear to inform

administrator that generation was complete. Then administrator can click

on Close button to exit.

Figure (4.7): New form

 Chapter Four

 ٦٥

Step3: once generation was completed successfully so server program is

ready to start serving. To start serving administrator click on

“Start” option in Run menu. Since server is running now so

“Start” option will be inactive to prevent administrator clicking

on this option by mistake.

The administrator can add new (p,α) values to an existing file by

clicking on “Add to File” option in File menu, when clicking on this

option then the form shown in figure (4.8) will appear. The administrator

should enter the number of extra primes to be generated and then click on

“Add”. When generation complete, a message box will appear to inform

administrator that adding new primes completed successfully.

To stop server running, administrator can click on “Stop” option in Run

menu.

Figure (4.8): Add form

4.3 How to Use IMS Client

 IMS Client is designed to allow user to chat with other users

already logged in IMS. When a user executes IMS Client, the main form

shown in figure (4.9) will appear. This form consists of:

1. UserID textbox: to allow user to enter its own UserID for login.

2. Password textbox: to allow user to enter the password

corresponding to a specific UserID.

 Chapter Four

 ٦٦

3. Server IP textbox: allow user to enter IP address of server to

provide the ability to connect to that IP, this textbox contain a

default IP, so that user will not have to enter the IP only if server IP

changed.

4. Change Your Password Button: this button allows the user to

change a password that he/she knows or forgot.

5. Register Button: a user who aims to register with new UserID in

IMS can use the register button.

6. Login Button: an already registered user can login after entering its

UserID in UserID text box and its password in Password textbox.

Figure (4.9): IMS Messenger Main form

4.3.1 How to register in IMS

The following steps show how a new user can use IMS Client

program (IMS Messenger) for registration.

Step1: User enter server IP in “Server IP” textbox, then click on

“Register” button in figure shown above, the form shown in

figure (4.10) will appear. The user must enter the following:

 Chapter Four

 ٦٧

1. First Name: represents first name of user, its length must be

between 4 and 15.

2. Last Name: represents last name of user, its length must be

between 4 and 15.

3. UserID: username to be used to login, it should not contain special

characters like (!, @, #, $, % etc).

4. Check Availability Button: clicking on this button allows the user

to ask server if the entered UserID is used before by another user

or not.

5. Password: password to be used with the above UserID for login,

its length must be between 8 and 15, containing at least one

character between (a-z) or one character between (A-Z) and at

least one number value (0-9).

6. Questions List: number of questions that user must answer of

them.

7. Challenge information: represent an answer to a question chosen

by user; this information is needed when user forgot its password.

Figure (4.10): Registration form

 Chapter Four

 ٦٨

Step2: After filling the above information, the user should click on

Submit button.

Step3: If the entered information accepted by server then the form shown

in figure (4.11) will appear, otherwise the form (4.10) will appear

again and the wrong entered information will be marked by “*”

to inform user that these information are wrong.

Figure (4.11): Successful Registration form

4.3.2 How to Login to IMS

For login, the user must enter a UserID, password, and Server IP in

the main form shown in figure (4.9), and then click on “Login” option. If

the user didn’t enter a UserID or password or both, then a warning

message box will appear as shown in figure (4.12).

Figure (4.12): Wrong Information form

But if the user enters the UserID and password, the form in figure

(4.13) will appear; this is the public room where all users of the room can

see what every other member types.

 Chapter Four

 ٦٩

Figure (4.13): Public Area Chat

This form contains:

1. File menu: it contains four options:

• Add user: allows user to add a UserID to his/her buddy list.

• Change password: helps user to change the password after

login, the new password can be used when the user tries to

login in the future.

• Create new UserID: allows user to create a new UserID after

login.

• About: displays a message box contains short information

about the IMS, as shown in figure (4.14).

• Logout: to exit from IMS Messenger

 Chapter Four

 ٧٠

Figure (4.14): About form

2. In textbox: this text box contains the text typed by this user and

other users logged in from another’s PCs.

3. Out textbox: allows user to type text to be sent to all other users.

4. Send button: this button can be used to send any text typed in Out

textbox.

5. IMS List: this list contains the UserID’s of all IMS member that

are logged in.

6. Online Buddy List: this list contains UserIDs of Online’s users in

user buddy list.

7. Offline Buddy List: this list contains UserIDs of Offline’s users in

user buddy list.

