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Abstract 

Encoding and decoding of transmitted data through the 

communication system is considered as an important subject that paid 

great attention. It is well known that there are many types of error 

correction codes; some of these types are hamming and extended 

hamming codes. Hamming code can detect and correct single error while 

extended hamming code can detect two and correct one only. 

This work is concerned with the implementation of McEliece 

cryptosystem by using hamming code and extended hamming code, 

evaluate the security of this cryptosystem and enhance the performance of 

it. McEliece cryptosystem is a public key cryptosystem based on 

algebraic coding theory.  

The system design and implementation consists of four phases. The 

first phase is the key generation phase of McEliece cryptosystem using 

hamming code and extended hamming code. There are three secret keys 

participate in creating public key (generator matrix, non-singular matrix, 

and permutation matrix). The second phase is the encryption phase, in 

this phase the original message is converted to encrypted message. The 

original message is encrypted by using the public key generated in the 

first phase, and then adding the error to it. The third phase is the 

decryption phase. The secret keys are used in this phase to decrypt the 

encrypted message and to obtain the original one. Also, in decryption 

process the message is decoded from the errors added to it. The last phase 

is concerned with evaluating the security of this cryptosystem (McEliece 

cryptosystem). The evaluation was based on using brute force attack, and 

the security of this cryptosystem can be measured by its resistance to this 

type of attack. After applying this attack some weak points have been 

noticed. To overcome these weak points and to make this cryptosystem 
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more secure, a modification was proposed an implemented. In this phase 

other cryptosystem parameters have been evaluated, they are: public key 

size, message expansion and information rate. The security, 

implementation and the use of this cryptosystem are issues significantly 

affected by these parameters.   

All required programs, in this research project have been 

implemented by using Visual Basic (version 6) programming language 

working in Window XP operating system platform. 
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Chapter One 

General Overview 

1.1 Introduction 

Transmitting messages across noisy channels is an important 

practical problem. Coding theory provides explicit ways of ensuring that 

messages remain legible even in the presence of errors. Cryptography on 

the other hand is the science of sending messages in disguise form, it 

makes sure that messages remain unreadable except to the intended 

recipient that means only the intended recipients can remove the disguise 

and read the message. These complementary techniques turn out to have 

much in common mathematically [Kor05]. 

It is pretty much taken for granted that data storage and 

communication are reliable. Increasingly, we expect or hope that our 

recorded and transmitted data are secure. The theories of coding and 

cryptography attend to data reliability and security, respectively [Hhl00].  

Coding theory is concerned with finding explicit methods, called 

codes, of increasing the efficiency and fidelity of data communication 

over a noisy channel. The goal in coding theory has been to provide error-

free and secure communication over noisy channels and devise efficient 

codes and their successful implementation by developing fast encoding 

and decoding procedures [Cha98]. These efficient codes are error 

correction codes (ECC). Error correcting codes are an essential part of 

modern communication and storage systems. ECC add redundancy to the 

original message in such a way that it is possible for the receiver to detect 

the error and correct it, recovering the original message. The study of 

error correction codes and the associated mathematics is known as coding 

theory [Fre00]. 
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Algebraic coding theory is the theory of error correcting codes; it 

was originated in 1950 by Richard hamming. Algebraic coding theory is 

an area of discrete applied mathematics that is concerned with developing 

error correcting codes and encoding/decoding procedures [Spe00]. This 

coding theory (Algebraic coding) is differ from cryptography. 

Cryptography is the mathematical theory behind sending secret messages 

while algebraic coding theory is the mathematical theory of sending 

messages that arrive with the same content in which they were sent 

[Smi02]. 

The McEliece cryptosystem is a public key cryptosystem that 

provide secure transmission whose security rests on error correction 

codes and the difficult problem of decoding a message with random error; 

it is based on algebraic coding theory, whereas for most other public key 

systems, it is connected to algorithmic number theory (e.g. RSA, Elliptic 

Curve Cryptosystem). So in addition to its capability of offering secure 

transmission, it possesses the capability to correct communication 

channel error [Sua03]. 

In practice, the security of any cryptosystem can only be measured 

by its resistance to actual attempts to break it. Those that have been 

broken are obviously insecure [Mey98]. An encryption scheme can be 

broken by trying all possible keys to see which one is used by the 

communicating parties. This is called a brute force attack. It follows then 

that the number of keys should be large enough to make this approach 

computationally infeasible [Men96].   
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1.2 Literature Survey   

• At 1992, Preneel et al, presented a software implementation of the 

McEliece public-key cryptosystem. The software performs 

encryption and decryption in a reasonable speed. All coding 

routines were written in assembly language to speed up the system. 

Also, this research the attack of recovering the plaintext from a 

ciphered message was discussed. The main idea is to select and 

solve k bits (number of original message bits) of n bits (number of 

cipher message bits) obtained from ciphertext and public key, it is 

found the probability of success is small [Pre92]. 

• At 1997, Berson indicated that the McEliece public-key 

cryptosystem fails to protect any message which is sent to a 

recipient more than once using different random error vectors; he 

called this attack a message-resend condition or a message-resend 

attack. And this cryptosystem fails to protect any messages sent to 

a recipient which have a known linear relation to one another; it 

called this a related-message condition or a related-message attack. 

These attacks are general attack on the class of public-key 

cryptosystems which use an error-correcting code. And to prevent 

these attacks; users of the McEliece public-key cryptosystem and 

of cryptosystems with similar structure, should guard against 

sending related messages. He presented that one countermeasure 

which comes to mind is to introduce an element of local 

randomness into any message before it is encrypted [Ber97]. 

• At 1998, Johansson offered many cryptosystems relying on the 

difficulty of the general decoding problem. The general decoding 

problem is the problem of decoding a received word to the closest 

codeword in an arbitrary code. This work is based on the 

observation that in many cryptographic applications it is possible to 
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create a list of received words in such a way that succeeded in 

decoding only one of them implies success in an attack of the 

underlying cryptosystem. He showed that this holds for Stern's 

identification scheme, McEliece public-key cryptosystem, and the 

stream cipher application [Joh98]. 

• At 1998, Lee et al, presented an attack on McEliece public key 

cryptosystem that is based on algebraic coding theory. This attack 

is to repeatedly select k bits randomly from an n-bit ciphertext 

vector, in hope that none of the selected k bits are in error until the 

cryptanalyst recovers the correct message of k bits, the probability 

of success of this attack is also small [Lee98].   

• At 2000, SUN HUNG-MIN showed that the McEliece scheme 

suffers from two weaknesses they are; failure to protect any 

message which is encrypted more than once, and failure to protect 

any message which have a known linear relationship with one 

another. The researcher proposed variant McEliece scheme to 

prevent these attacks. The public key and the secret key in this 

variant scheme are same as those in the original McEliece scheme, 

the only difference is using a one-way hash function in encrypting 

messages, the lack knowledge about this hash function becomes the 

value of it is unknown. Thus, the message-resend and related 

message attacks fail [Sun00].  

• At 2003, Jeroen introduced an attack against the McEliece public-

key cryptosystem called an adaptive chosen ciphertext attack, 

which is based on the attacker which will continue to alter 

messages until retrieved enough secret information, and on the 

assumption that (ordinary) users may see no problem in revealing 

whether or not an encrypted message deciphers correctly. In the 
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case of the McEliece system it must repeat the attack for each 

ciphertext it wishes to decrypt. The aim of this attack is to recover 

the plaintext of a given ciphertext. And to prevent this attack; users 

should be alerted when many encrypted messages do not decrypted 

properly, also must come up with the idea of checking for repeated 

messages [Jer03]. 

• At 2003, Suanne et al, showed that there are two types of attacks 

on Mceliece cryptosystem, structural and decoding. A structural 

attack consists of attempts to reconstruct a decoder for the code 

generated by the public key, G. If such an attempt is successful, 

then the private key G0 would be revealed and the cryptosystem 

would be completely broken. A decoding attack consists of 

decoding the intercepted ciphertext. In the case of a successful 

decoding attack, the plaintext message is recovered but the 

cryptosystem remains intact. They showed under different 

circumstances, many efficient decoding attacks are possible, but 

structural attacks remain infeasible in general [Sua03]. 

From the above review one can found that these most researches 

investigated different types of attacks on McEliece cryptosystem and 

evaluate the security of it by measuring the power of the system 

against different types of attack.  

As a comparison between these previous efforts and the work done 

in this thesis, the current research study, implement, evaluate the 

security of McEliece cryptosystem using a brute force attack and 

enhance the performance of this cryptosystem. Also evaluates other 

cryptosystem parameters that affected the security of the system. 
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1.3 Aim of Thesis 

• Study the public key encryption scheme based on algebraic coding 

theory. Design and implement McEliece public key cryptosystem 

with hamming and extended hamming code.   

• Evaluate the security of McEliece public key cryptosystem type 

with hamming and extended hamming code by using a brute force 

attack and trying to overcome the weak points of this cryptosystem 

and enhance the performance of it. 

1.4 Thesis Layout 

The contents of individual chapters in the remainder part of this thesis are 

briefly reviewed: 

• Chapter two: reviews the concept of error correction codes, and 

McEliece cryptosystem. 

• Chapter three: the practical part of the work is presented in this 

chapter, and the algorithms that used to implement the system. 

• Chapter four:  the results of the system are shown here. 

• Chapter five: introduces the derived conclusions of this work, 

with recommendations for future work. 



 
 
 
 
 
 
   
 
 
        

 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter Two 

An Overview of McEliece Cryptosystem 

2.1 Introduction 

In this chapter the principles of cryptography, cryptanalysis and the 

approaches of cryptanalysis attack were presented. The brute force attack 

is an important cryptanalysis attack, it is presented in details. Also the 

concepts of error correction codes were described.  Finally McEliece 

public key cryptosystem which relate cryptography and coding theory is 

overviewed.  

2.2 Cryptography  

Cryptography is science of using mathematics to encrypt and 

decrypt data. Data that can be read and understood without any special 

measures is called plaintext [Sch97]. 

The process of encoding data to prevent unauthorized parties from 

viewing or modifying it is called encryption. The encryption process 

transforms plaintext into ciphertext, while the process of transforming 

ciphertext back into plaintext is called decryption. These two processes 

are shown in figure (2.1). A system for encryption and decryption is 

called a cryptosystem [Pfl89]. 

   

  
  

Figure (2.1): Encryption and decryption.  

 

Plaintext 
message  Decryption  Encryption  

Plaintext 
message  
 

 
Channel  

 Ciphertext 
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2.3 Types of Encryption Algorithm 

Encryption components are an algorithm and key. Encryption 

algorithm is series of steps that mathematically transforms plaintext or 

other readable information into unintelligible ciphertext. Ciphertext that 

has been encrypted is unreadable until it has been decrypted by applying 

inverse mathematical transformation, which transforms the encrypted 

ciphertext back into something readable. Both encryption and decryption 

use a key [Ste99]. 

Encryption algorithms are classified into two main types, these types 

are [Sch97], [Men96]: 

� Symmetric encryption (secret key encryption). 

� Asymmetric encryption (public key encryption). 

The characteristic features of  symmetric encryption algorithms, is 

that both the encryption and decryption processes are accomplished by 

using the same key as known in figure (2.2). 

The symmetric key algorithms can be further classified as: stream 

ciphers and block ciphers. A stream cipher is an encryption scheme which 

treats the plaintext as a block of unity length. A block cipher is an 

encryption scheme which breaks up the plaintext messages to be 

transmitted into strings called blocks (of a fixed length), and encrypts one 

block at a time. A good example of symmetric cryptosystem algorithm is 

Data Encryption Standard (DES).  

 
 
  
 
 
 
   

Figure (2.2): Symmetrical encryption block diagram. 

Plain 
 text Encrypt 

Plain 
 text 

Cipher 
  text Decrypt 

Encryption key Decryption key 
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Asymmetric encryption is more complex and more secure. The 

characteristic feature of public key encryption is that the encryption and 

decryption processes are accomplished by using different keys. More 

precisely, the encryption process is based on using a key that is easily 

available, while the decryption process is based on another key, which is 

only accessible to a specific entity. The key that is used for the encryption 

process is known as the public key, while the key that is used for the 

decryption process is known as the private key (secret key) as shown in 

figure (2.3). RSA and McEliece are two examples for such a system. 

Symmetric encryption is fast but not as safe as asymmetric 

encryption because someone could intercept the key and decode the 

messages. But because of its speed, it’s commonly used for encoding-

commerce transactions. 

 
 
 
 
 
 
 

Figure (2.3): Asymmetrical encryption block diagram. 

Cryptography algorithms are the heart of secure systems 

worldwide, providing encryption for millions of sensitive financial, 

government, and private transaction daily [Jam02].  

2.4 Cryptanalysis 

Cryptanalysis is the study of mathematical techniques for 

attempting to defeat cryptographic techniques [Men96]. In practice, the 

security of any cryptosystem can only be measured by its resistance to 

actual attempts to break it. Those that have been broken are obviously 

insecure. The central issue in assessing the resistance of an encryption 

Plain 
 text 

Encrypt Plain 
 text 

Cipher 
  text 

Decrypt 

  Public key   Private key 
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algorithm to cryptanalysis is the amount of time that a given type of 

attack will take [Mey98]. Realistic system which means that it is 

theoretically breakable. The problem is to determine how long it would 

take to break the proposed cipher system and to estimate the involved cost 

(in terms of time and computation load). If the time is extremely huge 

then, for all practical purpose, we may regard the considered system as 

secure [You02]. So one can estimate the required time to compute the 

secret key, which is the minimum amount of work to compute the key, 

then for sufficiently large time the encryption system is, for all practical 

purpose, a secure system [Men96]. 

