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Abstract

Encoding and decoding of transmitted data through the
communication system is considered as an important subject that paid
great attention. It is well known that there are many types of error
correction codes;, some of these types are hamming and extended
hamming codes. Hamming code can detect and correct single error while

extended hamming code can detect two and correct one only.

This work is concerned with the implementation of McEliece
cryptosystem by using hamming code and extended hamming code,
evaluate the security of this cryptosystem and enhance the performance of
it. McEliece cryptosystem is a public key cryptosystem based on
algebraic coding theory.

The system design and implementation consists of four phases. The
first phase is the key generation phase of McEliece cryptosystem using
hamming code and extended hamming code. There are three secret keys
participate in creating public key (generator matrix, non-singular matrix,
and permutation matrix). The second phase is the encryption phase, in
this phase the original message is converted to encrypted message. The
original message is encrypted by using the public key generated in the
first phase, and then adding the error to it. The third phase is the
decryption phase. The secret keys are used in this phase to decrypt the
encrypted message and to obtain the original one. Also, in decryption
process the message is decoded from the errors added to it. The last phase
IS concerned with evaluating the security of this cryptosystem (McEliece
cryptosystem). The evaluation was based on using brute force attack, and
the security of this cryptosystem can be measured by its resistance to this
type of attack. After applying this attack some weak points have been

noticed. To overcome these weak points and to make this cryptosystem



more secure, a modification was proposed an implemented. In this phase
other cryptosystem parameters have been evaluated, they are: public key
Ssize, message expansion and information rate. The security,
Implementation and the use of this cryptosystem are issues significantly
affected by these parameters.

All required programs, in this research project have been
implemented by using Visua Basic (verson 6) programming language

working in Window XP operating system platform.
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Chapter One

General Overview

1.1 Introduction

Transmitting messages across noisy channels is ngyoriant
practical problem. Coding theory provides explhedys of ensuring that
messages remain legible even in the presence mkefryptography on
the other hand is the science of sending messagdsguise form, it
makes sure that messages remain unreadable exxdpe tintended
recipient that means only the intended recipieats remove the disguise
and read the message. These complementary techrigueout to have

much in common mathematically [Kor05].

It is pretty much taken for granted that data geraand
communication are reliable. Increasingly, we expacthope that our
recorded and transmitted data are secure. Thei¢seof coding and
cryptography attend to data reliability and segurgéspectively [HhIOO].

Coding theory is concerned with finding explicit tmeds, called
codes, of increasing the efficiency and fidelity d#ta communication
over a noisy channel. The goal in coding theoryldesen to provide error-
free and secure communication over noisy chanmelsdavise efficient
codes and their successful implementation by deuwsdpfast encoding
and decoding procedures [Cha98]. These efficiendesoare error
correction codes (ECC). Error correcting codesareessential part of
modern communication and storage systems. ECCeaatithdancy to the
original message in such a way that it is posdiiri¢he receiver to detect
the error and correct it, recovering the originassage. The study of
error correction codes and the associated mathesmatknown as coding
theory [Fre00].
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Algebraic coding theory is the theory of error eating codes; it
was originated in 1950 by Richard hamming. Algebi@ding theory is
an area of discrete applied mathematics that isezoed with developing
error correcting codes and encoding/decoding proesd[Spe00]. This
coding theory (Algebraic coding) is differ from @tpgraphy.
Cryptography is the mathematical theory behind sgnsgecret messages
while algebraic coding theory is the mathematidsotry of sending
messages that arrive with the same content in wthely were sent
[SMI02].

The McEliece cryptosystem is a public key cryptosys that
provide secure transmission whose security restsemor correction
codes and the difficult problem of decoding a mgesaith random error,
it is based on algebraic coding theory, whereasriost other public key
systems, it is connected to algorithmic number thé€e.g. RSA, Elliptic
Curve Cryptosystem). So in addition to its capabiéf offering secure
transmission, it possesses the capability to corEmmmunication

channel error [Sua03].

In practice, the security of any cryptosystem caly tbe measured
by its resistance to actual attempts to break liosg that have been
broken are obviously insecure [Mey98]. An encrypt&cheme can be
broken by trying all possible keys to see which ameused by the
communicating parties. This is called a brute fattack. It follows then
that the number of keys should be large enoughakenthis approach

computationally infeasible [Men96].
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1.2 Literature Survey

At 1992, Preneel et al, presented a software imghtation of the
McEliece public-key cryptosystem. The software pBrfs
encryption and decryption in a reasonable speed. cading
routines were written in assembly language to sjpipetthe system.
Also, this research the attack of recovering thenpéxt from a
ciphered message was discussed. The main ideassléot and
solve k bits (number of original message bits) diits (number of
cipher message bits) obtained from ciphertext andip key, it is

found the probability of success is small [Pre92].

At 1997, Berson indicated that the McEliece puklg
cryptosystem fails to protect any message whiclsdaat to a
recipient more than once using different randonorevectors; he
called this attack a message-reseonddition or a message-resend
attack. And this cryptosystem fails to protect amyssages sent to
a recipient which have a known linear relation tee @another; it
called this a related-messag@ndition or a related-message attack.
These attacks are general attack on the class bficgkey
cryptosystems which use an error-correcting codel ¥ prevent
these attacks; users of the McEliece public-keytagystem and
of cryptosystems with similar structure, should rguagainst
sending related messages. He presented that oméeoneasure
which comes to mind is to introduce an element oal

randomness into any message before it is encryBer@7].

At 1998, Johansson offered many cryptosystemsnglyin the
difficulty of the general decoding problem. The gext decoding
problem is the problem of decoding a received worthe closest
codeword in an arbitrary code. This work is based the

observation that in many cryptographic applicatibms possible to

3
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create a list of received words in such a way thaiceeded in
decoding only one of them implies success in aachtbof the
underlying cryptosystem. He showed that this hdls Stern's
identification scheme, McEliece public-key crypts®m, and the

stream cipher application [Joh98].

« At 1998, Lee et al, presented an attack on McElaelic key
cryptosystem that is based on algebraic codingryhdais attack
Is to repeatedly select k bits randomly from anitnephertext
vector, in hope that none of the selected k besimerror until the
cryptanalyst recovers the correct message of k thiesprobability

of success of this attack is also small [Lee98].

At 2000, SUN HUNG-MIN showed that the McEliece stiee
suffers from two weaknesses they are; failure totqmt any
message which is encrypted more than once, anddaib protect
any message which have a known linear relationshtph one
another. The researcher proposed variant McElietemnse to
prevent these attacks. The public key and the s&ene in this
variant scheme are same as those in the origin&libte scheme,
the only difference is using a one-way hash fumctioencrypting
messages, the lack knowledge about this hash &imbBcomes the
value of it is unknown. Thus, the message-reserdl ratated

message attacks fail [Sun00].

* At 2003, Jeroen introduced an attack against thElig&ce public-
key cryptosystem called an adaptive chosen cipktergtack,
which is based on the attacker which will contintee alter
messages until retrieved enough secret informatom, on the
assumption that (ordinary) users may see no prolleravealing

whether or not an encrypted message deciphersctgrrén the
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case of the McEliece system it must repeat theclattar each
ciphertext it wishes to decrypt. The aim of thisek is to recover
the plaintext of a given ciphertext. And to prevéms attack; users
should be alerted when many encrypted messagestatearypted
properly, also must come up with the idea of chagkor repeated

messages [Jer03].

« At 2003, Suanne et al, showed that there are twestyf attacks
on Mceliece cryptosystem, structural and decodigstructural
attack consists of attempts to reconstruct a decfmdethe code
generated by the public key, G. If such an attermuccessful,
then the private key &Gvould be revealed and the cryptosystem
would be completely broken. A decoding attack csigsiof
decoding the intercepted ciphertext. In the case &uccessful
decoding attack, the plaintext message is recovdred the
cryptosystem remains intact. They showed under emfft
circumstances, many efficient decoding attacks pargsible, but

structural attacks remain infeasible in generab[&).

From the above review one can found that these nesstarches
investigated different types of attacks on McEliecgptosystem and
evaluate the security of it by measuring the powkrthe system
against different types of attack.

As a comparison between these previous effortstamevork done
in this thesis, the current research study, implgmevaluate the
security of McEliece cryptosystem using a brutecéomattack and
enhance the performance of this cryptosystem. A&lsuates other

cryptosystem parameters that affected the seauiritye system.
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1.3 Aim of Thesis

» Study the public key encryption scheme based ogbadic coding
theory. Design and implement McEliece public keyptosystem
with hamming and extended hamming code.

» Evaluate the security of McEliece public key crygtstem type
with hamming and extended hamming code by usingite dorce
attack and trying to overcome the weak points f thyptosystem

and enhance the performance of it.

1.4 Thesis Layout

The contents of individual chapters in the remairnmet of this thesis are

briefly reviewed:

« Chapter two: reviews the concept of error correction codes, and
McEliece cryptosystem.

« Chapter three: the practical part of the work is presented iis thi
chapter, and the algorithms that used to implerensystem.

« Chapter four: the results of the system are shown here.

- Chapter five: introduces the derived conclusions of this work,

with recommendations for future work.
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Chapter Two

An Overview of McEliece Cryptosystem

2.1 Introduction

In this chapter the principles of cryptography,ptanalysis and the
approaches of cryptanalysis attack were preseiftezlbrute force attack
IS an important cryptanalysis attack, it is presdnih details. Also the
concepts of error correction codes were describ&thally McEliece
public key cryptosystem which relate cryptographg @oding theory is

overviewed.

2.2 Cryptography

Cryptography is science of using mathematics to encrypt and
decrypt data. Data that can be read and understatbdut any special

measures is called plaintext [Sch97].

The process of encoding data to prevent unautrbpzeties from
viewing or modifying it is called encryption. Thenayption process
transforms plaintext into ciphertext, while the @ees of transforming
ciphertext back into plaintext is called decryptidinese two processes
are shown in figure (2.1). A system for encryptiand decryption is

called a cryptosystem [Pfl89].

Plaintext Plaintext

MeSSage Encryption Ciphertext Decryption | MeSSage
SN -

Figure(2.1): Encryption and decryption.
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2.3 Typesof Encryption Algorithm

Encryption components are an algorithm and key.rgnion
algorithm is series of steps that mathematicabiydforms plaintext or
other readable information into unintelligible cgrtext. Ciphertext that
has been encrypted is unreadable until it has Heerypted by applying
inverse mathematical transformation, which transforthe encrypted
ciphertext back into something readable. Both grtasy and decryption
use a key [Ste99].

Encryption algorithms are classified into two méarpes, these types
are [Sch97], [Men96]:

» Symmetric encryption (secret key encryption).
» Asymmetric encryption (public key encryption).

The characteristic features of symmetric encrypatgorithms, is
that both the encryption and decryption processesaacomplished by
using the same key as known in figure (2.2).

The symmetric key algorithms can be further clasdifs: stream
ciphers and block ciphers. A stream cipher is amgnion scheme which
treats the plaintext as a block of unity length.blck cipher is an
encryption scheme which breaks up the plaintext sagss to be
transmitted into strings called blocks (of a fixedgth), and encrypts one
block at a time. A good example of symmetric crgygiem algorithm is
Data Encryption Standard (DES).

Encryption key Decryption key

Plain l Cipher l Plain
text —>® text w—’ text

Figure (2.2): Symmetrical encryption block diagram.
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Asymmetric encryption is more complex and more secilihe
characteristic feature of public key encryptiorthat the encryption and
decryption processes are accomplished by usingrdift keys. More
precisely, the encryption process is based on usikgy that is easily
available, while the decryption process is basedrmother key, which is
only accessible to a specific entity. The key thatsed for the encryption
process is known as the public key, while the Kest is used for the
decryption process is known as the private keyrétdey) as shown in

figure (2.3). RSA and McEliece are two examplessiach a system.

Symmetric encryption is fast but not as safe asmasstric
encryption because someone could intercept the kel decode the
messages. But because of its speed, it's commadd €or encoding-

commerce transactions.

Public key Private key

Plain Cipher Decrvpt Plain
text _' text text

Figure (2.3): Asymmetrical encryption block diagram.

Cryptography algorithms are the heart of securetesys
worldwide, providing encryption for millions of ssiive financial,

government, and private transaction daily [Jam02].
2.4 Cryptanalysis

Cryptanalysis is the study of mathematical techesqufor
attempting to defeat cryptographic techniques [M#gnth practice, the
security of any cryptosystem can only be measusedsbresistance to
actual attempts to break it. Those that have beekeh are obviously

insecure. The central issue in assessing the aasistof an encryption
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algorithm to cryptanalysis is the amount of timattla given type of
attack will take [Mey98]. Realistic system which anes that it is
theoretically breakable. The problem is to detegrinow long it would
take to break the proposed cipher system and itnast the involved cost
(in terms of time and computation load). If the dins extremely huge
then, for all practical purpose, we may regard dbasidered system as
secure [You02]. So one can estimate the requirmed to compute the
secret key, which is the minimum amount of workctoimpute the key,
then for sufficiently large time the encryption ®m is, for all practical

purpose, a secure system [Men96].

