
Republic of Iraq
Ministry of Higher Education and Scientific Research
Al-Nahrain University
College of Science

A Mechanism to Enhance McEliece
Cryptosystem Performance

A Thesis

Submitted to College of Science, Al-Nahrain University in
Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Science

BY

Noor Redha ِ◌◌ِAbd Al-Razak Al-Kazaz

(B.Sc. 2003)

Supervisors

 Dr. Sattar B. Sadkhan Dr. Jamal M. Kadhum

 2006 1427

 بسم االله الرحمن الرحيم

قَـالُواْ سُبْحَانَكَ لاَ عِلْمَ لنَـَا إِلا مَا
عَلمْتنََـا إنِكَ أنَتَ الْعَليِمُ

 �الْحَكِيمُ

 صدق االله العظيم

 ٣٢-البقرة

Supervisor Certification

We certify that this thesis was prepared under our supervision at the

Department of Computer Science / College of Science / Al-Nahrain

University, by Noor Redha Abd Al-Razak Al-Kazaz as partial fulfillment

of the requirements for the degree of Master of Science in Computer

Science.

Signature: Signature:

Name: Dr. Sattar B. Sadkhan Name: Dr. Jamal M. Kadhum
Title : Assist. Prof. Title : Lecturer
Date : / /2006 Date : / /2006

In view of the available recommendations, I forward this thesis for

debate by the examination committee.

Signature:

Name : Dr. Taha S. Bashaga

Title : Head of the department of Computer Science,

Al-Nahrain University.

Date : / / 2006

Certification of the Examination Committee
We chairman and members of the examination committee certify

that we have studies this thesis “A Mechanism to Enhance McEliece

Cryptosystem Performance” presented by the student Noor Redha Abd

Al-Razak Al-Kazaz and examined her in its contents and that we have

found it worthy to be accepted for the degree of Master of Science in

Computer Science.

Signature:

Name: Dr. Loay E. George
Title : Assist. Prof.
Date : / /2007

 (Chairman)

Signature: Signature:

Name: Dr. Jane J. Stephan Name: Dr. Sawsan K. Thamer
Title : Assist. Prof. Title : Lecturer
Date : / /2007 Date : / /2007

 (Member) (Member)

Signature: Signature:

Name: Dr. Sattar B. Sadkhan Name: Dr. Jamal M. Kadhum
Title : Assist. Prof. Title : Lecturer
Date : / /2007 Date : / /2007

 (Supervisor) (Supervisor)

 Approved by the Dean of the Collage of Science, Al-Nahrain
University.

Signature:

Name: Dr. LAITH ABDUL AZIZ AL-ANI
Title : Assist. Prof.
Date : / /2007

 (Dean of Collage of Science)

Dedication

To my beloved

family

Acknowledgment

I am indebted to the head of department of Computer Science of

AL-Nahrain University Dr. Taha S. Bashaga for all things he did that

enabled me to continue this work.

I would like to express my sincere gratitude and appreciation to my

supervisors Dr. Sattar B. Sadkhan and Dr. Jamal M. Kadhum for their

guidance, assistance and encouragement through the course of this

project.

Special thanks to all my friends, group of M.Sc. laboratory.

Finally, I want to express my gratitude to my beloved family for

encouragement and understanding during the period of my study.

 Noor Redha Abd Al-Razak

 I

Abstract

Encoding and decoding of transmitted data through the

communication system is considered as an important subject that paid

great attention. It is well known that there are many types of error

correction codes; some of these types are hamming and extended

hamming codes. Hamming code can detect and correct single error while

extended hamming code can detect two and correct one only.

This work is concerned with the implementation of McEliece

cryptosystem by using hamming code and extended hamming code,

evaluate the security of this cryptosystem and enhance the performance of

it. McEliece cryptosystem is a public key cryptosystem based on

algebraic coding theory.

The system design and implementation consists of four phases. The

first phase is the key generation phase of McEliece cryptosystem using

hamming code and extended hamming code. There are three secret keys

participate in creating public key (generator matrix, non-singular matrix,

and permutation matrix). The second phase is the encryption phase, in

this phase the original message is converted to encrypted message. The

original message is encrypted by using the public key generated in the

first phase, and then adding the error to it. The third phase is the

decryption phase. The secret keys are used in this phase to decrypt the

encrypted message and to obtain the original one. Also, in decryption

process the message is decoded from the errors added to it. The last phase

is concerned with evaluating the security of this cryptosystem (McEliece

cryptosystem). The evaluation was based on using brute force attack, and

the security of this cryptosystem can be measured by its resistance to this

type of attack. After applying this attack some weak points have been

noticed. To overcome these weak points and to make this cryptosystem

 II

more secure, a modification was proposed an implemented. In this phase

other cryptosystem parameters have been evaluated, they are: public key

size, message expansion and information rate. The security,

implementation and the use of this cryptosystem are issues significantly

affected by these parameters.

All required programs, in this research project have been

implemented by using Visual Basic (version 6) programming language

working in Window XP operating system platform.

 III

 Table of Contents

Abstract ……………….………………………………………...... I

Table of Contents ...…………………………………...………… III

List of Abbreviations …………………………………………… V

List of Figures ……………………………………………............ VI

List of Symbols ……………………………………….................. VII

List of Tables ……………………………………………............. IX

Chapter One: General Overview

1.1 Introduction……………………………………………………… 1

1.2 Literature Survey………………………………………………… 3

1.3 Aim of Thesis……………………………………………………. 6

1.4 Thesis Layout……………………………………………………. 6

Chapter Two: An Overview of McEliece Cryptosystem

2.1 Introduction ………………………………………………… …… 7

2.2 Cryptograph ……………………………………………………... 7

2.3 Types of Encryption Algorithm …………………………………. 8

2.4 Cryptanalysis ………………………………………………......... 9

2.5 Error Correcting Codes …………………………………………. 12

2.6 Types of Code …………………………………………………... 13

2.7 Linear Block Codes ……………………………………………... 14

2.7.1 Error Detection and Correction Capabilities …………………..

 of Linear Block Codes

14

2.7.2 Matrix Description of Linear Block Codes ….………………... 15

 IV

2.8 Types of Linear Block Codes …………………………………… 19

2.8.1 Hamming Code ……………………………………………….. 19

2.8.2 Extended Hamming Code .…………………………………… 21

2.9 Error Correcting Codes Applications ...………………………… 23

2.10 Cryptosystems Based on Error Correcting Codes …………...... 23

2.11 McEliece Public Key Cryptosystem ...………………………… 24

Chapter Three: The Proposed System Design and

Implementation

3.1 Introduction ... 27

3.2 Key Generation Phase ... 29

3.3 Encryption Phase ... 40

3.4 Decryption Phase ... 44

3.5 Brute Force Attack ... 51

3.6 A Mechanism to Enhance McEliece Cryptosystem …………….. 64

3.7 Other Cryptosystem Parameters .. 70

Chapter Four: Experimental Results

4.1 Introduction ... 72

4.2 Brute Force Attack ... 72

4.3 Evaluation According Other Cryptosystem Parameters 80

Chapter Five: Conclusions and Future Work

5.1 Conclusions ... 85

5.2 Future Work ... 87

References .………………......…………………………………… 88

 V

 V

List of Abbreviations

DES Data Encryption Standard

ECC Error Correction Codes

RSA Rivesr Shamir Adleman

SECDED Single Error Correcting / Double

Error Detecting

 VI

List of Figures

Figure Page

2.1 Encryption and decryption 7

2.2 Symmetrical encryption block diagram 8

2.3 Asymmetrical encryption block diagram 9

2.4 Block diagram of data communication system employing 13
 an error correcting code

2.5 Structure of systematic codeword 14

3.1 McEliece system model 28

3.2 Key generation phase 39

3.3 Encryption phase 41

3.4 Decryption phase 46

3.5 Key generation phase for the mechanism 64

3.6 Encryption phase for the mechanism 66

3.7 Decryption phase for the mechanism 68

4.1 Relation between the number of G0 probabilities 73
 and cryptosystem parameter (m)

4.2 Relation between the number of S probabilities 74
 and cryptosystem parameter (m)

4.3 Relation between the number of P probabilities and 75
 cryptosystem parameter (m) when using hamming code

4.4 Relation between the number of P probabilities and 76
 cryptosystem parameter (m) when using extended
 hamming code

 VII

List of Symbols

Symbol Description

A Side A

B Side B

C Code vector

C1,C2 Code vectors

CT Transpose code vector

Counter Number of generation public keys

d Hamming distance

dmin Minimum hamming distance

E,e Error vector

G Public key

G0 Private key (generator matrix)

G0(k*n) Generator matrix of k*n dimension

H Parity check matrix

HT Transpose parity check matrix

HT
(n*(n-k)) Transpose parity check matrix of

 n*n-k dimension

I Identity matrix (identity part)

Ik Identity matrix of order k

In-k Identity matrix of order n-k

k Number of original message bits

m Number of parity check bits (n-k)

mi Message bits

me Original message

N Number of generated public keys

n Number of cipher message bits

 VIII

n-k Redundant bits (check bits)

P Private key (permutation matrix)

P(n*n) Permutation matrix of n*n
dimension

P-1,Pinv Inverse permutation matrix

p Parity matrix (parity part)

pT Transpose parity matrix

R The noise-corrupted vector

S Private key (non-singular matrix)

S(k*k) Non-singular matrix of k*k
dimension

S-1,Sinv Inverse non-singular matrix

Sp Number of probable secret keys
when generating one public key

Spm Number of all possible probable
secret keys

Sy Syndrome

t Number of error

w Hamming weight

y Encrypted message

y1 Encrypted message with error

y2 The result of multiplication y1 by
 Pinv

 IX

List of Tables

Table page

4.1 The number of probable generator matrices 73

4.2 The number of probable non-singular matrices 74

4.3 The number of probable permutation matrices 75
 when using hamming code

4.4 The number of probable permutation matrices when 76
 using extended hamming code

4.5 The number of probable secret keys and needed time 77
 to try these probabilities

4.6 Number of probable keys after using the mechanism 80

4.7 McEliece public key size when using hamming and 81
 extended hamming code in byte

4.8 Message expansion system when using hamming and 82
 extended one

4.9 Information rate system when using hamming and 83
 extended hamming code

4.10 System encryption and decryption execution time of 84
 hamming code

4.11 System encryption and decryption execution time of 84
 the extended hamming code

Chapter One

General Overview

1.1 Introduction

Transmitting messages across noisy channels is an important

practical problem. Coding theory provides explicit ways of ensuring that

messages remain legible even in the presence of errors. Cryptography on

the other hand is the science of sending messages in disguise form, it

makes sure that messages remain unreadable except to the intended

recipient that means only the intended recipients can remove the disguise

and read the message. These complementary techniques turn out to have

much in common mathematically [Kor05].

It is pretty much taken for granted that data storage and

communication are reliable. Increasingly, we expect or hope that our

recorded and transmitted data are secure. The theories of coding and

cryptography attend to data reliability and security, respectively [Hhl00].

Coding theory is concerned with finding explicit methods, called

codes, of increasing the efficiency and fidelity of data communication

over a noisy channel. The goal in coding theory has been to provide error-

free and secure communication over noisy channels and devise efficient

codes and their successful implementation by developing fast encoding

and decoding procedures [Cha98]. These efficient codes are error

correction codes (ECC). Error correcting codes are an essential part of

modern communication and storage systems. ECC add redundancy to the

original message in such a way that it is possible for the receiver to detect

the error and correct it, recovering the original message. The study of

error correction codes and the associated mathematics is known as coding

theory [Fre00].

Chapter One General Overview

 2

Algebraic coding theory is the theory of error correcting codes; it

was originated in 1950 by Richard hamming. Algebraic coding theory is

an area of discrete applied mathematics that is concerned with developing

error correcting codes and encoding/decoding procedures [Spe00]. This

coding theory (Algebraic coding) is differ from cryptography.

Cryptography is the mathematical theory behind sending secret messages

while algebraic coding theory is the mathematical theory of sending

messages that arrive with the same content in which they were sent

[Smi02].

The McEliece cryptosystem is a public key cryptosystem that

provide secure transmission whose security rests on error correction

codes and the difficult problem of decoding a message with random error;

it is based on algebraic coding theory, whereas for most other public key

systems, it is connected to algorithmic number theory (e.g. RSA, Elliptic

Curve Cryptosystem). So in addition to its capability of offering secure

transmission, it possesses the capability to correct communication

channel error [Sua03].

In practice, the security of any cryptosystem can only be measured

by its resistance to actual attempts to break it. Those that have been

broken are obviously insecure [Mey98]. An encryption scheme can be

broken by trying all possible keys to see which one is used by the

communicating parties. This is called a brute force attack. It follows then

that the number of keys should be large enough to make this approach

computationally infeasible [Men96].

Chapter One General Overview

 3

1.2 Literature Survey

• At 1992, Preneel et al, presented a software implementation of the

McEliece public-key cryptosystem. The software performs

encryption and decryption in a reasonable speed. All coding

routines were written in assembly language to speed up the system.

Also, this research the attack of recovering the plaintext from a

ciphered message was discussed. The main idea is to select and

solve k bits (number of original message bits) of n bits (number of

cipher message bits) obtained from ciphertext and public key, it is

found the probability of success is small [Pre92].

• At 1997, Berson indicated that the McEliece public-key

cryptosystem fails to protect any message which is sent to a

recipient more than once using different random error vectors; he

called this attack a message-resend condition or a message-resend

attack. And this cryptosystem fails to protect any messages sent to

a recipient which have a known linear relation to one another; it

called this a related-message condition or a related-message attack.

These attacks are general attack on the class of public-key

cryptosystems which use an error-correcting code. And to prevent

these attacks; users of the McEliece public-key cryptosystem and

of cryptosystems with similar structure, should guard against

sending related messages. He presented that one countermeasure

which comes to mind is to introduce an element of local

randomness into any message before it is encrypted [Ber97].

• At 1998, Johansson offered many cryptosystems relying on the

difficulty of the general decoding problem. The general decoding

problem is the problem of decoding a received word to the closest

codeword in an arbitrary code. This work is based on the

observation that in many cryptographic applications it is possible to

Chapter One General Overview

 4

create a list of received words in such a way that succeeded in

decoding only one of them implies success in an attack of the

underlying cryptosystem. He showed that this holds for Stern's

identification scheme, McEliece public-key cryptosystem, and the

stream cipher application [Joh98].

• At 1998, Lee et al, presented an attack on McEliece public key

cryptosystem that is based on algebraic coding theory. This attack

is to repeatedly select k bits randomly from an n-bit ciphertext

vector, in hope that none of the selected k bits are in error until the

cryptanalyst recovers the correct message of k bits, the probability

of success of this attack is also small [Lee98].

• At 2000, SUN HUNG-MIN showed that the McEliece scheme

suffers from two weaknesses they are; failure to protect any

message which is encrypted more than once, and failure to protect

any message which have a known linear relationship with one

another. The researcher proposed variant McEliece scheme to

prevent these attacks. The public key and the secret key in this

variant scheme are same as those in the original McEliece scheme,

the only difference is using a one-way hash function in encrypting

messages, the lack knowledge about this hash function becomes the

value of it is unknown. Thus, the message-resend and related

message attacks fail [Sun00].

• At 2003, Jeroen introduced an attack against the McEliece public-

key cryptosystem called an adaptive chosen ciphertext attack,

which is based on the attacker which will continue to alter

messages until retrieved enough secret information, and on the

assumption that (ordinary) users may see no problem in revealing

whether or not an encrypted message deciphers correctly. In the

Chapter One General Overview

 5

case of the McEliece system it must repeat the attack for each

ciphertext it wishes to decrypt. The aim of this attack is to recover

the plaintext of a given ciphertext. And to prevent this attack; users

should be alerted when many encrypted messages do not decrypted

properly, also must come up with the idea of checking for repeated

messages [Jer03].

• At 2003, Suanne et al, showed that there are two types of attacks

on Mceliece cryptosystem, structural and decoding. A structural

attack consists of attempts to reconstruct a decoder for the code

generated by the public key, G. If such an attempt is successful,

then the private key G0 would be revealed and the cryptosystem

would be completely broken. A decoding attack consists of

decoding the intercepted ciphertext. In the case of a successful

decoding attack, the plaintext message is recovered but the

cryptosystem remains intact. They showed under different

circumstances, many efficient decoding attacks are possible, but

structural attacks remain infeasible in general [Sua03].