Both lists (Online Buddy List and Offline Buddy list) appear every

time user login.

In order for a user to chat with any user listed in this IMS list or

Buddy List, he/she must click on its UserID, then the form shown in

figure (4.15) will appear, the title bar of this form will contains the

UserIDs of users participating in this chat area, this form also

contains two textbox: In textbox and Out textbox for incoming and

outgoing text as in public room.

 Chapter Four

 ٧١

Figure (4.15): Private Area Chat

4.3.3 Adding a UserID to Buddy List

 The user can add UserID(s) to his/her Buddy List by clicking on

Add User option in file menu of public chat area form shown in figure

(4.13), after clicking on this option the Add User form will appear as

shown in figure (4.16).

Figure (4.16): Add User form

Suppose the user “Linda” aims to add the UserID of “Martin” to

her Buddy List, Linda must enter the UserID of “Martin” in the text box

shown in figure (4.16) and then click Add. The server send this add

request to “Martin”, when “Martin” is online he will receive a message

shown in figure (4.17).

 Chapter Four

 ٧٢

Figure (4.17): Add Request form

“Martin” must reply the add request in the above form, if “Martin”

replied No then the form shown in figure (4.18) will appear on Linda’s

screen, which inform “Linda” that “Martin” refused to add her to his

buddy list, else the form shown in figure (4.19) will appear. The server

then will add Martin’s UserID to Linda’s buddy list; also Linda’s UserID

will be added to Martin’s buddy list.

Figure (4.18): Reject Add Reply

Figure (4.19): Accept Add Reply

 Chapter Four

 ٧٣

4.3.4 Changing Password

 The user is allowed to change the password which he/she knows or

forgot, the following steps illustrate the process of changing a known

password:

Step1: the user click on “Change password” button in figure (4.9), then

the form shown in figure (4.20) will be appear.

Figure (4.20): Change password form

Step2: in this form there are two options

1. Changing known password.

2. Changing forgotten password.

 The user must select the first option and then click “next” button,

then the form shown in figure (4.21) will appear.

Figure (4.21): Changing known Password form

 Chapter Four

 ٧٤

Step3: in this form, the user must enter its UserID, the password, which

he/she wants to change, and the new password. Then he/she click

“Edit” button. If the (UserID, password) pair is correct and the

new password satisfy the conditions then a new form will appear

to inform user that changing password was completed successful,

else the same above form will appear with “*” on right side of the

wrong field.

To change a password that was forgotten by user:

Step 1: the user must select the second option in the form shown in figure

4.20 and then click on “Next” button, then the form in figure

(4.22) will appear.

Figure (4.22): Change Forgotten Password First form

Step2: in this form the user must enter

1. UserID which user forgot this UserID ‘s password.

2. Birthday date, this date must match the date entered at

registration.

Step 3: then the user must click on “Next” button, if the UserID and/or

birthday date was wrong then the same form will appear with “*”

mark on the wrong field, otherwise the form in figure (4.23) will

appear.

 Chapter Four

 ٧٥

Step 4: This form contains the question that was chosen and answered by

user at registration. The user must answer this question in the first

text box in this form, and enter the new password in the second

and the third text box, then click “Send”.

Step5: Only if the answer of the question was correct and the new

password satisfy its conditions then a message box will appear to

inform user that this UserID can be used again with the new

password.

Figure (4.23): Changing Forgotten Password Second form

 Chapter Four

 ٧٦

4.2 IMS Evaluation

In this section, the requirements that are addressed in section 3.2

are discussed to evaluate the performance of the designed system.

1. Easy of use: From the user point of view, IMS client interface

provides an easy and simple way to do the following activities:

registration, login, chatting, sending offline messages, and

changing password.

2. Fast Execution: one of the important issues of any instant

messaging system is speed. IMS passes through many execution

phases, these are evaluated as follows:

• Initialization phase: the server prepares a table of N public key

parameters pairs (p, α), where the first p value of this list is of

length equal K bits. This table is generated just for once (in

offline mode) on the server side. Table (4.1) shows examples

of the time that spent to generate lists of 20 pairs of (p, α) for

different K length.

Table (4.1): Examples of Initialization Time Consuming

K (no. of bits) Time (in seconds)

10 8.125

20 63.171

30 193.4531

40 428.8594

50 972.4219

• Registration phase: this phase is affected mainly by the

parameter p (it’s length), as shown in table (4.2).