There are two approaches to attacking a converntemeyption
scheme [Sta03]:

» Cryptanalysis. cryptanalytic attacks rely on the nature of the
algorithm plus perhaps some knowledge of the gécberacteristics
of the plaintext or even some sample plaintext-eipdxt pairs. This
type of attack exploits the characteristics ofdlgorithm to attempt to
deduce a specific plaintext or to deduce the kapdoesed. If the
attack succeeds in deducing the key, the effectatastrophic: all
future and past messages encrypted with that kewpammised
[Men96]. There are various types of cryptanalyttaegks, based on the

amount of information known to the cryptanalytiad@®1]:

a. Ciphertext only attack: the attacker knows ciphdgeand tries to

recover the corresponding plaintexts or the key.

b. Known plaintext attack: the attacker knows a pkntand the
corresponding ciphertext or several pairs. He toelsnd the key

used or to decrypt other ciphertexts.

10
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c. Chosen plaintext attack: the attacker is able toygn plaintexts
but does not know the key. He tries to find the kisgd or to
decrypt other ciphertexts.

d. Adaptive chosen plaintext attack: the attackerble @0 encrypt
plaintexts. He is able to choose new plaintexis s ction of the
ciphertexts obtained but does not know the keytriés to find

the key used or to decrypt other ciphertexts.

e. Chosen-ciphertext attack: the attacker can dedwyptdoes not

know the key. He tries to find the key.

» Brute Force Attack: A brute force attack (also called exhaustive
attack)is a method of defeating a cryptographic schemgdmnerating
a large number of possibilities and trying it ider to recover the
plaintext used to produce a particular ciphert&a97]. The most
difficult problem is presented when all that is iafse is the
ciphertext only. In some cases, not even the etiory@lgorithm is
known, but in general we can assume that the oppaloes know the
algorithm used for encryption. One possible attasider these
circumstances is the brute force approach of trghgossible keys
[Sta03]. The quicker the brute force attack, theakee the cipher.
Feasibility of brute force attack depends on thg length of the
cipher (i.e. depends on the number of keys) andhenamount of
computational power available to the attacker, theshumber of keys
should be large enough to make this approach canpoally
infeasible [HowO0O]. This type of attacks can takeesal hours, days,
months, and even years to run. Brute forcing is ohdhe first
methods approached to getting passwords. Evend pdvernments
agencies and such whose main goal are to decrypiusacoded
passwords use brute force methods for one of thppeoaches. For

11
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example, a brute-force attack may have a dictioranall words
and/or a listing of commonly used passwords. Tam @gaicess to the
account using a brute-force attack, the programlavary all the
available words it has to gain access to the adc@m brute forcing
Is a great method in the security world and mustlearly understood
[Jar98].

2.5 Error Correcting Codes [Sha85]
Error detecting / correcting code is the calculatese of

redundancy. The functional blocks that accomplisbrecorrecting codes
are the channel encoder and channel decoder. Taeneh encoder
systematically adds digits to the transmitted mgssdigits. These
additional digits, while conveying no new infornmatithemselves, make
it possible for the channel decoder to detect amect errors in the
information bearing digits. The purpose of errotedéng / correcting
codes is to reduce the chance of receiving messageh differ from the
original message. A system that employs error cting codes is shown
in figure (2.4).

The channel encoder and decoder are functionakglocthe system
that, by acting together, reduces the overall dodiya of error. The
encoder divides the input message bits into blafks massage bits and
replaces each k bit massage block with an n biewodd by adding (n-k)
check bits to each message block. The decoder labkke received
version of the codeword, which may occasionally taon error, and
attempts to decode the k message bits. While tlkekchits convey no
new information to the receiver, they enable theoder to detect and

correct transmission error and thereby lower tlodability of error.

12
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The design of the encoder and decoder consistiexts®y rules for
generating codeword from message blocks and faae&xitg message

blocks from the received version of the codewords.

I nput
message Coded output
.| Channel -
7| encoder >
[ —>
Blocks of k n bits codewords
N e
message bits P e S ,
A
k n-k Noisy
message  check channd
bits bits
Blocks of k ' .
message bits Noisy n bits
codewords
< Channel |, i
decoder |
Output
message

Figure (2.4): Block diagram of data communication system empigyn
error correcting code.

2.6 Typesof Code

Error detecting/correcting codes are often divid#d two broad
categories: block codes and convolutional codesldok codes, a block
of k information bits is followed by a group of ndheck bits. At the
receiver, the check bits are used to verify thermftion bits in the
information block preceding the check bits. In colotional codes, check
bits are continuously interleaved with informatibits; the check bits
verify the information bits not only in the blocknmediately preceding
them, but in other block as well. So a convolutlac@de, unlike a block
code, the channel encoder accepts message bitsaadiduous sequence

and thereby generates a continuous sequence adethbas [Das86].

13
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2.7 Linear Block Codes

A code is said to be linear if any two codewordshe code can be
added in modulo-2 arithmetic to produce a thirdesword in the code.
For the purpose of encoding message for error giiote the long
message is broken into message blocks consistingagf k of bits of
information. Then redundant bits (normally known @ity bits) are
added to these k bits according to certain rulesading, and the
codewords of length n bits, inclusive of (n-k) parbits that shown in
figure (2.5), are transmitted through the noisyroted. In the receiver, the
k message bits are decoded from the erroneousseecaiessage blocks
using suitable algorithms. With k bits of inforn@tiper blocks, there are
2 possible distinct messages (or codewords), otiteof codewords that
may be generated with n bits. This set bfc@dewords called a block
code [HayO01].

Message Code
blocks Channd blocks
Encoder -
M essage Message | Check bits
K bite ' ' k ' r '
n==Kk+1

Figure (2.5): Structure of systematic codeword.

2.7.1 Error Detection and Correction Capabilities of Linear
Block Codes[Mic85]

Some of the basic terminology that will be useddé&fining the
error detection/correction capabilities of a linddock code. First, the

Hamming weight of a code vector C is defined asnin@mber of nonzero

components of C. The Hamming distance between waiovs (G and

14
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C,) having the same number of elements is definethasnumber of
positions in which they differ. Finally, the minimudistance of linear
block code is the smallest distance between any pfidifferent
codewords in the code.
eg. w(0010110) = 3
eg. d(0001111; 1000110) =3
eg. For codewords ={100000210010% 001011Q0001111}
flin =3
The minimum distance of linear block code is eqtmlthe
minimum weight of any nonzero word in the code. Hbdity of linear
block code to correct errors can be specified rmseof the minimum

distance of the code.

A linear block code with a minimum distancg;;dcan correct
[(dmin-1)/2] errors and detect fg-1] errors in each codeword, so
Error detection capabilities <= (gh— 1).

Error correction capabilities <= (gn— 1) / 2
2.7.2 Matrix Description of Linear Block Codes

The encoding operation in a linear block schemesisté of two
basic steps:
(1) The information sequence is segmented intosagss blocks, each
block consisting of k successive information bits.
(2) The encoder transforms each message blockaifdoger block of n

bits. We can describe the encoding operation usiaigices.

We will denote the message block as a row vemtd-tuple (m=
(my, my, ...., m)) where each message bit can be a 0 or 1. Thusawe
2 distinct message blocks. Each message block isftaned to a

codeword C of length n bits (Cz(c,,...,c,) by the encoder and there are

15
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2% distinct codewords, one unique codeword for eastindt message
blocks. This set of‘codewords, is called a (n,k) block code [Sha85].

In a linear block code, the first k bits of the ewadrd are the message
bits, that is,

m.

1=12,....,k

The last n-k bits in the codeword are check bitaegated from the

generator matrix is:

(1 0 0 ... 0 pu pz .. Prn-k )
010 ..0 par p22 .. Pzn-«k
G= 0 01 ... 0 par P32 ... P3n-k |  covvrrriiinnn. (2.1)

000 .. 1 pa p2 ... Prn-k |

and

C=MG ottt (2.2)
The (k*n) matrix G has the form

T [ = (2.3)

The matrix  is the identity matrix of order k and P is an &dyy k
by (n-k) matrix. When P is specified, it defines ttn,k) block code
completely [Sha85].

An important step in the design of a (n,k) blockdeois the
selection of a P matrix that depends on error dietg@and correcting
capabilities, so that the code generated by G letain desirable
properties such as ease of implementation, alidityorrect errors, high
rate efficiency, and so fourth. As a result, foy &n,k) linear code there
exists a (k*n)matrix G, whose rows are theselikearly independent

codewords [Das86].

16



Chapter Two An Overview of M cEliece Cryptosystem

Example (2.1): the generator matrix for (4,7) block code is gibehow

1

o O o
O o r o
O r OO
P O O O
(o I R e
=

1
0
1

The message block size k for this code is 4, ardehgth of the

code vectors nis 7. The code vector of the meskkgi& m = (1110) is

given by:-
1 0 0 0|1 0 1
0O 1 0 0|1 1 1
C=mG=(1110) 00 10l1 10
0O 00 1|0 1 1
= 1110100

This example illustrates how an encoder for ther)(4code
generates code vectors. The encoder essentialliplsere the G matrix
(or at least the sub matrix P of G). The complextythe encoder
increases as the block size n and the number akdbies (n-k) increase
[Sha85].

Associated with each (n,k) block code is a partigak matrix H,
which is defined as

p11 Pa1 ... Ppa 11000 ..0
|
t01 00 ...0
= | P2 PE be o (2.4)
; ; L ;
Prn-k Pan-k ... Pkn-k i 00O0O0..1
H=[F’T|In_k](n_k)Xn ............................... (2.5)

The parity check mat rix can be used to verify Wwketa codeword

C is generated by the matgx[l, |P]. This verification can be done as

17
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follows; C is a codeword in the (n,k) block codegeted byG=[I, |P] if

and only if

Where His the transpose of H matrix,
[G]=[I\ |P]; and[H] =[P" |1,.]

[GL.IH™T=[I, IP].

n-k
The inner product of a vector in the rovasp of[G] and a row in

[H] is zero. AlsgH].[C" ]=0[Das86].

While the generator matrix is used in the encodpgration, the

parity check matrix is used in the decoding operaés follows:

Consider a linear (n,k) block code with a generataatrix
G=[l, [IP]and parity check matrix=[P" |1 .]. Let C be a code vector
that was transmitted over noisy channel and leeRhle noise-corrupted
vector that was received. The vector R is the s@rth® original code

vector C and an error vector encoding, that is,

The receiver does not know C and E; its functiotoisiecode C
from R, and the message block m from C. The reced@es the

decryption operation by determining an (n-k) ve@&grdefined as

The vector Sy is called the error syndrome of R
Sy=[C+EH’

=CH" +EH"
=0+EH’

and obtain [Das86]:
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Since CH =0. Thus the syndrome of a received vector is #eRo
is valid code vector. If errors occur in transnossithen the syndrome Sy
of the received vector is nonzero. FurthermoreisSglated to the error
vector. The row of the parity check matriX serve as location vectors for
bit positions where error occurred in a receiveddvdhe receiver can
verify that, a signal error in thieth bit of C would lead to a syndrome
vector that would be identical to the¢h row of the matrix H. Thus signal
errors can be corrected at the receiver by compainwith the rows of
H" and correcting theth received bit if Sy matches with tih row of
H' [Das86].

2.8 Typesof Linear Block Codes

There are many types of linear block codes, thetnmportant
types are Hamming code, extended hamming code,yGmde, Reed
Muller codes and many other types [Pet72].

2.8.1 Hamming Code

Hamming code is a linear block codes capable akcting single
error. This code must have a minimum distangge=d3. We know that
when a single error occurs, say in thth bit of the codeword, the
syndrome of the received vector is equal toittrerow of H'. Hence, if
we choose the n rows of the ((n)*(n-k)) matrix te the distinct, then the
syndrome of all single error will be distinct anck wan correct single
error. There are two points we must remember irsehaows of H.
First, we must not use a row of 0’s since a syn@rofi0’s corresponds to
no error. Second, the last n-k rows df idust be chosen so that we have
an identity matrix in H[Das86].

Hamming codes parameters are [Leh93]:
- Code lengthn =2—-1, m = (n-k)
- Number of parity check bits m = n-k
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- Number of information bits k ={2-m - 1)
- Minimum hamming distance of the generator matriX

- Error correcting capability = 1

Each row in H has (n-k) entries, each of which could be a 0.or 1
Hence we can havé ®distinct rows of (n-k) entries out of which we can
select 2*-1 distinct rows of H (the row of 0’s is the only one we cannot

use). Since the matrix'Has n rows.

Hamming codes are widely used in computing, telenanication
and other application including data compressiarputar puzzle and
turbo codes [Leh93].