From the above review one can found that these most researches

investigated different types of attacks on McEliece cryptosystem and

evaluate the security of it by measuring the power of the system

against different types of attack.

As a comparison between these previous efforts and the work done

in this thesis, the current research study, implement, evaluate the

security of McEliece cryptosystem using a brute force attack and

enhance the performance of this cryptosystem. Also evaluates other

cryptosystem parameters that affected the security of the system.

Chapter One General Overview

 6

1.3 Aim of Thesis

• Study the public key encryption scheme based on algebraic coding

theory. Design and implement McEliece public key cryptosystem

with hamming and extended hamming code.

• Evaluate the security of McEliece public key cryptosystem type

with hamming and extended hamming code by using a brute force

attack and trying to overcome the weak points of this cryptosystem

and enhance the performance of it.

1.4 Thesis Layout

The contents of individual chapters in the remainder part of this thesis are

briefly reviewed:

• Chapter two: reviews the concept of error correction codes, and

McEliece cryptosystem.

• Chapter three: the practical part of the work is presented in this

chapter, and the algorithms that used to implement the system.

• Chapter four: the results of the system are shown here.

• Chapter five: introduces the derived conclusions of this work,

with recommendations for future work.

Chapter Two

An Overview of McEliece Cryptosystem

2.1 Introduction

In this chapter the principles of cryptography, cryptanalysis and the

approaches of cryptanalysis attack were presented. The brute force attack

is an important cryptanalysis attack, it is presented in details. Also the

concepts of error correction codes were described. Finally McEliece

public key cryptosystem which relate cryptography and coding theory is

overviewed.

2.2 Cryptography

Cryptography is science of using mathematics to encrypt and

decrypt data. Data that can be read and understood without any special

measures is called plaintext [Sch97].

The process of encoding data to prevent unauthorized parties from

viewing or modifying it is called encryption. The encryption process

transforms plaintext into ciphertext, while the process of transforming

ciphertext back into plaintext is called decryption. These two processes

are shown in figure (2.1). A system for encryption and decryption is

called a cryptosystem [Pfl89].

Figure (2.1): Encryption and decryption.

Plaintext
message Decryption Encryption

Plaintext
message

Channel

 Ciphertext

Chapter Two An Overview of McEliece Cryptosystem

 8

2.3 Types of Encryption Algorithm

Encryption components are an algorithm and key. Encryption

algorithm is series of steps that mathematically transforms plaintext or

other readable information into unintelligible ciphertext. Ciphertext that

has been encrypted is unreadable until it has been decrypted by applying

inverse mathematical transformation, which transforms the encrypted

ciphertext back into something readable. Both encryption and decryption

use a key [Ste99].

Encryption algorithms are classified into two main types, these types

are [Sch97], [Men96]:

� Symmetric encryption (secret key encryption).

� Asymmetric encryption (public key encryption).

The characteristic features of symmetric encryption algorithms, is

that both the encryption and decryption processes are accomplished by

using the same key as known in figure (2.2).

The symmetric key algorithms can be further classified as: stream

ciphers and block ciphers. A stream cipher is an encryption scheme which

treats the plaintext as a block of unity length. A block cipher is an

encryption scheme which breaks up the plaintext messages to be

transmitted into strings called blocks (of a fixed length), and encrypts one

block at a time. A good example of symmetric cryptosystem algorithm is

Data Encryption Standard (DES).

Figure (2.2): Symmetrical encryption block diagram.

Plain
 text Encrypt

Plain
 text

Cipher
 text Decrypt

Encryption key Decryption key

Chapter Two An Overview of McEliece Cryptosystem

 9

Asymmetric encryption is more complex and more secure. The

characteristic feature of public key encryption is that the encryption and

decryption processes are accomplished by using different keys. More

precisely, the encryption process is based on using a key that is easily

available, while the decryption process is based on another key, which is

only accessible to a specific entity. The key that is used for the encryption

process is known as the public key, while the key that is used for the

decryption process is known as the private key (secret key) as shown in

figure (2.3). RSA and McEliece are two examples for such a system.

Symmetric encryption is fast but not as safe as asymmetric

encryption because someone could intercept the key and decode the

messages. But because of its speed, it’s commonly used for encoding-

commerce transactions.

Figure (2.3): Asymmetrical encryption block diagram.

Cryptography algorithms are the heart of secure systems

worldwide, providing encryption for millions of sensitive financial,

government, and private transaction daily [Jam02].

2.4 Cryptanalysis

Cryptanalysis is the study of mathematical techniques for

attempting to defeat cryptographic techniques [Men96]. In practice, the

security of any cryptosystem can only be measured by its resistance to

actual attempts to break it. Those that have been broken are obviously

insecure. The central issue in assessing the resistance of an encryption

Plain
 text

Encrypt Plain
 text

Cipher
 text

Decrypt

 Public key Private key

Chapter Two An Overview of McEliece Cryptosystem

 10

algorithm to cryptanalysis is the amount of time that a given type of

attack will take [Mey98]. Realistic system which means that it is

theoretically breakable. The problem is to determine how long it would

take to break the proposed cipher system and to estimate the involved cost

(in terms of time and computation load). If the time is extremely huge

then, for all practical purpose, we may regard the considered system as

secure [You02]. So one can estimate the required time to compute the

secret key, which is the minimum amount of work to compute the key,

then for sufficiently large time the encryption system is, for all practical

purpose, a secure system [Men96].

There are two approaches to attacking a conventional encryption

scheme [Sta03]:

• Cryptanalysis: cryptanalytic attacks rely on the nature of the

algorithm plus perhaps some knowledge of the general characteristics

of the plaintext or even some sample plaintext-ciphertext pairs. This

type of attack exploits the characteristics of the algorithm to attempt to

deduce a specific plaintext or to deduce the key being used. If the

attack succeeds in deducing the key, the effect is catastrophic: all

future and past messages encrypted with that key compromised

[Men96]. There are various types of cryptanalytic attacks, based on the

amount of information known to the cryptanalytic [Buc01]:

a. Ciphertext only attack: the attacker knows ciphertexts and tries to

recover the corresponding plaintexts or the key.

b. Known plaintext attack: the attacker knows a plaintext and the

corresponding ciphertext or several pairs. He tries to find the key

used or to decrypt other ciphertexts.

Chapter Two An Overview of McEliece Cryptosystem

 11

c. Chosen plaintext attack: the attacker is able to encrypt plaintexts

but does not know the key. He tries to find the key used or to

decrypt other ciphertexts.

d. Adaptive chosen plaintext attack: the attacker is able to encrypt

plaintexts. He is able to choose new plaintexts as a function of the

ciphertexts obtained but does not know the key. He tries to find

the key used or to decrypt other ciphertexts.

e. Chosen-ciphertext attack: the attacker can decrypt but does not

know the key. He tries to find the key.

• Brute Force Attack: A brute force attack (also called exhaustive

attack) is a method of defeating a cryptographic scheme by generating

a large number of possibilities and trying it in order to recover the

plaintext used to produce a particular ciphertext [Cla97]. The most

difficult problem is presented when all that is available is the

ciphertext only. In some cases, not even the encryption algorithm is

known, but in general we can assume that the opponent does know the

algorithm used for encryption. One possible attack under these

circumstances is the brute force approach of trying all possible keys

[Sta03]. The quicker the brute force attack, the weaker the cipher.

Feasibility of brute force attack depends on the key length of the

cipher (i.e. depends on the number of keys) and on the amount of

computational power available to the attacker, thus the number of keys

should be large enough to make this approach computationally

infeasible [How00]. This type of attacks can take several hours, days,

months, and even years to run. Brute forcing is one of the first

methods approached to getting passwords. Even a lot of governments

agencies and such whose main goal are to decrypt various coded

passwords use brute force methods for one of these approaches. For

Chapter Two An Overview of McEliece Cryptosystem

 12

example, a brute-force attack may have a dictionary of all words

and/or a listing of commonly used passwords. To gain access to the

account using a brute-force attack, the program would try all the

available words it has to gain access to the account. So, brute forcing

is a great method in the security world and must be clearly understood

[Jar98].

2.5 Error Correcting Codes [Sha85]
Error detecting / correcting code is the calculated use of

redundancy. The functional blocks that accomplish error correcting codes

are the channel encoder and channel decoder. The channel encoder

systematically adds digits to the transmitted message digits. These

additional digits, while conveying no new information themselves, make

it possible for the channel decoder to detect and correct errors in the

information bearing digits. The purpose of error detecting / correcting

codes is to reduce the chance of receiving messages which differ from the

original message. A system that employs error correcting codes is shown

in figure (2.4).

The channel encoder and decoder are functional blocks in the system

that, by acting together, reduces the overall probability of error. The

encoder divides the input message bits into blocks of k massage bits and

replaces each k bit massage block with an n bit codeword by adding (n-k)

check bits to each message block. The decoder looks at the received

version of the codeword, which may occasionally contain error, and

attempts to decode the k message bits. While the check bits convey no

new information to the receiver, they enable the decoder to detect and

correct transmission error and thereby lower the probability of error.

Chapter Two An Overview of McEliece Cryptosystem

 13

The design of the encoder and decoder consist of selecting rules for

generating codeword from message blocks and for extracting message

blocks from the received version of the codewords.

Figure (2.4): Block diagram of data communication system employing an
error correcting code.

2.6 Types of Code

Error detecting/correcting codes are often divided into two broad

categories: block codes and convolutional codes. In block codes, a block

of k information bits is followed by a group of n-k check bits. At the

receiver, the check bits are used to verify the information bits in the

information block preceding the check bits. In convolutional codes, check

bits are continuously interleaved with information bits; the check bits

verify the information bits not only in the block immediately preceding

them, but in other block as well. So a convolutional code, unlike a block

code, the channel encoder accepts message bits as a continuous sequence

and thereby generates a continuous sequence of encoded bits [Das86].

 Channel
 encoder

 Noisy
 channel

 Channel
 decoder

Blocks of k
message bits

Blocks of k
message bits Noisy n bits

codewords

n bits codewords

 k
 message
 bits

 n - k
 check
 bits

Output
message

Input
message Coded output

Chapter Two An Overview of McEliece Cryptosystem

 14

2.7 Linear Block Codes

A code is said to be linear if any two codewords in the code can be

added in modulo-2 arithmetic to produce a third codeword in the code.

For the purpose of encoding message for error protection, the long

message is broken into message blocks consisting of, say, k of bits of

information. Then redundant bits (normally known as parity bits) are

added to these k bits according to certain rules of coding, and the

codewords of length n bits, inclusive of (n-k) parity bits that shown in

figure (2.5), are transmitted through the noisy channel. In the receiver, the

k message bits are decoded from the erroneous received message blocks

using suitable algorithms. With k bits of information per blocks, there are

2k possible distinct messages (or codewords), out of the 2n codewords that

may be generated with n bits. This set of 2k codewords called a block

code [Hay01].

Figure (2.5): Structure of systematic codeword.

2.7.1 Error Detection and Correction Capabilities of Linear

Block Codes [Mic85]

Some of the basic terminology that will be used in defining the

error detection/correction capabilities of a linear block code. First, the

Hamming weight of a code vector C is defined as the number of nonzero

components of C. The Hamming distance between two vectors (C1 and

 k bits

 Message
 blocks

 Code
 blocks Channel

 Encoder

Message Message Check bits

k r

n = k + r

Chapter Two An Overview of McEliece Cryptosystem

 15

C2) having the same number of elements is defined as the number of

positions in which they differ. Finally, the minimum distance of linear

block code is the smallest distance between any pair of different

codewords in the code.

 eg. w(0010110) = 3

 eg. d(0001111; 1000110) = 3

 eg. For codewords = {1000011; 0100101; 0010110;0001111}

 dmin = 3

The minimum distance of linear block code is equal to the

minimum weight of any nonzero word in the code. The ability of linear

block code to correct errors can be specified in terms of the minimum

distance of the code.

A linear block code with a minimum distance dmin can correct

[(dmin-1)/2] errors and detect [dmin-1] errors in each codeword, so

Error detection capabilities <= (dmin– 1).

 Error correction capabilities <= (dmin – 1) / 2.

2.7.2 Matrix Description of Linear Block Codes

The encoding operation in a linear block scheme consists of two

basic steps:

 (1) The information sequence is segmented into message blocks, each

block consisting of k successive information bits.

 (2) The encoder transforms each message block into a larger block of n

bits. We can describe the encoding operation using matrices.

 We will denote the message block as a row vector or k-tuple (m=

(m1, m2, …., mk)) where each message bit can be a 0 or 1. Thus we have

2k distinct message blocks. Each message block is transformed to a

codeword C of length n bits (C=(c1,c2,…,cn)) by the encoder and there are

Chapter Two An Overview of McEliece Cryptosystem

 16

2k distinct codewords, one unique codeword for each distinct message

blocks. This set of 2k codewords, is called a (n,k) block code [Sha85].

In a linear block code, the first k bits of the codeword are the message

bits, that is,

k .,2, 1,i ,m i …=

The last n-k bits in the codeword are check bits generated from the

generator matrix is:

 =G

knkkk

kn

kn

kn

ppp

ppp

ppp

ppp

−

−

−

−

,21

,33231

,22221

,11211

...1...000

::::

...0...100

...0...010

...0...001

 ……….....(2.1)

and

mG C= ……………………………...(2.2)
 The (k*n) matrix G has the form

 n*kk P] | [I G = ………………………...(2.3)

The matrix Ik is the identity matrix of order k and P is an arbitrary k

by (n-k) matrix. When P is specified, it defines the (n,k) block code

completely [Sha85].

An important step in the design of a (n,k) block code is the

selection of a P matrix that depends on error detecting and correcting

capabilities, so that the code generated by G has certain desirable

properties such as ease of implementation, ability to correct errors, high

rate efficiency, and so fourth. As a result, for any (n,k) linear code there

exists a (k*n) matrix G, whose rows are these k linearly independent

codewords [Das86].

Chapter Two An Overview of McEliece Cryptosystem

 17

Example (2.1): the generator matrix for (4,7) block code is given below

 =G

1101000

0110100

1110010

1010001

The message block size k for this code is 4, and the length of the

code vectors n is 7. The code vector of the message block m = (1110) is

given by:-

 (1110) mG C ==

1101000

0110100

1110010

1010001

 0 0 1 0 1 1 1 =

This example illustrates how an encoder for the (4,7) code

generates code vectors. The encoder essentially has to store the G matrix

(or at least the sub matrix P of G). The complexity of the encoder

increases as the block size n and the number of check bits (n-k) increase

[Sha85].

Associated with each (n,k) block code is a parity check matrix H,

which is defined as

 = H

1...0000....

::::

0...0010....

0...0001....

,,2,1

22212

12111

knkknkn

k

k

ppp

ppp

ppp

−−−

 ……...(2.4)

]I | [P H k)xn-(nk-n

T= ………………………….(2.5)

The parity check mat rix can be used to verify whether a codeword

C is generated by the matrix P] | [I G k= . This verification can be done as

Chapter Two An Overview of McEliece Cryptosystem

 18

follows; C is a codeword in the (n,k) block code generated by P] | [IG k= if

and only if

 0H C T = ……………………………......(2.6)

 0mGHT =
 0 0 m =

 Where HT is the transpose of H matrix,

]I|[P [H] and P];|[I [G] k-n
T

k ==

 . P] | [I][G].[H k
T =

 I

P

k -n

 0 = P] [P = ⊕ …………..…...(2.7)

 The inner product of a vector in the row space of [G] and a row in

 [H] is zero. Also 0][H].[C T = [Das86].