There are two approaches to attacking a conventional encryption 

scheme [Sta03]: 

• Cryptanalysis: cryptanalytic attacks rely on the nature of the 

algorithm plus perhaps some knowledge of the general characteristics 

of the plaintext or even some sample plaintext-ciphertext pairs. This 

type of attack exploits the characteristics of the algorithm to attempt to 

deduce a specific plaintext or to deduce the key being used. If the 

attack succeeds in deducing the key, the effect is catastrophic: all 

future and past messages encrypted with that key compromised 

[Men96]. There are various types of cryptanalytic attacks, based on the 

amount of information known to the cryptanalytic [Buc01]: 

a. Ciphertext only attack: the attacker knows ciphertexts and tries to 

recover the corresponding plaintexts or the key. 

b. Known plaintext attack: the attacker knows a plaintext and the 

corresponding ciphertext or several pairs. He tries to find the key 

used or to decrypt other ciphertexts.  
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c. Chosen plaintext attack: the attacker is able to encrypt plaintexts 

but does not know the key. He tries to find the key used or to 

decrypt other ciphertexts.  

d. Adaptive chosen plaintext attack: the attacker is able to encrypt 

plaintexts. He is able to choose new plaintexts as a function of the 

ciphertexts obtained but does not know the key. He tries to find 

the key used or to decrypt other ciphertexts.  

e. Chosen-ciphertext attack: the attacker can decrypt but does not 

know the key. He tries to find the key.  

• Brute Force Attack: A brute force attack (also called exhaustive 

attack) is a method of defeating a cryptographic scheme by generating 

a large number of possibilities and trying it in order to recover the 

plaintext used to produce a particular ciphertext [Cla97]. The most 

difficult problem is presented when all that is available is the 

ciphertext only. In some cases, not even the encryption algorithm is 

known, but in general we can assume that the opponent does know the 

algorithm used for encryption. One possible attack under these 

circumstances is the brute force approach of trying all possible keys 

[Sta03]. The quicker the brute force attack, the weaker the cipher. 

Feasibility of brute force attack depends on the key length of the 

cipher (i.e. depends on the number of keys) and on the amount of 

computational power available to the attacker, thus the number of keys 

should be large enough to make this approach computationally 

infeasible [How00]. This type of attacks can take several hours, days, 

months, and even years to run. Brute forcing is one of the first 

methods approached to getting passwords. Even a lot of governments 

agencies and such whose main goal are to decrypt various coded 

passwords use brute force methods for one of these approaches. For 
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example, a brute-force attack may have a dictionary of all words 

and/or a listing of commonly used passwords. To gain access to the 

account using a brute-force attack, the program would try all the 

available words it has to gain access to the account. So, brute forcing 

is a great method in the security world and must be clearly understood 

[Jar98]. 

2.5 Error Correcting Codes [Sha85] 
Error detecting / correcting code is the calculated use of 

redundancy. The functional blocks that accomplish error correcting codes 

are the channel encoder and channel decoder. The channel encoder 

systematically adds digits to the transmitted message digits. These 

additional digits, while conveying no new information themselves, make 

it possible for the channel decoder to detect and correct errors in the 

information bearing digits. The purpose of error detecting / correcting 

codes is to reduce the chance of receiving messages which differ from the 

original message. A system that employs error correcting codes is shown 

in figure (2.4).  

The channel encoder and decoder are functional blocks in the system 

that, by acting together, reduces the overall probability of error. The 

encoder divides the input message bits into blocks of k massage bits and 

replaces each k bit massage block with an n bit codeword by adding (n-k) 

check bits to each message block. The decoder looks at the received 

version of the codeword, which may occasionally contain error, and 

attempts to decode the k message bits. While the check bits convey no 

new information to the receiver, they enable the decoder to detect and 

correct transmission error and thereby lower the probability of error. 
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The design of the encoder and decoder consist of selecting rules for 

generating codeword from message blocks and for extracting message 

blocks from the received version of the codewords. 

 
 

  
Figure (2.4): Block diagram of data communication system employing an 
error correcting code. 

2.6 Types of Code  

Error detecting/correcting codes are often divided into two broad 

categories: block codes and convolutional codes. In block codes, a block 

of k information bits is followed by a group of n-k check bits. At the 

receiver, the check bits are used to verify the information bits in the 

information block preceding the check bits. In convolutional codes, check 

bits are continuously interleaved with information bits; the check bits 

verify the information bits not only in the block immediately preceding 

them, but in other block as well. So a convolutional code, unlike a block 

code, the channel encoder accepts message bits as a continuous sequence 

and thereby generates a continuous sequence of encoded bits [Das86]. 
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2.7 Linear Block Codes  

A code is said to be linear if any two codewords in the code can be 

added in modulo-2 arithmetic to produce a third codeword in the code. 

For the purpose of encoding message for error protection, the long 

message is broken into message blocks consisting of, say, k of bits of 

information. Then redundant bits (normally known as parity bits) are 

added to these k bits according to certain rules of coding, and the 

codewords of length n bits, inclusive of (n-k) parity bits that shown in 

figure (2.5), are transmitted through the noisy channel. In the receiver, the 

k message bits are decoded from the erroneous received message blocks 

using suitable algorithms. With k bits of information per blocks, there are 

2k possible distinct messages (or codewords), out of the 2n codewords that 

may be generated with n bits. This set of 2k codewords called a block 

code [Hay01].  

    
 
 
 
 
 
 
 
 
 

Figure (2.5): Structure of systematic codeword. 

2.7.1 Error Detection and Correction Capabilities of Linear 

Block Codes [Mic85] 

Some of the basic terminology that will be used in defining the 

error detection/correction capabilities of a linear block code. First, the 

Hamming weight of a code vector C is defined as the number of nonzero 

components of C. The Hamming distance between two vectors (C1 and 
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    Encoder
 

Message  Message Check bits 

k r 

n = k + r 



Chapter Two                                               An Overview of McEliece Cryptosystem 
                                                                                                                                      

 15

C2) having the same number of elements is defined as the number of 

positions in which they differ. Finally, the minimum distance of linear 

block code is the smallest distance between any pair of different 

codewords in the code. 

            eg. w(0010110) = 3 

           eg. d(0001111; 1000110) = 3 

            eg. For codewords  = {1000011; 0100101; 0010110;0001111} 

                 dmin = 3 

The minimum distance of linear block code is equal to the 

minimum weight of any nonzero word in the code. The ability of linear 

block code to correct errors can be specified in terms of the minimum 

distance of the code. 

A linear block code with a minimum distance dmin can correct 

[(dmin-1)/2] errors and detect [dmin-1] errors in each codeword, so  

Error detection capabilities <= (dmin– 1). 

     Error correction capabilities <= (dmin – 1) / 2. 

2.7.2 Matrix Description of Linear Block Codes  

The encoding operation in a linear block scheme consists of two 

basic steps: 

 (1) The information sequence is segmented into message blocks, each 

block consisting of k successive information bits. 

 (2) The encoder transforms each message block into a larger block of n 

bits. We can describe the encoding operation using matrices. 

  We will denote the message block as a row vector or k-tuple (m= 

(m1, m2, …., mk)) where each message bit can be a 0 or 1. Thus we have 

2k distinct message blocks. Each message block is transformed to a 

codeword C of length n bits (C=(c1,c2,…,cn)) by the encoder and there are 
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2k distinct codewords, one unique codeword for each distinct message 

blocks. This set of 2k codewords, is called a (n,k) block code [Sha85].  

In a linear block code, the first k bits of the codeword are the message 

bits, that is,  

k  .,2, 1,i     ,m  i …=  

The last n-k bits in the codeword are check bits generated from the 

generator matrix is: 

            =G              

knkkk

kn

kn

kn

ppp

ppp

ppp

ppp

−

−

−

−

,21

,33231

,22221

,11211

...1...000

::::

...0...100

...0...010

...0...001

         ……….....(2.1) 

                           
and  

mG    C= ……………………………...(2.2) 
   The (k*n) matrix G has the form 

                                                                                n*kk P] | [I G =   ………………………...(2.3) 

The matrix Ik is the identity matrix of order k and P is an arbitrary k 

by (n-k) matrix. When P is specified, it defines the (n,k) block code 

completely [Sha85]. 

An important step in the design of a (n,k) block code is the 

selection of a P matrix that depends on error detecting and correcting 

capabilities, so that the code generated by G has certain desirable 

properties such as ease of implementation, ability to correct errors, high 

rate efficiency, and so fourth. As a result, for any (n,k) linear code there 

exists a (k*n) matrix G, whose rows are these k linearly independent 

codewords [Das86].  
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Example (2.1): the generator matrix for (4,7) block code is given below  

                       =G          

1101000

0110100

1110010

1010001

 

The message block size k for this code is 4, and the length of the 

code vectors n is 7. The code vector of the message block m = (1110) is 

given by:- 

          (1110) mG   C ==     

1101000

0110100

1110010

1010001

 

 
         0 0 1 0 1 1 1    =  

This example illustrates how an encoder for the (4,7) code 

generates code vectors. The encoder essentially has to store the G matrix 

(or at least the sub matrix P of G). The complexity of the encoder 

increases as the block size n and the number of check bits (n-k) increase 

[Sha85]. 

Associated with each (n,k) block code is a parity check matrix  H, 

which is defined as  

            = H        

1...0000....

::::

0...0010....

0...0001....

,,2,1

22212

12111

knkknkn

k

k

ppp

ppp

ppp

−−−

        ……...(2.4) 

 
  ]I | [P  H k)xn-(nk-n

T= ………………………….(2.5)     

The parity check mat rix can be used to verify whether a codeword 

C is generated by the matrix P] | [I G k= . This verification can be done as 
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follows; C is a codeword in the (n,k) block code generated by P] | [IG k=  if 

and only if  

  0H C      T =  ……………………………......(2.6)       

      0mGHT =  
      0  0 m =  

   Where HT is the transpose of H matrix, 

                            ]I|[P [H]  and  P];|[I  [G] k-n
T

k ==  

         . P] | [I  ][G].[H                 k
T =  

    I   

P

k -n

   0 = P]   [P = ⊕     …………..…...(2.7) 

        The inner product of a vector in the row space of  [G] and a row in 

 [H] is zero. Also 0  ][H].[C T = [Das86]. 

While the generator matrix is used in the encoding operation, the 

parity check matrix is used in the decoding operation as follows: 

Consider a linear (n,k) block code with a generator matrix 

 P] | [IG k= and parity check matrix ]I |[P H k-n
 T= . Let C be a code vector 

that was transmitted over noisy channel and let R be the noise-corrupted 

vector that was received. The vector R is the sum of the original code 

vector C and an error vector encoding, that is,  

               EC  R += ………………………………….(2.8) 

The receiver does not know C and E; its function is to decode C 

from R, and the message block m from C. The receiver does the 

decryption operation by determining an (n-k) vector Sy defined as  

                                             TRH Sy = ……………………………........(2.9) 

   The vector Sy is called the error syndrome of R  

       TH E][C y S +=  

           TT EHCH +=  

                                                     EH  0 T+=  

and obtain [Das86]:  

                                             EH Sy T= ……………………….………(2.10) 
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Since CHT =0. Thus the syndrome of a received vector is zero if R 

is valid code vector. If errors occur in transmission, then the syndrome Sy 

of the received vector is nonzero. Furthermore, Sy is related to the error 

vector. The row of the parity check matrix HT serve as location vectors for 

bit positions where error occurred in a received word. The receiver can 

verify that, a signal error in the i-th bit of C would lead to a syndrome 

vector that would be identical to the i-th row of the matrix HT. Thus signal 

errors can be corrected at the receiver by comparing Sy with the rows of 

HT and correcting the i-th received bit if Sy matches with the i-th row of 

HT [Das86]. 

2.8 Types of Linear Block Codes  

 There are many types of linear block codes, the most important 

types are Hamming code, extended hamming code, Golay code, Reed 

Muller codes and many other types [Pet72]. 

2.8.1 Hamming Code  

Hamming code is a linear block codes capable of correcting single 

error. This code must have a minimum distance dmin= 3. We know that 

when a single error occurs, say in the i-th bit of the codeword, the 

syndrome of the received vector is equal to the i-th row of HT. Hence, if 

we choose the n rows of the ((n)*(n-k)) matrix HT to the distinct, then the 

syndrome of all single error will be distinct and we can correct single 

error. There are two points we must remember in chosen rows of HT. 

First, we must not use a row of 0’s since a syndrome of 0’s corresponds to 

no error. Second, the last n-k rows of HT must be chosen so that we have 

an identity matrix in HT [Das86]. 

Hamming codes parameters are [Leh93]: 

- Code length n = 2m – 1,    m = (n-k) 

- Number of parity check bits   m = n-k 
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- Number of information bits    k = (2m – m – 1) 

- Minimum hamming distance of the generator matrix = 3 

- Error correcting capability = 1       

Each row in HT has (n-k) entries, each of which could be a 0 or 1. 

Hence we can have 2n-k distinct rows of (n-k) entries out of which we can 

select 2n-k-1 distinct rows of HT (the row of 0’s is the only one we cannot 

use). Since the matrix HT has n rows.  

Hamming codes are widely used in computing, telecommunication 

and other application including data compression, popular puzzle and 

turbo codes [Leh93].  

Example (2.2): [Das86]       

                         [G]       =   

1111000

0110100

1010010

1100001

  

 

           = [H]              
1001011

0101101

0011110

 

The syndrome Sy is generated from: 

     [R]. ][R].[H  [Sy]       T ==   

100

010

001

111

011

101

110

 

So for a message m1m2m3m4 = 0 0 1 0, the code C = 0 0 1 0 1 1 0. 

If the received vector R = 0 0 1 0 0 1 0, then the syndrome Sy = 1 0 0, and 

inspection of HT, the error is in the 5th position, giving E = 0 0 0 0 1 0 0. 