Example (2.2): [Das86]

(1 0 0 0|0 1 1
B 01 0 0[1 01
[C1= 0 01 0|1 10
(0000 1)1 11

O 1 1 1 1 0 O

[H] = 1 0 1 1 0 1 O

1 1 0 1 0 0 1

The syndrome Sy is generated from:

g N

o

[Syl=[RL.[H"1=[RI.

OO R R R R
ORr OFR P O R
R OO FR O R K

So for a messageim,msm; =001 0,thecodeC=0010110.
If the received vector R=00100 1 0, thendyjredrome Sy =10 0, and
inspection of H, the error is in the"5position, giving EE 0000 1 0 0.
So that can obtain C=0010 1 1 from R afterestrerror.

20
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2.8.2 Extended Hamming Code

If multiple errors occur in the transmission of ard/the hamming
code cannot even detdbem because the errors will produce a syndrome
Sy which will either be zer@r equal to some column of the parity check
matrix. Thus for a hamming code decoding failurever occurs, it
provides a completdecoding algorithm that codes can detect and dorrec
one error and detect any two errors. This two hibrecan be detected
since they will correspond to a non-null syndronfach is not a row of
H'. The points that we must remember in chosen rdws owe must not
use a row of zeros since a syndrome of zeros qwneks to no error, and
must be distinct. That is another code called tkteritled hamming codes
[Jon06]. The Extended hamming codes have threengdesas [Leh93]:

- Length of codewords: n ="2
- Information symbols: k =2-m - 1

- Minimum distance: d = 4

The extended hamming codes obtained by adding alticuhl
redundant bit, this redundant bit called a parineak bit; the overall
parity check bit is added to the end of each codé\eeh93].

The minimum distance of this code is 4 since & Imear block code
whose non-zero codewords have minimum weight 4.eNbtat the
extended hamming codes are still linear codesesaadicing a one or zero

at the end of each codeword is a linear procesOfRi

Example (2.3): [Han06]
The generator matrix and parity check matrix oeexied hamming

code formed as:

Consider the following generator and parity checktrioes of length 7

hamming code C.
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~

1 1

1 0

1 00 0 1 1 1 0 1

G 01 00110 HT = 1 1
0O 01 01 01 0 0

0O 001 0 11 1 0

0 1

J

The generator and parity check matrices of extewcdee (8,4) are:

1 1 1 0)
1101
10001110 1011
|01 001101 . p111
= loo10101 1 H = 1000
00010111 0100
0010

0 00 1]

So for a message equal to (1 0 1 0), the code @l é010100101), after

insert the error the received word is:

R =10100101 + 0010000
R =10000101

The syndrome Sy is equal to (1011), and inspedcifd#’, the error
in the third position, so that can obtain C = 1Q@Dfrom R after correct

the error.

At the same message and code, after insert tweosetiie received word
IS:

R =10100101 + 01000001

R =11100100

The syndrome Sy is equal to (1100), by inspectioH 0 find that
no row in H equal to Sy, means that two errors added to thgnat

code.
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2.9 Error Correction Codes Applications [Mos01]

Error detecting / correcting codes are implememtedlmost any
application that includes the keywords “transmissiand “information”,
taken in their broadest sense. For instance, trgsgm may refer to the
storage of data on a computer hard disk and thievat of that data.
The use of error correcting codes is ever expanding it includes:

- Radio

- Long-distance telephony

- Television (High-Definition Television)

- Data storage systems

- Compact disk and Digital Versatile Disk
- International data networks

- Wireless communications

- Deep-space communications (satellites, teles¢cgpase probes)

Error detecting / correcting codes are widely usedmproving the
reliability of computer storage systems. The resmmient for such
systems, which at first used core memories, was afasingle error
correcting / double error detecting (SECDED) coldee first error control
scheme to be implemented on computer memories therénamming
codes which have this error control capacity. Emlgc after core
memories were replaced by semi-conductor memowes;h are faster
but their high density per chip induces more etrersor control codes

became an essential design feature in computerga@ystems.

2.10 Cryptosystems Based on Error Correcting Codes
[L ou00]

Cryptosystems based on error correcting codes ne@uclass of
codes with some properties that are a good andiexiti (fast) decoding
algorithm and the type of codes must be large emawgavoid any
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enumeration. McEliece public key is the cryptosysteased on error

correcting codes.
2.11 M cEliece Public Key Cryptosystem

The McEliece public key cryptosystem was proposedrly 20
years ago, by McEliece in 1978. The system is snplexplain and is
very fast in execution. McEliece cryptosystem is pablic key
cryptosystem based on algebraic coding theory firavide secure
transmission whose security rests on error comgcttodes and the
difficult problem of decoding plaintext from ciplexts which the sender

intentionally garbles with random error [Ber97].

There are many classes of linear codes which harg fast
decoding algorithms. The basic idea of the McEl®gstiem is to take one
of these linear codes and disguise it, when tryindecrypt a message, is
forced to use syndrome decoding. McEliece suggessaty hamming
codes and extended hamming codes, which are locees with a fast
decoding algorithm, in the system, but any lineadec with a good

decoding algorithm can be used [CheOQ].

The McEliece public key cryptosystem is widely usspecially
after changes in technology and economics, for @kathe plummeting
cost of storage, keep it on the list of candiddtessome applications
[Ber97].

The McEliece scheme uses a generator matrix aratigyqcheck
matrix. Generally, the secret key to this kind ablic key cryptosystems
Is the code itself, for which an efficient decodialgorithm is known
[LouO0].

In this system, the public key, G, is a (k*n) mathat is a product

of three private keys: S,(@nd P, where S is a (k*k) scrambling (non
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singular or invertible) matrix, §&is (k*n) generator matrix, and P is a
(n*n) permutation matrix. Both S and P provide thequired
randomization effect on G.

G=SGy P ittt e (2.11)

S, G and P are kept secret. For sender send a messaggeetver,
the sender blocks it into binary vectors of lengthf (m) is one such
block, the sender randomly constructs a binaryoreaft weight t (that is,
randomly places t 1's in a zero vector of lengthca)l it e that represent
error vector (i.e. hamming code have ability to add error and then can
detect, correct it, extended hamming code alsongaability to add one
error and can detect, correct it and have abititgdd two errors and then

can only detect (not correct) their) and then se¢adsceiver the vector

YIMGHE ottt it (2.12)
The receiver receives y to decrypt the messagerddetver computes
y =mG+e
YPE=(MG+ e)P! o, (2.13)

y' =(mSG,P)P* +eP*
y' =mSG, +eP*
y =mSG, +e’
Where €' is a vector of weight t (sincé B also a permutation

matrix). The receiver now applies the fast decodilyprithm to strip off

the error vector e' and get the codewors)G,. The vector mS can now
be obtained from the first k positions(@6)G,, because gmatrix has
been written in standard fofm:P]. Then receiver recovers m by
multiplying mS by S matrix [Che00].

There are major concerns with the McEliece publiey k
cryptosystem, these are [CheO0O0]; public key sizessage expansion

(message expansion is the ratio between the leofytthe encrypted
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message and the length of the secret message [Faf8 information
rate (this is a measure of how much informatiortt@ average is being
carried by a symbol [Heu98]).

Brute force attack (2.4) was used to evaluate theurgy of

McEliece public key cryptosystem.
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Chapter Three

The Proposed System Design and Implementation

3.1 Introduction

The problem treated in this project implements MeEliece
cryptosystem when using hamming and extended hagnoiode,
evaluates the security of this cryptosystem andeoés the performance
of it.

The proposed system of implementing McEliece pulkey
cryptosystem, evaluating its security and enhandingonsists of four
phases. The first phase is concerned with gengréim McEliece public
key cryptosystem using two types of code that amarhing code and
extended hamming code. The second phase is codcertieencrypting
the message, and in this phase the error was @added he third phase is
concerned with decrypting the encrypted message abtdined the
original one. Also, in this phase the message wasded from the error
added to it. The last phase is concerned with evialg the security of
this system (McEliece cryptosystem). The evaluagdrase based on
attacking this cryptosystem using brute force &ttand measures the
power of it against this type of attack. Design aimaplement a
mechanism that is used to overcome the weak pofritss cryptosystem
and to enhance the performance of it. Also, thssphs computing other

cryptosystem parameters; key size, message expaasib information
rate.

The general algorithm adopted to implement, evalaad enhance
this system was as follows:

1- Generate McEliece public key using hamming code exténded
hamming code.
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2-

Get the message to be encrypted as a vector alyldaga. Then, the
encrypted message will be transmitted through aynohannel, so
noise will be added to the message.

The receiver will receive the encrypted messageséantts to decrypt
it. Decryption process is an important stage anel émcrypted
message requires several operations to be decryjptezl above
steps are presented in figure (3.1).

The security of McEliece cryptosystem was evaludigdusing a
kind of attack called brute force attack. Accorditmgthis attack,
some weak points have appeared, and an adoptecamschwas
used to overcome this weakness. The generatedrsgsiording to
the previous mechanism was more secure with mffstremt value
of cryptosystem parameter (m).

Computing and evaluating other cryptosystem pararsethe size
of the public key, message expansion and informatete. The

security of this cryptosystem was affected by themameters.

B A
Go(k*n)
Stk G
(k*K) * ( n.)
Pt Public key
—>
Transmitter Receiver
E ! Secret keys (G,P,P',S,SY !
: : -1 -1 :
| Communication lp (n*n) S (kK
. Ly | 1 (1s E 1P | Syndrome [y . E
* —>y(l ¥ + —P(y ) : Channel ( )—v-by @ * y a n& decoding Yo n)= * |
! . procedure X
: encrypted, '
_______________ E messag :
Encryption process Decryption process
My ... &) ...error MEq+) ...
vector message

message

Figure (3.1} McEliece system model.
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3.2 Key Generation Phase

a) Generate a public key of hamming code

The generation of the key here depends on the hagnicode.
Hamming code can correct single error that addeti¢ccode, this
code has many parameters:

- Value of m: m = (n-k), mis limited between (210), (n > k).

- Value of n: n = 2-1, let n be a y-axes of the public key matrix.

- Value of k: k =2'-m - 1, let k be an x-axes of the public key

matrix.

b) Generate a public key of extended hamming code

The generation of the key here depends on ekiended
hamming code. Extended hamming code corrects semgte and
detects two errors that added to the code. Theritigo of
generating a public key of extended hamming codbassame of
generating a public key of hamming code but thdedshce in
creating the generator matrix of extended hammauodgec Extended
hamming code also has many parameters:
- Value of m: m = (n-k)-1, m is limited betweent10), (n > k).
- Value of n: n = 2, let n be a y-axes of the public key matrix.
- Value of k: k =2'- m - 1, let k be an x-axes of the public key

matrix.

The algorithm of generating a public key of hammuowge and
extended hamming code is:
I. Generate a binary generator matrix of hamming cade
extended hamming code.
The generator matrix of hamming code is a binaryrisnaf k*n

dimension with two parts (identity part and parggrt). The
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minimum distance between any two codewords equd), tand
the minimum distance of linear block code is eqtmlthe
minimum weight of any nonzero word in the code.sThiatrix
must be linear independent. The generator matrxaeasidered

as a secret key. This random generation is perfasdollows:

Algorithm (3.1): Generate a random generator matrix of hamming.cq

Input:
n: an integer number represents dimension valyeafees)of the generator
matrix //the value of n determines from algorithda7{
k: an integer number represents dimension valug-gtes) of the generator
matrix //the value of k determines from algorith®a7)

Output:
Go: a generator matrix of k*n dimension
HParity: a parity part of the generator matrix 8frkk) dimension

Procedure
1. Call Generate identity matrix that input (k) andput (id) // algorithm (3.2)
2. Call Generate parity matrix that input (k,(n-kindeoutput (HParity) //

algorithm (3.3)
3.Fori— 0Otok-1
For j— 0 to k-1
Setdd, j) < id(, j)
End loop (j)
End loop (i)
4. Fori—Otok-1
4.1Setx—0
4. Forj—kton-1
Setd@, j) < HParity(i, x)
Increment x by 1
End loop (j)
End loop (i)

End.

de
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Algorithm (3.2): Generate identity matrix.

Input:
Z: an integer number, represents dimensions valiuthe identity matrix
Output:
id: identity matrix of z*z dimension
Procedure
1.Fori—0toz-1
For4— 0to z-1
If (i =j) then Set id(),4 1 Else Setid(i, j}- O
End loop (j)
End loop (i)

End.

Algorithm (3.3): Generate a random parity matrix.