While the generator matrix is used in the encoding operation, the

parity check matrix is used in the decoding operation as follows:

Consider a linear (n,k) block code with a generator matrix

 P] | [IG k= and parity check matrix]I |[P H k-n
 T= . Let C be a code vector

that was transmitted over noisy channel and let R be the noise-corrupted

vector that was received. The vector R is the sum of the original code

vector C and an error vector encoding, that is,

 EC R += ………………………………….(2.8)

The receiver does not know C and E; its function is to decode C

from R, and the message block m from C. The receiver does the

decryption operation by determining an (n-k) vector Sy defined as

 TRH Sy = ……………………………........(2.9)

 The vector Sy is called the error syndrome of R

 TH E][C y S +=

 TT EHCH +=

 EH 0 T+=

and obtain [Das86]:

 EH Sy T= ……………………….………(2.10)

Chapter Two An Overview of McEliece Cryptosystem

 19

Since CHT =0. Thus the syndrome of a received vector is zero if R

is valid code vector. If errors occur in transmission, then the syndrome Sy

of the received vector is nonzero. Furthermore, Sy is related to the error

vector. The row of the parity check matrix HT serve as location vectors for

bit positions where error occurred in a received word. The receiver can

verify that, a signal error in the i-th bit of C would lead to a syndrome

vector that would be identical to the i-th row of the matrix HT. Thus signal

errors can be corrected at the receiver by comparing Sy with the rows of

HT and correcting the i-th received bit if Sy matches with the i-th row of

HT [Das86].

2.8 Types of Linear Block Codes

 There are many types of linear block codes, the most important

types are Hamming code, extended hamming code, Golay code, Reed

Muller codes and many other types [Pet72].

2.8.1 Hamming Code

Hamming code is a linear block codes capable of correcting single

error. This code must have a minimum distance dmin= 3. We know that

when a single error occurs, say in the i-th bit of the codeword, the

syndrome of the received vector is equal to the i-th row of HT. Hence, if

we choose the n rows of the ((n)*(n-k)) matrix HT to the distinct, then the

syndrome of all single error will be distinct and we can correct single

error. There are two points we must remember in chosen rows of HT.

First, we must not use a row of 0’s since a syndrome of 0’s corresponds to

no error. Second, the last n-k rows of HT must be chosen so that we have

an identity matrix in HT [Das86].

Hamming codes parameters are [Leh93]:

- Code length n = 2m – 1, m = (n-k)

- Number of parity check bits m = n-k

Chapter Two An Overview of McEliece Cryptosystem

 20

- Number of information bits k = (2m – m – 1)

- Minimum hamming distance of the generator matrix = 3

- Error correcting capability = 1

Each row in HT has (n-k) entries, each of which could be a 0 or 1.

Hence we can have 2n-k distinct rows of (n-k) entries out of which we can

select 2n-k-1 distinct rows of HT (the row of 0’s is the only one we cannot

use). Since the matrix HT has n rows.

Hamming codes are widely used in computing, telecommunication

and other application including data compression, popular puzzle and

turbo codes [Leh93].

Example (2.2): [Das86]

 [G] =

1111000

0110100

1010010

1100001

 = [H]
1001011

0101101

0011110

The syndrome Sy is generated from:

 [R].][R].[H [Sy] T ==

100

010

001

111

011

101

110

So for a message m1m2m3m4 = 0 0 1 0, the code C = 0 0 1 0 1 1 0.

If the received vector R = 0 0 1 0 0 1 0, then the syndrome Sy = 1 0 0, and

inspection of HT, the error is in the 5th position, giving E = 0 0 0 0 1 0 0.

So that can obtain C = 0 0 1 0 1 1 from R after correct error.

Chapter Two An Overview of McEliece Cryptosystem

 21

2.8.2 Extended Hamming Code

If multiple errors occur in the transmission of a word the hamming

code cannot even detect them because the errors will produce a syndrome

Sy which will either be zero or equal to some column of the parity check

matrix. Thus for a hamming code decoding failure never occurs, it

provides a complete decoding algorithm that codes can detect and correct

one error and detect any two errors. This two bit error can be detected

since they will correspond to a non-null syndrome which is not a row of

HT. The points that we must remember in chosen rows of HT, we must not

use a row of zeros since a syndrome of zeros corresponds to no error, and

must be distinct. That is another code called the Extended hamming codes

[Jon06]. The Extended hamming codes have three parameters [Leh93]:

- Length of codewords: n = 2m

- Information symbols: k = 2m - m - 1

- Minimum distance: d = 4

The extended hamming codes obtained by adding an additional

redundant bit, this redundant bit called a parity check bit; the overall

parity check bit is added to the end of each codeword [Leh93].

The minimum distance of this code is 4 since it is a linear block code

whose non-zero codewords have minimum weight 4. Note that the

extended hamming codes are still linear codes, since adding a one or zero

at the end of each codeword is a linear process [Ric96].

Example (2.3): [Han06]

The generator matrix and parity check matrix of extended hamming

code formed as:

Consider the following generator and parity check matrices of length 7

hamming code C.

Chapter Two An Overview of McEliece Cryptosystem

 22

=G

1101000

1010100

0110010

1110001

 = HT

100

010

001

110

101

011

111

The generator and parity check matrices of extended code (8,4) are:

=G

11101000

11010100

10110010

01110001

 = HT

1000

0100

0010

0001

1110

1101

1011

0111

So for a message equal to (1 0 1 0), the code C equal to (10100101), after

insert the error the received word is:

R = 10100101 + 0010000

 R = 10000101

The syndrome Sy is equal to (1011), and inspection of HT, the error

in the third position, so that can obtain C = 10100101 from R after correct

the error.

At the same message and code, after insert two errors the received word

is:

R = 10100101 + 01000001

 R = 11100100

The syndrome Sy is equal to (1100), by inspection of HT, find that

no row in HT equal to Sy, means that two errors added to the original

code.

Chapter Two An Overview of McEliece Cryptosystem

 23

2.9 Error Correction Codes Applications [Mos01]

Error detecting / correcting codes are implemented in almost any

application that includes the keywords “transmission” and “information”,

taken in their broadest sense. For instance, transmission may refer to the

storage of data on a computer hard disk and the retrieval of that data.

The use of error correcting codes is ever expanding, and it includes:

· Radio

· Long-distance telephony

· Television (High-Definition Television)

· Data storage systems

· Compact disk and Digital Versatile Disk

· International data networks

· Wireless communications

· Deep-space communications (satellites, telescopes, space probes)

Error detecting / correcting codes are widely used for improving the

reliability of computer storage systems. The requirement for such

systems, which at first used core memories, was for a single error

correcting / double error detecting (SECDED) code. The first error control

scheme to be implemented on computer memories were the hamming

codes which have this error control capacity. Especially after core

memories were replaced by semi-conductor memories, which are faster

but their high density per chip induces more errors, error control codes

became an essential design feature in computer storage systems.

2.10 Cryptosystems Based on Error Correcting Codes

[Lou00]

Cryptosystems based on error correcting codes require a class of

codes with some properties that are a good and efficient (fast) decoding

algorithm and the type of codes must be large enough to avoid any

Chapter Two An Overview of McEliece Cryptosystem

 24

enumeration. McEliece public key is the cryptosystem based on error

correcting codes.

2.11 McEliece Public Key Cryptosystem

The McEliece public key cryptosystem was proposed nearly 20

years ago, by McEliece in 1978. The system is simple to explain and is

very fast in execution. McEliece cryptosystem is a public key

cryptosystem based on algebraic coding theory that provide secure

transmission whose security rests on error correcting codes and the

difficult problem of decoding plaintext from ciphertexts which the sender

intentionally garbles with random error [Ber97].

There are many classes of linear codes which have very fast

decoding algorithms. The basic idea of the McEliece system is to take one

of these linear codes and disguise it, when trying to decrypt a message, is

forced to use syndrome decoding. McEliece suggested using hamming

codes and extended hamming codes, which are linear codes with a fast

decoding algorithm, in the system, but any linear code with a good

decoding algorithm can be used [Che00].

The McEliece public key cryptosystem is widely used especially

after changes in technology and economics, for example the plummeting

cost of storage, keep it on the list of candidates for some applications

[Ber97].

The McEliece scheme uses a generator matrix and a parity-check

matrix. Generally, the secret key to this kind of public key cryptosystems

is the code itself, for which an efficient decoding algorithm is known

[Lou00].

In this system, the public key, G, is a (k*n) matrix that is a product

of three private keys: S, G0 and P, where S is a (k*k) scrambling (non

Chapter Two An Overview of McEliece Cryptosystem

 25

singular or invertible) matrix, G0 is (k*n) generator matrix, and P is a

(n*n) permutation matrix. Both S and P provide the required

randomization effect on G.

 P G S G 0= ………………………………....(2.11)

S, G0 and P are kept secret. For sender send a message to receiver,

the sender blocks it into binary vectors of length k. If (m) is one such

block, the sender randomly constructs a binary vector of weight t (that is,

randomly places t 1's in a zero vector of length n), call it e that represent

error vector (i.e. hamming code have ability to add one error and then can

detect, correct it, extended hamming code also having ability to add one

error and can detect, correct it and have ability to add two errors and then

can only detect (not correct) their) and then sends to receiver the vector

 e mG y += …………………………….…...(2.12)

The receiver receives y to decrypt the message. The receiver computes

 + = emG y

 P) e (mG yP -1-1 += ……………………….....(2.13)

 eP P)PmSG y` -1-1
0 +(=

 -1
0 eP mSG y` +=

 e` mSG y` 0 +=

Where e' is a vector of weight t (since P-1 is also a permutation

matrix). The receiver now applies the fast decoding algorithm to strip off

the error vector e' and get the codeword 0(mS)G . The vector mS can now

be obtained from the first k positions of 0(mS)G , because G0 matrix has

been written in standard form P]:[I k . Then receiver recovers m by

multiplying mS by S-1 matrix [Che00].

 There are major concerns with the McEliece public key

cryptosystem, these are [Che00]; public key size, message expansion

(message expansion is the ratio between the length of the encrypted

Chapter Two An Overview of McEliece Cryptosystem

 26

message and the length of the secret message [Car05]), and information

rate (this is a measure of how much information on the average is being

carried by a symbol [Heu98]).

Brute force attack (2.4) was used to evaluate the security of

McEliece public key cryptosystem.

Chapter Three

The Proposed System Design and Implementation

3.1 Introduction

The problem treated in this project implements the McEliece

cryptosystem when using hamming and extended hamming code,

evaluates the security of this cryptosystem and enhances the performance

of it.

The proposed system of implementing McEliece public key

cryptosystem, evaluating its security and enhancing it, consists of four

phases. The first phase is concerned with generating the McEliece public

key cryptosystem using two types of code that are hamming code and

extended hamming code. The second phase is concerned with encrypting

the message, and in this phase the error was added to it. The third phase is

concerned with decrypting the encrypted message and obtained the

original one. Also, in this phase the message was decoded from the error

added to it. The last phase is concerned with evaluating the security of

this system (McEliece cryptosystem). The evaluation phase based on

attacking this cryptosystem using brute force attack and measures the

power of it against this type of attack. Design and implement a

mechanism that is used to overcome the weak points of this cryptosystem

and to enhance the performance of it. Also, this phase is computing other

cryptosystem parameters; key size, message expansion and information

rate.

The general algorithm adopted to implement, evaluate and enhance

this system was as follows:

1- Generate McEliece public key using hamming code and extended

hamming code.

Chapter Three The Proposed System Design and Implementation

 ٢٨

2- Get the message to be encrypted as a vector of binary data. Then, the

encrypted message will be transmitted through a noisy channel, so

noise will be added to the message.

3- The receiver will receive the encrypted message and starts to decrypt

it. Decryption process is an important stage and the encrypted

message requires several operations to be decrypted. The above

steps are presented in figure (3.1).

4- The security of McEliece cryptosystem was evaluated by using a

kind of attack called brute force attack. According to this attack,

some weak points have appeared, and an adopted mechanism was

used to overcome this weakness. The generated system according to

the previous mechanism was more secure with most different value

of cryptosystem parameter (m).

5- Computing and evaluating other cryptosystem parameters; the size

of the public key, message expansion and information rate. The

security of this cryptosystem was affected by these parameters.

Figure (3.1): McEliece system model.

y1 (1*n)

B A

*
S(k*k)

G0(k*n)

P(n*n)

 G (k*n)

 Public key

y1(1*n)

y1P-1
 (1*n)

y2(1*n)

+

Secret keys (G0,P,P-1,S,S-1)

Receiver

y
*

me(1*k) ...

message

S-1
(k*k)

* *
Syndrome
decoding
procedure

Encryption process

P-1
(n*n)

z

Communication

Decryption process

 Channel

me(1*k) ...

message

encrypted

message

Transmitter

e(1*n) …error

vector

y(1*n)

Chapter Three The Proposed System Design and Implementation

 ٢٩

3.2 Key Generation Phase

a) Generate a public key of hamming code

The generation of the key here depends on the hamming code.

Hamming code can correct single error that added to the code, this

code has many parameters:

- Value of m: m = (n-k), m is limited between (2 to 10), (n > k).

- Value of n: n = 2m-1, let n be a y-axes of the public key matrix.

- Value of k: k = 2m - m - 1, let k be an x-axes of the public key

 matrix.

b) Generate a public key of extended hamming code

 The generation of the key here depends on the extended

hamming code. Extended hamming code corrects single error and

detects two errors that added to the code. The algorithm of

generating a public key of extended hamming code is the same of

generating a public key of hamming code but the difference in

creating the generator matrix of extended hamming code. Extended

hamming code also has many parameters:

- Value of m: m = (n-k)-1, m is limited between (2 to 10), (n > k).

- Value of n: n = 2m, let n be a y-axes of the public key matrix.

- Value of k: k = 2m - m - 1, let k be an x-axes of the public key

 matrix.

The algorithm of generating a public key of hamming code and

extended hamming code is:

i. Generate a binary generator matrix of hamming code and

extended hamming code.

The generator matrix of hamming code is a binary matrix of k*n

dimension with two parts (identity part and parity part). The

Chapter Three The Proposed System Design and Implementation

 ٣٠

minimum distance between any two codewords equal to 3, and

the minimum distance of linear block code is equal to the

minimum weight of any nonzero word in the code. This matrix

must be linear independent. The generator matrix was considered

as a secret key. This random generation is performed as follows:

Algorithm (3.1): Generate a random generator matrix of hamming code.

Input:
n: an integer number represents dimension value (a y-axes)of the generator

matrix //the value of n determines from algorithm (3.7)

k: an integer number represents dimension value (an x-axes) of the generator

matrix //the value of k determines from algorithm (3.7)

Output:
G0: a generator matrix of k*n dimension

HParity: a parity part of the generator matrix of k*(n-k) dimension

Procedure
1. Call Generate identity matrix that input (k) and output (id) // algorithm (3.2)

2. Call Generate parity matrix that input (k,(n-k)) and output (HParity) //

 algorithm (3.3)

3. For i ← 0 to k-1

 For j ← 0 to k-1

 Set G0(i, j) ← id(i, j)

 End loop (j)

 End loop (i)

 4. For i ← 0 to k-1

 4.1 Set x ← 0

 4.2 For j ← k to n-1

 Set G0(i, j) ← HParity(i, x)

 Increment x by 1

 End loop (j)

 End loop (i)

End.

Chapter Three The Proposed System Design and Implementation

 ٣١

Algorithm (3.2): Generate identity matrix.

Input:
z: an integer number, represents dimensions values of the identity matrix

Output:
 id: identity matrix of z*z dimension

Procedure
1. For i ← 0 to z-1

 For j ← 0 to z-1

 If (i = j) then Set id(i, j) ← 1 Else Set id(i, j) ← 0

 End loop (j)

 End loop (i)

End.

Algorithm (3.3): Generate a random parity matrix.

Input:
k: an integer number represents dimension value (an x-axes) of Parity matrix

z1: an integer number represents dimension value (y-axes) of Parity matrix

Output:
Parity: a parity matrix of k*z1 dimension

Procedure
1. Set x ← 0

2. Do

 2.1 Set count ← 0

 2.2 For j ← 0 to z1-1

 Set Parity(x, j) ← randomize value 0 or 1

 If Parity(x, j) = 1 Then increment count by 1

 End loop (j)

 Until (count≥2)

3. Do While (x < k-1)

 3.1 Do

 Set count ← 0

 For j ← 0 to z1-1

 Set temp (j) ← randomize value 0 or 1

 If temp (j) = 1 Then increment count by 1

Chapter Three The Proposed System Design and Implementation

 ٣٢

 End loop (j)

 Until (count ≥ 2)

 3.2 For i ← 0 to x

 Set co1 ← 0

 For j ← 0 to z1-1

 If (temp(j) ≠ Parity(i, j)) then

 Set co1 ← 1

 Exit for (j)

 End if

 End loop (j)

 If (co1 ≠ 1) then exit for (i)

 End loop (i)

 3.3 If (co1 = 1) then

 Increment x by 1

 For j ← 0 to z1-1

 Set Parity(x, j) ← temp(j)

 End loop (j)

 End If

 Loop

End.