 Chapter Four

 ٧٧

 Table (4.2): Examples of Registration Time Consuming

p length in bits p value Time (in seconds)

10 521 0.8125

20 524309 0.90625

30 536870923 1.4375

40 549755813911 2.328125

50 562949953421381 3.953125

60 576460752303423619 6.0625

• Login phase: as with registration, the most effected parameter

by mean of time in login phase is p, table (4.3) shows the

approximately time needed by client to login for different p

values.

 Table (4.3): Login Time Consuming

p length in bits p value Time (in seconds)

10 521 0.96875

20 524309 1.34375

30 536870923 2.046875

40 549755813911 3.609375

50 562949953421381 5.671875

60 576460752303423619 9.640625

 From the above tables, we can notice that the longer part of execution

time of the whole system is initiation phase execution time, this time does

not affect the client’s job, i.e. this time will be invisible to the end user,

while the other phases execution’s time could be considered to be

unnoticeable to the end user. It is also noticed when the number of pairs

(p, α) is greater than 10 pairs for K length greater than 60 bits, then the

administrator will have to wait long time to finish initialization phase (for

example 3 hrs), although this time will be noticed by administrator, it

isn’t by client.

 Chapter Four

 ٧٨

3. Security: The security of the system is evaluated as follows:

• The password and secret key a are not sent over network

neither as plaintext nor encrypted, instead the public key y will

be sent, so password is protected against eavesdropping and the

secret key a is protected against key only attack since solving

discrete logarithm problem in equation 2.1 is very difficult.

• If the password is attacked by brute force attack then this will

take very long breaking time to know the password. In this

system the password must be between 8-15 length consisting

characters from (A-Z or a-z) and (0-9) i.e. 36 characters, so the

system as whole consist of (36)8+ (36)9+…+(36)15≈

2.273903*1023 possible password of length between 8-15. At a

rate of 109 passwords per second, it would take 7.210499*106

years to test all passwords; this time is very enough to make

this type of attack not possible.

• The user can change the password when he/she suspects that

the password has been compromised. Only the real owner of a

UserID can change the corresponding password after

presenting the correct challenge information, this challenge

information is (as with password) not sent over network, but

instead its used to generate secret and public keys and then a

digital signature which will be verified by server, when

verification process succeed the user is allowed to change the

password.

• The messages to be signed are chosen by server, so any

adversary will not be able to choose a message and obtains

valid signature for it, because the adversary will not guess

which message have to be signed.

CHAPTER FIVE

Conclusions and Future Work

5.1 Conclusions

As a result of system implementation, the following conclusions

can be noticed:

1. The combination of password and digital mechanisms offer more

strength to the authentication process since the drawbacks of

password mechanism were improved by this combination.

2. Number of IMS’s users can be increased by maximizing the

number of primes p at IMS server, this may cause that the new

users will have larger prime p and as a result they will get more

security.

3. Using windows sockets when designing IMS provides easy of

implementation as it is implemented with few statements and need

few variables.

The problems of the system were:

1. Knowing the secret key (a) of a UserID by an adversary will let

him/her to impersonate the real owner of this UserID.

2. The repeated use of k, when the same k is used, for example by

client A, to sign two different messages then there is probability

that A’s secret key will be known (section 2.4.3), suppose client A

logged at time t1 with signature signed with some k

)1mod(}*)({ 1
1

1 −−= − pramhks and then client A logged in at time t2

with)1mod(}*)({ 2
1

2 −−= − pramhks and s2 signed using the same

mentioned k, so to determine secret key, adversary must compute

)1mod())()(()(2121 −−≡− pmhmhkss , so if)1mod(021 −≠− pss then k

 Chapter Five Conclusions and future work

 ٨٠

can be determined)1mod())()(()(21
1

21 −−−= − pmhmhssk , so now

secret key can be easily determined. Although this attack can

happen but it may take lots of time because the adversary must be

presented each time A try to login in order to get all A’s signature

(s), and then keep computing ji ss − until finding that

)1mod(0 −≠− pss ji .

3. The instant messages between clients are not encrypted. This may

allow someone to intercept the packet and modify the exchanged

messages.

4. When number of clients becomes very large then the server’s

response time will be effected because multithreaded technique

was not used to deal with clients.

Suggested solutions for the above last three problems are illustrated in the

next section.