Input:
k: an integer number represents dimension value-@es) of Parity matrix
z1: an integer number represents dimension vahax€g) of Parity matrix

Output:
Parity: a parity matrix of k*z1 dimension
Procedure
1.Setx—0
2.Do
2.1 Set count— 0
2.2Forj«—0toz1-1
Set Parity(X, - randomize value 0 or 1
If Parity(x, j) = 1 Then increnterount by 1
End loop (j)
Until (count2)
3. Do While (x < k-1)
3.1Do
Set count O
For4- 0 to z1-1
Set temp<4}) randomize value 0 or 1
If temp (j) = hé@n increment count by 1

AR
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End loop (j)
Until (count 2)
3.2Fori«— 0tox
Setcel 0
Forf- 0 to z1-1
If (temp( Parity(i, j)) then
Setcet 1
Exit for (j)
End if
End loop (j)
If (co 1) then exit for (i)
End loop (i)
3.3If (col =1) then
Increment x by 1
For4- 0 to z1-1
Set Parity(xs) temp(j)
End loop (j)
End If
Loop

End.

Example (3.1.a):

Letm=3
n=7,k=4
The generator matrix of hamming code is:
0 0O i 1 1 0
1 0 0!1 0 1
Gan = h o 1 0 i 01 1
0 0 11 111

& J
Y
) I%14*3)

Matrix | is an identity matrix of k*k dimension amdatrix P
Is a parity matrix of k*(n-k) dimension. The tworadhtions are the
minimum distance between any two codewords in theerator

matrix must equal to 3, and the minimum distancénafar block

AR
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code is equal to the minimum weight of any nonzeood in the
code. The generator matrix of hamming code dependkese two
conditions (i.e., just only one must exist in eaotv of the first
part (identity part) of the generator matrix. Iretsecond part
(parity part), each row of the matrix must haveeatst two ones.
The minimum weight of each codeword in the generatatrix
will equal to 3). And this parity matrix must bendarly

independent.

The generator matrix of the extended hamming cede i
matrix of k*n dimension with two parts (identity ppaand parity
part). The algorithm of generating the generatotrimaof the
extended hamming code is the same of generatiafhamming
code but the difference that the minimum distanegvben any
two codewords equal to 4 not to 3, and this mabbxained by
adding an additional bit to the end of each codewdrhis
redundant bit called a parity check bit. The altpon of creating

this matrix is as follows:

Algorithm (3.4): Generate a random generator matrix of extended
hamming code.

Input:
n: an integer number represents dimension valyeafees)of the generator
matrix //the value of n determines from algorith®n7(
k: an integer number represents dimension value-@xes) of the generator
matrix //the value of k determines from algorith®na7)
Output:
Go: a generator matrix of k*n dimension
ExParity: a parity part of the generator matriXktrdi-k dimension
Procedure
1. Call Generate identity matrix that input (k) andput (id) // algorithm (3.2)
2. Call Generate parity matrix that input (k,(n-k-&))d output (Parity) //

Yy
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algorithm (3.3)
3.Fori—0tok-1
For j— 0 to k-1
Setdd, j) «—id(i, j)
End loop (j)
End loop (i)
4.Fori<— 0Otok-1
4.1Setx—0
4.2For j«— kton-2
Sety®, j) « Parity(i, x)
Increment x by 1
End loop (j)
End loop (i)
5.Fori— 0tok-1
5.1Setx—0
5.2For j« 0ton-2
Set« (X + &(i,j)) and 1
End loop (j)
5.3 Set paritybit(i}—x
End loop (i)
6. Fori— 0tok-1
6.1 Set G(i,n-1)«— paritybit(i)
6.2Set x— 0
6.3For j«— kton-1
Set ExParity(i#9 Go(i,))
Increment x by 1
End loop (j)
End loop (i)

End.

Example (3.1.b):
Letm=3
n=8, k=4

Ye
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The generator matrix of the extended hamminge ¢ed
(@) B-4)
f_%

—M
1000/1 101
01001011
Gew = 1001 0001 11
000111 110
pgaritybits

Matrix | is an identity matrix of k*k dimension amdatrix P
Is a parity matrix of k*(n-k) dimension. A parityths a bit at the
end of each codeword (i.e., these parity bits e the
summation of each codeword in binary representatiime only
difference between generator matrix of extendedrhiagn code
and generator matrix of hamming code is the pahigck bits at
the end of each codeword. These parity check bhggaed that
the minimum hamming distance between any two cod#svo

equal to 4 not to 3.

Generate randomly a non-singular binary matrix ok k
dimension. Non-singular matrix means that matrixstrhave an
inverse matrix (its also called invertible matrix scrambling
matrix). This matrix was considered as the secaeutes key.
The algorithm of creating the non-singular mattlystrates in
algorithm (3.5). But this random creating needsglomme
especially when the value of the system paramete6(k>57)
therefore instead of it, can read a non-singulatrimmand its
inverse matrix from files generated by algorithml{@@ and use

these two matrices to generate a McEliece publyc ke

Yo
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Algorithm (3.5): Generate a random non-singular matrix and its se/e

Input:
k: an integer number represents dimensions valuge mon-singular matrix
and its inverse matrix //the value of k determifres algorithm (3.7)

Output:
S: a non-singular matrix of k*k dimension
Sinv: an inverse matrix of non-singular matrix &k klimension

Procedure
1. Do
1.1Fori—0Otok-1
For4 0 to k-1
Set S(i, ¢ randomize value 0 or 1
End loop (j)
End loop (i)

1.2 Apply gauss elimination with partial pivoting methto compute
the inverse matrix of S matrix
Until (S*Sinv= identity matrix) //if (S*Sinv¥ identity matrix that means $

A~

have an inverse matrix (Sinv) otherwise S didmve inverse.
End.

Example (3.1.c):
k=4

The non singular matrix and its inverse masix

Qur2)= By =

P O Rk .
=N
O r OO
R e N
P O Fr P
o r r P
O r OO
P P O r

Some of matrices do not have an inverse sb g®trix must
be checked if it has an inverse or not by usingsgalimination
with partial pivoting method to compute its inversatrix. And

then check if the multiplication result of theseotmatrices S and

1
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S!leads to an identity matrix, then it means S hasnaarse,

otherwise S doesn’t have.

lii. Generate randomly a permutation binary matrix ofn n*

dimension and generate its inverse. Permutationmimateans

that matrix have only one in each row and columme inverse

matrix of permutation matrix is the transpose ofnm&ation

matrix. The algorithm of creating a permutation mxais as

follows:

Algorithm (3.6): Generate a random permutation matrix and its saer

Input:

n: an integer number represents dimensions valube @ermutation matrix

and its inverse // the value of n determines frégorhm (3.7)

Output:
P: a permutation matrix of n*n dimension
Pinv: an inverse permutation matrix of n*n dimemsio

Procedure
1. Set x<0; Set count—1
2. Set ind(count}— randomize value between 0 and n-1
3.Do
3.1Set P(x, ind(county- 1
3.2Forj«— 0ton-1
If# ind(count) Then Set P(x,4- 0
End loop (j)
3.3Increment x by 1; Increment count by 1
3.4 Set flag— True
3.5Do While (flag = True) and (x n-1)
Set new4- randomize value between 0 and n-1,
Fori Otocount-1
If newZ ind(i) then increment co by 1
End loop (i)
If co = count then
Set ind(county newl; Setflag— False

Set-co

v
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End If
Loop
Untilx =n
4.Fori—0Oton-1
For j— O ton-1
Set Pinv(j, & P(i, j)
End loop (j)
End loop (i)

End.

Example (3.1.d):

n=7

The permutation matrix and its inverse matrix ar

~

Pl =

Reny =

O O O O O O -
o O r O O O O
o O O O O +» O
R O O O O O O
O r O O O O O
O O O oo or o
O O OpFr OO Oo
R O O O O o o
O O O oo+, OO

c 0o 0o~ o o o
O O 0O 0O Rk O O
O o oo o o R,
Or OO0 O o o
©O O r oo o o,

The public key of hamming code or extended hammuoudg can be
generated by multiplying these three matrices (ggoe matrix of
hamming code or extended hamming coder®n-singular matrix S and
permutation matrix P). This showed as follows igufie (3.2) and in
algorithm (3.7). This public key is a matrix of ktiimension:

G = Sk Gowny Pinun)

YA
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ReceiverA

Generator
matrix G o(k*n)

Generate a
generator matrix

\4

McEliece public
n| — Non-singula key Ggen)

] Generate anon | 5y Sk | Multiplication
»|  singular matrix —»

»

Permutation
Generate a | matrix P
»| permutation matrix >

Figure (3.2) Key generation phase.

Algorithm (3.7): key generation phase.
Input:
m: is an integer number>2r> 10 // m=(n-k) for hamming code, m=(n-k)-1
for the extended hamming code.
t: 0<t<2, number of error // €G<1) for hamming code, and<6<2) for the
extended hamming code.
Output:

G: a public key of hamming code or a public kegxtended hamming code
of k*n dimension

t: number of error
time: represents execution time of the key genamgthase
Procedure
1. Set t%— current time
2. If generating a public key of hamming code th&et n— 2™ -1
Else if generating a public key of extendethhang code then Setw 2"
3.Setke—2"-m-1
4. If generating a public key of hamming code thenCall Generate a
random generator matrix of hangrcode that input (n,k) and output
(gHParity) // algorithm (3.1)
Else if generating a public key of extendethirang code then  Call

Generate a random generator mafrextended hamming code that inpyt

A
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(n,k) and output ¢CExParity) //algorithm (3.4)

5. Call Generate a random non-singular matrix anghisrse that input (k)
and output (S,Sinv) // algorithm (3.5)

6. Call Generate a random permutation matrix anshisrse that input (n)
and output (P,Pinv) // algorithm (3.6)

7. Multiply these three matrices to produce a pukdg (G):
Set G(k, n}— S(k,k) * G(k,n)* P(n,n)

8. Set t2— current time

9. Set time— t2-t1

End.

Example (3.1):

The McEliece public key of hamming code is:

Gary =

O R KL R,
[ T S S
o o o R
R R O R
=)
O O O
O r OO

The above public key &7 can be obtained by multiplying these
three matrices; generator matrix of hamming codg-A5in example
(3.1.a), non-singular matrix 49, in example (3.1.c) and permutation

matrix Rz« in example (3.1.d). That showed as follows:

G 47 = S(4,4) * G0(4,7) * P(7,7)

3.3 Encryption Phase

In this phase the original message will be condette a cipher
message by multiplying the original one (the oradimessage or the clear
message is a binary vector of 1*k dimension afterverted from text to
binary representation) with the public key that vggserated with the
previous phase. Also in this phase, the errors baea added (one error
when using hamming code and one or two errors wisamg extended

hamming code, these errors refer to the noise enciannel) to the
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encrypted message. This is shown in figure (3.3) the implemented
steps are presented in algorithm (3.8). The enedypiessage is a binary
vector of 1*n dimension:

Encrypted message yd = original message mgy* Gn) + error
vector g1

Sender B Receiver A

Public key
(G), t

e (m)l error

me . y (2*n) .. 11
Multiply " »| Addition 2a niﬁ
encr e
message mesggge

Figure (3.3): Encryption phase.

Algorithm (3.8): Encryption phase.

Input:
G: a public key of hamming code or a public kegxtended hamming code
of k*n dimension
t: number of error
me: represents original message

Output:
yl: an encrypted message with error

time: represents execution time of the encryptioase
Procedure
1. Sender (B) obtained A's public key G and t

2. Convert the original message (me) from text t@binmepresentation
3. Set tk— current time
4.q« length (me) / k
5.1f g # Int(g) Then

g« Int(g) + 1

End If

6. Call Message encryption that input (G,me,q) anguiufy)//algorithm (3.9)
7.1ft#0 Then

Forx—0toq-1

Call Generate a random eveator that input (t) and output (e) //

€Y
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algorithm (3.10)
Forj—Oton-1

Set y1(x, g~ (y(x, j) + e(j)) and 1

End loop (j)
End loop (x)
End If
8. Set t2— current time
9. Set time— t2-t1

10. Convert the encrypted message (y1) from binatgxbrepresentation
11. Sender (B) Sends encrypted message y1 to red@yer

End.

Algorithm (3.9): Message encryption.

Input:

G: a public key of hamming code or a public kegxtended hamming code

of k*n dimension

me: represents original message
g: number of blocks of the original message // ddobk of 1*k dimension

Output:

y: encrypted message of g*n dimension

Procedure
1. Set co—0; Set col—k
2.Forl—0toqg-1
21Forj«—0ton-1

Setx-0; Setxk-0
For# cotok -
Set r&- me(i) * G(x1, ))
Increment x by rl; Incremeftby 1

End loop (i)

Set y(l, j}—x and 1

End loop (j)

2.2 Increment co by col; Increment k by col

End loop (I)
End.

1
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Errors which have been added to the encrypted messae
already arranged in a binary vector of 1*n dimensibhese errors must

be generated randomly. This random generation wésllaws:

Algorithm (3.10): Generate a random error vector.