 Example (3.1.a):

 Let m = 3

 n = 7, k = 4

 The generator matrix of hamming code is:

 G0 (4*7) =

1111000

1100100

1010010

0110001

 I(4*4) P(4*3)

Matrix I is an identity matrix of k*k dimension and matrix P

is a parity matrix of k*(n-k) dimension. The two conditions are the

minimum distance between any two codewords in the generator

matrix must equal to 3, and the minimum distance of linear block

Chapter Three The Proposed System Design and Implementation

 ٣٣

code is equal to the minimum weight of any nonzero word in the

code. The generator matrix of hamming code depends on these two

conditions (i.e., just only one must exist in each row of the first

part (identity part) of the generator matrix. In the second part

(parity part), each row of the matrix must have at least two ones.

The minimum weight of each codeword in the generator matrix

will equal to 3). And this parity matrix must be linearly

independent.

The generator matrix of the extended hamming code is a

matrix of k*n dimension with two parts (identity part and parity

part). The algorithm of generating the generator matrix of the

extended hamming code is the same of generating it of hamming

code but the difference that the minimum distance between any

two codewords equal to 4 not to 3, and this matrix obtained by

adding an additional bit to the end of each codeword. This

redundant bit called a parity check bit. The algorithm of creating

this matrix is as follows:

Algorithm (3.4): Generate a random generator matrix of extended
hamming code.

Input:
n: an integer number represents dimension value (a y-axes)of the generator

matrix //the value of n determines from algorithm (3.7)

k: an integer number represents dimension value (an x-axes) of the generator

matrix //the value of k determines from algorithm (3.7)

Output:
G0: a generator matrix of k*n dimension

ExParity: a parity part of the generator matrix of k*n-k dimension

Procedure
1. Call Generate identity matrix that input (k) and output (id) // algorithm (3.2)

2. Call Generate parity matrix that input (k,(n-k-1)) and output (Parity) //

Chapter Three The Proposed System Design and Implementation

 ٣٤

algorithm (3.3)

 3. For i ← 0 to k-1

 For j ← 0 to k-1

 Set G0(i, j) ← id(i, j)

 End loop (j)

 End loop (i)

 4. For i ← 0 to k-1

 4.1 Set x ← 0

 4.2 For j ← k to n-2

 Set G0(i, j) ← Parity(i, x)

 Increment x by 1

 End loop (j)

 End loop (i)

 5. For i ← 0 to k-1

 5.1 Set x ← 0

 5.2 For j ← 0 to n-2

 Set x ← (x + G0(i,j)) and 1

 End loop (j)

 5.3 Set paritybit(i)←x

 End loop (i)

6. For i ← 0 to k-1

 6.1 Set G0(i,n-1)← paritybit(i)

 6.2 Set x ← 0

 6.3 For j ← k to n-1

 Set ExParity(i,x) ← G0(i,j)

 Increment x by 1

 End loop (j)

 End loop (i)
End.

 Example (3.1.b):

 Let m = 3

 n = 8, k = 4

Chapter Three The Proposed System Design and Implementation

 ٣٥

 The generator matrix of the extended hamming code is:

 I(4*4) P(4*4)

 G0 (4*8) =

01111000

11100100

11010010

10110001

 parity bits

Matrix I is an identity matrix of k*k dimension and matrix P

is a parity matrix of k*(n-k) dimension. A parity bit is a bit at the

end of each codeword (i.e., these parity bits represent the

summation of each codeword in binary representation). The only

difference between generator matrix of extended hamming code

and generator matrix of hamming code is the parity check bits at

the end of each codeword. These parity check bits achieved that

the minimum hamming distance between any two codewords

equal to 4 not to 3.

ii. Generate randomly a non-singular binary matrix of k*k

dimension. Non-singular matrix means that matrix must have an

inverse matrix (its also called invertible matrix or scrambling

matrix). This matrix was considered as the second secret key.

The algorithm of creating the non-singular matrix illustrates in

algorithm (3.5). But this random creating needs long time

especially when the value of the system parameter (m≥6, k≥57)

therefore instead of it, can read a non-singular matrix and its

inverse matrix from files generated by algorithm (3.17) and use

these two matrices to generate a McEliece public key.

Chapter Three The Proposed System Design and Implementation

 ٣٦

Algorithm (3.5): Generate a random non-singular matrix and its inverse.

Input:
k: an integer number represents dimensions values of the non-singular matrix

and its inverse matrix //the value of k determines from algorithm (3.7)

Output:
S: a non-singular matrix of k*k dimension

Sinv: an inverse matrix of non-singular matrix of k*k dimension

Procedure
 1. Do

 1.1 For i ← 0 to k-1

 For j ← 0 to k-1

 Set S(i, j) ← randomize value 0 or 1

 End loop (j)

 End loop (i)

 1.2 Apply gauss elimination with partial pivoting method to compute

 the inverse matrix of S matrix

 Until (S*Sinv= identity matrix) //if (S*Sinv) = identity matrix that means S

 have an inverse matrix (Sinv) otherwise S doesn’t have inverse.

End.

 Example (3.1.c):

 k = 4

 The non singular matrix and its inverse matrix is:

 S(4*4) S

-1
(4*4)

 Some of matrices do not have an inverse so each matrix must

be checked if it has an inverse or not by using gauss elimination

with partial pivoting method to compute its inverse matrix. And

then check if the multiplication result of these two matrices S and

=

0011

1110

1001

1011

=

1001

1110

0011

1011

Chapter Three The Proposed System Design and Implementation

 ٣٧

S-1 leads to an identity matrix, then it means S has an inverse,

otherwise S doesn’t have.

iii. Generate randomly a permutation binary matrix of n*n

dimension and generate its inverse. Permutation matrix means

that matrix have only one in each row and column. The inverse

matrix of permutation matrix is the transpose of permutation

matrix. The algorithm of creating a permutation matrix is as

follows:

Algorithm (3.6): Generate a random permutation matrix and its inverse.

Input:
n: an integer number represents dimensions values of the permutation matrix

and its inverse // the value of n determines from algorithm (3.7)

Output:
P: a permutation matrix of n*n dimension

Pinv: an inverse permutation matrix of n*n dimension

Procedure
 1. Set x ←0; Set count ←1

 2. Set ind(count) ← randomize value between 0 and n-1

 3. Do

 3.1 Set P(x, ind(count)) ← 1

 3.2 For j ← 0 to n-1

 If j ≠ ind(count) Then Set P(x, j) ← 0

 End loop (j)

 3.3 Increment x by 1; Increment count by 1

 3.4 Set flag ← True

 3.5 Do While (flag = True) and (x ≤ n-1)

 Set new1 ← randomize value between 0 and n-1; Set co ← 0

 For i ← 0 to count - 1

 If new1 ≠ ind(i) then increment co by 1

 End loop (i)

 If co = count then

 Set ind(count) ← new1; Set flag ← False

Chapter Three The Proposed System Design and Implementation

 ٣٨

 End If

 Loop

 Until x = n

 4. For i ← 0 to n-1

 For j ← 0 to n-1

 Set Pinv(j, i) ← P(i, j)

 End loop (j)

 End loop (i)

End.

 Example (3.1.d):

 n = 7

 The permutation matrix and its inverse matrix are:

 P(7*7) =

0010000

0100000

0000100

0000001

1000000

0001000

0000010

 P-1
(7*7) =

0000100

0100000

1000000

0000010

0010000

0000001

0001000

The public key of hamming code or extended hamming code can be

generated by multiplying these three matrices (generator matrix of

hamming code or extended hamming code G0, non-singular matrix S and

permutation matrix P). This showed as follows in figure (3.2) and in

algorithm (3.7). This public key is a matrix of k*n dimension:

G(k,n) = S(k,k) G0(k,n) P(n,n)

Chapter Three The Proposed System Design and Implementation

 ٣٩

Figure (3.2): Key generation phase.

Algorithm (3.7): key generation phase.

Input:
m: is an integer number, 2≥ m≥ 10 // m=(n-k) for hamming code, m=(n-k)-1

 for the extended hamming code.

t: 0≤t≤2, number of error // (0≤t≤1) for hamming code, and (0≤t≤2) for the

 extended hamming code.

Output:
G: a public key of hamming code or a public key of extended hamming code

of k*n dimension

t: number of error

time: represents execution time of the key generation phase

Procedure
1. Set t1← current time

 2. If generating a public key of hamming code then Set n ← 2m – 1

 Else if generating a public key of extended hamming code then Set n ← 2m

 3. Set k ← 2m - m – 1

 4. If generating a public key of hamming code then Call Generate a

 random generator matrix of hamming code that input (n,k) and output

 (G0,HParity) // algorithm (3.1)

 Else if generating a public key of extended hamming code then Call

 Generate a random generator matrix of extended hamming code that input

Generate a
generator matrix

Generate a non
singular matrix

Permutation
matrix P (n*n)

Non-singular
matrix S(k*k)

Generator
matrix G 0(k*n)

Receiver A

k

Multiplication

McEliece public
key G(k*n)

Generate a
permutation matrix

n

Chapter Three The Proposed System Design and Implementation

 ٤٠

 (n,k) and output (G0, ExParity) //algorithm (3.4)

5. Call Generate a random non-singular matrix and its inverse that input (k)

 and output (S,Sinv) // algorithm (3.5)

6. Call Generate a random permutation matrix and its inverse that input (n)

 and output (P,Pinv) // algorithm (3.6)

7. Multiply these three matrices to produce a public key (G):

 Set G(k, n) ← S(k,k) * G0(k,n)* P(n,n)

8. Set t2← current time

9. Set time← t2-t1

End.

Example (3.1):

 The McEliece public key of hamming code is:

 G(4*7) =

0111010

1011001

0010011

0001111

The above public key G(4*7) can be obtained by multiplying these

three matrices; generator matrix of hamming code G0(4*7) in example

(3.1.a), non-singular matrix S(4*4) in example (3.1.c) and permutation

matrix P(7*7) in example (3.1.d). That showed as follows:

G (4,7) = S(4,4) * G0(4,7) * P(7,7)

3.3 Encryption Phase

In this phase the original message will be converted to a cipher

message by multiplying the original one (the original message or the clear

message is a binary vector of 1*k dimension after converted from text to

binary representation) with the public key that was generated with the

previous phase. Also in this phase, the errors have been added (one error

when using hamming code and one or two errors when using extended

hamming code, these errors refer to the noise in the channel) to the

Chapter Three The Proposed System Design and Implementation

 ٤١

encrypted message. This is shown in figure (3.3) and the implemented

steps are presented in algorithm (3.8). The encrypted message is a binary

vector of 1*n dimension:

Encrypted message y1(1,n) = original message me(1,k) * G (k,n) + error
vector e(1,n)

Figure (3.3): Encryption phase.

Algorithm (3.8): Encryption phase.

Input:
G: a public key of hamming code or a public key of extended hamming code

of k*n dimension

t: number of error

me: represents original message

Output:
y1: an encrypted message with error

time: represents execution time of the encryption phase
Procedure
 1. Sender (B) obtained A's public key G and t

2. Convert the original message (me) from text to binary representation

3. Set t1← current time

4. q ← length (me) / k

 5. If q ≠ Int(q) Then

 q ← Int(q) + 1

 End If

 6. Call Message encryption that input (G,me,q) and output (y)//algorithm (3.9)

7. If t ≠ 0 Then

 For x ← 0 to q - 1

 Call Generate a random error vector that input (t) and output (e) //

Multiply

e (1*n)

Addition me
(1*k)

y1(1*n)
error

y (1*n)

 Sender B Receiver A
 Public key

(G), t

encrypted
message message

Chapter Three The Proposed System Design and Implementation

 ٤٢

 algorithm (3.10)

 For j ← 0 to n - 1

 Set y1(x, j) ← (y(x, j) + e(j)) and 1

 End loop (j)

 End loop (x)

 End If

8. Set t2← current time

9. Set time← t2-t1

10. Convert the encrypted message (y1) from binary to text representation

 11. Sender (B) Sends encrypted message y1 to receiver (A)

End.

Algorithm (3.9): Message encryption.

Input:
G: a public key of hamming code or a public key of extended hamming code

of k*n dimension

me: represents original message

q: number of blocks of the original message // each block of 1*k dimension

Output:
y: encrypted message of q*n dimension

Procedure
1. Set co ←0; Set co1 ←k

2. For l ← 0 to q - 1

 2.1 For j ← 0 to n - 1

 Set x ← 0; Set x1 ← 0

 For i ← co to k - 1

 Set r1 ← me(i) * G(x1, j)

 Increment x by r1; Increment x1 by 1

 End loop (i)

 Set y(l, j) ←x and 1

 End loop (j)

 2.2 Increment co by co1; Increment k by co1

 End loop (l)

End.

Chapter Three The Proposed System Design and Implementation

 ٤٣

Errors which have been added to the encrypted message are

already arranged in a binary vector of 1*n dimension. These errors must

be generated randomly. This random generation was as follows:

Algorithm (3.10): Generate a random error vector.

Input:
t: number of error

Output:
e: an error vector of 1*n dimension

Procedure
 1. Set x←1; Set ind1←randomize value between 0 and n-1; Set index(x)←ind1

 2. Do While x < t

 2.1 Set ind1 ← randomize value between 0 and n-1; Set co ← 0

 2.2 For i ← 1 to x

 If ind1 = index(i) Then

 Set co ← 1

 Exit For (i)

 End If

 End loop (i)

 2.3 If co = 0 Then

 Increment x by 1

 Set index(x) ← ind1

 End If

 Loop

 3. For i ← 0 to n - 1

 For j ← 1 to x

 If index(j) = i Then

 Set e(i) ← 1

 Exit For (j)

 End If

 Set e(i) ← 0

 End loop (j)

 End loop (i)

End.

Chapter Three The Proposed System Design and Implementation

 ٤٤

Example (3.2):

Let original message me = 1 1 0 1

Let error vector e = 0 0 0 0 1 0 0

Encrypted message can be obtained by multiplying the original

message me(1*4) with the public key G(4*7) that was generated in example

(3.1), and then adding error vector e(1*7) to it. This will be as follows:

Encrypted message y1(1*7) = me(1*4)* G(4*7) + e(1*7)

 = 0 1 1 0 0 1 0 + 0 0 0 0 1 0 0

 = 0 1 1 0 1 1 0

3.4 Decryption Phase

In this phase the encrypted message is converted to an original

message by using three secret keys (generator matrix, non-singular matrix

and permutation matrix). Also, in this phase the message was decoded

from the error added to it. The decryption process is done by multiplying

the encrypted message by the inverse matrix of the permutation matrix

(that was generated through the first phase (key generation phase)) to

produce a binary vector of 1*n dimension. This binary vector was

multiplied by the transpose of parity check matrix (H). The parity check

matrix is a matrix of n*(n-k) dimension, which depends on the generator

matrix (generator matrix G0= [I:P], parity check matrix H = [PT:In-k]).

This matrix consists of all non-zero binary rows. The result of previous

multiplication is a binary vector of 1*(n-k) dimension called a syndrome.

The syndrome was used to discover if the binary vector of 1*n dimension

has errors (one error or two) or not. If it has one error, then using the

syndrome, the position of the error can be detected and corrected, but if

the binary vector has two errors, then those two errors can be detected

without knowing their positions.

Chapter Three The Proposed System Design and Implementation

 ٤٥

• Syndrome decoding for hamming code is:

1. If syndrome equal to zero that means no error exists.

2. If syndrome not equal to zero, this means one error exists and

can be corrected by matching the syndrome with rows of the

HT
(n*(n-k)) . The row number in HT that is identical to syndrome

refers to the position of the error.

• Syndrome decoding for extended hamming code is:

1. If syndrome equal to zero that means no error exists.

2. If the first (n-k-1) bits of syndrome equal to zero and the last bit

(parity check bit) of syndrome fails, this means one error exists

and can be corrected by the same previous method of matching

the syndrome with the rows of HT.

3. If the first (n-k-1) bits of syndrome not equal to zero and the

last bit (parity check bit) of syndrome fails, this means one error

exists and it can be corrected also by the same previous method.