 Chapter Five Conclusions and future work

 ٨١

5.2 Future Work

 The followings are some recommendations for future work in IMS:

1. To provide more security to the system, the signature can be

encrypted using an algorithm based on public key infrastructure

and then sent over network.

2. Encrypt the exchanged instance messages between clients to

prevent eavesdropping.

3. Other functions can be added to the system to provide more

reliable interaction between users, like E-mail service, exchanging

files between users and using voice for conversation beside text.

4. Using multithreaded technique at server side when exchanging data

with clients to ensure high response time from server when number

of clients becomes very large.

 [Ans06] Answers corporation website, "Instant Messaging", 2006.
http://www.answers.com/topic/instant-messaging.htm.

[And06] Andraz Zupan, “Digital signature as a tool to achieve competitive advantage of
organization”, M.Sc. Degree Thesis, University of Ljubijana, 2006.
http://www.cek.ef.uni-lj.si/magister/zupan2848.pdf

[Bry06] Bryn Mawr College Website, “What are primitive roots?”, 2006.
http://www.brynmawr.edu/math/people/stromquist/numbers/primitive.html.

[Cha97] Charles P. Pfleeger, “Security in Computing”, Prentice Hall, 1997.

[Cha04] Charies M. Kozierok, “The TCP/IP Guide”, No Strach Press, 2004.

[Cha05] Chad Cook, "Authentication in Applications", 2006.
http://www.developer.com/security/article.php/3600351.

[Com06] The Computer Technology Documentation Project Web Site Organization,
“Network Layers”, 2006.
http://www.comptechdoc.org/independent/networking/protocol/protlayers.html

[Cra99] Crage Z. and Paul D., Bookshelf, "Upgrading and Repairing Networks
Internet", Macmillan Computer Publishing, 1999.

[C2c06] Cunningham & Cunningham, Inc, "Discrete Logarithm Problem", 2006.
http://c2.com/cgi/fullSearch

[Dal95] Dale Jonathan, “The communication routines- A Network Layer
Communication Model”, Multimedia Research Group, Department of
Electronic and computer Science, University of Southamptop, UK,
Technical Report No.95-2, 1995.

[Dic06] Dictionary website, “Zero-knowledge proof”, 2006.
http://dictionary.laborlawtalk.com/Zero-knowledge_proof=Zero-knowledge
proof - definition of Zero-knowledge proof - Labor Law Talk Dictionary.

[Eli00] Elizabeth D. Zwicky, Simon Cooper and D. Brent Chapman, "Building
Internet Firewalls", 2nd Edition, O'Reilly & Associates, 2000.
http://www.unixmexico.org/files/html/kore.hack.se/oreilly-
networking/fire/ch21_01.htm.

Reference

[Ent06] Entrust Website, "Digital Signature", 2006.
http://www.entrust.com/digitalsig/index.htm

[Enw06] “Multiplicative inverse”, 2006.
http://en.wikipedia.org/wiki/Multiplicative_inverse.

[Eri00] Eric A. Fisch and Gregory B. White, “Secure Computers and Networks:
Analysis, Design and Implementation”, CRC Press, 2000.

[Fre04] Fred Piper, Matt J.B. Robshaw and Scarlet Schwiderski-Grosche,
“Identities and authentication”, 2004.
http://217.33.105.254/Previous_Projects/Cyber_Trust_and_Crime_
Prevention/Reports_and_Publications.

[Fre06] FreeSoft website, “Hash Function”, 2006.
http://freesoft.org/CIE/Topics/142.htm.

[Gar06] Gary C. Kessler, ”An Overview of Cryptography”, 2006.
http://www.garykessler.net/library/crypto.html.

[Ing06] Ing Frommholz..etc, "State of the Art and Technology Watching Plan, Version
1.0", 2006.
www.brickscommunity.org/discussion_area/reports/D311-StateOfTheArt.pdf

[Isa01] H. Isaksoon, “Version 5 of the ICQ Protocol”, ICQ protocol specification
document, 2001.
http://www.algonet.se/~henisak/icq/icqv5.html.

[Irc03] "IRC network statistics", 2003.
http://irc.netsplit.de/networks/, 04.06.

[Jam01] James F. Kurose and Keith W. Ross. “Computer Networking: A top-down
Approach Featuring the Internet”. Addison-Wesley Longman, Inc, 2001.