Input:
t: number of error
Output:
e: an error vector of 1*n dimension
Procedure
1. Set x—1; Set indt-randomize value between 0 and n-1; Set index(®ryl1
2. Do While x <t
2.1Set ind1— randomize value between 0 and n-1; Setc0
2.2Fori«<— 1tox
If ind1 = index(i) Then
Seteo 1
Exit For (i)
End If
End loop (i)
2.3If co=0Then
Increment x by 1
Set index(3} ind1
End If
Loop
3.Fori—0Oton-1
For j— 1 to x
If index(j) =i Then
Sete( 1
Exit For (j)
End If
Sete@-0
End loop (j)
End loop (i)

End.

¢y
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Example (3.2):
Let original message me=1101
Let error vector e=0000100
Encrypted message can be obtained by multiplyireg dhginal
message mg4 with the public key @+ that was generated in example
(3.1), and then adding error vectgrgto it. This will be as follows:
Encrypted message &) = MQus)* Gy + €uv7)
=0110010600100
=0110110

3.4 Decryption Phase

In this phase the encrypted message is converteah toriginal
message by using three secret keys (generatoxmadn-singular matrix
and permutation matrix). Also, in this phase thesgage was decoded
from the error added to iThe decryption process is done by multiplying
the encrypted message by the inverse matrix ofpdrenutation matrix
(that was generated through the first phase (keyemgdion phase)) to
produce a binary vector of 1*n dimension. Thisdoyn vector was
multiplied by the transpose of parity check ma(i#®. The parity check
matrix is a matrix of n*(n-k) dimension, which deywks on the generator
matrix (generator matrix & [I:P], parity check matrix H = [Pl,.]).
This matrix consists of all non-zero binary rowseTresult of previous
multiplication is a binary vector of 1*(n-k) dimans called a syndrome.
The syndrome was used to discover if the binaryoresf 1*n dimension
has errors (one error or two) or not. If it has @meor, then using the
syndrome, the position of the error can be deteateticorrected, but if
the binary vector has two errors, then those tworgrcan be detected

without knowing their positions.

123



Chapter Three The Proped System Design and Implementation

Syndrome decoding for hamming code is:

1. If syndrome equal to zero that means no error &xist

2. If syndrome not equal to zero, this means one axasts and
can be corrected by matching the syndrome with rofvihe
H +niy- The row number in Hthat is identical to syndrome
refers to the position of the error.

Syndrome decoding for extended hamming code is:

1. If syndrome equal to zero that means no error &xist

2. If the first (n-k-1) bits of syndrome equal to zenod the last bit
(parity check bit) of syndrome fails, this mean® @nror exists
and can be corrected by the same previous methothtwhing
the syndrome with the rows of H

3. If the first (n-k-1) bits of syndrome not equal Zzero and the
last bit (parity check bit) of syndrome fails, tinieans one error
exists and it can be corrected also by the samegu® method.

4. If the first (n-k-1) bits of syndrome not equal Zzero and the
last bit (parity check bit) of syndrome is pasg@é means two
errors exist and will seek for re-transmission, w®ng the
syndrome two errors in the codeword can be detdutechot
corrected.

In case of no errors found, or after corregtihe binary vector
of 1*n dimension with the syndrome, the first ksbdf this binary
vector was multiplied by the inverse matrix of then-singular
matrix (that was generated in the first phase (keyeration
phase)) to obtain the original message. The ddoryphase was
represented in figure (3.4).

Y2y = Yy * PinV g
Y1 @y = MEug * Geny + Garmy
Y2 = (M&argy * Speig * Goeny * Pnmny + @) * PINV (e

¢o
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Y2(1n) = M1y * Sgery * Gogerny + Garny * PINV ey
/ ... after using the syndrome procedure,
Y211 = MEwy * Sgerk)

M€+ = (M1x * Spey) * SINVgeri)

ReceiverA
y1am) 1P| syndrome decodingy2am | Getfirst |y2usg — meqw
rocedure  |—* kbits of —>
Encrypted P y2 Clear
message . message
P~ () Sy
Inverse Prn) Sy Inverse

Figure (3.4Decryption phase.

Algorithm (3.11): Decryption phase (Hamming decryption).
Input:
yl: an encrypted message with error

Pinv: an inverse permutation matrix of n*n dimemsio
HParity: a parity part of the generator matrix ik dimension

Sinv: an inverse matrix of non-singular matrix &k klimension

Output:
me: represents original message
time: represents execution time of the decryptibase

Procedure
1. Receiver (A) receives encrypted message y1 frardese(B)
. Convert the encrypted message (y1) from textnanyi representation
. Set tk— current time
.q< length (y1) /' n
.If g # Int(g) Then
g< Int(q) + 1

End If
6. Call SynPar that input (y1,q,Pinv,HParity) andpaut(Sy,H,y2) //
algorithm (3.13)

7.Set x1—0
8.Forj—0Oto(n-k)-1

a b~ W DN

1
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Set x:— x1 + Sy( 0,))
End loop (j)
9If (x1 =0) Then no error added to the message
10.1f (x1 #0) Then
10.1Forr— 0to q— 1// error correction loop
For&-0ton-1
Seteo0
ForyOto(n-k)-1
If Syjr4 H'(i, j) Then
Set— 1
Ekior ()
End If
End loop (j)
If co =0 The
SetyB(— (y2(r,ij) + 1) and 1
Exitr ()
End If
End loop (i)
End loop (r)
End if
11.Forr— 0 to g — 1 // eliminates the non-singular matitixs(a secret key)
Fori—Otok-1
Setx&- 0
ForOtok-1
Set ¥t y2(r, j) * Sinv(j, i)
Increment x1 by rl
End loop (j)
Set me(r,4 x1 and 1
End loop (i)
End loop (r)
12. Set t2— current time
13. Set time—t2-t1

14. Convert the original message (me) from binaryetd tepresentation
End.

1Y
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The previous algorithm (3.11) illustrated the detign phase of
hamming code while the next algorithm (3.12) illagts decryption
phase of the extended hamming code.

Algorithm (3.12): Decryption phase (Extended hamming decryption)

Input:
yl: an encrypted message with error
Pinv: an inverse permutation matrix of n*n dimemsio
ExParity: a parity part of the generator matriXktrii-k dimension
Sinv: an inverse matrix of non-singular matrix &k klimension

Output:
me: represents original message
time: represents execution time of the decryptioase
Procedure
1. Receiver (A) receives encrypted message y1 fraordese(B)
2. Convert the encrypted message (y1) from textnaryirepresentation
3. Set tk— current time
4.9« length (y1) /' n
5.1f g # Int(g) Then
g« Int(g) + 1
End If

6. Call SynPar that input (y1,g,Pinv,ExParity) andpoi (Sy,H,y2) //

algorithm (3.13)
7.Setx1—0
8.Forj—0to(n-k)-2

Set x: x1 + Sy(0,))
End loop (j)
9.Setx«—xland 1
10.1f (x1 = 0) And (Sy(0,(n - k) - 1) = 0)) Then moror add to the message
11.1f (x1 #0) And (x = Sy(0,(n - k) - 1))) Then
Two errors has been detected
Return // end algoritm

End If

12.1f (((x1 = 0) And (Sy(0,(n - k) - 1) = 1)) Or ((x20) And (x# Sy(0,(n —

EA
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k) — 1)))) Then
Do step 11.1 in algorithm (3.11)

End if
13.Do step 12 in algorithm (3.11)
14.Set t2— current time
15. Set time—t2-t1
16. Convert the original message (me) from binaryetd tepresentation

End.

Algorithm (3.13): SynPar.
Input:

yl: an encrypted message with error

g: number of blocks of the encrypted message H block of 1*n dimension
Pinv: an inverse permutation matrix of n*n dimemsio
Parity: a parity part of the generator matrix ofrkk) dimension
Output:
Sy: syndrome of g*(n-k) dimension
H': a parity check matrix of n*n-k dimension
y2: the result of multiplying (y1) by (Pinv) of g*simension
Procedure
1.Setr—0; Setcok—n
2.Fork—0toqg-1
21Forj«—0Otocol-1
Setx-0; Setxl—0
Fori—rton-1
Set r& y1(i) * Pinv(x1, j)
Increment x by; Increment x1 by 1

End loop (i)
Sety2(l, p- xand 1
End loop (j)
2.2Increment r by col; Increment n by col
End loop (1)

3.Fori—Otok-1
For—~0Oto(n-Kk)-1

£9
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Set'lfi, j) « Parity(i, j)
End loop (j)
End loop (i)
4 Call generate identity matrix that input (n-k) amdput (id)//algorithm (3.2
5.Setx—0
6.Fori—kton-1
6.1Forj—0Oto(n-k)-1
Set'il, j) — id(x, j)
End loop (j)
6.2Increment x by 1
End loop (i)
7.Forx—0toq-1
Forj—Oto(n-k)-1
Setx& 0
Fore~-0ton-1
Set & y2(x, i) * H'(i, j)
x&x1+rl
End loop (i)
Set Sy(x,4F x1 and 1
End loop (j)
End loop (x)

End.

Example (3.3):
Let the encrypted messageyl =01101 10 (Bmample (3.2))

The original message can be obtained by multiplyivegencrypted
message Y7 with the inverse matrix of permutation matri>'<l(P7)
(from example (3.1.d)) to produce another binargtee yZ2i«;). This
binary vector must be corrected by multiplying itiwthe transpose of
parity check matrix ks (that depends on the generator matrix in

example (3.1.a)). This previous multiplication gitke syndrome Qys).
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0O 0 01 1 O
|
B 1 0 0!1 0 1
o) 01 010 1 1
0 0 111 1 1
1 1 0
1 0 1
0 1 1
H (743) = 1 1 1
1 0 0
g 1 0
0 0 1)

¥27) = Yl * Py

y2=1000111

¥ = Y2 * Hl g

Sy=001

From matching this syndrome with the rows dffidding that the

syndrome equal to the seventh row in matrix, so dher occurs in
position 7. The codeword after correction will bg1=0 001 1 0 ), and
then multiplying the first k bits of this correctesbdeword with the
inverse matrix of non-singular matrix to obtain threginal message.
Mea+a) * Sw=ay = (1 0 0 0), and obtain original message by:
Meu-) = (MQ1-a) * Saray) * S (e
mew4=(1000)*S
Original message me; = (110 1)

3.5 Brute Force Attack

In order to evaluate the security of McEliece cogystem, a brute
force attack was used. Brute force attack is a otwethf defeating the
system by generating all possible probabilities dach secret key that

participates in the creation of the public key, amorking through all

o)
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these possible keys in order to decrypt a mesgsbeossible keys for
each secret key that participates in the generafidnicEliece public key

was generated as follows:

1. Generate all possible probable binary generatorricest (secret
key). These probabilities depend on the propemieshe binary
generator matrix (The minimum distance between dnyp
codewords equal to 3, and the minimum distanceingfal block
code is equal to the minimum weight of any nonaewod in the
code). Here the operation of creating all generatoatrix
probabilities is based on the second part of tharisn (parity
matrix) because the first part (identity matrix)she fixed structure
and its elements have fixed value. The minimum teigr each
codeword was obtained from the two ones of thersgpart and the
single one of the first part. As a result the mimmweight for each
codeword in the generator matrix equal to 3. Thistyp matrix must
be linearly independent. And the number of all gdegprobabilities
depends on the size of the key (generator matmgthy. The
algorithm of generating all possible probabilities the generator

matrix illustrates in algorithm (3.14).

Algorithm (3.14): Generate all possible probabilities of generatatrix
for brute force attack.

Input:
n: an integer number represents dimension valyeafees) of the generator
matrix
k: an integer number represents dimension value-@xes) of the generator
matrix

Output:
Gntimes: represents the number of all possible rgémematrices
File: file contains all possible generator magsic

Procedure

oY
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1. Setr—n-k; Set Gntimes- 0
2. Open File for write
3.Fori—0Otok-1
Set @(i) «— 3
End loop (i)
4. Set flag— False
5.Do
5.1Do
Set flagd- False
Fori—0tok-2
Fokji+1tok-1
If3) = Go(j) Then
Incremeny@ by 1
Call Check number of ones with inpub(i{zr) and output
(no) /gatithm (3.15)
If Not no Then incremi&(i) by 1
Set flagt True
End If
End loop (j)
End loop (i)
Loop While flagl
5.2 Set flag2— False
53Fori<—0tok-2
If i) > 2' Then
Set flag2 True; Set @i) «— 3
Incremeng(G+ 1) by 1
Call Check number of ones vimbut (&(i+1),r) and output
(no) // algorithm18)
If Not no Then incremhé(i + 1) by 1
End If
End loop (i)
5.41f Not flag2 Then
Put File,oG
Increment Gntimes by 1lincrement (0) by 1

Call Check number of ones with inpu(@,r) and output

oy
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(no)// algorithm (3)15
If Not no Then incrementy®) by 1
Fori—Otok-2
If ) > 2" Then
Seb@ — 3
Incremend(iG- 1) by 1
Call Check number of onath input (G(i+1),r) and
output (no)// algorithB15)
If Not no Tharcrement G(i + 1) by 1
End If
End loop (i)
End If
551f Go(k - 1) > 2 Then Set flag— True
Until flag
6. Close File
7. Convert all probabilities in File from decimalloary representation

End.