4. If the first (n-k-1) bits of syndrome not equal to zero and the

last bit (parity check bit) of syndrome is passed, this means two

errors exist and will seek for re-transmission, so using the

syndrome two errors in the codeword can be detected but not

corrected.

 In case of no errors found, or after correcting the binary vector

of 1*n dimension with the syndrome, the first k bits of this binary

vector was multiplied by the inverse matrix of the non-singular

matrix (that was generated in the first phase (key generation

phase)) to obtain the original message. The decryption phase was

represented in figure (3.4).

y2(1*n) = y1(1*n) * Pinv(n*n)

y1 (1*n) = me(1*k) * G (k*n) + e(1*n)

y2(1*n) = (me(1*k) * S(k*k) * G0(k*n) * P(n*n) + e(1*n)) * Pinv(n*n)

Chapter Three The Proposed System Design and Implementation

 ٤٦

y2(1*n) = me(1*k) * S(k*k) * G0(k*n) + e(1*n) * Pinv(n*n)

/ ... after using the syndrome procedure,

y2(1*k) = me(1*k) * S(k*k)

me(1*k) = (me(1*k) * S(k*k)) * Sinv(k*k)

 Figure (3.4): Decryption phase.

Algorithm (3.11): Decryption phase (Hamming decryption).
Input:

y1: an encrypted message with error

Pinv: an inverse permutation matrix of n*n dimension

HParity: a parity part of the generator matrix of k*n-k dimension

Sinv: an inverse matrix of non-singular matrix of k*k dimension

Output:
me: represents original message

time: represents execution time of the decryption phase

Procedure
1. Receiver (A) receives encrypted message y1 from sender (B)

2. Convert the encrypted message (y1) from text to binary representation

3. Set t1← current time

4. q ← length (y1) / n

5. If q ≠ Int(q) Then

 q ← Int(q) + 1

 End If

 6. Call SynPar that input (y1,q,Pinv,HParity) and output (Sy,HT,y2) //

 algorithm (3.13)

7. Set x1 ← 0

8. For j ← 0 to (n - k) - 1

Inverse

Syndrome decoding
 procedure * *

S(k*k)

S-1
(k*k)

P(n*n)

P-1
(n*n)

y2(1*n) me (1*k) y1P-1

Receiver A

Get first
k bits of

y2

y2(1*k)

Inverse

Encrypted
message

y1 (1*n)

Clear
message

Chapter Three The Proposed System Design and Implementation

 ٤٧

 Set x1 ← x1 + Sy(0,j)

 End loop (j)

 9. If (x1 = 0) Then no error added to the message

10. If (x1 ≠ 0) Then

 10.1 For r ← 0 to q – 1 // error correction loop

 For i ← 0 to n - 1

 Set co ← 0

 For j ← 0 to (n - k) - 1

 If Sy(r,j) ≠ HT(i, j) Then

 Set co ← 1

 Exit For (j)

 End If

 End loop (j)

 If co = 0 Then

 Set y2(r,i) ← (y2(r,i) + 1) and 1

 Exit for (i)

 End If

 End loop (i)

 End loop (r)

 End if

11. For r ← 0 to q – 1 // eliminates the non-singular matrix (it is a secret key)

 For i ← 0 to k - 1

 Set x1 ← 0

 For j ← 0 to k - 1

 Set r1 ← y2(r, j) * Sinv(j, i)

 Increment x1 by r1

 End loop (j)

 Set me(r, i) ← x1 and 1

 End loop (i)

 End loop (r)

12. Set t2← current time

13. Set time←t2-t1

14. Convert the original message (me) from binary to text representation
End.

Chapter Three The Proposed System Design and Implementation

 ٤٨

The previous algorithm (3.11) illustrated the decryption phase of

hamming code while the next algorithm (3.12) illustrates decryption

phase of the extended hamming code.

Algorithm (3.12): Decryption phase (Extended hamming decryption).

Input:
y1: an encrypted message with error

Pinv: an inverse permutation matrix of n*n dimension

ExParity: a parity part of the generator matrix of k*n-k dimension

Sinv: an inverse matrix of non-singular matrix of k*k dimension

Output:
me: represents original message

time: represents execution time of the decryption phase

Procedure
1. Receiver (A) receives encrypted message y1 from sender (B)

2. Convert the encrypted message (y1) from text to binary representation

3. Set t1← current time

4. q ← length (y1) / n

5. If q ≠ Int(q) Then

 q ← Int(q) + 1

 End If

 6. Call SynPar that input (y1,q,Pinv,ExParity) and output (Sy,HT,y2) //

 algorithm (3.13)

7. Set x1 ← 0

8. For j ← 0 to (n - k) - 2

 Set x1 ← x1 + Sy(0,j)

 End loop (j)

9. Set x ← x1 and 1

10. If ((x1 = 0) And (Sy(0,(n - k) - 1) = 0)) Then no error add to the message.

11. If ((x1 ≠ 0) And (x = Sy(0,(n - k) - 1))) Then

 Two errors has been detected

 Return // end algoritm

 End If

12. If (((x1 = 0) And (Sy(0,(n - k) - 1) = 1)) Or ((x1 ≠ 0) And (x ≠ Sy(0,(n –

Chapter Three The Proposed System Design and Implementation

 ٤٩

 k) – 1)))) Then

 Do step 11.1 in algorithm (3.11)

 End if

13. Do step 12 in algorithm (3.11)

14. Set t2← current time

15. Set time←t2-t1

16. Convert the original message (me) from binary to text representation

End.

Algorithm (3.13): SynPar.

Input:
y1: an encrypted message with error

q: number of blocks of the encrypted message // each block of 1*n dimension

Pinv: an inverse permutation matrix of n*n dimension

Parity: a parity part of the generator matrix of k*(n-k) dimension

Output:
Sy: syndrome of q*(n-k) dimension

HT: a parity check matrix of n*n-k dimension

y2: the result of multiplying (y1) by (Pinv) of q*n dimension

Procedure
1. Set r ← 0; Set co1 ← n

2. For l← 0 to q - 1

 2.1 For j ← 0 to co1 - 1

 Set x ← 0; Set x1 ← 0

 For i ← r to n - 1

 Set r1 ← y1(i) * Pinv(x1, j)

 Increment x by r1; Increment x1 by 1

 End loop (i)

 Set y2(l, j) ← x and 1

 End loop (j)

 2.2 Increment r by co1; Increment n by co1

 End loop (l)

 3. For i ← 0 to k - 1

 For j ← 0 to (n - k) - 1

Chapter Three The Proposed System Design and Implementation

 ٥٠

 Set HT(i, j) ← Parity(i, j)

 End loop (j)

 End loop (i)

 4. Call generate identity matrix that input (n-k) and output (id)//algorithm (3.2)

 5. Set x ← 0

6. For i ← k to n - 1

 6.1 For j ← 0 to (n - k) - 1

 Set HT(i, j) ← id(x, j)

 End loop (j)

 6.2 Increment x by 1

 End loop (i)

 7. For x ← 0 to q - 1

 For j ← 0 to (n - k) - 1

 Set x1 ← 0

 For i ← 0 to n - 1

 Set r1 ← y2(x, i) * HT(i, j)

 x1 ← x1 + r1

 End loop (i)

 Set Sy(x, j) ← x1 and 1

 End loop (j)

 End loop (x)

End.

Example (3.3):

Let the encrypted message y1 = 0 1 1 0 1 1 0 (from example (3.2))

The original message can be obtained by multiplying the encrypted

message y1(1*7) with the inverse matrix of permutation matrix P-1
(7*7)

(from example (3.1.d)) to produce another binary vector y2(1*7). This

binary vector must be corrected by multiplying it with the transpose of

parity check matrix H(7*3) (that depends on the generator matrix in

example (3.1.a)). This previous multiplication gives the syndrome Sy(1*3).

Chapter Three The Proposed System Design and Implementation

 ٥١

 G0(4*7) =

1111000

1100100

1010010

0110001

 HT
(7*3) =

100

010

001

111

110

101

011

 y2(1*7) = y1(1*7) * P
-1

(7*7)

 y2 = 1 0 0 0 1 1 1

 Sy(1*3) = y2(1*7) * H
T

(7*3)

 Sy = 0 0 1

From matching this syndrome with the rows of HT finding that the

syndrome equal to the seventh row in matrix, so the error occurs in

position 7. The codeword after correction will be = (1 0 0 0 1 1 0), and

then multiplying the first k bits of this corrected codeword with the

inverse matrix of non-singular matrix to obtain the original message.

me(1*4) * S(4*4) = (1 0 0 0), and obtain original message by:

me(1*4) = (me(1*4) * S(4*4)) * S
-1

(4*4)

me(1*4) = (1 0 0 0) * S-1

Original message me(1*4) = (1 1 0 1)

3.5 Brute Force Attack

In order to evaluate the security of McEliece cryptosystem, a brute

force attack was used. Brute force attack is a method of defeating the

system by generating all possible probabilities for each secret key that

participates in the creation of the public key, and working through all

Chapter Three The Proposed System Design and Implementation

 ٥٢

these possible keys in order to decrypt a message. All possible keys for

each secret key that participates in the generation of McEliece public key

was generated as follows:

1. Generate all possible probable binary generator matrices (secret

key). These probabilities depend on the properties of the binary

generator matrix (The minimum distance between any two

codewords equal to 3, and the minimum distance of linear block

code is equal to the minimum weight of any nonzero word in the

code). Here the operation of creating all generator matrix

probabilities is based on the second part of this matrix (parity

matrix) because the first part (identity matrix) has a fixed structure

and its elements have fixed value. The minimum weight for each

codeword was obtained from the two ones of the second part and the

single one of the first part. As a result the minimum weight for each

codeword in the generator matrix equal to 3. This parity matrix must

be linearly independent. And the number of all possible probabilities

depends on the size of the key (generator matrix length). The

algorithm of generating all possible probabilities of the generator

matrix illustrates in algorithm (3.14).

Algorithm (3.14): Generate all possible probabilities of generator matrix
for brute force attack.

Input:
n: an integer number represents dimension value (a y-axes) of the generator

matrix

k: an integer number represents dimension value (an x-axes) of the generator

matrix

Output:
 Gntimes: represents the number of all possible generator matrices

 File: file contains all possible generator matrices

Procedure

Chapter Three The Proposed System Design and Implementation

 ٥٣

 1. Set r ← n-k; Set Gntimes ← 0

2. Open File for write

3. For i ← 0 to k – 1

 Set G0(i) ← 3

 End loop (i)

4. Set flag ← False

5. Do

 5.1 Do

 Set flag1 ← False

 For i ← 0 to k - 2

 For j ← i + 1 to k - 1

 If G0(i) = G0(j) Then

 Increment G0(i) by 1

 Call Check number of ones with input (G0(i),r) and output

 (no) // algorithm (3.15)

 If Not no Then increment G0(i) by 1

 Set flag1 ← True

 End If

 End loop (j)

 End loop (i)

 Loop While flag1

 5.2 Set flag2 ← False

 5.3 For i ← 0 to k - 2

 If G0(i) > 2r Then

 Set flag2 ← True; Set G0(i) ← 3

 Increment G0(i + 1) by 1

 Call Check number of ones with input (G0(i+1),r) and output

 (no) // algorithm (3.15)

 If Not no Then increment G0(i + 1) by 1

 End If

 End loop (i)

 5.4 If Not flag2 Then

 Put File, G0

 Increment Gntimes by 1; Increment G0(0) by 1

 Call Check number of ones with input (G0(0),r) and output

Chapter Three The Proposed System Design and Implementation

 ٥٤

 (no)// algorithm (3.15)

 If Not no Then increment G0(0) by 1

 For i ← 0 to k - 2

 If G0(i) > 2r Then

 Set G0(i) ← 3

 Increment G0(i + 1) by 1

 Call Check number of ones with input (G0(i+1),r) and

 output (no)// algorithm (3.15)

 If Not no Then increment G0(i + 1) by 1

 End If

 End loop (i)

 End If

 5.5 If G0(k - 1) > 2r Then Set flag ← True

 Until flag

6. Close File

7. Convert all probabilities in File from decimal to binary representation

End.

Algorithm (3.15): Check number of ones.

Input:
 x: an integer number represents codeword value of G0 matrix

 r: an integer number represents the value of (n-k)

Output:
 no: boolean value either true or false

Procedure
1. Set no ← True

2. For i ← 0 to r

 If x = 2i Then

 Set no ← False

 Exit For

 End if

 End loop

End.

Chapter Three The Proposed System Design and Implementation

 ٥٥

The complexity assessment of the number of probable generator

matrices was computed by conducting many experiments on generating

the possible generator matrices with different matrix length. The

algorithm of this complexity assessment is as follows:

Algorithm (3.16): Complexity assessment of the number of probable
generator matrices

Input:
n: an integer number represents dimension value (a y-axes)of the generator

matrix

k: an integer number represents dimension value (an x-axes) of the generator

matrix

Output:
 Gntimes1: represents the number of all possible generator matrices
Procedure
 1. Set r ← n – k; Set Gntimes1 ← 1; Set pr ← 2r - r - 1

2. For i ← 1 to k

 2.1 Set Gntimes1← Gntimes1 * pr

 2.2 Decrement pr by 1

 End loop

End.

2. Generate all possible probable non-singular matrix. The generation

of all possible keys depends on its secret key properties. Non-

singular matrix or (scrambling matrix) means that the matrix has an

inverse matrix, and every matrix must be checked if it has an inverse

matrix or not by using gauss elimination with partial pivoting

method to compute its inverse matrix and then comparing the result

of multiplication S and S-1 with identity matrix, if this multiplication

result equal to it means that this matrix S have an inverse otherwise

doesn’t have. The number of all possible probabilities depends on

the McEliece cryptosystem parameter that determines dimensions of

Chapter Three The Proposed System Design and Implementation

 ٥٦

this secret key (key size). The algorithm of creating all possible

probabilities of the non-singular matrix shows in algorithm (3.17).

Algorithm (3.17): Generate All possible probabilities of non-singular
matrix for brute force attack.

Input:
k: an integer number represents dimensions values of the non-singular matrix

and its inverse matrix //the same k in algorithm (3.14)

Output:
 Sntimes: represents the number of all possible non-singular matrices

 File1: file contains all possible non-singular matrices

 File2: file contains all possible inverse matrices of non-singular matrices

Procedure
 1. Open File1, File2 for write

 2. For i ← 0 to k-1

 For j ← 0 to k-1

 Set a(i,j) ← S(i,j) ← 0

 End loop (j)

 End loop (i)

3. For i ← 0 to k-1

 Set a(i,k-1-i)← S(i,k-1-i) ←1

 End loop (i)

4. Do While (ChangeState =1)

 4.1 For i ← 0 to k-1

 For j ← 0 to k-1

 Set a(i,j) ← S(i,j)

 If (i=j) then Set id(i,j) ←1 else Set id(i,j) ← 0

 End loop (j)

 End loop (i)

 4.2 Call Compute inverse matrix that input (a,k,id) and output (invS)

 //algorithm (3.18)

 4.3 For x ← 0 to k-1

 For i ← 0 to k-1

 Set sum ← 0

 For j ← 0 to k-1

Chapter Three The Proposed System Design and Implementation

 ٥٧

 Set sum ← sum+S(x,j)*invS(j,i)

 End loop (j)

 Set R(x,i) ← int(sum) and 1

 End loop (i)

 End loop (x)

 4.4 Set Identity ← 1

 4.5 For i ← 0 to k-1

 For j ← 0 to k-1

 If ((i=j) And (R(i,j)≠1)) then

 Set Identity ← 0; Set i ←k-1

 Exit for (j)

 End if

 If ((i≠j)And(R(i,j)≠0)) then

 Set Identity ← 0; Set i ← k-1

 Exit for (j)

 End if

 End loop (j)

 End loop (i)

 4.6 If (Identity=1) then

 Put File1,S

 Put File2,invS

 Increment Sntimes by 1

 End if

 4.7 Set Carry←1

 4.8 For i ←k-1 down to 0

 Set ChangeState ← 0

 For j ← k-1 down to 0

 If ((S(i,j)=0)And(Carry=1)) then

 Set S(i,j)←1; Set Carry ← 0; Set ChangeState← 1; Set i← 0

 Exit for (j)

 End if

 If ((S(i,j)=1)And(Carry=1)) then

 Set S(i,j) ← 0; Set Carry ←1

 End if

 End loop (j)

Chapter Three The Proposed System Design and Implementation

 ٥٨

 End loop (i)

 Loop

5. Close File1; Close File2

End.