So that can obtain C = 0 0 1 0 1 1 from R after correct error. 
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2.8.2 Extended Hamming Code 

If multiple errors occur in the transmission of a word the hamming 

code cannot even detect them because the errors will produce a syndrome 

Sy which will either be zero or equal to some column of the parity check 

matrix. Thus for a hamming code decoding failure never occurs, it 

provides a complete decoding algorithm that codes can detect and correct 

one error and detect any two errors. This two bit error can be detected 

since they will correspond to a non-null syndrome which is not a row of 

HT. The points that we must remember in chosen rows of HT, we must not 

use a row of zeros since a syndrome of zeros corresponds to no error, and 

must be distinct. That is another code called the Extended hamming codes 

[Jon06]. The Extended hamming codes have three parameters [Leh93]: 

- Length of codewords: n = 2m 

- Information symbols: k = 2m - m - 1 

- Minimum distance: d = 4 

The extended hamming codes obtained by adding an additional 

redundant bit, this redundant bit called a parity check bit; the overall 

parity check bit is added to the end of each codeword [Leh93].  

The minimum distance of this code is 4 since it is a linear block code 

whose non-zero codewords have minimum weight 4. Note that the 

extended hamming codes are still linear codes, since adding a one or zero 

at the end of each codeword is a linear process [Ric96]. 

Example (2.3): [Han06] 

The generator matrix and parity check matrix of extended hamming 

code formed as: 

Consider the following generator and parity check matrices of length 7 

hamming code C. 
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=G       

1101000

1010100

0110010

1110001

                      = HT     

100

010

001

110

101

011

111

 

The generator and parity check matrices of extended code (8,4) are: 

=G      

11101000

11010100

10110010

01110001

                 = HT        

1000

0100

0010

0001

1110

1101

1011

0111

 

So for a message equal to (1 0 1 0), the code C equal to (10100101), after 

insert the error the received word is:   

R = 10100101 + 0010000 

                                      R = 10000101 

The syndrome Sy is equal to (1011), and inspection of HT, the error 

in the third position, so that can obtain C = 10100101 from R after correct 

the error. 

At the same message and code, after insert two errors the received word 

is: 

R = 10100101 + 01000001 

                                      R = 11100100 

The syndrome Sy is equal to (1100), by inspection of HT, find that 

no row in HT equal to Sy, means that two errors added to the original 

code. 
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2.9 Error Correction Codes Applications [Mos01] 

Error detecting / correcting codes are implemented in almost any 

application that includes the keywords “transmission” and “information”, 

taken in their broadest sense. For instance, transmission may refer to the 

storage of data on a computer hard disk and the retrieval of that data. 

The use of error correcting codes is ever expanding, and it includes: 

· Radio  

· Long-distance telephony 

· Television (High-Definition Television) 

· Data storage systems 

· Compact disk and Digital Versatile Disk 

· International data networks 

· Wireless communications 

· Deep-space communications (satellites, telescopes, space probes) 

Error detecting / correcting codes are widely used for improving the 

reliability of computer storage systems. The requirement for such 

systems, which at first used core memories, was for a single error 

correcting / double error detecting (SECDED) code. The first error control 

scheme to be implemented on computer memories were the hamming 

codes which have this error control capacity. Especially after core 

memories were replaced by semi-conductor memories, which are faster 

but their high density per chip induces more errors, error control codes 

became an essential design feature in computer storage systems. 

2.10 Cryptosystems Based on Error Correcting Codes 

[Lou00] 

Cryptosystems based on error correcting codes require a class of 

codes with some properties that are a good and efficient (fast) decoding 

algorithm and the type of codes must be large enough to avoid any 
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enumeration. McEliece public key is the cryptosystem based on error 

correcting codes.  

2.11 McEliece Public Key Cryptosystem 

The McEliece public key cryptosystem was proposed nearly 20 

years ago, by McEliece in 1978. The system is simple to explain and is 

very fast in execution. McEliece cryptosystem is a public key 

cryptosystem based on algebraic coding theory that provide secure 

transmission whose security rests on error correcting codes and the 

difficult problem of decoding plaintext from ciphertexts which the sender 

intentionally garbles with random error [Ber97].  

There are many classes of linear codes which have very fast 

decoding algorithms. The basic idea of the McEliece system is to take one 

of these linear codes and disguise it, when trying to decrypt a message, is 

forced to use syndrome decoding. McEliece suggested using hamming 

codes and extended hamming codes, which are linear codes with a fast 

decoding algorithm, in the system, but any linear code with a good 

decoding algorithm can be used [Che00].  

The McEliece public key cryptosystem is widely used especially 

after changes in technology and economics, for example the plummeting 

cost of storage, keep it on the list of candidates for some applications 

[Ber97]. 

The McEliece scheme uses a generator matrix and a parity-check 

matrix. Generally, the secret key to this kind of public key cryptosystems 

is the code itself, for which an efficient decoding algorithm is known 

[Lou00]. 

In this system, the public key, G, is a (k*n) matrix that is a product 

of three private keys: S, G0 and P, where S is a (k*k) scrambling (non 
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singular or invertible) matrix, G0 is (k*n) generator matrix, and P is a 

(n*n) permutation matrix. Both S and P provide the required 

randomization effect on G. 

                                          P G S G 0= ………………………………....(2.11) 

S, G0 and P are kept secret. For sender send a message to receiver, 

the sender blocks it into binary vectors of length k. If (m) is one such 

block, the sender randomly constructs a binary vector of weight t (that is, 

randomly places t 1's in a zero vector of length n), call it e that represent 

error vector (i.e. hamming code have ability to add one error and then can 

detect, correct it, extended hamming code also having ability to add one 

error and can detect, correct it and have ability to add two errors and then 

can only detect (not correct) their) and then sends to receiver the vector  

                                          e mG  y += …………………………….…...(2.12) 

The receiver receives y to decrypt the message. The receiver computes  

                                            + = emG y                                            

                                   P ) e (mG   yP -1-1 +=  ……………………….....(2.13)                                    

                                    eP  P)PmSG   y` -1-1
0 +( =   

                                 -1
0 eP  mSG    y` +=                              

                                  e`  mSG   y` 0 +=  

Where e' is a vector of weight t (since P-1 is also a permutation 

matrix). The receiver now applies the fast decoding algorithm to strip off 

the error vector e' and get the codeword 0(mS)G . The vector mS can now 

be obtained from the first k positions of 0(mS)G , because G0 matrix has 

been written in standard form P]:[I k . Then receiver recovers m by 

multiplying mS by S-1 matrix [Che00].  

 There are major concerns with the McEliece public key 

cryptosystem, these are [Che00]; public key size, message expansion 

(message expansion is the ratio between the length of the encrypted 
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message and the length of the secret message [Car05]), and information 

rate (this is a measure of how much information on the average is being 

carried by a symbol [Heu98]).   

Brute force attack (2.4) was used to evaluate the security of 

McEliece public key cryptosystem.  



 
 
 
 
 
 
 
 
 

        
 
 

 
 
 
 
 
 
 
 
 



Chapter Three     

The Proposed System Design and Implementation 

3.1 Introduction 

The problem treated in this project implements the McEliece 

cryptosystem when using hamming and extended hamming code, 

evaluates the security of this cryptosystem and enhances the performance 

of it. 

The proposed system of implementing McEliece public key 

cryptosystem, evaluating its security and enhancing it, consists of four 

phases. The first phase is concerned with generating the McEliece public 

key cryptosystem using two types of code that are hamming code and 

extended hamming code. The second phase is concerned with encrypting 

the message, and in this phase the error was added to it. The third phase is 

concerned with decrypting the encrypted message and obtained the 

original one. Also, in this phase the message was decoded from the error 

added to it. The last phase is concerned with evaluating the security of 

this system (McEliece cryptosystem). The evaluation phase based on 

attacking this cryptosystem using brute force attack and measures the 

power of it against this type of attack. Design and implement a 

mechanism that is used to overcome the weak points of this cryptosystem 

and to enhance the performance of it. Also, this phase is computing other 

cryptosystem parameters; key size, message expansion and information 

rate.  

The general algorithm adopted to implement, evaluate and enhance 

this system was as follows: 

1- Generate McEliece public key using hamming code and extended 

hamming code. 
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2- Get the message to be encrypted as a vector of binary data. Then, the   

encrypted message will be transmitted through a noisy channel, so 

noise will be added to the message. 

3- The receiver will receive the encrypted message and starts to decrypt 

it. Decryption process is an important stage and the encrypted 

message requires several operations to be decrypted. The above 

steps are presented in figure (3.1). 

4- The security of McEliece cryptosystem was evaluated by using a 

kind of attack called brute force attack. According to this attack, 

some weak points have appeared, and an adopted mechanism was 

used to overcome this weakness. The generated system according to 

the previous mechanism was more secure with most different value 

of cryptosystem parameter (m). 

5- Computing and evaluating other cryptosystem parameters; the size 

of the public key, message expansion and information rate. The 

security of this cryptosystem was affected by these parameters.  

 

Figure (3.1): McEliece system model. 
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3.2 Key Generation Phase 

a) Generate a public key of hamming code 

The generation of the key here depends on the hamming code. 

Hamming code can correct single error that added to the code, this 

code has many parameters: 

- Value of m: m = (n-k), m is limited between (2 to 10), (n > k).  

- Value of n: n = 2m-1, let n be a y-axes of the public key matrix. 

- Value of k: k = 2m - m - 1, let k be an x-axes of the public key    

   matrix. 

 
b) Generate a public key of extended hamming code 

     The generation of the key here depends on the extended 

hamming code. Extended hamming code corrects single error and 

detects two errors that added to the code. The algorithm of 

generating a public key of extended hamming code is the same of 

generating a public key of hamming code but the difference in 

creating the generator matrix of extended hamming code. Extended 

hamming code also has many parameters: 

- Value of m: m = (n-k)-1, m is limited between (2 to 10), (n > k).  

- Value of n: n = 2m, let n be a y-axes of the public key matrix. 

- Value of k: k = 2m - m - 1, let k be an x-axes of the public key  

   matrix. 

The algorithm of generating a public key of hamming code and 

extended hamming code is: 

i. Generate a binary generator matrix of hamming code and 

extended hamming code. 

The generator matrix of hamming code is a binary matrix of k*n 

dimension with two parts (identity part and parity part). The 
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minimum distance between any two codewords equal to 3, and 

the minimum distance of linear block code is equal to the 

minimum weight of any nonzero word in the code. This matrix 

must be linear independent. The generator matrix was considered 

as a secret key. This random generation is performed as follows: 

Algorithm (3.1):  Generate a random generator matrix of hamming code. 

Input:  
n: an integer number represents dimension value (a y-axes)of the generator  

matrix //the value of n determines from algorithm (3.7) 

k: an integer number represents dimension value (an x-axes) of the generator  

matrix //the value of k determines from algorithm (3.7) 

Output: 
G0: a generator matrix of k*n dimension  

HParity: a parity part of the generator matrix of k*(n-k) dimension  

Procedure  
1. Call Generate identity matrix that input (k) and output (id) // algorithm (3.2) 

2. Call Generate parity matrix that input (k,(n-k)) and output (HParity) //  

     algorithm (3.3) 

3. For i ← 0 to k-1 

             For j ← 0 to k-1 

                      Set G0(i, j) ← id(i, j) 

                    End loop (j) 

     End loop (i) 

            4. For i ← 0 to k-1 

                   4.1 Set x ← 0 

                   4.2 For j ← k to n-1 

                          Set G0(i, j) ← HParity(i, x) 

         Increment x by 1 

              End loop (j) 

      End loop (i) 

End.  
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Algorithm (3.2):  Generate identity matrix. 

Input:  
z: an integer number, represents dimensions values of the identity matrix  

Output: 
 id: identity matrix of z*z dimension 

Procedure  
1. For i ← 0 to z-1 

                    For j ← 0 to z-1 

                        If (i = j) then Set id(i, j) ← 1 Else Set id(i, j) ← 0  

         End loop (j) 

     End loop (i)  

End.  

 

Algorithm (3.3):  Generate a random parity matrix.   

Input: 
k: an integer number represents dimension value (an x-axes) of  Parity matrix 

z1: an integer number represents dimension value (y-axes) of Parity matrix 

Output: 
Parity: a parity matrix of k*z1 dimension  

Procedure  
1. Set x ← 0 

2. Do 

       2.1 Set count ← 0 

       2.2 For j ← 0 to z1-1 

                 Set Parity(x, j) ← randomize value 0 or 1 

                  If Parity(x, j) = 1 Then increment count by 1 

             End loop (j) 

     Until (count≥2) 

3. Do While (x < k-1) 

            3.1 Do 

                          Set count ← 0 

                          For j ← 0 to z1-1 

                                  Set temp (j) ← randomize value 0 or 1 

                                  If temp (j) = 1 Then increment count by 1 
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                             End loop (j) 

                         Until (count ≥ 2) 

                3.2 For i ← 0 to x 

                              Set co1 ← 0 

                              For j ← 0 to z1-1 

                        If (temp(j) ≠ Parity(i, j)) then  

                           Set co1 ← 1 

                         Exit for (j) 

                                   End if 

                               End loop (j)   

                               If (co1 ≠ 1) then exit for (i) 

                         End loop (i) 

                3.3 If (co1 = 1) then 

                          Increment x by 1 

                             For j ← 0 to z1-1 

                                 Set Parity(x, j) ← temp(j) 

       End loop (j) 

                         End If 

    Loop 

End.  