Algorithm (3.15): Check number of ones.

Input:
X: an integer number represents codeword value, afdrix
r: an integer number represents the value of (n-k)
Output:
no: boolean value either true or false
Procedure
1. Set no— True
2.Fori—Otor
If x = 2 Then
Set ne— False
Exit For
End if
End loop

End.

o¢
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The complexity assessment of the number of probgbtesrator
matrices was computed by conducting many experignentgenerating
the possible generator matrices with different ixatength. The

algorithm of this complexity assessment is as fedlo

Algorithm (3.16): Complexity assessment of the number of prob@able
generator matrices

Input:
n: an integer number represents dimension valyeafees)of the generator
matrix
k: an integer number represents dimension value-@es) of the generator
matrix

Output:

Gntimes1: represents the number of all possibleg¢or matrices
Procedure

1.Setr—n-k; SetGntimesd 1; Setprk—2"-r-1
2.Fori—1tok
2.1Set Gntimesd&- Gntimes1 * pr
2.2Decrement pr by 1
End loop

End.

2.Generate all possible probable non-singular mairhe generation
of all possible keys depends on its secret key gqitigs. Non-
singular matrix or (scrambling matrix) means the matrix has an
inverse matrix, and every matrix must be checkedhés an inverse
matrix or not by using gauss elimination with partpivoting
method to compute its inverse matrix and then coimgahe result
of multiplication S and Swith identity matrix, if this multiplication
result equal to it means that this matrix S havénaarse otherwise
doesn’'t have. The number of all possible probaésditdepends on

the McEliece cryptosystem parameter that deternulimasnsions of
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this secret key (key size). The algorithm of cregtall possible

probabilities of the non-singular matrix shows ligagithm (3.17).

Algorithm (3.17): Generate All possible probabilities of non-singt
matrix for brute force attack.

Input:
k: an integer number represents dimensions valiuge mon-singular matrix
and its inverse matrix //the same k in algorithni{3
Output:
Sntimes: represents the number of all possiblesnogular matrices
Filel: file contains all possible non-singulartriees
File2: file contains all possible inverse matrioésion-singular matrices
Procedure
1. Open Filel, File2 for write
2.Fori—0Otok-1
For j«— 0 to k-1
Set a(i,j)— S(i,j) < 0
End loop (j)
End loop (i)
3.Fori— 0Otok-1
Set a(i,k-1-i- S(i,k-1-i) <1
End loop (i)
4. Do While (ChangeState =1)
4.1Fori— 0tok-1
For4 0 to k-1
Set a(i,j- S(i,))
If (i=j) then Setid(i,j}-1 else Setid(i,p-0
End loop (j)
End loop (i)
4.2 Call Compute inverse matrix that input (a,k,idylautput (invS)
//algorithm (3.18)
4.3For x— 0 to k-1
Fori— O to k-1
Setsum 0
For j— O to k-1

o1
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Set surr- sum+S(x,j)*invS(j,i)
End loop (j)
Set R(X,i}— int(sum) and 1
End loop (i)
End loop (x)
4.4 Set Identity— 1
45Fori— 0tok-1
For4 O to k-1
If ((i=)) And (R(i,j}*1)) then
Set Identity- 0;  Set k—k-1
Exit for (j)
End if
If ((H)ANd(R(i,j)70)) then
Set Identity- 0;  Set k— k-1
Exit for (j)
End if
End loop (j)
End loop (i)
4.6 If (Identity=1) then
Put Filel,S
Put File2,invS
Increment Sntimes by 1
End if
4.7 Set Carry-1
4.8Fori«<—k-1downto O
Set ChangeState0
For k-1 down to O
If ((S(i,j))=0)And(Carry=1)hén
Set S(kp1; Set Carry— 0; Set ChangeState1; Set+ 0
Exit for (j)
End if
If ((S(i,j))=1)And(Carry=1)) then
Set S(i,— 0; Set Carry—1
End if
End loop (j)

oy
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End loop (i)
Loop
5. Close Filel; Close File2

End.

Algorithm (3.18): Compute inverse matrix.

Input:
a: a non-singular matrix of k*k dimension
k: an integer number represents dimensions valiuge mon-singular matrix
and its inverse matrix //the same k in algorithni43
id: an identity matrix of k*k dimension

Output:

invS: the inverse matrix of matrix S of k*k dimeosi

Procedure
1.Forj«— 0to k-1
Set p(i}—]
End loop (j)
2.For co— 0 to k-2
2.1Set l<—co; Set max—a (p(co),co)
2.2For x«— co+1to k-1
If (abs(a (p(x),co))>abs(max)) then
Set max— a(p(x),co); Set+ x
End if
End loop (x)
2.3Set temp— p(l); Set p(I}— p(co); Set p(ce)} temp
2.4For i+ co+l to k-1
Set a(p(i),coy— a(p(i),co)/a(p(co),co)
For j«— co+1 to k-1
Set a(p(i).j3— int(a(p(i).j) — a(p(i),co)*a(p(co),j)) and 1
End loop (j)
For j— 0 to k-1
Set id(p(i).jy— int(id(p(i).j) — a(p(i),co)*id(p(co),j)) and 1
End loop (j)
End loop (i)

oA
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End loop (co)
3.Forj«—0tok-1
3.1Set tt— int(id(p(k-1),j)/a(p(k-1),k-1))
3.21f tt<0 then Set @& tt*-1
3.3Set invS(k-1,8— ttand 1
End loop (j)
4.For x— 0to k-1
For j«— k-2 downto O
Set sum— id(p(j),x)
For co— j+1to k-1
Set sum-sum-a(p(j),co)*invS(co,x)
End loop (co)
Set tt— int(sum/a(p(j).j))
Iftt<Othen  Set# tt*1
Set invS(j,g-ttand 1
End loop (j)
End loop (x)

End.

In algorithm (3.19) the complexity assessment & tlumber of
probable non-singular matrices was discovered anthpated by
generating the all possible non-singular matriceth wnany different
matrix dimensions. The algorithm of the complexaigsessment for the

possible non-singular matrices is as follows:

Algorithm (3.19): Complexity assessment of the number of prob@able
non-singular matrices

Input:
k: an integer number represents dimensions valiuge mon-singular matrix
and its inverse matrix

Output:

Sntimes1: represents the number gdadkible non-singular matrices
Procedure

1.Set Sntimest-1; Setx—1; Setp—2

o9
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2.Fori—1tok-1
2.1Setx—4*x + ]
2.2 Set Sntimes%- Sntimes1 * x
2.3Setj—|j*2
End loop
End.

3. Generate all possible probabilities of the thirdcree key
(permutation matrix P). The generation of permatatimatrix
probabilities depends on its secret key properéied, the number of
these probabilities depends on the length of th&ixnéey size).
Permutation matrix means that the binary matrix drdg one (1) in
each row and column. Every matrix must be checkédhas this
property or not. The algorithm of generation shawsalgorithm
(3.20). The complexity assessment of the numberpadsible
probable permutation matrices is n! (i.e., Pernmomamatrix Ry is

a matrix of n*n dimension

Algorithm (3.20): Generate all possible probabilities of permutafﬂion
matrix for brute force attack.

Input:
n: an integer number represents dimensions valube @ermutation matrix
and its inverse // the same n in algorithm (3.14)

Output:
Pntimes: represents the number of all possible pe&tion matrices
File3: file contains all possible permutation s
Procedure
1. Open File3 for write
2.Fori—Oton-1
For j— Oton-1
Set P(i,j3— 0
End loop (j)
End loop (i)
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3.Fori—0Oton-1
Set P(i,n-1-§-1
End loop (i)
4. Do while (ChangeState=1)
4.1Fori<— Oton-1
Set Numofls- 0
For j«— 0 to n-1
If (P(i,j)=1) then Increment Numofls by 1
End loop (j)
If ((Numofls<1) or (Numofls>1)) then exit @)
End loop (i)
4.21f (Numofls=1) then
For j«— 0 to n-1
Set Numofls— 0
Fori<— 0ton-1
If (P(i,j)=1) then Increment Numofls by 1
End loop (i)
If ((Numofls<1) or (Numofls>1)) then exit for (j)
End loop (j)
If (Numofls=1) then
Put File3, P
Increment Pntimes by 1
End if
End if
4.3 Set Carry-1
4.4For i« n-1downto O
Set ChangeState 0
For n-1downto O
If (P(i,j)=0)And (Carry=1)) then
Set P(i,)—1; Set Carry— 0; Set ChangeStatel; Set i« 0
Exit for (j)
End if
If (P(i,j))=1) And (Carry=1)) then
Set P(i,j)}— 0; Set Carry—1
End if

1)
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End loop (j)
End loop (i)
Loop
5. Close File3

End.

The output files (File, Filel and File3) contaih @obabilities of
the secret keys (=S, P), so one of each secret key probabilitieddco

be chosen to generate the McEliece public key.

After generating all possible probabilities for baecret key €SP
(generator matrix g non-singular matrix S and permutation matrix P)
that was participated in the generation of McEligueblic key, the
encrypted message was decrypted through all thesmalplities and
found the original one. The algorithm of trying #lese probable keys

until finding the original message will be as folis:

—

Algorithm (3.21): Trying all probable secret keys to find the orai
message.
Input:

Encrypted message: an encrypted message with error

Nn: an integer number represents dimension valyeafaes) of the public key

matrix //the same n in algorithm (3.14)

k: an integer number represents dimension valug-@tes) of the public key|
matrix //the same k in algorithm (3.14)
Pntimes: represents the number of all possible ption matrices

Sntimes: represents the number ofadbible non-singular matrices
Gntimes: represents the number of@skpble generator matrices

Output:
Decrypted message: represents origiealsage
Procedure
1. Open File, Filel, File2, File3 for read
2. Set countG— 0; Set counts— 0; Set countk— 0
3.Do

1y
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3.11f countP = Pntimes Then
Increment countS by 1
Set count? 0
End If
3.2If countS = Sntimes Then
Increment countG by 1
Set counts 0
End If
3.31f countG = Gntimes Then Exit loop
3.4 Read countG generator matrix fBom File // this file contains all
possible generator matrices
3.5Read countS non-singular matrix S from Filel 8 fhe contains all
possible non-singular matrices
3.6Read countS the inverse of non-singular matrix &nm File2 //
this file contains all possible inse matrices of non-singular
matrices
3.MRead countP permutation matrix P form File3 & file contains all
possible permutation necas
3.8 Computes the transpose of permutation matrixishiapresent
inverse permutation nxatr
3.9Read Encrypted message
3.10Decrypt Encrypted message by Call Decryption piasgorithm
(3.11)
3.111f Decrypted message = original message then
The Encryptedssege was decrypted correctly and the corfect
message wasfmad
Print Decryptegssage

Exit loop
End if

3.12Increment countP by 1
Until (countG> Gtimes)
4. Close File; Close Filel; Close File2; Close File3

End.

1y
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3.6 A Mechanism to Enhance McEliece Cryptosystem

After applying a brute force attack to evaluate wecurity of
McEliece public key cryptosystem, some weak pdiige been appeared
and noticed (as shown in chapter four) especialtgrwm = 3, that the
number of probable secret keys are very small endery easy to attack
the system. So an adopted mechanism to enhanperttoemance of this
cryptosystem was designed and implemented. Thisameem makes the
cryptosystem very secure (because the number difapte secret keys
becomes very large) and the size of the public key®t large, also has

less complexity.

This mechanism based on generating a number dicpkéys
instead of one public key and kept these publislad its secret keys in
a file. This is shown in figure (3.5) and the impknted steps are
presented in algorithm (3.22). For example genagatinree public keys
of 4*7 dimensions, and saved these public keysi@nprivate keys in a

file.

Generator matrix g1

Non-singular matrix g1 Multiplying

Public key G1
Permutation matrix B1

Generator matrix

V&

Non-singular matrix §2 Multiplying Public key G2

A (0]

Permutation matrix B2

A !

Generator matrix gp

Non-singular matrix §j Multiplying Public key Gj._

Permutation matrix Bj

Figure (3.5): Key generation phase for the mechanism.
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Algorithm (3.22): key generation phase for the mechanism.