Algorithm (3.18): Compute inverse matrix.

Input:
 a: a non-singular matrix of k*k dimension

k: an integer number represents dimensions values of the non-singular matrix

and its inverse matrix //the same k in algorithm (3.14)

 id: an identity matrix of k*k dimension

Output:
 invS: the inverse matrix of matrix S of k*k dimension

Procedure
1. For j ← 0 to k-1

 Set p(j) ← j

 End loop (j)

2. For co ← 0 to k-2

 2.1 Set l ←co; Set max ←a (p(co),co)

 2.2 For x ← co+1 to k-1

 If (abs(a (p(x),co))>abs(max)) then

 Set max ← a(p(x),co); Set l ← x

 End if

 End loop (x)

 2.3 Set temp ← p(l); Set p(l) ← p(co); Set p(co)← temp

 2.4 For i ← co+1 to k-1

 Set a(p(i),co) ← a(p(i),co)/a(p(co),co)

 For j ← co+1 to k-1

 Set a(p(i),j) ← int(a(p(i),j) – a(p(i),co)*a(p(co),j)) and 1

 End loop (j)

 For j ← 0 to k-1

 Set id(p(i),j) ← int(id(p(i),j) – a(p(i),co)*id(p(co),j)) and 1

 End loop (j)

 End loop (i)

Chapter Three The Proposed System Design and Implementation

 ٥٩

 End loop (co)

3. For j ← 0 to k-1

 3.1 Set tt ← int(id(p(k-1),j)/a(p(k-1),k-1))

 3.2 If tt<0 then Set tt ← tt*-1

 3.3 Set invS(k-1,j)← tt and 1

 End loop (j)

4. For x ← 0 to k-1

 For j ← k-2 down to 0

 Set sum ← id(p(j),x)

 For co ← j+1 to k-1

 Set sum←sum-a(p(j),co)*invS(co,x)

 End loop (co)

 Set tt ← int(sum/a(p(j),j))

 If tt < 0 then Set tt ← tt *-1

 Set invS(j,x)← tt and 1

 End loop (j)

 End loop (x)

End.

In algorithm (3.19) the complexity assessment of the number of

probable non-singular matrices was discovered and computed by

generating the all possible non-singular matrices with many different

matrix dimensions. The algorithm of the complexity assessment for the

possible non-singular matrices is as follows:

Algorithm (3.19): Complexity assessment of the number of probable
non-singular matrices

Input:
k: an integer number represents dimensions values of the non-singular matrix

and its inverse matrix

Output:
 Sntimes1: represents the number of all possible non-singular matrices
Procedure

 1. Set Sntimes1 ← 1; Set x ← 1; Set j ← 2

Chapter Three The Proposed System Design and Implementation

 ٦٠

2. For i ← 1 to k - 1

 2.1 Set x ← 4 * x + j

 2.2 Set Sntimes1 ← Sntimes1 * x

 2.3 Set j ← j * 2

 End loop

End.

3. Generate all possible probabilities of the third secret key

(permutation matrix P). The generation of permutation matrix

probabilities depends on its secret key properties, and the number of

these probabilities depends on the length of the matrix (key size).

Permutation matrix means that the binary matrix has only one (1) in

each row and column. Every matrix must be checked if it has this

property or not. The algorithm of generation shows in algorithm

(3.20). The complexity assessment of the number of possible

probable permutation matrices is n! (i.e., Permutation matrix P(n*n) is

a matrix of n*n dimension).

Algorithm (3.20): Generate all possible probabilities of permutation
matrix for brute force attack.

Input:
n: an integer number represents dimensions values of the permutation matrix

and its inverse // the same n in algorithm (3.14)

Output:
 Pntimes: represents the number of all possible permutation matrices

 File3: file contains all possible permutation matrices

Procedure
 1. Open File3 for write

2. For i ← 0 to n-1

 For j ← 0 to n-1

 Set P(i,j) ← 0

 End loop (j)

 End loop (i)

Chapter Three The Proposed System Design and Implementation

 ٦١

3. For i ← 0 to n-1

 Set P(i,n-1-i)←1

 End loop (i)

4. Do while (ChangeState=1)

 4.1 For i ← 0 to n-1

 Set Numof1s ← 0

 For j ← 0 to n-1

 If (P(i,j)=1) then Increment Numof1s by 1

 End loop (j)

 If ((Numof1s<1) or (Numof1s>1)) then exit for (i)

 End loop (i)

 4.2 If (Numof1s=1) then

 For j ← 0 to n-1

 Set Numof1s ← 0

 For i ← 0 to n-1

 If (P(i,j)=1) then Increment Numof1s by 1

 End loop (i)

 If ((Numof1s<1) or (Numof1s>1)) then exit for (j)

 End loop (j)

 If (Numof1s=1) then

 Put File3, P

 Increment Pntimes by 1

 End if

 End if

 4.3 Set Carry←1

 4.4 For i ← n-1 down to 0

 Set ChangeState ← 0

 For j ← n-1 down to 0

 If ((P(i,j)=0)And (Carry=1)) then

 Set P(i,j)←1; Set Carry ← 0; Set ChangeState←1; Set i ← 0

 Exit for (j)

 End if

 If ((P(i,j)=1) And (Carry=1)) then

 Set P(i,j) ← 0; Set Carry ←1

 End if

Chapter Three The Proposed System Design and Implementation

 ٦٢

 End loop (j)

 End loop (i)

 Loop

5. Close File3

End.

 The output files (File, File1 and File3) contain all probabilities of

the secret keys (G0, S, P), so one of each secret key probabilities could

be chosen to generate the McEliece public key.

After generating all possible probabilities for each secret key G0SP

(generator matrix G0, non-singular matrix S and permutation matrix P)

that was participated in the generation of McEliece public key, the

encrypted message was decrypted through all these probabilities and

found the original one. The algorithm of trying all these probable keys

until finding the original message will be as follows:

Algorithm (3.21): Trying all probable secret keys to find the original
message.

Input:
 Encrypted message: an encrypted message with error

n: an integer number represents dimension value (a y-axes) of the public key

matrix //the same n in algorithm (3.14)

k: an integer number represents dimension value (an x-axes) of the public key

matrix //the same k in algorithm (3.14)

 Pntimes: represents the number of all possible permutation matrices

 Sntimes: represents the number of all possible non-singular matrices

 Gntimes: represents the number of all possible generator matrices

Output:
 Decrypted message: represents original message

Procedure
 1. Open File, File1, File2, File3 for read

 2. Set countG ← 0; Set countS ← 0; Set countP ← 0

3. Do

Chapter Three The Proposed System Design and Implementation

 ٦٣

 3.1 If countP = Pntimes Then

 Increment countS by 1

 Set countP ← 0

 End If

 3.2 If countS = Sntimes Then

 Increment countG by 1

 Set countS ← 0

 End If

 3.3 If countG = Gntimes Then Exit loop

 3.4 Read countG generator matrix G0 from File // this file contains all

 possible generator matrices

 3.5 Read countS non-singular matrix S from File1 // this file contains all

 possible non-singular matrices

 3.6 Read countS the inverse of non-singular matrix Sinv form File2 //

 this file contains all possible inverse matrices of non-singular

 matrices

 3.7 Read countP permutation matrix P form File3 // this file contains all

 possible permutation matrices

 3.8 Computes the transpose of permutation matrix that is represent

 inverse permutation matrix

 3.9 Read Encrypted message

 3.10 Decrypt Encrypted message by Call Decryption phase //algorithm

 (3.11)

 3.11 If Decrypted message = original message then

 The Encrypted message was decrypted correctly and the correct

 message was founded

 Print Decrypted message

 Exit loop
 End if

 3.12 Increment countP by 1

 Until (countG ≥ Gtimes)

4. Close File; Close File1; Close File2; Close File3

End.

Chapter Three The Proposed System Design and Implementation

 ٦٤

3.6 A Mechanism to Enhance McEliece Cryptosystem

 After applying a brute force attack to evaluate the security of

McEliece public key cryptosystem, some weak points have been appeared

and noticed (as shown in chapter four) especially when m = 3, that the

number of probable secret keys are very small and its very easy to attack

the system. So an adopted mechanism to enhance the performance of this

cryptosystem was designed and implemented. This mechanism makes the

cryptosystem very secure (because the number of probable secret keys

becomes very large) and the size of the public keys is not large, also has

less complexity.

 This mechanism based on generating a number of public keys

instead of one public key and kept these public keys and its secret keys in

a file. This is shown in figure (3.5) and the implemented steps are

presented in algorithm (3.22). For example generating three public keys

of 4*7 dimensions, and saved these public keys and its private keys in a

file.

Figure (3.5): Key generation phase for the mechanism.

Multiplying Non-singular matrix S1

Permutation matrix P1

Public key G1

Multiplying

Generator matrix G02

Non-singular matrix S2

Permutation matrix P2

Public key G2

Multiplying

Generator matrix G0j

Non-singular matrix Sj

Permutation matrix Pj

Public key Gj

Generator matrix G01

Chapter Three The Proposed System Design and Implementation

 ٦٥

Algorithm (3.22): key generation phase for the mechanism.

Input:

m: an integer number, 2≥ m≥ 10, m=(n-k) in hamming code, m=(n-k)-1

 in extended hamming code.

t: 0≤t≤2, number of error

counter: represents number of generation public keys

Output:

 File4: file contains generated public keys of hamming code or

 extended hamming code G of k*n dimension

 FileG0: file contains read generator matrices

 FileSinv: file contains the inverse matrices of read non-singular matrices

 FilePinv: file contains the inverse matrices of read permutation matrices

 t: number of error

Procedure

 1. Open File, File1, File3 for read

2. Open File4, FileG0, FileSinv, FilePinv for write

3. If generating a public key of hamming code then Set n ← 2m – 1

 Else if generating a public key of extended hamming code then Set n ← 2m

4. Set k ← 2m - m – 1

5. For j ← 1 to counter

 5.1 Read randomly the generator matrix G0 from File // this file contains

 all possible generator matrices

 5.2 Put FileG0, G0 // save matrix G0 in file

 5.3 Read randomly the non-singular matrix S from File1 // this file

 contains all possible non-singular matrices

 5.4 Put FileSinv, Sinv // save the inverse of matrix S in file

 5.5 Read randomly the permutation matrix P from File3 // this file

 contains all possible permutation matrices

 5.6 Put FilePinv, Pinv // save the inverse of matrix P in file

 5.7 Multiply these three matrices (G0,S,P)to produce the public key (G):

 G(k, n) ← S(k,k) * G0(k,n)* P(n,n)

 5.8 Put Filenam4, G

 End loop (j)

Chapter Three The Proposed System Design and Implementation

 ٦٦

6. Close File; Close File1; Close File3

7. Close File4; Close FileG0; Close FileSinv; Colse FilePinv

End.

 In encryption phase, the side B obtains A’s public keys then start

encrypting the original message by multiplying it by the first public key

to produce another message. An error will be added to this message. The

process of multiplying the message by the public key and adding error to

it will be repeated depend on the number of generated public keys. For

example if the number of public keys is 3, so the message will be

multiplied by the first public key and then add error to it to produce a

message that will be multiplied by the second public key and again add

error to it. Finally the produced message will be multiplied by the third

public key and error will be added to it. The last message represented the

encrypted message which will be sent to A. This is shown in figure (3.6)

and in algorithm (3.23).

Figure (3.6): Encryption phase for the mechanism.

Algorithm (3.23): Encryption phase for the mechanism.

Input:

counter: represents number of generation public keys

me: represents the original message

t: number of error

Encryption Encryption

encrypted
message2

encrypted
message1

Public key G2 Public key Gj

encrypted
messagej

Encryption

Original
message

Public key G1

Chapter Three The Proposed System Design and Implementation

 ٦٧

Output:

y1: an encrypted message with error

Procedure

 1. Sender (B) obtained A's file of public key G and t

2. Convert the original message (me) from text to binary representation

 3. Open File4 for read

4. For j ← 1 to counter

 4.1 Read the (j) public key G from File4 // this file contains generated

 public key

 4.2 q ← length (me) / k

 4.3 If q ≠ Int(q) Then

 q ← Int(q) + 1

 End If

 4.4 Call Message encryption that input (G,me,q) and output (y)

 // algorithm (3.9)

 4.5 If t ≠ 0 Then

 For x ← 0 to q - 1

 Call Generate a random error vector that input (t) and output (e)

 // algorithm (3.10)

 For xx ← 0 to n - 1

 Set y1(x, xx) ← (y(x, xx) + e(xx)) and 1

 End loop (xx)

 End loop (x)

 End If

 4.6 Set r ← 0

 4.7 For i ← 0 to q – 1

 For l ← 0 to n - 1

 Set me(r) ← y1(i,l)

 Increment r by 1

 End loop (l)

 End loop (i)

 End loop (j)

 5. Close File4

Chapter Three The Proposed System Design and Implementation

 ٦٨

6. Convert last encrypted message (y1) from binary to text representation

 7. Sender (B) Sends encrypted message y1 to receiver (A)

End.

 In the last phase, decryption phase, the side A receives an

encrypted message from side B to decrypt it. Decryption process uses the

secret keys of the generated public keys by A to decrypt the received

message, starting from the secret keys of the last public key to the secret

keys of the first public key. For example if the number of public keys is

3, so decryption process will start with the secret keys of the third public

key to produce a message which will be decrypted using the secret keys

of the second public key to produce another message. Finally this

message will be decrypted using the secret keys of the first public key.

The last message represents the original message that A encrypt. This is

shown as follows in figure (3.7) and the implemented steps are presented

in algorithm (3.24).

Figure (3.7): Decryption phase for the mechanism.

Algorithm (3.24): Decryption phase for the mechanism.

Input:
counter: represents number of generation public keys

y1: an encrypted message with error

Output:
 me: represents the original message

Procedure
1. Receiver (A) receives encrypted message y1 from sender (B)

Decryption Decryption

Decryption

encrypted
messagej

decrypted
messagej

decrypted
messagej-1

decrypted
message1

Original
message

Secret keys j Secret keys j-1 Secret keys 1

Chapter Three The Proposed System Design and Implementation

 ٦٩

2. Convert the encrypted message (y1) from text to binary representation

3. Open FileG0, FileSinv, FilePinv for read

 4. For j ← counter down to 1

 4.1 q ← length (y1) / n

 4.2 If q ≠ Int(q) Then

 q ← Int(q) + 1

 End If

 4.3 Read (j) inverse permutation matrix Pinv from FilePinv

 4.4 Read (j) generator matrix G0 and Parity part from FileG0

 4.5 Call SynPar that input (y1,q,Pinv,Parity) and output (Sy,HT,y2) //

 algorithm (3.13)

 4.6 Used the syndrome (Sy) to detect and correct the error

 If one error was existed then

 For r ← 0 to q – 1 // error correction loop

 For i ← 0 to n - 1

 Set co ← 0

 For l ← 0 to (n - k) - 1

 If Sy(r,l) ≠ HT(i, l) Then

 Set co ← 1

 Exit For (l)

 End If

 End loop (l)

 If co = 0 Then

 Set y2(r,i) ← (y2(r,i) + 1) and 1

 Exit for (i)

 End If

 End loop (i)

 End loop (r)

 End if

 4.7 Read (j) inverse non-singular matrix Sinv from FileSinv

 4.8 For r ← 0 to q – 1//eliminates non-singular matrix (it is a secret key)

 For i ← 0 to k - 1

 Set x1 ← 0

 For l ← 0 to k - 1

 Set r1 ← y2(r, l) * Sinv(l, i)

Chapter Three The Proposed System Design and Implementation

 ٧٠

 Increment x1 by r1

 End loop (l)

 Set me(r, i) ← x1 and 1

 End loop (i)

 End loop (r)

 4.9 Set r ← 0

 4.10 For i ← 0 to q – 1

 For l ← 0 to k - 1

 Set y1(r) ←me (i,l)

 Increment r by 1

 End loop (l)

 End loop (i)

 End for (j)

5. Close FileG0; Close FileSinv; Close FilePinv

6. Convert last decrypted message (me) that represents original message from

 binary to text representation

End.