   Example (3.1.a):  

   Let m = 3 

   n = 7, k = 4    

   The generator matrix of hamming code is:   

               G0 (4*7)     =    

1111000

1100100

1010010

0110001

 

                                             I(4*4)             P(4*3) 

Matrix I is an identity matrix of k*k dimension and matrix P 

is a parity matrix of k*(n-k) dimension. The two conditions are the 

minimum distance between any two codewords in the generator 

matrix must equal to 3, and the minimum distance of linear block 
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code is equal to the minimum weight of any nonzero word in the 

code. The generator matrix of hamming code depends on these two 

conditions (i.e., just only one must exist in each row of the first 

part (identity part) of the generator matrix. In the second part 

(parity part), each row of the matrix must have at least two ones. 

The minimum weight of each codeword in the generator matrix 

will equal to 3). And this parity matrix must be linearly 

independent.  

The generator matrix of the extended hamming code is a 

matrix of k*n dimension with two parts (identity part and parity 

part). The algorithm of generating the generator matrix of the 

extended hamming code is the same of generating it of hamming 

code but the difference that the minimum distance between any 

two codewords equal to 4 not to 3, and this matrix obtained by 

adding an additional bit to the end of each codeword. This 

redundant bit called a parity check bit. The algorithm of creating 

this matrix is as follows:  

Algorithm (3.4):  Generate a random generator matrix of extended 
hamming code. 

Input:  
n: an integer number represents dimension value (a y-axes)of the generator  

matrix //the value of n determines from algorithm (3.7) 

k: an integer number represents dimension value (an x-axes) of the generator  

matrix //the value of k determines from algorithm (3.7) 

Output: 
G0: a generator matrix of k*n dimension  

ExParity: a parity part of the generator matrix of k*n-k dimension 

Procedure  
1. Call Generate identity matrix that input (k) and output (id) // algorithm (3.2) 

2. Call Generate parity matrix that input (k,(n-k-1)) and output (Parity) //  
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algorithm (3.3) 

            3. For i ← 0 to k-1 

             For j ← 0 to k-1 

                     Set G0(i, j) ← id(i, j) 

         End loop (j) 

     End loop (i) 

            4. For i ← 0 to k-1 

                   4.1 Set x ← 0 

                   4.2 For j ← k to n-2 

                          Set G0(i, j) ← Parity(i, x) 

                          Increment x by 1 

              End loop (j) 

     End loop (i) 

 5. For i ← 0 to k-1 

                    5.1 Set x ← 0 

                    5.2 For j ← 0 to n-2 

                           Set x ← (x + G0(i,j)) and 1 

               End loop (j)  

                    5.3 Set paritybit(i)←x 

     End loop (i) 

6. For i ← 0 to k-1 

         6.1 Set G0(i,n-1)← paritybit(i)  

                     6.2 Set x ← 0     

           6.3 For j ← k to n-1 

                                Set ExParity(i,x) ← G0(i,j) 

                                Increment x by 1 

                  End loop (j)        

       End loop (i) 
End.  

 Example (3.1.b):  

   Let m = 3 

   n = 8, k = 4  
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   The generator matrix of the extended hamming code is: 

                                               I(4*4)                 P(4*4) 
 

                G0 (4*8)  =       

01111000

11100100

11010010

10110001

 

 
                                                                          parity bits 

Matrix I is an identity matrix of k*k dimension and matrix P 

is a parity matrix of k*(n-k) dimension. A parity bit is a bit at the 

end of each codeword (i.e., these parity bits represent the 

summation of each codeword in binary representation). The only 

difference between generator matrix of extended hamming code 

and generator matrix of hamming code is the parity check bits at 

the end of each codeword. These parity check bits achieved that 

the minimum hamming distance between any two codewords 

equal to 4 not to 3.  

 
ii. Generate randomly a non-singular binary matrix of k*k 

dimension. Non-singular matrix means that matrix must have an 

inverse matrix (its also called invertible matrix or scrambling 

matrix). This matrix was considered as the second secret key. 

The algorithm of creating the non-singular matrix illustrates in 

algorithm (3.5). But this random creating needs long time 

especially when the value of the system parameter (m≥6, k≥57) 

therefore instead of it, can read a non-singular matrix and its 

inverse matrix from files generated by algorithm (3.17) and use 

these two matrices to generate a McEliece public key. 
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Algorithm (3.5): Generate a random non-singular matrix and its inverse.  

Input: 
k: an integer number represents dimensions values of the non-singular matrix  

and its inverse matrix //the value of k determines from algorithm (3.7) 

Output:  
S: a non-singular matrix of k*k dimension  

Sinv: an inverse matrix of non-singular matrix of k*k dimension  

Procedure 
 1. Do 

        1.1 For i ← 0 to k-1 

                    For j ← 0 to k-1 

                        Set S(i, j) ← randomize value 0 or 1 

         End loop (j) 

                End loop (i) 

         1.2 Apply gauss elimination with partial pivoting method to compute  

               the inverse matrix of S matrix  

    Until (S*Sinv= identity matrix)  //if (S*Sinv) = identity matrix that means S  

     have an inverse matrix (Sinv) otherwise S doesn’t have inverse. 

End.  

       Example (3.1.c):  

     k = 4  

     The non singular matrix and its inverse matrix is:  

             

 
         S(4*4)                                                S

-1
(4*4) 

 
 

      Some of matrices do not have an inverse so each matrix must 

be checked if it has an inverse or not by using gauss elimination 

with partial pivoting method to compute its inverse matrix. And 

then check if the multiplication result of these two matrices S and 
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0011

1110

1001

1011





















=

1001

1110

0011

1011



Chapter Three                            The Proposed System Design and Implementation                                         

 ٣٧

S-1 leads to an identity matrix, then it means S has an inverse, 

otherwise S doesn’t have.   

iii.  Generate randomly a permutation binary matrix of n*n 

dimension and generate its inverse. Permutation matrix means 

that matrix have only one in each row and column. The inverse 

matrix of permutation matrix is the transpose of permutation 

matrix. The algorithm of creating a permutation matrix is as 

follows:  

Algorithm (3.6):  Generate a random permutation matrix and its inverse. 

Input:  
n: an integer number represents dimensions values of the permutation matrix  

and its inverse // the value of n determines from algorithm (3.7) 

Output: 
P: a permutation matrix of n*n dimension  

Pinv: an inverse permutation matrix of n*n dimension  

Procedure  
 1. Set x ←0; Set count ←1  

 2. Set ind(count) ← randomize value between 0 and n-1 

 3. Do 

             3.1 Set P(x, ind(count)) ← 1 

             3.2 For j ← 0 to n-1 

                              If j ≠ ind(count) Then Set P(x, j) ← 0 

               End loop (j)  

                    3.3 Increment x by 1;   Increment count by 1 

                    3.4 Set flag ← True 

                    3.5 Do While (flag = True) and (x ≤ n-1) 

              Set new1 ← randomize value between 0 and n-1;    Set co ← 0 

               For i ← 0 to count - 1 

                      If new1 ≠ ind(i) then increment co by 1 

       End loop (i) 

                             If co = count then 

                      Set ind(count) ← new1;    Set flag ← False 
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               End If 

                    Loop 

     Until x = n      

 4. For i ← 0 to n-1 

         For j ← 0 to n-1 

                      Set Pinv(j, i) ← P(i, j) 

          End loop (j) 

      End loop (i) 

End.  

      Example (3.1.d):  

   n = 7   

   The permutation matrix and its inverse matrix are:   

       P(7*7)  = 

0010000

0100000

0000100

0000001

1000000

0001000

0000010

     P-1
(7*7) =  

0000100

0100000

1000000

0000010

0010000

0000001

0001000

         

The public key of hamming code or extended hamming code can be 

generated by multiplying these three matrices (generator matrix of 

hamming code or extended hamming code G0, non-singular matrix S and 

permutation matrix P). This showed as follows in figure (3.2) and in 

algorithm (3.7). This public key is a matrix of k*n dimension:  

G(k,n) = S(k,k) G0(k,n) P(n,n) 
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Figure (3.2): Key generation phase. 

Algorithm (3.7):  key generation phase. 

Input:  
m: is an integer number, 2≥ m≥ 10 // m=(n-k) for hamming code, m=(n-k)-1  

     for the extended hamming code.  

t: 0≤t≤2, number of error // (0≤t≤1) for hamming code, and (0≤t≤2) for the 

    extended hamming code.                                                                                                                             

Output: 
G: a public key of hamming code or a public key of extended hamming code  

of k*n dimension  

t: number of error 

time: represents execution time of the key generation phase 

Procedure 
1. Set t1← current time 

 2. If generating a public key of hamming code then   Set n ← 2m – 1 

     Else if generating a public key of extended hamming code then   Set n ← 2m    

  3. Set k ← 2m - m – 1  

           4. If generating a public key of hamming code then       Call Generate a        

                    random generator matrix of hamming code that input (n,k) and output  

                   (G0,HParity)  // algorithm (3.1) 

     Else if generating a public key of extended hamming code then     Call  

                 Generate a random generator matrix of extended hamming code that input  

Generate a 
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Generate a non 
singular matrix 
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                 (n,k) and output (G0, ExParity) //algorithm (3.4) 

5. Call Generate a random non-singular matrix and its inverse that input (k)     

    and output (S,Sinv) // algorithm (3.5)  

6. Call Generate a random permutation matrix and its inverse that input (n)   

    and output (P,Pinv) // algorithm (3.6) 

7. Multiply these three matrices to produce a public key (G): 

    Set G(k, n) ← S(k,k) * G0(k,n)* P(n,n) 

8. Set t2← current time 

9. Set time← t2-t1 

End.  

Example (3.1):  

     The McEliece public key of hamming code is:           

             G(4*7)   =       

0111010

1011001

0010011

0001111

 

The above public key G(4*7) can be obtained by multiplying these 

three matrices; generator matrix of hamming code G0(4*7) in example 

(3.1.a), non-singular matrix S(4*4) in example (3.1.c) and permutation 

matrix P(7*7) in example (3.1.d). That showed as follows: 

G (4,7) = S(4,4) * G0(4,7) * P(7,7) 

3.3 Encryption Phase 

In this phase the original message will be converted to a cipher 

message by multiplying the original one (the original message or the clear 

message is a binary vector of 1*k dimension after converted from text to 

binary representation) with the public key that was generated with the 

previous phase. Also in this phase, the errors have been added (one error 

when using hamming code and one or two errors when using extended 

hamming code, these errors refer to the noise in the channel) to the 
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encrypted message. This is shown in figure (3.3) and the implemented 

steps are presented in algorithm (3.8). The encrypted message is a binary 

vector of 1*n dimension: 

Encrypted message y1(1,n) = original message me(1,k) * G (k,n) + error 
vector e(1,n) 

  

 

Figure (3.3): Encryption phase. 

Algorithm (3.8):  Encryption phase. 

Input: 
G: a public key of hamming code or a public key of extended hamming code  

of k*n dimension  

t: number of error 

me: represents original message   

Output: 
y1: an encrypted message with error  

time: represents execution time of the encryption phase  
Procedure  
            1. Sender (B) obtained A's public key G and t   

2. Convert the original message (me) from text to binary representation 

3. Set t1← current time 

4. q ← length (me) / k 

 5. If q ≠ Int(q) Then 

        q ← Int(q) + 1 

    End If  

 6. Call Message encryption that input (G,me,q) and output (y)//algorithm (3.9)  

7. If t ≠ 0 Then 

        For x ← 0 to q - 1 

                       Call Generate a random error vector that input (t) and output (e) // 

Multiply 

e (1*n) 

Addition me 
(1*k) 

y1(1*n) 
error 

y (1*n) 

 Sender  B  Receiver  A   
  Public key 

(G), t 

 

encrypted 
message  message 
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              algorithm (3.10)     

            For j ← 0 to n - 1 

                Set y1(x, j) ← (y(x, j) + e(j)) and 1 

            End loop (j)   

        End loop (x) 

    End If 

8. Set t2← current time 

9. Set time← t2-t1 

10. Convert the encrypted message (y1) from binary to text representation  

 11. Sender (B) Sends encrypted message y1 to receiver (A) 

End.  
 

Algorithm (3.9):  Message encryption. 

Input:  
G: a public key of hamming code or a public key of extended hamming code  

of k*n dimension  

me: represents original message 

q: number of blocks of the original message // each block of 1*k dimension 

Output: 
y: encrypted message of q*n dimension  

Procedure   
1. Set co ←0; Set co1 ←k 

2. For l ← 0 to q - 1 

       2.1 For j ← 0 to n - 1 

                Set x ← 0;     Set x1 ← 0 

                For i ← co to k - 1 

                    Set r1 ← me(i) * G(x1, j) 

                    Increment x by r1;   Increment x1 by 1 

                End loop (i) 

                Set y(l, j) ←x and 1 

             End loop (j) 

       2.2 Increment co by co1; Increment k by co1 

    End loop (l) 

End.  
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Errors which have been added to the encrypted message are 

already arranged in a binary vector of 1*n dimension. These errors must 

be generated randomly. This random generation was as follows:   

Algorithm (3.10): Generate a random error vector. 