[Jer03] Jeremy Hamman, AIM/Oscar Protocol, 2003.
http://www.geocities.com/smokeyjoe12345/OscarProtocol.htm.

[Joh01] Johannes A. Buchmann, “Introduction to Cryptography”, Springer, 2001.

[Mar00] Mark Curphey, “A guide to building secure web application”, Owasp
publishing, 2000.

[Men96] Handbook of Applied Cryptography, by A. Menezes, P. van Oorschot, and S.
Vanstone, CRC Press, 1996.*

[Mes06] The yahoo messenger official website, 2006.

http://messenger.yahoo.com.

[Min03] Mintz Mike, ”MSN Messaging Protocol description”, 2003.
http://mono.es.gnome.org/imsharp/tutoriales/msn/book1.html.

[Par99] Parker T., Bookshelf, "Teach Yourself TCP/IP in 14 Days", Sams Publishing,
Second Addition, 1999.

[Pat02] Patrick McDaniel, ”Authentication”, The Internet Encyclopedia, John Wiley
and Sons, Inc. 2002.
http://www.patrickmcdaniel.org/papers.html.

[Ric01] Richard Duncan, “An Overview of Different Authentication Methods and
Protocols”, 2001.
http://www.sans.org/reading_room/whitepapers/authentication/118.php

[Ric93] W. Richard Stevens, “TCPIP Illustrated, Volume 1: The protocols”, Addison
Wesley, 1993.
www.goldfish.org/books/TCPIP%20Illustrated%20Vol%201/index.htm

[Riv92] R. Rivest RFC 1321 (Request For Comment), “The MD5 Message-Digest
Algorithm”, 1992.

[Seb89] Seberry J. and Pieprzyk J., “Cryptography: an introduction to computer
security”, prentice Hall, 1989.

[Wil03] William Stallings, “Cryptography and Network Security: principles and
practice”, Third Edition, prentice Hall, 2003.

[Wik06] OLPCWiki website, "Instant messaging challenges", 2006.

http://wiki.laptop.org/go/Discussion_of_Instant_Messaging_Challenges.

Appendix A

Algorithms

This appendix contains three algorithms (MD5, Miller-Rabin

algorithm, Extended Euclidean algorithm), which are used in the

implementation of the proposed system in chapter three.

A-1 The MD5 Message-Digest Algorithm [Riv92]

 The algorithm takes as input a message of arbitrary length and

produces as output a 128-bit "fingerprint" or "message digest" of the input.

It is conjectured that it is computationally infeasible to produce two

messages having the same message digest, or to produce any message

having a given prespecified target message digest.

Terminologies and Notation

A “word” is a 32-bits quantity and a “byte” is an eight quantity. A

sequence of bits can be interpreted in a natural manner as a sequence of

bytes, where each consecutive group is interpreted as a byte with the higher-

order (most significant) bit of each byte listed first. Similarly, a sequence of

bytes can be interpreted as a sequence of 32-bit words, where each

consecutive group of four bytes is interpreted as a word with the low-order

(last significant) byte given first.

Let the symbol “+” denote the addition of words (i.e., module 2^32

addition). Let sX <<< denote the 32-bit value obtained by circularly shifting

(rotating) X left by s bit position. Let)(Xnot denote the bit-wise complement

Appendix A MD5 Algorithm

of X , and let YX ∨ denote the bit wise OR of X andY . Let X XOR Y denote

the bit-wise XOR of X andY , and let XY denote the bit-wise ANDof X

andY .

Description of MD5 Algorithm

 We begin by supposing that we have a b-bit message as input, and

that we wish to find its message digest. Here b is an arbitrary nonnegative

integer; b may be zero, it need not be a multiple of eight, and it may be

arbitrarily large. We imagine the bits of the message written down as

follows:

m0 m1 ... m{b-1}
The following five steps are performed to compute the message digest of

the message.

Step1. Append padding bits

The message is “padded” (extended) so that its length (in bits) is

congruent to 448, modulo 512. That is, the message is extended so that it is

just 64 bits of being a multiple of 512 bits long. Padding is always

performed, even if the length of the message is already congruent to 448,

modulo 512. Padding is performed as follows: a single “1” bit is appended to

the message, and then “0” bits are appended so that the length in bits of the

padded message becomes congruent to 448, modulo 512. In all, at least one

bit and at most 512 bits are appended.