So the number of all possible probable secret keys becomes very

large and the time needed to trying all these probable keys until decrypt

the encrypted message is very long, therefore it is very difficult to break

and attack the system. And the size of the generated public keys is still

suitable.

3.7 Other Cryptosystem Parameters

The McEliece public key cryptosystem has many parameters, some

of these parameters are:

1. Key size: represents size of the public key.

2. Message expansion: represents the ratio of the expansion of the

encrypted message to the original message (original message is a

binary vector of 1*k dimension where the encrypted message is a

Chapter Three The Proposed System Design and Implementation

 ٧١

binary vector of 1*n dimension, so the encrypted message was

expanded n-k bits more than the original message).

3. Information rate: this is a measure of how much information on the

average is being carried by a symbol.

Algorithm (3.25): Public key size, message expansion, information rate.

Input:
n: an integer number represents dimension value (a y-axes) of the public key

matrix

k: an integer number represents dimension value (an x-axes) of the public key

matrix

Output:
 keysize: represents size of the public key in a byte

 mesexp: represents message expansion

 infra: represents information rate

Procedure
1. Set keysize ← (k*n) / 8

2. Set mesexp ← (n / k)

3. Set infra ← (k / n)

End.

Chapter Four

Experimental Results

4.1 Introduction

 In this chapter the results of the proposed system were presented.

The security of the McEliece public key cryptosystem was evaluated by

using brute force attack; different results of this attack are presented. An

adopted mechanism was used to overcome the weakness of this

cryptosystem. Also, this chapter presents the results of computing public

key size, message expansion, information rate and execution time, and

their influence on the security of the cryptosystem.

4.2 Brute Force Attack

 A brute force attack was used to evaluate the security of this

cryptosystem (McEliece cryptosystem). This attack is a method of

defeating a cryptographic scheme by generating all possible probabilities

for each secret key. These secret keys are; generator key, non-singular

key and permutation key. And, exhaustively working through all possible

keys in order to decrypt a message.

One can determine or estimate the time that is required to compute

the secret keys, which is refer to the minimum amount of work to

compute the key, then if this time is large enough the cryptosystem is a

secure system. So the number of probabilities of the secret keys (i.e. the

number of keys or the size of the key space) should be large enough to

make this attack (brute force) computationally infeasible.

The results of probabilities number for each secret key are as

follows:

Chapter Four Experimental Results

 ٧٣

a. The number of all possible probabilities of the first secret key

(generator matrix G0 (k*n)) will be presented in table (4.1). This table

presents all possible keys for the generator matrix with different

cryptosystem parameter value (means that with different key size).

 Table (4.1): The number of probable generator matrices.

m
Hamming

code
Extended

hamming code
The number of

(G0)
probabilities

Time(second)
n k n k

2 3 1 4 1 1 0.000067
3 7 4 8 4 24 0.000967
4 15 11 16 11 39916800 7145.656
5 31 26 32 26 4.033e+26 Long time
6 63 57 64 57 4.053e+76 =
7 127 120 128 120 6.689e+198 =
8 255 247 256 247 2.094e+485 =
9 511 502 512 502 3.069e+1139 =
10 1023 1013 1024 1013 4.405e+2606 =

Figure (4.1) presents the relationship between increasing the

number of generator matrix probabilities and increasing the value

of cryptosystem parameter (i.e. increasing key size). It is found that

the number of these probable generator matrices is increased

polynomially.

Matrix(G0)

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

2 3 4 5 6 7 8 9 10

m

lo
g(

P
ro

ba
bl

iti
es

)

 Figure (4.1): Relation between the number of G0 probabilities and
 cryptosystem parameter (m).

Chapter Four Experimental Results

 ٧٤

b. The second secret key (non-singular matrix S(k*k)) probabilities

number is shown in table (4.2). The number of all possible

probabilities for the non-singular matrix with different matrix

length are presented in the next table.

 Table (4.2): The number of probable non-singular matrices.

m
Hamming

code
Extended

hamming code The number of
(S) probabilities

Time(second)
n k n k

2 3 1 4 1 1 0.0000098
3 7 4 8 4 20160 0.79375
4 15 11 16 11 7.681e+35 Long time
5 31 26 32 26 9.054e+202 =

Figure (4.2) shows the relation between the number of non-

singular matrices with the cryptosystem parameter value (m),

which represents the matrix size. The number of probable non-

singular matrices is increased polynomially.

Matrix(S)

0
10000
20000
30000
40000
50000
60000
70000

2 3 4 5 6 7 8

m

lo
g(

P
ro

ba
bl

iti
es

)

 Figure (4.2): Relation between the number of S probabilities and
 cryptosystem parameter (m).

c. Permutation matrix (P(n*n)) is the third secret key. The numbers of

possible permutation matrices are listed in tables (4.3), and (4.4).

These two tables offer the number of all possible probabilities for

Chapter Four Experimental Results

 ٧٥

the permutation matrix when using hamming and extended

hamming code with variable matrix size and different length.

 Table (4.3): The number of probable permutation matrices
 when using hamming code.

m n k The number of (P) probabilities Time(second)
2 3 1 6 0.000093
3 7 4 5040 Long time
4 15 11 1307674368000 Long time
5 31 26 8.223e+33 Long time
6 63 57 1.983e+87 =
7 127 120 3.013e+213 =
8 255 247 3.351e+504 =
9 511 502 6.792e+1163 =
10 1023 1013 5.292e+2636 =

Figures (4.3) and (4.4) offer the relationship between the

numbers of permutation matrices with the value of cryptosystem

parameter when using hamming code and extended hamming code

(i.e. with increasing matrix length). Also it is found the number of

probable permutation matrices is increased polynomially.

Matrix(P)

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

2 3 4 5 6 7 8 9 10

m

lo
g(

P
ro

ba
bl

iti
es

)

 Figure (4.3): Relation between the number of P probabilities and
 cryptosystem parameter (m) when using hamming code.

Chapter Four Experimental Results

 ٧٦

 Table (4.4): The number of probable permutation matrices when
using extended hamming code.

m n k
The number of (P)

probabilities
Time(in
second)

2 4 1 24 0.00856
3 8 4 40320 Long time
4 16 11 20922789888000 Long time
5 32 26 2.631e+35 Long time
6 64 57 1.269e+89 =
7 128 120 3.856e+215 =
8 256 247 8.578e+506 =
9 512 502 3.477e+1166 =
10 1024 1013 5.419e+2639 =

Matrix(Pextended)

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

2 3 4 5 6 7 8 9 10

m

lo
g(

P
ro

ba
bl

iti
es

)

 Figure (4.4): Relation between the number of P probabilities and
 cryptosystem parameter (m) when using extended hamming code.

Complexity assessment of the number of probable each secret key

was discovered after conducting many experiments of generating each the

possible secret keys with different key length.

Chapter Four Experimental Results

 ٧٧

Table (4.5): The number of probable secret keys and needed time to try
these probabilities.

m

The number of
secret keys

probabilities
(hamming)

Time

The number of secret
keys probabilities

(extended hamming)

Time

2 6 0.0000000108s 24 0.0000000768s
3 2438553600 2.275min 19508428800 22.889min
4 4.009e+55 1.049e+42years 6.415e+56 1.861e+43years
5 3.002e+263 8.595e+250years 9.607e+264 2.889e+252years

From results listed in these tables, it was found that when the value

of cryptosystem parameter m is small (when m = 2, n = 3 and k = 1 using

hamming code, m = 2, n = 4 and k = 1 using extended hamming code),

the results of all possible secret key are:

1- For the first secret key (generator matrix), the number of all possible

keys = 1.

2- For the second secret key (non-singular matrix), the number of all

possible keys = 1.

3- For the third secret key (permutation matrix), the number of all

possible keys when using hamming code = 6 and when using

extended hamming code = 24.

The number of probable keys is very small and the time needed to

break the cryptosystem and find the original message is very small.

 When the value of the cryptosystem parameter m = 3, (n = 7 and k =

4) using hamming code, and (n = 8, k = 4) using extended hamming code,

the possible secret key are:

1- For G0 equal to 24.

2- For S equal to 20160.

3- For P using hamming code equal to 5040 and by using extended

hamming code equal to 40320.

Chapter Four Experimental Results

 ٧٨

These values mean that the number of all probable keys is

2438553600 when using hamming code and 19508428800 when using

extended hamming code which is greater than the previous case. If a

high-speed computer performs 1010 operation per second and if the

operation is supposed to be multiplication and addition operations then it

needs 2.275 or 22.889 minutes to try all the probabilities (each probable

has 308 multiplications and 252 additions when using hamming code, 384

multiplications and 320 additions when using extended hamming code)

which is considered as a little time and thus not secure.

 When m = 4, (n = 15 and k = 11) using hamming code and (n = 16

and k = 11) when using extended hamming code, all possible keys for

each secret key are as follows:

1- For G0 = 39916800.

2- For S = 7.681e+35.

3- When using hamming code P probabilities number =

1307674368000 and when using extended one P probabilities

number = 20922789888000.

 Here the probabilities number have been increased more than the

previous case (when m = 3) and this increase makes such cryptosystem

secure. As before a high-speed computer performs 1010 operation per

second and if the operation is supposed to be multiplication and addition

operations then it needs approximately 1.049e+42 or 1.861e+43 years to

try all these probabilities (each probable has 8250 multiplications and

additions when using hamming code, 9152 when using extended

hamming code) which is regarded as a long time and hence the system is

secure. This long time resulted from the large number of S probabilities’.

 When m = 5 to 10, the number of possible probabilities for all secret

keys are very large (when m=5, number of probabilities equal to

Chapter Four Experimental Results

 ٧٩

3.002e+263 or 9.607e+264), and the time needed for trying all these

probabilities is very long and needs very large number of years to break

the cryptosystem (the previous case when m=4, the time needed to break

the system is very long, so what about this case when m≥5 and the

number of probabilities has been increased more and becomes very

large). So in this case the McEliece cryptosystem is very secure against

this type of attack and very difficult to break.

So, when the value of m is equal to 2; the number of all possible

probable keys is very small and it is very easy to attack this cryptosystem.

When m is equal to 3; the number of probabilities is also small but better

than the number of probabilities when m is equal to 2. So to make this

cryptosystem secure against this attack when the value of its parameter m

= 3, generate number of public keys and encrypting the message by them.

After that decrypt the message by the secret keys of these public keys. So

the number of possible keys becomes very large and needs very long time

for trying all these probabilities until decrypt the encrypted message,

therefore it is very difficult to break the system.

When m = 3 the number of possible secret keys is very small

(2438553600), after using the proposed mechanism the number of

probable secret keys becomes equal to 1.450e+28 when generating three

public keys i.e. the number of secret keys probabilities when generating

one public key is much less that when generating three public keys using

the proposed mechanism, the number of all probable secret keys when

using the proposed mechanism can be illustrated in the following

equation:

 Spm = (Sp)N …………………………………………………… (4.1)

 Spm = Number of all possible probable secret keys

 Sp = Number of probable secret keys when generating one public key

Chapter Four Experimental Results

 ٨٠

 N = Number of generated public keys

And if generate ten public keys the number of probable keys equal

to (Sp)10 =7.435e+9310, and so on for m=4 as shown in the next table.

 Table (4.6): Number of probable keys after using the mechanism.

m No. of public keys All possible probable secret keys

3 3 (2438553600)3 = 1.450e+28

3 5 (2438553600)5 = 8.623e+46

3 10 (2438553600)10 = 7.435e+93

4 3 (4.009e+55)3 = 6.443e+166

 When m is equal to 4 the number of probabilities is large and the

system is secure, in order to make it more secure, the same previous

mechanism can be used by generating two or three public keys and

encrypting the message by them. This mechanism is not useful when m

equal to 2 because the number of probabilities that can be generated from

generating large numbers of public keys still very small and therefore, the

system can be broken.

4.3 Evaluation According Other Cryptosystem Parameters

Some of McEliece cryptosystem parameters were studied in this

project. The security, implementation and use of this system were

influenced by these parameters. These parameters are:

1-Public Key Size

Table (4.7) shows the effect of different McEliece public key size

(when using hamming code and extended hamming code). Also

from this table, the public key size of extended hamming code was

larger than the public key size of hamming code. When the value of

n and k is small (when n = 3 or 4 and k = 1, and n = 7 or 8 and k = 4)

Chapter Four Experimental Results

 ٨١

then the public key size is small and needs very little space in the

memory. But on the other hand, the number of the secret keys is very

small and the cryptosystem is very easy to be attacked.

 Table (4.7): McEliece public key size when using hamming
 and extended hamming code in byte.

m
Hamming code Extended hamming code

n K Public key size n k Public key size
2 3 1 1 4 1 1
3 7 4 4 8 4 4
4 15 11 21 16 11 22
5 31 26 101 32 26 104
6 63 57 449 64 57 456
7 127 120 1905 128 120 1920
8 255 247 7874 256 247 7940
9 511 502 32066 512 502 32128
10 1023 1013 129538 1024 1013 129664

When n = 15 or 16 and k = 11, the number of probable secret

keys is large and the time needed to break the system is very long,

roughly 1.271e+38 years. This case has suitable public key size.

When the value of n = 31 or 32 and k = 26, the McEliece public

key cryptosystem is very secure and any try to break it needs lots of

years. Even the public key size is increased but still not large in

comparison with the large capacity of storage area and high

transmission speed.

 When m≥6, the McEliece public key cryptosystem is very secure

and any try to break it needs very large number of years. But the

public key size becomes large and needs large space in the memory,

especially when m = 10.

 From this previous study it was found that when m=2 and 3 the

public key size is very small but the cryptosystem is not secure.

When m = 4 and 5, in this case the cryptosystem is secure also the

Chapter Four Experimental Results

 ٨٢

public key size is not large comparing with the large capacity of the

storage media and with high transmission speed. When m≥6 the

number of probable keys is very large and the system is very secure

but the public key size was increased, and will cause implementation

problems especially when m = 10. This large public key size makes

this cryptosystem not widely used because it needs large space in the

memory also needs very high transmission speed. But changes in

technology and economies, for example the plummeting cost of

storage, keep it on the list of candidates for some applications.

2- Message Expansion

Table (4.8) offers message expansion of the cryptosystem, this

table presents that the encrypted message was longer than the

original message by (n-k) bits. System message expansion of

hamming code was less than of extended hamming code. So the

encrypted message is much longer than the plaintext. This expansion

of the message is considered as a drawback of this cryptosystem

because it makes the system more prone to transmission error.

 Table (4.8): Message expansion system when using hamming

 and extended one.

m
Hamming code Extended hamming code

n K Message expansion n k Message expansion
2 3 1 3 4 1 4
3 7 4 1.75 8 4 2
4 15 11 1.364 16 11 1.455
5 31 26 1.192 32 26 1.230
6 63 57 1.105 64 57 1.123
7 127 120 1.058 128 120 1.067
8 255 247 1.032 256 247 1.036
9 511 502 1.018 512 502 1.01992
10 1023 1013 1.009 1024 1013 1.010859

Chapter Four Experimental Results

 ٨٣

3- Information Rate

 Table (4.9): Information rate system when using hamming

 and extended hamming code.

m
Hamming code Extended hamming code

n K Information rate n k Information rate
2 3 1 0.333 4 1 0.25
3 7 4 0.571 8 4 0.5
4 15 11 0.733 16 11 0.6875
5 31 26 0.839 32 26 0.8125
6 63 57 0.905 64 57 0.890625
7 127 120 0.945 128 120 0.9375
8 255 247 0.969 256 247 0.965
9 511 502 0.982 512 502 0.980
10 1023 1013 0.990 1024 1013 0.989

Table (4.9) presents information rate for different values of n and

k of hamming code and extended hamming code. When m is small

(m =2 and 3) the information rate is low but it would be increased

when the value of m was increased as shown in table (4.9). And

system information rate of extended hamming code was lower than

of hamming code.

4- Execution Time

Table (4.10) and (4.11) present execution time for encryption and

decryption stages of the cryptosystem. These tables present that the

encryption and decryption execution time of extended hamming

code needs more little time than the time was needed to execute with

hamming code. However, encryption and decryption has relatively

little time. So, this faster execution time is considered as an

advantage of the cryptosystem.