Input: 
t: number of error 

Output:  
e: an error vector of 1*n dimension  

Procedure  
           1. Set x←1; Set ind1←randomize value between 0 and n-1; Set index(x)←ind1 

           2. Do While x < t 

      2.1 Set ind1 ← randomize value between 0 and n-1;     Set co ← 0 

                  2.2 For i ← 1 to x 

                            If ind1 = index(i) Then 

                               Set co ← 1 

                               Exit For (i) 

                            End If 

             End loop (i) 

      2.3 If co = 0 Then 

                            Increment x by 1 

                           Set index(x) ← ind1 

                        End If 

   Loop 

           3. For i ← 0 to n - 1 

            For j ← 1 to x 

                       If index(j) = i Then 

                           Set e(i) ← 1 

                           Exit For (j) 

                       End If 

                       Set e(i) ← 0 

        End loop (j) 

    End loop (i) 

End.  
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Example (3.2):  

Let original message   me = 1 1 0 1   

Let error vector   e = 0 0 0 0 1 0 0 

Encrypted message can be obtained by multiplying the original 

message me(1*4) with the public key G(4*7) that was generated in example 

(3.1), and then adding error vector e(1*7) to it. This will be as follows:  

Encrypted message   y1(1*7) = me(1*4)* G(4*7) + e(1*7) 

                                 = 0 1 1 0 0 1 0 + 0 0 0 0 1 0 0 

                                 = 0 1 1 0 1 1 0 

3.4 Decryption Phase 

In this phase the encrypted message is converted to an original 

message by using three secret keys (generator matrix, non-singular matrix 

and permutation matrix). Also, in this phase the message was decoded 

from the error added to it. The decryption process is done by multiplying 

the encrypted message by the inverse matrix of the permutation matrix 

(that was generated through the first phase (key generation phase)) to 

produce a binary vector of 1*n dimension.  This binary vector was 

multiplied by the transpose of parity check matrix (H). The parity check 

matrix is a matrix of n*(n-k) dimension, which depends on the generator 

matrix (generator matrix G0= [I:P], parity check matrix H = [PT:In-k]). 

This matrix consists of all non-zero binary rows. The result of previous 

multiplication is a binary vector of 1*(n-k) dimension called a syndrome. 

The syndrome was used to discover if the binary vector of 1*n dimension 

has errors (one error or two) or not. If it has one error, then using the 

syndrome, the position of the error can be detected and corrected, but if 

the binary vector has two errors, then those two errors can be detected 

without knowing their positions. 
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• Syndrome decoding for hamming code is: 

1. If syndrome equal to zero that means no error exists. 

2. If syndrome not equal to zero, this means one error exists and 

can be corrected by matching the syndrome with rows of the 

HT
(n*(n-k)) . The row number in HT that is identical to syndrome 

refers to the position of the error. 

• Syndrome decoding for extended hamming code is: 

1. If syndrome equal to zero that means no error exists. 

2. If the first (n-k-1) bits of syndrome equal to zero and the last bit 

(parity check bit) of syndrome fails, this means one error exists 

and can be corrected by the same previous method of matching 

the syndrome with the rows of HT. 

3. If the first (n-k-1) bits of syndrome not equal to zero and the 

last bit (parity check bit) of syndrome fails, this means one error 

exists and it can be corrected also by the same previous method.  

4. If the first (n-k-1) bits of syndrome not equal to zero and the 

last bit (parity check bit) of syndrome is passed, this means two 

errors exist and will seek for re-transmission, so using the 

syndrome two errors in the codeword can be detected but not 

corrected. 

      In case of no errors found, or after correcting the binary vector 

of 1*n dimension with the syndrome, the first k bits of this binary 

vector was multiplied by the inverse matrix of the non-singular 

matrix (that was generated in the first phase (key generation 

phase)) to obtain the original message. The decryption phase was 

represented in figure (3.4).   

y2(1*n) = y1(1*n) * Pinv(n*n) 

y1 (1*n) = me(1*k) * G (k*n) + e(1*n) 

y2(1*n) = (me(1*k) * S(k*k)  * G0(k*n) * P(n*n) + e(1*n)) * Pinv(n*n) 
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y2(1*n) = me(1*k) * S(k*k)  * G0(k*n) + e(1*n) * Pinv(n*n) 

/ ... after using the syndrome procedure, 

y2(1*k) = me(1*k) * S(k*k) 

me(1*k) = (me(1*k) * S(k*k) ) * Sinv(k*k)  

                               Figure (3.4): Decryption phase. 

Algorithm (3.11): Decryption phase (Hamming decryption). 
Input:  

y1: an encrypted message with error  

Pinv: an inverse permutation matrix of n*n dimension  

HParity: a parity part of the generator matrix of k*n-k dimension 

Sinv: an inverse matrix of non-singular matrix of k*k dimension  

Output:  
me: represents original message   

time: represents execution time of the decryption phase  

Procedure  
1. Receiver (A) receives encrypted message y1 from sender (B) 

2. Convert the encrypted message (y1) from text to binary representation  

3. Set t1← current time 

4. q ← length (y1) / n 

5. If q ≠ Int(q) Then 

        q ← Int(q) + 1 

    End If  

 6. Call SynPar that input (y1,q,Pinv,HParity) and output (Sy,HT,y2) // 

                 algorithm (3.13) 

7. Set x1 ← 0 

8. For j ← 0 to (n - k) - 1 

Inverse 

Syndrome decoding 
 procedure * * 

S(k*k) 

S-1
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             Set x1 ← x1 + Sy( 0,j) 

     End loop (j) 

            9. If (x1 = 0) Then   no error added to the message  

10. If (x1 ≠ 0) Then 

          10.1 For r ← 0 to q – 1 // error correction loop 

                           For i ← 0 to n - 1 

                                      Set co ← 0 

                                      For j ← 0 to (n - k) - 1 

                                          If Sy(r,j) ≠ HT(i, j) Then 

                                               Set co ← 1 

                                               Exit For (j) 

                                          End If 

                           End loop (j)  

                                      If co = 0 Then 

                                            Set y2(r,i) ← (y2(r,i) + 1) and 1 

                                            Exit for (i) 

                                      End If 

                       End loop (i) 

                   End loop (r)  

      End if 

11. For r ← 0 to q – 1 // eliminates the non-singular matrix (it is a secret key) 

              For i ← 0 to k - 1 

                      Set x1 ← 0 

                      For j ← 0 to k - 1 

                             Set r1 ← y2(r, j) * Sinv(j, i) 

                            Increment x1 by r1 

                      End loop (j) 

                     Set me(r, i) ← x1 and 1 

                 End loop (i) 

      End loop (r) 

12. Set t2← current time 

13. Set time←t2-t1 

14. Convert the original message (me) from binary to text representation 
End.  
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The previous algorithm (3.11) illustrated the decryption phase of 

hamming code while the next algorithm (3.12) illustrates decryption 

phase of the extended hamming code.  

Algorithm (3.12): Decryption phase (Extended hamming decryption). 

Input: 
y1: an encrypted message with error  

Pinv: an inverse permutation matrix of n*n dimension  

ExParity: a parity part of the generator matrix of k*n-k dimension 

Sinv: an inverse matrix of non-singular matrix of k*k dimension  

Output: 
me: represents original message   

time: represents execution time of the decryption phase  

Procedure  
1. Receiver (A) receives encrypted message y1 from sender (B) 

2. Convert the encrypted message (y1) from text to binary representation  

3. Set t1← current time 

4. q ← length (y1) / n 

5. If q ≠ Int(q) Then 

        q ← Int(q) + 1 

    End If  

 6. Call SynPar that input (y1,q,Pinv,ExParity) and output (Sy,HT,y2) // 

                 algorithm (3.13) 

7. Set x1 ← 0 

8. For j ← 0 to (n - k) - 2 

             Set x1 ← x1 + Sy(0,j) 

     End loop (j) 

9. Set x ← x1 and 1 

10. If ((x1 = 0) And (Sy(0,(n - k) - 1) = 0)) Then no error add to the message.  

11. If ((x1 ≠ 0) And (x = Sy(0,(n - k) - 1))) Then 

          Two errors has been detected  

                       Return  // end algoritm                     

                  End If 

12. If (((x1 = 0) And (Sy(0,(n - k) - 1) = 1)) Or ((x1 ≠ 0) And (x ≠ Sy(0,(n –  
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       k) – 1)))) Then 

          Do step 11.1 in algorithm (3.11) 

      End if  

13. Do step 12 in algorithm (3.11) 

14. Set t2← current time 

15. Set time←t2-t1 

16. Convert the original message (me) from binary to text representation  

End. 
 

Algorithm (3.13): SynPar. 

Input: 
y1: an encrypted message with error  

q: number of blocks of the encrypted message // each block of 1*n dimension 

Pinv: an inverse permutation matrix of n*n dimension  

Parity: a parity part of the generator matrix of k*(n-k) dimension  

Output:  
Sy:  syndrome of q*(n-k) dimension  

HT: a parity check matrix of n*n-k dimension  

y2: the result of multiplying (y1) by (Pinv) of q*n dimension 

Procedure  
1. Set r ← 0;   Set co1 ← n 

2. For l← 0 to q - 1 

        2.1 For j ← 0 to co1 - 1 

                  Set x ← 0;   Set x1 ← 0 

                   For i ← r to n - 1 

                      Set r1 ← y1(i) * Pinv(x1, j) 

                      Increment x by r1;    Increment x1 by 1 

                   End loop (i) 

                   Set y2(l, j) ← x and 1 

               End loop (j) 

         2.2 Increment r by co1;    Increment n by co1 

    End loop (l) 

            3. For i ← 0 to k - 1 

                    For j ← 0 to (n - k) - 1 
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                        Set HT(i, j) ← Parity(i, j) 

         End loop (j) 

     End loop (i) 

            4. Call generate identity matrix that input (n-k) and output (id)//algorithm (3.2) 

            5. Set x ← 0 

6. For i ← k to n - 1 

                    6.1 For j ← 0 to (n - k) - 1 

                           Set HT(i, j) ← id(x, j) 

               End loop (j) 

                    6.2 Increment x by 1 

     End loop (i) 

 7. For x ← 0 to q - 1 

         For j ← 0 to (n - k) - 1 

                         Set x1 ← 0 

                         For i ← 0 to n - 1 

                             Set r1 ← y2(x, i) * HT(i, j) 

                             x1 ← x1 + r1 

                        End loop (i) 

                        Set Sy(x, j) ← x1 and 1 

                     End loop (j) 

                 End loop (x)     

End. 

Example (3.3):  

Let the encrypted message y1 = 0 1 1 0 1 1 0 (from example (3.2))    

The original message can be obtained by multiplying the encrypted 

message y1(1*7) with the inverse matrix of permutation matrix P-1
(7*7) 

(from example (3.1.d)) to produce another binary vector y2(1*7). This 

binary vector must be corrected by multiplying it with the transpose of 

parity check matrix H(7*3) (that depends on the generator matrix in 

example (3.1.a)). This previous multiplication gives the syndrome Sy(1*3).  
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   G0(4*7)   =        

1111000

1100100

1010010

0110001

 

 

    HT 
(7*3) =                 

100

010

001

111

110

101

011

 

                          y2(1*7) = y1(1*7) * P
-1

(7*7)  

                       y2 = 1 0 0 0 1 1 1  

                       Sy(1*3) = y2(1*7) * H
T

(7*3) 

                       Sy = 0 0 1 

From matching this syndrome with the rows of HT finding that the 

syndrome equal to the seventh row in matrix, so the error occurs in 

position 7. The codeword after correction will be = (1 0 0 0 1 1 0 ), and 

then multiplying the first k bits of this corrected codeword with the 

inverse matrix of non-singular matrix to obtain the original message.  

me(1*4) * S(4*4) = (1 0 0 0), and obtain original message  by:  

me(1*4) = (me(1*4) * S(4*4)) * S
-1

(4*4) 

me(1*4) = (1 0 0 0) * S-1  

Original message me(1*4) = (1 1 0 1) 

3.5 Brute Force Attack 

In order to evaluate the security of McEliece cryptosystem, a brute 

force attack was used. Brute force attack is a method of defeating the 

system by generating all possible probabilities for each secret key that 

participates in the creation of the public key, and working through all 
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these possible keys in order to decrypt a message. All possible keys for 

each secret key that participates in the generation of McEliece public key 

was generated as follows: 

1. Generate all possible probable binary generator matrices (secret 

key). These probabilities depend on the properties of the binary 

generator matrix (The minimum distance between any two 

codewords equal to 3, and the minimum distance of linear block 

code is equal to the minimum weight of any nonzero word in the 

code). Here the operation of creating all generator matrix 

probabilities is based on the second part of this matrix (parity 

matrix) because the first part (identity matrix) has a fixed structure 

and its elements have fixed value. The minimum weight for each 

codeword was obtained from the two ones of the second part and the 

single one of the first part. As a result the minimum weight for each 

codeword in the generator matrix equal to 3. This parity matrix must 

be linearly independent. And the number of all possible probabilities 

depends on the size of the key (generator matrix length). The 

algorithm of generating all possible probabilities of the generator 

matrix illustrates in algorithm (3.14).  

Algorithm (3.14): Generate all possible probabilities of generator matrix 
for brute force attack. 

Input: 
n: an integer number represents dimension value (a y-axes) of the generator  

matrix  

k: an integer number represents dimension value (an x-axes) of the generator  

matrix 

Output: 
  Gntimes: represents the number of all possible generator matrices 

  File: file contains all possible generator matrices 

Procedure  
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 1. Set r ← n-k;    Set Gntimes ← 0 

2. Open File for write  

3. For i ← 0 to k – 1 

        Set G0(i) ← 3 

    End loop (i) 

4. Set flag ← False 

5. Do  

       5.1 Do 

                 Set flag1 ← False 

                 For i ← 0 to k - 2 

                                 For j ← i + 1 to k - 1 

                                     If G0(i) = G0(j) Then 

                             Increment G0(i) by 1 

        Call Check number of ones with input (G0(i),r) and output  

                                         (no) // algorithm (3.15)                                

                             If Not no Then increment G0(i) by 1 

                              Set flag1 ← True 

                                     End If 

           End loop (j) 

       End loop (i) 

                         Loop While flag1 

      5.2 Set flag2 ← False 

                  5.3 For i ← 0 to k - 2 

                            If G0(i) > 2r Then 

                                Set flag2 ← True;     Set G0(i) ← 3 

                                Increment G0(i + 1) by 1 

                    Call Check number of ones with input (G0(i+1),r) and output  

                               (no) // algorithm (3.15)                                

                             If Not no Then increment G0(i + 1) by 1 

                            End If 

             End loop (i) 

      5.4 If Not flag2 Then 

                            Put File, G0 

                            Increment Gntimes by 1;     Increment G0(0) by 1 

      Call Check number of ones with input (G0(0),r) and output  
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                             (no)// algorithm (3.15)                                

          If Not no Then increment G0(0) by 1 

                For i ← 0 to k - 2 

                                If G0(i) > 2r Then 

                                    Set G0(i) ← 3 

                                    Increment G0(i + 1)  by 1 

                         Call Check number of ones with input (G0(i+1),r) and  

                          output (no)// algorithm (3.15)                                

                                    If Not no Then increment G0(i + 1) by 1 

                                End If 

      End loop (i) 

                        End If 

      5.5 If G0(k - 1) > 2r Then   Set flag ← True 

    Until flag 

6. Close File 

7. Convert all probabilities in File from decimal to binary representation  

End. 