Step 2. Append length

 A 64-bit representation of b (the length of the message before the

padding bits were added) is appended to the result of the previous step. In

the unlikely event that b is greater than 2^64, then only the low-order 64 bits

Appendix A MD5 Algorithm

of b are used. (These bits are appended as two 32-bit words and appended

low-order word first in accordance with the previous conventions.)

 At this point the resulting message (after padding with bits and with

b) has a length that is an exact multiple of 512 bits. Equivalently, this

message has a length that is an exact multiple of 16 (32-bit) words. Let M [0

... N-1] denote the words of the resulting message, where N is a multiple of

16.

Step 3. Initialize MD buffer and constants

A four-word buffer (A, B, C, D) is used to compute the message

digest. Here each of A, B, C, D is a 32-bit register. These are initialized to

the following values in hexadecimal, low-order bytes first:

Word : 0x01 23 45 67

Word B: 0x89 ab cd ef

Word C: 0xfe dc ab 98

Word D: 0x76 54 32 10

Step 4. Process message in 16-word blocks

Define four auxiliary functions that each take as input three 32-bit

words and produce as output one 32-bit word.

F (X, Y, Z)=XY ∨ NOT (X) Z

G (X, Y, Z)=XZ ∨ Y Not (Z)

H (X, Y, Z) =X XOR Y XOR Z

I (X, Y, Z)= X XOR (X ∨ NOT (Z))

 In each bit position F acts as a conditional: if X then Y else Z. The

function F could have been defined using + instead of v since XY and not

(X) Z will never have 1's in the same bit position.) It is interesting to note

Appendix A MD5 Algorithm

that if the bits of X, Y, and Z are independent and unbiased, the each bit of F

(X, Y, Z) will be independent and unbiased.

 The functions G, H, and I are similar to the function F, in that they

act in "bitwise parallel" to produce their output from the bits of X, Y, and Z,

in such a manner that if the corresponding bits of X, Y, and Z are

independent and unbiased, then each bit of G (X, Y, Z), H (X, Y, Z), and I

(X, Y, Z) will be independent and unbiased. Note that the function H is the

bit-wise "xor" or "parity" function of its inputs.

This step uses a 64-element table T [1 ... 64] constructed from the sine

function. Let T [i] denote the i-th element of the table, which is equal to the

integer part of 4294967296 times abs (sin (i)), where i is in radians. The

elements of the table are given in the appendix.

 Do the following:

/* Process each 16-word block. */

 For i = 0 to N/16-1 do

 /* Copy block i into X. */

 For j = 0 to 15 do

 Set X[j] to M[i*16+j].

 end /* of loop on j */

 /* Save A as AA, B as BB, C as CC, and D as DD. */

 AA = A

 BB = B

 CC = C

 DD = D

 /* Round 1. */

 /* Let [abcd k s i] denote the operation

 a = b + ((a + F(b,c,d) + X[k] + T[i]) <<< s). */

Appendix A MD5 Algorithm

 /* Do the following 16 operations. */

 [ABCD 0 7 1] [DABC 1 12 2] [CDAB 2 17 3] [BCDA 3 22 4]

 [ABCD 4 7 5] [DABC 5 12 6] [CDAB 6 17 7] [BCDA 7 22 8]

 [ABCD 8 7 9] [DABC 9 12 10] [CDAB 10 17 11] [BCDA 11 22 12]

 [ABCD 12 7 13] [DABC 13 12 14] [CDAB 14 17 15] [BCDA 15 22

16]

 /* Round 2. */

 /* Let [abcd k s i] denote the operation

 a = b + ((a + G(b,c,d) + X[k] + T[i]) <<< s). */

 /* Do the following 16 operations. */

 [ABCD 1 5 17] [DABC 6 9 18] [CDAB 11 14 19] [BCDA 0 20 20]

 [ABCD 5 5 21] [DABC 10 9 22] [CDAB 15 14 23] [BCDA 4 20 24]

 [ABCD 9 5 25] [DABC 14 9 26] [CDAB 3 14 27] [BCDA 8 20 28]

 [ABCD 13 5 29] [DABC 2 9 30] [CDAB 7 14 31] [BCDA 12 20 32]

 /* Round 3. */

 /* Let [abcd k s t] denote the operation

 a = b + ((a + H(b,c,d) + X[k] + T[i]) <<< s). */

 /* Do the following 16 operations. */

 [ABCD 5 4 33] [DABC 8 11 34] [CDAB 11 16 35] [BCDA 14 23 36]