Chapter Four Experimental Results

 ٨٤

 Table (4.10): System encryption and decryption execution time
 of hamming code.

m n K Encryption time(second) Decryption time(second)
2 3 1 0.00192 0.00198
3 7 4 0.00103 0.00190
4 15 11 0.00109 0.00282
5 31 26 0.00167 0.00510
6 63 57 0.003 0.00971
7 127 120 0.00603 0.0204
8 255 247 0.0130 0.0510
9 511 502 0.0311 0.142
10 1023 1013 0.0834 0.322

 Table (4.11): System encryption and decryption execution time
 of the extended hamming code.

m N k Encryption time(second) Decryption time(second)
2 4 1 0.00223 0.00296
3 8 4 0.00115 0.00234
4 16 11 0.00117 0.00312
5 32 26 0.00171 0.00531
6 64 57 0.00304 0.0101
7 128 120 0.00606 0.0206
8 256 247 0.0131 0.0514
9 512 502 0.0312 0.143
10 1024 1013 0.0835 0.323

 The time of extended hamming code was larger than the

hamming one, but the difference was small. As a normal suggestion,

the extended one was preferred, since it can correct one error and

can detect two. Whereas the cryptosystem of hamming code can

correct one error and cannot detect two errors.

Chapter Five

Conclusions and Future Work

5.1 Conclusions

1. The McEliece public key cryptosystem is not secure when its

parameter value (m=2 and 3), because the number of McEliece

secret keys are very small, and an adopted mechanism was used to

make this cryptosystem secure when m=3. And when the value of

the cryptosystem parameter (m=4) the number of cryptosystem

secret keys become large and the time needed to break the system is

long, so the system is secure. When (m≥5) the number of keys

becomes very large and needs very long time to be discovered in

order to decrypt a message, so the McEliece cryptosystem is very

secure in this case.

2. The public key size of the McEliece cryptosystem is small when the

value of the cryptosystem parameter (m=2 and 3) and the system is

not secure. When (m=4 and 5), the system become is secure at the

same time the storage area that was needed for the public key is not

large. While when (m≥6) the cryptosystem is very secure but the

size of the public keys become large, and this will cause

implementation problems.

3. An adopted mechanism was designed and implemented to overcome

the weak points of this cryptosystem and to enhance the performance

of it (especially when m = 3, when m = 4 the system is secure, to

make it more secure this mechanism can be used).

Chapter Five Conclusions and Future work

 86

4. McEliece cryptosystem has low information rate when the value of

cryptosystem parameter (m) is small (m=2 and 3), but this

information rate would be increased when m is increased.

5. Encryption and decryption has relatively little time in the McEliece

system. Therefore, the on going study of this system is vital to the

future of cryptography and this cryptosystem may provide an

alternative to the current public key cryptosystem. So, this high-

speed encryption and decryption is considered as an advantage of the

cryptosystem.

Chapter Five Conclusions and Future work

 87

5.2 Future Work

1. Using another type of linear block codes instead of hamming code

and extended hamming code such as Golay code, Reed Muller code

or Goppa code and evaluates the security of McEliece cryptosystem

and trying to enhance it when using one of these codes. These codes

can detect and corrects multiple errors depending on its propriety.

2. Another type of attacks could be used instead of brute force attack

to evaluate the security of McEliece public key cryptosystem when

using one of these codes (hamming code, extended hamming code,

Golay code, Reed Muller code or Goppa code).

3. Trying to overcome the drawbacks of this cryptosystem (McEliece

cryptosystem): large public key, message expansion and low

information rate.

 88

References

[Ber97] Berson A. Thomas, ”Failure of the McEliece Public-Key

cryptosystem Under Message-Resend and Related-Message

Attack”, B. Kaliski (Ed.), Advances in Cryptology- Proceedings

of Crypto '97, Lecture Notes in Computer Science, Springer

Verlag, IEEE, 1997, [www.math.utah.edu/ftp/pub/tex/bib/idx/

lncs1997a/1294/0/213-z.html].

[Buc01]

Buchmann A. J., “Introduction To Cryptography”, Springer-

Verlag New Work, Inc, USA, 2001.

[Car05] Carlsson A., “INFORMATION THEORY”, 2005,

[http://www.it.isy.liu.se/research/indexeng.html].

[Cha98] Chakravarti I. M., “Design Theory and Coding Theory”, 1998,

[www.stat.unc.edu/321F.html].

[Che00] Cherowi W., “The McEliece Cryptosystem”, 2000,

[http://www-math.cudenver.edu/~wcherowi/courses/m5410/

ctcmcel.html].

[Cla97] Clayton R., ”Brute force attack”, 1997,

[http://en.wikipedia.org/wiki/ Brute_force_attack].

[Das86] Das J., Mullick S.K., Chatterjee P.K., ”principles of digital

communication”, department of electrical engineering India

institute of technology, Kanpur, India, John Wiely & sons,

copyright 1986, Wiely Eastern limited new Delhi, 1st edition.

[Fre00] Frey B. J., “Error-Correcting Codes”, IS250 Computer-Based

Communications Systems and Networks, Spring 2000,

 89

[www.ischool.berkeley.edu/~rosario/projects/error_correcting_c

odes.html].

[Han06] Hankerson A., “Algebraic Codes”, Sections: Hamming codes,

extended codes, 12-Jun-2006.

[Hay01] Haykin S., ”Communication Systems”, 4th edition, 2001.

[Heu98] Heumann S., “Redundancy, Surprise, and Information Rate”,

12/4/1998, [www.mdstud.chalmers.se/~md7sharo/coding/main/

node16.html].

[Hhl00] Hankerson D.R., Hoffman D.G., Leonard D.A., Lindner C.C.,

Phelps K.T., Rodger C.A., Wall J.R, "CODING THEORY AND

CRYPTOGRAPHY”, Second Edition, 2000.

[How00] Howe D., “ Breaking ciphers with many workstations”, 2000,

[http://www.distributed.net/projects.html.en].

[Jam02] James Gannon, “Cryptography”, 2002, [http://en2.wikipedia.

org/wiki/cryptography].

[Jar98] Jargon B., “Brute-force attack”, 1998, Security definitions.com.

[Jer03] Jeroen M., “Some Applications of Coding Theory in

Cryptography“, Technische Universiteit Eindhoven, 1st edition,

2003.

[Joh98] Johansson T., "On the Complexity of Some Cryptographic

Problems Based on the General Decoding Problem", Dept. of

Information Technology, Lund University, Box 118 S-221 00

Lund, Sweden, 1998, [www.it.lth.se/projects/cryptology/e-

 90

papers/paper054.pdf].

[Jon06] Jones J. Antonia, ”DATA SECURITY”, 25 February 2006,

[http://www.cs.cf.ac.uk/user/Antonia.J.Jones/lectures].

[Kor05] Korner T. W., ” Coding and Cryptography”, February 8, 2005,

[http://www.dpmms.cam.ac.uk].

[Lee98] Lee P. J. and Brickell E. F., ”On observation on the security of

McEliece’s public key cryptosystem”, Bell Communication

Research, U.S.A., 1998.

[Leh93] Lehre S., “An introduction to Error-Correcting codes “, Georg-

August-Universe, 1993, [http://www.num.math.uni-goettingen.

de/Lehre/Lehrmaterial /texte/abthesis.html].

[Lou00] Loureiro S., ”Function Hiding Based on Error Correcting

Codes”, Institut Eurecom, Sophia Antipolis, France, 2000,

[www.eurecom.fr/~nsteam/Papers/cryptec99.pdf].

[Men96] Menezes A., P. Van and S. Vaston, “Handbook of Applied

Cryptography”, CRC Press, 1996.

[Mey98] Meyer P., ” An Introduction to the Use of Encryption”, 1998,

[www.hermetic.ch/crypto/intro.htm].

[Mic85] Michelson Arnold M.,” Error Control Techniques for Digital

Communication”, published in Canada, 1st edition, 1985.

[Mos01] Moschoyiannis S., ”Group Theory and Error Detecting/

Correcting Codes”, M.Sc Thesis, University of Surrey,

Department of Computing, School of Electronics Computing

and Mathematics, September 2001, [www.cs.bham. ac.uk/~sxm/

 91

GroupTheory&ErrorDetectingCorrectingCodes.pdf].

[Pet72] Peterson W., ” ERROR-CORRECTING CODES”, second

edition, 1972.

[Pfl89] Pfleeger C., “Security in Computing”, Prentice-Hall, Inc., USA,

1989.

[Pre92] Preneel B., Bosselaers A., Govaerts R., Vandewalle J., “A

software implementation of the McEliec public key

cryptosystem”, 1992, [www.cosic.esat.kuleuven.be/publications

/article- 267.pdf].

[Ric96] Richard Cam, Ph.D., “CONSTRUCTION OF SIMPLE AND

PROVABLY ROBUST 4LZS CONTROL CODES”, 31 Oct.

1996, [grouper.ieee.org/ groups/public/presentations/ nov1996/

BHgutp_e.pdf].

[Sch97] Schneier B., “Applied Cryptography”, John Wiley and Sons Inc,

second edition, 1997.

[Sha85] SHANMUGAM K. SAM, ”digital and analog communication

system”, University of Kansas, John Wiley & Sons, copyright

1979, 1985 by John Wiley & sons New York, 1st edition,

Published simultaneously in Canada.

[Smi02] Smith B., “Algebraic Coding Theory”, April 22, 2002.

[Spe00] Spence S. A., ” Introduction to Algebraic Coding Theory”,

Supplementary material for Math 336 Cornell University, 2000.

[www.math.cornell.edu/~kbrown/336/coding.pdf].

 92

[Sta03] Stallings W., “Cryptography and network security principle and

practice”, Pearson educational international, 2003.

[Ste99] Steve Matuszek, “Encryption”, 1999, [http://www.cs.umbc.edu/

~wyvern/ta/ encryption .html].

[Sua03] Suanne Au, Christina E. and Everson J.,” The McEliece

Cryptosystem”, September 17, 2003, [www.math.unl.edu/~s-

jeverso2/McElieceProject.pdf].

[Sun00] SUN HUNG-MIN, “Enhancing the Security of the McEliece

Public-Key Cryptosystem”, Department of Computer Science

and Information Engineering, National Cheng Kung University,

Taiwan, JOURNAL OF INFORMATION SCIENCE AND

ENGINEERING 16, 799-812 (2000),

[www.math.utah.edu/pub/tex/bib/cryptography2000.bib].

[You02] Yousif A. M., “Key Diskette Software Copy Protection

System”, Ph.D. thesis, the University of Technology, September

2002.

 الخلاصة

�� ا������ت ا������ ��� ���ات ا���ل
	 ا���ا��� �� ��
�� و��
���ع ا� ��� !

 "�
 ��#ا����ً اھ /�. ا�-,+�
	 ا�� �وف ان ھ��ك ا� '!'
	 ا�. اً &��� �� ��
��
	 :�اع �

 hamming ـا� ��
�� .hamming extended ـو��
�� ا� hamming ـ��اع ��
�� ا��اھ1ه

� 3���
�� 	�4 "��hamming extended ���7�� 3 ـا� ����7 ا&�6�ف و�/�. 5,+ وا4'

 .ا&�6�ف و�/�. 5,+ وا4'7������ ا�8 !	ا&�6�ف 5,+

7��;�1 �:�م <��-'م (McEliece)ا��6;�� ھ1ا ا� �< !=?! �
 hamming ـ��
�� ا���'

�:�م .و �/?�	 اداء ھ1ا ا��:�م ���A> ا�
��� �=1ا ا��:�م، hamming extendedـو��
�� ا�

)�6;��ا�McEliece(ح ا�� ���
�� ا���Fيا�1ي ! ��' وھ� �:�م �6;�� ا��;�� .��8 �:�!� ا�

1 ���> و�;��G�+���4 ����' ا��;��ح �ھ"
ا�����4 ا�و�8 .ر7 �
�ا4<
	 ا ا��:�م !

)�6;��ا���:�م McElieceام ('-���7��
 hamming ـا� و��
��hamming ـا� ��

extended .IJI ح ھ��ك��6��ك �" ����' ھ1ا ا��;� �!�� .���;
�� ا����'ة(� �;��، ا���; ا��

 �=� "��� ا��;
�" ھ1ه ا�����4 ،�����4 ا�N���� ھ"
���4 ا��6;��ا). ا�7'ال
 �Mس و

6;� 7���-'ام ا��;��ح ا�� �	 ا�1ي �> . ا������ ا����O �/�ل ا�8 ر����
6;�ة� ���Oا������ ا�

ا�����4 ا��N��N ھ"
���4 .ا������ھ1ه ا�8 و7 ' ذ�� !�> ا���� 5,+ ����'ه �" ا�����4 ا�و�8

�;� �6;�� ا������ ا��6;�ة وا�/�ل �?�!� ��ف �?�-'م �" ھ1ه ا�����4ا��;���. ا. �� ا�6;�ة

���Oن او&1. ��8 ا������ ا���
	 ا�-,+�� �" ھ1ه ا�����4 ./ا�1ي ������ ا��6;�ة ��ف �

6;��
��� ��:�م �7���A> اا�����4 ا���5ة �� �G� . Q �=�ا����' ������ ا��McEliece .(A(ا� � <�

!�M	 ان �A�س ا��:�م ا
��� ھ1ا و ،)brute force(��ع
	 ا��اع ا�=�Fم ا��?�8��8 ا��-'ام

� 3�
 ظ=�ت �' A� T 7�ط ا�G Rھ1ا ا�=�Fم ا�� ��ل7 ' . =1ا ا���ع
	 ا�=�Fم
	 J5ل
A�و

�V�W ��8 ھ1ه ا��A�ط و. ��4:#و �� ً��
��4# و�;1ت �' ا �F < ھ1ا ا��:�م ا&�N ا��A� رة���,

�" ھ1ه ا�����4 &��1 . �=1ا ا��Wض 	
���Wات ا��اع ا�5ى
وھ" ���A� <� <F4=� �' �:�م ا�ھ1ا

��;�1 و ا��-'ام ھ1ا ا��:�م !�+7�I=1ه ، ا
���. ا������ و �?�� ا�� ���
�ت���� ، ا��;��ح

 .ا�����Wات

7��� ��ل ا���W ا���
��F �;1ت�' &< ا���ا
] ا��,��F�� �7�ز ھ1ا ا���6وع او ا� �<

)visual basic(ار ا�?�دس'Oا� >� � "���W6< ا��:�م �" �7\� ا�)Windows XP(.

ر�� ا���اق��

 و ا���� ا����� وزارة ا������ ا�����

��� ا�������

���� ا���
م

 (McEliece) ��� ���)�� أداء $#�م ا��"!��ت�

 ر����

��دة ا�������� �� ، ����� إ�� ��� ا�	��م�'&ء �$ ��#�"�ت �� $(�� ���	� ا�(

 ,��م ا�+���ب

)�* ��

 �ر ر/� ,"� ا��زاق ا��&از

٢٠٠٣-,��
ر�
س ((

 ا��"�2
ن

 �ظ�4+�� ���ل. د ���ر �2ر ���1ن . د

 ١٤٢٧ ٢٠٠٦

	Microsoft Word - 01_English front Page.pdf
	Microsoft Word - 02_quran.pdf
	Microsoft Word - 00-First Certification.pdf
	Microsoft Word - 01-Final Certification.pdf
	Microsoft Word - 04_Dedication.pdf
	Microsoft Word - 05_Acknowledgment.pdf
	Microsoft Word - 06_EngilishAbstract.pdf
	Microsoft Word - 07_Table of Content.pdf
	Microsoft Word - 08_List of Abbreviations.pdf
	Microsoft Word - 09_List of Figures.pdf
	Microsoft Word - 10_List of Symbols.pdf
	Microsoft Word - 11_List of Tables.pdf
	Microsoft Word - Chapter one.pdf
	Microsoft Word - Title.pdf
	Microsoft Word - chapter two.pdf
	Microsoft Word - Title_1.pdf
	Microsoft Word - Chapter Three.pdf
	Microsoft Word - chapter four.pdf
	Microsoft Word - Chapter five.pdf
	Microsoft Word - Reference.pdf
	Microsoft Word - ArabicAbstract.pdf
	Microsoft Word - Arabic FronPage.pdf