Algorithm (3.15): Check number of ones. 

Input: 
 x: an integer number represents codeword value of G0 matrix 

 r: an integer number represents the value of (n-k)  

Output: 
 no: boolean value either true or false   

Procedure  
1. Set no ← True 

2. For i ← 0 to r 

        If x = 2i  Then  

            Set no ← False 

            Exit For 

        End if 

    End loop   

End. 



Chapter Three                            The Proposed System Design and Implementation                                         

 ٥٥

The complexity assessment of the number of probable generator 

matrices was computed by conducting many experiments on generating 

the possible generator matrices with different matrix length. The 

algorithm of this complexity assessment is as follows: 

Algorithm (3.16): Complexity assessment of the number of probable 
generator matrices  

Input: 
n: an integer number represents dimension value (a y-axes)of the generator  

matrix  

k: an integer number represents dimension value (an x-axes) of the generator  

matrix  

Output: 
 Gntimes1: represents the number of all possible generator matrices 
Procedure  
 1. Set r ← n – k;    Set Gntimes1 ← 1;   Set pr ← 2r - r - 1 

2. For i ← 1 to k 

        2.1 Set Gntimes1← Gntimes1 * pr 

        2.2 Decrement pr by 1 

    End loop 

End. 
 

2. Generate all possible probable non-singular matrix. The generation 

of all possible keys depends on its secret key properties. Non-

singular matrix or (scrambling matrix) means that the matrix has an 

inverse matrix, and every matrix must be checked if it has an inverse 

matrix or not by using gauss elimination with partial pivoting 

method to compute its inverse matrix and then comparing the result 

of multiplication S and S-1 with identity matrix, if this multiplication 

result equal to it means that this matrix S have an inverse otherwise 

doesn’t have. The number of all possible probabilities depends on 

the McEliece cryptosystem parameter that determines dimensions of 
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this secret key (key size). The algorithm of creating all possible 

probabilities of the non-singular matrix shows in algorithm (3.17). 

Algorithm (3.17): Generate All possible probabilities of non-singular 
matrix for brute force attack. 

Input: 
k: an integer number represents dimensions values of the non-singular matrix  

and its inverse matrix //the same k in algorithm (3.14) 

Output: 
   Sntimes: represents the number of all possible non-singular matrices 

  File1: file contains all possible non-singular matrices  

 File2: file contains all possible inverse matrices of non-singular matrices 

Procedure  
 1. Open File1, File2 for write 

 2. For i ← 0 to k-1 

       For j ← 0 to k-1 

            Set a(i,j) ← S(i,j) ← 0      

        End loop (j) 

    End loop (i) 

3. For i ← 0 to k-1  

        Set a(i,k-1-i)← S(i,k-1-i) ←1 

    End loop (i) 

4. Do While (ChangeState =1) 

        4.1 For i ← 0 to k-1 

                 For j ← 0 to k-1 

                    Set a(i,j) ← S(i,j) 

         If (i=j) then   Set id(i,j) ←1     else     Set id(i,j) ← 0 

                 End loop (j) 

              End loop (i) 

        4.2 Call Compute inverse matrix that input (a,k,id) and output (invS)  

               //algorithm (3.18) 

        4.3 For x ← 0 to k-1 

                  For i ← 0 to k-1 

                       Set sum ← 0 

            For j ← 0 to k-1 
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                Set sum ← sum+S(x,j)*invS(j,i) 

            End loop (j) 

            Set R(x,i) ← int(sum) and 1 

                   End loop (i) 

              End loop (x) 

        4.4 Set Identity ← 1 

        4.5 For i ← 0 to k-1 

                  For j ← 0 to k-1 

           If ((i=j) And (R(i,j)≠1)) then 

               Set Identity ← 0;      Set i ←k-1 

                          Exit for (j) 

                      End if  

           If ((i≠j)And(R(i,j)≠0)) then 

               Set Identity ← 0;     Set i ← k-1 

                          Exit for (j) 

                      End if 

                  End loop (j) 

              End loop (i) 

        4.6 If (Identity=1) then 

                  Put File1,S 

                  Put File2,invS 

       Increment Sntimes by 1 

              End if 

        4.7 Set Carry←1 

                    4.8 For i ←k-1 down to 0 

                  Set ChangeState ← 0 

                  For j ← k-1 down to 0 

                      If ((S(i,j)=0)And(Carry=1)) then 

                          Set S(i,j)←1; Set Carry ← 0; Set ChangeState← 1;  Set i← 0  

                          Exit for (j) 

           End if  

           If ((S(i,j)=1)And(Carry=1)) then 

               Set S(i,j) ← 0;   Set Carry ←1 

           End if 

                  End loop (j) 
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              End loop (i)   

    Loop 

5. Close File1; Close File2  

End. 
 

Algorithm (3.18): Compute inverse matrix. 

Input: 
 a: a non-singular matrix of k*k dimension  

k: an integer number represents dimensions values of the non-singular matrix 

and its inverse matrix //the same k in algorithm (3.14) 

 id: an identity matrix of k*k dimension  

Output: 
 invS: the inverse matrix of matrix S of k*k dimension  

Procedure  
1. For j ← 0 to k-1 

        Set p(j) ← j 

    End loop (j) 

2. For co ← 0 to k-2 

       2.1 Set l ←co;   Set max ←a (p(co),co) 

       2.2 For x ← co+1 to k-1 

      If (abs(a (p(x),co))>abs(max)) then 

         Set max ← a(p(x),co);   Set l ← x 

      End if 

             End loop (x) 

       2.3 Set temp ← p(l);       Set p(l) ← p(co);       Set p(co)← temp 

       2.4 For i ← co+1 to k-1 

      Set a(p(i),co) ← a(p(i),co)/a(p(co),co) 

      For j ← co+1 to k-1 

          Set a(p(i),j) ← int(a(p(i),j) – a(p(i),co)*a(p(co),j)) and 1 

                 End loop (j) 

      For j ← 0 to k-1 

          Set id(p(i),j) ← int(id(p(i),j) – a(p(i),co)*id(p(co),j)) and 1  

      End loop (j) 

             End loop (i) 
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    End loop (co) 

3. For j ← 0 to k-1 

       3.1 Set tt ← int(id(p(k-1),j)/a(p(k-1),k-1))  

       3.2 If tt<0 then       Set tt ← tt*-1 

       3.3 Set invS(k-1,j)← tt and 1 

    End loop (j) 

4. For x ← 0 to k-1 

       For j ← k-2 down to 0 

 Set sum ← id(p(j),x) 

 For co ← j+1 to k-1 

      Set sum←sum-a(p(j),co)*invS(co,x) 

            End loop (co) 

 Set tt ← int(sum/a(p(j),j))  

 If tt < 0 then      Set tt ← tt *-1 

            Set invS(j,x)← tt and 1 

       End loop (j) 

    End loop (x) 

End. 
 

In algorithm (3.19) the complexity assessment of the number of 

probable non-singular matrices was discovered and computed by 

generating the all possible non-singular matrices with many different 

matrix dimensions. The algorithm of the complexity assessment for the 

possible non-singular matrices is as follows:  

Algorithm (3.19): Complexity assessment of the number of probable 
non-singular matrices  

Input: 
k: an integer number represents dimensions values of the non-singular matrix  

and its inverse matrix  

Output: 
             Sntimes1: represents the number of all possible non-singular matrices 
Procedure  

 1. Set Sntimes1 ← 1;     Set x ← 1;    Set j ← 2 
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2. For i ← 1 to k - 1 

       2.1 Set x ← 4 * x + j 

       2.2 Set Sntimes1 ← Sntimes1 * x 

       2.3 Set j ← j * 2 

    End loop 

End. 
 

3. Generate all possible probabilities of the third secret key 

(permutation matrix P). The generation of permutation matrix 

probabilities depends on its secret key properties, and the number of 

these probabilities depends on the length of the matrix (key size). 

Permutation matrix means that the binary matrix has only one (1) in 

each row and column.  Every matrix must be checked if it has this 

property or not. The algorithm of generation shows in algorithm 

(3.20). The complexity assessment of the number of possible 

probable permutation matrices is n! (i.e., Permutation matrix P(n*n) is 

a matrix of n*n dimension). 

Algorithm (3.20): Generate all possible probabilities of permutation 
matrix for brute force attack. 

Input: 
n: an integer number represents dimensions values of the permutation matrix  

and its inverse  // the same n in algorithm (3.14) 

Output: 
          Pntimes: represents the number of all possible permutation matrices 

 File3: file contains all possible permutation matrices 

Procedure   
 1. Open File3 for write 

2. For i ← 0 to n-1 

        For j ← 0 to n-1 

            Set P(i,j) ← 0 

        End loop (j) 

    End loop (i) 
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3. For i ← 0 to n-1 

        Set P(i,n-1-i)←1 

    End loop (i) 

4. Do while (ChangeState=1) 

        4.1 For i ← 0 to n-1 

       Set Numof1s ← 0 

       For j ← 0 to n-1 

  If (P(i,j)=1) then  Increment Numof1s by 1 

       End loop (j) 

       If ((Numof1s<1) or (Numof1s>1)) then exit for (i) 

   End loop (i) 

        4.2 If (Numof1s=1) then 

       For j ← 0 to n-1 

  Set Numof1s ← 0 

  For i ← 0 to n-1 

      If (P(i,j)=1) then    Increment Numof1s by 1 

             End loop (i) 

  If ((Numof1s<1) or (Numof1s>1)) then exit for (j) 

      End loop (j) 

      If (Numof1s=1) then 

  Put File3, P 

  Increment Pntimes by 1 

      End if  

   End if 

        4.3 Set Carry←1 

        4.4 For i ← n-1 down to 0 

       Set ChangeState ← 0 

                  For j ← n-1 down to 0 

   If ((P(i,j)=0)And (Carry=1)) then 

      Set P(i,j)←1; Set Carry ← 0; Set ChangeState←1; Set i ← 0 

                            Exit for (j) 

  End if 

  If ((P(i,j)=1) And (Carry=1)) then 

       Set P(i,j) ← 0;  Set Carry ←1 

  End if 
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       End loop (j) 

              End loop (i) 

    Loop 

5. Close File3   

End. 

 The output files (File, File1 and File3) contain all probabilities of 

the secret keys (G0, S, P), so one of each secret key probabilities could 

be chosen to generate the McEliece public key.    

After generating all possible probabilities for each secret key G0SP 

(generator matrix G0, non-singular matrix S and permutation matrix P) 

that was participated in the generation of McEliece public key, the 

encrypted message was decrypted through all these probabilities and 

found the original one. The algorithm of trying all these probable keys 

until finding the original message will be as follows: 

Algorithm (3.21): Trying all probable secret keys to find the original 
message.  

Input:  
         Encrypted message: an encrypted message with error  

n: an integer number represents dimension value (a y-axes) of the public key  

matrix //the same n in algorithm (3.14) 

k: an integer number represents dimension value (an x-axes) of the public key  

matrix //the same k in algorithm (3.14)  

          Pntimes: represents the number of all possible permutation matrices 

            Sntimes: represents the number of all possible non-singular matrices 

            Gntimes: represents the number of all possible generator matrices 

Output: 
           Decrypted message: represents original message 

Procedure 
 1. Open File, File1, File2, File3 for read 

 2. Set countG ← 0; Set  countS ←  0; Set countP ← 0 

3. Do  
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        3.1 If countP = Pntimes Then 

                       Increment countS by 1 

                      Set countP ← 0 

              End If 

        3.2 If countS = Sntimes Then 

                     Increment countG by 1 

                    Set countS ← 0 

              End If 

        3.3 If countG = Gntimes Then Exit loop 

        3.4 Read countG generator matrix G0 from File // this file contains all  

              possible generator matrices 

                    3.5 Read countS non-singular matrix S from File1 // this file contains all  

              possible non-singular matrices  

        3.6 Read countS the inverse of non-singular matrix Sinv form File2 //  

               this file contains all possible inverse matrices of non-singular    

               matrices 

                    3.7 Read countP permutation matrix P form File3 // this file contains all    

                          possible permutation matrices 

                    3.8 Computes the transpose of permutation matrix that is represent  

                           inverse permutation matrix 

         3.9 Read Encrypted message 

                    3.10 Decrypt Encrypted message by Call Decryption phase //algorithm  

                            (3.11) 

                    3.11 If Decrypted message = original message then 

                                   The Encrypted message was decrypted correctly and the correct 

                                    message was founded         

                                    Print Decrypted message 

                                    Exit loop  
                            End if 

        3.12 Increment countP by 1 

    Until (countG ≥ Gtimes) 

4. Close File; Close File1; Close File2; Close File3  

End.  
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3.6 A Mechanism to Enhance McEliece Cryptosystem 

 After applying a brute force attack to evaluate the security of 

McEliece public key cryptosystem, some weak points have been appeared 

and noticed (as shown in chapter four) especially when m = 3, that the 

number of probable secret keys are very small and its very easy to attack 

the system. So an adopted mechanism to enhance the performance of this 

cryptosystem was designed and implemented. This mechanism makes the 

cryptosystem very secure (because the number of probable secret keys 

becomes very large) and the size of the public keys is not large, also has 

less complexity. 