 [ABCD 1 4 37] [DABC 4 11 38] [CDAB 7 16 39] [BCDA 10 23 40]

 [ABCD 13 4 41] [DABC 0 11 42] [CDAB 3 16 43] [BCDA 6 23 44]

 [ABCD 9 4 45] [DABC 12 11 46] [CDAB 15 16 47] [BCDA 2 23 48]

 /* Round 4. */

 /* Let [abcd k s t] denote the operation

 a = b + ((a + I(b,c,d) + X[k] + T[i]) <<< s). */

 /* Do the following 16 operations. */

 [ABCD 0 6 49] [DABC 7 10 50] [CDAB 14 15 51] [BCDA 5 21 52]

Appendix A MD5 Algorithm

 [ABCD 12 6 53] [DABC 3 10 54] [CDAB 10 15 55] [BCDA 1 21 56]

 [ABCD 8 6 57] [DABC 15 10 58] [CDAB 6 15 59] [BCDA 13 21 60]

 [ABCD 4 6 61] [DABC 11 10 62] [CDAB 2 15 63] [BCDA 9 21 64]

 /* Then perform the following additions. (That is increment each

 of the four registers by the value it had before this block

 was started.) */

 A = A + AA

 B = B + BB

 C = C + CC

 D = D + DD

 end /* of loop on i */

Step 5. Output

 The message digest produced as output is A, B, C, D. That is, we begin with

the low-order byte of A, and end with the high-order byte of D.

A-2 Miller Rabin Algorithm [Men96]

The probabilistic primality test used most in practice is the Miller-

Rabin test, also known as the strong pseudoprime test.

Algorithm Miller-Rabin probabilistic primality test

Input: an odd integer n ≥3 and security parameter t ≥ 1.

Output: an answer “prime” or “composite” to the question: “Is n prime?”

1. Write n -1 = 2s r such that r is odd.

2. For i from 1 to t do the following:

 2.1 Choose a random integer a, 2 ≤ a ≥ n - 2.

 2.2 Compute y = ar mod n

Appendix A MD5 Algorithm

 2.3 If y ≠ 1 and y ≠ n - 1 then do the following:

 j ←1.

 While j ≤ s - 1 and y ≤ n - 1 do the following:

 Compute y← y2 mod n.

 If y = 1 then return (“composite”).

 j←j + 1.

 If y ≤ n - 1 then return (“composite”).

3. Return (“prime”)

A-3 Extended Euclidean Algorithm [Men96]

Inverses can be computed using the extended Euclidean algorithm as next

described.

Algorithm Computing multiplicative inverses in Zn

Input: a ∈ Zn.

Output: a-1 mod n, provided that it exists.

1. Use the extended Euclidean algorithm to find integers x and y such that ax + ny = d,

where d = gcd (a, n).

2. If d > 1, then a-1 mod n does not exist. Otherwise, return (x).

Algorithm Extended Euclidean algorithm

INPUT: two non-negative integers a and b with a ≥ b.

OUTPUT: d = gcd (a, b) and integers x, y satisfying ax + by = d.

1. If b = 0 then set d ←a, x ←1, y ←0, and return (d, x, y).

2. Set x2 ←1, x1 ←0, y2 ←0, y1 ←1.

3. While b > 0 do the following:

3.1 q ←b/a, r← a - qb, x← x2 - qx1, y y2 - qy1.

3.2 a ←b, b ←r, x2 ←x1, x1 ←x, y2 ←y1, and y1 ←y.

4. Set d ←a, x ← x2, y ← y2, and return (d, x, y).

Appendix A MD5 Algorithm

A-4 Repeated Square and Multiply Algorithm [Men96]

Modular exponentiation can be performed efficiently with the

repeated square and multiply algorithm, which is crucial for many

cryptographic protocols.

Algorithm Repeated square-and-multiply algorithm for exponentiation in Zn

INPUT: a ∈ Zn, and integer 0 ≤ k ≥ n whose binary representation is ∑ == t
i

i
ikk 0 2 .