Input:
m: an integer numberz2m> 10, m=(n-k) in hamming code, m=(n-k)-1
in extended hamming code.
t: 0<t<2, number of error

counter: represents number of generation publis key

Output:
File4: file contains generated public &@f hamming code or
extended hamming code G of #dfmension
FileG: file contains read generator matrices
FileSinv: file contains the inverse mads of read non-singular matrices
FilePinv: file contains the inverse megs of read permutation matrices

t: number of error

Procedure
1. Open File, Filel, File3 for read
2. Open File4, Fileg FileSinv, FilePinv for write
3. If generating a public key of hamming code th&et n— 2™ — 1
Else if generating a public key of extendethhng code then Setw 2™
4.Setke—2"-m-1
5. For j« 1 to counter
5.1 Read randomly the generator matrixfém File // this file contains
all possible generator matrices
5.2 Put FileG, Gy // save matrix @in file
5.3 Read randomly the non-singular matrix S from Filethis file
contains all possible non-singularncast
5.4 Put FileSinv, Sinv // save the inverse of matrix 3le
5.5Read randomly the permutation matrix P from Fild8is file
contains all possible permutation ica
5.6 Put FilePinv, Pinv // save the inverse of matrix fle
5.7 Multiply these three matrices ¢&,P)to produce the public key (G):
G(k, n}— S(k,k) * Gy(k,n)* P(n,n)
5.8 Put Filenam4, G
End loop (j)

10
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6. Close FileClose Filel; Close File3
7. Close File4; Close FileG; Close FileSinv; Colse FilePinv

End.

In encryption phase, the side B obtains A’'s pukkys then start
encrypting the original message by multiplying yt the first public key
to produce another message. An error will be addedis message. The
process of multiplying the message by the public &ed adding error to
it will be repeated depend on the number of geadraublic keys. For
example if the number of public keys is 3, so thessage will be
multiplied by the first public key and then addoerto it to produce a
message that will be multiplied by the second pukéy and again add
error to it. Finally the produced message will beltiplied by the third
public key and error will be added to it. The lastssage represented the
encrypted message which will be sent to A. Thishiswn in figure (3.6)
and in algorithm (3.23).

Public key G1 Public keyG2 Public keyGj
Original J, encrypted l encrypted encrypteq
message : messagefl . message2 : message|
__g,, Encryption g= Encryption 9es Encryption

Figure (3.6): Encryption phase for the mechanism.

Algorithm (3.23): Encryption phase for the mechanism.

Input:
counter: represents number of generation publis key
me: represents the original message

t: number of error

N
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Output:
yl: an encrypted message with error
Procedure
1. Sender (B) obtained A's file of public key G and t

2. Convert the original message (me) from text t@binmepresentation
3. Open File4 for read
4. For j« 1 to counter
4.1 Read the (j) public key G from File4 // this fdentains generated
public key
4.2 9« length (me) / k
4.31f g # Int(q) Then
g Int(g) +1
End If
4.4 Call Message encryption that input (G,me,q) angui(y)
/[ algorithm (3.9)
45Ift#£0 Then
Forx-0toq-1
Call Generate md@m error vector that input (t) and output (&)
/I algorithi®.10)
Forxx~-0ton-1
Set y1(x, x¥ (y(X, xx) + e(xx)) and 1
End loop (xx)
End loop (x)
End If
46Setr—20
47Fori—0toq-1
For~0ton-1
Set me(# y1(i,l)
Increment r by 1
End loop (1)
End loop (i)
End loop (j)
5. Close File4

1y
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6. Convert last encrypted message (y1) from binatgxorepresentation

7. Sender (B) Sends encrypted message y1 to req@yer
End.

In the last phase, decryption phase, the side éeives

an

encrypted message from side B to decrypt it. Ddmgrocess uses the

secret keys of the generated public keys by A toryge the received

message, starting from the secret keys of theplastic key to the secret

keys of the first public key. For example if thenmber of public keys is

3, so decryption process will start with the se&msts of the third public

key to produce a message which will be decryptaaiguihe secret keys

of the second public key to produce another messkgelly this

message will be decrypted using the secret keybeofirst public key.

The last message represents the original messagé tbncrypt. This is

shown as follows in figure (3.7) and the implemenseeps are presented

in algorithm (3.24).

Secret keys | Secret keys j-1 Secret keys 1
encrypted l decrypted l decrypted l decrypted
messagdj , message] ) messagej-1 ) messagel
— [ Decryption » Decryption — Decryption ——»
Original
message

Figure (3.7): Decryption phase for the mechanism.

Algorithm (3.24): Decryption phase for the mechanism.

Input:
counter: represents number of generation publis key
y1l: an encrypted message with error
Output:
me: represents the original message
Procedure
1. Receiver (A) receives encrypted message y1 fraordese(B)

TA
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2. Convert the encrypted message (y1) from textnaryirepresentation
3. Open FileG, FileSinv, FilePinv for read
4. For j« counter down to 1
4.1q+« length (y1) / n
4.2f g # Int(q) Then
g Int(q) + 1
End If
4.3Read (j) inverse permutation matrix Pinv from Pilev
4.4Read (j) generator matrixo@nd Parity part from Fileg
4.5 Call SynPar that input (y1,q,Pinv,Parity) and ettSy,H ,y2) /
algorithm (3.13)
4.6 Used the syndrome (Sy) to detect and correct oz er
If one error was existed then
For k— 0 to q — 1 // error correction loop
For+0Oton-1
Set«o0
FodH0to(n-k)-1
g(r,)# H'(i, ) Then
Setco— 1
Exit For (1)
Elfid
End loop (1)
If ca0=Then
t§8(r,i) « (y2(r,i) + 1) and 1
iEfor (i)
End If
End loop (i)
End loop (r)
End if
4.7 Read (j) inverse non-singular matrix Sinv fromeSinv
4.8For r— 0 to g — 1//eliminates non-singular matrix (iaisecret key)
Fore-0tok-1
Setx1 0
Fort Otok-1
Setady2(r, 1) * Sinv(l, i)

14
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Incremedtby rl
End loop (1)
Set me(r«khx1 and 1
End loop (i)
End loop (r)
4.9Setr—0
410Fori—0tog-1
Ford—Otok-1
Set y1(#©-me (i,l)
Increment r by 1
End loop (1)
End loop (i)
End for (j)
5. Close FileG. Close FileSinv; Close FilePinv
6. Convert last decrypted message (me) that represeiginal message from

binary to text representation

End.

So the number of all possible probable secret keygomes very
large and the time needed to trying all these golgbkeys until decrypt
the encrypted message is very long, thereforeviery difficult to break
and attack the system. And the size of the gerceaublic keys is still

suitable.

3.7 Other Cryptosystem Parameters

The McEliece public key cryptosystem has many patars, some

of these parameters are:

1. Key size: represents size of the public key.
2. Message expansion: represents the ratio of thensigpa of the
encrypted message to the original message (orignesisage is a

binary vector of 1*k dimension where the encrypteessage is a
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binary vector of 1*n dimension, so the encryptedssage was
expanded n-k bits more than the original message).
3. Information rate: this is a measure of how muclrimiation on the

average is being carried by a symbol.

Algorithm (3.25): Public key size, message expansion, informatita ra

Input:
n: an integer number represents dimension valyeafees) of the public key
matrix
k: an integer number represents dimension valug-g@tes) of the public key|
matrix
Output:
keysize: represents size of the public key in & byt
mesexp: represents message expansion
infra: represents information rate
Procedure
1. Set keysize— (k*n) / 8
2. Set mesexp— (n/ k)
3. Setinfra— (k / n)

End.

\A



Chapter Four

Experimental Results

4.1 Introduction

In this chapter the results of the proposed systeme presented.
The security of the McEliece public key cryptosysteias evaluated by
using brute force attack; different results of thatgck are presented. An
adopted mechanism was used to overcome the weakviedhis
cryptosystem. Also, this chapter presents the testfilcomputing public
key size, message expansion, information rate aeduéon time, and

their influence on the security of the cryptosystem
4.2 Brute Force Attack

A brute force attack was used to evalu&e security of this
cryptosystem (McEliece cryptosystem). This attask a method of
defeating a cryptographic scheme by generatingaastible probabilities
for each secret key. These secret keys are; gend@y, non-singular
key and permutation key. And, exhaustively workingpugh all possible

keys in order to decrypt a message.

One can determine or estimate the time that isiredjio compute
the secret keys, which is refer to the minimum amboof work to
compute the key, then if this time is large enotlgh cryptosystem is a
secure system. So the number of probabilities efsécret keys (i.e. the
number of keys or the size of the key space) shbaldarge enough to
make this attack (brute force) computationally asiéle.

The results of probabilities number for each sek®y are as

follows:
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a. The number of all possible probabilities of thestfisecret key

(generator matrix €xn)) Will be presented in table (4.1). This table

presents all possible keys for the generator matrik different

cryptosystem parameter value (means that withréifiiekey size).

Table (4.1): The number of probable generator matrices.

Hamming Extended The number o
m code hamming code (Go) Time(second)
n Kk n k probabilities
2 3 1 4 1 1 0.000067
3 7 4 8 4 24 0.000967
4| 15 11 16 11 39916800 7145.656
5] 31 26 32 26 4.033e+26 Long time
6 | 63 57 64 57 4.053e+76 =
7| 127 | 120 128 120 6.689e+198 =
8 | 255 | 247 256 247 2.094e+48b =
9| 511 | 502 512 502 3.069e+1139 =
10| 1023| 1013} 1024 1013  4.405e+2606 =

Figure (4.1) presents the relationship betweeresmsing the

number of generator matrix probabilities and insne@ the value

of cryptosystem parameter (i.e. increasing key)slzes found that

the number of these probable generator matricesaseased

polynomially.

log(Probablities)

10000
9000 -
8000
7000 -
6000
5000 -
4000 -
3000
2000
1000 -+

Matrix(Go)

Figure (4.1):

Relation between the number of @obabilities and

cryptosystem paeder (m).
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b. The second secret key (non-singular matrjxn$ probabilities
number is shown in table (4.2). The number of alkgible
probabilities for the non-singular matrix with daifent matrix

length are presented in the next table.

Table (4.2): The number of probable non-singular matrices.

Hamming Extended The number of
m code hamming code ... | Time(second)
n K n K (S) probabilities
2| 3 1 4 1 1 0.0000098
3| 7 4 8 4 20160 0.79375
4| 15 11 16 11 7.681e+35 Long time
5| 31 26 32 26 9.054e+202 =

Figure (4.2) shows the relation between the nunolberon-
singular matrices with the cryptosystem parametaiues (m),
which represents the matrix size. The number obgote non-

singular matrices is increased polynomially.

Matrix(S)
70000

__ 60000 e
$ 50000 //
§ 40000 7
S 30000 7
% 20000 —
= 10000 —

0 < g <& T T

5 6 7 8

Figure (4.2): Relation between the number of S probabilities and
cryptosystem parameter (m).

c. Permutation matrix (B,) is the third secret key. The numbers of
possible permutation matrices are listed in talde3), and (4.4).

These two tables offer the number of all possilsEbabilities for

V¢
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the permutation matrix when using hamming and aiddn

hamming code with variable matrix size and diffédength.

Table (4.3): The number of probable permutation matrices
when using hamming code.

m| n k | The number of (P) probabilitie Time(second)
2| 3 1 6 0.000093
3 7 4 5040 Long time
4| 15 11 1307674368000 Long time
5| 31 26 8.223e+33 Long time
6| 63| 57 1.983e+87 =

7| 127 | 120 3.013e+213 =

8 | 255 | 247 3.351e+504 =

9| 511 | 502 6.792e+1163 =

10| 1023|1013 5.292e+2636 =

Figures (4.3) and (4.4) offer the relationship hkedw the
numbers of permutation matrices with the value rgptosystem
parameter when using hamming code and extended imghuode
(i.e. with increasing matrix length). Also it isuiod the number of

probable permutation matrices is increased polyatyni

Matrix(P)

10000
9000

8000

7000

6000

5000 A

4000

3000

2000

1000 1 /

log(Probablities)

Figure (4.3): Relation between the number of P probabilities and
cryptosystem parameter (m) when using hamming code.
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Table (4.4): The number of probable permutation matrices when
using extended hamming code.

ml n K The number of (P) Time(in
probabilities second)
2| 4 1 24 0.00856
3| 8 4 40320 Long time
4| 16 11 20922789888000 Long time
5| 32 26 2.631e+35 Long time
6| 64 | 57 1.269e+89 =
7| 128 | 120 3.856e+215 =
8 | 256 | 247 8.578e+506 =
9 | 512| 502 3.477e+1166 =
10| 1024|1013 5.419e+2639 =
Matrix(Pextended)
10000
. 9000 - /,
g 8000
£ 7000
E 6000 -
s 5000 -
B 000 |
2000
1008 . /
2 3 4 5 6 7 8 9 10

Figure (4.4): Relation between the number of P probabilities and
cryptosystem parameter (m) when using extended hagnoode.

Complexity assessment of the number of probabla sacret key
was discovered after conducting many experimenggnérating each the

possible secret keys with different key length.

\a
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Table (4.5): The number of probable secret keys and neededdirtmg
these probabilities.