 This mechanism based on generating a number of public keys 

instead of one public key and kept these public keys and its secret keys in 

a file. This is shown in figure (3.5) and the implemented steps are 

presented in algorithm (3.22). For example generating three public keys 

of 4*7 dimensions, and saved these public keys and its private keys in a 

file.  

 

 

 

 

 

 

 

 

 

 

   

 

Figure (3.5): Key generation phase for the mechanism. 
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Algorithm (3.22): key generation phase for the mechanism. 

Input:  

m: an integer number, 2≥ m≥ 10, m=(n-k) in hamming code, m=(n-k)-1  

     in extended hamming code.  

t: 0≤t≤2, number of error 

counter: represents number of generation public keys 

Output: 

          File4: file contains generated public keys of hamming code or  

                    extended hamming code G of k*n dimension  

          FileG0: file contains read generator matrices   

          FileSinv: file contains the inverse matrices of read non-singular matrices  

          FilePinv: file contains the inverse matrices of read permutation matrices 

          t: number of error 

Procedure 

 1. Open File, File1, File3 for read  

2. Open File4, FileG0, FileSinv, FilePinv for write  

3. If generating a public key of hamming code then   Set n ← 2m – 1 

     Else if generating a public key of extended hamming code then   Set n ← 2m    

4. Set k ← 2m - m – 1 

5. For j ← 1 to counter 

       5.1 Read randomly the generator matrix G0 from File // this file contains  

             all possible generator matrices   

        5.2 Put FileG0, G0 // save matrix G0 in file 

       5.3 Read randomly the non-singular matrix S from File1 // this file  

             contains all possible non-singular matrices   

       5.4 Put FileSinv, Sinv // save the inverse of matrix S in file  

       5.5 Read randomly the permutation matrix P from File3 // this file  

             contains all possible permutation matrices   

       5.6 Put FilePinv, Pinv // save the inverse of matrix P in file  

       5.7 Multiply these three matrices (G0,S,P)to produce the public key (G): 

               G(k, n) ←  S(k,k) * G0(k,n)* P(n,n) 

       5.8 Put Filenam4, G  

    End loop (j) 
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6. Close File; Close File1; Close File3  

7. Close File4; Close FileG0; Close FileSinv; Colse FilePinv 

End.  

 In encryption phase, the side B obtains A’s public keys then start 

encrypting the original message by multiplying it by the first public key 

to produce another message. An error will be added to this message. The 

process of multiplying the message by the public key and adding error to 

it will be repeated depend on the number of generated public keys. For 

example if the number of public keys is 3, so the message will be 

multiplied by the first public key and then add error to it to produce a 

message that will be multiplied by the second public key and again add 

error to it. Finally the produced message will be multiplied by the third 

public key and error will be added to it. The last message represented the 

encrypted message which will be sent to A. This is shown in figure (3.6) 

and in algorithm (3.23). 

 
Figure (3.6): Encryption phase for the mechanism. 

Algorithm (3.23): Encryption phase for the mechanism. 

Input:  

counter: represents number of generation public keys  

me: represents the original message   
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Output: 

y1: an encrypted message with error  

Procedure 

 1. Sender (B) obtained A's file of public key G and t   

2. Convert the original message (me) from text to binary representation 

 3. Open File4 for read 

4. For j ← 1 to counter 

        4.1 Read the (j) public key G from File4 // this file contains generated  

              public key 

        4.2 q ← length (me) / k 

         4.3 If q ≠ Int(q) Then 

                  q ← Int(q) + 1 

              End If  

        4.4 Call Message encryption that input (G,me,q) and output (y) 

                // algorithm (3.9) 

        4.5 If t ≠ 0 Then 

                  For x ← 0 to q - 1 

                                 Call Generate a random error vector that input (t) and output (e)  

                                     // algorithm (3.10)     

                       For xx ← 0 to n - 1 

                           Set y1(x, xx) ← (y(x, xx) + e(xx)) and 1 

                       End loop (xx)   

                   End loop (x) 

              End If 

        4.6 Set r ← 0 

        4.7 For i ← 0 to q – 1  

                  For l ← 0 to n - 1 

                       Set me(r) ← y1(i,l) 

                       Increment r by 1 

                  End loop (l) 

              End loop (i) 

     End loop (j) 

 5. Close File4 
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6. Convert last encrypted message (y1) from binary to text representation 

 7. Sender (B) Sends encrypted message y1 to receiver (A) 

End.  

 In the last phase, decryption phase, the side A receives an 

encrypted message from side B to decrypt it. Decryption process uses the 

secret keys of the generated public keys by A to decrypt the received 

message, starting from the secret keys of the last public key to the secret 

keys of the first public key.  For example if the number of public keys is 

3, so decryption process will start with the secret keys of the third public 

key to produce a message which will be decrypted using the secret keys 

of the second public key to produce another message. Finally this 

message will be decrypted using the secret keys of the first public key.  

The last message represents the original message that A encrypt. This is 

shown as follows in figure (3.7) and the implemented steps are presented 

in algorithm (3.24). 

 

 

 

Figure (3.7): Decryption phase for the mechanism. 

Algorithm (3.24): Decryption phase for the mechanism. 
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2. Convert the encrypted message (y1) from text to binary representation  

3. Open FileG0, FileSinv, FilePinv for read 

 4. For j ← counter down to 1 

         4.1 q ← length (y1) / n 

         4.2 If q ≠ Int(q) Then 

                    q ← Int(q) + 1 

               End If  

         4.3 Read (j) inverse permutation matrix Pinv from FilePinv  

         4.4 Read (j) generator matrix G0 and Parity part from FileG0  

                4.5 Call SynPar that input (y1,q,Pinv,Parity) and output (Sy,HT,y2) // 

                             algorithm (3.13) 

         4.6 Used the syndrome (Sy) to detect and correct the error  

                   If one error was existed then 

            For r ← 0 to q – 1 // error correction loop 

                                 For i ← 0 to n - 1 

                                            Set co ← 0 

                                            For l ← 0 to (n - k) - 1 

                                                If Sy(r,l) ≠ HT(i, l) Then 

                                                    Set co ← 1 

                                                    Exit For (l) 

                                                End If 

                                 End loop (l)  

                                            If co = 0 Then 

                                                 Set y2(r,i) ← (y2(r,i) + 1) and 1 

                                                 Exit for (i) 

                                            End If 

                             End loop (i) 

                        End loop (r)  

                  End if 

          4.7 Read (j) inverse non-singular matrix Sinv from FileSinv  

          4.8 For r ← 0 to q – 1//eliminates non-singular matrix (it is a secret key) 

                         For i ← 0 to k - 1 

                                  Set x1 ← 0 

                                  For l ← 0 to k - 1 

                                          Set r1 ← y2(r, l) * Sinv(l, i) 
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                                          Increment x1 by r1 

                                  End loop (l) 

                                 Set me(r, i) ← x1 and 1 

                            End loop (i) 

                End loop (r) 

          4.9 Set r ← 0 

          4.10 For i ← 0 to q – 1  

                      For l ← 0 to k - 1 

                          Set y1(r) ←me (i,l) 

                          Increment r by 1 

                      End loop (l) 

                  End loop (i) 

    End for (j) 

5. Close FileG0; Close FileSinv; Close FilePinv 

6. Convert last decrypted message (me) that represents original message from  

     binary to text representation 

End.  

So the number of all possible probable secret keys becomes very 

large and the time needed to trying all these probable keys until decrypt 

the encrypted message is very long, therefore it is very difficult to break 

and attack the system. And the size of the generated public keys is still 

suitable. 

3.7 Other Cryptosystem Parameters 

The McEliece public key cryptosystem has many parameters, some 

of these parameters are:   

1. Key size: represents size of the public key. 

2. Message expansion: represents the ratio of the expansion of the 

encrypted message to the original message (original message is a 

binary vector of 1*k dimension where the encrypted message is a 
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binary vector of 1*n dimension, so the encrypted message was 

expanded n-k bits more than the original message). 

3. Information rate: this is a measure of how much information on the 

average is being carried by a symbol.  

Algorithm (3.25): Public key size, message expansion, information rate. 

Input: 
n: an integer number represents dimension value (a y-axes) of the public  key 

matrix  

k: an integer number represents dimension value (an x-axes) of the public key  

matrix 

Output: 
 keysize: represents size of the public key in a byte 

 mesexp: represents message expansion 

 infra: represents information rate  

Procedure  
1. Set keysize ← (k*n) / 8 

2. Set mesexp ← (n / k) 

3. Set infra ← (k / n) 

End. 



Chapter Four 

Experimental Results 

4.1 Introduction  

 In this chapter the results of the proposed system were presented. 

The security of the McEliece public key cryptosystem was evaluated by 

using brute force attack; different results of this attack are presented. An 

adopted mechanism was used to overcome the weakness of this 

cryptosystem. Also, this chapter presents the results of computing public 

key size, message expansion, information rate and execution time, and 

their influence on the security of the cryptosystem. 

4.2 Brute Force Attack 

        A brute force attack was used to evaluate the security of this 

cryptosystem (McEliece cryptosystem). This attack is a method of 

defeating a cryptographic scheme by generating all possible probabilities 

for each secret key. These secret keys are; generator key, non-singular 

key and permutation key. And, exhaustively working through all possible 

keys in order to decrypt a message.  

One can determine or estimate the time that is required to compute 

the secret keys, which is refer to the minimum amount of work to 

compute the key, then if this time is large enough the cryptosystem is a 

secure system. So the number of probabilities of the secret keys (i.e. the 

number of keys or the size of the key space) should be large enough to 

make this attack (brute force) computationally infeasible.  

The results of probabilities number for each secret key are as 

follows:  



Chapter Four                                                                              Experimental Results                                                                                                          
 

 ٧٣

a. The number of all possible probabilities of the first secret key 

(generator matrix G0 (k*n)) will be presented in table (4.1). This table 

presents all possible keys for the generator matrix with different 

cryptosystem parameter value (means that with different key size).  

            Table (4.1): The number of probable generator matrices. 

m 
Hamming 

code  
Extended 

hamming code 
The number of  

(G0) 
probabilities 

Time(second) 
n k n k 

2 3 1 4 1 1 0.000067 
3 7 4 8 4 24 0.000967 
4 15 11 16 11 39916800 7145.656 
5 31 26 32 26 4.033e+26 Long time 
6 63 57 64 57 4.053e+76 = 
7 127 120 128 120 6.689e+198 = 
8 255 247 256 247 2.094e+485 = 
9 511 502 512 502 3.069e+1139 = 
10 1023 1013 1024 1013 4.405e+2606 = 

Figure (4.1) presents the relationship between increasing the 

number of generator matrix probabilities and increasing the value 

of cryptosystem parameter (i.e. increasing key size). It is found that 

the number of these probable generator matrices is increased 

polynomially. 
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           Figure (4.1): Relation between the number of G0 probabilities and  
                                  cryptosystem parameter (m). 
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b. The second secret key (non-singular matrix S(k*k)) probabilities 

number is shown in table (4.2). The number of all possible 

probabilities for the non-singular matrix with different matrix 

length are presented in the next table.  

                 Table (4.2): The number of probable non-singular matrices.  

m 
Hamming 

code 
Extended 

hamming code The number of 
(S) probabilities 

Time(second) 
n k n k 

2 3 1 4 1 1 0.0000098 
3 7 4 8 4 20160 0.79375 
4 15 11 16 11 7.681e+35 Long time 
5 31 26 32 26 9.054e+202 = 

Figure (4.2) shows the relation between the number of non-

singular matrices with the cryptosystem parameter value (m), 

which represents the matrix size. The number of probable non-

singular matrices is increased polynomially.  
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        Figure (4.2): Relation between the number of S probabilities and  
                               cryptosystem parameter (m). 

c. Permutation matrix (P(n*n)) is the third secret key. The numbers of 

possible permutation matrices are listed in tables (4.3), and (4.4).  

These two tables offer the number of all possible probabilities for 
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the permutation matrix when using hamming and extended 

hamming code with variable matrix size and different length.  

             Table (4.3): The number of probable permutation matrices  
      when using hamming code. 

m n k The number of (P) probabilities Time(second) 
2 3 1 6 0.000093 
3 7 4 5040 Long time 
4 15 11 1307674368000 Long time 
5 31 26 8.223e+33 Long time 
6 63 57 1.983e+87 = 
7 127 120 3.013e+213 = 
8 255 247 3.351e+504 = 
9 511 502 6.792e+1163 = 
10 1023 1013 5.292e+2636 = 

Figures (4.3) and (4.4) offer the relationship between the 

numbers of permutation matrices with the value of cryptosystem 

parameter when using hamming code and extended hamming code 

(i.e. with increasing matrix length). Also it is found the number of 

probable permutation matrices is increased polynomially. 

Matrix(P)

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

2 3 4 5 6 7 8 9 10

m

lo
g(

P
ro

ba
bl

iti
es

)

 

        Figure (4.3): Relation between the number of P probabilities and  
                       cryptosystem parameter (m) when using hamming code. 
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    Table (4.4): The number of probable permutation matrices when 
using extended hamming code. 

m n k 
The number of (P) 

probabilities 
Time(in 
second) 

2 4 1 24 0.00856 
3 8 4 40320 Long time 
4 16 11 20922789888000 Long time 
5 32 26 2.631e+35 Long time 
6 64 57 1.269e+89 = 
7 128 120 3.856e+215 = 
8 256 247 8.578e+506 = 
9 512 502 3.477e+1166 = 
10 1024 1013 5.419e+2639 = 
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  Figure (4.4): Relation between the number of P probabilities and  
        cryptosystem parameter (m) when using extended hamming code. 