OUTPUT: nak mod

1. Set b← 1. If k = 0 then return (b).

2. Set A ← a.

3. If k0 = 1 then set b← a.

4. For i from 1 to t do the following:

 4.1 Set A← A2 mod n.

 4.2 If ki = 1 then set b← A. b mod n.

5. Return (b).

 ا�����

�� ا�������ت ا��ا� ����� ���م ا�
��د	� ا���ري� ����� �
� ا'��&%ام، #�" ا�! �

��ت ا���+�
�� وا�
 �زل�,
��� 0/ ا�.�-�ت وا�%&��
. ���4ن �2 �� ا12�ل ا����� ��� ا�

�/ ���م ا�
��د	� ا���ر�� ���@� �+���5 �� ھ���<= >�; �%ء ا�
��د	� �8�9 ا6�7 ا����5 %&���

� .ا��اً �Dور��ً %�Bل �<9ه ا'��
�� ا� �� ا�

12
�= و2 ��9 ���م ���د	� �0ر�� Eوع ا��.
����#�) IMS(�<%ف ا� ������ =�%�

��&%م
�� و	�>�� ا� 5���+� .�
�� �2 ��ت ا��	�>�� وھ ����+�&� ���� �2 E ��2 �#���
: ا������ ا�

� ا��� ا�I���� و ا���>�H ا'���4و�/+-، �+
������ت �� � ان �ا��B�ر ا��	�>�� 2
� ��%ة

���� .ا��B�رات ا'� �� وا�

��! ا�&1�KL ا������%&��
ا�
��د	� ا��4���� ��� : ���م ا�
��د	� ا���ر�� ا�
���ح ���0 �

��� ����&%ام �Nف ا���ار ا����� وا�&��7، ار��ل %&��
، >��+�� offline messages ���O2ا�

� ا��� ا������ 0/ #�+-�>����11= ���&%م . �� ��>�<� او �
���م ا�
��د	� ا���ر�� ا�ُ

��� . 4�hosts; ا'12�'ت ��� TCP/IPا���و�42ل %&��
-; ا��اع ا���Q ��� ا�&�دم وا�

 E+� %
��د�;)(client/serverا�R��ن وا�&�دم ��د�; ��2 E+� %
��� �L��Rا� ��� Q�ا�� �
 �� ،

 .)peer-to-peer(ا� ��� ا�E ����ه

�<��� ا'��&%ام، ���� ا�� ��9 و ا'� ��، #�" : ا� ��م ا�
���ح >% >ُ�= �� 	S	� او@!

���ى � �����رب �+����/، ا V<و�<+� �+��%ث 0/ و ��L�X ط���� ���%&��
ان ا� ��م ���0 �+

�/ ا� ��م 0<� � ��Z �<9ا ا� �ع �� ا�������ت%&��
� �0�
1
= �9�ُ . ا'� �� ا�
ا� ��م ا�

 �O� ام%&��[�Visual Basic 6.0 %\\\<و ��+������ط� �.��4 Zا���# E+� ���BُأLAN ;-و

;�O.م ا����� V�2 ;
�2 Zا���ا��Windows XP.

ر�� ا���اق��

 �� وا���� ا������وزارة ا������ ا��

��� ا�������

���� ا���
م

 و"
!�� ط����

 ��%�م ���د"� #
ر��

�����ت �	� ���دة ، ر���� ��
�� ا��
�	� ا����م� �
 �ء � �$���� ا�#�"!

 ا�+�$*�	" () '��م ا�&���ب

&�! ��

�����*ذ)��ي

٢٠٠٣-,��
ر�
س ((

 ا��#�2
ن

65. د ��5ر -4ر �345ن . د� ��� ���7

 ١٤٢٨)�9 2007 ��8ط

	Microsoft Word - 02_quran_1.pdf
	Microsoft Word - 00-First Certification_1.pdf
	Microsoft Word - 01-Final Certification_1.pdf
	Microsoft Word - 06_Acknowledgment_1.pdf
	Microsoft Word - 07_EngilishAbstract_1.pdf
	Microsoft Word - 08_List of Abbreviations_1.pdf
	Microsoft Word - 10_ListOfContents_1.pdf
	Microsoft Word - ChapterOne_1.pdf
	Microsoft Word - ChapterTwo_1.pdf
	Microsoft Word - ChapterThree_1.pdf
	Microsoft Word - ChapterFour_1.pdf
	Microsoft Word - ChapterFive.pdf
	Microsoft Word - Refrences.pdf
	Microsoft Word - Appendix.pdf
	Microsoft Word - ArabicAbstract.pdf
	Microsoft Word - Arabic FronPage.pdf