The number of The number of secre
m secret_k_gys _ keys probabilitie_s _
probabilities Time (extended hamming) Time
(hamming)
2 6 0.00000001G8 24 0.0000000768
3 2438553600 2.20% 19508428800 22.88%
4 4.009e+55 1.049e+y&ars 6.415e+56 1.861le+4ars
5 3.002e+263 8.595e+2{ars 9.607e+264 2.889e+2%éArs

From results listed in these tables, it was fourad when the value
of cryptosystem parameter m is small (when m =2 3wand k = 1 using
hamming code, m = 2, n = 4 and k = 1 using exterftledming code),
the results of all possible secret key are:

1- For the first secret key (generator matrix), thenbar of all possible
keys = 1.
2- For the second secret key (non-singular matrixg, iamber of all
possible keys = 1.
3- For the third secret key (permutation matrix), tmeémber of all
possible keys when using hamming code = 6 and wigng
extended hamming code = 24.
The number of probable keys is very small and iime heeded to

break the cryptosystem and find the original messagery small.

When the value of the cryptosystem parammate 3, (n =7 and k =
4) using hamming code, and (n = 8, k = 4) usingmak¢d hamming code,
the possible secret key are:
1- For &G equal to 24.
2- For S equal to 20160.
3- For P using hamming code equal to 5040 and by uextgnded
hamming code equal to 40320.
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These values mean that the number of all probaldgs kis
2438553600 when using hamming code and 195084288@0 using
extended hamming code which is greater than theique case. If a
high-speed computer performs "4 @peration per second and if the
operation is supposed to be multiplication and mdioperations then it
needs 2.275 or 22.88finutes to try all the probabilities (each probable
has 308 multiplications and 252 additions whengisiamming code, 384
multiplications and 320 additions when using exezhthamming code)

which is considered as a little time and thus ectise.

When m =4, (n = 15 and k = 11) using hangreode and (n = 16
and k = 11) when using extended hamming code, cakiple keys for
each secret key are as follows:

1- For &= 39916800.

2- For S =7.681e+35.

3- When wusing hamming code P probabilities number
1307674368000 and when using extended one P ptiblesbi
number = 20922789888000.

Here the probabilities number have been increaseck than the

previous case (when m = 3) and this increase msikels cryptosystem
secure. As before a high-speed computer perform$ diferation per
second and if the operation is supposed to be phia#dtion and addition
operations then it needs approximately 1.049e+42.881e+43 years to
try all these probabilities (each probable has 8&@ftiplications and
additions when using hamming code, 9152 when usntended
hamming code) which is regarded as a long timelhamite the system is

secure. This long time resulted from the large nemab S probabilities’.

When m =5 to 10, the number of possibtbabilities for all secret

keys are very large (when m=5, number of probadslitequal to
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3.002e+263 or 9.607e+264), and the time neededryorg all these
probabilities is very long and needs very large benof years to break
the cryptosystem (the previous case when m=4iitie needed to break
the system is very long, so what about this casenwi>5 and the
number of probabilities has been increased more l@@@bmes very
large). So in this case the McEliece cryptosystemeiry secure against
this type of attack and very difficult to break.

So, when the value of m is equal to 2; the numlbexligpossible
probable keys is very small and it is very easgttack this cryptosystem.
When m is equal to 3; the number of probabiliteeslso small but better
than the number of probabilities when m is equa2.t&o to make this
cryptosystem secure against this attack when thee\ad its parameter m
= 3, generate number of public keys and encryptiegnessage by them.
After that decrypt the message by the secret kkflsese public keys. So
the number of possible keys becomes very largenards very long time
for trying all these probabilities until decryptettencrypted message,

therefore it is very difficult to break the system.

When m = 3 the number of possible secret keys rg genall
(2438553600), after using the proposed mechanisen nihmber of
probable secret keys becomes equal to 1.450e+28 gdmerating three
public keys i.e. the number of secret keys proltasl when generating
one public key is much less that when generatinggtipublic keys using
the proposed mechanism, the number of all probsbteet keys when
using the proposed mechanism can be illustrateche following

equation:

Spm = Number of all possible probable sekegt
Sp = Number of probable secret keys wheriggimg one public key

A
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N = Number of generated public keys

Experimental Results

And if generate ten public keys the number of pbib&eys equal

to (SpJ° =7.435e+9%, and so on for m=4 as shown in the next table.

Table (4.6): Number of probable keys after using the mechanism.

yS

m | No. of public keys All possible probable secret ke
3 3 (2438553600) 1.450e+28
3 5 (2438553600} 8.623e+46
3 10 (2438553600)= 7.435e+93
4 3 (4.009e+55) 6.443e+166

When m is equal to 4 the number of probabilite$¢arge and the

system is secure, in order to make it more sedhes,same previous

mechanism can be used by generating two or thrédicpkeys and

encrypting the message by them. This mechanismotisiseful when m

equal to 2 because the number of probabilitiesdhatbe generated from

generating large numbers of public keys still vemall and therefore, the

system can be broken.

4.3 Evaluation According Other Cryptosystem Parameters

Some of McEliece cryptosystem parameters were eduth this

project. The security, implementation and use af thystem were

influenced by these parameters. These parameters ar

1-PublicKey Size

Table (4.7) shows the effect of different McEliguéblic key size
(when using hamming code and extended hamming cdded

from this table, the public key size of extendedhhrang code was

larger than the public key size of hamming codeeWthe value of
n and k is small (whenn =3 or4 and k =1, amd/or 8 and k = 4)
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then the public key size is small and needs vétig Ispace in the
memory. But on the other hand, the number of thest&eys is very

small and the cryptosystem is very easy to belatthc

Table (4.7): McEliece public key size when using hamming
and extended hamming aodsyte.

m Hamming code Extended hamming code
n K | Public key sizg n Kk Public key size

2| 3 1 1 4 1 1

3| 7 4 4 8 4 4

4| 15| 11 21 16 11 22

5| 31| 26 101 32 26 104

6| 63| 57 449 64 57 456

7| 127 | 120 1905 128| 120 1920

8 | 255 | 247 7874 256| 247 7940

9 | 511 | 502 32066 512 50 32128

10| 1023|1013 129538 1024| 10138 129664

When n = 15 or 16 and k = 11, the number of prabaalcret
keys is large and the time needed to break themsys very long,
roughly 1.271e+38 years. This case has suitablegqiksy size.

When the value of n = 31 or 32 and k = 26, the Mt public
key cryptosystem is very secure and any try tolkoreaeeds lots of
years. Even the public key size is increased hlitngit large in
comparison with the large capacity of storage aama high

transmission speed.

When n»6, the McEliece public key cryptosystem is veryusec
and any try to break it needs very large numbeyeafrs. But the
public key size becomes large and needs large spdbe memory,

especially when m = 10.

From this previous study it was found that wher2rand 3 the
public key size is very small but the cryptosystsmmot secure.
When m = 4 and 5, in this case the cryptosystesecsire also the

AN
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public key size is not large comparing with theg&arcapacity of the
storage media and with high transmission speed.nWhe6 the

number of probable keys is very large and the syssevery secure
but the public key size was increased, and wilseamplementation
problems especially when m = 10. This large mukdy size makes
this cryptosystem not widely used because it n&gde space in the
memory also needs very high transmission speed.cBamges in
technology and economies, for example the plummetost of

storage, keep it on the list of candidates for sapmications.

M essage Expansion

Table (4.8) offers message expansion of the cryptem, this
table presents that the encrypted message wasridhga the
original message by (n-k) bits. System message nsxpa of
hamming code was less than of extended hamming. GBalehe
encrypted message is much longer than the plainféid expansion
of the message is considered as a drawback ofctiiosystem

because it makes the system more prone to tranemssor.

Table (4.8): Message expansion system when using hamming
and exted one.

m Hamming code Extended hamming code
n K | Message expansiq n k | Message expansign

2] 3 1 3 4 1 4

3| 7 4 1.75 8 4 2

4| 15| 11 1.364 16 11 1.455

5| 31| 26 1.192 32| 26 1.230

6| 63| 57 1.105 64| 57 1.123

7| 127 | 120 1.058 128 120 1.067
8 | 255 | 247 1.032 256 247 1.036
9 | 511 | 502 1.018 512 50 1.01992
10| 1023| 1013 1.009 1024 1013 1.010859
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3- Information Rate

Table (4.9): Information rate system when using hamming
and extended hamnuode.

Hamming code Extended hamming code

m ) .

n K | Information ratg n k | Information rate
2 3 1 0.333 4 1 0.25
3 7 4 0.571 8 4 0.5
4 | 15 11 0.733 16 11 0.6875
5| 31 26 0.839 32 26 0.8125
6| 63 57 0.905 64 57 0.890625
7| 127 | 120 0.945 128 120 0.9375
8 | 255 | 247 0.969 256  24(7 0.965
9| 511 | 502 0.982 512 50Q 0.980
10| 1023|1013 0.990 1024 1013 0.989

Table (4.9) presents information rate for differeakues of n and
k of hamming code and extended hamming code. Whes small
(m =2 and 3) the information rate is low but it iedie increased
when the value of m was increased as shown in tgh%. And
system information rate of extended hamming code laer than

of hamming code.

4- Execution Time

Table (4.10) and (4.11) present execution timesfaryption and
decryption stages of the cryptosystem. These tagblesent that the
encryption and decryption execution time of extehd@mming
code needs more little time than the time was neééalexecute with
hamming code. However, encryption and decryptios iedatively
little time. So, this faster execution time is colesed as an

advantage of the cryptosystem.
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Table (4.10): Systemencryption and decryption execution time

of hammingpe.

m| n K | Encryption tim@econs | DecCryption timeecong
2| 3 1 0.00192 0.00198
3 7 4 0.00103 0.00190
4 | 15 11 0.00109 0.00282
5| 31 26 0.00167 0.00510
6 | 63 57 0.003 0.00971
7| 127 | 120 0.00603 0.0204
8 | 255 | 247 0.0130 0.0510
9 | 511 | 502 0.0311 0.142
10| 1023|1013 0.0834 0.322

Table (4.11): System encryption and decryption execution time

of the extended hanmunde.

m| N k | Encryption timeecong | DECryption timeecond
2| 4 1 0.00223 0.00296

3 8 4 0.00115 0.00234

4| 16 11 0.00117 0.00312

5| 32 26 0.00171 0.00531

6| 64 | 57 0.00304 0.0101

7| 128 | 120 0.00606 0.0206

8 | 256 | 247 0.0131 0.0514

9 | 512| 502 0.0312 0.143
10(1024| 1013 0.0835 0.323

Experimental Results

The time of extended hamming code was laripan the
hamming one, but the difference was small. As anabsuggestion,
the extended one was preferred, since it can doome error and
can detect two. Whereas the cryptosystem of hamroode can

correct one error and cannot detect two errors.
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Conclusons and Future Work

5.1 Conclusions

1. The McEliece public key cryptosystem is not secure when its
parameter value (m=2 and 3), because the number of McEliece
secret keys are very small, and an adopted mechanism was used to
make this cryptosystem secure when m=3. And when the value of
the cryptosystem parameter (m=4) the number of cryptosystem
secret keys become large and the time needed to break the system is
long, so the system is secure. When (m>5) the number of keys
becomes very large and needs very long time to be discovered in
order to decrypt a message, so the McEliece cryptosystem is very

secure in this case.

2. The public key size of the McEliece cryptosystem is small when the
value of the cryptosystem parameter (m=2 and 3) and the system is
not secure. When (m=4 and 5), the system become is secure at the
same time the storage area that was needed for the public key is not
large. While when (m>6) the cryptosystem is very secure but the
size of the public keys become large, and this will cause

implementation problems.

3. An adopted mechanism was designed and implemented to overcome
the weak points of this cryptosystem and to enhance the performance
of it (especially when m = 3, when m = 4 the system is secure, to

make it more secure this mechanism can be used).
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4. McEliece cryptosystem has low information rate when the value of
cryptosystem parameter (m) is small (m=2 and 3), but this
information rate would be increased when mis increased.

5. Encryption and decryption has relatively little time in the McEliece
system. Therefore, the on going study of this system is vital to the
future of cryptography and this cryptosystem may provide an
aternative to the current public key cryptosystem. So, this high-
speed encryption and decryption is considered as an advantage of the

cryptosystem.
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5.2 Future Work

1. Using another type of linear block codes instead of hamming code
and extended hamming code such as Golay code, Reed Muller code
or Goppa code and evaluates the security of McEliece cryptosystem
and trying to enhance it when using one of these codes. These codes

can detect and corrects multiple errors depending on its propriety.

2. Another type of attacks could be used instead of brute force attack
to evaluate the security of McEliece public key cryptosystem when
using one of these codes (hamming code, extended hamming code,

Golay code, Reed Muller code or Goppa code).

3. Trying to overcome the drawbacks of this cryptosystem (McEliece
cryptosystem): large public key, message expansion and low

information rate.
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