Complexity assessment of the number of probable each secret key 

was discovered after conducting many experiments of generating each the 

possible secret keys with different key length.  
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Table (4.5): The number of probable secret keys and needed time to try 
these probabilities. 

m 

The number of 
secret keys  

probabilities 
(hamming) 

 
Time 

The number of secret 
keys probabilities 

(extended hamming) 
 

Time 

2 6 0.0000000108s 24 0.0000000768s 
3 2438553600 2.275min 19508428800 22.889min 
4 4.009e+55 1.049e+42years 6.415e+56 1.861e+43years  
5 3.002e+263 8.595e+250years 9.607e+264 2.889e+252years 

From results listed in these tables, it was found that when the value 

of cryptosystem parameter m is small (when m = 2, n = 3 and k = 1 using 

hamming code, m = 2, n = 4 and k = 1 using extended hamming code), 

the results of all possible secret key are: 

1- For the first secret key (generator matrix), the number of all possible 

keys = 1. 

2- For the second secret key (non-singular matrix), the number of all 

possible keys = 1. 

3- For the third secret key (permutation matrix), the number of all 

possible keys when using hamming code = 6 and when using 

extended hamming code = 24.  

The number of probable keys is very small and the time needed to 

break the cryptosystem and find the original message is very small.  

        When the value of the cryptosystem parameter m = 3, (n = 7 and k = 

4) using hamming code, and (n = 8, k = 4) using extended hamming code, 

the possible secret key are: 

1- For G0 equal to 24. 

2- For S equal to 20160. 

3- For P using hamming code equal to 5040 and by using extended 

hamming code equal to 40320. 
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These values mean that the number of all probable keys is 

2438553600 when using hamming code and 19508428800 when using 

extended hamming code which is greater than the previous case. If a 

high-speed computer performs 1010 operation per second and if the 

operation is supposed to be multiplication and addition operations then it 

needs 2.275 or 22.889 minutes to try all the probabilities (each probable 

has 308 multiplications and 252 additions when using hamming code, 384 

multiplications and 320 additions when using extended hamming code) 

which is considered as a little time and thus not secure. 

       When m = 4, (n = 15 and k = 11) using hamming code and (n = 16 

and k = 11) when using extended hamming code, all possible keys for 

each secret key are as follows: 

1- For G0 = 39916800. 

2- For S = 7.681e+35. 

3- When using hamming code P probabilities number = 

1307674368000 and when using extended one P probabilities 

number = 20922789888000. 

  Here the probabilities number have been increased more than the 

previous case (when m = 3) and this increase makes such cryptosystem 

secure. As before a high-speed computer performs 1010 operation per 

second and if the operation is supposed to be multiplication and addition 

operations then it needs approximately 1.049e+42 or 1.861e+43 years to 

try all these probabilities (each probable has 8250 multiplications and 

additions when using hamming code, 9152 when using extended 

hamming code) which is regarded as a long time and hence the system is 

secure. This long time resulted from the large number of S probabilities’.  

        When m = 5 to 10, the number of possible probabilities for all secret 

keys are very large (when m=5, number of probabilities equal to 
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3.002e+263 or 9.607e+264), and the time needed for trying all these 

probabilities is very long and needs very large number of years to break 

the cryptosystem (the previous case when m=4, the time needed to break 

the system is very long, so what about this case when m≥5 and the 

number of probabilities has been increased more and becomes very 

large). So in this case the McEliece cryptosystem is very secure against 

this type of attack and very difficult to break. 

So, when the value of m is equal to 2; the number of all possible 

probable keys is very small and it is very easy to attack this cryptosystem. 

When m is equal to 3; the number of probabilities is also small but better 

than the number of probabilities when m is equal to 2. So to make this 

cryptosystem secure against this attack when the value of its parameter m 

= 3, generate number of public keys and encrypting the message by them.  

After that decrypt the message by the secret keys of these public keys. So 

the number of possible keys becomes very large and needs very long time 

for trying all these probabilities until decrypt the encrypted message, 

therefore it is very difficult to break the system. 

When m = 3 the number of possible secret keys is very small 

(2438553600), after using the proposed mechanism the number of 

probable secret keys becomes equal to 1.450e+28 when generating three 

public keys i.e. the number of secret keys probabilities when generating 

one public key is much less that when generating three public keys using 

the proposed mechanism, the number of all probable secret keys when 

using the proposed mechanism can be illustrated in the following 

equation: 

       Spm = (Sp)N  …………………………………………………… (4.1) 

       Spm = Number of all possible probable secret keys  

       Sp = Number of probable secret keys when generating one public key 
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       N = Number of generated public keys 

And if generate ten public keys the number of probable keys equal 

to (Sp)10 =7.435e+9310, and so on for m=4 as shown in the next table.   

      Table (4.6): Number of probable keys after using the mechanism.  

m No. of public keys All possible probable secret keys 

3 3 (2438553600)3 = 1.450e+28 

3 5 (2438553600)5 = 8.623e+46 

3 10 (2438553600)10 = 7.435e+93 

4 3 (4.009e+55)3 = 6.443e+166 

 When m is equal to 4 the number of probabilities is large and the 

system is secure, in order to make it more secure, the same previous 

mechanism can be used by generating two or three public keys and 

encrypting the message by them. This mechanism is not useful when m 

equal to 2 because the number of probabilities that can be generated from 

generating large numbers of public keys still very small and therefore, the 

system can be broken. 

4.3 Evaluation According Other Cryptosystem Parameters 

Some of McEliece cryptosystem parameters were studied in this 

project. The security, implementation and use of this system were 

influenced by these parameters. These parameters are: 

1-Public Key Size 

Table (4.7) shows the effect of different McEliece public key size 

(when using hamming code and extended hamming code). Also 

from this table, the public key size of extended hamming code was 

larger than the public key size of hamming code. When the value of 

n and k is small (when n = 3 or 4 and k = 1, and n = 7 or 8 and k = 4) 
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then the public key size is small and needs very little space in the 

memory. But on the other hand, the number of the secret keys is very 

small and the cryptosystem is very easy to be attacked. 

       Table (4.7): McEliece public key size when using hamming 
                          and extended hamming code in byte. 

m 
Hamming code Extended hamming code 

n K Public key size n k Public key size 
2 3 1 1 4 1 1 
3 7 4 4 8 4 4 
4 15 11 21 16 11 22 
5 31 26 101 32 26 104 
6 63 57 449 64 57 456 
7 127 120 1905 128 120 1920 
8 255 247 7874 256 247 7940 
9 511 502 32066 512 502 32128 
10 1023 1013 129538 1024 1013 129664 

When n = 15 or 16 and k = 11, the number of probable secret 

keys is large and the time needed to break the system is very long, 

roughly 1.271e+38 years. This case has suitable public key size. 

When the value of n = 31 or 32 and k = 26, the McEliece public 

key cryptosystem is very secure and any try to break it needs lots of 

years. Even the public key size is increased but still not large in 

comparison with the large capacity of storage area and high 

transmission speed. 

 When m≥6, the McEliece public key cryptosystem is very secure 

and any try to break it needs very large number of years. But the 

public key size becomes large and needs large space in the memory, 

especially when m = 10.  

 From this previous study it was found that when m=2 and 3 the 

public key size is very small but the cryptosystem is not secure. 

When m = 4 and 5, in this case the cryptosystem is secure also the 
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public key size is not large comparing with the large capacity of the 

storage media and with high transmission speed. When m≥6 the 

number of probable keys is very large and the system is very secure 

but the public key size was increased, and will cause implementation 

problems especially when m = 10.   This large public key size makes 

this cryptosystem not widely used because it needs large space in the 

memory also needs very high transmission speed. But changes in 

technology and economies, for example the plummeting cost of 

storage, keep it on the list of candidates for some applications. 

2- Message Expansion 

Table (4.8) offers message expansion of the cryptosystem, this 

table presents that the encrypted message was longer than the 

original message by (n-k) bits. System message expansion of 

hamming code was less than of extended hamming code. So the 

encrypted message is much longer than the plaintext. This expansion 

of the message is considered as a drawback of this cryptosystem 

because it makes the system more prone to transmission error.  

       Table (4.8): Message expansion system when using hamming  

                                          and extended one. 

m  
Hamming code Extended hamming code 

n K Message expansion n k Message expansion 
2 3 1 3 4 1 4 
3 7 4 1.75 8 4 2 
4 15 11 1.364 16 11 1.455 
5 31 26 1.192 32 26 1.230 
6 63 57 1.105 64 57 1.123 
7 127 120 1.058 128 120 1.067 
8 255 247 1.032 256 247 1.036 
9 511 502 1.018 512 502 1.01992 
10 1023 1013 1.009 1024 1013 1.010859 
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3- Information Rate 

          Table (4.9): Information rate system when using hamming  

                               and extended hamming code.  

m 
Hamming code Extended hamming code 

n K Information rate  n k Information rate 
2 3 1 0.333 4 1 0.25 
3 7 4 0.571 8 4 0.5 
4 15 11 0.733 16 11 0.6875 
5 31 26 0.839 32 26 0.8125 
6 63 57 0.905 64 57 0.890625 
7 127 120 0.945 128 120 0.9375 
8 255 247 0.969 256 247 0.965 
9 511 502 0.982 512 502 0.980 
10 1023 1013 0.990 1024 1013 0.989 

Table (4.9) presents information rate for different values of n and 

k of hamming code and extended hamming code. When m is small 

(m =2 and 3) the information rate is low but it would be increased 

when the value of m was increased as shown in table (4.9). And 

system information rate of extended hamming code was lower than 

of hamming code.   

4- Execution Time 

Table (4.10) and (4.11) present execution time for encryption and 

decryption stages of the cryptosystem. These tables present that the 

encryption and decryption execution time of extended hamming 

code needs more little time than the time was needed to execute with 

hamming code. However, encryption and decryption has relatively 

little time. So, this faster execution time is considered as an 

advantage of the cryptosystem.  
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         Table (4.10): System encryption and decryption execution time  
                                      of  hamming code. 

m n K Encryption time(second) Decryption time(second) 
2 3 1 0.00192 0.00198 
3 7 4 0.00103 0.00190 
4 15 11 0.00109 0.00282 
5 31 26 0.00167 0.00510 
6 63 57 0.003 0.00971 
7 127 120 0.00603 0.0204 
8 255 247 0.0130 0.0510 
9 511 502 0.0311 0.142 
10 1023 1013 0.0834 0.322 

      
       Table (4.11): System encryption and decryption execution time  
                            of  the extended hamming code. 

m N k Encryption time(second) Decryption time(second) 
2 4 1 0.00223 0.00296 
3 8 4 0.00115 0.00234 
4 16 11 0.00117 0.00312 
5 32 26 0.00171 0.00531 
6 64 57 0.00304 0.0101 
7 128 120 0.00606 0.0206 
8 256 247 0.0131 0.0514 
9 512 502 0.0312 0.143 
10 1024 1013 0.0835 0.323 

       The time of extended hamming code was larger than the 

hamming one, but the difference was small. As a normal suggestion, 

the extended one was preferred, since it can correct one error and 

can detect two. Whereas the cryptosystem of hamming code can 

correct one error and cannot detect two errors.  

 



Chapter Five 

Conclusions and Future Work 

5.1 Conclusions 

1. The McEliece public key cryptosystem is not secure when its 

parameter value (m=2 and 3), because the number of McEliece 

secret keys are very small, and an adopted mechanism was used to 

make this cryptosystem secure when m=3. And when the value of 

the cryptosystem parameter (m=4) the number of cryptosystem 

secret keys become large and the time needed to break the system is 

long, so the system is secure. When (m≥5) the number of keys 

becomes very large and needs very long time to be discovered in 

order to decrypt a message, so the McEliece cryptosystem is very 

secure in this case.  

2. The public key size of the McEliece cryptosystem is small when the 

value of the cryptosystem parameter (m=2 and 3) and the system is 

not secure. When (m=4 and 5), the system become is secure at the 

same time the storage area that was needed for the public key is not 

large. While when (m≥6) the cryptosystem is very secure but the 

size of the public keys become large, and this will cause 

implementation problems.  

3. An adopted mechanism was designed and implemented to overcome 

the weak points of this cryptosystem and to enhance the performance 

of it (especially when m = 3, when m = 4 the system is secure, to 

make it more secure this mechanism can be used). 
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4.  McEliece cryptosystem has low information rate when the value of 

cryptosystem parameter (m) is small (m=2 and 3), but this 

information rate would be increased when m is increased.  

5. Encryption and decryption has relatively little time in the McEliece 

system. Therefore, the on going study of this system is vital to the 

future of cryptography and this cryptosystem may provide an 

alternative to the current public key cryptosystem. So, this high-

speed encryption and decryption is considered as an advantage of the 

cryptosystem.  
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5.2 Future Work 

1. Using another type of linear block codes instead of hamming code 

and extended hamming code such as Golay code, Reed Muller code 

or Goppa code and evaluates the security of McEliece cryptosystem 

and trying to enhance it when using one of these codes. These codes 

can detect and corrects multiple errors depending on its propriety. 

2.  Another type of attacks could be used instead of brute force attack 

to evaluate the security of McEliece public key cryptosystem when 

using one of these codes (hamming code, extended hamming code, 

Golay code, Reed Muller code or Goppa code). 

3. Trying to overcome the drawbacks of this cryptosystem (McEliece 

cryptosystem): large public key, message expansion and low 

information rate. 
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